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CORRIGENDUM: EXPLICIT CONSTRUCTION OF A SMALL ε-NET
FOR LINEAR THRESHOLD FUNCTIONS∗

YUVAL RABANI† AND AMIR SHPILKA‡

Abstract. We give explicit constructions of ε-nets for linear threshold functions on the binary
cube and on the unit sphere. The size of the constructed nets is polynomial in the dimension n and
in 1

ε
. To the best of our knowledge no such constructions were previously known. Our results match,

up to the exponent of the polynomial, the bounds that are achieved by probabilistic arguments. As a
corollary we also construct subsets of the binary cube that have size polynomial in n and a covering
radius of n

2
− c
√
n logn for any constant c. This improves upon the well-known construction of dual

BCH codes that guarantee only a covering radius of n
2
− c
√
n.
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1. Introduction. Influenced by the discovery of unexpected connections link-
ing fundamental questions in geometric functional analysis to problems in theoreti-
cal computer science, there has been recent interest in explicit or algorithmic con-
struction of certain geometric objects that are known to exist via probabilistic ar-
guments. For example, the celebrated dimension reduction lemma of Johnson and
Lindenstrauss [JL84] has been derandomized using the method of conditional expec-
tations [EIO02, Siv02]. Another example that is still mostly open is the construction
of high dimensional nearly-Euclidean linear subspaces of `n1 [Ind07, GLR08, GLW08].
This problem is related to the question of constructing compressed sensing schemes
[Don06]; other probabilistic compressed sensing schemes, using the restricted isome-
try property [CT06], also exhibit a geometric flavor. All these geometric objects have
numerous applications in areas such as coding theory and data compression, com-
munication complexity, nearest neighbor search, learning theory, and computational
linear algebra (see, e.g., the introduction of [GLR08]), hence the desire to discover
explicit constructions.

In this paper we study what is perhaps the simplest such question. We construct
ε-nets for linear threshold functions on the binary cube Bn = {−1,+1}n as well as on
the unit sphere Sn−1 ⊂ Rn. A function f : Rn → {−1, 1} is called a linear threshold
function (LTF) iff for some v ∈ Rn and θ ∈ R we have that f(x) = 1 iff 〈v, x〉 ≥ θ.
Notice that when restricted to Sn−1, an LTF is simply the indicator function of a closed
spherical cap of Sn−1. Given a measurable set Ω ⊂ Rn endowed with a measure µ and
a family F of measurable subsets of Ω, an ε-net for F is a set S ⊂ Ω such that for every
F ∈ F with µ(F ) > ε, we have that |S ∩ F | > 0.1 Constructing ε-nets for natural set
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systems (Ω, µ,F) has been studied extensively in some cases. For example, the case
where Ω is the convex hull of a d-points set P and F is the family of all convex hulls
of subsets of P received a lot of attention (see, e.g., [Cha94, AKN+08]). The case
where Ω = [m]d and the set F is the set of all combinatorial rectangles also received a
lot of attention [EGL+92, LLSZ97]. Finally, ε-nets were extensively studied for fixed
dimensions; see, e.g., [CM96]. To the best of our knowledge, the case of LTFs (in high
dimensions) has not been previously considered in this context.

We consider Ω, which is either the binary cube or the unit sphere (endowed with
the uniform measure), and the family F includes the subsets Af = {x ∈ Ω : f(x) = 1}
for all LTFs f . We construct S ⊂ Ω of cardinality poly(n, 1/ε) that includes a point
from Af for every LTF f that satisfies µ(Af ) ≥ ε, where µ is the uniform measure
on Ω. A random sample of O(n/ε) points is an ε-net with high probability,2 and our
goal is to construct such a set explicitly. We prove the following theorem.

Theorem 1.1. There exist two universal constants a, b > 0 such that for every
ε > 0 there is an explicit construction3 of an ε-net, Nε ⊂ Bn, for LTFs of size

|Nε| = O(ε−b · na).
Note that when ε = 1/ poly(n) the construction above yields a polynomial sized

set. As a corollary of our construction, we get a similar construction for the unit
sphere.

Theorem 1.2. There exist two universal constants a, b > 0 such that for every
ε = exp(−O(

√
n)) there is an explicit construction of an ε-net, Sε ⊂ Sn−1, for spher-

ical caps of size |Sε| = O(ε−b · na).

As another corollary of our construction we also construct a poly(n) size subset
of Bn with covering radius of n

2 − Ω(
√
n log n). The covering radius r of a set of

points S ⊂ Bn is the smallest ρ such that for every x ∈ Bn there is some s ∈ S with
H(x, s) ≤ ρ, where H denotes Hamming distance. We note that this construction
improves upon the one guaranteed by dual BCH codes. This result was independently
obtained by Alon [Alo08].

Corollary 1.3. There exists a > 0 such that for every c > 0 there is an explicit
construction of a set C ⊂ Bn of size |C| = n2 · (nc)a such that for every z ∈ Bn there
is some x ∈ C with H(z, x) ≤ n

2 −
√
cn log n.

We note that LTFs play an important role in both theory and practice. For
example, bounded depth TC0 circuits, composed of a constant number of layers of
threshold functions, received considerable attention in complexity theory, and support
vector machines use threshold functions as a hypothesis in many learning scenarios.
Aside from the intrinsic interest in studying LTFs, our work is motivated by the desire
to build methodically a theory of pseudorandom generators for geometric functions. In
the algebraic setting (over GF[2]), ε-biased sample spaces fool linear functions [NN93];
they were recently composed to construct pseudorandom generators for low-degree
polynomials [Vio08]. Analogously, we hope that dealing with LTFs is a good starting
point for the gradual construction of more complicated pseudorandom generators for
nonlinear geometric functions, which are needed to resolve some of the questions
mentioned earlier.

2This follows, for example, from applying a VC dimension argument; see [AS08].
3Whenever we say that an “explicit construction” exists we mean that there is a polynomial time

algorithm that on input 1n outputs the required construction. It is not difficult to verify that the
constructions in this work can also be performed by a log-space machine.
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1.1. Proof technique. Our constructions use several ideas from derandomiza-
tion theory. The first is the notion of a k-wise independent distribution. A set of m
random variables on a sample space Ω is k-wise independent iff every subset of the
random variables of cardinality at most k is independent. There are numerous appli-
cations in computer science for k-wise independent distributions with small support.
In particular, poly(n) size k-wise independent distributions on Bn give a construction
of a covering code with covering radius n

2 − Ω(
√
n). We improve the covering radius

of a poly(n) size set to n
2 −Ω(

√
n log n). The idea is to concatenate O(log n) samples

from a 4-wise independent distribution with m = n/O(log n) random variables. In
order to restrict the size of the constructed set, we need to consider only a subset of
all possible concatenations. In the case of the covering code we actually concatenate
the same element with itself O(log n) times. More accurately, for every element s ∈ S
and every sequence of t = O(log n) signs α1, . . . , αt we consider α1 · s ◦ · · · ◦ αt · s.
Thus, every element of S gives rise to 2t = poly(n) vectors in the Boolean cube.

Note that this idea does not yield an ε-net. Indeed, a covering code is an ε-net for
LTFs of the form f(x) = sign(〈x, v〉−θ) (for an appropriate θ) when v ∈ Bn. However,
when v is taken from the unit sphere and all the weight of v is concentrated on the
first n/O(log n) coordinates, the inner product of v and the “self-concatenated” s
will be off by a factor of O(

√
log n). To overcome this and to ensure that the weight

of v is “spread” we first hash the coordinates of v into O(log n) “buckets” such that
each of them contains approximately the same weight of coefficients as the other sets.
To get a small set of partitions, we use certain explicit constructions of perfect hash
functions. Once we have this “reordering” of the coordinates of v we would like to
repeat the idea from before. However, an additional component is needed. Instead of
concatenating each s ∈ S to itself (with different signs) we instead pick a subset of
O(log n) elements of s and concatenate them together. As we do not wish to go over
all such O(log n)-tuples we use walks on an expander to pick those sets (in fact, we
could have used any sampler and not just expander walks here).

The analysis of the construction of ε-nets is different from the analysis in the
case of covering codes. The main difference is that the distribution of an LTF f(x) =
sign(〈x, v〉−θ) depends on the way the weight of v is distributed among its coordinates.
If no subset of coordinates contains too much weight, then the analysis is similar to
before. However, if there is a small subset of coordinates (say, of size O(log n))
that contains most of the weight, then we need to have the correct sign on those
coordinates. This reasoning gives rise to a case analysis in the spirit of an earlier work
of Servedio [Ser06] where the notion of critical index was first used to obtain small
weight approximators for LTFs. Specifically, assume that the coordinates of v satisfy
|v1| ≥ |v2| ≥ · · · ≥ |vn|. Consider the first index t such that v2

t ≤ O((v2
t+1+· · ·+v2

n)/t).
Intuitively, if t is large (say, t > log(1/ε)), then v is roughly concentrated on its first
t coordinates and by hashing them to different buckets we just have to go over all
possible sign assignments (to the buckets) in order to get an inner product of (roughly)
|v1| + · · · + |vt|, which is the maximum one can hope for. On the other hand, if t is
small, then it means that except for a few large coordinates the weight of v is “spread”
among many coordinates, which is similar to the case of covering codes discussed above
where one studies (normalized) sign vectors.

Organization. In section 2 we give some formal definitions and the necessary back-
ground on k-wise independent distributions, expander graphs, and perfect hash func-
tions. We also give some concentration results for threshold functions. In section 3 we
give the construction of a covering code. In section 4 we give our main construction for
linear threshold functions and in section 5 we give the construction for spherical caps.
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1.2. Subsequent works. Following our work [RS09] several other papers looked
at the problem of obtaining pseudorandom generators for LTFs on the Boolean cube.
[DGJ+09] showed that k-wise distributions ε-fool LTFs, where k = O(log2(1/ε)/ε2),
namely, a k-wise independent distribution contains the “correct” number of accepting
inputs of any LTF up to error (roughly) exp(−

√
k). Note however that the size of

such sets is nΩ(k) and so this gives a polynomial size construction only when ε is
a constant (and of course, the exponent of the construction depends on ε).4 More
recently, [MZ09] gave a construction of a pseudorandom generator for polynomial
threshold functions, namely, functions that are the sign of a low-degree polynomial.

The size of their construction is around n1/εd for error ε. For the special case of
LTFs they obtain a pseudorandom generator of size nO(log 1/ε) for ε > 1/ poly(n) and
of polynomial size whenever ε > 1/ poly log(n). Compared to our construction they
obtain a pseudorandom generator where we obtain only a hitting set. On the other
hand, our construction is of polynomial size even for a polynomially small ε.

2. Preliminaries. We will use the following notation. The n-dimensional binary
cube is Bn = {−1, 1}n. The (n−1)-dimensional unit sphere in Rn is Sn−1 = {x ∈ Rn :
‖x‖2 = 1}. The Hamming distance on Rn is denoted by H, so H(x, y) is the number
of coordinates i for which xi 6= yi. For x ∈ Rn and J = {i1, . . . , i|J|} ⊆ [n] we denote
xJ = (xi1 , . . . , xi|J|). We will abuse notation and use (for A ⊂ Rn) H(x,A) to denote
miny∈AH(x, y). For A ⊆ Bn and ρ > 0, we put Aρ = {x ∈ Bn : H(x,A) ≤ ρ}. The
covering radius of a set C ⊂ Bn is the minimum ρ such that Cρ = Bn, namely, it is
the minimal ρ such that for every x ∈ Bn there is y ∈ A with H(x, y) ≤ ρ.

In this paper we focus on LTFs. A vector v ∈ Rn and a real number θ ∈ R define
an LTF Lv,θ : Bn → {−1, 1} by Lv,θ(x) = sign(〈v, x〉−θ). In other words, Lv,θ(x) = 1
if 〈v, x〉 ≥ θ and Lv,θ(x) = −1 otherwise. For a linear function Lv,θ we define by Av,θ
its set of accepting inputs, namely, Av,θ = L−1

v,θ(1) = {x ∈ Bn : 〈v, x〉 ≥ θ}. A

spherical cap in Rn is a subset of Sn−1 that is contained in a half-space, namely, for
every v ∈ Rn and θ > 0 the cap Cv,θ is defined as Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}.
Stated differently, Cv,θ = L−1

v,θ(1)∩ Sn−1 (we now think of Lv,θ as a function from Rn
to {−1, 1}).

2.1. k-wise independent distributions. A multiset I ⊂ {−1, 1}n that, for ev-
ery j ∈ {1, 2, . . . , k}, for every {i1, i2, . . . , ij} ⊂ {1, 2, . . . , n}, and for every z1, z2, . . . , zj
∈ {−1, 1}, satisfies that

∣∣{x ∈ I : (xi1 , xi2 , . . . , xij ) = (z1, z2, . . . , zj)
}∣∣ =

|I|
2j

is called a k-wise independent sample space. Many explicit constructions of small k-
wise independent sample spaces are known. For example, extended binary BCH codes
of length n = 2m− 1 and designed distance 2t+ 2 can be used to construct a (2t+ 1)-
wise independent sample space of size 2mt+1 = 2(n+ 1)t (see [AS08, Chapter 16]).

Fact 2.1. For every integer k > 0 there exists an explicit construction of a sample
space of size O(nk/2) that is k-wise independent.

Let a multiset S ⊆ {−1, 1}n be a k-wise independent sample space. The following
is an easy observation.

4When speaking of pseudorandom generators one usually considers the seed length. However, to
ease the comparison to our result we consider the size of the image of the pseudorandom generator.
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Observation 2.2. For i ∈ [n] and α ∈ {−1, 1}, restricted to coordinates [n]\{i},
the multiset Si,α := {x ∈ S : xi = α} is a (k − 1)-wise independent sample space.

The following result was proved by Berger in [Ber97].

Lemma 2.3 (see Lemma 3.1 in [Ber97]). Let S ⊂ {−1, 1}n be a 4-wise indepen-
dent sample space. Then for every x ∈ Sn−1 we have that E[〈s, x〉] = 0, E[〈s, x〉2] = 1,
and E[〈s, x〉4] ≤ 3, where all expectations are with respect to a uniform choice of s ∈ S.
Moreover, for every x ∈ Rn we have that

Pr
s∈S

[
|〈s, x〉| > ‖x‖2√

3

]
≥ 2

11
.

The following lemma is a special case of a lemma of Alon, Gutin, and Krivelevich
[AGK04].

Lemma 2.4 (see Lemma 3.2 in [AGK04]). Let X be a real random variable and
suppose that its first, second, and fourth moments satisfy E[X] = 0, E[X2] = 1, and
E[X4] ≤ 3. Then Pr[X > 1/7] ≥ 1/20. Consequently, if S ⊂ {−1, 1}n is a 4-wise
independent sample space, then for every x ∈ Sn−1 we have that

Pr
s∈S

[〈s, x〉 > 1/7] ≥ 1/20.

Next is an easy corollary of Observation 2.2 and Lemma 2.4 that gives an anti-
concentration result for LTFs. As the distribution of LTFs on the Boolean cube is
very different from their distribution on the sphere (e.g., compare the distribution
of f(x) = 〈x, v〉 for v = (1, 0, . . . , 0) on the sphere and cube), we need to separately
handle the large coordinates of v and its small coordinates.

Lemma 2.5. Let k > 4 be an integer, S ⊆ {−1, 1}n a k-wise independent sample
space, and v = (v1, . . . , vn) ∈ Rn a unit vector. Let M ⊂ [n] be such that |M | = k− 4
and the entries of v corresponding to the coordinates in M are the k−4 largest entries
of v (namely, for every j /∈M and every i ∈M we have that |vj | ≤ |vi|). Then

Pr
x∈S

[
〈x, v〉 ≥ ‖vM‖1 +

1

7
‖v[n]\M‖2

]
≥ 4

5
· 2−k.

Proof. Let S′ ⊂ S be the set of all s ∈ S such that sign si = sign vi for every
i ∈ M . By definition we have that |S′| = 2−|M | · |S| = |S|/2k−4. Moreover, by
Observation 2.2 we get that S′ is 4-wise independent. Let v′ = (v′1, . . . , v

′
n) be defined

as v′i = 0 for i ∈M and v′i = vi for i /∈M . By Lemma 2.4 we have that

Pr
s∈S′

[
〈s, v′〉 > 1

7
‖v′‖2

]
>

1

20
.

By definition of v′ we get that 〈s, v〉 =
∑
i∈M si · vi + 〈s, v′〉 = ‖vM‖1 + 〈s, v′〉. Thus,

Pr
x∈S

[
〈x, v〉 ≥ ‖vM‖1 +

1

7
‖v[n]\M‖2

]
≥ 1

20 · 2k−4
=

4

5
· 2−k.

2.2. Expander graphs. An undirected graph G = (V,E) is called an (n, d, λ)-
expander if |V | = n, the degree of each node is d, and the second largest eigenvalue,
in absolute value, of the adjacency matrix of G is λ. For every d = p+ 1, where p is a
prime congruent to 1 modulo 4, there are explicit constructions for infinitely many n
of (n, d, λ)-expanders, where λ ≤ 2

√
d− 1 [Mar88, LPS88].

A random walk of length ` on G is the following random process. First pick a
vertex of G uniformly at random. Denote this vertex with v1. At the ith step (for
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1 < i ≤ `) we pick a neighbor of vi−1 uniformly at random and label it with vi. The
walk is the ordered list (v1, v2, . . . , v`). We shall need the following theorem of Alon
et al. [AFWZ95].

Theorem 2.6. Let G be an [n, d, λ]-expander. Let W1, . . . ,W` ⊂ V (G) be some
subsets of G, each of size at least µn ≥ 6λn/d. The probability that a random walk of
length ` stays inside W1,W2, . . . ,W` is at least µ(µ− 2λ/d)`−1.

2.3. Perfect hash functions. A setH of functions h : {1, 2, . . . , n} → {1, 2, . . . ,m}
such that for every S ⊂ {1, 2, . . . , n} with |S| = s there exists h ∈ H such that
|h(S)| = s is called an (n,m, s)-perfect hash family. For all n, s ∈ N, s ≤ n, there are
explicit constructions of (n,O(s), s)-perfect hash families H with |H| = 2O(s+log logn)

(see Theorem 6 in [SS90]). Lemma 2.7 is a strengthening of the above requirement.
Informally, the strengthened version says that we can construct H to have the fol-
lowing property. For every vector v = (v1, . . . , vn) there is h ∈ H that maps its
“heaviest” s coordinates (in absolute value) to different locations, and furthermore, if
the remaining coordinates have sufficient L2 mass, then it is distributed by h roughly
evenly among the O(s) locations.

Lemma 2.7 (perfect hash functions). There exists a universal constant A
such that the following holds. For every integers s, n such that s ≤ n, there
is an explicit family H of hash functions h : [n] → [8s] of cardinality |H| =
2(4+o(1))·s+A·log 2s log logn+O(1) such that the following holds for every unit vector v ∈
Sn−1. Let i1, i2, . . . , in be an enumeration of [n] such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |,
and let It denote the set {i1, i2, . . . , it}. For every t ∈ [s− 1], there exists some h ∈ H
such that

1. The map h is an injection on Is.
2. If v2

it+1
≤ 1

64s · ‖v[n]\It‖22, then

(2.1)
∑
r∈[8s]

min

{
‖vh−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2.

Furthermore, the o(1) term in the exponent of |H| depends only on s.

For completeness we give the proof in the appendix. The following is an easy
corollary.

Corollary 2.8. Let 24 ≤ s ≤ n be integers and H the hash family guaranteed by
Lemma 2.7. There exists constants c1 and c2 such that one of the following conditions
holds (using the same notation as in Lemma 2.7):

1. either
∑s−1
q=d2s/3e |viq+1

| ≥
√
s

32 ‖v[n]\Is‖2 ;

2. or, there exists d2s/3e ≤ q ≤ s− 1 and h ∈ H such that h is an injection on
Is and for at least c1 ·8s buckets r it holds that ‖vh−1(r)\Iq‖22 ≥

c2
s · ‖v[n]\Iq‖22.

Proof. Let h ∈ H be the map guaranteed by Lemma 2.7 (we shall also use the
notations of the lemma). We are guaranteed that h is an injection on Is. We now
consider two cases.

We consider two cases.
Case 1. There is some d2s/3e ≤ q ≤ s− 1 such that v2

iq+1
≤ 1

64s · ‖v[n]\Iq‖22.

Case 2. For every d2s/3e ≤ q ≤ s− 1 we have that v2
iq+1

> 1
64s · ‖v[n]\Iq‖22.

Consider Case 1. By the assumption in Case 1 we get from Lemma 2.7 that there
exists h ∈ H such that Eq (2.1) is satisfied. We will show that for some constants
c1, c2 at least c1 · 8s buckets satisfy that ‖vh−1(r)\Iq‖22 ≥

c2
s · ‖v[n]\Iq‖22. Assume for a
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contradiction that less than c1 · 8s buckets have high norm. By the lemma we know
that as there is some q ∈ [s− 1] such that v2

iq+1
≤ 1

64s · ‖v[n]\Iq‖22, then∑
r∈[8s] min

{
‖vh−1(r)\Iq‖22, 2

s · ‖v[n]\Iq‖22
}
≥ 1

2 · ‖v[n]\Iq‖22.

Hence,

1

2
· ‖v[n]\Iq‖

2
2 ≤

∑
r∈[8s]

min

{
‖vh−1(r)\Iq‖

2
2,

2

s
· ‖v[n]\Iq‖

2
2

}
≤ c1 · 8s ·

2

s
· ‖v[n]\Iq‖

2
2 + 8s · c2

s
· ‖v[n]\Iq‖

2
2 = (16c1 + 8c2) · ‖v[n]\Iq‖

2
2.

Therefore, for c1 = 1
48 and c2 = 1

49 we get a contradiction, unless ‖v[n]\Iq‖22 = 0.
However, the claim is trivial if this is the case.

Let us now assume that we are in Case 2. It follows that

s−1∑
q=d2s/3e

|viq+1
| ≥

s−1∑
q=d2s/3e

1

8
√
s
· ‖v[n]\Iq‖2 ≥

s−1∑
q=d2s/3e

1

8
√
s
· ‖v[n]\Is‖2 ≥

√
s

32
‖v[n]\Is‖2,

where in the last inequality we used the assumption that s ≥ 24.

2.4. Concentration of threshold functions. In order to construct an ε-net
for LTFs we need to understand, for every LTF Lv,θ, for which values of θ it holds
that Prx∈Bn

[Lv,θ(x) = 1] > ε. The following theorem is a standard application of
the Bernstein–Chernoff–Hoeffding bound. A proof can be found, e.g., in Chapter 1 of
[DP09].

Theorem 2.9 (Bernstein–Chernoff–Hoeffding). For v = (v1, . . . , vn) ∈ Rn and
θ ∈ (0,∞) we have that

Pr
x∈Bn

[〈x, v〉 > θ] ≤ exp

(
−1

2

(
θ

‖v‖2

)2
)
.

The following result will be used to determine how large θ can be for a given
v ∈ Rn so that Lv,θ accepts an ε fraction of the inputs.

Corollary 2.10. Let v = (v1, . . . , vn) ∈ Rn and δ ∈ R+. Assume that |v1| ≥
|v2| ≥ · · · ≥ |vn|. Let 1 ≤ k ≤ n be an integer. Assume further that |vk| > 0. Then

Pr
x∈Bn

[
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

]
≤ exp(−k/18) + exp(−δ2/2).

Proof. We have that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

]
≤ Pr
x[k]∈Bk

[〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

]
+ Pr
x[n]\[k]∈Bn−k

[〈
x[n]\[k], v[n]\[k]

〉
≥ δ · ‖v[n]\[k]‖2

]
.

As |v1| ≥ |v2| ≥ · · · ≥ |vk| > 0 we see that in order for the inequality〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

to hold we must have that sign(xi) = sign(vi) for at least 2k/3 of the indices. Using
the Bernstein–Chernoff–Hoeffding bound, we bound this probability with

Pr
x[k]∈Bk

[〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

]
≤ exp(−k/18).
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The upper estimate

Pr
x[n]\[k]∈Bn−k

[〈
x[n]\[k], v[n]\[k]

〉
≥ δ · ‖v[n]\[k]‖2

]
≤ exp(−δ2/2)

also follows immediately from the Bernstein–Chernoff–Hoeffding bound.

When considering caps and not LTFs the results are somewhat easier. Recall that
Cv,θ is defined as Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}. For a proof of the next lemma, see,
e.g., [Mat02].

Lemma 2.11. Let v ∈ Sn−1 be a unit vector. Then

Pr
x∈Sn−1

[x ∈ Cv,θ] ≤ exp

(
−1

2
nθ2

)
,

where we consider the uniform probability measure on Sn−1.

3. Construction of a covering code. As a warm up for the proof of Theo-
rem 1.1 we give an explicit construction of a covering code of covering radius n

2 −
c
√
n log n for Bn. Later we will build on the ideas of the proof to get the more general

result.5 For convenience we repeat the claim of Corollary 1.3 here.
Corollary 1.3. There exists a > 0 such that for every c > 0 there is an explicit

construction of a set C ⊂ Bn of size |C| = n2 · (nc)a such that for every z ∈ Bn there
is some x ∈ C with H(z, x) ≤ n

2 −
√
cn log n.

As described in the introduction the construction is based on first picking a 4-wise
independent distribution S on vectors of length n/t (where t is roughly log n) and then
constructing vectors of length n, using concatenation, from them. In this simple case
we actually concatenate each vector with itself log n times, but in each copy we may
take a different sign flip, so that eventually each vector in S contributes 2t different
vectors to the covering code.

Proof. Fix c > 0, and let n ∈ N. Put t = dc1 log ne for a sufficiently large
constant c1 that will be determined later. For simplicity we assume that t divides n.
Let J1, J2, . . . , Jt be the partition of [n] defined by Ji = {(i− 1) · n/t+ 1, . . . , i · n/t}
(in fact, we can take the Ji’s to be any partition of the coordinates into t disjoint
sets, each of size n/t). Let S ⊂ {−1, 1}n/t be a 4-wise independent distribution. Let
m = |S| and recall that by Fact 2.1 we can assume that m = O((n/t)2). Denote
S = {s0, . . . , sm−1}. The set C is defined as follows. For every sequence of signs
α = (α1, . . . , αt) ∈ {−1, 1}t and every 0 ≤ j ≤ m − 1, let xα,j ∈ Bn be defined as
the concatenation (α1 · sj) ◦ · · · ◦ (αt · sj). That is, xα,jJi = αi · sj . In other words, we
concatenate t copies of the same element of S, with possibly different signs, for each
of the 2t sign patterns. The set C is the collection of all the xα,j ’s, i.e., C = {xα,j :
α ∈ {−1, 1}t, 0 ≤ j < m}. Hence, the size of C is 2t ·m = O((nt )2 · 2t) ≤ n2 · nc1 .

We now proceed with the analysis of this construction. As S is 4-wise independent
we get by Lemma 2.3 that for every y ∈ {−1, 1}n/t

Pr
[
|〈y, s〉| >

√
n/3t

]
≥ 2

11
.

Fix z ∈ Bn. Let Xi denote the indicator of the event that |〈zJi , sj+i−1 mod m〉| >√
n/3t (where 0 ≤ j ≤ m−1 is picked uniformly at random). Recall that E[Xi] ≥ 2/11

5The corollary does follow immediately from Theorem 1.1 but we prove it separately to give some
intuition for the proof of the theorem.
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and so, by linearity of expectation, we get that E
[∑t

i=1Xi

]
≥ 2t/11. Therefore, for

every z ∈ Bn there exists jz ∈ {0, . . . ,m− 1} such that∣∣∣{i : |〈zJi , sjz+i−1 mod m〉| ≥
√
n/3t

}∣∣∣ ≥ 2t

11
.

Set α ∈ {−1, 1}t as αi = sign(〈zJi , sjz+i−1 mod m〉). It follows that

〈
z, xα,j

〉
=

t∑
i=1

|〈zJi , sjz+i−1 mod m〉| ≥
2t

11

√
n/3t ≥

2
√
c1

11
√

3

√
n log n.

To complete the proof, set c1 = 400c to get
〈
z, xα,j

〉
> 2
√
cn log n. We thus obtain

that

H(z, xα,j) =
n

2
− 1

2

〈
z, xα,j

〉
≤ n

2
−
√
cn log n.

Moreover, |C| ≤ n2 · nc1 = n2 · (nc)400, as required.

We note that by a simple application of the Chernoff bound one can show that
this result is essentially tight (up to the exact setting of a). Indeed, given a set C ⊂ Bn
and a point s ∈ C it holds that Pr[|〈x, s〉| ≥ c

√
log n] ≤ n−O(c2). Thus, for any fixed

set C of size |C| = nb, if we let c be O(
√
b), then by the union bound we get that

there is some x ∈ Bn that has distance larger than n/2− c
√

log n from all points in S.

4. The main construction. We now give an explicit construction of an ε-net
set Nε ⊂ Bn for LTFs. In particular we will prove Theorem 1.1. For convenience we
repeat it here.

Theorem 1.1. There exist two universal constants a, b > 0 such that for every
ε > 0 there is an explicit construction of an ε-net, Nε ⊂ Bn, for LTFs of size |Nε| =
O(ε−b · na).

Before giving the construction we explain what changes are needed from the
earlier construction of the covering code. Consider a vector v′ ∈ {−1, 1}n/ logn and
let v be the unit vector in Rn having v′/‖v′‖2 in its first n/ log n coordinates and
zeros elsewhere. Consider the linear function Lv,

√
logn : Bn → {−1, 1}. It is not

hard to see that with probability 1/poly(n) over the choice of x ∈ Bn we have that
Lv,
√

logn(x) = 1 for every such v. On the other hand, there exists a v′ (and actually
a random v′ will have the required property) such that for every y ∈ C, where C is
the covering code constructed in section 3, we will have that |〈y, v〉| = O(1). Thus,
for every y ∈ C we have that Lv,

√
logn(y) = 0. Therefore C is not a 1/poly(n)-net.

The reason for the failure of C is that all the large coordinates of v were concentrated
on a set of size n/ log n that was one of the sets in the partition of the coordinates
with respect to which we constructed C. To overcome this difficulty we construct sets
in a way analogous to the construction of C but with respect to different partitions
of the n coordinates. These partitions will come from the family of perfect hash
functions discussed in section 2.3. Another change that we will have to make is in the
way that we concatenate short strings (of length O(n/ log n) in order to get length
n strings. Previously we simply concatenated consecutive strings. Now we will have
to concatenate them according to an expander walk, the reason being that there will
be O(log n) sets in the partitions from which we will have to make sure that we get
the “correct” contribution. We now turn to the actual construction (also replacing
1/ poly(n) with ε).

Proof. Let ε > 0 be given. We assume that ε > 2−n/100 as otherwise we can pick
Nε = Bn. Let t = dc log 2/εe for some absolute constant c that will be determined
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later. We assume w.l.o.g. that t ≥ 24. We will later need this assumption (without
explicitly referring to it) for applying the result of Corollary 2.8. Set k = 5 and d =
218. Similarly to the case of covering codes, let S ⊂ {−1, 1}n be a k-wise independent
sample space. Let m = |S|. By Fact 2.1 we can assume that m = |S| = O(nk/2).
Denote S = {si}mi=1. As mentioned above we will need to consider many different
partitions of the coordinates, so let H be the (n, 8t, t)-perfect hash family guaranteed
by Lemma A.1. We think of every h ∈ H as partitioning the coordinates to 8t sets
{Jh,1, . . . , Jh,8t} with Jh,i = h−1(i). Let Jh = {Jh,1, . . . , Jh,8t} be the collection of the
sets in the partition. Note that the sets in Jh are not necessarily of the same size. In
order to concatenate elements of S to create a word in Bn we need to consider walks
on an expander graph. Let G be an (m, d, d/1000)-expander with node set S. In other
words, we identify the ith node of G with si. In particular a walk (w1, . . . , w`) on G
is a sequence of ` elements from S. We now explain how to mix all these ingredients
together to get the final construction.

The set Nε contains all the points xh,w (that will soon be defined), where h ∈ H
and w is a walk of length 8t in G. We now explain how to construct xh,w. Let
h ∈ H be a hash function and let w = (w1, . . . , w8t) ∈ S8t be a walk on G. Let
i ∈ {1, 2, . . . , 8t}. Let w′i be the first |Jh,i| bits of wi. The reason for this is that it
may be the case (and it is most likely the case) that |Jh,i| < n and so we need to cut
the last bits of wi to get a vector of length exactly |Jh,i|. We now define

xh,w|Jh,i
= w′i = first |Jh,i| bits of wi.

As the collection {Jh,i}8ti=1 is a partition of [n] we get that indeed xh,w ∈ Bn.
A good way to understand the construction is the following. We would like to

define a point x = xh,w ∈ Nε. To do so we first map the coordinates of x to 8t buckets
according to h. Assume that the set Jh,i was mapped to the ith bucket. Now, we
would like to assign a value to xJh,i

from the k-wise independent set S, and we would
like to do so for every i ∈ [8t]. As there are m8t possibilities for such assignments
we have to pick a small subset of all possible assignments. We do so by taking an
expander walk on an expander with m vertices. Given a walk w = (w1, . . . , w8t) of
length 8t we would like to consider the assignment xJh,i

= wi. The final thing to
notice is that |Jh,i| may be smaller than n and so we consider only the first |Jh,i| bits
of wi. Going over all i ∈ [8t] we get the vector xh,w. An easy bound on the size of Nε
is

|Nε| = |H| · d8t−1 ·m = O
(

2(4+o(1))·t+log 2t log logn · d7 · (2/ε)8c log d · nk/2
)

= O
(
na+o(1) · (1/ε)b

)
,

|Nε| = |H| · d8t−1 ·m = O
(

2(4+o(1))·t+A log 2t log logn · d7 · (2/ε)8c log d · nk/2
)

= O
(
na · (1/ε)b

)
,

for any constants a > k/2 and b > 4c+ 8c log d. We now show that Nε is an ε-net for
LTFs. Let Lv,θ be an LTF, where ‖v‖2 = 1, such that

Pr
x∈Bn

[Lv,θ(x) = 1] ≥ ε.
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Let i1, i2, . . . , in be an enumeration of [n] such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let
Ir denote the set {i1, i2, . . . , ir}. We now show that there exists xh,w in Nε for which
Lv,θ(x

h,w) = 1, which implies that Nε is an ε-net for LTFs.
We analyze three different cases. The first is when the support of v is small. The

second is when the support is not too small, but most of the mass of v is concentrated
on a few coordinates (this case corresponds to the first point in Corollary 2.8). The
last case is when the mass of v is “nicely” spread. We shall make use of the following
notations. Given the k-wise independent set S and an index i ∈ [8t], consider coordi-
nates Jh,i of every element in S. Denote this multiset with Sh,i. Clearly Sh,i is k-wise
independent. We also define, for every i ∈ [8t], J ′h,i = h−1(i) \ It.

Case 1. Assume that the size of the support of v is at most t. Clearly, for every
x ∈ Bn we have that 〈x, v〉 ≤ ‖v‖1. We now show that there is some xh,w ∈ Nε
with

〈
xh,w, v

〉
= ‖v‖1. This clearly implies that Lv,θ(x

h,w) = 1. Indeed, Lemma A.1
guarantees that there is some h ∈ H that is injective on It. Namely, it maps all the
nonzero coordinates of v to different buckets. As a bucket now contains at most one
nonzero element, we see that for each i ∈ [8t] we have that

(4.1) Pr
s∈Sh,i

[〈
s, vJh,i

〉
= ‖vIt∩Jh,i

‖1
]
≥ 1

2
,

where we used the fact that each bucket contains at most one nonzero element so
we need only one entry of s to have the correct sign. For every i ∈ [8t] denote with
Ai ⊆ Sh,i the set of s ∈ Sh,i that belongs to the “good” sets defined in (4.1), namely,
those elements from Sh,i that have a large inner product with vJh,i

. Clearly, for every
i we have that |Ai|/|Sh,i| ≥ 1

2 . We will now show that there exists a walk on G such
that for every i, wi ∈ Ai. Indeed, G is an [m, d, λ]-expander and so Theorem 2.6
guarantees that if 1

2 > 6λ/d, then there exists a walk that hits all the Ai’s. As we
picked a graph G with λ ≤ d/1000 we have the required property. Thus, there exists
a walk w = (w1, . . . , w8t) such that for every i, wi ∈ Ai. Calculating, we get that

〈
xh,w, v

〉
=

8t∑
i=1

〈
wi, vJh,i

〉
=

∑
i∈h(It)

〈
wi, vJh,i

〉
=
∑
i∈It

|vi| = ‖v‖1,

as required. This completes the analysis of the first case.

Case 2. Assume that
∑t−1
r=d2t/3e |vir+1 | ≥

√
t

32 ‖v[n]\It‖2 (this is the first bullet of

Corollary 2.8).6 Similarly to the first case (and, using Lemma 2.5) we get that there
is xh,w ∈ Nε such that

(4.2)
〈
xh,w, v

〉
≥ ‖vIt‖1 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2.

Indeed, as in the first case we consider the different buckets into which coordinates
from It fell. Lemma 2.5 guarantees that for each bucket a 1/40 fraction of all elements
in S gives the required inner product. Theorem 2.6 guarantees the existence of such
a good xh,w. We now show that θ is smaller than the right-hand side of (4.2) and
hence our chosen xh,w satisfies that Lv,θ(x

h,w) = 1 as required. By Corollary 2.10 we

6Clearly this case subsumes Case 1, but we decided to give both of them as the first case is easier
to handle and gives an intuition for the second case.
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get that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2

]
≤ exp(−t/18) + exp

(
−1

2

(√
t

32

)2
)

= exp(−γt)

for some absolute constant γ > 0. If we pick c large enough (i.e., c ≥ 1/γ), then for
t = dc log(2/ε)e we get that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2

]
≤ exp(−γt) < ε.

As we assumed that Prx∈Bn [Lv,θ(x) = 1] ≥ ε, we have that

(4.3) θ < ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2.

This completes the analysis of the second case.

Case 3. We now assume that
∑t−1
r=d2t/3e |vir+1

| <
√
t

32 ‖v[n]\It‖2. Hence, Corol-

lary 2.8 implies that there exist d2t/3e ≤ q ≤ t − 1 q ∈ [t− 1] and some h ∈ H
such that h is an injection on It, and for at least c1 · 8t buckets r ∈ [8t] it holds
that ‖vh−1(r)\Iq‖22 ≥

c2
t · ‖v[n]\Iq‖22 for two universal constants c1 and c2. Denote the

set of ≥ c1 · 8t “good” buckets r with R ⊂ [8t]. We also define, for every i ∈ [8t],
J ′h,i = h−1(i) \ Iq. It follows that for every i ∈ R

‖vJ′h,i
‖2 ≥

√
c2
t
· ‖v[n]\Iq‖2.

By Lemma 2.5, specialized to k = 5, we get that for every i ∈ h(Iq)

(4.4) Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥ ‖vIq∩Jh,i

‖1 +
1

7
‖vJ′h,i

‖2
]
≥ 4

5
· 2−5 =

1

40
,

where we recall that by our assumption on h we have that |Iq ∩Jh,i| = 1. In addition,
Lemma 2.4 implies that for i /∈ h(Iq) (this actually holds for every i)

(4.5) Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥
‖vJh,i

‖2
7

]
≥ 1

20
.

For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i that belong to the “good”
sets defined in (4.4), (4.5), namely, those elements from Sh,i that have large inner
product with vJh,i

. Clearly, for every i we have that |Ai|/|Sh,i| ≥ min( 1
40 ,

1
20 ) = 1

40 .
We will now show that there exists a walk on G such that for every i, wi ∈ Ai.
Indeed, G is an [m, d, λ]-expander and so Theorem 2.6 guarantees that if 1

40 > 6λ/d,
then there exists a walk that hits all the Ai’s. As we picked a graph G with λ ≤ d/1000
we have the required property. Thus, there exists a walk w = (w1, . . . , w8t) such that
for every i, wi ∈ Ai. Calculating, we get that

〈
xh,w, v

〉
=

8t∑
i=1

〈
wi, vJh,i

〉



SMALL ε-NET FOR LINEAR THRESHOLD FUNCTIONS 3513

=
∑

i∈h(Iq)

〈
wi, vJh,i

〉
+

∑
i/∈h(Iq)

〈
wi, vJh,i

〉
≥

∑
i∈h(Iq)

(
‖vIq∩Jh,i

‖1 +
1

7
‖vJ′h,i

‖2
)

+
∑

i/∈h(Iq)

‖vJh,i
‖2

7

= ‖vIq‖1 +
1

7

∑
i∈[8t]

‖vJ′h,i
‖2 ≥ ‖vIq‖1 +

1

7

∑
i∈R
‖vJ′h,i

‖2

≥ ‖vIq‖1 +
1

7

∑
i∈R

√
c2
t
· ‖v[n]\Iq‖2

≥‡ ‖vIq‖1 +
8c1
√
c2

7
·
√
t · ‖v[n]\Iq‖2

≥ ‖vIq‖1 +
8c1
√
c · c2

7
·
√

log(2/ε) · ‖v[n]\Iq‖2

≥∗ ‖vIq‖1 +
√

2 log(2/ε) · ‖v[n]\Iq‖2 >
† θ,

where inequality (‡) follows from the fact that |R| ≥ c1 · 8t, inequality (∗) holds for a
large enough universal constant c, and inequality (†) holds from the same argument
as in case 2 (for c large enough), recalling that q ≥ d2t/3e = d 2

3c log 2/εe. Thus,
Lv,θ(x

h,w) = 1 as required. This concludes the proof of Theorem 1.1.

5. Construction of ε-nets for spherical caps. In this section we show how
to construct ε-nets for spherical caps. In particular we prove Theorem 1.2.

Theorem 1.2. There exist two universal constants a, b > 0 such that for ev-
ery ε = exp(−O(

√
n)) there is an explicit construction of an ε-net, Sε ⊂ Sn−1, for

spherical caps of size |Sε| = O(ε−b · na).
A first natural attempt is to check whether the ε-net for threshold functions is

also an ε-net for spherical caps. As we are looking for subsets of the sphere Sn−1, we
consider the natural embedding of Bn in Sn−1 that shrinks every vector by a factor
of
√
n, i.e., we set Bn = {−1/

√
n, 1/

√
n}n. In this section whenever we discuss the

Boolean cube we will refer to the set Bn. In particular we will view every subset
of Bn as a subset of Bn. To see that the Boolean cube (as a subset of Sn−1) is not
an ε-net for a polynomially small ε consider the cap defined by v = (1, 0, . . . , 0) and
θ =

√
log(1/ε)/n. We see that Lv,θ(Bn) = 0 whereas the cap Cv,θ = L−1

v,θ(1) ∩ Sn−1

has measure poly(ε). However, it turns out that if an ε-net for LTFs does not hit
a large enough cap, then a “rotation” of it does hit the cap. Therefore, the union
of an ε′-net for LTFs and its rotation yields an ε-net for spherical caps. Indeed, the
reason that v = (1, 0, . . . , 0) and θ =

√
log(1/ε)/n show that the Boolean cube is not

an ε-net is because all the mass of v is concentrated on a few coordinates (actually
only one coordinate). On the other hand, if it was the case that no set of O(log(1/ε))
coordinates contains more than, say, 3/4 of the total mass of v, then the set Nε
guaranteed by Theorem 1.1 will hit the cap C

v,
√

2 log(1/ε1/16)/n
, which by Lemma 2.11

is of weight at most ε1/16. Indeed, the proof of Theorem 1.1 shows that there is an
element x ∈ Nε such that if M ⊂ [n] is the set of O(log 1/ε) largest coordinates of v,
then7

〈x, v〉 >
√

2 log(1/ε)/n · ‖v[n]\M‖2 ≥(∗) (1/4) ·
√

2 log(1/ε)/n =
√

2 log(1/ε1/16)/n,

7This inequality (or a stronger one) is reached in both Case 2 and Case 3 before using the fact
that x belongs to the Boolean cube.
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where inequality (∗) follows from the fact that at least 1/4 of the mass of v is supported
on the set of coordinates [n] \ M . Hence, all that we have to do is find a way of
spreading out the coordinates of v so that the mass is “nicely” distributed on many
coordinates. Our approach to solving this problem is the following: We show that for
the Fourier matrix F , either Fv has the property that its mass is “well spread” or
v itself is well spread. Then we simply let Sε = Nε′ ∪ F (Nε′) for some ε′ = poly(ε),
where Nε′ is an ε′-net for LTFs. We now give the formal proof.

Proof of Theorem 1.2. As before, we let i1, i2, . . . , in be an enumeration of [n]
such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let Ir denote the set {i1, i2, . . . , ir}. Assume
that8 n = 2k for some integer k. Let F be the n× n Fourier matrix. In other words,
each coordinate of F is in {−1/

√
n, 1/

√
n} and the rows of F are orthogonal. The

following lemma shows that Fv or v are “well spread.”

Lemma 5.1. For every two subsets M1,M2 ⊂ [n] of size |M1|, |M2| ≤
√
n/20 and

any unit vector v ∈ Rn we have that ‖(Fv)M1‖2 ≤ 3/4 or ‖vM2‖2 ≤ 3/4.

Proof. The proof follows the following lemma of [Ind07] (specialized for L = 2).

Lemma 5.2 (see Lemma 4.2 of [Ind07]). Let T be a matrix obtained by concate-
nating rows of two unitary n × n matrices H1 and H2 with coherence9 δ. Then, for
any set of coordinates M ⊂ [2n] of size |M | = s and any unit vector v ∈ Rn we have
that ‖(Tv)M‖22 ≤ 1

2 (1 + δs) · ‖Tv‖22.

Indeed, let T be the matrix whose first n rows are the identity matrix and the last
n rows are F . Then, the coherence of T is δ = 1/

√
n. Given two subsets M1,M2 ⊂ [n]

of size |M1|, |M2| ≤
√
n/20, let M ′2 be the subset of {n+1, . . . , 2n} obtained by adding

n to each element of M2. Let M = M1 ∪M ′2. Then for any unit vector v ∈ Rn it
holds that

‖(Fv)M1
‖22 + ‖vM2

‖22 = ‖(Tv)M‖22 ≤
1

2
(1 + δ|M |) · ‖Tv‖22 ≤ 1.1/2 · ‖Tv‖22 < 1.1.

This completes the proof of Lemma 5.1.

Let Nε′ ⊂ {−1/
√
n, 1/

√
n}n be an ε′-net for LTFs for some ε′ that will be deter-

mined later. Define Sε = Nε′ ∪ F (Nε′). In other words, Sε is the union of Nε′ with
the rotation of Nε′ by F . Note that as F is unitary we have that Sε ⊂ Sn−1. We
now show that Sε is indeed an ε-net for spherical caps. Let Cv,θ be a spherical cap of

weight ε. By Lemma 2.11 we see that θ ≤
√

2 log(1/ε)/n. Let u = Tv, where T is the
matrix defined in the proof of Lemma 5.1. As u = Tv = (v, Fv) (the concatenation
of v and Fv) and ‖v‖ = ‖Fv‖ we get by Lemma 5.1 that either in v or in Fv, no set
of
√
n/40 coordinates contains more than 3/4 of the total mass (as, if there were two

such sets, then their union contradicts the lemma). Assume w.l.o.g. that in Fv no set
of
√
n/40 coordinates contains more than 3/4 of the total mass (the analysis for v is

similar). Let It ⊂ [n] be the set of largest10 t = dc log(1/ε′)e ≤
√
n/40 coordinates of

Fv (note that c, t, and It are chosen as in the proof of Theorem 1.1). In particular,
no coordinate in It is the zero coordinate. Following the proof of Theorem 1.1, we
note that we are in either Case 2 or Case 3 there and hence, for a large enough c, Nε′

8If it is not the case, then we can work with n′ = 2k such that n < n′ < 2n.
9The coherence of H1 and H2 is the largest inner product between a row of H1 and a row of H2.

10Recall our assumption that ε = exp(−O(
√
n)).
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contains an element x ∈ Nε′ such that11

〈x, Fv〉 ≥(†) 1√
n
·
√

2 log(1/ε′) · ‖(Fv)[n]\It‖2

≥(∗) 1√
n
·
√

2 log(1/ε′) · 1

4
=
√

2 log(1/ε′1/16)/n,

where inequality (†) is implied either by (4.2) (in Case 2) or by the conclusion of
Case 3. Inequality (∗) follows from the fact that dc log(1/ε′)e <

√
n/40 and the

assumption that every subset of
√
n/40 coordinates of Fv contains at most 3/4 of the

mass of Fv. Hence, Fx ∈ F (Nε′) ⊂ Sε and

〈Fx, v〉 = 〈x, Fv〉 ≥
√

2 log(1/ε′1/16)/n =
√

2 log(1/ε)/n ≥ θ

for ε′ = ε16. This shows that Sε is indeed an ε-net for spherical caps. Moreover, we
have that

|Sε| ≤ 2|Nε′ | = O(ε−b
′
· na

′
)

for absolute constants a′ and b′. This completes the proof of Theorem 1.2. �

Appendix A. Regarding an error in [RS10].
Lemma 2.7 and its proof below fix an error in the original version of this pa-

per [RS10]. The error was pointed out to us by William Hoza. Lemma 2.7 in [RS10]
states:

Lemma A.1 (Lemma 2.7 in [RS10]). For every integer s, there is an explicit fam-
ily H of hash functions h : [n] → [8s] of cardinality |H| = 2(4+o(1))·s+log 2s log logn 12

such that the following holds for every unit vector v ∈ Sn−1. Let i1, i2, . . . , in be an
enumeration of [n] such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let It denote the set
{i1, i2, . . . , it}. There exists some h ∈ H such that the following hold:

1. The map h is an injection on Is.
2. Let t ∈ [s− 1]. If v2

it+1
≤ 1

64s · ‖v[n]\It‖22, then

(A.1)
∑
r∈[8s]

min

{
‖vh−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2.

The flawed proof in the appendix of [RS10] constructs H in two steps. The error
is that the first step uses known constructions of pairwise independent hash families
mapping [n] to [s]. However, the cardinality of such families is 2O(log(sn)), which is
too large to give the bounds stated in the lemma (in the paper we wrongly claimed
that the size is much smaller). If we were to use this bound in the construction
of the hitting set then we would get a set of size (n/ε)O(log log 1/ε), which is larger
than the claimed size (alternatively, in terms of seed length, we get seed of length
O(log(n/ε) log log 1/ε) instead of the optimal O(log(n/ε)). In a footnote we also pro-
posed to add a preliminary step that maps [n] to [s2] and then to map [s2] to [s].
This, too, is a flawed construction as it does not guarantee that we get from this a

11The factor of 1√
n

comes from viewing Bn as a subset of Sn−1. In fact, we can get a much better

inner product but we do not try to optimize.
12The log 2s factor can be eliminated at the expense of a slight complication of the construction

(adding a preliminary phase that maps [n] to [s2] and replacing the maps from [n] in the two-phase
construction by maps from [s2]). In our application, this does not improve the exponent beyond an
o(1) factor, as we use s = Θ(logn).
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family of pairwise independent hash functions. Our fix is to apply a different prelim-
inary step that reduces the domain size, using the construction of lossless condensers
of [GUV09]. This leads to a weaker statement, that nonetheless is good enough to
derive the main result (Theorem 1.1).

Observe that there are two differences between Lemma 2.7 and Statement A.1.
Firstly, there is the term A · log 2s log log n, which was log 2s log log n in the original
statement (i.e. A = 1 was claimed). This slight change does not affect the main result
as it only affects the o(1) term in the exponent of n. This can be seen by redoing the
computation of Nε on page 3510 of the original manuscript (as we did here). Secondly,
the order of quantifiers on t and h is reversed. This implies the same change in the
statement of Corollary 2.8 This does not affect the rest of the paper, because the use
of Corollary 2.8 in the proofs of Theorems 1.1 and 1.2 in [RS10] does not require the
same hash function h for all t, just a hash function h for a specific value of t.

Appendix B. Perfect hashing.

B.1. Lossless condensers. An important ingredient in the proof is the follow-
ing construction of Guruswami, Umans, and Vadhan [GUV09] (see also Chapter 6 in
[Vad12]) of lossless condensers.

For completeness we first give some basic definitions and then discuss lossless
condensers.

Definition B.1. Let D be a distribution on {0, 1}a. We say that D is a k-source
if every point in the hypercube has probability at most 2−k. We use Ud to denote the
uniform distribution on {0, 1}d. We say that two distributions D1, D2 are ε-close if
their statistical distance (half their L1 distance) is at most ε.

Definition B.2. A function Con : {0, 1}a × {0, 1}d → {0, 1}b is a k →ε k
′

condenser iff for every k-source X on {0, 1}a, there exists a k′-source Z on {0, 1}b
such that Con(X,Ud) is ε-close to Z. The function Con is lossless iff k′ = k + d.

The main result that we shall need is Theorem 1.7 of [GUV09].13

Theorem B.3 (Theorem 1.7 of [GUV09]). There exists an absolute constant
β > 0 such that: for all positive k, all a ≥ k, where a is an integer, and all ε > 0,
there is an explicit k →ε k + d lossless condenser Con : {0, 1}a × {0, 1}d → {0, 1}b
with d = d3(log a+ log k + log(1/ε)) + βe and b ≤ 2(k + d).

B.2. Proof of Lemma 2.7. First, note that when s = 1 the statement of the
claim is trivial and so we only consider the case s ≥ 2 in the proof.

Our proof consists of three steps. In the first step we use the lossless condenser,
of Theorem B.3, to map [n] to [log(n) · poly(s)]. Then we use the oblivious imple-
mentation due to Schmidt and Siegel [SS90] of the Fredman, Komlós, and Szemerédi
(FKS) adaptive hashing scheme [FKS84].14 The Schmidt and Siegel implementation
consists of two steps. In the first step (second step of our proof), they use a universal
family of pairwise-independent hash function to reduce the domain size further to size
O(s). The last step repairs the few collisions that may exist.

To ease the readability of the proof we shall assume that n is a power of 2. This
has no effect on the claim or the result.

13We consider the special case α = 1/2 of Theorem 1.7 of [GUV09].
14For the construction of our hitting set we need the hash family to be fixed and to not depend

on the input.
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Step 1. Let C : {0, 1}a × {0, 1}d → {0, 1}b be the condenser promised in Theo-
rem B.3 for parameters a = log n, k = log(64s), ε = s−100, d = d3(log a + log k +
log(1/ε)) + βe and b ≤ 2(k + d). (Notice that if s > n/64 and hence k > a, we can
simply skip Step 1.) For each seed y ∈ {0, 1}d denote Cy(x) = C(x, y). We think of
the family Cy as a family of hash functions from [n] to [2b].

We next show that for a random seed y ∈ {0, 1}d, with high probability, Cy is
one to one on the set Is.

Claim B.4. Let X ⊆ {0, 1}a be a k-source. Then for all but
√
ε of the seeds

y ∈ {0, 1}d it holds that Cy(X) is
√
ε-close to a k-source.

Proof. The proof is an easy application of Markov’s inequality.

Corollary B.5. Let I ⊆ [n] be a set of size |I| ≤ 2k. Then, except with proba-
bility

√
ε over y ∈ {0, 1}d, the map Cy is injective on I.

Proof. Let X be a random variable that is uniformly distributed over a set of size
exactly 2k that contains I. Let y be such that Cy(X) is

√
ε-close to a k-source Z.

Then,

∀z ∈ {0, 1}b , Pr[Cy(X) = z] ≤ Pr[Z = z] +
√
ε ≤ 2−k +

√
ε < 2 · 2−k ,

where the third inequality follows from the choice of ε. In particular, no two elements
of I were mapped to the same element z.

We next show that, with high probability, Cy distributes the weight “nicely”.

Claim B.6. For all but
√
ε fraction of y ∈ {0, 1}d the following holds. If for

t ∈ [s− 1], we have that v2
it+1
≤ 1

64s · ‖v[n]\It‖22, then for every z ∈ {0, 1}b,

‖vCy
−1(z)\It‖

2 ≤
(

1

64s
+
√
ε

)
· ‖v[n]\It‖

2
2 .

Proof. Consider the following distribution on [n]:

Pr[X = ij ] =

{
v2ij

‖v[n]\It‖
2
2

if j > t

0 otherwise
.

By our assumption, X is a log(64s)-source (k-source). Claim B.4 implies that except
for a

√
ε fraction of the seeds y, Cy(X) is

√
ε-close to a k-source Z (note that Z may

depend on y). For such a good y and for z ∈ {0, 1}b we have that

2−k +
√
ε ≥ Pr[Cy(X) = z] =

∑
j∈[n]\[t]:Cy(ij)=z

Pr[X = ij ]

=
∑

j∈[n]\[t]:Cy(ij)=z

v2
ij

‖v[n]\It‖22

=
‖vC−1

y (z)\It‖
2
2

‖v[n]\It‖22

as claimed.

Corollary B.7. With probability at least 1−s
√
ε a random seed y satisfies that:

1. Cy is one-to-one on Is.
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2. For every t ∈ [s− 1], if v2
it+1
≤ 1

64s · ‖v[n]\It‖22, then for every z ∈ {0, 1}b,

‖vCy
−1(z)\It‖

2 ≤
(

1

64s
+
√
ε

)
· ‖v[n]\It‖

2
2 .

Proof. Follows immediately from applying the union bound to Corollary B.5 and
Claim B.6.

We say that a seed y is “good” if it is one of the 1− s
√
ε fraction of seeds in the

statement of Corollary B.7.
Fix such a good y. We now have that Cy has reduced the domain size to 2b ≤

22d+2k = (log(n) · s)O(1)
.

Step 2. We now proceed as in the construction of perfect hash families of Schmidt
and Siegel [SS90]. We first apply a map f : [2b]→ [s], taken from a pairwise indepen-
dent family of hash functions F . There are known explicit constructions of F with
|F| = 2b+log s+O(1) (see Theorem 3.26 in [Vad12] and the historical discussion there).

A pairwise independent family of hash functions F has the following property. If
f is chosen uniformly at random from F , then for every x, y ∈ [2b], x 6= y, it holds that
f(x) is distributed uniformly in [s], even when conditioned on f(y). In particular,
Pr[f(x) = f(y)] = 1

s .
Let S ⊆ [2b] be an arbitrary set of size |S| ≤ s. Consider the following event.

(B.1)

s∑
j=1

|f−1(j) ∩ S|2 < 4s.

We now show that the probability of this event, when f is chosen uniformly at random
from F , is more than 1

2 . Indeed, denoting by χp the indicator of an event p, we have
that

E

 s∑
j=1

|f−1(j) ∩ S|2
 = E

 ∑
x,x′∈S

χf(x)=f(x′)

 =
∑
x,x′∈S

E
[
χf(x)=f(x′)

]
=

∑
x6=x′∈S

E
[
χf(x)=f(x′)

]
+ s = s · (s− 1) · (1/s) + s = 2s− 1 .

By applying Markov’s inequality we conclude that

(B.2) Pr

 s∑
j=1

|f−1(j) ∩ S|2 ≥ 4s

 < 1

2
.

Thus, the average square of the number of pre-images of a bucket, is of size at
most 4.

Step 3. The second phase of the Fredman, Komlós, and Szemerédi hashing scheme
is adaptive, and depends on the hashed set S. The idea is the following. If ci elements
of S landed in bucket i ∈ [s], then by mapping this bucket to c2i buckets using a
pairwise independent family of hash functions, it is likely that no collision between
the elements of S occurs. As the first phase guarantees that

∑
i∈[s] c

2
i = O(s), we

end up with a hash table of size O(s). Note that for this construction to work, we
need to know the values {ci} which is the reason for the adaptiveness. The Schmidt
and Siegel implementation proceeds as follows. It uses a pairwise independent family
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of hash functions G. Here it will be convenient to assume that g ∈ G maps [2b]
to bit vectors. So every g ∈ G is a function g : [2b] → {0, 1}2+log s. We can take
|G| = 2log s+b+O(1). The second phase uses a selection of s (not necessarily distinct)
hash functions from G. The hash functions are selected and used as follows. Take a
sequence of log s hash functions g1, g2, . . . , glog s ∈ G. Notice that there are at most

|G|log s = 2log2 s+b log s +O(log s) such sequences. In addition, take a sequence of s non-
negative integers c̄ = (c1, c2, . . . , cs) that satisfy

∑s
j=1 cj = s and

∑s
j=1 c

2
j < 4s. There

are at most 22s such sequences (easily bounded by writing the sequence elements in
unary notation, separated by zeros). This sequence is our guess of the bucket loads
due to S after the first phase. Finally, use an assignment ρ : [s]→ [log s], that assigns
values from [log s] to elements of [s] in the following way: 1 ∈ [log s] is assigned to s

2
elements of [s], 2 ∈ [log s] is assigned to s

4 elements of [s], and in general i ∈ [log s]
is assigned to s

2i elements of [s]. Exceptionally, log s is assigned to 2 elements of
[s], in order to cover the entire set. The number of such assignments is at most

2s·(1+
∑log s

i=1 2−i) < 22s (write the s assigned values in unary, separated by zeros). The
assignment ρ is our guess as to which of the log s selected hash functions should be
used for each bucket.

Each setting of y, f , ḡ, c̄ and ρ defines a hash function h ∈ H as follows. For
every x ∈ [n],

h(x) =

 ∑
i<f(Cy(x))

2d2 log cie

+ ḡρ(f(Cy(x)))(Cy(x)),

where for i = f(Cy(x)), ḡρ(i)(Cy(x)) is the first d2 log cie bits of gρ(i)(Cy(x)). We shall
also think of ḡρ(i)(Cy(x)) as the binary expansion of an integer number. Notice that

(B.3) |H| ≤ 2d · |F| · |G|log s ·#{c̄} ·#{ρ} ≤ 24s+O(log2 s)+O(log 2s log logn)+O(log s) ,

implying the claim in the lemma.15 Also notice that each h ∈ H maps [n] to

s∑
i=1

2d2 log cie ≤ 2 ·
s∑
i=1

c2i < 8s,

as required.
Wrapping up. Recall that we still work with a fixed “good” y.

Claim B.8. For every vector v ∈ Sn−1, the probability that when we pick f at
random there is a choice of ḡ and ρ such that h = hy,f,ḡ,ρ is injective on Is is at least
1
2 .

Proof. Let S = Is. Since y is good, Cy is injective on S. Denote Sy = Cy(S).
For this set Sy, Equation (B.1) holds for at least half of the choices of f (by Equa-
tion (B.2)). Fix any such choice f . For i = 1, 2, . . . , s, let Ci = {x ∈ Sy : f(x) = i}.
Consider the choice of ci = |Ci|, for i = 1, 2, . . . , s. Fix i. For every g ∈ G and x ∈ [2b],
let ḡ(x) denote the first d2 log cie bits of g(x). Consider the “bad” event

Ai = Ai(g) = ∃x, x′ ∈ Ci, x 6= x′ : ḡ(x) = ḡ(x′) .

As G is a pairwise independent family of hash functions, if g is chosen uniformly
at random in G, then Pr [Ai] ≤

(
ci
2

)
· 1
c2i

< 1
2 . Therefore, there exists a choice of

15A careful calculation shows that the constant A in the statement of Lemma 2.7 is at most 5.
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g1 that is good for a set J1 ⊂ [s] of buckets of cardinality |J1| = s
2 . Similarly, for

j = 2, 3, . . . , log s−1, there exists a choice of gj that is good for a set Jj ⊂ [s]\
⋃
j′<j Jj′

of cardinality |Jj | = s
2j . Similarly, there exists a choice of glog s that is good for both

elements in [s] \
⋃
j<log s Jj . So, for every f that satisfies Equation (B.1), there is a

choice of g, c, and ρ such that the resulting hash function h is an injection on Is.

Claim B.9. For every t ∈ [s − 1], if t satisfies that v2
it+1
≤ 1

64s · ‖v[n]\It‖22, then

with probability at least 2
3 , f satisfies that

(B.4)
∑
r∈[s]

min

{
‖v(f◦Cy)−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2.

Observe that Equation (B.4) implies Equation (2.1), as the gi-s only further split
hash buckets.

The intuition behind this claim is simple: If v2
it+1

≤ 1
64s · ‖v[n]\It‖22, then no

i ∈ [n] \ It has v2
i very large relative to ‖v[n]\It‖22, so ‖v[n]\It‖22 is spread roughly

evenly on many coordinates. As f ◦ Cy is likely to map the coordinates of v[n]\It
roughly evenly, it also maps the weight ‖v[n]\It‖22 roughly evenly.

Proof. To ease the reading, let us use the following notation. Let u ∈ R2b

be
defined as follows. For z ∈ {0, 1}b,

uz = ‖vC−1
y (z)\It‖

2
2 .

Let us also denote
W = ‖u‖1 = ‖v[n]\It‖

2
2 .

With these notations, what we wish to prove is that with probability at least 2
3 , over

the choice of f ,

(B.5)
∑
r∈[s]

min

{
‖uf−1(r)‖1,

2

s
W

}
≥ 1

2
W .

Since y is good, Corollary B.7 guarantees that for all z,

uz ≤
(

1

64s
+
√
ε

)
· ‖v[n]\It‖

2
2 =

(
1

64s
+
√
ε

)
·W <

W

7.992s
.

Let Xi
z be the indicator random variable for the event that f(z) = i. As Pr[f(z) =

i] = 1
s , we have that

E
[
‖uf−1(i)‖1

]
=

2b∑
z=1

E[Xi
z] · uz =

1

s
‖u‖1 =

1

s
W .

Moreover, as f comes from a pairwise independent family of hash functions, for fixed
i the random variables Xi

z are pairwise independent, so

σ2
[
‖uf−1(i)‖1

]
= Var

[
‖uf−1(i)‖1

]
= Var

 2b∑
z=1

Xi
z · uz


=

2b∑
z=1

Var[Xi
z] · u2

z =

(
1− 1

s

)
· 1

s
· ‖u‖22 .



SMALL ε-NET FOR LINEAR THRESHOLD FUNCTIONS 3521

Thus, as uz ≤ W
7.992s , we get that

σ
[
‖uf−1(i)‖1

]
≤ 1√

s
· ‖u‖2 ≤

1√
s
·
√

W

7.992s
·
√
‖u‖1 =

W

7.99s
.

By Chebyshev’s inequality, for every r > 1,

(B.6) Pr
[
‖uf−1(i)‖1 ≥

r

s
W
]
≤ 1

7.992(r − 1)2
.

For each value of r, consider all values λ in the interval [2r, 2r+1] such that
Pr
[
‖uf−1(i)‖1 = λ

sW
]
6= 0. Clearly there are finitely many such values. From Equa-

tion (B.6) we get that∑
λ∈[2r,2r+1]

λ · Pr

[
‖uf−1(i)‖1 =

λ

s
W

]
≤ 2r+1 Pr

[
‖uf−1(i)‖1 ≥

2r

s
·W
]

≤ 2r+1

7.992(2r − 1)2
.

Thus,

E
[
max

{
0, ‖uf−1(i)‖1 −

2

s
W

}]
≤ W

7.992s
·
∞∑
r=1

2r+1

(2r − 1)2

=
4W

7.992s
·
∞∑
r=1

2r−1

(2r − 1)2

<
4W

7.992s
·
∞∑
r=1

1

2r−1

=
8W

7.992s
.

Let Y i = max
{

0, ‖uf−1(i)‖1 − 2
sW

}
. We just showed that E

[∑
i∈[s] Y

i
]
< 8W

7.992 ,

so by Markov’s Inequality, Pr
[∑

i∈[s] Y
i > 1

2W
]
< 1

3 .

We next show that when
∑
i∈[s] Y

i ≤ 1
2W , Equation (B.5) holds, and thus it

holds with probability at least 2
3 over the choice of f ∈ F , which is what we wanted

to prove.
Let m be the number of i ∈ [s] such that Y i > 0. We now get that

1

2
W ≥

∑
i∈[s]

Y i =
∑
i:Y i>0

(
‖uf−1(i)‖1 −

2

s
W

)
=

( ∑
i:Y i>0

‖uf−1(i)‖1

)
− 2m

s
W .

Hence,

s∑
i=1

min

{
‖uf−1(i)‖1,

2

s
W

}
=

( ∑
i:Y i=0

‖uf−1(i)‖1

)
+

2m

s
W

=

(
W −

∑
i:Y i>0

‖uf−1(i)‖1

)
+

2m

s
W

≥W − 1

2
W =

1

2
W ,
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and Equation (B.5) holds.

To conclude the proof of Lemma 2.7 we recall that y is good with probability at
least 1− s

√
ε > 0 and that for each good y, Claim B.8 holds for a random choice of f

with probability at least 1
2 . Furthermore, for a good y, we have that Equation (B.5)

holds for at least 2
3 of the choices of f ∈ F . As 2

3 + 1
2 > 1, we get that for each good

y, there is a good choice of f , so that both Equation (B.5) and the condition in the
statement of Claim B.8 hold. This is exactly what Lemma 2.7 claims.
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