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In this lecture we study the problem of multiclass prediction, in which we should learn a function h :
X → Y , where X is an instance space and Y = {1, . . . , k} = [k] is the target space. We start with describing
reduction techniques: assuming we have a learning algorithm for binary classification, we will show how
to construct a learning algorithm for multiclass categorization. Next, we will shift our focus to specific
hypothesis classes that are based on linear predictors. Finally, we will discuss cases in which the number of
classes is very large but has some structure that leads to efficient learning.

1 Error Correcting Output Codes (ECOC)
The idea of ECOC is to associate each class r ∈ [k] with a row of a “coding matrix” M ∈ {−1, 0, 1}k×l for
some integer l. For each s ∈ [l], a binary learning algorithm is trained on an induced binary problem in which
each multiclass example (x, r) is converted into a binary example (x, y) as follows: If Mr,s ∈ {±1} then
y = Mr,s. Otherwise, if Mr,s = 0, then the example is ignored in the training process of the binary classifier
associated with the s column of M . This creates binary classifiers h1, . . . , hl. At test time, we calculate the
word (h1(x), . . . , hm(x)) and then predict the multiclass label as follows:

ŷ = argmin
r

l∑
s=1

|hs(x)−Mr,s| .

Two well known examples are:

• One vs. rest: Setting l = k and M is the matrix that has 1 on diagonal elements and−1 on off diagonal
elements leads to the one vs. rest approach. That is, each binary classifier discriminates between one
class to the rest of the classes.

• All pairs: Setting l =
(
k
2

)
and M is the matrix such that for each pair (r1, r2) ∈ [k]2 there exists

a column s ∈ [l] in M with zero everywhere except 1 on the Mr1,s element and −1 on the Mr2,s

element. That is, each binary classifier discriminates between class r1 and class r2.

1.1 Analysis
Allwein, Schapire, and Singer analyzed the multiclass training error as a function of the average binary
training error of the binary classifiers. In particular, they showed that the multiclass error is at most

1
ρ

l∑
s=1

1
m

m∑
i=1

(1− sign(Myi,sfs(xi))) ,

where m is the number of examples and

ρ = min
r1,r2

l∑
s=1

1−Mr1,sMr2,s

2
,

is the minimal “distance” between two codewords.
Note that for the one vs. rest approach, ρ = 2. It follows that even if the binary error of each binary

predictor is ε, the multiclass error can be as large as kε.
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In fact, Langford and Beygelzimer proved that for some distributions, even if the binary classification
algorithm is guaranteed to be consistent, no matrix over {±1}k×l will lead to a consistent multiclass predictor.

In the all pairs approach, the matrix is over {−1, 0, 1} so the above claim does not hold. However, it
is possible to show that the multiclass error can be as large as kε. That is, the error of the binary predictor
deteriorates linearly with the number of classes.

2 Error Correcting Tournaments
In this section we describe the filter tree method of Beygelzimer, Langford, Ravikumar (2009). This method
enables to construct a multiclass predictor using a binary learning algorithm, where the regret of the multiclass
predictor is guaranteed to be bounded by log(k) times the regret of the binary predictor. Note that the
dependence on k is exponentially better than the dependence in the ECOC method. On the flip side, the
analysis is based on a reduction to a no-regret binary learning algorithm w.r.t. the class of all functions from
X to {±1}. From no-free-lunch theorems, we know that such an algorithm does not exist unless we make
serious distributional assumptions.

2.1 Regret Reduction
LetD be a distribution overX×Y . The error of a multiclass predictor h : X → Y is errD(h) = P[h(x) 6= y].
The multiclass regret is defined as

regD(h) = errD(h)− min
g:X→Y

errD(g) .

Clearly, the above definition subsumes binary classification as a special case (k = 2).
Suppose that we have a binary learning algorithm with a regret rate of ε. Can we construct a multiclass

learning algorithm with a low regret?

2.2 First try: Divide and Conquer Tree
A straightforward attempt will be to split the labels in half, learn a binary classifier to distinguish between the
two subsets, and repeat recursively until each subset contains one label. This tree reductions transforms the
original distribution D into a distribution DT (where T is the tree) over binary labeled examples by drawing
(x, y) ∼ D and a random non-leaf node i from the tree and constructing the binary example ((x, i), b) where
b = 1 if y is in the left subtree of node i and b = 0 otherwise.

The following theorem shows that even if the binary learning algorithm is optimal (i.e. has no regret), the
multiclass predictor can have non vanishing regret.

Theorem 1 For all k ≥ 3, for all binary trees over the labels, there exists a multiclass distribution D such
that regD(T (f?)) > 0 for all f? ∈ argminf errDT

(f).

Proof W.l.o.g. we can assume k = 3 and the root node of the tree decides between y ∈ {1, 2} or y ∈ {3}.
Set D to be concentrated on a single instance and set the label to be 1 w.p. 1/4 + ε, 2 w.p. 1/4 + ε, and 3
w.p. 1/2− 2ε. Clearly, the best multiclass predictor always predict the label 3 and has an error of 1/2 + 2/ε.
In contrast, any optimal binary classifier f will prefer to decide y ∈ {1, 2} over y ∈ {3} at the root node.
Thus, it’ll err on all examples with label y = 3 and on half of the rest of examples. So, its multiclass error
will be 1/2− 2ε + 1/4 + ε = 3/4− ε. It follows that the regret is 3/4− ε− (1/2 + 2ε) = 1/4− 3ε which
is non-negative for ε ∈ (0, 1/12).
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2.3 The filter tree
The filter tree method works in round. For concreteness, suppose k = 7. In the first round, the labels are
paired arbitrarily, e.g. “1 vs. 2”, “3 vs. 4”, “5 vs. 6”, “7”. A classifier is trained for each pair to predict
which of the two labels is more likely. The winning labels from the first round are in turn paired in the second
round, and a classifier is trained to predict whether the winner of one pair is more likely than the winner of
the other. This process continues until we reach the root node.

The binary classifiers at the internal nodes are trained based on examples for which the multiclass label
is one of the labels in the sub-tree associated with the node. E.g., the classifier “winner of 1 vs. 2 vs. winner
of 3 vs. 4” is trained by examples for which y ∈ {1, 2, 3, 4}. If y ∈ {1, 2} then the binary classifier gets
the label −1 and if y ∈ {3, 4} then the classifier gets the label 1. Other examples with y /∈ {1, 2, 3, 4} are
rejected and are not used in the training process of this node.

At prediction time, the classifiers are applied from the root node to a leaf, and the label of the leaf is the
multiclass prediction.

Beygelzimer et al proved that if the regret of the binary classification learning algorithm (against the
class of all classifiers from X to {±1}) is ε, then the multiclass regret is log(k)ε. As mentioned before, the
assumption is quite strong and therefore we omit this result.

3 Linear Multiclass Predictors
In this section we describe a specific hypothesis class and learning algorithms for multiclass prediction, which
is based on linear transformations.

3.1 The Multi-vector Construction
Suppose that X ⊂ Rd and define the hypothesis class:

{x 7→ argmax
r

(Wx)r : W ∈ Rk×d ‖W‖ ≤ B} .

For now, we intentionally did not specify which norm we refer to. The idea is as follows: Each row of W
corresponds to one of the classes and x is projected on each of the rows. The row for which the value of the
projection is largest is selected as the prediction.

To learn a matrix W from examples one can solve the ERM problem w.r.t. the above class. However, the
optimization problem is non-convex. To overcome this obstacle, we can follow a technique similar to the use
of Hinge loss in SVM and define the multiclass hinge loss as follows:

`(W, (x, y)) = max
r

1[r 6=y] − ((Wx)y − (Wx)r) .

It is easy to verify that `(W, (x, y)) is convex w.r.t. W and that

1[y 6=argmaxr(Wx)r] ≤ `(W, (x, y)) .

This, this loss function is a convex surrogate loss function for the multiclass problem.
Now, the problem of ERM w.r.t. the multiclass hinge loss becomes a convex optimization problem that

can be solved efficiently.

Analysis It is possible to derive a generalization bound for learning the above class with the multiclass
hinge-loss function. Choosing the norm of W to be the Frobenoius norm, the bound behaves like BX/

√
m

where m is the number of examples, and X is the maximal Euclidean norm of an instance x ∈ X . It is also
possible to derive different bounds assuming different norm constraints on W and on x ∈ X .
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3.2 The Single-vector Construction
The Multi-vector construction is a special case of a more general class of linear based multiclass predictors,
which we define now. Let φ(x, y) be a feature mapping that takes x ∈ X and y ∈ [k] and returns a vector in
Rn. Then, we define the hypothesis class:

{x 7→ argmax
r

〈w, φ(x, r)〉 : w ∈ Rn ‖w‖ ≤ B} .

It is an easy exercise to show that with an adequate definition of φ, this class becomes the multi-vector class
described in the previous sub-section.

We can define the multiclass hinge-loss accordingly,

`(w, (x, y)) = max
r

1[r 6=y] − 〈w, φ(x, y)− φ(x, r)〉 .

This loss function is again convex w.r.t. w and thus the ERM can be solved efficiently. It is also possible to
derive a generalization bound which behaves like BX/

√
m where now X is a bound on ‖φ(x, y)−φ(x, r)‖?.

4 Structured Output
We refer the reader to Sections 8-9 in
http://www.cs.huji.ac.il/∼shais/papers/CrammerDeKeShSi06.pdf.
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