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Abstract. Variable automata with arithmetic enable the specification of reactive
systems with variables over an infinite domain of numeric values and whose op-
eration involves arithmetic manipulation of these values [10]. We study the syn-
thesis problem for such specifications. While the problem is in general undecid-
able, we define a fragment, namely semantically deterministic variable automata
with arithmetic, for which the problem is decidable. Essentially, an automaton is
semantically deterministic if the restrictions on the possible assignments to the
variables that are accumulated along its runs resolve its nondeterministic choices.
We show that semantically deterministic automata can specify many interesting
behaviors — many more than deterministic ones, and that the synthesis problem
for them can be reduced to a solution of a two-player game. For automata with
simple guards, the game has a finite state space, and the synthesis problem can be
solved in time polynomial in the automaton and exponential in the number of its
variables.

1 Introduction

Synthesis is the automated construction of systems from their specifications [6,20].
The specification is typically given by a temporal-logic formula or an automaton, and
it distinguishes between outputs, generated by the system, and inputs, generated by its
environment. The system should realize the specification, namely satisfy it against all
possible environments. Since its introduction, synthesis has been one of the most stud-
ied problems in formal methods, with extensive research on wider settings, heuristics,
and applications [1].

Until recently, all studies of the synthesis problem considered finite state trans-
ducers that realize specifications given by temporal-logic formulas over a finite set
of Boolean propositions or by finite-state automata over finite alphabets. Many real-
life systems, however, have an infinite state space. One class of infinite-state systems,
motivating this work, consists of systems in which the control is finite and the source
of infinity is the domain of the variables in the systems. This includes, for example,
data-independent programs [17], software with integer parameters [3], communication
protocols with message parameters [7], datalog systems with infinite data domain [24],
and many more [5, 4]. Lifting automata-based methods to the setting of such systems
requires the introduction of automata with infinite alphabets. The latter include registers
[23], pebbles [18], variables [11], and data [2] automata. These formalisms refer to the
infinite values by comparing them to each other. Thus, the exact value is abstracted: one
can specify, for example, that each value received as input is generated as an output at



least once during the next 10 transitions, but cannot specify, for example, that if a value
x € Qis received as input then the next 10 transitions include only outputs of values in
[x — 5,z + 5].

In [10], we introduced automata with arithmetic, which do support specifications as
the latter. Here, we consider nondeterministic looping word automata with arithmetic
(NLWAs, for short), which define languages over alphabets of the form X x QQ, for some
finite set XJ. Each NLWA has a finite set X of variables over Q. The transitions of an
NLWA are labeled by both letters from X' and guards involving values in @, variables in
X, and the symbol x, which refers to the Q-value of the letter read. A word w is accepted
by an NLWA A if there is an assignment to the variables that appear in A such that
there is an infinite run of .4 on w. In particular, all the guards along the run are satisfied.
The looping acceptance condition is a special case of the Biichi condition. It captures
safety properties, and we use it here in order to circumvent technical challenges that are
irrelevant for the challenge of handling arithmetic. It is shown in [10] that many decision
problems on NLWAs are decidable, essentially by replacing queries about reachability
via runs by queries about the satisfaction of guards accumulated during runs.

Recent work on synthesis shows that while the synthesis problem for register au-
tomata is undecidable [8], the register-bounded synthesis problem is decidable [14, 13,
9]. There, the input to the problem includes bounds on the number of registers of the
system and/or the environment. The bounds enable an abstraction of the exact values
stored in the registers by their partition into equivalence classes. The abstraction, how-
ever, strongly depends on the fact that the only operation that register automata apply to
the stored values is comparison. As discussed above, such comparisons cannot handle
specifications that refer to the values, in particular ones with arithmetic.

We study the synthesis problem for NLWAs and point to a decidable fragment. In
the setting of finite alphabets, the specifications are over an alphabet 27V, for finite
sets I and O of input and output signals. The synthesis problem for specifications given
by deterministic automata is solvable by a reduction to a two-player game [1]. The po-
sitions of the game are the states of the automaton. In each round of the game, one
player (the environment) provides an input — a letter in 27, the second player (the sys-
tem) responds with an output — a letter in 2, and the game transits to the corresponding
successor state. The system wins the game if, no matter which inputs the environment
provides, the interaction between the players generates a computation along with an ac-
cepting run of the automaton on it. When the automaton is nondeterministic, the system
responds not only with an output, but also with a transition that should be taken. This
is problematic, as this choice of a transition should accommodate all possible future
choices of the environment. In particular, if different future choices of the environment
induce computations that are all in the language of the automaton yet require different
nondeterministic choices, the system cannot win.

The need to work with deterministic automata is a known barrier for synthesis in
practice: algorithms involve complicated determinization constructions [21] or acrobat-
ics for circumventing determinization [16]. In the case of automata with arithmetic, the
challenge is bigger: First, even when the automata are deterministic, the strategies of
the players depend on values in QQ, thus the game has infinitely many configurations.
Second, determinism significantly reduces the expressive power of NLWAs. Indeed, it



requires that for every state g and letter o € X, at most one guard in all the o-transitions
from gq is satisfiable. For example, we cannot have two o-transitions from ¢, one guarded
by > 8 and the second by z < 5. We suggest to distinguish between three levels of
determinism in an NLWA A. In addition to the standard definition, by which A is deter-
ministic (DLWA) if it has at most one run on every word, we say that A is deterministic
per assignment (DPA-NLWA) if for every assignment to the variables in X, there is at
most one run of .4 on every word. Then, A is semantically deterministic (SD-NLWA) if
the restrictions on the possible assignments to the variables in X that are accumulated
along the run resolve its nondeterministic choices. In the example above, if every run
that leads to the state ¢ is such that at most one of Y A (z > 8) or vy A (z < 5) is
satisfiable, where + is the the conjunction of guards accumulated during the run, then
there is no real choice to make when ¢ is read in state q.

We show that while DPA-NLWAs are as expressive as NLWAs, they are not useful
in synthesis. Indeed, the assignment to the variables in X in the different runs on A is
not known in advance to the system and the environment, and may be different for the
different computations they generate. On the other hand, SD-NLWAs can be soundly
used in the synthesis game. Intuitively, as has been the case with good for games (GFG)
automata [15, 12], SD-NLWAs can resolve their nondeterministic choices in a way that
only depends on the past. While in GFG automata, resolving of nondeterminism con-
cerns the limit behavior of the run, in SD-NLWASs it also concerns the restrictions on the
possible assignment to the variables in X . Consequently, while GFG automata with an
acceptance condition v (e.g., Biichi) are as expressive as deterministic v automata [15,
19], SD-NLWAs are strictly more expressive than DLWAs. Moreover, we argue that
natural NLWAs are sematically deterministic. Indeed, in a typical specification, one
first assigns values into the variables in the specification and then resolves guards that
depend on the assignments. In the example above, it is typically the case that paths to
the a state ¢ with branches as above include guards that compare x with %, namely with
the Q-element of one of the letters in the input, which restricts possible assignments to
x in a way that makes only one of (z > 8) or (x < 5) satisfiable.

We solve the synthesis problem for SD-NLWAs by reducing it to a two-player game.
While semantic determinism handles the nondeterminism, there is also the challenge of
the infinite variable domain. In order to obtain a finite game, we show that when the
guards of the SD-NLWA are simple, namely each term refers to at most one variable or
to x, then we can exploit the density of Q and abstract the infinitely many values in Q by
finitely many partitions of Q and orders on X induced by the guards in the SD-NLWAs.
The transducers induced by a winning strategy use the same set X of variables, and are
also semantically deterministic, in the sense that guards over the input values are used
to resolve nondeterminism. The game, and hence also the synthesis problem, can be
solved in time polynomial in the SD-NLWA and exponential in X.

2 Preliminaries

For a finite set X of variables, the set of terms over X, denoted O x, is defined induc-
tively as follows.

— m, z,and x, form € Q, x € X, and the symbol *.



— t1 +tyand t; — to, for ty,ts € Ox.

A term is simple if it contains at most one element in X U {x}. For a number k¥ € Q and
an assignment f : X — Q, let f* : X U {x} — Q be an extension of f where for all
r € X, we have f*(x) = f(x), and for the symbol x we have f*(x) = k. Given k and
f, we can extend f* to terms over X in the expected way; for example, f* : Ox — Q
is such that f*(t; +to) = fF(t1) + fF(ta).

The set of guards over X, denoted Gx, is defined inductively as follows.

-t <toandty =tg, forty,ty € Ox,
— —yg and 1 A 7o, for 1,72 € Gx.

For k € Q, an assignment f : X — Q, and a guard v € Gx, we define when k satisfies
v under f, denoted k }=; +, by induction on the structure of +y as follows.

— For two terms t1,ty € Ox, we have that k =5 (11 < t2) iff f*(t1) < f*(t2), and
kEy (t1 = t2) iff f5(t1) = fE(t2).

— For guards 1,72 € Gx, we have that k |=¢ —yif k 55 v, and k =5 v A 2 if
k=fyand k¢ .

Using Boolean operations, we can compare terms also by the <, >, and > relations.
We refer to guards of the form t; ~ o, for ~ € {<, >, =, <, >} as atomic guards. As
it is useless to have % in both ¢; and t5, we assume that when an atomic guard includes
*, then x appears only in ¢1. A guard is simple if all its terms are simple. For example,
x1 < x9 + 5 and * = x; are simple, whereas x1 + x2 < 5is not.

We are interested in languages of infinite words in (X' x Q)“. A nondeterministic
looping word automaton with arithmetic NLWA, for short) is a tuple 4 = (X, X, Q, Qo, 4),
where X' is an alphabet, X is a set of variables, @ is a set of states, Qg C (@ is a set of
initial states, and A C ) x X X Gx X @ is a transition relation. Thus, each transition
is labeled by both a letter in X' and a guard in Gx. A run of A on an infinite word
(00, ko), (o1,k1),... over ¥ x Q is a sequence of states qo, q1, ..., where gy € Qo,
and there is an assignment f : X — Q such that for every position 7 > 0, there is a
transition (g;, 0,7, ¢i+1) € A such that k; = . Note that the assignment f is fixed
throughout the run, and that all the runs are infinite. The language of A, denoted L(.A),
is the set of all words w € (X x@Q)“ such that there is a run of .4 on w. For example, the
NLWA below accepts all the words in which all the letters agree on the Q-component,
possibly only until the X’-component is start and the Q-component is increased by 1.

(true, * = x) (true, true)

We turn to define determinism for NLWAs. Consider an NLWA A = (¥, X, Q, Qo, A).
We say that A is deterministic per assignment (DPA-NLWA, for short) if |Qo| = 1, and
for every function f : X — Q, state ¢ € @, and letter (0, k) € X' x Q, there is at most
one transition (g, o,7,q’) € A such that k£ =y . In other words, A is deterministic
per assignment if for every assignment to X, there is at most one run of .4 on every
word in (X' x Q)“. We say that A is deterministic (DLWA, for short) if the choice of



the transition does not depend on the assignment to X. Formally, we have that A is
deterministic if |Qo| = 1, and for every state ¢ € @ and letter (o, k) € X x Q, there
is at most one transition (g, 7,7, q’) € A such that there exists f : X — Q for which
k=p

Finally, an NLWA is semantically deterministic (SD-NLWA, for short) if for ev-
ery state ¢ and every run r that reaches ¢, the restrictions on the variable values ac-
cumulated throughout r resolve the nondeterminism in q. Formally, for a finite word
w = {09, ko), - .. {0, kt) € (X xQ)*, letr = qo,4q1, 92, -.,G+1 bearun on w, and let
v, be the guard that labels the o;-transition from g; to ¢;4;. We denote v" = /\1 <i<t Yir
We say that A is semantically deterministic if [Qq| = 1, and for every state ¢ € Q,
every run r from ¢ to ¢, and every letter (o, k) € X' x Q, there is at most one transition
(q,0,7,q") € A such that there exists f : X — Q for which k =5 y Ay".

In the context of open systems, we define automata over X = 2/Y© for finite sets
I and O of input and output signals, respectively. Also, rather than a single value in
@, we let each position in the computation include two such values — input and output.
Thus, a computation is 7 = (o0, k¢, k), (o1, kI, k), € (2TY9 x Q x Q)¥. In
order to indicate whether a guard refers to the input or output value, we use a variant of
NLWAs, termed NLWAs’© | in which the * in the guards is parameterized by the letters
I and O. Thus, the atomic guards in an NLWA’© with variables in X include ; ~ t
and xo ~ t,foratermt € Ox and ~ € {<, >, =, <, >}. Then, for a pair of numbers
(kT kO) € Qx Q, we have that (k! k©) satisfies x; ~ tiff kT ~ t. Likewise, (k’, k)
satisfies xo ~ t iff k€ ~ t. The semantics of NLWAs’© is similar to that of NLWAs,
except that for v € Gx, an assignment f : X — Q and a position j > 0, we have that
(m,7) =g v iff (k],kS) |=5 ~. Note that the notions of determinism, determinism per
assignment and semantic determinism can be easily extended to NLWAs €.

For finite sets I and O of input and output signals, respectively, a finite-state /0O
transducer over Q is T = (I,0, S, s0,G1,G°, p, T), where S is a finite set of states,
sp € S is an initial state, Gl , G° c g x are finite sets of atomic guards that may
include %; and x¢, respectively, p : S x 2 « G — S is a transition function, and
7:8 5 20%xG%isa labelling function on the states. Note that 7 abstracts the
concrete input and output values, and partitions the infinitely many values according to
satisfaction of guards in G and G©.

Intuitively, 7 models the interaction of an environment that generates at each mo-
ment in time a letter in 27 and a value in Q with a system that responds with a let-
ters in 2 and a value in Q. Let F = {F : FF C Q*}, and consider an input word
w = (ig, k&) - (iy, k) - € (2 xQ)¥. A run of T on w is a sequence (sq, 09, kS, Fo),
(51,01, k9, F1), (89,00, k9, F3) ... € (S x 29 x Q x F)*, where the S-components
describe the states visited along the run, the 2°- and Q-components describe the out-
puts, and the F-components describe the set of possible assignments to the variables in
X that are consistent with the restrictions accumulating during the run — restrictions im-
posed by both the guards along the transitions and their combination with the value of
the input variables and the assignments guards in the states and their combination with
the value of the output variables. Accordingly, Fy = Q¥, and for all 7 > 0, we have
that s; 1 = p(s;,i;,7]) for 7] such that k] |=; 1 for some f € Fj, 7(s;) = (oj,wjo>
for 7§ such that k! |=; ~] for some f € F; n{f € Q¥ : k] =y v/}, and Fj ;1 =



Fin{feQX kl pyn{feQ:k§ = +¥}. We require p to be receptive
and deterministic, in the sense that for every input word w = (i, k3) - (i1, ki) - €
(2" xQ)“ and j > 0, there is exactly one state s;,1 = p(s;, 75,7, ) such that k] =5 7/
for some f € Fj. An output of T on w is (01, k?) - (02,k9) -+ € (22 x Q) such
that there is a run (s, 09, kS, Fo), (51,01, k$, F1), (82,00, kS, Fy) ... of T on w. Note
that the first output assignment is that of s1, thus 7(sg) is ignored. This reflects the
fact that the environment initiates the interaction. A computation of T on w is then
T(’LU) = <i0 U 01,ké,]€?>, <i1 U Og,k{, k20>, RS (ZIUO X Q X Q)w

For an NLWA® A, we say that T realizes L(A) if for every input word w €
(27 x Q)“, all the computations of 7 on w are in L(A). The synthesis problem for
NLWAZ© is then to decide, given an NLWAC A, whether L(.A) is realizable, and if
s0, to return an [ /O-transducer that realizes it.

3 Different Levels of Nondeterminism in NLWAs

In this section we study the different levels of nondeterminism in NLWAs. We start
with the expressive power of DPA-NLWAs and SD-NLWAs, with respect to NLWAs,
DLWAs, and each other, and continue to the problem of deciding the nondeterminism
level of a given automaton.

We first prove that determinism per assignment does not restrict the expressive
power of NLWAs. Thus, DPA-NLWAs are as expressive as NLWA. The proof is con-
structive and the idea is based on an elaboration of the subset construction. There, given
a nondeterministic automaton A with state space @), a deterministic equivalent automa-
ton A’ has state space 29, and the transitions are defined so that A’ visits a state S € 2%
after reading a prefix w if .S is the set of states that .A may reach in at least one run af-
ter reading w. Since the path traversed by A when it reads w is not important (recall
we consider looping automata), the subset construction maintains all the information
needed. In the case of NLWAs, the paths traversed are important — they induce restric-
tions on possible assignments to X . Accordingly, an adoption of the subset construction
to DPA-NLWAs involves a duplication of the set of variables — one copy for each transi-
tion. Then, the state space of the equivalent DPA-NLWA consists of subsets of () along
with an indication, for each z € X, which copies of x should be assigned the same
value. The detailed construction appears in Appendix A.1.

Theorem 1. DPA-NLWAs are as expressive as NLWAs.

Theorem 1 is quite surprising, but is of no real help in the context of synthesis.
Indeed (see formal proof in Lemma 1), determinization per assignment is not useful
when we run the automaton simultaneously on all the computations of a transducer,
as different computations may be accepted with different assignments. Accordingly,
we turn to focus on semantically-deterministic NLWAs. As we show in Lemma 2, this
model of determinism is useful for solving the synthesis problem.

Theorem 2. SD-NLWAs are strictly less expressive than NLWAs.

Proof. The NLWA A in the left of Figure 1 accepts all the words in which the projection
on the Y-component is in a* + a* - b*, where in the second case the first b comes



after two letters that agree on their Q-component. In Appendix A.2, we show that A
does not have an equivalent SD-NLWA. Intuitively, it follows from the fact that the
nondeterministic choice between a“ and a* - b* should be taken before x is assigned a
value. O

(a, true)

(a,x = x) (a,x =
%<%

Fig. 1. An NLWA with no equivalent SD-NLWA, and an SD-NLWA with no equivalent DLWA.

Theorem 3. SD-NLWAs are strictly more expressive than DLWAs.

Proof. Consider the NLWA A in the right of Figure 1. It is easy to see that A is an
SD-NLWA. Indeed, when a run reaches g1, the variable x is already assigned a value,
thus the nondeterminism in ¢; can be resolved, and all the other states have exactly
one outgoing transition. Assume by way of contradiction that there is a DLWA A’ that
recognizes L(.A). By the pigeonhole principle, there are two numbers k1 # ko such that
A’ reaches the same state after reading either (a, k1) or (a, k2). Since L(A) = L(A’),
we have that the run of A’ on (a, k1) is accepting. Since A’ is deterministic, we have
that this run is also the run of A’ on (a, k2) - (a, k1)*, which is not in L(A). 0

We turn to discuss the problem of deciding the type of a given automaton. Note that
we consider the syntactic questions, namely whether the given automaton is determin-
istic per assignment or semantically deterministic, and not the semantic one, namely
whether it has an equivalent DPA-NLWA or SD-NLWA.

Theorem 4. The problems of deciding whether a given NLWA is a DPA-NLWA or is an
SD-NLWA are co-NP-complete.

Proof. Given an NLWA A = (X, X, Q,Qo, 4), a nondeterministic Turing machine
can decide in polynomial time that A is not a DPA-NLWA by guessing a reachable
state ¢ € Q, a letter (o, k) € X x Q, and two transitions (g, o,71,q'), (¢, 0, 72,q")
such that £ |=¢ v1 A 7, for some f : X — Q. Deciding that A is not an SD-NLWA
can be done by guessing, in addition, two assignments f1, fo : X — Q, a finite word
w € (X x Q)*, and a run r on it from the initial state g to ¢, where all the guards
throughout r are satisfiable by the corresponding letters in w under both f; and fs.
Then, the letter (o, k) and the transitions (g, 0,71, q’), (g, 7,72, ¢"") should be such that
k ):fl 7 and k =y, Yo

By [22], a solution to a linear inequalities system is of size polynomial in the size of
the system. In addition, the problem of checking satisfiability of a Boolean formula over



a set of linear inequalities is P-reducible to the problem of solving a linear inequalities
system. Note that by conjuncting the guards throughout a finite path in A, we get a
Boolean formula over the guards in .4 that is satisfiable iff the path is a run on some
word. Therefore, both f; and f5 are of polynomial size, and the upper bounds follow.
For the lower bounds, consider a Boolean formula ¢ over a set X = {z1,...,2,}
of variables and the NLWA A described in Figure 2. Note that the only state in A in
which nondeterminism may appear is g,,, and that ¢ is satisfiable iff both of the edges
that leave ¢, are satisfiable. Thus, A is a DPA-NLWA iff ¢ is not satisfiable. Since every
path from g¢q to g, induces an assignment f : X — {0, 1}, we also have that A is an
SD-NLWA iff ¢ is not satisfiable, and the lower bounds follow. O

ba:l—l brz_l

Fig. 2. The NLWA A is an SD-NLWA and a DPA-NLWA iff ¢ is not satisfiable.

4 Synthesis

Recall that in synthesis, the goal is to decide, given an automaton .4 over , whether
L(.A) is realizable, and if so, to return an I /O-transducer that realizes it. As described
in Section 1, the synthesis problem is reduced to deciding the winner in a two-player
game that is played over .A. For finite-state deterministic automata, the game is finite
and can be decided in polynomial time. In this section we study the synthesis prob-
lem for NLWAs’C. We first define the synthesis game for them, then show that it is
not helpful for synthesis of general NLWAs’© and even DPA-NLWAs’© | but is helpful
for SD-NLWAs’©. We then describe an algorithm for solving the synthesis game in-
duced by SD-NLWAs’© all whose guards are simple. The complexity of the algorithm
is polynomial in the state space of the automaton and exponential in the number of vari-
ables. We conclude that the synthesis problem for SD-NLWAs’© with simple guards is
decidable with the above complexity.

2IUO

4.1 The synthesis game

Consider a NLWA'C A = (21Y0_ X Q, qo, A). The players in the synthesis game G4
are OR and AND (the system and the environment players, respectively), its possible
locations are ) U {_L}, and its initial location is go. Let g; be the location of the game
at the start of the j-th round. The j-th round of a play consists of two parts: first, AND
chooses a letter (ij, k1) € 2/ x Q. Then, OR chooses a letter (0;,k?) € 29 x Q
and a state g;41 such that there is a transition (g;,%; U 0;,7;,¢j4+1) € A for some



vj € Gx, and there exists f : X — Q such that (k{,k°) =, v forall 0 < ¢ < j.
If no such state exists, or if g; = L, then OR chooses g;11 = L. The successive
location of the game is ¢;41. That is, in every round, every player chooses in its turn
a letter, and Player OR chooses a transition that respects all the choices made so far.
If no such transition exists, then the game moves to the location L. If g;4; is L, then
AND wins. Otherwise, the game continues forever and OR wins. Indeed, then, the word
(o0, kL, kS, (o1, kL, kD), - € (2IY9 x Q x Q)“ that AND and OR generate during
an infinite play is accepted by A.

Note that a position of G- includes more information than its location. Namely,
it has to maintain the guards on the transitions and the numbers that were chosen by
Players AND and OR during previous rounds. However, this amounts an unbounded
information. Thus, a graph that describes the positions of G** has an infinite state space.
Below we show that for the case of NLWAs/© with simple guards, this graph can be
represented symbolically. Essentially, rather than maintaining the values accumulated
so far, the graph only maintains restrictions they induce.

Before we solve the game, we examine its usefulness.

Lemma 1. There is a realizable DPA-NLWAIC A, such that OR does not win the syn-
thesis game on GA.

Proof. Consider the DPA-NLWA A in Figure 3, over a single variable z and I = {i}. It
is easy to see that A is DPA-NLWA and that it accepts all words in (27 x Q)“. Indeed,
the run g - ¢1 - g3* is an accepting run on words in which the second letter is ¢, and the
run qo - g2 - 4 is an accepting run on words in which the second letter is <. Hence, A is
realizable. However, in the synthesis game, choosing a transition that leaves gg amounts
to guessing whether the next input is 7 or —i, thus OR looses the synthesis game G

O

(true, true)

(true, true)

Fig. 3. A realizable DPA-NLWA’© for which OR looses the synthesis game.

Lemma 2. For every SD-NLWA'C A, we have that OR wins G* iff A is realizable.

Proof. Consider an SD-NLWA’C A. It is easy to see that a winning strategy for OR in
G4 induces a transducer that realizes .A. We prove the second direction. Assume that
A is realizable. Thus, there is a function f : (2! x Q)* — (2 x Q) such that for
every wr = (ig, kg) - (i, kf)--- € (21 x Q)¥, we have that w; @ f(w;) € L(A),
where f(w;) = f(lio, kb)) - f((io, kL) - (i1, k1)) -+ € (20 x Q)* and w; & f(w;)
is the infinite word over 2/Y¢ x Q x Q combined from w; and f(w;). We describe
a winning strategy for OR in G4, For j > 0, let w) = (i1, k{),..., (i;, k!) be the
sequence of letters that AND chose until the j-th round. In the j-th round, if the location
of the game is ¢, then a winning strategy for OR is to move to the only state ¢’ such that



q € 8(q,w) @ f(w})). Since A is semantically deterministic, there is exactly one such
¢’, and by the definition of f, this strategy is winning for OR. a

4.2 Solving the synthesis game

In this section we solve the synthesis game for SD-NLWAs’© with simple guards. As
stated in Lemma 2, semantic determinization guarantees that the game captures the
synthesis problem, and we are left with the challenge of handling the infinite state space.
We first need some definitions and notations.

For a set of variables X, we say that a set of brackets Bx C {#, : z € X, # €
{(;),[,]}} is legal if it includes exactly one right and one left bracket for every variable.
For example, for X = {z,y}, the set {(4, |, [, ]y} is legal, and the set {(4, |4, [y} is
not. An interval set is N U {—o00,00} U By, where N C Q is a set of numbers and
By is a legal set of brackets. Consider an interval set Z = N U {—o00, 00} U Bx, and
let < be a total order relation on the elements of Z. We say that (Z, <) is an interval
description (ID, for short) if the following hold.

- k1 < kqiff k1 < ko for all kl,kg € NU{*OO, OO},

- —oo = bandoo = bforallb € Bx.Ifb < —oo,thenb € {(,: x € X}, and if
b oo, thenb e {), :z € X},

- by X boforallz € X and by € {(4,[2},02 € {)z, o} - If ba < by, then by = [, and
by =,

As an example, consider Z = {0, 1} U{—00, 00} U{(4, ]z, [y» )y }. and an order relation
=< such that —0o = (;< [,< 0 < ]; < 1 =), < oo. Then, (Z, <) is the ID illustrated
in Figure 4a. Intuitively, an ID describes intervals of possible values for variables in
X, relatively to each other and to the numbers in N. The tuple (Z, <) indicates that
—o00 <z < ky forsome 0 < k1 < 1 and that k3 < y < 1, for some ko < 0.

y y y
€T €T ) T
4 . S ‘
o 0 1 © > 0 1 o0 e 0 1 e
vy T,y
| ' |
R e T —
o0 01 o
(@) (b) (© (d)

Fig. 4. Example of an interval description, a positioning description, and their updates.

and < is a total order relation on Z, that satisfies all the conditions as for IDs, and
in addition, x = —oo and x < oco. Let =’ be the order relation obtained from =< by
reducing < to the elements in Z. We then say that (Z,, <) is obtained from (Z, <’).
Note that different PDs can be obtained from a single ID. Intuitively, a PD abstracts a
choice of a number by denoting it with * and describing its position with respect to the
intervals of possible values for the variables.

Given a PD (Z,, <) and a simple guard v € Gx, one can compute the set update ({Z,,
=),7) of all IDs that combine the restrictions in v with the interval-restrictions in
(Zs, =2). As an example, consider the PD (Z,, <) that is illustrated in Figure 4b, namely

A positioning description (PD, for short) is a pair (Z,, <), where Z, = Z U {*},
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—00 = (< [y= 0 <]z =% <1=), < oo. Figure 4c illustrates the (single) ID in
update((Z., <), (x = x) A (x < y)),namely —0o < 0 < [ =], = (y< 1 =), < o0.

Figure 4d illustrates, in red and in blue, two IDs in update({Z., <), (x = y)). Note
that the guard may contradict the restrictions in the positioning vector. For example,
update((Zy, =), (x < x)) = 0.

Note that we define the updating only for simple guards, that is, ones in which
each term refers to at most one member in X U {x}. For example, we do not aim to
express the restrictions imposed by (Z,, <) and the guard x > = —y + 1 via an intervals
vector. In addition, we point to the following. First, as we demonstrated above, there
might be several ways to combine restrictions in a positioning vector with a guard. This
multiplicity may derive either from the fact that the guard does not refer to x (as in the
example above), or from disjunctions in the guard. Second, note that one may handle
atomic guards of the form x ~ z + mand y ~ = + m, for ~ € {<,> =<, >},
z,y € X,and m € Q, by adding {#44m : # € {(,),[,]}} to the brackets set. This
requires a prior knowledge of which atomic guards we may have to handle. However,
as we show below, when we solve synthesis, the information about possible guards is

available.

Theorem 5. Let A be a simple NLWA'C over a set X of variables with a set Q of
states. The synthesis game G is solvable in time polynomial in |Q| and exponential in
| X].

Proof Given an NLWA © A, we model GA by an and-or graph (Vyxp, Vor, E). Every
vertex in this graph abstracts a position of G4, indicating whose is the current turn of
the play, the location of the game, the letters and numbers AND and OR choose in the
current round, and OR’s commitments regarding the values of the variables, induced
by previous transitions he chose. These commitments are expressed via IDs, and the
Q-choices of the players are expressed via PDs. We maintain a single PD with two %-s,
abbreviated with I and O to indicate whose choice they are. We extend the notion of
PDs accordingly, so that they include both x; and *¢.

Formally, let A be an NLWAZ© over a set of variables X, and let N C Q be the
set of constants that appear in the guards of .A. We denote by 7 the set of all interval
sets N U {—o0, 00} U By for legal By, and define P = {(Z,=<) : Z € T and (Z, <
) is an ID}. In addition, let P,, and P;, ., be the set of all PDs obtained from IDs in P
by adding to them the symbols x; and 7, xo, respectively.

We define Vixp = Q x P and Vo = (Q x 2! x P,,) U (Q x 2190 x P, ).
Let V = Viwp U Vor. Then, E C V' x V, is the transition relation that consists of the
following transitions, for every ¢ € ), @ € 27 and o € 2°:

- ({q,(Z, =), {(q,%, (Zs;, =), where (Z,,, =’) € P,, is a PD obtained from the ID
(Z.=)ep,

- (<qv iv <I*I7 j>>» <(],’i Uo, <I*17*ov j/>>)’ where <I*17*o’ jl) € P*Iy*O is a PD ob-
tained from the PD (Z,,, <) € P,,, and

- ({g,3U0,(Zs; 50,2)), (¢, (Z,='))), where there is a transition (g,7 U 0,7, ¢’) in
A, and (Z, =) € update((Zu; x0, =), 7)-

Note that vertices in Q X 21U0 P,, «o might not have a successor, for example, if ¢
does not have an (i U o)-successor, or if update((Z,, +o,, =<),7) = 0.
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Finally, we define v = (qo, (Z°, <o)), where Z° = N U {—o0,00} U {(;: = €
X} U{). 2 € X}, and = is the only possible order relation on the elements in Z°.

The players generate a play over (Vip, Vor, E) as follows. In every round, if the
current position is v € Vj}, for j € {AND, OR}, then player j chooses a successor v’
of v, and the play proceeds to position v’. Recall that V' = Vi U Vinp. A strategy
for a player j € {AND,OR} is a function f; : V* x V; — V such that for every
u € V* and v € Vj, we have that (v, fj(u,v)) € E. Thus, a strategy for Player j
maps the history of the game so far, when it ends in a position v owned by player j,
to a successor of v. Two strategies fanp, for and the initial position vg induce a play
T = v,v1,Vz2--- € V¥, where for every i > 0, if v; € V; for j € {AND,OR},
then v;411 = f;((vo, ..., vi—1),v;). We say that 7 is the outcome of for, fanp and vy,
and denote m = outcome( for, fanp, Vo). A play 7 is winning for OR if it is infinite.
A position v € V is winning for OR if there exists a strategy for such that for every
strategy fanp, we have that outcome( for, fanp, v) is winning for OR. Then, deciding
who wins G* reduces to deciding whether the vertex that abstracts the initial position
of the game is winning for AND.

It is not hard to see that the game (Vjnp, Vor, E') models the synthesis game. Note
that a winning strategy for OR in this graph induces a transducer that realizes L(.A).
Indeed, a PD essentially abstracts the Q-choices of the environment and the system.
The former can be described using guards over X and *; that label the transitions that
leave the according state in the transducer. The later induces a guard over X and % that
labels the according state in the transducer. Finally, since the graph is finite and every
infinite play is winning, the problem of deciding whether vy is winning for Player OR
reduces to the problem of reachability in and-or graphs, which can be solved in time
polynomial in the size of the graph. It is not hard to see that the size of the graph is
polynomial in |Q| and in |P U P,, U P,, .|, and that the later is exponential in | X|.
Therefore, one can decide who wins G** in time polynomial in |Q| and exponential in
| X|. O

Together with Lemma 2, Theorem 5 implies the following.

Corollary 1. The synthesis problem for a simple SD-NLWA'C over a set X of variables
with a set Q of states can be is solved in time polynomial in |Q| and exponential in | X|.

Note that while for model checking, a framework that handles Q is more general
than one that handles N, for synthesis this is not the case. That is, there are specifications
that are realizable over @, but not over N. For example, a specification in which the
system has to choose a number between two numbers given by the environment. In
particular, the abstraction in our synthesis algorithm exploits the density of Q. We leave
the question of solving synthesis for NLWAs over X' x N open.
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A Proofs
A.1 Proof of Theorem 1

We describe a translation of a given NLWA to an equivalent DPA-NLWA. Consider
an NLWA A = (X, X,Q,Qo,4). Let @ = {q1,...,qs}. If there is a transition
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(gi,0,7,q;) € A, then we denote v by ~7;. That is, 77} is the guard that labels the
o-transition from g; to g;, if exists. Note that since guards can be disjunctioned, we can
assume that for every two states ¢1,q2 € ) and a letter 0 € X, there is at most one
transition (g1, 0,7, g2) € A. We define A" = (¥, X', S, s, A’) as follows. The set of
variables X' is {2ij, : ¢i,q; € Q,0 € X, and z appears in 77 }. In other words, we
create a copy of every variable for every transition that it appears on. The state space is
S ={s:Q — (2X UL)}. That is, every state in S represents a function that pairs
every state in () with either a subset of X' or the character |. We define the initial state
o such that so(g) = 0 for every ¢ € Qo, and s¢(¢q) = L forevery g € Q \ Qo.

Finally, we define A’ C S x X' x Gx/ x S. We start with several notations. For every
state s € S, let us denote states(s) = {q : s(q) # L}. For every guard 77;, we denote
by 47; the guard obtained from ~;; by replacing every variable x that appears in 7;; by
xijo. For a set of variables Y C X', we denote by v=(Y") the guard that forces all the
variables in Y that are obtained from the same variable in X to have the same value.
For example, if Y = {%;,j,01: Tisjnos, Yigjsos ;> then 7=(Y) i & 5,00 = Tigjoos-
For a state s € S, we denote 72 = A ¢ re5(s) V=(5()). That is, 42 forces all the
variables in s(q) that are obtained from the same variable in X to have the same value,
for every g € states(s). Finally, for a state s € S and a letter 0 € X, we denote
succ,(s) = {q € Q : there is a o-transition from a state in states(s) to ¢}.

The transition relation A’ includes, for every state s1, letter o € X, and nonempty
subset T C sucey(s1), the transition (s, 0,7, s3), where states(sy) = T, and for
every j such that g; € T' we have that so(q;) = U{s1(qr) U X}, : k is such that g, €
states(s1) and (qx, 0,77;,q;) € A}, and X;, = {2’ € X' : 2’ appears in 47, }. In
addition, Y= 7;2 A /\i:qi Estates(sy) (/\j:qj eT ’?Z A /\j:qj esucc(s1)\T ﬁfAygj)

We turn to explain the transition relation of A’. First, there is a o-transition from
s1 € Sto sy € Siff states(sz2) is a nonempty subset of the o-successors of states(sy).
For every such subset, we construct a o-transition in A’ that stands for the case that
the guards that are satisfied are exactly the ones that label the transitions that enter this
subset. Let G be the set of those guards. Then, the corresponding transition is labeled
with a guard that conjuncts all the guards in G and all the negations of guards not in
G. Finally, every state in states(ss) is paired with the variables that appear on previous
transitions. As an example, consider a transition (g1, 0,7{,q2) € A, and a state s;
such that states(s1) = {q1}. The set T = {g=} induces a transition (s1, 0,7, s9) € A/,
where 7 = 722 A A7, A /\j:qjeSuccU(sl)\{qz} —91; states(s2) = {qz}, and s2(q2) =
s1(q1) U X715, . In other words, g2 is paired with all the variables that ¢; is paired with,
and in addition, all the variables that appear in 47,. Intuitively, this indicates that all the
variables in s2(gq) that are obtained from the same variable in X are occurrences of
this variable that should not be distinguished. Finally, note that whenever we move to a
state s in which some variables should not be distinguished, the guard on the transition
that enters s forces these variables to have the same value.

We prove that L(A") = L(A). For f : X — Q, we denote ' : X’ — Q such
that f/(2;j,) = f(z) forevery 1 <4i,j < nand o € X. We show that for every word
w € (X x Q)* and every assignment f : X — Q, there is a run r of A on w under f
that reaches ¢ iff the run of A’ on w under f’ reaches a state s such that ¢ € states(s),
and s(g) is such that if r includes the transition (g;, 0,7, ¢;) and x € X appears in y
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then z;;, € s(q). It is easy to see that the claim follows. Indeed, we have that for every
word w € (X x Q) and assignment function f : X — Q, there is a run of A on w
under f iff there is a run of A’ on w under f’.

The proof proceeds by induction on the length of w. For the empty word, the claim
is trivial. Now, assume that the claim holds for every word of length at most k, for
some k > 0. Let w = (01,d1) ... {0k+1,dk+1) be a word of length k + 1, and let f :
X — Qbe an assignment function. Let s* € S be the state that A’ reaches after reading
(01,d1) ... {04, d;). On one direction, assume that there is arun r = qo, g1, . . ., g 4+1 Of
A on w under f. By the induction hypothesis, g € states(s*) and s*(q;) includes all
the variables in guards fAyf i+1 such that there is a transition (g;, 0i1, 'yZ i) €A
and 0 < 4 < k — 1. Consider the transition (gx, ox+1, VJZ,klev qr+1) € A, and the set
T C succy,,, (s*) such that dj 41 satisfies exactly all the guards on the transitions to T’
under f. By the definition of A/, there is a transition (s*, o411, 7, s*T1), where g 41 €
states(s**1), and s¥t1(qy1) includes all the variables in s¥(g;) and the variables
that appear in ?y,:",;jﬁl Therefore, s**! (g 1) includes all the variables that appear on
transitions of . We left to show that dy11 f=; 7. By the definition of T" and f’,
we have that dlﬁ”l ':f/ /\i:qi€states(sk) (/\j:quT ’?Z A /\j:qusucc,, (s*\T _"7;‘]) As for
75“, note that its satisfaction does not depend on dj 1, and that it trivially follows
from the definition of f.

The other direction is easy. Consider the transition (s*, 041,75, s*"1), and let 7
be the guard that labels a oy, -transition from a state q; € states(s*) to a state
q2 € states(s**1), thus (g1, 0k+1,7, q2) € A. Note that d 41 [=¢ . By the induction
hypothesis, there is arun r of A on (o1, d1) ... (0k, di) under f that reaches ¢;. There-
fore, the run 7 - g2 is a run of .4 on w under f that reaches a state in states(s**1). The
claim regarding the variables in s**(go) follows directly from the construction.

A.2 Proof of Theorem 2

Assume by way of contradiction that there is an SD-NLWA A’ that accepts L(.A). We
construct two prefixes wi, we € (X x Q)* that differ only in their last letter, such that
the runs 71, 79 of A’ on them reach the same state, with v"* = ~"2, and there is a suffix
x € (X xQ)“ suchthatwy-x € L(A) and we -z ¢ L(A), contradicting the assumption
that A’ is semantically deterministic.

We construct wy, wo iteratively. In every iteration except for the last one, we con-
catenate the same letter to both w; and ws. In the last iteration, we pick two differ-
ent letters that lead us to the same state, and both of which do not extend the set of
constrains of the run. By the assumption that A" is SD-NLWA, we have that there is
at most one run on every word in (X x Q)“. For a prefix w € (X x Q)*, we de-
note by reach(w) the state that the run on w reaches. We now describe how an it-
eration proceeds. Let w = ug - -+ - u, be the common prefix constructed until the
current iteration. For an index ¢ > 0, let w[i] = wg...u;. We say that an iteration
is winning if there are two numbers k1, k2 € Q and a state ¢/, such that ky # ko,
reach(w - {a, k1)) = reach(w - (a, ke)) = ¢', and there are two indices 0 < i,j < n
such that reach(w) = reach(wli]) = reach(wlj]), uit1 = (a, k1), uj41 = (a, k),
and ¢’ = reach(w[i + 1)) = reach(w[j + 1]). In other words, an iteration is winning
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if there are two numbers on which the run proceeds to the same state, and both of the
numbers were chosen in previous iterations, where the state was reach(w) and the next
state, to which the run proceeded, was ¢'.

In every iteration, we first check whether it is a winning iteration. If it is, and the
two numbers that witness it are k1 and ko, then we define w; = w - {a, k1) and we =
w - {a, ko). It is easy to see that the runs of A’ on w; and wy reach the same state with
the same set of constraints. In addition, for the suffix z = (a, k1) - (b, 0)*, we have that
wy -z € L(A) and wy - © ¢ L(A). Therefore, if an iteration is winning, then we are
done. A non-winning iteration proceeds as follows. We choose a number 0 < k < |Q)|,
where @ is the set of states of .A’, such that there is no prefix w[i] of w for which
reach(w[i]) = reach(w), u;y1 = (a, k), and reach(w[i + 1]) = reach(w - {a, k)).
Then, we concatenate (a, k) to w, and proceed to the next iteration. We show that for
non-winning iteration, such a number always exists. Since we consider only numbers
between 0 and |Q)|, there are at least two numbers k1, ko such that reach(w - (a, k1)) =
reach(w - (a, k2)). Since the iteration is not winning, it follows that at least for one of
them satisfies the conditions. Finally, note that since we consider only numbers from 0
to || and since the automaton is finite, we eventually reach a winning iteration.

It is interesting to note that the proof is independent of the acceptance condition,
thus there is no semantically deterministic automaton equivalent to .4 even if we use
richer types of acceptance conditions.
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