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Abstract. Games with multiple objectives arise naturally in synthesis
of reactive systems. We study games with weighted multiple objectives.
The winning objective in such games consists of a set α of underlying
objectives, and a weight function w : 2α → IN that maps each subset S
of α to a reward earned when exactly all the objectives in S are satisfied.
The goal of a player may be to maximize or minimize the reward. As
a special case, we obtain games where the goal is to maximize or min-
imize the number of satisfied objectives, and in particular satisfy them
all (a.k.a. generalized conditions). A weight function allows for a much
richer reference to the underlying objectives: prioritizing them, referring
to desired and less desired combinations, and addressing settings where
we cannot expect all sub-specifications to be satisfied together.
We focus on settings where the underlying objectives are all Büchi, co-
Büchi, reachability, or avoid objectives, and the weight function is non-
decreasing (a.k.a. free disposal). For each of the induced classes (that is,
type of underlying condition, type of optimization, and type of weight
function), we solve the problem of deciding the game and analyze its
tight complexity. We also study the tight memory requirements for each
of the players. Finally, we consider general weight functions, which make
the setting similar to the one of Boolean Muller objectives.

1 Introduction

Synthesis is the automated construction of a system from its specification [37]. A
reactive system interacts with its environment and has to satisfy its specification
in all environments [23]. A useful way to approach synthesis of reactive systems
is to consider the situation as a game between the system and its environment.
In the turn-based setting, the game is played on a graph whose vertices are
partitioned between the system and the environment: starting from an initial
vertex, the players jointly generate a play, namely a path in the graph, with
each player deciding the successor vertex when the play reaches a vertex she
owns. The objectives of the players refer to the infinite play that they generate.
Each objective α defines a subset of V ω [33], where V is the set of vertices of the
game graph. In some settings, the specification of α is behavioral: the vertices in
V are labeled by assignments to a set AP of atomic propositions – these with
respect to which the system is defined, and α is a language of infinite words
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in (2AP )ω. In other settings (and in the process of reasoning about behavioral
specifications), the specification of α is structural: it is specified as an ω-regular
objective on V [4].

The most basic ω-regular objectives are reachability [27] and Büchi [9], and
their respective dual avoid (also known as safety) and co-Büchi objectives. Both
are given by a set of vertices α ⊆ V . A play satisfies a reachability objective α
if it visits a vertex in α at least once, and it satisfies a Büchi objective α if it
visits some vertex in α infinitely often.

Traditional synthesis is Boolean: a computation satisfies a specification or
it does not. In many applications, the setting is not Boolean. Quantitative as-
pects may arise from the setting itself, for example when actions involve costs or
rewards (cf., energy games [11]) or when the assignments to the atomic propo-
sitions are multi-valued [22]. A key challenge in these settings is an evaluation
of an infinite sequence of values using measures like its mean-payoff, discounted
sum, etc. [18, 24, 6, 5]. Quantitative aspects may also arise from the specification,
which may refer to the quality in which the specification is satisfied [1]. In par-
ticular, in Objective LTL [29], a specification consists of a set of LTL formulas,
along with a function mapping each subset of them to a reward earned when
exactly all the formulas in the subset are satisfied.

The quantitative setting enables the designer to combine many aspects of
the synthesized system, for example when studying trade-offs between the satis-
faction value of a multi-valued specification and the budget used for activating
sensors [17, 2], gaining control [3, 31], paying tolls [32], or consuming energy [10].
The richness of the setting, as well as the fact that synthesis typically handles
a conjunction of requirements, makes games with multiple objectives of special
interest. In these games, the objectives of the players are specified by a collec-
tion of ω-regular objectives. In the Boolean setting, this includes games with
generalized Büchi [13], generalized co-Büchi [30], generalized parity [14], gener-
alized reachability [21], and generalized reactivity (GR(1)) [36, 13] objectives. In
addition to the deterministic turn-based setting, these games have been studied
in various richer settings, like concurrent, stochastic, and energy games [7, 16,
12, 41].

In this work we add a quantitative aspect to multiple objectives by weighing
them. We introduce and study games with weighted multiple objectives. Consider
a game graph with vertices in V . An objective in our game is a tuple ⟨α,w, t⟩
where α ⊆ 2V , is a set of objectives that are all Büchi (B), co-Büchi (C), reach-
ability (R), or avoid (A) objectives, w : 2α → IN is a weight function that maps
each subset S of α to a reward earned when exactly all the objectives in S are
satisfied, and t ≥ 0 is a threshold. Consider a play ρ, and let S ⊆ α be the set
of objectives in α that ρ satisfies. For example, if α consists of Büchi objectives,
then exactly all the sets in S are visited infinitely often in ρ, and if α consists of
avoid objectives, then exactly all the sets in S are never visited along ρ. Then,
the satisfaction value of the play ρ in the game is w(S). An objective can be
viewed as a maximization objective, in which case the goal is to maximize its
satisfaction value (and t serves as a lower bound) or a minimization objective,
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in which case the goal is to minimize its satisfaction value (and t serves as an
upper bound).1

Weighted objectives enable the user to prioritize different scenarios. The dif-
ferent objectives in α may correspond, for example, to different types of grants
given by a server or different storage options in the cloud. Using the weight func-
tion w, the user can then express the utility of different combinations of grants,
storage options, locations, and more. As a concrete example, consider a ware-
house robot assigned to patrol and fulfill item retrieval requests from shelves.
The environment issues requests for items, and the system directs the robot.
The setting can be modeled by a game graph whose states correspond to loca-
tions in the warehouse. The robot’s objective encompasses both the retrieval of
items from appropriate shelves and logistical tasks such as visiting charging sta-
tions or navigating areas covered by security cameras. Different sets of locations
within the warehouse are associated with varying rewards, reflecting diverse pri-
orities related to requested items, specific shelves for retrieval, and the logistical
considerations.

Studying games with weighted multiple objectives, we focus on non-decreasing
weight functions (a.k.a. functions that respect free disposal [35]): for every two
sets S, S′ ⊆ α, if S ⊆ S′, then w(S) ≤ w(S′). We use the acronym MaxWB in
order to denote a weighted maximization objective game with underlying Büchi
objectives, and similarly for minimization objectives and the other classes of un-
derlying objectives. For example, in MinWR games, the system aims to minimize
the weight of reachability objectives. We also consider the special case where w
counts the number of objectives satisfied, thus w(S) = |S|, and so the goal is
to maximize (Max) or minimize (Min) the number of objectives satisfied. Note
that the generalized conditions mentioned above are a special case of the latter,
with t = |α|. Here, we call them All objectives, and refer also to their dual Exists
objectives. For example, AllB is a generalized Büchi game.

For all classes of games with weighted multiple objectives, we study the
problem of deciding the winner in the game: the system wins a MaxW (MinW)
game with objective ⟨α,w, t⟩ if it has a strategy ensuring a satisfaction value at
least (at most, respectively) t in all plays. Note that while the winning criterion
is Boolean, by searching for the largest or smallest t with which the system wins,
we can solve also the optimization (rather than decision) variants of the problem.

In order to satisfy an objective, a player may need to choose different suc-
cessors of a vertex in different visits to the vertex. Indeed, a-priori, choices may
depend not only on the current vertex but also on the history of the play so far.
The number of histories is unbounded, and extensive research has concerned the
memory requirements for players in games with ω-regular objectives, namely the
minimal number of equivalence classes to which the histories can be partitioned
[39, 19, 8]. In particular, memoryless strategies depend only on the current ver-

1 As we elaborate in Remark 1, our setting can easily capture also a semantics in
which the satisfaction value of the play ρ is w(S)−w(α \ S); thus when players are
punished (in the maximization variant, or rewarded, in the minimization variant)
for objectives that are not satisfied.
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tex in the game, thus all histories are in one equivalence class. We study the
memory requirements in games with weighted multiple objectives.

Our results about the complexity of deciding a game and the memory re-
quirements are summarized in Table 1 below.2 Hardness results hold already for
the cases of Max and Min objectives, thus when w is uniform. It is not hard to see
that games with weighted multiple objectives can be dualized in two manners:
a MaxWB objective can be dualized to either a MinWB objective or a MaxWC
objective. Consequently, when we study both MaxWB and MinWB games, we
also cover MaxWC and MinWC games, and similarly for reachability and avoid
games. Thus, with an appropriate dualization of the weight function and the
threshold (see Proposition 1), the table includes the results also for co-Büchi
and avoid objectives.

deciding the winner memory requirements

AllB
PTIME [13]

|α| [19]
ExistsC 1 [20]

MaxWB
co-NP-complete
(Theorem 5)

width(α,w, t)
(Theorem 4)

MinWB
NP-complete
(Theorem 5)

1
(Theorem 2)

AllR
PSPACE-complete [21]

2|α| − 1 [21]

ExistsA
( |α|
|α|/2

)
[21]

MaxWR PSPACE-complete
(Theorem 12)

equiv(α,w, t)
(Theorem 8)

MinWR
sepwidth(α,w, t)
(Theorem 11)

Table 1. Complexity and memory requirements for objectives ⟨α,w, t⟩. The definitions
of the measures width(α,w, t), equiv(α,w, t), and sepwidth(α,w, t) can be found in
Sections 3 and 4.

Below we highlight the main conclusions from our complexity results. Recall
that single-objective reachability and Büchi games can be solved in PTIME, and
both players have memoryless strategies [27, 40]. Interestingly, while reachabil-
ity objectives are typically easier than Büchi (in particular, the PTIME above
is linear for reachability and quadratic for Büchi), the fact Büchi refers to limit
behaviors makes it easier when we move to multiple objectives. Indeed, mov-
ing to AllB and AllR objectives, the complexity stays in PTIME for Büchi and
jumps to PSPACE for reachability [13, 21]. Also, the system player now needs
memory, polynomial in the case of Büchi and exponential in the case of reacha-

2 While the problem of deciding games has several parameters (the game, the number
of objectives, the weight function, and the threshold), a parameterized analysis is
not of much interest, as fixing the game also fixes the number of objectives, and, as
we shall show, once the number of objectives is fixed, all the decision problems can
be solved in polynomial time.
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bility [19, 21]. Intuitively, this follows from the fact that detecting satisfaction of
Büchi objectives, one may ignore visits to the objectives along the play, whereas
detecting satisfaction of reachability objectives, one must keep track of all visits.
In particular, in AllB objectives, one can detect the underlying objectives in a
round-robin fashion, which is impossible in AllR. How does this difference affect
weighted multiple objectives? Our results show that the jump to PSPACE in
AllR games is sufficiently high to solve also MaxWR games, and the memory
requirements are bounded by these in AllR games. That is, as detailed in Sec-
tion 4, the measures equiv(α,w, t) and sepwidth(α,w, t) are bounded by 2|α| − 1

and
( |α|
|α|/2

)
, respectively. For Büchi objectives, MaxWB games are still easier

than MaxWR games, yet are much harder than AllB games, and the memory
requirements are higher. In particular, as detailed in Section 3, the measure
width(α,w, t) may be exponential in |α|.

From a technical point of view, while both MaxWB and MaxWR objectives
can be translated to equivalent AllB and AllR objectives, such a translation
lead to optimal upper bounds only in the case of Büchi. Also, our lower bounds
involve games and reductions that capture the difference between generalized
and weighted objectives.

Finally, we show that games with weighted Büchi and reachability objectives
with general (that is, not necessarily non-decreasing) weight functions corre-
spond to games with Boolean Muller objectives, which describe the exact sets
of vertices that should be visited infinitely often (termed B-Muller), or reached
(termed R-Muller, a.k.a. weak-Muller or Staiger-Wagner). The correspondence
enables us to lift known results about games with Muller objectives. In particu-
lar, deciding Muller games of both types is PSPACE-complete [26, 34], implying
membership in PSPACE for MaxWB and MaxWR games with general weight
function. Thus, restricting attention to non-decreasing function makes a differ-
ence in the complexity only when the underlying objectives are Büchi. As for the
memory requirements, for B-Muller, it can be analyzed using Zielonka trees [19],
and for R-Muller it was studied in [25]. In fact, results relating the structure of
Zielonka trees and the memory requirements for the corresponding objective [8]
suggest an alternative proof also for the analysis of the memory requirements
for non-decreasing weight functions, which we describe in Appendix B.

In Section 6, we discuss further extensions of the setting, in particular the
connection between changes in the type of the underlying objectives (for exam-
ple, to parity) and changes to the class of weight functions.

2 Preliminaries

2.1 Two-player games

A two-player game graph is a tuple G = ⟨V1, V2, v0, E⟩, where V1, V2 are disjoint
sets of vertices, controlled by Player 1 and Player 2, respectively, and we let
V = V1 ∪ V2. Then, v0 ∈ V is an initial vertex, and E ⊆ V × V is a total edge
relation, thus for every v ∈ V , there is u ∈ V such that (v, u) ∈ E. The size of
G, denoted |G|, is |E|, namely the number of edges in it.
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In the beginning of a play in the game, a token is placed on v0. Then, in each
turn, the player that owns the vertex that hosts the token chooses a successor
vertex and moves the token to it. Together, the players generate a play ρ =
v0, v1, . . . in G, namely an infinite path that starts in v0 and respects E: for all
i ≥ 0, we have that (vi, vi+1) ∈ E.

For i ∈ {1, 2}, a strategy for Player i is a function fi : V ∗ · Vi → V that
maps prefixes of plays that end in a vertex that belongs to Player i to possible
extensions in a way that respects E. That is, for every ρ ∈ V ∗ and v ∈ vi, we
have that (v, fi(ρ · v)) ∈ E. Intuitively, a strategy for Player i directs her how
to move the token, and the direction may depend on the history of the game so
far.

A strategy is finite-memory if it is possible to replace the unbounded histories
in V ∗ · Vi by finite memories. Formally, a memory structure for a game graph
G = ⟨V1, V2, v0, E⟩ is M = ⟨M,µ0, δ⟩, consisting of a finite set M of memory
states, an initial memory state µ0 ∈ M , and an update function δ : M × E →
M . A memory structure is similar to an automaton with alphabet E, which is
executed in parallel to the game: it starts from µ0 and reads the edges traversed
by the token. Formally, a strategy for Player i that relies on M replaces the
dependency on the history of the play by dependency on the current vertex
of the game and the current memory state of M. Thus, the strategy is given
by a function fi : M × Vi → V , such that for all µ ∈ M and v ∈ Vi, we
have that (v, fi(µ, v)) ∈ E. When the current memory state is µ and the token
is in vertex v ∈ Vi, Player i moves the token to fi(µ, v) and M moves to state
δ(µ, (v, fi(µ, v))). The strategy fi ismemoryless if it relies on a memory structure
with a single memory state. It is thus given by a function fi : Vi → V .

A profile is a tuple π = ⟨f1, f2⟩ of strategies, one for each player. The outcome
of a profile π = ⟨f1, f2⟩ is the play obtained when the players follow their strate-
gies in π. Formally, Outcome(π) = v0, v1, . . . ∈ V ω is such that for all j ≥ 0,
we have that vj+1 = fi(v0, v1, . . . , vj), where i ∈ {1, 2} is such that vj ∈ Vi.
For finite-memory strategies, the definition is similar, with fi being defined over
memory states.

A two-player game is a pair G = ⟨G,ψ⟩, where G = ⟨V1, V2, v0, E⟩ is a
two-player game graph, and ψ is a winning condition for Player 1, specifying
a subset of V ω, namely the set of plays in which Player 1 wins. The game is
zero-sum, thus Player 2 wins when the play does not satisfy ψ. A strategy f1 is
a winning strategy for Player 1 if for every strategy f2 for Player 2, we have that
Player 1 wins in ⟨f1, f2⟩, thus Outcome(⟨f1, f2⟩) satisfies ψ. Dually, a strategy
f2 for Player 2 is a winning strategy for Player 2 if for every strategy f1 for
Player 1, we have that Player 2 wins in ⟨f1, f2⟩. We say that Player i wins in
G if she has a winning strategy. A game is determined if Player 1 or Player 2
wins it. For m ≥ 1, we say that Player i wins in G with memory m if she has a
winning strategy that relies on a memory structure of size m.
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2.2 Weighted multiple objectives

For a play ρ = v0, v1, . . ., we denote by reach(ρ) the set of vertices that are vis-
ited at least once along ρ, and we denote by inf(ρ) the set of vertices that are
visited infinitely often along ρ. That is, reach(ρ) = {v ∈ V : there exists i ≥
0 such that vi = v}, and inf(ρ) = {v ∈ V : there are infinitely many i ≥
0 such that vi = v}. For a set of vertices α ⊆ V , a play ρ satisfies the reach-
ability objective α iff reach(ρ) ∩ α ̸= ∅, and satisfies the Büchi objective α
iff inf(ρ) ∩ α ̸= ∅. The objectives dual to reachability and Büchi are avoid
and co-Büchi, respectively. Formally, a play ρ satisfies an avoid objective α iff
reach(ρ) ∩ α = ∅, and satisfies a co-Büchi objective α iff inf(ρ) ∩ α = ∅.

A weighted objective is a pair ⟨α,w⟩, where α = {α1, . . . , αm} is a set of m
objectives, all of the same type, and w : 2α → IN is a weight function that maps
subsets of objectives in α to natural numbers. 3 For m ≥ 1, let [m] = {1, . . . ,m}.
We assume that w is non-decreasing: for every sets S, S′ ⊆ α, if S ⊆ S′, then
w(S) ≤ w(S′). In the context of game theory, non-decreasing functions are very
useful, as they correspond to settings with free disposal, namely when satisfaction
of additional objectives does not decrease the utility [35]. We also assume that
w(∅) = 0. Note that we can set w(∅) to 0 preserving the non-decrease of w.
A non-decreasing weight function is additive if for every set S ⊆ α, the weight
of S equals to the sum of weights of the singleton subsets that constitute S.
That is, w(S) =

∑
αi∈S w({αi}). An additive weight function is thus given by

w : α → IN, and is extended to sets of objectives in the expected way, thus
w(S) =

∑
αi∈S w(αi), for every S ⊆ α. Finally, an additive weight function is

uniform if w(αi) = 1 for all αi ∈ α. Thus, for all S ⊆ α, we have that w(S) = |S|.
For a play ρ, let sat(ρ, α) ⊆ α be the set of objectives in α that are satis-

fied in ρ. The satisfaction value of ⟨α,w⟩ in ρ, denoted val(ρ, α,w), is then the
weight of the set of objectives in α that are satisfied in ρ. That is, val(ρ, α,w) =
w(sat(ρ, α)).

For every vertex v ∈ V , we denote by obj(v) the set of objectives that contain
v, thus obj(v) = {αi ∈ α : v ∈ αi}. We extend the function obj to sets of vertices
in the expected way; thus, for U ⊆ V , we have that obj(U) =

⋃
v∈U obj(v) =

{αi ∈ α : αi ∩ U ̸= ∅}.
Weighted objectives can be viewed as either maximization or minimization

objectives. That is, in general non-decreasing weighted functions, the goal is to
maximize or minimize the weight of the set of objectives satisfied, and in uniform
additive weight functions, the goal is to maximize or minimize their number. A
special case of the latter, known in the literature as generalized conditions, is
when we aim to satisfy all or at least one objective. We denote different classes of
weighted objectives by acronyms in {MaxW, MinW, Max, Min, All, Exists} ×
3 One could also define multiple weighted objectives with mixed types of objectives.
Essentially, combining objectives of the same polarity (that is, Buchi and reachabil-
ity, or co-Buchi and avoid), we expect the properties of the game to be dominated
by the complexity of the harder objective. Then, combining objectives with different
polarities (for example, Buchi and co-Buchi), things become more complicated, as
the combined objectives have the flavor of Rabin or Streett objectives.
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{R, A, B, C}, where the first letter describes the way we refer to the satisfaction
value, and the second letter describes the objectives type (reachability, avoid,
Büchi, or co-Büchi).

Formally, for a play ρ ∈ V ω, an objective type γ ∈ {R, A, B, C}, an objective
α ⊆ 2V , a weight function w : 2α → IN, and a threshold t ∈ IN, we have the
following winning conditions.

– ρ satisfies a MaxW-γ objective ⟨α,w, t⟩ if val(ρ, α,w) ≥ t.
– ρ satisfies a MinW-γ objective ⟨α,w, t⟩ if val(ρ, α,w) ≤ t.
– ρ satisfies a Max-γ objective ⟨α, t⟩ if |sat(ρ, α)| ≥ t.
– ρ satisfies a Min-γ objective ⟨α, t⟩ if |sat(ρ, α)| ≤ t.
– ρ satisfies an All-γ objective α if |sat(ρ, α)| = |α|.
– ρ satisfies an Exists-γ objective α if |sat(ρ, α)| ≥ 1.

We also consider strict satisfaction, where the bound set by the thresh-
old is strict. For example, ρ strictly satisfies a MinW-γ objective ⟨α,w, t⟩ if
val(ρ, α,w) < t. Note that as a consequence of Martin’s determinacy theorem
[33], games with multiple weighted objectives are determined.

Weighted objectives may be dualized in two ways, by complementing either
the type of the objective or the way we refer to the satisfaction value. For an
objective type γ ∈ {R, A, B, C}, let γ̃ be the dual objective, thus R̃ = A and
B̃ = C. Consider an objective ψ = ⟨α,w, t⟩. The dual weight function of w,
denoted w̃, is defined, for every S ⊆ α, by w̃(S) = w(α) − w(α \ S). The dual
threshold of t, denoted t̃, is defined as w(α) − t. Then, the dual objective of ψ,
denoted ψ̃, is ⟨α, w̃, t̃⟩. Note that for an additive weight function, we have that
w̃ = w. The following lemma follows directly from the definitions.

Lemma 1. For every objective ψ, we have that
˜̃
ψ = ψ. Also, if ψ is non-

decreasing, then ψ̃ is non-decreasing.

Proof. For the first claim, recall that w(∅) = 0 and note that ˜̃t = w̃(α) − t̃ =
(w(α) − w(∅)) − (w(α) − t) = t, and for every S ⊆ α, we have that ˜̃w(S) =
w̃(α)− w̃(α \ S) = (w(α)− w(∅))− (w(α)− w(α \ (α \ S))) = w(S).

For the second claim, assume that w is non-decreasing, and consider two
sets S, S′ ⊆ α. If S ⊆ S′, then (α \ S′) ⊆ (α \ S). Since w is non-decreasing,
this implies that w(α \ S′) ≤ w(α \ S), and so w̃(S) = w(α) − w(α \ S) ≤
w(α)− w(α \ S′) = w̃(S′), as required. ⊓⊔

Proposition 1 below formalizes the different types of dualities.

Proposition 1. Consider a play ρ, and an objective ψ = ⟨α,w, t⟩ with objectives
of type γ. The following are equivalent.

1. The play ρ satisfies the MaxW-γ objective ψ.
2. The play ρ does not strictly satisfy the MinW-γ objective ψ.
3. The play ρ does not strictly satisfy the MaxW-γ̃ objective ψ̃.
4. The play ρ satisfies the MinW-γ̃ objective ψ̃.
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Proof. The equivalence between 1 and 2, as well as between 3 and 4, follow
immediately from the definitions. We prove the equivalence between 1 and 4,
which completes the proof. Let S be the set of γ-objectives in α that ρ satisfies.
The set of γ̃-objectives in α that ρ satisfies is then α \ S. Clearly, w(S) ≥ t
iff w(α) − w(S) ≤ w(α) − t. Thus, by the definition of w̃ and t̃, we have that
w(S) ≥ t iff w̃(α \ S) ≤ t̃. Hence, ρ satisfies the MaxW-γ objective ⟨α,w, t⟩ iff ρ
satisfies the MinW-γ̃ objective ⟨α, w̃, t̃⟩, and we are done. ⊓⊔

A special case of Proposition 1 is that ρ satisfies an All-γ condition, which is
a special case of Max-γ with t = m, iff it does not satisfy the Exists-γ̃ condition.
Finally, note that for γ ∈ {R,B}, we have that ρ satisfies an Exists-γ objective
α iff ρ satisfies the Exists-γ singleton objective {∪α}. Dually, for γ ∈ {A,C},
we have that ρ satisfies an All-γ objective α iff ρ satisfies the All-γ singleton
objective {∪α}.

Recall that in zero-sum games, the objectives of the players complement
each other. Thus, by Proposition 1, for every objective type γ, when Player 1
has a MaxW-γ or, equivalently, a MinW-γ̃ objective, Player 2 has a MinW-γ or,
equivalently, a MaxW-γ̃ objective. In addition, our definition below of the size
of an objective ψ is such that |ψ| = |ψ̃|. Consequently, Proposition 1 enables us
to lift results on B and R objectives to C and A objectives, respectively.

We define the size of a game G as the size of its edge relation, and define
the size of an objective ψ = ⟨α,w, t⟩ with a non-decreasing weight function as
the size of w, defined as follows. First, we define the length of a weight function
w, denoted |w|, as ∑

S⊆α w(S). Then, we define the size of w as min{|w|, |w̃|}.
Thus, the size of w as the length of the shorter function among w and w̃. Note
that w can indeed be encoded in |w| bits (in fact, for our upper bounds, one can
also replace w(S), which corresponds to an encoding of the weights in unary, by
logw(S), which corresponds to a binary encoding), and our upper bounds are
such that one can work with an encoding of either w or w̃. Moreover, when w is
additive, our bounds hold also when we define its length by

∑
αi∈α w(αi).

Remark 1. [Games with penalties] In games with penalties, the satisfaction
value of an objective ψ = ⟨α,w, t⟩ in a play ρ, denoted valp(ρ, α,w), is w(sat(ρ, α))−
w(α \ sat(ρ, α)). Thus, objectives that are not satisfied reduce the satisfaction
value. Note that the satisfaction value of a play may be negative. For example,
if sat(ρ, α) = ∅, then valp(ρ, α,w) = w(∅)− w(α) = −w(α).

Our setting can easily capture games with penalties. Formally, as we show
below, for every objective ψ = ⟨α,w, t⟩, we can define, in linear time, an objec-
tive ψ′ = ⟨α,w′, t′⟩, such that for every play ρ, we have that valp(ρ, α,w) ≥ t
iff val(ρ, α,w′) ≥ t′. Accordingly, a game with penalties with objective ψ is
equivalent to a game in our setting and objective ψ′.

Given ψ, we define w′(S) = 1
2 (w(α) + w(S) − w(α \ S)), for all S ⊆ α,

and define t′ = 1
2 (w(α) + t). Note that indeed, for every S ⊆ α, we have that

val(ρ, α,w) ≥ t iff w(S)−w(α\S) ≥ t iff 1
2 (w(α)+w(S)−w(α\S)) ≥ 1

2 (w(α)+t)
iff valp(ρ, α,w′) ≥ t′.

For example, if w is additive and uniform, then the satisfaction value of a
play ρ with sat(ρ, α) = S in a setting with penalties is |S|− |α\S| = 2 · |S|− |α|.
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Accordingly, valp(ρ, α,w) ≥ t iff 2|S| − |α| ≥ t. Note that then, w′(S) = 1
2 (|α|+

|S| − |α \ S|) = |S| and t′ = 1
2 (|α|+ t). Thus, val(ρ, α,w) ≥ t iff 2|S| − |α| ≥ t iff

|S| ≥ 1
2 (|α|+ t) iff valp(ρ, α,w′) ≥ t′, as required. ⊓⊔

3 Weighted Büchi and co-Büchi Games

In this section we study weighted Büchi and co-Büchi games: the problem of
deciding the winner, and the memory requirements for winning strategies for
both players. We first show that every MaxWB objective has an equivalent AllB
objective of exponential size. This enables us to use known results about AllB
games, yet involves an exponential increase in the complexity. We show that
MaxWB objectives (in fact, already MaxB objectives) are indeed exponentially
more complex than AllB objectives.

Consider a MaxWB game ⟨G, ⟨α,w, t⟩⟩, with α = {α1, . . . , αm}. We say that
a set S ⊆ α is t-short if w(S) < t, and is max-t-short if S is t-short and maximal,
in the sense that w(S′) ≥ t for all S′ ⊆ α such that S ⊆ S′. A set S ⊆ α is
t-essential if α \S is max-t-short. Thus, S is t-essential iff w(α \S) < t and S is
minimal. We define the width of ⟨α,w, t⟩, denoted width(α,w, t), as the number
of max-t-short (or, equivalently, t-essential) subsets of α.

Remark 2. [On the size of width(α,w, t)] It is not hard to see that width(α,w, t)
need not be polynomial in |α| or t. In particular, for MaxB games with m ob-
jectives and threshold t, namely when w(αi) = 1 for all αi ∈ α, we have that
width(α,w, t) =

(
m
t−1

)
. That is, the number of different subsets of α of size t− 1.

In the general case, the calculation of width(α,w, t) coincides with calculating
the number of 0/1 Knapsack solutions for a knapsack of size t and items with
weights w. The problem is #P -complete, with some known polynomial-time ap-
proximation schemes [38]. ⊓⊔

Theorem 1. Every MaxWB objective ⟨α,w, t⟩ has an equivalent AllB objective
of size width(α,w, t). That is, for every MaxWB game ⟨G, ⟨α,w, t⟩⟩, there is
an AllB objective α′ such that the winning vertices for Player 1 in ⟨G, ⟨α,w, t⟩⟩
coincide with these in ⟨G,α′⟩, and |α′| = width(α,w, t).

Proof. Let ψ = ⟨α,w, t⟩, with α = {α1, . . . , αm}. We define α′ as the AllB
objective that contains every set ∪S for sets S ⊆ α that are t-essential. Recall
that ∪S ⊆ V . We prove that the MaxWB condition ψ is equivalent to the
AllB condition α′. Consider a play ρ in G, and let S = sat(ρ, α). We show that
w(S) ≥ t iff S ∩ S′ ̸= ∅ for every t-essential set S′. We then conclude that ρ
satisfies ψ iff ρ satisfies the Büchi objective ∪S′ for every t-essential set S′, thus
satisfies α′.

Assume first that w(S) ≥ t. For every t-essential set S′ we have that w(α \
S′) < t. Since w is non-decreasing and w(S) ≥ t, it follows that S ̸⊆ α \ S′,
therefore S ∩ S′ ̸= ∅. Assume now that w(S) < t, and let S′ be a max-t-short
set S′ such that S ⊆ S′. Hence, for the t-essential set α \ S′ it holds that
S ∩ (α \ S′) = ∅. ⊓⊔
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3.1 Memory requirements

In this section we study the memory requirements of strategies in MaxWB games.
We show that while Player 2 can use memoryless strategies, Player 1 needs mem-
ory of exponential size, thus exponentially more than the one required in AllB
games.

We start with Player 2, where things are easy.

Theorem 2. Player 2 wins a MaxWB game iff she has a memoryless winning
strategy.

Proof. By Theorem 1, for every MaxWB game ⟨G,ψ⟩, there exists an AllB ob-
jective α′ such that Player 2 wins in ⟨G,ψ⟩ iff Player 2 wins in ⟨G,α′⟩. Player 2
in AllB games has an ExistsC objective. The latter is a special case of a Rabin
objective, and hence, by [20], Player 2 wins ⟨G,ψ⟩ iff she has a memoryless win-
ning strategy. ⊓⊔

For Player 1, the construction in the proof of Theorem 1 also gives an upper
bound on the memory requirements. Indeed, since a winning strategy of Player 1
in an AllB game with m sets needs memory of size at most m [19], the construc-
tion implies a width(α,w, t) upper bound on the size of the memory required
for Player 1 in MaxWB games. Below we prove a matching lower bound. In
Appendix B, we provide an alternative analysis of the memory requirements in
MaxWB games, based on an analysis of the Zielonka trees they induce.

Theorem 3. For every m, t ∈ IN and a non-decreasing function f : 2[m] → IN,
we can construct a MaxWB game Gm,f,t = ⟨Gm,f,t, ⟨α,w, t⟩⟩, such that all the
following hold.

1. |α| = m.
2. w({αi : i ∈ S}) = f(S) for every S ⊆ [m].
3. Player 1 wins Gm,w,t, yet every winning strategy for Player 1 requires mem-

ory width(α,w, t).

Proof. Consider m, t ∈ IN, and a non-decreasing function f : 2[m] → IN. We
say that a set S ⊆ [m] is t-good if f(S) ≥ t, and is min-t-good if S is t-good
and minimal, in the sense that f(S′) < t for all S′ ⊂ S. If for every i ∈ [m],
there exists a min-t-good set S such that i ∈ S, then we define X as the set of
min-t-good subsets of [m]. Otherwise, we define X as the set of t-good subsets
of [m]. Note that for every i ∈ [m], there exists S ∈ X such that i ∈ S. 4

The MaxWB game Gm,f,t proceeds as follows (see exact definition in Ap-
pendix A.1). From the initial vertex v0, Player 2 chooses a set S ∈ X , Player 1
chooses an objective vertex i ∈ S, and the game returns to the initial vertex,
where again Player 2 chooses a set, and so on. The objective of Player 1 is to
visit infinitely often a set S of objectives vertices such that f(S) ≥ t.

4 The proof is valid also when X is defined as the set of t-good sets. Our definition,
however, emphasizes the intuition behind the memory requirements for Player 1,
which is the fact that every i ∈ [m] is included in some of the t-good sets.
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Since Player 2 can only choose among t-good sets, it is easy to see that
Player 1 has a winning strategy in Gm,f,t. We prove that every winning strat-
egy f1 for Player 1 needs at least width([m], f, t) different memory states. Since
w({αi : i ∈ S}) = f(S) for every S ⊆ [m], we conclude that every winning
strategy f1 for Player 1 needs at least width(α,w, t) different memory states. We
do this by presenting a strategy for Player 2 that forces every winning strategy
f1 to visit the initial vertex v0 with width([m], f, t) different memory states.

Consider i ∈ [m] and a memory state µ of f1. We say that i is avoided in
µ if for every play that starts in v0 while in µ, the next objective vertex that
f1 chooses is not i. That is, i is avoided in µ if no matter which set vertex S
Player 2 chooses from v0, the strategy f1 chooses from S an objective vertex
that is not i. For every memory state µ, we denote by avoid(µ) the set of i ∈ [m]
that are avoided in µ.

Consider a max-t-short set S ⊆ [m]. We show that Player 2 has a strategy
that leads the play to v0 with a memory state µS of f1 such that S ⊆ avoid(µS).
This is done by describing a strategy fS for Player 2 such that if not all i ∈ S
are avoided in the current memory state µ of f1, the play returns to v0 while
visiting only objective vertices i ∈ S. Since f(S) < t, f is non-decreasing, and
f1 is a winning strategy, the above cannot continue forever, and so f1 eventually
reaches a memory state in which all i ∈ S are avoided. The strategy fS is defined
as follows. Recall that not all i ∈ S are avoided in µ. Thus, by definition, and
since for every i ∈ [m] there exists S′ ∈ X such that i ∈ S′, there exists i ∈ S
and a set S′ such that when Player 2 goes to the set vertex S′, the strategy f1
proceeds from S′ to i. The strategy fS then proceeds to S′. As required, the
play then returns to v0 while visiting only objectives vertices i ∈ S.

To complete the proof, we show that Player 2 can lead the play to a memory
state µ with avoid(µ) = S, for every max-t-short set S of [m]. We then proceed
to describe a strategy for Player 2 that forces the play to visit as many memory
states of f1 as there are max-t-short sets, which implies the claim.

Consider a max-t-short set S of [m], and let µS be such that S ⊆ avoid(µS).
Since max-t-short sets are maximal, we have that f(S ∪ {i}) ≥ t for all i ∈ [m]
such that i ̸∈ S. Therefore, S∪{i} ̸⊆ avoid(µS). Indeed, when Player 2 proceeds
from v0 to a vertex set S′ such that S′ is a min-t-good set and S′ ⊆ S ∪ {i},
Player 1 must proceed to an objective in S′, which thus cannot be avoided.
Hence, S = avoid(µS).

By the above, for every max-t-short set S of [m], Player 2 has a strategy fS
that leads the play to v0 with a memory state µS of f1 such that avoid(µS) = S.
Consider a strategy of Player 2 that follows some order S1, S2, . . . , Swidth([m],f,t)

on the max-t-short subsets of [m], starts with i = 1, applies the strategy fSi

until the play reaches v0 with a memory state µSi
such that avoid(µSi

) = Si,
and then switches to fSi+1

, and so on until all max-t-short subsets are covered.
Then, Outcome(⟨f1, f2⟩) visits v0 with width([m], f, t) = width(α,w, t) different
memory states of f1, and we are done. ⊓⊔

We can now conclude with a tight bound for the memory required to Player 1.
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Theorem 4. A winning strategy for Player 1 in a MaxWB game G = ⟨G, ⟨α,w, t⟩⟩
requires memory width(α,w, t).

3.2 Decidability

In this section we study the decidability of MaxWB games, and show that they
(in fact, already their MaxB special cases) are exponentially harder than AllB
games.

Theorem 5. Deciding MinWB (MaxWB) games is NP-complete (co-NP-complete,
respectively). Hardness in NP (co-NP) applies already for MinB (MaxB, re-
spectively) games. Fixing the number of underlying objectives, the problem is
in PTIME.

Proof. We prove the results for MinWB. The ones for MaxWB follow from de-
terminacy of MinWB games.

We start with the upper bound. By Theorem 2, Player 1 wins a MinWB game
iff she has a memoryless winning strategy. As we argue below, checking whether
a given memoryless strategy for Player 1 is winning can be done in polynomial
time, implying membership in NP.

Consider a MinWB game ⟨G, ⟨α,w, t⟩⟩, with α = {α1, . . . , αm}. Let G =
⟨V1, V2, v0, E⟩. For a memoryless strategy f1 : V1 → V for Player 1, let Gf1 =
⟨V,Ef1⟩ be the sub-graph of G obtained by removing all edges not taken by f1.
Thus ⟨v, u⟩ ∈ Ef1 iff f1(v) = u. Clearly, f1 is winning iff all the paths from v0
in Gf1 satisfy ⟨G, ⟨α,w, t⟩⟩.

Note that there exists a path ρ in Gf1 such that sat(ρ, α,w) ≥ t iff there
exists a non-trivial strongly connected component (SCC) C in Gf1 such that
w(obj(C)) ≥ t. Accordingly, f1 is a winning strategy for Player 1 iff w(obj(C)) <
t for every non-trivial SCC C reachable from the initial vertex in Gf1 . Since
the latter can be checked in polynomial time, we are done. Note that the check
is polynomial also when the weight function is dualized, thus when w̃ is given.
Indeed, we need to calculate w(obj(C)) only for linearly many SCCs.

When the number of underlying objectives is fixed, we have that the corre-
sponding AllB game from the proof of Theorem 1 is of polynomial size. Thus, a
MaxWB game can be decided in polynomial time by solving the corresponding
AllB game.

For the lower bound, we describe a reduction from SAT to MinB (for details,
see Appendix A.2). That is, given a propositional formula φ in CNF, we construct
a MinB game Gφ such that φ is satisfiable iff Player 1 wins Gφ. Intuitively, we
define Gφ so that Player 2 can require Player 1 to prove that every clause of φ
is evaluated to true by asking Player 1 to choose a literal in the clause that is
assigned true. Choosing a literal l involves a visit in a vertex associated with
l. Accordingly, there exists a satisfying assignment to φ iff Player 1 can choose
her responses so that at most n literals are visited infinitely often. ⊓⊔
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4 Weighted Reachability and Avoid Games

In this section we study weighted reachability and avoid games: the problem of
deciding the winner, and the memory requirements for both players.

First, it is not hard to see that the construction in Theorem 1 applies also
to reachability objectives, thus every MaxWR objective has an equivalent AllR
objective of exponential size.

Theorem 6. Every MaxWR objective ⟨α,w, t⟩ has an equivalent AllR objective
of size width(α,w, t).

Known results about AllR games then imply upper bounds on the complex-
ity of MaxWR games. Specifically, deciding AllR games is PSPACE-complete
and the memory requirement for the players in AllR games are exponential in
the number of reachability objectives. Combining this with the construction in
Theorem 6, suggests a solution for MaxWR games. Since, however, width(α,w, t)
need not be polynomial in α, this is not optimal, and below we describe an al-
gorithm that works on the MaxWR objective without translating it to an AllR
objective, and is optimal.

Consider a MaxWR game G = ⟨G, ⟨α,w, t⟩⟩, with G = ⟨V1, V2, v0, E⟩ and
α = {α1, . . . , αm}. Recall that a set S ⊆ α is t-short if w(S) < t. We denote by
S the set of all t-short subsets of α, and we define the volume of ⟨α,w, t⟩, denoted
volume(α,w, t), as the number of t-short subsets of α. Recall that width(α,w, t)
is the number of max-t-short subsets of α, thus the measure volume is much
bigger than the measure width. Below we describe a reachability game G′ of size
|G| · volume(α,w, t), such that Player 1 wins G iff Player 1 wins G′. Intuitively,
G′ follows the play in G while remembering the set of reachability objectives
satisfied so far. Player 1 wins in a play in G′ when the corresponding play in G
satisfies ⟨α,w, t⟩. We use the construction of G′ in order to prove that Player 1
wins G iff she can force the satisfaction of ⟨α,w, t⟩ within |V | · |α| steps (see full
proof in Appendix A.3), which we then use to prove various results for MaxWR
games. Note that the reduction also implies that tools for solving reachability
games can be used for solving MaxWR games.

Theorem 7. For every MaxWR game G = ⟨G, ⟨α,w, t⟩⟩, there exists a reacha-
bility game G′ = ⟨G′, α′⟩ such that |G′| = |G| · volume(α,w, t) and the following
are equivalent.

1. Player 1 wins in G.
2. Player 1 wins in G′.
3. Player 1 has a winning strategy in G′ that satisfies α′ within |V | · |α| steps.
4. Player 1 has a winning strategy in G that satisfies ⟨α,w, t⟩ within |V | · |α|

steps.

4.1 Memory requirements

In this section we study the memory requirements of winning strategies for both
players in MaxWR games.
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Memory requirements for Player 1 We start with studying the memory
requirement for Player 1 in a MaxWR game G = ⟨G, ⟨α,w, t⟩⟩. For a pair of
t-short sets S, S′ ∈ S, we say that S and S′ are equivalent if for every t-short set
Q ∈ S, we have that w(S ∪Q) ≥ t iff w(S′ ∪Q) ≥ t. Then, for every t-short set
S ∈ S, the equivalence class of S, denoted [S] is the set of t-short sets S′ ∈ S such
that S and S′ are equivalent. We denote by E the set of different equivalence
class of S. Below we show that the memory requirement for Player 1 is the
number of equivalence classes of the MaxWR objective, denoted equiv(α,w, t).

Note that for every MaxWR objective ⟨α,w, t⟩ in which every t-short set
is equivalent only to itself, for example, every MaxR objective, we have that
equiv(α,w, t) = volume(α,w, t). Also note that for an AllR objective α, we have
that equiv(α) = volume(α) = 2|α| − 1, which coincides with the known memory
requirement for Player 1 in AllR games [21].

Theorem 8. A winning strategy for Player 1 in a MaxWR game with objective
⟨α,w, t⟩ requires memory equiv(α,w, t).

Proof. The upper bound follows from the proof of Theorem 7. Indeed, it can be
shown that Player 1 wins G iff she has a winning strategy that relies on a memory
structure with memory states in S, and it is easy to see that we can replace them
with memory states in E in the expected way, and |E| = equiv(α,w, t).

For the lower bound, for every m, t ∈ IN and a non-decreasing function
f : 2[m] → IN, we construct a MaxWR game that proceeds as follows (see exact
definition and example in Appendix A.4). From the initial vertex v0, Player 2
chooses an init-set vertex S, for some S ∈ S. From S, the game proceeds to a
vertex v1, from which Player 1 chooses an equivalence-class vertex [S], for some
[S] ∈ E. From [S], Player 2 chooses a final-set vertex S′, for some S′ ∈ S such
that f(S ∪ S′) ≥ t, or chooses an inter-set vertex S′, for some S′ ∈ S such that
f(S ∪ S′) < t, and [S] ̸= [S ∪ S′]. Every final-set vertex is self-looped with no
other outgoing edges, and from every inter-set vertex the game proceeds back
to v1. The objective of Player 1 is to reach set vertices that together form a set
S ⊆ [m] such that f(S) ≥ t.

It is easy to see that Player 1 has a winning strategy in Gm,f,t, as f is non-
decreasing, and from every equivalence-class vertex [S] Player 2 chooses a final-
set vertex that corresponds to S′ ∈ S such that f(S ∪ S′) ≥ t, or an inter-set
vertex that corresponds to S′ ∈ S such that [S] ̸= [S ∪ S′]. We prove that
every winning strategy f1 for Player 1 has at least |E| = equiv(α,w, t) different
memory states.

We show that for every [S] ∈ E, Player 2 has a strategy f[S] that causes f1
to eventually proceed from v1 to the equivalence-class vertex [S]. Since there are
equiv(α,w, t) equivalence class vertices, that are all reached via the same vertex
for Player 1, we conclude that f1 has at least equiv(α,w, t) different memory
states.

Consider [S] ∈ E. The strategy f[S] for Player 2 proceeds as follows. From
the initial vertex v0, the strategy f[S] chooses the init-set vertex S. Then, while
Player 1 chooses from v1 an equivalence-class vertex [S′] such that [S′] ̸= [S]: if
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there exists Q ∈ S such that f(S′ ∪Q) ≥ t and f(S ∪Q) < t, the strategy f[S]

proceeds from [S′] to the final-set vertex Q, thus the game ends while satisfying
the set of reachability objectives {αi ∈ α : i ∈ S ∪ Q}; otherwise, the strategy
f[S] proceeds from [S′] to the inter-set vertex S, thus the set of reachability
objectives satisfied is still {αi ∈ α : i ∈ S}. Below we show that indeed Player 2
can choose the inter-set vertex S from the equivalnce-class vertex [S′]. Then,
since f1 is a winning strategy and f(S) < t, we have that eventually the play
Outcome(⟨f1, f[S]⟩) reaches the equivalence-class vertex [S].

It is thus left to show that for every [S′] ∈ E such that there does not exist
Q ∈ S for which f(S′ ∪ Q) ≥ t and f(S ∪ Q) < t, we have that Player 2 can
proceed from the equivalence-class vertex [S′] to the inter-set vertex S. Since
[S] ̸= [S′] and f(S ∪ Q) ≥ t for every Q ∈ S such that f(S′ ∪ Q) ≥ t, we have
that f(S′ ∪S) < t. We also have that there exists Q ∈ S such that f(S ∪Q) ≥ t
and f(S′ ∪ Q) < t; thus, f(S′ ∪ S ∪ Q) ≥ t, and so [S′] ̸= [S′ ∪ S]. Since
f(S′ ∪S) < t and [S′] ̸= [S′ ∪S], we have that there exists an edge between [S′]
and the inter-set vertex S by the definition of Gm,f,t. ⊓⊔

Memory requirements for Player 2 We continue to Player 2, and study
her memory requirement in a MaxWR game G = ⟨G, ⟨α,w, t⟩⟩. For this, we
introduce the separated-width measure of ⟨α,w, t⟩, and show that the memory
requirement for Player 2 coincides with it.

Consider a MaxWR objective ⟨α,w, t⟩, with α = {α1, . . . , αm}. For two t-
short sets S, S′ of α, we say that S and S′ are separated iff there exist max-
t-short sets Q ⊆ α and Q′ ⊆ α such that S ⊆ Q and S′ ̸⊆ Q, and S′ ⊆ Q′

and S ̸⊆ Q′. We say that a set P ⊆ S of t-short sets is pairwise separated iff
for every two sets S, S′ ∈ P, we have that S and S′ are separated. Then, the
separated-width of ⟨α,w, t⟩, denoted sepwidth(α,w, t), is the maximal size of a
pairwise separated set of t-short sets of α. That is, sepwidth(α,w, t) = max{|P| :
P ⊆ S and P is pairwise separated}.

Note that for the special case of AllR objectives, two sets S, S′ ∈ S are
separated iff S ̸⊂ S′ and S′ ̸⊂ S: First, it is easy to see that if S ⊂ S′ (similarly,
if S′ ⊂ S), then S and S′ are not separated, since for every max-m-short set Q
such that S′ ⊆ Q, we also have that S ⊆ Q. For the second direction, if S ̸⊂ S′

and S′ ̸⊂ S, then for every αi ∈ S′ \ S, we have that Q = α \ {αi} is a max-
m-short set such that S ⊆ Q and S′ ̸⊆ Q, and for every αi ∈ S \ S′, we have
that Q′ = α \ {αi} is a max-m-short set such that S′ ⊆ Q′ and S′ ̸⊆ Q′, thus
S and S′ are separated. Hence, sepwidth(α) is the maximal size of a set P ⊆ S
such that S ̸⊂ S′, for every S, S′ ∈ P. In particular, sepwidth(α) =

(
m

m/2

)
, which

coincides with the known memory requirement for Player 2 in AllR games.
We return to the case of non-decreasing weight functions and start with the

upper bound. Consider a vertex v ∈ V and a t-short set S of α. We say that
Player 2 S-wins from v if Player 2 has a strategy to win from v, given that the
objectives in S have already been satisfied. Such a strategy is called an S-winning
strategy. Note that since w is non-decreasing, then if Player 2 S-wins from v, then
Player 2 also S′-wins from v, for every S′ ⊆ S. We denote by good(v) the set of
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sets S ⊆ α such that Player 2 S-wins from v and S is maximal, in the sense that
Player 2 does not S′-win from v, for all S′ ⊆ α such that S ⊂ S′. First, we state
that the set good(v) is pairwise separated (see full proof in Appendix A.5).

Lemma 2. For every vertex v ∈ V and two sets S, S′ ∈ good(v), we have that
S and S′ are separated.

We conclude that |good(v)| ≤ sepwidth(α,w, t) for every vertex v ∈ V . We
use this bound in order to prove an upper bound on the memory requirement
for Player 2, which we prove to be tight.

Theorem 9. Player 2 wins a MaxWR game G = ⟨G, ⟨α,w, t⟩⟩ iff she has a
winning strategy that uses at most sepwidth(α,w, t) different memory states.

Proof. Consider a MaxWR game G = ⟨G, ⟨α,w, t⟩⟩, and assume Player 2 wins
G. Recall the reachability game G′ = ⟨G′, α′⟩ constructed from G in the proof
of Theorem 7. Also recall that Player 2 wins G iff Player 2 wins G′. Since G′ is
a reachability game, Player 2 has a memoryless winning strategy, which we use
to construct a winning strategy for Player 2 in G with sepwidth(α,w, t) memory
states.

For every vertex v ∈ V , let πv : [|good(v)|] → good(v) be an arbitrary
function that induces an order on the sets in good(v). By Lemma 2, we have
that |good(v)| ≤ sepwidth(α,w, t). Indeed, good(v) is pairwise separated, thus its
size is bounded by the maximal size of a pairwise separated subset of S, which
is sepwidth(α,w, t). Below we describe a winning strategy for Player 2 in G with
memory states in [sepwidth(α,w, t)]. Intuitively, when the play is in a vertex v
and a memory state 1 ≤ i ≤ sepwidth(α,w, t), the set of reachability objectives
satisfied so far is some S ⊆ πv(i).

Recall that a play in G′ follows the play in G while remembering the set
S of reachability objectives satisfied so far. Thus, Player 2 wins from a ver-
tex ⟨v, S⟩ in G′ iff Player 2 S-wins from v in G. Consider a memoryless win-
ning strategy f2 for Player 2 in G′. We use f2 to define the following strategy
f ′2 for Player 2 in G. The strategy f ′2 relies on the memory structure M =
{{1, . . . , sepwidth(α,w, t)}, i0, δ}, where the initial memory state is i0 = min{i ∈
[|good(v0)|] : obj(v0) ⊆ πv0(i)}, and δ(i, ⟨v, u⟩) = min{j ∈ [|good(u)|] : πv(i) ∪
obj(u) ⊆ πu(j)}, for every 1 ≤ i ≤ sepwidth(α,w, t) and ⟨v, u⟩ ∈ E. Then, for
every v ∈ V2 and 1 ≤ i ≤ |good(v)|, we define f ′2(v, i) = f2(⟨v, πv(i)⟩).

We show that f ′2 is a winning strategy for Player 2 in G. The strategy f2
is winning from every vertex ⟨v, S⟩ in G′ such that S ∈ good(v), thus f ′2 is an
πv(i)-winning strategy from v while in a memory state 1 ≤ i ≤ |good(v)|. Since
the play induced by f ′2 is in a vertex v and a memory state i when the set S of
reachability objectives satisfied so far is such that S ⊆ πv(i), and every πv(i)-
winning strategy is also an S-winning strategy for Player 2 from v, we conclude
that f ′2 is a winning strategy for Player 2 in G. ⊓⊔
Theorem 10. For every m, t ∈ IN and a non-decreasing function f : 2[m] → IN,
we can construct a MaxWR game Gm,f,t = ⟨Gm,f,t, ⟨α,w, t⟩⟩ such that all the
following hold.
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1. |α| = m.
2. w({αi : i ∈ S}) = f(S), for every S ⊆ [m].
3. Player 2 wins Gm,f,t, yet every winning strategy for Player 2 requires mem-

ory sepwidth(α,w, t).

Proof. For every m, t ∈ IN and a non-decreasing function f : 2[m] → IN, let
P be a pairwise separated subset of S of maximal size. The MaxWR game
Gm,f,t proceeds as follows (see exact definition in Appendix A.6): First, Player 1
chooses a set S ∈ P, then Player 2 chooses a set S′ ∈ P, from which Player 1
can choose any max-t-short set Q such that f(S′ ∪Q) < t. Then, the objective
of Player 1 is to reach set vertices that form a set S ⊆ [m] with f(S) ≥ t.

As we formally prove in Appendix A.6, every winning strategy for Player 2
matches the choice of set in P Player 1 makes from v1, thus every winning
strategy for Player 2 requires |P| different memory states.

Consider a strategy f2 for Player 2 in Gm,f,t such that there exist two different
sets S, S′ ∈ P such that when Player 1 chooses S, Player 2 chooses S′. Recall
that there exists a maximal set Q ∈ S such that S′ ⊆ Q and S ̸⊆ Q. It is easy
to see that in this case f2 is not a winning strategy for Player 2. Indeed, when
Player 1 chooses S and Q as described above, we have that the satisfaction value
is f(S ∪Q). Since S ̸⊆ Q and Q is maximal, we have that f(S ∪Q) ≥ t. ⊓⊔

We can now conclude with a tight bound for the memory required to Player 2.

Theorem 11. A winning strategy for Player 2 in a MaxWR game with objective
⟨α,w, t⟩ requires memory sepwidth(α,w, t).

4.2 Decidability

We continue to the complexity of deciding whether Player 1 wins a MaxWR
game.

Theorem 12. Deciding the winner in a MaxWR game is PSPACE-complete.
Fixing the number of underlying objectives, the problem is in PTIME.

Proof. (sketch, see full proof in Appendix A.7) For the upper bound, we describe
an alternating Turing machine (ATM) T that runs in polynomial time, such that
T accepts a MaxWR game G iff Player 1 wins in G. The idea is similar to the
upper-bound proof for deciding AllR games [21]. The ATM simulates the given
MaxWR game G = ⟨G, ⟨α,w, t⟩⟩ for |V | · |α| steps, and writes on the tape the
set S of reachability objectives from α that are satisfied. After |V | · |α| steps
are completed, the ATM T calculates w(S), proceeds to an accepting state if
w(S) ≥ t, and proceeds to a rejecting state otherwise.

The lower bound follows from the PSPACE-hardness of deciding whether
Player 1 wins in AllR games [21].

When the number of underlying objectives is fixed, we have that the corre-
sponding reachability game from the proof of Theorem 7 is of polynomial size.
Thus, a MaxWR game can be decided in polynomial time by solving the corre-
sponding reachability game. ⊓⊔
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5 General Weight Functions

In this section we show that weighted multiple objectives with general (that
is, not necessarily non-decreasing) weight functions are equivalent to Muller
objectives, and we lift results known for Muller games to games with weighted
multiple objectives.

Consider a game G = ⟨V1, V2, v0, E⟩, and a finite set C of colors. A Muller
objective is a pair ⟨F , χ⟩, where F ⊆ 2C is a set of subsets of C, and χ : V → 2C

is a coloring function that maps vertices to colors in C. We extend χ to sets of
vertices in the expected way, thus χ(U) =

⋃{χ(v) : v ∈ U}. We define the size
of a Muller objective ⟨F , χ⟩ as |F|, namely the number of sets in F . Then, the
size of a general weight function w : 2α → IN is

∑
S∈2α w(S).

Muller objectives have been studied mainly with a semantics that refers to
the set of states visited in a play infinitely often. Here, we denote them as B-
Muller. A play ρ satisfies the B-Muller objective ⟨F , χ⟩ iff χ(inf(ρ)) ∈ F . That
is, if the set of colors of the vertices that appear infinitely often in ρ is a member
of F . For a semantics that refers to the set of states that the play reaches (a.k.a.
weak-Muller games or Staiger-Wagner games [34, 25]), we have that ρ satisfies
⟨F , χ⟩ iff χ(reach(ρ)) ∈ F . We refer to this semantics as R-Muller objectives.

A two-player B-Muller (or R-Muller) game is a tuple G = ⟨G,ψ⟩, where G is
a two-player game graph, and ψ = ⟨F , χ⟩ is a B-Muller (or R-Muller) objective
for Player 1.

Theorem 13 below shows that Muller games are reducible to weighted mul-
tiple objective games with general weight functions, and vice versa.

Theorem 13. 1. Every MaxWB (and MaxWR) objective ψ = ⟨α,w, t⟩ with a
general weight function has an equivalent B-Muller (R-Muller, respectively)
objective of size |{S ⊆ α : w(S) ≥ t}|.

2. Every B-Muller (and R-Muller) objective ψ = ⟨F , χ⟩ with a set of colors C
has an equivalent MaxWB (MaxWR, respectively) objective with a general
weight function of size |ψ|.

Proof. We start with the first claim. Let ψ = ⟨α,w, t⟩. We define ψ′ = ⟨F , χ⟩
with the set of colors α, where the Muller set F ⊆ 2α is such that F = {S ⊆ α :
w(S) ≥ t}, and the coloring function χ : V → 2α is such that χ(v) = obj(v) for
every v ∈ V . It is easy to see that for every play ρ, we have that ρ satisfies ψ iff
ρ satisfies ψ′, and |ψ′| = |{S ⊆ α : w(S) ≥ t}|.

For the second claim, consider a set of colors C, and let ψ = ⟨F , χ⟩, with
F ⊆ 2C . We define ψ′ = ⟨α,w, 1⟩, where α = {αi}i∈C , with αi = χ−1(i), for
every i ∈ C. Then, for every S ∈ 2α, we have that w(S) = 1 for every S ∈ F ,
and w(S) = 0 for every S /∈ F . It is easy to see that for every play ρ, we have
that ρ satisfies ψ iff ρ satisfies ψ′, and since |w| = |{S ⊆ α : w(S) = 1}|, we have
that |w| = |ψ|. ⊓⊔

Since the problems of deciding B-Muller and R-Muller games are PAPCE-
complete [26, 19, 34], we can conclude with the following.
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Theorem 14. Deciding the winner in MaxWB and MaxWR games with general
weight functions is PSPACE-complete.

As for the memory requirements for winning strategies, by Theorem 13, given
a MaxWB or MaxWR objective ψ with a general weight function, the memory
requirement for a winning strategy for Player 1 in a game with objective ψ
coincides with the memory requirement for a winning strategy for Player 1 in
the Muller game with an objective ⟨F , χ⟩ equivalent to ψ. For B-Muller games,
the picture is well understood – the memory requirements are these required
for the Zielonka tree ZF . For R-Muller games, the memory requirements are
exponential, and heuristics for their minimization have been studied in [25].

6 Discussion

We studied many aspects of weighted multi-objectives games. In the area of
ω-regular games, researchers have extensively studied the expressive power and
complexity of different types of Boolean objectives [28]. In the context of weighted
multiple objectives, there are two parameters to the type of an objective: the
class of the underlying objectives and the class of the weight function.

We focused on non-decreasing weight functions and showed that moving to
general weight functions leads to the expressive power (and computational price)
of Boolean Muller games. In the context of bidding in game theory, researchers
have studied additional interesting classes of weight functions [35] (Chapter 11).
We find it interesting to study restrictions on weight functions as a mean for
defining objectives that are simpler than Muller, and are different from the
simplification studied so far in the Boolean setting.

One can also study weighted multiple objective games in which the underly-
ing objectives are stronger than Büchi and reachability, in particular games with
underlying parity objectives. By [15], generalized parity games have the flavor
of Streett games (in particular, their decidability is co-NP-complete). Also, it is
not hard to see that Muller objectives can be translated to weighted multiple
parity objectives with a non-decreasing weight function (as opposed to general
weight functions, required in the translation of Muller to weighted multiple Büchi
objectives). Thus, while weighted multiple parity objectives are of interest, the
inherited complexity of parity dominates the complexity that has to do with the
weights. Consequently, we find their study less interesting than that of multiple
Büchi or reachability objectives.
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A Proofs

A.1 Missing details in the proof of Theorem 3

Formally, Gm,f,t = ⟨V1, V2, v0, E⟩ is defined as follows (see G4,f,2 in Figure 1,
where f is additive and f({i}) = 1 for every i ∈ [4]).

1. V1 = X ∪ [m]. The vertices in X are called set vertices, and the vertices in
[m] are called objective vertices.

2. V2 = {v0}.
3. The set E contains the following edges.

(a) ⟨v0, S⟩, for every S ∈ X . That is, in v0 Player 2 chooses a set from X .
(b) ⟨S, i⟩, for every S ∈ X , and i ∈ S. That is, Player 1 chooses i ∈ S.
(c) ⟨i, v0⟩, for every i ∈ [m]. That is, the game returns to v0.

v0

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

1 2 3 4

Fig. 1. The game graph G4,f,2, where f(i) = 1 for all i ∈ [4]. The circles are vertices
owned by Player 1, and the square v0 is a vertex owned by Player 2.

We define Gm,f,t = ⟨Gm,f,t, ⟨α,w, t⟩⟩, with αi = {i} and w({αi : i ∈ S}) =
f(S), for every S ⊆ [m].

A.2 Proof of Theorem 5

We prove the results for MinWB. The ones for MaxWB follow from determinacy
of MinWB games.

We start with the upper bound. By Theorem 2, Player 1 wins a MinWB game
iff she has a memoryless winning strategy. As we argue below, checking whether
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a given memoryless strategy for Player 1 is winning can be done in polynomial
time, implying membership in NP.

Consider a MinWB game ⟨G, ⟨α,w, t⟩⟩, with α = {α1, . . . , αm}. Let G =
⟨V1, V2, v0, E⟩. For a memoryless strategy f1 : V1 → V for Player 1, let Gf1 =
⟨V,Ef1⟩ be the sub-graph of G obtained by removing all edges not taken by f1.
Thus ⟨v, u⟩ ∈ Ef1 iff f1(v) = u. Clearly, f1 is winning iff all the paths from v0
in Gf1 satisfy ⟨G, ⟨α,w, t⟩⟩.

Note that there exists a path ρ in Gf1 such that sat(ρ, α,w) ≥ t iff there
exists a non-trivial strongly connected component (SCC) C in Gf1 such that
w(obj(C)) ≥ t. Accordingly, f1 is a winning strategy for Player 1 iff w(obj(C)) <
t for every non-trivial SCC C reachable from the initial vertex in Gf1 . Since
the latter can be checked in polynomial time, we are done. Note that the check
is polynomial also when the weight function is dualized, thus when w̃ is given.
Indeed, we need to calculate w(obj(C)) only for linearly many SCCs.

For the lower bound, we describe a reduction from SAT to MinB, which is
a special case of MinWB with additive and uniform weight functions. That is,
given a propositional formula φ in CNF, we construct a MinB game Gφ such
that φ is satisfiable iff Player 1 wins Gφ.

For a set of variables X = {x1, . . . , xn}, let X = {x1, . . . , xn}. Consider a
propositional formula φ given in CNF over X∪X. That is, φ = C1∧C2∧. . .∧Ck,
for some k ≥ 1, and for every 1 ≤ i ≤ k, we have Ci = (l1i ∨ l2i ∨ · · · ∨ ljii ), with

l1i , l
2
i , . . . , l

ji
i ∈ X ∪ X. We assume that for every variable xi ∈ X, the formula

φ contains the clause (xi ∨ xi). Note that otherwise, we can add such clauses,
maintaining the satisfiability of φ, and keeping the size of φ linear in its original
size.

Intuitively, we define Gφ so that Player 2 can choose 1 ≤ i ≤ k and require
Player 1 to prove that Ci is evaluated to true by asking Player 1 to choose
a literal of Ci that is assigned true. Choosing a literal l involves a visit in a
vertex associated with l. Accordingly, there exists a satisfying assignment to
φ iff Player 1 can choose her responses so that at most n literals are visited
infinitely often. In particular, the clauses of the form (xi ∨ xi) force Player 1 to
commit on the truth value of all variables.

Formally, Gφ = ⟨Gφ, α, t⟩, where Gφ, α, and t are defined as follows.

1. The game graph Gφ = ⟨V1, V2, v0, E⟩ has the following components (see
example in Fig. 2).

(a) V1 = {C1, . . . , Ck} ∪ X ∪ X. The vertices in {C1, . . . , Ck} are clause
vertices, and the vertices in X ∪X are literal vertices.

(b) V2 = {v0}.
(c) The set E of edges includes the following edges.

i. ⟨v0, Ci⟩, for every i ∈ [k]. By proceeding from v0 to Ci, Player 2
requires Player 1 to prove that the clause Ci is evaluated to true.

ii. ⟨Ci, l
h
i ⟩, for every i ∈ [k] and 1 ≤ h ≤ ji. By proceeding from Ci to

lhi , Player 1 states that the literal lhi is evaluated to true.
iii. ⟨l, v0⟩, for every l ∈ X ∪X.
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2. The set of Büchi objectives is α = {{l}}l∈X∪X . That is, every literal vertex
defines a singleton Büchi objective.

3. The threshold is t = n. That is, Player 1 aims for at most n literal vertices
to be visited infinitely often.

v0

C1 C2 C3 C4 C5

x1 x1 x2 x2 x3 x3

Fig. 2. The game graph Gφ for φ = (x1∨x1)∧(x2∨x2)∧(x3∨x3)∧(x1∨x2)∧(x2∨x3).
The circles are vertices owned by Player 1, and the square v0 is a vertex owned by
Player 2.

We prove the correctness of the construction. Assume first that φ is satisfi-
able. Consider a satisfying assignment ξ : X → {true, false} to the variables in
X, and consider the strategy f1 for Player 1 that for every i ∈ [k], goes from Ci

to lhi such that lhi is evaluated to true in ξ.

We show that f1 is a winning strategy for Player 1 in Gφ. It is easy to see
that for every strategy f2 for Player 2 and i ∈ [n], there is at most one set
in {{xi}, {xi}} that is visited infinitely often. Indeed, since ξ is a satisfying
assignment, for every clause Ci there exists a literal that is evaluated to true in
ξ.

Assume now that φ is not satisfiable. Let f2 be the strategy for Player 2 that
repeatedly requires Player 1 to prove that the clause Ci is evaluated to true for
every i ∈ [k]. Note that each such iteration visits n+ 1 different literal vertices.
Indeed, Player 1 chooses an assignment ξ to the variables in X in the first n
clause vertices, and since ξ does not satisfy φ, there exists a clause Ci for some
i > n such that every literal in Ci is evaluated to false by ξ. Hence, there are
(at least) n+ 1 different literal vertices that are visited infinitely often.

We continue to the case in which the number of underlying objectives is
fixed. By Theorem 1, for every MaxWB game ⟨G,ψ⟩ with ψ = ⟨α,w, t⟩ there
exists an AllB objective α′ of size width(α,w, t) such that Player 1 wins ⟨G,ψ⟩
iff Player 1 wins ⟨G,α′⟩. If |α| is fixed, then width(α,w, t) is fixed as well, thus
deciding ⟨G,ψ⟩ can be done in polynomial time by calculating and solving the
AllB game ⟨G,α′⟩.
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A.3 Proof of Theorem 7

Consider a MaxWR game G = ⟨G, ⟨α,w, t⟩⟩, with α = {α1, . . . , αm}. Assume
that w(obj(v0)) < t (otherwise, Player 1 wins in every play in G). We define the
reachability game G′ = ⟨G′, α′⟩ as follows. The game graph G′ contains a copy
of the game graph G for every S ∈ S, and a vertex vsat. Intuitively, a play in G′

follows a play in G, maintaining in the S-component of its vertices the subset of
α satisfied so far. When the corresponding play in G satisfies ⟨α,w, t⟩, it moves
to vsat. Then, the objective of Player 1 in G′ is to reach the vertex vsat.

Formally, G′ = ⟨G′, {vsat}⟩, where the game graph G′ = ⟨V ′
1 , V

′
2 , v

′
0, E

′⟩ is
defined as follows.

1. V ′
1 = (V1 ×S) ∪ {vsat}.

2. V ′
2 = V2 ×S.

3. v′0 = ⟨v0, obj(v0)⟩.
4. The set E′ contains the following edges.

(a) ⟨⟨v, S⟩, ⟨u, S ∪ obj(u)⟩⟩, for every edge ⟨v, u⟩ ∈ E and set S ∈ S such
that S ∪ obj(u) ∈ S.

(b) ⟨⟨v, S⟩, vsat⟩, for every vertex v ∈ V and set S ∈ S, such that w(S ∪
obj(u)) ≥ t for some edge ⟨v, u⟩ ∈ E.

(c) ⟨vsat, vsat⟩.

We show the equivalence of the conditions in the theorem.

1. 1 ⇒ 2: Assume Player 1 has a winning strategy f1 in G, and consider the
strategy f ′1 for Player 1 in G′ that agrees with f1. By the definition of G′

and since w is non-decreasing, a path ρ reaches the vertex vsat iff the corre-
sponding path in G satisfies ⟨α,w, t⟩. Thus, since f1 forces the satisfaction
of ⟨α,w, t⟩ in G, the strategy f ′1 forces a visit in vsat in G

′.

2. 2 ⇒ 3: Assume Player 1 wins in G′. Every simple path from the initial vertex
to vsat inG

′ is of size of at most |V |·m. Indeed, the set of satisfied reachability
objectives in the corresponding play in G can only increase in size. Since G′

is a reachability game, Player 1 has a memoryless winning strategy f1, which
induces a simple path from the initial vertex to vsat.

3. 3 ⇒ 4: Consider a memoryless winning strategy f1 for Player 1 in G′. Let f ′1
be the strategy for Player 1 in G that agrees with f1. That is, f

′
1 relies on the

memory structure M = ⟨S, obj(v0), δ⟩, such that δ(S, ⟨v, u⟩) = S ∪ obj(u)
if S ∪ obj(u) ∈ S, and δ(S, ⟨v, u⟩) = ∅ if S ∈ S and S ∪ obj(u) /∈ S, for
every S ∈ S and ⟨v, u⟩ ∈ E. Then, for every v ∈ V1 and S ∈ S, we have
that f ′1(v, S) = f1(⟨v, S⟩). It is easy to see that, until the play in G satisfies
⟨α,w, t⟩, being in a memory state S of f ′1 corresponds to being in the copy
S of G in G′, in the sense that it indicates the set of reachability objectives
satisfied so far. Hence, f ′1 forces the satisfaction of ⟨α,w, t⟩ within the same
number of steps.

4. 4 ⇒ 1: If Player 1 has a winning strategy in G then Player 1 wins in G.
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A.4 The game Gm,f,t from the proof of Theorem 8

The game Gm,f,t = ⟨V1, V2, v0, E⟩ is defined as follows (see Example 1).

1. V1 = {v1} ∪ {⟨S, init⟩, ⟨S, final⟩, ⟨S, inter⟩ : S ∈ S}. The vertex v1 is a
choice vertex, and the vertices in {⟨S, init⟩ : S ∈ S},{⟨S, final⟩ : S ∈ S},
and {⟨S, inter⟩ : S ∈ S} are init-set vertices, final set vertices, and inter-set
vertices, respectively.

2. V2 = {v0} ∪ E. The vertex v0 is the initial vertex, and the vertices in E are
equivalence-class vertices.

3. The set E contains the following edges.
(a) ⟨v0, ⟨S, init⟩⟩ and ⟨⟨S, init⟩, v1⟩, for every S ∈ S. That is, Player 2

chooses from v0 a set S ∈ S, from which the game proceeds to v1.
(b) ⟨v1, [S]⟩, for every [S] ∈ E. That is, Player 1 chooses from v1 an equiva-

lence class from E.
(c) ⟨[S], ⟨S′, final⟩⟩, for every [S] ∈ E and S′ ∈ S such that f(S ∪ S′) ≥ t,

and ⟨[S], ⟨S′, inter⟩⟩, for every [S] ∈ E and S′ ∈ S such that f(S∪S′) < t
and [S] ̸= [S ∪ S′].

(d) ⟨⟨S, final⟩, ⟨S, final⟩⟩, for every S ∈ S.
(e) ⟨⟨S, inter⟩, v1⟩, for every S ∈ S.

We then define Gm,f,t = ⟨Gm,f,t, ⟨α,w, t⟩⟩, where αi = {⟨S, init⟩, ⟨S, final⟩,
⟨S, inter⟩ : S ∈ S, i ∈ S} and w({αi : i ∈ S}) = f(S), for every S ⊆ [m].
That is, the reachability objective αi contains every set vertex that correspond
to S ∈ S such that i ∈ S.

Example 1. Figure 3 describes the game graph G3,f,4, for the additive function
f with f(a) = f(b) = 2 and f(c) = 1, and t = 4. The objective is ⟨α,w, 4⟩ with
α = {α1, α2, α3}. The objective α1 is the set of set-vertices that contain a, the
objective α2 is the set of set-vertices that contain b, and the objective α3 is the set
of set-vertices that contain 3. The weight function w is such that w(αi) = f(i),
for every i ∈ [3]. The set of 4-short sets is {∅, {a}, {b}, {c}, {a, c}, {b, c}}, and
the equivalent sets are {a} and {a, c}, {b} and {b, c}, and ∅ and {c}. Thus there
are three equivalence classes. The circles are vertices owned by Player 1, and the
squares are vertices owned by Player 2.

A.5 Proof of Lemma 2

Consider a vertex v ∈ V , and two different sets S, S′ ∈ good(v). Let f2 be an
S-winning strategy for Player 2 from v. Since S is maximal, f2 is not an (S∪S′)-
winning strategy for Player 2 from v, thus there exists a play ρ induced by f2
such that w(S ∪S′ ∪ sat(ρ, α)) ≥ t. Recall that w(S ∪ sat(ρ, α)) < t, hence there
exists a max-t-short set Q of α such that S ∪ sat(ρ, α) ⊆ Q. We also have that
S′ ̸⊆ Q. Indeed, w(S ∪ S′ ∪ sat(ρ, α)) ≥ t, w(Q) < t, w is non-decreasing, and
S∪ sat(ρ, α) ⊆ Q. Hence, Q is a max-t-short set such that S ⊆ Q and S′ ̸⊆ Q. In
a similar way, there exists a max-t-short set Q′ such that S′ ⊆ Q′ and S ̸⊆ Q′.
Therefore, S and S′ are separated.

27



v0

∅ {a} {b} {c} {a, c} {b, c}

v1

[∅] [{a}] [{b}]

{a}

{a, c}

{b}

{b, c}
{b} {b, c} {a} {a, c}

Fig. 3. The game graph G3,f,4.

A.6 Missing details in the proof of Theorem 10

Formally, the game graph Gm,f,t = ⟨V1, V2, v1, E⟩ is defined as follows.

1. V1 = {v1} ∪ (P× {1, 2}) ∪ {Q ∈ S : Q is maximal}.
2. V2 = {v2}.
3. The set E contains the following edges.

(a) ⟨v1, ⟨S, 1⟩⟩ and ⟨⟨S, 1⟩, v2⟩, for every S ∈ P. That is, Player 1 chooses
from v1 a set S ∈ P, and then proceed to v2.

(b) ⟨v2, ⟨S, 2⟩⟩, for every S ∈ P. That is, Player 2 chooses from v2 a set
S ∈ P.

(c) ⟨⟨S, 2⟩, Q⟩, for every S ∈ P and a maximal set Q ∈ S such that S ⊆ Q.

We define Gm,f,t = ⟨Gm,f,t, ⟨α,w, t⟩⟩, where αi = {S ∈ P×{1, 2}∪S : i ∈ S},
and w({αi : i ∈ S}) = f(S), for every S ⊆ [m]. That is, the reachability set αi

contains every vertex that corresponds to a set S ⊆ [m] such that i ∈ S. Thus,
the objective of Player 1 is to reach set vertices that together form a set S ⊆ [m]
such that f(S) ≥ t.

We prove that every winning strategy f2 for Player 2 in Gm,f,t uses at least
|P| different memory states. Intuitively, we show that every winning strategy for
Player 2 matches the choice of set in P Player 1 makes from v1.

Consider a strategy f2 for Player 2 in Gm,f,t. If the number of different mem-
ory states of f2 is smaller than |P|, then there exist two different sets S, S′ ∈ P
such that when Player 1 chooses ⟨S, 1⟩ from v1, Player 2 chooses ⟨S′, 2⟩ from v2.
Recall that there exists a maximal set Q ∈ S such that S′ ⊆ Q and S ̸⊆ Q. It
is easy to see that in this case f2 is not a winning strategy for Player 2. Indeed,
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when Player 1 chooses ⟨S, 1⟩ and Q as described above, we have that the satis-
faction value is w({αi : i ∈ S ∪Q}) = f(S ∪Q). Since S ̸⊆ Q and Q is maximal,
we have that f(S ∪Q) ≥ t.

A.7 Proof of Theorem 12

For the upper bound, we describe an alternating Turing machine (ATM) T that
runs in polynomial time, such that T accepts a MaxWR game G iff Player 1 wins
in G. The idea is similar to the upper bound proof for deciding AllR games [21].

An alternating Turing machine is a Turing machine whose states are parti-
tioned into two sets: existential states and universal states. A configuration of
T describes its state, the content of the working tape, and the location of the
reading head. A configuration is existential (universal) if the state of T in the
configuration is existential (universal, respectively). A run of T is a tree in which
each node corresponds to a configuration of T : the root of the tree corresponds
to the initial configuration; a node that corresponds to an existential configura-
tion has a single successor, for one of the possible successor configurations; and a
node that corresponds to a universal configuration has multiple successors, one
for each possible successor configuration. The run is accepting iff all the branches
of the tree reach an accepting configuration; that is, a configuration whose state
is accepting.

In the membership problem, we get as input an ATM T and a word x ∈ Γ ∗,
and decide whether T accepts x; that is, if there exists an accepting run of T on
x.

We now describe an ATM T that gets as input a description of a MaxWR
game G = ⟨G, ⟨α,w, t⟩⟩, and accepts G iff Player 1 wins. By Theorem 7, Player 1
wins G iff she has a strategy that forces the satisfaction of ⟨α,w, t⟩ within |V |×|α|
steps. Accordingly, T simulates the game for |V | · |α| steps, where vertices of
Player 1 correspond to existential states, and vertices of Player 2 correspond
to universal states. The ATM writes on the tape the number c of steps in the
game taken so far, the current vertex v ∈ V in the game, and the set S ⊆ α of
reachability objectives satisfied so far. As long as the number of steps taken is
c < |V | · |α|, if the current vertex in the game is v ∈ V1, the ATM T guesses a
successor u of v in G, updates the current vertex in the game to be u, updates
the set of reachability objectives to be S ∪ obj(u), and updates the step counter
to c + 1. If the current vertex of the game is v ∈ V2, the ATM does the same,
but for every successor u of v. When the step counter reaches |V | · |α|, the ATM
T calculates w(S), proceeds to an accepting state if w(S) ≥ t, and proceeds to a
rejecting state otherwise. Note that calculating w(S) can be done in polynomial
time also when the weight function is dualized, thus when w̃ is given.

The lower bound follows from the PSPACE-hardness of deciding whether
Player 1 wins in AllR games [21].

We continue to the case in which the number of underlying objectives is
fixed. By Theorem 7, for every MaxWR game G = ⟨G,ψ⟩ with ψ = ⟨α,w, t⟩
there exists a reachability game G′ of size |G| · volume(α,w, t) such that Player 1
wins G iff Player 1 wins G′. If |α| is fixed, then volume(α,w, t) is fixed as well,
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thus deciding G can be done in polynomial time by calculating and solving the
reachability game G′.

B From MaxWB to Muller objectives

B.1 Muller objectives and Zielonka trees

Consider a finite set C of colors. A Muller objective is a pair ⟨F , χ⟩, where
F ⊆ 2C is a set of subsets of C, and χ : V → C is a (partial) coloring function
that maps vertices to colors in C. A play ρ satisfies the Muller objective ⟨F , χ⟩
iff {χ(v) : v ∈ inf(ρ)} ∈ F . That is, if the set of colors of the vertices that appear
infinitely often in ρ is a member of F . A two-player Muller game is a tuple
G = ⟨G,ψ⟩, where G is a two-player game graph, and ψ = ⟨F , χ⟩ is a Muller
objective for Player 1.

Consider a set F ⊆ 2C . The Zielonka tree for F , denoted ZF , is a finite tree
⟨N, r, child, τ⟩, where N is a set of nodes, r ∈ N is a root node, child : N → 2N

maps nodes to their children nodes, and τ : N → 2C \ {∅} maps nodes to
nonempty sets of colors. The tree ZF is defined as follows.

1. τ(r) = C.
2. Every node n ∈ N has the following children.

(a) If τ(n) ∈ F , then for every maximal nonempty subset X ⊂ τ(n) such
that X /∈ F , there exists a child node n′ ∈ child(n) with τ(n′) = X.

(b) If τ(n) /∈ F , then for every maximal nonempty subset X ⊂ τ(n) such
that X ∈ F , there exists a child node n′ ∈ child(n) with τ(n′) = X.

That is, the root of the tree is labeled by the set C of all colors, and for every
node n, if n is labeled by a member of F , then the children of n are labeled by
the maximal subsets of τ(n) that are not members of F , and if n is labeled by a
set that is not a member of F , then the children of n are labeled by the maximal
subsets of τ(n) that are members of F .

In [19], the authors use the Zielonka tree for F in order to analyse the number
of states required in a memory structure for winning strategies in a Muller game
with objective F . Formally, the memory requirement for a subtree with root
n ∈ N , denoted by mem(n), is defined as follows.

1. If child(n) = ∅, then mem(n) = 1.
2. If child(n) ̸= ∅, then

(a) If τ(n) ∈ F , then mem(n) =
∑

n′∈child(n) mem(n′).

(b) If τ(n) /∈ F , then mem(n) = max{mem(n′) : n′ ∈ child(n)}.
Then, the memory requirement for the tree ZF , denoted mem(F), is the memory
requirement of the root of the tree.

Theorem 15. (Theorem 6 in [19]) For every finite set of colors C, a Muller
set F ⊆ 2C , a game graph G, and a coloring function χ : V → C defined over
the vertices in G, if Player 1 wins in the Muller game G = ⟨G, ⟨F , χ⟩⟩, then she
wins with memory mem(F).
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Theorem 16. (Theorem 14 in [19]) For every finite set of colors C and a Muller
set F ⊆ 2C , there exists a game graph G and a coloring function χ : V → C
defined over the vertices in G such that Player 1 wins in the a Muller game
G = ⟨G, ⟨F , χ⟩⟩, and every winning strategy for Player 1 needs memory of size
at least mem(F).

B.2 MaxWB as Muller

For the upper bound, we analyze the memory requirement of a Muller objective
equivalent to a given MaxWB objective. Consider a MaxWB game G = ⟨G,ψ⟩,
where ψ = ⟨α,w, t⟩. For every subset of vertices U ⊆ V , we denote by obj(U)
the subset of objectives in α that intersect with U . That is, obj(U) = {αi ∈ α :
U ∩αi ̸= ∅}. The Muller game equivalent to G is G′ = ⟨G, ⟨F , χ⟩⟩ with the set of
colors V , where the Muller set F ⊆ 2V is such that F = {U ⊆ V : w(obj(U)) ≥
t}, and the coloring function χ : V → V is the identity function, hence χ(v) = v
for every v ∈ V . It is easy to see that for every play ρ in G we have that ρ
satisfies ψ iff ρ satisfies ⟨F , χ⟩.

Theorem 17. For every MaxWB game G = ⟨G,α,w, t⟩, if Player 1 wins in G,
then she wins with memory of size equal to the number of maximal subsets S ⊂ α
with w(S) < t.

Proof. Consider a MaxWB game G = ⟨G,α,w, t⟩. We analyze the Zielonka tree
for the Muller set F in the equivalent Muller game G′ = ⟨G, ⟨F , χ⟩⟩, and show
that mem(F) is bounded by the number of maximal subsets S ⊂ α with w(S) <
t. By Theorem 15, it then follows that if Player 1 wins in G, then she has a
winning strategy with memory bounded by the number of maximal subsets S ⊂
α with w(S) < t.

The Zielonka tree Z = ⟨N, r, child, τ⟩ for F is defined as follows. The root
of the tree r is labeled by V , thus a member of F . Since the root is a member
of F , it has a child node n ∈ child(r) for every maximal subset U ⊂ V that is
not a member of F . Equivalently, the root has a child node for every maximal
subset U ⊂ V such that w(obj(U)) < t. Finally note that for every U ⊂ V with
w(obj(U)) < t, and for every U ′ ⊂ U , we have that w(obj(U ′) ≤ w(obj(U))) < t,
hence U ′ /∈ F . Therefore, the children of the root of ZF have no children of their
own.

We continue to calculate mem(F). Since τ(r) ∈ F , we have that mem(F) =
mem(r) =

∑
n∈child(r) mem(n). For every child node n ∈ child(r) we have that

child(n) = ∅, hence mem(n) = 1. Therefore, mem(F) = |child(r)|.
It is then remained to show that the number of maximal subsets U ⊂ V

with w(obj(U)) < t is smaller or equal to the number of maximal subsets S ⊂ α
with w(S) < t. Note that it is enough to show that for every maximal subset
of objectives S ⊂ α with w(S) < t, there exists at most one maximal subset of
vertices U ⊂ V with w(obj(U)) < t such that obj(U) ⊆ S:

Consider a maximal subset of objectives S ⊂ α with w(S) < t, and two
different subsets of vertices X,Y ⊂ V such that obj(X), obj(Y ) ⊆ S. It is easy to
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see that at least one of them is not maximal. Indeed,X and Y are different, hence
at least one of them is a strict subset of X ∪ Y . As w(obj(X ∪ Y )) ≤ w(S) < t,
we have that at least one of X,Y is not a maximal subset of V with a weight
below the threshold t. ⊓⊔

For the lower bound, we show that for every m ∈ IN, a weight function
w : [m] → IN, and a threshold t ≤ w([m]), there exists a MaxWB game G =
⟨G,α,w, t⟩ with m objectives such that (with abuse of notations) w(αi) = w(i)
for every i ∈ [m], Player 1 wins in G, and the number of memory states in every
winning strategy for Player 1 is at least the number of maximal subsets S ⊂ [m]
with w(S) < t, which equals to the number of maximal subsets S ⊂ α with
w(S) < t.

For everym ∈ IN, a weight function w : [m] → IN, and a threshold t ≤ w([m]),
we define the Muller set Fm,w,t = {S ⊆ [m] : w(S) ≥ t}. Then, for every Muller
game G = ⟨G,Fm,w,t, χ⟩, the equivalent MaxWB game is G′ = ⟨G,α,w, t⟩ such
that αi = χ−1(i) for every i ∈ [m], and w(αi) = w(i) for every i ∈ [m]. It is easy
to see that for every play ρ in G we have that ρ satisfies ⟨Fm,w,t, χ⟩ iff ρ satisfies
⟨α,w, t⟩.

Theorem 18. For every m ∈ IN, a weight function w : [m] → IN, and a thresh-
old t ≤ w([m]), there exists a MaxWB game G = ⟨G,α,w, t⟩ with m objectives
such that w(αi) = w(i) for every i ∈ [m], Player 1 wins in G, and and the
number of memory states in every winning strategy for Player 1 is at least the
number of maximal subsets S ⊂ α with w(S) < t.

Proof. Consider m ∈ IN, a weight function w : [m] → IN, and a threshold
t ≤ w([m]). By Theorem 16, there exists a game graph G and a coloring function
χ : V → [m] defined over the vertices in G such that Player 1 wins in the Muller
game G = ⟨G,Fm,w,t, χ⟩, and every winning strategy for Player 1 in G requires
at least mem(Fm,w,t) memory states. Hence, we also have that Player 1 wins
in the equivalent MaxWB game G′ = ⟨G,ψ⟩, and every winning strategy for
Player 1 in G requires at least mem(Fm,w,t) memory states. Therefore, all is left
to show is that mem(Fm,w,t) is the number of maximal subsets S ⊂ [m] with
w(S) < t.

In a similar way to the analysis of the Zielonka tree in the proof of Theo-
rem 17, we have that mem(Fm,w,t) equals to the number of children nodes of the
root in the Zielonka tree ZFm,w,t

. The root is labeled by [m], hence the number
of children of the root is the number of maximal subsets of [m] that are not
members of Fm,w,t. Equivalently, the number of maximal subsets S ⊂ [m] such
that w(S) < t. ⊓⊔

Corollary 1. A winning strategy for Player 1 in a MaxWB game G = ⟨G,α,w, t⟩
requires memory of size equal to the number of maximal subsets S ⊂ α with
w(S) < t.

In the special case of MaxB games, we have that the maximal subsets S of
α with w(S) < t are the subsets of α of size t− 1, hence the following holds.
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Corollary 2. A winning strategy for Player 1 in a MaxB game G = ⟨G,α, t⟩
with m Büchi objectives requires memory of size

(
m
t−1

)
.
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