
On the Optimality of EIP-1559 for Patient Bidders

(Draft – Comments Welcome)

Moshe Babaioff∗ Noam Nisan†

November 4, 2024

Abstract

The “EIP-1599 algorithm” is used by the Ethereum blockchain to assemble transactions into
blocks. While prior work has studied it under the assumption that bidders are “impatient”,
we analyze it under the assumption that bidders are “patient”, which better corresponds to the
fact that unscheduled transactions remain in the mempool and can be scheduled at a later time.
We show that with “patient” bidders, this algorithm produces schedules of near-optimal welfare,
provided it is given a mild resource augmentation (that does not increase with the time horizon).
We prove some generalizations of the basic theorem, establish lower bounds that rule out several
candidate improvements and extensions, and propose several questions for future work.

1 Introduction

1.1 Background on Blockchains

Blockchains like Bitcoin [Nak09] or Ethereum [But14] operate by repeatedly aggregating transactions
into blocks. As a first approximation, each transaction requires some “size” and has some value for its
user, and each block has some size limit, where the notion of “size” is defined by the blockchain.1 Each
block is assembled by a different “operator”2 which the blockchain protocol designer tries to motivate
to maximize the total value subject to the block’s capacity constraints. A key difficulty here is that
both users and operators are selfish and strategic, so the mechanism that specifies which transactions
are accepted to the block and how much do their users pay and to whom must take such strategic
behavior into account. A large literature has studied such mechanisms. While Bitcoin’s “pay your bid”
mechanisms is relatively simple (but not incentive compatible for the users), Ethereum’s mechanism
[BCD+19], known as EIP-1559, is more sophisticated and, following [Rou21], a large literature (e.g.
[LMR+21, CS23, GTW24, AGHH23]) studies its strategic properties.

In this paper we undertake an algorithmic analysis of this protocol and the family of protocols that
vary its various parameters. Specifically, we ask to what extent does it indeed succeed in maximizing
the social welfare given the size constraints. Our main result is essentially positive: for “patient
bidders”, the social welfare achieved by EIP-1559, with a slight tweak of parameters, is close to
optimal. Before specifying more precisely what “close to optimal” means, we need to be more specific
about our time-model of transactions.

Blocks are created one at a time3 and transactions arrive continuously through time. Much analysis
of blockchains assumes that a transaction that arrives at a certain point in timemust be scheduled in the
immediately next block or loses all value for its user. This is called the model of “impatient users”. In
reality, however, blockchains operate under an opposite assumption and submitted transactions remain
in the “mempool” until accepted, and thus may be scheduled at any future block. The model that
assumes that transactions can be scheduled at any future time without losing their value, which is closer
to how blockchains actually operate, is termed a model with “patient users”, and has only received

∗Hebrew University of Jerusalem.
†Hebrew University of Jerusalem and Starkware.
1E.g. “gas” for Ethereum or (virtual-)bytes for Bitcoin.
2In bitcoin these are the “miners” and in Ethereum these are the “validators”.
3For Ethereum a block every 12 seconds and for Bitcoin a block every 10 minutes on the average.

1



modest attention [Nis23, HLM21, PS24, GY24]. A more general model may consider “partially patient”
users who may have some time-sensitivity, e.g., model the value of a transaction as decreasing with
its execution time [HLM21, PS24, GY24]. Unfortunately, current mainstream blockchain transaction
fees mechanisms do not allow the user to express any time preferences. We show the near-optimally
of EIP-1559 for fully patient users in the worst case, i.e. without any stochastic or distributional
assumptions on the demand.4

1.2 The EIP-1559 algorithm and its parameters

The EIP-1559 algorithm assembles a sequence of blocks whose average size is at a target of a quantity B
per block.5 I.e. the original constraint of maximum block size is relaxed, and is replaced by effectively
limiting the average block size to be B, while relaxing the constraint of maximum block size to being
only slightly larger than B.6 This relaxation is justified by the specific constraints of the Ethereum
blockchain7 and may be viewed as a type of resource augmentation which was not technically studied
in the literature of bin-packing and knapsack algorithms, and may be of independent interest.8

Here is how it operates: for every block t it choose a price pt (according to an algorithm that we will
explain shortly) and accepts only transactions whose value per unit is at least the price pt. A difficulty
arises if there are too many transactions with such high value per unit, as the EIP-1559 algorithm
does not allow any block to be of total size that is larger than c times the target block size, with the
parameter choice c = 2.9 In this case only a subset of the transactions that fit into the maximum block
size is chosen, with the subset determined by an additional “tip” bid that is strategically chosen by
each user. In this paper we will not undertake a strategic analysis, and we will analyze the protocol
under the assumption that the subset of transactions is being chosen by an adversary10, making only
the following mild assumption: the adversary must pick a maximal (by inclusion) set of transactions
that fit into the allowed maximum block size.11

The basic idea of choosing the price pt for block t is rather simple: if the previous block size was
above the target block size B, then we need to increase the price, and if it was below the target then
we decrease the price. The increase or decrease is multiplicative according to the following formula:
pt+1 = pt ·(1+η(Qt−B)/B), where Qt denotes the total size of block t, and η is a small constant picked
in Ethereum to be η = 1/8. This formula should be viewed as an approximation to the theoretically
more elegant price-adjustment formula12 pt+1 = pt · eη·(Qt−B)/B which we will analyze in this paper.
Effectively, there is also a minimum price13 pmin, and if the previous formula drops below it then this
minimum price is taken instead. The initial price p1 was chosen arbitrarily14. In the rest of this paper
whenever we talk about “the EIP-1559 algorithm”, we actually consider the algorithm with any setting
of these five parameters: the target block size B, the maximum block size c ·B, the price adjustment
parameter η, the minimum price pmin and the initial price p1 (with B > 0, c > 1, η > 0, pmin > 0, and
p1 ≥ pmin).

This algorithm produces blocks whose size may vary in the range 0 to c ·B. The target block size B
is reached only in an average sense, but in a rather strong sense of averaging that we wish to formalize
as follows.

4It is not difficult to observe that if one looks, instead, at impatient users, then any algorithm that relies on historical
prices to set inclusion criteria for the current block (as does EIP-1559) may catastrophically fail to achieve any decent
social welfare under adversarial conditions. We will also show that no online algorithm can achieve near-optimally for
partially patient users, even if they are “very patient”.

5Ethereum’s choice is B = 15M gas.
6Maximum size of only 2B, a factor 2 increase that is independent of the parameters of the input (such as the range

of per-unit values and the time horizon).
7I.e. it was deemed that the “syncing time” of “full nodes” (i.e., reading the entire history of the block chain) is more

significant than the maximum block size limitation, and for it, only the average block size is important.
8This relaxation may be related in motivation to open-ended bin packing (e.g. [Eps22]), but not technically so.
9I.e. the maximum allowed block size in Ethereum is 30M gas.

10This naturally only strengthens our main result.
11This is a mild assumption as any rational operator that is myopic is never better off by excluding transactions that

can simply be added to the block.
12When a similar adjustment mechanism was later adopted for “blob gas” [BFL+22] then a better approximation to

the desired exponential form was taken.
13This happens in the Ethereum implementation because all arithmetic is done in integers denominated in Wei, i.e.

10−18 ETH, and the price cannot become 0.
14The first Ethereum EIP-1559 block was given a price of 1 GWei, i.e. 10−9 ETH.

2



Definition 1.1. A schedule is said to have average block size limit B with slackness ∆ : N → N if for
any number of times steps k, the total size of transactions during any k consecutive blocks is at most
(k + ∆(k)) · B. When ∆ is a constant function (for constant Z it holds that ∆(k) = Z), we abuse
notation and simply write ∆ = Z.

The basic property of the EIP-1559 algorithm is that it indeed produces blocks whose average size
is the target size B.15 While this general fact is well known, we formalize it in our notion of “average
block size limit B with slackness ∆” as follows:

Proposition 1.2. Any schedule produced by an EIP-1559 algorithm with parameters (B, c, η, pmin, p1)
has average block size limit B with slackness ∆ = 1

η · ln H
L + (c− 1), where H and L are upper and

lower bounds on the per-unit value of any input transaction, and on the constants p1 and pmin.

For completeness we provide a proof, in our model and notation, in Proposition 2.11.

1.3 Our Main result

Our main result states that the EIP-1599 algorithm is near-optimal for patient bidders, under some
mild relaxations. Specifically, its allocation over slightly larger time horizon has social welfare that is
close to that of the optimal, clairvoyantly chosen, schedule, that has maximum block size B.

Maximizing the welfare is a challenging problem. Even for a single block it is a knapsack problem,
and thus NP-hard. On top of the computational issue, there are two additional hurdles that the EIP-
1559 algorithm has to overcome. First, the scheduling problem that the EIP-1559 algorithm faces is
an online problem, and so the algorithm is an online algorithm. While the offline (clairvoyant) optimal
benchmark can take into account future transactions that may “fit with” some existing transactions,
online algorithms cannot do so. Nicely, as we will show, the relaxation of the maximum block size
constraint to an average block size constraint suffices to compensate for this online disadvantage,
provided that the maximum block size limit is at least twice that of the benchmark, i.e. c ≥ 2.

Secondly, the EIP-1559 algorithm is not only an online algorithm, but is further constrained as it
is a “pricing-based” algorithm. It has to make decisions that are based on prices (so it cannot pick any
allocation), and moreover, the price at each block is based only on on-chain information from previous
blocks, without any knowledge of the pending transactions in the mempool.

Such algorithms must “search” for the correct prices, which may be difficult under adversarial
conditions. As we show, the EIP-1599 algorithm manages to do so with a loss that can be overcome
by extending the time horizon by the number of blocks that is logarithmic in the per-unit value range.
This single logarithmic loss is global over the whole range of blocks, even though prices may keep
fluctuating.

Let us use ALG to denote the schedule produced by an EIP-1559 algorithm, and for any schedule
S let SW (S, [1, t]) denote the total social welfare of S up to time t.

Theorem 1. Fix an EIP-1559 algorithm with parameters (B, c, η, pmin, p1) for some c > 2. Consider
any (adversarially chosen) sequence C of input transactions where each transaction i ∈ C has per-unit
value vi satisfying eη · pmin ≤ vi ≤ vmax for some vmax ≥ p1. Let OPTB be an arbitrary schedule with
maximum block size B. Then for any time T it holds that

SW (ALG, [1, T + Γ]) ≥ (1− δ) · SW (OPTB , [1, T ])

for δ = 1− e−η ≤ η and any integer Γ≥ 1
η · ln

(
vmax

pmin

)
·max{1, 1

c−2}+ c.

We thus see that the EIP-1559 algorithm can indeed compete with the optimal schedule, but after
suffering two types of losses: first, there is a loss of a small δ ≤ η fraction of the social welfare, where
as the adjustment rate η approaches 0 this loss vanishes. Second, the algorithm is given Γ additional
rounds, where Γ is inversely proportional to η. Conceptually, if T was given in advance we could
balance between these two losses (for any fixed vmax, pmin and c) by choosing η = O(1/

√
T ), which

15Our analysis is for the theoretically clean version with pt+1 = pt ·e(η(Qt−B)/B). As shown in [LRMP23], the variant
with pt+1 = pt · (1 + η(Qt −B)/B) results in a slightly larger average block size.

3



would lose O(1/
√
T ) fraction of welfare every step as well as require an additional O(1/

√
T ) fraction

of steps.16

We remark that the EIP-1559 algorithm is not aware of the time horizon (T ), and in practice it
essentially can continue running indefinitely. The guarantee of the theorem holds concurrently for
every time horizon T (with vmax being the maximal per-unit value up to T ), even with respect to the
time horizon dependent optimal allocation OPT (T ).

Before looking more carefully at generalizations and limitations of this theorem, it is useful to com-
pare the result to two similar-in-spirit papers that study more difficult models and consequently obtain
much weaker results for their models. The first is the analysis of [FMPS21] of price-based mechanisms
in the model of impatient buyers. In this model they only obtain a constant factor approximation and
only under a stochastic model. The second is the analysis of [ADM24] of a generalization of EIP-1559
to multiple resources. They obtained near-optimality (a regret bound somewhat similar to ours) for
the case of impatient bidders, but only relative to the weak benchmark of a single fixed price.

We actually prove a significant generalization of this basic theorem simultaneously along several
dimensions (see Theorem 2 for the exact formal result):

1. Maximum Block Size vs. Maximum Transaction Size: The limitation on the maximum
block size c > 2 is required only when the largest transaction size qmax can be as large as the
full target block size B. If we have a better bound on the maximum transaction size, then the
limitation on c can be relaxed to c > 1+ qmax/B, and in the bound on Γ the expression 1/(c−2)
is replaced by 1/(c − 1 − qmax/B) (with a slight change to the additive term c as well). Notice
that when we have any bound on the maximum transaction size qmax/B < 1 then the actual
choice made in Ethereum of c = 2 suffices for obtaining a good approximation and losing only
η = 1/8 fraction of social welfare when allowed a small number of extra blocks.

2. A Stronger Benchmark with Average Block Size Constraints: As mentioned above, the
EIP-1559 algorithm’s schedule has average block size B, a constraint that is more relaxed than
having maximum block size B which is the benchmark in the theorem. We extend the theorem
to show that the algorithm also competes with the benchmark of schedules with average block
size B with any slackness ∆, where the bound on the constant Γ is now increased by ∆. In this
generalization, the EIP-1559 algorithm with maximum block size c > 1+ qmax/B competes with
any schedule with average block size B, without requiring any upper bound on the benchmark’s
maximum block size.

3. A Stronger Benchmark with Fractional Allocations: One of the things we get “for free”
when we relaxed the maximum block size restriction to an average block size restriction, is that
EIP-1559 turns out to also compete with any fractional allocation that is allowed to arbitrarily
split transactions among blocks or even only fractionally allocate transactions (even though EIP-
1559 does not do that, obviously).

1.4 Lower Bounds

Let us now look deeper at the losses as stated in the main theorem. Not only will we show that
EIP-1559 indeed may suffer such losses, but we will also prove that such losses must be suffered by two
classes of algorithms of which EIP-1599 is a member: a loss for the general class of online algorithms
and an additional loss for a subclass that we term “price-based algorithms” that operate by setting a
price for each block that only depends on on-chain information from previous blocks (see Definition 2.9
for a formal definition).

1.4.1 Maximum Block size

The theorem requires that c > 2, i.e. that the EIP-1559 algorithm is allowed maximum block size that
is more than twice the original block size. We prove such a blowup in the maximum allowed block size
is required by any online algorithm that obtains a welfare guarantee like ours.

16This is somewhat in the vein of regret bounds that balance between losing a small factor (that is proportional to
the learning rate) every step and suffering an additional additive loss that is inversely proportional to the learning rate.
Unlike in classic regret bounds the theorem does not combine both losses into a single O(1/

√
T ) regret measure.

4



The lower bound is proven even if Γ and ∆ can grow with T , as long as they grow as o(T ).
Additionally, they hold even if the welfare approximation needs to be guaranteed only for one, known
value T (that is large enough).

Proposition 1.3. Any online algorithm that produces schedules with maximum block size c · B, for
some c < 2 and average block size limit B with slackness ∆(T ) = o(T ), even with an extension
Γ(T ) = o(T ), must lose at least δc = min(1/8, (2− c)/3) fraction of social welfare relative to schedules
with worst-case block size limit B (even when the values of all transactions are in {1, 2}).

Of special interest is the case c = 2 which is the actual parameter used in Ethereum. While we do
present an online algorithm (that can use information about non-scheduled transactions) with c = 2
that loses no social welfare, we show (Section 4.3) that for any horizon T there is a possible input
sequence where EIP-1559 with Ethereum’s choice of parameter, c = 2, does not compete with the
optimum. We do note however that this is due to very large transactions and, as mentioned above, if
we limit the maximum transaction size by qmax/B < 1, then a positive result emerges also for c = 2.

1.4.2 Dependence on Range of per-unit Values

The theorem suffers a double loss: beyond allowing the algorithm Γ more steps as well as having ∆
slackness, we lose a fraction δ of welfare. Furthermore, both the number of extra steps Γ and the
slackness parameter ∆ increase as a function of the range of possible per-unit values of transactions.
While we exhibit an online algorithm with zero loss of welfare and ∆ = 1,Γ = 1, we prove that the
dependence of Γ or ∆ on the range of per-unit values is unavoidable for price-based algorithms with
good welfare guarantee.

Proposition 1.4. Fix any price-based algorithm with average block size B, slackness ∆, and extension
Γ. There exists an instance with per-unit values in the range [1, H] for which the algorithm does not

obtain a H1/4(Γ+∆)

fraction of the optimal social welfare of a schedule with worst-case block size limit
B (with no slackness or extension). Thus, if a price-based algorithm guarantees a constant fraction of
this optimum, then Γ +∆ must grow as Ω(log logH).

Note that there is an exponential gap between our lower bound (which grows at rate Ω(log logH))
and the upper bound (that is only singly-logarithmic in the per-unit value range). While we do show
that the EIP-1559 algorithm may indeed require such a singly-logarithmic additional number of blocks
in order to compete with the optimum, closing the gap for general price-based algorithms remains
open. Especially intriguing is the possibility of designing a useful “variant” of EIP-1559 with ∆ + Γ
that only grows in a rate double-logarithmic in the per-unit value range.

1.5 Model Extensions

Given our basic positive result of EIP-1559’s near-optimality, it is tempting to generalize this to natural
extensions of the basic model. Specifically, we look at two tempting extensions: to “partially patient”
bidders and to “multi-dimensional fees”. In both cases we prove the impossibility of an extension, and
show that every online algorithm must lose at least some fixed constant fraction δ0 > 0 of the optimal
social welfare. We leave open the question of whether one can recover at least some, smaller, constant
fraction of optimal social welfare.

1.5.1 Partially Patient Bidders

All our results so far assumed “patient bidders”, i.e. where a transaction’s value for its user remains
the same over time. The opposite assumption of “impatient bidders” assumes that a transaction must
be scheduled in the immediate block or it loses all value for its user. A more general model would
capture some sensitivity of the value of a transaction to the time of its execution, where the value
decreases with time. The most common model for such time-dependent value [HLM21, PS24, GY24]
would have a discount rate: A transaction with value v and discount factor ρ (where 0 ≤ ρ < 1) has
value for its user of v · (1− ρ)te−ta , where ta is its arrival time and te its execution time.

Thus the fully patient model corresponds to discount factor ρ = 0, while the impatient model
corresponds to ρ → 1. As the EIP-1559 algorithm does not allow its input to specify any discount
factor, it is not hard to observe that if we just run EIP-1559 on partially patient bidders then, since

5



it does not distinguish between “new” transactions and old ones that already lost most of their value,
it cannot produce highly efficient results. But perhaps if we just let the algorithm take into account,
at every block, the current value of the transaction, then we regain efficiency? I.e., suppose that at
block t, a pending transaction i that has already arrived is considered for allocation if and only if
vi · (1 − ρi)

t−ti ≥ pt? Unfortunately, we get a negative answer and, in fact, a lower bound for any
online algorithm. Significantly, this lower bound holds for arbitrarily low discount factors.

Proposition 1.5. Fix an online algorithm with average block size B, slackness ∆, and extension Γ,
where ∆(T ) + Γ(T ) = o(T ). For every minimum discount rate ρmin > 0 there exist a time horizon
T , and an input sequence where all bidders have discount rates ρi ≤ ρmin and values in {1, 2}, for
which the algorithm loses at least a fraction δ0 = 1/20 of welfare relative to the optimal schedule with
worst-case block size limit B.

This impossibility result applies to scenarios where different transactions may have different dis-
count rates. We do conjecture that the “modified” EIP-1559 is near optimal if the discount rate is
global and shared by all transactions.17 We do show however, that if we replace the model of “discount
factor” with a model where transactions have a “patience level” where they can be scheduled within
p steps of their arrival time without losing any value, but afterwards lose all value, then again, online
algorithms must lose a constant fraction of welfare, even if all transactions have the same patience
level.

1.5.2 Multi-dimensional Fees

In our basic model each transaction has a “single-dimensional” size qi. More generally one may consider
a model where there are m different resources, each block has a size limit Bj for every resource j
and each transaction i uses the amount qij of each resource j (see e.g. [DECA23, ADM24]). The
introduction of the “blob” resource to Ethereum [BFL+22] is a step in this direction. The natural
generalization of the slackness condition to the multi-dimensional case would require that every T
consecutive blocks use at most (T +∆) ·Bj amount of each resource j. While one may hope to extend
the near-optimality result to such a multi-dimensional model, it turns out any online algorithm must
lose some constant fraction of social welfare in the multi-dimensional case.

Proposition 1.6. If there are at least three resources then any online algorithm with average block
size Bj, slackness ∆(T ) = o(T ) for each resource j and given an extension Γ(T ) = o(T ), must lose at
least a constant fraction δ0 = 1/6 of social welfare on some input sequence.

1.6 Strategic Points of View

Our analysis in this paper is purely algorithmic, so our results can be viewed as proving near-optimally
in terms of the declared social welfare: the welfare with respect to the values given as input by the
bidders to the algorithm (rather than the true values). Regarding the operators (miners, validators),
our analysis assumed adversarial behavior, subject to the weak constraint that they must schedule a
maximal by inclusion subset of admissible transactions. While we do not formally make any strategic
analysis, we do want to shortly mention some strategic points of view.

From the point of view of the bidders, the known incentive compatibility of EIP-1559 is only for
impatient bidders18, while patient bidders may in fact shade their bids profitably. So can we expect
truthful bidding from patient bidders? Well, practically, bidders may simply act myopically – in our
case, truthfully – due to the complexity of predicting the future, and their bounded rationality. In
our case, such behavior is also justified by risk aversion: Bidders that are sufficiently risk-averse with
respect to the future will bid truthfully, taking the first available slot at a profit rather than risk never
being scheduled due to possible future increase in demand. An appealing strategic analysis of patient
bidders’ behavior that includes a reasonable model of future uncertainty is of course of much interest,
and is left as a future challenge.19

17Likely suffering an additional loss that behaves like (1− ρ)O(∆+Γ) when all transactions have discount rate ρ.
18Even for impatient bidders, the incentive compatibility of EIP-1559 does not hold in the case of a rapid demand

increase as then tips kick in and winners pay the tips they offer.
19It is interesting to note that if in equilibrium the declared values are monotone in the true values – as may be

expected in many models – then optimizing for the former is closely related to optimizing for the latter. In that case,
our algorithmic results may carry over to the strategic setting in the model in question. A precise statement to such a
result would obviously depends on many details of the model.

6



From the point of view of the operators that assemble the blocks, our analysis undertook an
adversarial point of view. Thus, it should hold under a very general class of strategic behaviors of the
operators, including any reasonable model of myopic operators as studied so far in the literature. The
only required assumption is that scheduling a set of transactions is not less beneficial to the operator
than scheduling only a subset of them.

2 Model and Notations

2.1 Blocks, Schedules, and Social Welfare

We consider transactions that are processed in blocks. At each time t ∈ {1, 2, . . .} one block is
processed. We consider a set C of transactions that arrive online over time, at each time t ∈ N a finite
set of transactions arrives. Each transaction i ∈ C has an arrival time ti ∈ N, size qi > 0, and value
per-unit size of vi > 0 (thus its total value if executed is qi · vi). Transactions are patient, i.e. may
be scheduled at time ti or at any time afterwards, without loss in value. We use qTmax = maxi∈C qi
to denote the maximal size of any transaction arriving up to time T , and use vTmin = mini∈C vi and
vTmax = maxi∈C vi to denote the minimal and maximal per-unit value of any transaction arriving up
to time T , respectively. When T is clear from the context we drop it from these notations and write
qmax, vmin and vmax (instead of qTmax, v

T
min and vTmax).

Definition 2.1. Given a set of transactions C (where finitely many arrive at each time step) a schedule
S is an assignment of transactions to times, such that a transaction cannot be assigned before it
arrives). Formally, for each i ∈ C and t ∈ N, a schedule S = {xi,t}i∈C,t∈N where xi,t ∈ {0, 1} specifies,
for each i ∈ C, t ∈ N, whether transaction i was scheduled at time t, under the constraints that for
every transaction i ∈ C:

• the transaction is not scheduled before it arrives: t < ti implies that xi,t = 0.

• the transaction is assigned no more than one slot:
∑

t∈N xi,t ≤ 1.

Definition 2.2. A fractional schedule S = {xi,t}i∈C,t∈N is a schedule satisfying the exact same two
constraints, but relaxing the integrality requirement on xi,t, allowing for any fraction xi,t ∈ [0, 1].

Definition 2.3. We use Qt(S) =
∑

i∈C xi,t · qi to denote the total capacity used by the schedule S
at time t. When the schedule S is clear from the context we may omit it in the notation and denote
Qt = Qt(S). We say that a schedule has maximum block size B if for all t ≥ 1 we have that Qt ≤ B.

Definition 2.4. We denote the set of transaction in C with per-unit value at least θ by C(θ). For a
schedule S = {xi,t}i∈C,t∈N we use Qt(S, θ) =

∑
i∈C(θ) xi,t ·qi to denote the total capacity of transactions

with per-unit value at least θ that are schedule at time t. We use Q[1,T ](S, θ) =
∑T

t=1 Qt(S, θ) to denote
the total capacity of transactions with per-unit value at least θ that are schedule at times 1, 2, . . . , T .

Note that for brevity we have omitted the implied underlying set of transactions C from the nota-
tions of Qt(S, θ) and Qt(S). We do the same in the following definition of social welfare.

Definition 2.5. The social welfare of a schedule S of transactions in C up to time T , is the sum of
the values of the transactions that were scheduled up to T : SW (S, [1, T ]) =

∑
i∈C,t∈[T ] xi,t · qi · vi.

The social welfare of a schedule may be easily expressed using the quantity parameters:

Lemma 2.6. For any T and any schedule S it holds that

SW (S, [1, T ]) =

∫ ∞

0

Q[1,T ](S, θ)dθ

Proof. By definition Q[1,T ](S, θ) =
∑

i∈C(θ),t∈[T ] xi,t · qi =
∑

i∈C,t∈[T ] xi,t · qi · 1vi≥θ (notice that the
summation over i in the first summation is only over transactions with per-unit value of at least θ, while
in the second summation it is over all transactions). Integrating by θ we have

∫∞
0

Q[1,T ](S, θ)dθ =∑
i∈C,t∈[T ] xi,t ·qi ·

∫∞
0

1vi≥θ(θ)dθ =
∑

i∈C,t∈[T ] xi,t ·qi ·vi. Now notice that this is exactly the definition

of SW (S, [1, T ]).

7



Definition 2.7. A schedule is said to have average block size limit B with slackness ∆ : N → N if for
any number of times steps k, the total size of transactions during any k consecutive blocks is at most
(k+∆(k)) ·B. I.e. for any t0 ≤ t1 we have that

∑t1
t=t0

Qt(S) ≤ (t1− t0+1+∆(t1− t0+1)) ·B. When
∆ is a constant function (for constant Z it holds that ∆(k) = Z), we abuse notation and simply write
∆ = Z.

2.2 Online Scheduling Algorithms

In this paper we consider online scheduling algorithms. While (offline) scheduling algorithms map
all information about the transactions to a schedule, online algorithms are constrained to assemble
transactions into a sequence of blocks using only information about transactions arriving so far.

Definition 2.8. A scheduling algorithm is called online if its allocation at any time t is determined
only as a function of the information known by time t (inclusive), i.e. on information from every
transaction i with ti ≤ t.

We say that a scheduling algorithm has maximum block size B if on every input it produces a
schedule with maximum block size B.

It is perhaps useful to present the EIP-1559 algorithm by first defining a sub-class of online algo-
rithms, termed “price-based”20, which the EIP-1559 algorithm is a member of.

Definition 2.9. A scheduling algorithm is called price-based, if at every time t it sets a per-unit
price pt and maximum size Bt based only on the parameters of the transactions that were executed
at previous times (i.e. every transaction i such that xit′ = 1 for t′ < t). The transactions that are
scheduled at time t are chosen as follows: look at all yet unscheduled transactions i that have already
arrived by time t (ti ≤ t) and are willing to pay pt per unit (vi ≥ pt). From these, an adversary chooses
a maximal (by inclusion) subset of transactions of total size at most Bt.

Thus price-based scheduling algorithms are only allowed to use “on chain” information (i.e. from
transactions that were scheduled before time t) and their allocation decisions must be simply by price
per unit. This is in contrast to the more general class of online algorithms that may take decisions
based on all information known by decision time, and use that information in an arbitrary way.

We next define a family of “EIP-1559 algorithms” - these are price-based algorithms that are
parameterized by several parameter: 1) target block size B > 0, 2) maximum block size c ·B for some
constant c > 1, 3) a price-update parameter η > 0, 4) minimum price pmin ≥ 0, and 5) an initial price
p1 for the first round, satisfying p1 ≥ pmin.

Definition 2.10. The EIP-1559 algorithm with parameters (B, c, η, pmin, p1) such that B > 0, c >
1, η > 0, p1 ≥ pmin > 0, is a price-based algorithm where Bt = c ·B for every time t (so it has maximal
block size c · B), and where the per-unit price pt is computed iteratively as follows: the price at time
t = 1 is p1, and for any t > 1 it holds that pt+1 = max

{
pmin, pt · eη·(Qt−B)/B

}
, where Qt is the total

size of the transactions scheduled at time t.

Observe that the price goes up when Qt > B, and it goes down when Qt < B. The step size η
controls the rate in which the price is updated.

The actual EIP-1559 algorithm with Ethereum’s choice of parameters is such an algorithm with
target block size 15 Mega gas, maximum block size twice as large (c = 2), price-update parameter
η = 1/8, p1 = 10−9 ETH and pmin = 10−18 ETH.21 We also remark that Ethereum’s EIP-1559
algorithm approximates the price update multiplier eη·(Qt−B)/B by 1+ η · (Qt −B)/B (using the first
term of the Taylor expansion, ex ≈ 1 + x). Finally, when there is more demand at the current block’s
price than the maximum block size, then in Ethereum’s EIP-1559 algorithm, the transactions taken are
chosen according to their offered “tip” rather than adverserially. From an algorithmic (non-strategic)
point of view, as we take here, since the tips may be unrelated to the actual values of the transactions,
they may indeed result in any adversarial schedule.

It is generally known that the EIP-1559 algorithm yields blocks whose average size approaches the
target size B. We present the formal statement and proof in our setting and notation.

20This class is conceptually similar to the class considered in [FMPS21] but we take an adversarial abstraction of
the tip mechanism rather than their randomized choice. This whole class shares EIP-1559’s incentive properties in the
impatient case.

21The minimum price is implicit since all price calculations are done in integer multiples of Wei (= 10−18 ETH) and
the first block’s price, when moving to EIP-1559 was set to one Gwei (= 10−9 ETH).

8



Proposition 2.11. The EIP-1559 algorithm with parameters (B, c, η, pmin, p1) has average block size
limit B with slackness ∆ = 1

η · ln vmax

pmin
+ (c− 1).

Proof. Fix any k ∈ N, and consider a sequence of k consecutive blocks [i, j] of length k ≥ 1 (i.e.

j − i = k − 1). If
∑j

t=i Qt = 0 the claim trivially holds. Otherwise, let i′ ≥ i be the lowest index such

that Qi′ > 0. Note that i′ ≤ j and that
∑j

t=i Qt =
∑j

t=i′ Qt.
Since the prices are updated multiplicatively, we have that

pj+1

pi′
=

j∏
t=i′

pt+1

pt
=

j∏
t=i′

max

{
pmin

pt
, eη·(Qt−B)/B

}
≥ eη·(

∑j

t=i′ Qt−k·B)/B

It holds that pi′ ≥ pmin. Additionally, pj+1 ≤ vmax · eη·(c−1) by the following lemma and the fact that
Qi′ > 0 for i′ ≤ j < j + 1:

Claim 2.12. If for time t it holds that Qt > 0 then for any k > t it holds that pk ≤ vmax · eη·(c−1).

Proof. We prove the claim by induction. Assume the claim was true up to time k − 1 ≥ t, so
pk−1 ≤ vmax · eη·(c−1). If pk ≤ pk−1 then pk ≤ pk−1 ≤ vmax · eη·(c−1). Otherwise pk > pk−1, implying
that demand at price pk−1 was positive, so pk−1 ≤ vmax. In that case, the price can only rise above
vmax by a factor of at most eη·(Qk−1−B)/B ≤ eη·(c·B−B)/B = eη·(c−1) since Qk−1 ≤ c ·B.

We conclude that
pj+1

pi′
≤ vmax·eη·(c−1)

pmin
. Combining the two inequalities we get

vmax · eη·(c−1)

pmin
≥ pj+1

pi′
≥ eη·(

∑j

t=i′ Qt−(j−i′+1)·B)/B

taking natural logs

ln
vmax

pmin
+ η · (c− 1) ≥ η

B
·

(
j∑

t=i′

Qt − (j − i′ + 1) ·B

)
thus

B

(
(j − i′ + 1) +

1

η
· ln vmax

pmin
+ (c− 1)

)
≥

j∑
t=i′

Qt =

j∑
t=i

Qt

As i′ ≥ i we have j − i′ + 1 ≤ j − i + 1 = k and thus B · k ≥ B · (j − i′ + 1). Thus, the EIP-
1559 algorithm with parameters (B, c, η, pmin, p1) has average block size limit B with slackness ∆ =
1
η · ln vmax

pmin
+ (c− 1).

3 EIP-1559 has High Welfare for Patient Bidders

In this section we prove our main result, showing that when bidders are patient, the EIP-1559 algorithm
produces schedules of near-optimal welfare, provided it is given a mild resource augmentation (that
does not increase with the time horizon). As a warm up we first analyze a Greedy Online Algorithm
(Section 3.1), illustrating some of the techniques we use in proving our main result. We then present
our main result (Section 3.2), it proof is based on a central lemma which we prove in Section 3.3.

3.1 Warm up: a Greedy Online Algorithm

Before diving into the main theorem, we can get some intuition by proving that a simple online greedy
algorithm with slightly relaxed constraints, competes with the optimum. Specifically, we show that a
simple online greedy algorithm with c = 2, slackness of 1 and extension of 1, has welfare at least as
high as the optimum. This algorithm can be viewed as setting prices at each time, but these prices
are allowed to depend on all input arriving so far. To some extent it is possible to view the EIP-1559
algorithm as attempting to mimic this online algorithm by gradually approximating its prices. This
gradual approximation will take extra steps, require bounds on the per-unit valuations, and incur some
losses which the simple greedy algorithm does not suffer from (as, unlike the EIP-1559 algorithm, it
has full access to all parameters of the transactions that has already arrived).

9



Consider any time horizon T (that need not be known by the algorithm). For any set of arriving
transactions, we compare the welfare of the algorithm to the welfare of the optimal schedule over T
steps, where the optimal schedule is limited to have maximal block size B at each time step (and
thus we can assume that there are only transactions of size at most B). At each time t = 1, 2, . . . , T
our algorithm will greedily schedule pending transactions with the highest per-unit value, until the
first point in which total size of the transactions scheduled by time t is at least t · B (the case there
are not enough pending transactions is an edge case that we may ignore, by pretending to have an
unlimited amount of 0 value transactions). As transactions are of size at most B, we have that
t ·B ≤

∑t
i=1 qt < (t+ 1) ·B, where qt is the total size of transactions scheduled for block t.

Let us denote by pt the value (per unit) of the last (lowest value per unit) transaction scheduled
at time t.

We first observe that for any sequence of Z blocks we have: (Z − 1) ·B ≤
∑t+Z−1

i=t qt < (Z +1) ·B,
and thus this algorithm has average block size B with slackness 1. This also implies that it has
maximum block size 2 ·B.

We next observe that when given an extension of one extra block, this greedy online algorithm
always achieves social welfare at least as high as the optimum schedule of maximal block size B.

We denote the schedule produced by this algorithm by ALG and the optimal (welfare-maximizing
up to time T ) fractional schedule of maximal block size B by OPT .

Proposition 3.1. For any T it holds that SW (ALG, [1, T + 1]) ≥ SW (OPT, [1, T ]).

Proof. In order to analyze its performance, we make the following claim. Fix an arbitrary positive
number θ and denote by Q[1,t](ALG, θ) the total size of transactions whose value (per unit) is at least θ
that were scheduled by the algorithm up to (and including) time t. Similarly, denote by Q[1,t](OPT, θ)
the total size of transactions whose value (per unit) is at least θ that were scheduled by the optimal
(even fractional) schedule that has maximum block size B up to (and including) time t.

Lemma 3.2. For every t and θ we have that Q[1,t+1](ALG, θ) ≥ Q[1,t](OPT, θ).

Proof. The proof of this lemma proceeds by splitting the algorithm’s run into two phases. Let αθ be
the last (largest) time t such that pt < θ (If this never happens then we take αθ = 0). By the end of the
first phase, i.e. at time αθ, there are no pending transactions whose value per unit is at least θ (since
these should have been scheduled before the transaction whose value per unit is pαθ

). Thus, during the
first phase, the total size of transactions with value at least θ that ALG schedules is at least as high as
the total scheduled by OPT, that is, Q[1,αθ](ALG, θ) ≥ Q[1,αθ](OPT, θ). If αθ ≥ T , the claim follows.
Otherwise, αθ < T . Now we look at the second phase, i.e. during times steps αθ +1, . . . , T, T +1. For
any time t in this time range it holds that pt ≥ θ, and thus every transaction scheduled by the algorithm
in that range has value per unit of at least θ. Since, as mentioned above, in every Z consecutive blocks
the algorithm schedules transactions of size at least (Z − 1) ·B, we have that during the second stage
(including time T + 1) our algorithm scheduled transactions of size at least ((T + 1) − αθ − 1) · B,
while OPT can schedule transactions of size at most (T −αθ) ·B during the range αθ +1, . . . , T − 1, T
(i.e without the extra step at time (T + 1)). It follows that in the second phase, the total size of
transactions with value at least θ that ALG schedules (with the extra time step) is at least as high as
the total scheduled by OPT, that is, Q[αθ+1,T+1](ALG, θ) ≥ (T − αθ) ·B ≥ Q[αθ+1,T ](OPT, θ).

The proposition can be directly deduced by from this lemma using Lemma 2.6 that states that the
social welfare achieved by ALG for time 1 till t + 1 can be expressed as

∫∞
0

Q[1,t+1](ALG, θ)dθ, and

similarly, the social welfare achieved by OPT for time 1 till t can be expressed as
∫∞
0

Q[1,t](OPT, θ)dθ.

Remark: This analysis did not assume any bound on the maximum transaction size beyond being
bounded by the target block size qmax ≤ B (since we are competing with schedules with maximum
block size B). If we have a bound on the maximum transaction size then the maximum block size of
this algorithm is in fact sharper: c = 1 + qmax/B.

10



3.2 Our Main Result

Our main result is that EIP-1559 algorithms have the attractive property that for patient bidders (with
some bounds on the per-unit valuations), for any time horizon, they give close to optimal welfare with
respect to the benchmark of all schedules that are restricted to maximum block size B, with slightly
less steps.

This may be viewed as surprising since the algorithm is both restricted to online decisions, and
furthermore, is restricted to be price-based, and yet competes with all offline clairvoyant schedules.
On the other hand, it is not limited by a worse-case block size limit B, but rather block size limit B
holds only on the average with some slackness ∆ (as shown in Proposition 2.11). Additionally, the
algorithm gets an extension of additional Γ time steps, for some appropriately chosen Γ (that does not
grow with the time T ).

We use ALG to denote the schedule produced by an EIP-1559 algorithm. Recall that for schedule
S we use SW (S, [1, t]) the total social welfare of S up to time t.

Theorem 1. Fix an EIP-1559 algorithm with parameters (B, c, η, pmin, p1) for some c > 2. Consider
any (adversarially chosen) sequence C of input transactions where each transaction i ∈ C has per-unit
value vi satisfying eη · pmin ≤ vi ≤ vmax for some vmax ≥ p1. Let OPTB be an arbitrary schedule with
maximum block size B. Then for any time T it holds that

SW (ALG, [1, T + Γ]) ≥ (1− δ) · SW (OPTB , [1, T ])

for δ = 1− e−η ≤ η and any integer Γ≥ 1
η · ln

(
vmax

pmin

)
·max{1, 1

c−2}+ c.

Theorem 1 is a corollary of a more general and stronger result that we prove. First, instead of the
benchmark being only integral allocations, we can take the benchmark to be all fractional allocations
(in which a transaction with per-unit value vi that is allocated a fraction xi ∈ [0, 1] contributes vi ·qi ·xi

to the value of the schedule). Second, we present tighter results for the case that qmax < B, replacing
the assumption that c > 2 with the assumption that c > 1+qmax/B. Third, instead of the benchmark
have worst-case block size limit B, we allow it to only have average block size limit B with slackness
∆′. To allow for this extra slackness we will allow the algorithm an additional ∆′ time steps (effectively
increasing Γ by ∆′). Finally, we will allow the initial price p1 to be arbitrary. When it is larger than
vmax it will imply that Γ grows as ln p1

pmin
.

Theorem 2. Fix an EIP-1559 algorithm with parameters (B, c, η, pmin, p1). Consider any (adversar-
ially chosen) sequence C of input transactions where each transaction i ∈ C has size at most qmax and
has per-unit value vi satisfying eη · pmin ≤ vi ≤ vmax. Assume that c > 1 + qmax

B . Let OPTB,∆′ be an
arbitrary fractional schedule with average block size limit B and slackness ∆′. Then for any time T
it holds that

SW (ALG, [1, T + Γ]) ≥ (1− δ) · SW (OPTB,∆′ , [1, T ])

for δ = 1−e−η ≤ η and for any integer Γ ≥ max
{

1
η ln

(
p1

pmin

)
, 1
η(c′−1) · ln

(
vmax

pmin

)
+ c− 1 + c−2

c′−1

}
+∆′,

where c′ = c− qmax

B .

We note that we do not assume any knowledge of vmax by the algorithm (it is only used for
analysis).

To see that Theorem 1 follows from Theorem 2, observe that when qmax = B we have c > 1+ qmax

B =
2. Additionally, the benchmark of integral schedules with maximal block size B is clearly weaker than
the benchmark of fractional schedule with average block size limit B and slackness ∆′ ≥ 0. Finally, as

c = c′ +1, the assumption that vmax ≥ p1 implies that 1
η ln

(
p1

pmin

)
≤ 1

η ln
(

vmax

pmin

)
and thus Γ must be

at least c+max
{
1, 1

c−2

}
· 1
η · ln

(
vmax

pmin

)
as

c+max

{
1,

1

c− 2

}
· 1
η
·ln
(
vmax

pmin

)
= c−1+

c− 2

(c− 1)− 1
+max

{
1,

1

c− 2

}
· 1
η
·ln
(
vmax

pmin

)
≥ 1

η
ln

(
p1

pmin

)
We remark that if pmin > vmin · e−η then the result still hold, but with respect to schedules that

are only allowed to schedule transactions with value per unit at least pmin · eη. That is, there is an

11



additional additive loss in welfare that is bounded by the welfare of any schedule of transactions of
value per unit less than pmin · eη.

The cornerstone of the proof of the main result is the next lemma which shows that for any θ, the
EIP-1559 algorithm schedules large enough size of transactions of per-unit value θ, as long as it get a
long enough extension. The theorem will be easily deduced from this bound using Lemma 2.6. For
the next lemma, recall that Qt(S, θ) denotes the total size of transactions with per-unit value of at
least θ that were scheduled by S at time t.

Lemma 3.3. Fix an EIP-1559 algorithm with parameters (B, c, η, pmin, p1). Consider any (adver-
sarially chosen) sequence of input transactions, and assume that each transaction up to time T has a
per-unit value at least vmin, and that vmin ≥ eη · pmin. Assume also that c > 1 + qmax

B . Let E denote
the schedule of the EIP-1559 algorithm on the input. For any fractional schedule S with average block
size limit B and slackness ∆′, for any θ ≥ 0 it holds that

Q[1,T ](S, θ) =

T∑
t=1

Qt(S, θ) ≤
T+Γ∑
t=1

Qt(E, θ · e−η) = Q[1,T+Γ](E, θ · e−η) (1)

for any integer Γ ≥ max
{

1
η ln

(
p1

pmin

)
, 1
η(c′−1) · ln

(
vmax

pmin

)
+ c− 1 + c−2

c′−1

}
+∆′, where c′ = c− qmax

B .

The theorem easily follows the main lemma by integrating Eq. (1) over θ, and then applying
Lemma 2.6. By integrating Eq. (1) we conclude that∫ ∞

0

Q[1,T ](S, θ)dθ ≤
∫ ∞

0

Q[1,T+Γ](E, θ · e−η)dθ (2)

By Lemma 2.6 the LHS of Eq. (2) is exactly SW (S, [1, T ]). To evaluate the RHS of Eq. (2), we make
a linear change of variable (with our notation reusing θ)

∫∞
0

Q[1,T+Γ](E, θ·e−η)dθ = eη
∫∞
0

Q[1,T+Γ](E, θ)dθ,
and we use Lemma 2.6 again to conclude that the RHS is exactly eη · SW (E, [1, T + Γ]), as needed.

3.3 Proof of The Main Lemma

Before giving a formal proof of Lemma 3.3, let us give the intuition drawing parallels with the online
algorithm above. Similarly to the previous analysis we will look at the last point in time αθ (to
be simply called α below) where the price was less than θ and the quantity scheduled is at most
Qt ≤ c ·B− qmax, meaning that every transaction with per-unit value at least the price was scheduled.
As previously, up to that point, the EIP-1559 algorithm scheduled everything with per-unit value of at
least θ, so it competes with any schedule S (and also with a fractional one). From this point on there
are always enough pending transactions that are willing to pay at least θ per-unit (quantity larger
than c · B − qmax), so EIP-1559 prices will increase rapidly until they first reach θ (at a time to be
called β below) from which point they can never decrease much below θ (price will always be at least
θ · e−η, the minimum price when price decreases from θ in a single step). So after this point in time,
the EIP-1559 algorithm fills its quota with transactions of value per unit of at least θ · e−η, and since
its average block size limit is the same as that of S, it competes with it successfully if having enough
scheduling time. To compensate for the time it took for the price to rise up to θ (between α and β), we
allow the algorithm an extended time of extra Γ steps to schedule transactions. Additionally, we allow
an extra ∆′ steps to the algorithm, in order for it to compete also with schedules that have average
block size limitations with slackness ∆′. We suffer a loss of a 1− e−η factor due to the possible single
price decrease below θ.

We next present the proof of Lemma 3.3.

Proof. We prove the claim for θ ∈ [vmin, vmax] since the claim is trivial for θ > vmax, and immediate
for θ < vmin from the claim for θ = vmin. Recall that c′ = c − qmax

B . As c′ > 1 it holds that
c · B − qmax = c′ · B > B. We denote θ′ = θ · e−η and observe that θ > θ′ > θ · (1 − η) and that
θ′ = e−η · θ ≥ e−η · vmin ≥ pmin as θ ≥ vmin ≥ eη · pmin. We say that demand at price θ was met
at time t if every transaction i such that vi ≥ θ and ti ≤ t has been scheduled by the algorithm at
or before time t. Observe that if at time t it holds that pt ≤ θ and Qt ≤ c · B − qmax = c′ · B, then
every transaction i such that vi ≥ θ and ti ≤ t must have been scheduled by the algorithm (as any
such unscheduled transaction can fit the block t as Qt + qi ≤ c ·B − qmax + qi ≤ c ·B). In such a case

12



we say that demand at price θ was necessarily met at time t (as all demand at price θ was scheduled
for sure by time t).

Trivially, demand at any price θ was necessarily met at time t = 0 (as no demand arrived yet). Let
α = αθ ∈ [0, T + Γ] denote the latest time t ∈ [0, T + Γ] such that demand at price θ was necessarily
met at time t. We assume for convenience that p0 = pmin ≤ θ and Q0 = 0, so for t = α (even when
α = 0) it holds that pα ≤ θ and Qα ≤ c′ ·B.

To simplify notation we use St(θ) = Qt(S, θ) and Et(θ) = Qt(E, θ). Let Zt(θ) denote the total size
of all transactions that arrived by time t with value at least θ, i.e. i ∈ Zt(θ) if vi ≥ θ and ti ≤ t. It
holds that

α∑
t=1

St(θ) ≤ Zα(θ) =

α∑
t=1

Et(θ) ≤
α∑

t=1

Et(θ
′)

where the rightmost inequality is due to the fact that Et is a non-increasing function of θ and since
θ ≥ θ′.

Thus, if α ≥ T then our claim follows as

T∑
t=1

St(θ) ≤
α∑

t=1

St(θ) ≤
α∑

t=1

Et(θ
′) ≤

T+Γ∑
t=1

Et(θ
′)

So we are left with the case that 0 ≤ α < T . In that case we have

T∑
t=1

St(θ) =

α∑
t=1

St(θ) +

T∑
t=α+1

St(θ) ≤ Zα(θ) +

T∑
t=α+1

St(θ)

As demand at price θ was necessarily met at α, we know that
∑α

t=1 Et(θ
′) ≥

∑α
t=1 Et(θ) = Zα(θ)

so
T+Γ∑
t=1

Et(θ
′) =

α∑
t=1

Et(θ
′) +

T+Γ∑
t=α+1

Et(θ
′) ≥ Zα(θ) +

T+Γ∑
t=α+1

Et(θ
′)

We conclude that to complete the proof we only need to show that
∑T

t=α+1 St(θ) ≤
∑T+Γ

t=α+1 Et(θ
′),

knowing that 0 ≤ α < T and that demand at price θ was not necessarily met at any time t > α.
Thus, in the rest of the proof we assume that demand at price θ was not necessarily met at any

time t ∈ [α + 1, T + Γ], and move to lower bound the total capacity scheduled by the EIP-1559
algorithm between time α+ 1 and T + Γ. As demand at price θ was not necessarily met at any time
t ∈ [α+1, T +Γ], then for t in this range of times, whenever pt ≤ θ then Qt > c′ ·B ≥ B. We conclude
that if pt ≤ θ then pt+1 = pt · eη·(Qt−B)/B > pt · eη·(c

′−1). Thus, if pα < θ then price will start rising
till at some time t ≥ α+ 1 it will holds that pt ≥ θ ≥ θ′.

Additionally, we claim that if for some t > α it holds that pt ≥ θ′, then pt+1 ≥ θ′ (implying that for
any t′ > t it also holds that pt′ ≥ θ′). Indeed, if θ > pt ≥ θ′ then pt+1 = pt ·eη·(Qt−B)/B > pt ·eη·(c

′−1) ≥
pt ≥ θ′. On the other hand, when θ ≤ pt then pt+1 = pt · eη·(Qt−B)/B ≥ pt · e−η ≥ θ · e−η ≥ θ′. We
conclude that once pt ≥ θ′ it holds pt′ ≥ θ′ for any t′ > t.

Now, we use β ∈ [α + 1, T + Γ] to denote the first time the price was at least θ′ (the existence of
such a time is implied by the arguments below since Γ is large enough). So, if β > 1 then it holds that
pβ ≥ θ′ and pβ−1 < θ′ (note that for any time t ∈ [β, T + Γ] it holds that pt ≥ θ′).

To complete the proof we only need to prove the following lemma:

Lemma 3.4. It holds that

T+Γ∑
t=α+1

Et(θ
′) ≥

T+Γ∑
t=β

Et(θ
′) =

T+Γ∑
t=β

Qt ≥ B · (T − α+∆′) ≥
T∑

t=α+1

St(θ)

Proof. Observe that the leftmost inequality is trivial as β ≥ α+ 1. Let us now consider the rightmost
inequality. It holds due to the average block size limitation constraint of B with slackness ∆′, which
state that

∑T
t=α+1 St(θ) ≤ (T − α +∆′) · B. The equality

∑T+Γ
t=β Et(θ

′) =
∑T+Γ

t=β Qt holds as for any
time t ∈ [β, T + Γ] it holds that pt ≥ θ′, and thus all capacity is used to schedule transaction with
value per unit at least θ′.

13



So to complete the proof we only need to show that
∑T+Γ

t=β Qt ≥ B · (T − α + ∆′). For any time

t ∈ [β, T + Γ] it holds that pt ≥ θ′ = e−η · θ ≥ e−η · vmin ≥ pmin (and thus also pt+1 ≥ pmin) so

pt+1 = pt · eη·
Qt−B

B .
Thus

pT+Γ+1

pβ
=

T+Γ∏
t=β

pt+1

pt
=

T+Γ∏
t=β

eη·
Qt−B

B = eη·(
∑T+Γ

t=β
Qt−B

B )

So

B

η
ln

(
pT+Γ+1

pβ

)
=

T+Γ∑
t=β

Qt

−B · (T + Γ− β + 1)

or equivalently,
T+Γ∑
t=β

Qt = B ·
(
T +

1

η
ln

(
pT+Γ+1

pβ

)
+ Γ− (β − 1)

)
(3)

So proving that
∑T+Γ

t=β Qt ≥ B · (T − α+∆′) is immediate from the inequality

1

η
ln

(
pT+Γ+1

pβ

)
+ Γ− (β − 1) ≥ ∆′ − α

which we prove in Lemma 3.5.

Lemma 3.5. It holds that

Γ ≥ 1

η
ln

(
pβ

pT+Γ+1

)
+∆′ + β − (α+ 1)

Proof. Let us first consider the case that β = 1 and α = 0. In this case pβ = p1 and pT+Γ+1 ≥ pmin.
So

Γ ≥ ∆′ +
1

η
ln

(
p1

pmin

)
≥ ∆′ +

1

η
ln

(
pβ

pT+Γ+1

)
where the left inequality holds by the definition of Γ, and the claim follows. Thus, in the rest of the
proof we assume that β > 1.

Recall that β ∈ [α+1, T +Γ] is the first time such pβ ≥ θ′. Thus, as β > 1 it holds that pβ−1 < θ′

(note that we have shown that for any time t ∈ [β, T + Γ] it holds that pt ≥ θ′). Thus for β > 1 it
holds that pβ−1 < θ′, and as pα+1 ≥ pmin we get

θ′

pmin
≥ pβ−1

pα+1
≥ eη·(

∑β−1
t=α+1(Qt−B))/B ≥ eη·(

∑β−1
t=α+1(c

′−1)) = eη·(β−α−1)(c′−1)

Thus

ln

(
θ′

pmin

)
≥ η · (β − α− 1)(c′ − 1)

and as η > 0 and c′ > 1 we get

1

η(c′ − 1)
· ln
(

θ′

pmin

)
≥ β − α− 1 (4)

As η > 0 and c > c′ > 1 (so c − 2 > −1) it holds that vmax · eη·(c−2) > vmax · e−η ≥ θ · e−η ≥ θ′,
by Eq. (4)

1

η(c′ − 1)
· ln
(
vmax · eη·(c−2)

pmin

)
≥ 1

η(c′ − 1)
· ln
(

θ′

pmin

)
≥ β − (α+ 1) (5)

Since β > 1 is the first time the price is at least θ′, the price was rising from time β − 1, and
pβ−1 < θ′ = θ · e−η. In this case pβ is at most θ′ · eη·(c−1). As once the price get to θ′ it never drops

below it, we have pT+Γ+1 ≥ θ′. We conclude that
pβ

pT+Γ+1
≤ θ′·eη·(c−1)

θ′ = eη·(c−1) and therefore

1

η
ln

(
pβ

pT+Γ+1

)
≤ 1

η
ln(eη·(c−1)) = c− 1

14



Combining this with Eq. (5) we get

1

η
ln

(
pβ

pT+Γ+1

)
+∆′ + β − (α+ 1) ≤ c− 1 + ∆′ +

1

η(c′ − 1)
· ln
(
vmax · eη·(c−2)

pmin

)
≤ Γ

where the rightmost inequality follows from the assumption about Γ.

4 Lower Bounds

In this section we show that certain limitations of our main theorem are inevitable. We do so by
proving appropriate lower bounds. Our lower bounds apply more generally to classes of algorithms of
which the EIP-1559 algorithm is a member, some to all online algorithms (see Section 4.2) and others
just for the subclass of price-based algorithms (see Section 4.1). Where there are gaps between our
upper bound for the EIP-1559 algorithm and our general lower bounds, we also show that the upper
bound is in fact the tight one for the EIP-1559 algorithm.

Our lower bounds apply to algorithms that, like the EIP-1559 algorithm, are allowed both some
slackness ∆ and some extension Γ in order to compete with the optimum schedule. As these two
notions of augmentation may be traded-off against each other to some extent22, we will generally
prove lower bounds on their sum.

4.1 Augmentation of Price-Based Algorithms must depend on Value Range

In this section we prove that the dependence of Γ or ∆ on the range of per-unit values is unavoidable
for price-based algorithms with good welfare guarantee, proving Proposition 1.4.

Proposition 4.1. Fix any price-based algorithm with average block size limit B, slackness ∆, and
extension Γ. There exists an instance with values per unit in the range [1, H] for which the algorithm

does not obtain better than a H1/4(Γ+∆)

fraction of the optimal social welfare of a schedule with worst-
case block size limit B (with no slackness or augmentation). Thus, if a price-based algorithm guarantees
a constant fraction of this optimum, then Γ +∆ must grow as Ω(log logH).

Proof. Given an algorithm with parameters ∆ and Γ, and assume wlog that B = 1, we will choose
some parameters T, r and design a set of input scenarios that for at least one of them the algorithm
cannot achieve more than (1 + (Γ + ∆)/T )/r fraction of the social welfare. This, with our choices of
parameters r and T , will give the desired upper bound.

We will look at our algorithm running for R = T + Γ steps, where all transactions arrive at time
1. We will have 2R + 1 possible inputs scenarios, where in input scenario number m (0 ≤ m ≤ 2R) we
have, for every integer 0 ≤ i ≤ m, exactly (R+∆) transactions with value ri (all arriving at time 1),
each of size 1. We also specify how our adversary will respond to every price p in each input scenario
m. If p > rm then there are no transactions that are willing to pay this price so no transactions will
be scheduled. if p ≤ rm then the adversary will always schedule only transactions with the lowest
possible value (i.e. those with value ri for the smallest i so that ri ≥ p). Note that there are enough
transactions of this value to suffice for anything that can be scheduled by the end of time R.

Now let us look at a price-based algorithm running for R steps on one of these input scenarios. For
any price p that is queried by the algorithm there are at most two possible answers by the adversary
on any one of these scenarios: either no transaction is scheduled or as many transactions as allowed
by the block’s capacity, each of the value ri for the i completely determined by the price, is scheduled.
It follows that the complete set of possible behaviors of the algorithm on all possible scenarios can be
described as a binary tree of depth R, containing at most 2R−1 possible prices in all and splitting the
possible transactions into the 2R leaves of the tree. Since there are 2R + 1 possible scenarios, two of
them must map into the same leaf and thus produce the exact same schedule. So let us assume that

22All our lower bounds hold even for a single horizon T that is known to the algorithm in advance. In that setting,
shifting between the two parameters is indeed possible. If there is a single horizon T that is known by the algorithm,
the extension may be completely transferred to additional slackness by immediately scheduling at the last block all
transactions that were intended for the extension period. Similarly, slackness can be shift to an extension when T is
known, by postponing some scheduling to the extension time.

15



input scenarios m < m′ get the same behavior by the algorithm, which must thus never schedule any
transactions with any value strictly greater than rm as such do not exists in scenario m.

So now let us compare the social welfare of our algorithm on input scenariom′ to that of the optimal
schedule. The optimal schedule for T blocks with worst-case block size 1 always uses transactions with
value rm

′
for a total welfare of rm

′ ·T . Since our algorithm cannot use transactions with value greater
rm and has slackness ∆ and runs for Γ extra steps, its welfare is bounded by rm · (T + Γ + ∆). The
fraction of welfare obtained in scenario m′ is bounded from above by (1 + (Γ +∆)/T )/r.

Now for our choice of parameters. We let T = Γ + ∆ which ensures that the nominator in
the expression above is the constant 2, and thus, the fraction of social welfare (with respect to the
benchmark of any schedule with worst-case block size limit 1, and no slackness or augmentation)
that is achieve by the algorithm is bounded from above by 2/r. Our choice of T also ensures that

R = T +Γ ≤ 2T = 2(Γ+∆) and since for our choice of r we only needed that r2
R ≤ H we may choose

r = H1/22T = H1/22(Γ+∆)

= H1/4(Γ+∆)

, which concludes the proof.

4.2 Online Algorithms need to Relax the Maximum Block Size

In this section we restate and prove Proposition 1.3, showing that every online algorithm with maximum
block size c ·B for c < 2, must lose a constant fraction of welfare.

Proposition 4.2. Any online algorithm that produces schedules with maximum block size c · B, for
some c < 2 and average block size limit B with slackness ∆(T ) = o(T ), even with an extension
Γ(T ) = o(T ), must lose at least δ0 = min(1/8, (2− c)/3) fraction of social welfare relative to schedules
with worst-case block size limit B (even when the values of all transactions are in {1,2}).

Remark: this proposition applies to the case where the largest transaction size can be as large as
B. If we have an upper bound on qmax/B then the lower bound applies whenever c < 1 + qmax/B,
matching the positive result in Section 3.1.

Proof. Here is the construction for the lower bound (assuming w.l.o.g. that B = 1): We take T to be
large enough so that Γ and ∆ that are o(T ) are as small as we want relative to T . In each of the first
T/2 steps we get one “red” transaction with size 1 and value 1 and one “green” transaction with size
c/2+ ε and value 2. Notice that as c > 1 at most one of these transactions can fit into each block. Let
us look at G which is the number of green transactions that were scheduled during the first T/2 steps.

Case I: G ≤ T/4. In this case the total value achieved in the first T/2 steps is at most 2 · G +
1 · (1/2 − G) ≤ 3/4. In this case consider the case where for the next T/2 steps, in each step a new
transaction of size 1 and value 2 enters. In this case the best that the mechanism can do is get value 2
for each of the remaining T/2 steps and the extension period Γ = o(T ) for a total social welfare of at
most 7T/4 + o(T ). In comparison the optimal schedule with block size 1 would schedule all the green
transactions in the first half, getting a value of 2 every step for a total of 2T , so the ratio of welfares
in this case is bounded from above by 7/8 + o(1).

Case II: G > T/4. In this case consider the case where for the next T/2 steps we get a large number
of small transactions of size γ with value γ (i.e. value per unit of 1) each. The total size of all blocks
produced by our algorithm during all T steps and the extension Γ is at most T +∆+ Γ = T + o(T ).
The total welfare achieved by the algorithm can thus be bounded by T + o(T ) (obtained from red
transactions and from small transactions) plus T/2 (the extra 1 value from every green transaction)
minus (1 − c/2 − ε) · G which is the capacity completely lost by scheduling green transactions in the
first half. Thus the total welfare is at most T · (3/2 + c/2− 1 + ε+ o(1)). The optimal schedule with
maximum block size 1 would keep all the green transactions for the second half, getting a social welfare
of exactly 3T/2. The ratio between these two welfare expressions is (1 + c + o(1))/3, so the fraction
lost is at least 1− (1 + c+ o(1))/3 = (2− c− o(1))/3.

4.3 Lower Bounds Examples for the EIP-1559 Algorithm

Our lower bounds for general classes of algorithms presented above do not match the upper bounds of
our main theorem for the EIP-1559 algorithm (Theorem 2). In this section we observe, by providing
examples, that the upper bounds of our main theorem are in fact tight for the EIP-1559 algorithm.

16



4.3.1 c = 2 Does not Suffice for the EIP-1559 Algorithm

In Proposition 4.2 we showed that the maximum block size must be chosen to be at least 2 · B in
any online algorithm that attempts to compete with offline schedules whose worst case block size is B
(when qmax = B), i.e., in our notation, the lower bound showed that we need c ≥ 2. Proposition 3.1
showed that c = 2 indeed suffices for the online algorithm that we presented. However, our main
theorem for qmax = B requires the maximum block size to be strictly greater than twice the average
block size limit, c > 2, and in fact the result also uses an extension that grows in rate that is inversely
proportional to c−2. So the question is whether having the maximum block size 2 ·B in the EIP-1559
algorithm, i.e. c = 2, suffices for near-optimally. This question is especially interesting since the actual
choice of parameters in Ethereum is exactly c = 2, as the target block size is B = 15M gas and the
maximum block size is defined to be 2B = 30M gas.

Here is an example showing that the EIP-1559 algorithm with c = 2, even with an extension that
grows as Γ(T ) = o(T ), cannot give even half of the optimum social welfare.23 For notional convenience
let us assume without loss of generality that pmin = 1 (otherwise just scale all the values in the rest
of the proof by pmin). Our example starts with steps where no transactions arrive, and so blocks are
empty and the price decreases to pmin = 1. From this point on, every time step t, we get as input one
“high” transaction of size exactly B and value per unit 10, and additional “low” transactions of total
size (1 + ε) · B and value per unit 2, where ε > 0 is a parameter, to be specified below, that may be
as small as we wish. (The size composition of the low transactions does not matter as long as their
total size is (1+ ε) ·B.) In our example the low transactions offer a high tip, i.e. the adversary always
schedules them before the high transaction.

Now let us see how the EIP-1559 algorithm deals with this input. As long as pt ≤ 2, both the
high and the low transactions can be scheduled, and since the low transactions have priority they
will be scheduled first, filling the block to size (1 + ε) · B. At this point the high transaction cannot
get scheduled, since scheduling it will just exceed the maximum allowed block size of 2 · B, so the
block closes at size (1 + ε) · B. Thus the next price will be pt+1 = pt · eεη. Notice that at this rate
of price increase, it will take Ω(1/(εη)) blocks for the price to reach the value 2. As long as this is
the case, the EIP-1559 algorithm’s welfare per block is less than a quarter of the optimal schedule’s
welfare per block (since the optimal schedule can at the very least accept a high transaction of value
10 every block while the algorithm accepts transactions of value 2 · (1 + ε) which for small enough ε
is less than 2.5 = 10/4). Now, if we take T to be half of the time it took for the price to rise to 2
(so, T = Ω(1/(εη))) we must have the extension also be at least Γ ≥ T in order to reach even half
of the optimal social welfare (since the algorithm that accrues welfare at a rate of a quarter of the
optimal, must run at least for twice as many blocks in order to reach half the social welfare). In order
to show that no extension Γ(T ) = o(T ) suffices to get even half of the social welfare on this example,
just choose ε = O(1/(ηT )) for T so that Γ(T ) ≤ T .24

Thus, this lower bound shows that Ethereum’s choice of parameter c = 2 is problematic when
there are transactions of size qmax = B that contributes significantly to the welfare. As the general
version of our main theorem showed, this problem disappears once transaction sizes are limited by
some qmax < B.

4.3.2 EIP-1559 suffers a single logarithmic loss in the range size

While, as we showed in Proposition 3.1, online algorithms may compete with the optimum using
constant slackness and extension (∆ = 1 and Γ = 1), Proposition 4.1 proved a lower bound of ∆ +
Γ = Ω(log logH) for price-based algorithms when the transaction per-unit values are in the range
[1, H]. Our upper bound for the EIP-1559 algorithm in the main theorem is exponentially worse, with
Γ = O(logH). Additionally, by Proposition 2.11 we know that the EIP-1559 algorithm has slackness
∆ = O(logH).

We show that these upper bounds are the correct ones for the EIP-1559 algorithm. Our example
starts with steps where no transactions arrive, and so blocks are empty and the price decreases to

23This example also shows that even when c > 2, as c approaches 2, the extension length must grow inversely
proportional to c−2. Simple tweaks in the example will show that even longer extensions cannot guarantee even a lower
fraction of the welfare.

24When c > 2 but is close to 2, one may take this example with ε ≈ c− 2 and get a lower bound of Ω
(

1
η(c−2)

)
on the

extension.

17



pmin ≤ 1. At this point of time, a large amount of “high” transactions with value per unit of v = H
arrive. Additionally, at that time also arrive a large amount of “low” transactions with value of L
per unit, where H > L > 1 are parameters. The exact size composition of low and high transactions
does not matter, as long as there is enough demand in each of these values to always completely fill
blocks to the maximum block size. For our example, the low transactions will offer high “tips”, i.e.
the adversary will give them priority.

So how will the EIP-1559 algorithm react to this input? After the price decreases to pmin ≤ 1, only
low transactions are scheduled, filling blocks to the maximum block size, so the prices will increase
as pt+1 = pt · e(c−1)η, where c is the maximum block size multiplier. So after k steps we have
pt+k = pt · ek·(c−1)η. As long as L ≥ pt the adversary will only schedule low transactions, while the
optimum schedule will only have high transactions, getting a ratio of H/L in the social welfare. This
can go on for at most k = Θ(logL/((c−1)η)) steps (after which pt that started at pmin ≤ 1 can exceed
L), which by choosing L to be an arbitrary constant factor lower than H (so logH = Θ(logL)) gives
us that extension Γ ≥ k = Ω(logH/((c − 1)η)) is needed to before we get better than the constant
factor approximation H/L to the welfare. Also, looking at these k steps of price increase, note that
all blocks are completely full, i.e. their total size is k · c · B, which implies that the slackness is
∆ ≥ k · (c− 1) = Ω(logH/η).

5 Model Extensions

In this section we consider two model extensions: to partially patient bidders and to multiple re-
sources. In both cases we present impossibilities, showing that losing a constant fraction of the welfare
in inevitable even for general online algorithms (not only price-based algorithms or the EIP-1559
algorithm).

5.1 Partially Patient Bidders: Online Algorithms must Lose a Constant
Factor

All our results so far assumed “patient bidders”, i.e. where a transaction’s value for its user remains
the same over time. The opposite assumption of “impatient bidders” assumes that a transaction must
be scheduled in the immediate block or it loses all value for its user. A more general model would
capture some sensitivity of the value of a transaction on the time of its execution, where the value
decreases with time. There are two simple models for such dependence on time:

Definition 5.1. A transaction with value v and discount factor ρ (where 0 ≤ ρ < 1) has value for its
user of v · (1− ρ)te−ta if where ta is its arrival time and te its execution time.

Definition 5.2. A transaction with value v and patience p has value of v for its user if it have been
scheduled within p blocks of its arrival time and value 0 otherwise. I.e. if ta is its arrival time and te
its execution time then the user’s value is v if ta ≤ te ≤ ta + p (and 0 otherwise).

Thus the fully patient model corresponds to patience level p → ∞ or discount factor ρ = 0, while
the impatient model corresponds to p = 0 or ρ → 1. Clearly the EIP-1559 algorithm does not allow
its input to specify any patience level or discount factor. It is not hard to observe that if we just run
EIP-1559 on partially patient bidders without taking the patience or discount factor into account then
since it does not distinguish between “new” transactions and old ones that already lost most or all of
their value, it cannot produce efficient results. But perhaps if we just let the algorithm at every block
take into account the current value of the transaction, then we regain efficiency? I.e. for the discount
factor model, at block t, a pending transaction i that has already arrived is considered for allocation
if and only if vi · (1− ρi)

t−ti ≥ pt. Unfortunately, we get a negative answer and, in fact, lower bounds
for any online algorithm. Significantly, these lower bounds hold for arbitrarily high patience (or low
discount factor).

Proposition 5.3. Fix an online algorithm with average block size limit B, slackness ∆, and extension
Γ, where ∆(T ) + Γ(T ) = o(T ). For every minimum discount rate ρmin > 0 there exist a time horizon
T , and an input sequence where all bidders have discount rates ρi ≤ ρmin and values in {1, 2} for
which the algorithm loses at least a fraction δ0 = 1/20 of welfare relative to the optimal schedule with
worst-case block size limit B.

18



Proof. Fix an online algorithm with average block size limit 1, slackness ∆(T ), and extension Γ(T ).
Choose T that is larger than Γ(T )+∆(T ) by a large factor K, and also such that (1−ρmin)

T/3 ≤ 1/2.
Let p = T/3 and denote ρ = ρmin. Now consider the following input scenario: At block 1, We have
p “patient” transactions arriving, each with size qi = 1, value vi = 2, and discount rate ρi = 0. Also
at each of the first p blocks arrives one “hasty” transactions, each with size qi = 1, value vi = 1, and
discount rate ρi = ρ. So now our algorithm has to decide what to schedule during the first p steps:
the high-value patient transactions or the low-value hasty transactions.

Case I: by the end of time p at least p/2 hasty transactions have been scheduled. In this case, for
block p+1 our adversary will choose as input 2p more transactions each with size qi = 1, value vi = 2,
and discount rate ρi = 0. Now by the end of time T = 3p at most T +∆(T )+Γ(T ) = T · (1+O(1/K))
transactions have been scheduled, at least p/2 of them of value 1 and the rest of value 2. So the total
social welfare achieved is at most 2 · (5/2 + O(1/K))p + 1 · p/2 = (11/2 + O(1/K)p. On the other
hand, the optimal offline benchmark would only schedule the high-value patient transactions for a
social welfare of 2 · 3p = 6p, so the ratio of welfares is 11/12 + O(1/K) which, by choosing K large
enough, is less than 19/20.

Case II: on the end of time p at most p/2 hasty transactions have been scheduled. In this case, in
each of the next p steps we get a single transaction with size qi = 1, value vi = 1, and discount rate
ρi = ρ (and nothing more arrives in the last p steps). We can assume wlog that our online algorithm
was “clever enough” to schedule all new transactions during the “middle” p steps as otherwise switching
a scheduled hasty transaction or patient transaction with the new transaction that arrived at that time
step will only increase the social welfare (since both the hasty transaction and the new transaction
lose value at the same rate ρ but the new transaction has not lost value yet when it arrived while the
hasty transactions have already lost some of their initial value. Patient transactions do not lose value
at all.) It follows that at most ∆ hasty transactions where scheduled during the ”middle” p blocks
and so the social welfare that our algorithm gets can be bounded from above by (19/4 + o(1)) · p: 2p
from all the new transactions (that are scheduled in the middle p steps) plus 2p from all the patient
transactions plus at most 3p/4 +∆ from the hasty transactions since at least half of them (minus ∆)
are scheduled in the last p block after they have lost at least half their value (since each of them waited
at least for the middle p steps and (1 − ρ)p ≤ 1/2). The optimal offline solution is to schedule the
hasty transactions as they come in the first p steps, schedule the new transactions, as they come, in
the middle p steps, and leave the patient transactions for the last p steps, getting the full value of 5p.
The ratio between these welfares is at most 19/20 + o(1).

Notice that the proof uses transactions with different discount rates. It is interesting to ask what
can be done when all transactions share the same, global, discount rate. We conjecture that, in fact,
the modified EIP-1559 (that takes into account current values) does produce nearly-optimal schedules
with a loss that approaches the loss of the fully patient case, as the minimum discount rate ρmin

approaches 0.
For the other model, of bidders with given patience levels, we can show that having a global patience

level does not suffice and exhibit an impossibility result for online algorithms where all transactions
share a fixed, arbitrarily high, patience level pi = p.

Proposition 5.4. Fix an online algorithm with average block size limit B, slackness ∆, and extension
Γ. For every global patience level p and every time horizon T ≥ 2p, there exists an input sequence
where all bidders have patience pi = p and values in {1, 2} where the algorithm loses at least a fraction
δ0 = 1/10 of welfare relative to the optimal schedule with worst-case block size limit B.

Comment: If the patience of all bidders is just slightly larger than the time horizon, pi ≥ T , then
we are back to the fully patient case and near-optimality is regained.

Proof. Let B = 1 and fix an online algorithm with average block size limit B and slackness ∆. Let
p = (Γ+∆)/ε for some small constant ε to be specified below. We will prove the lemma for T = 2p and
the same follows for any larger T by adding an arbitrarily long time prefix with no input transactions.
At time 1 arrive p “green” transactions with value 1 and size 1. Additionally, every time step for the
next p − 1 steps arrives a single“red” transaction with value 2 and size 1. Let us look at how many
red transactions were scheduled by our algorithm by the end of time p.

Case I: at least p/2 red transactions were scheduled. Since the total number of scheduled trans-
actions by this time is at most p + ∆, this means that at least p/2 −∆ green transactions were not

19



scheduled and can never be scheduled any more since their deadline has passed. Now assume that
no more transactions arrive in the next p steps, so our algorithm can schedule the rest of the red
transactions but, again, not the unscheduled green ones. This gives an upper bound of 2p+ p/2 + ∆
on the social welfare of our online algorithm. The Optimal clairvoyant algorithm could have scheduled
only the green transactions during the first p steps and then the red transactions, one after another,
after that for a total social welfare of 2(p− 1) + p. The ratio between these amounts is 5/6 +O(ε).

Case II: less than p/2 red transactions were scheduled by the end of time p. Now assume that
another p “new” transactions arrive at time p+1 each with value 2 and size 1. Since the total quantity
scheduled in the first p steps is at most p+∆ and since at most p/2− 1 of this quantity has a value
per unit of 2 and the rest have value 1, then during the first p steps our online algorithm could have
made at most p+∆+ p/2− 1 social welfare. In the second half, including the extra allowed Γ steps,
an upper bound to the social welfare that it can make is 2(p+∆+ Γ). Thus the total welfare of our
online algorithm is bounded from above by 7p/2 + O(ε) welfare. The Optimal clairvoyant algorithm
could have scheduled only the red transactions during the first p steps and then scheduled the new
transactions in the next p steps for a total welfare of 4p. The ratio between these amounts is 7/8+O(ε).
Choosing ε small enough that this amount is less than 1/10 concludes the proof of the theorem.

5.2 Multidimensional Case: Online Algorithms Must Lose a Constant Fac-
tor

In our basic model each transaction has a “single-dimensional” size qi. More generally one may consider
a model where there are m different resources, each block has a size limit Bj for every resource j and
each transaction i uses the amount qij of every resource j (see e.g. [DECA23, ADM24]). The natural
generalization of the slackness condition to the multi-dimensional case would require that every T
consecutive blocks use at most (T +∆) ·Bj amount of each resource j. The introduction of the “blob”
resource to Ethereum [BFL+22] is a step in this direction. While one may hope to extend the near-
optimality result to such a multi-dimensional model, it turns out any online algorithm must lose some
constant fraction of social welfare in the multi-dimensional case.

Theorem 5.5. If there are at least three resources then any online algorithm with average block size
Bj and slackness ∆(T ) = o(T ) must lose at least a constant fraction δ0 = 1/6− o(1) of social welfare
on some input sequence, even when allowed Γ(T ) = o(T ) extension.

Proof. Consider the case of three resources, X, Y, and Z, and assume that the block size for each
resource is BX = BY = BZ = 1. Let t = T/2 where T is the horizon over which our online algorithm
aims to approximate OPT and fix at an online algorithm that uses each resource at total capacity of
at most (t+∆) during any consecutive t blocks.

At time 1 we get t demand for the bundle {X,Z} and t demand for the bundle {Y, Z} each at value
of 1 per unit of the bundle.

During the first t steps there is only capacity of t + ∆ of resource Z so at least one of the two
types of demanded bundles is allocated at most at total capacity (t+∆)/2. Without loss of generality
assume that the bundle {X,Z} is allocated at most (t+∆)/2 during the first t steps. Now at time t+1
we get another demand of t for the singleton bundle {X} again at value 1 per unit of X. (Of course,
had the bundle {Y,Z} been the one that was at least half-un-allocated then our adversary would have
brought demand for the singleton bundle {Y } instead.) The best that our online algorithm can do at
this point is pack singleton bundles X together with any leftover of the original bundles {Y, Z} into
the remaining blocks, and leaving at least t/2−∆−Γ demand for the bundle {X,Z} unsatisfied for a
total value of at most (5t+∆+ Γ)/2. OPT, on the other hand, could have fully allocated everything
by allocating only the {X,Z} bundles for the first t blocks and packing the demand for {Y,Z} with
{X} in each of the last t blocks getting a total value of 3tB. The ratio between these two levels of
social welfare is 5/6 + o(1).

We do not know whether the case of two resources has a similar impossibility result, we leave
this problem, and the problem of getting some constant-factor approximation with any number of
resources, for future work.

20



Acknowledgments

We thank Shiri Ron for useful discussions during the early stages of this work. Noam Nisan thanks his
colleagues in Starkware for many useful discussions. Moshe Babaioff’s research is supported in part
by a Golda Meir Fellowship and the Israel Science Foundation (grant No. 301/24). Noam Nisan’s
research was supported by a grant from the Israeli Science Foundation (ISF number 505/23).

References

[ADM24] Guillermo Angeris, Theo Diamandis, and Ciamac Moallemi. Multidimensional Blockchain
Fees are (Essentially) Optimal. arXiv preprint arXiv:2402.08661, 2024.

[AGHH23] Sarah Azouvi, Guy Goren, Lioba Heimbach, and Alexander Hicks. Base Fee Manipulation
In Ethereum’s EIP-1559 Transaction Fee Mechanism. arXiv preprint arXiv:2304.11478,
2023.

[BCD+19] Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden, and Abdelhamid
Bakhta. EIP-1559: Fee market change for ETH 1.0 chain. https://eips.ethereum.org/
EIPS/eip-1559, 2019. Ethereum Improvement Proposals [Online serial].

[BFL+22] Vitalik Buterin, Dankrad Feist, Diederik Loerakker, George Kadianakis, Matt Garnett,
Mofi Taiwo, and Ansgar Dietrichs. EIP-4844: Shard Blob Transactions. https://eips.

ethereum.org/EIPS/eip-4844, 2022. Ethereum Improvement Proposals [Online serial].

[But14] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Appli-
cation Platform. https://ethereum.org/en/whitepaper, 2014.

[CS23] Hao Chung and Elaine Shi. Foundations of transaction fee mechanism design. In Proceedings
of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3856–
3899. SIAM, 2023.

[DECA23] Theo Diamandis, Alex Evans, Tarun Chitra, and Guillermo Angeris. Designing Multidimen-
sional Blockchain Fee Markets. In 5th Conference on Advances in Financial Technologies
(AFT 2023), volume 282, pages 4:1–4:23, 2023.

[Eps22] Leah Epstein. Open-end bin packing: new and old analysis approaches. Discrete Applied
Mathematics, 321:220–239, 2022.

[FMPS21] Matheus VX Ferreira, Daniel J Moroz, David C Parkes, and Mitchell Stern. Dynamic
posted-price mechanisms for the blockchain transaction-fee market. In Proceedings of the
3rd ACM conference on Advances in Financial Technologies, pages 86–99, 2021.

[GTW24] Aadityan Ganesh, Clayton Thomas, and S Matthew Weinberg. Revisiting the Primitives
of Transaction Fee Mechanism Design. In ACM EC, 2024.

[GY24] Yotam Gafni and Aviv Yaish. Competitive revenue extraction from time-discounted trans-
actions in the semi-myopic regime. arXiv preprint arXiv:2402.08549, 2024.

[HLM21] Gur Huberman, Jacob D Leshno, and Ciamac Moallemi. Monopoly without a monopolist:
An economic analysis of the bitcoin payment system. The Review of Economic Studies,
88(6):3011–3040, 2021.

[LMR+21] Stefanos Leonardos, Barnabé Monnot, Daniël Reijsbergen, Efstratios Skoulakis, and Geor-
gios Piliouras. Dynamical analysis of the EIP-1559 Ethereum fee market. In Proceedings
of the 3rd ACM Conference on Advances in Financial Technologies, pages 114–126, 2021.

[LRMP23] Stefanos Leonardos, Daniël Reijsbergen, Barnabé Monnot, and Georgios Piliouras. Opti-
mality despite chaos in fee markets. In International Conference on Financial Cryptography
and Data Security, pages 346–362. Springer, 2023.

[Nak09] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http://www.

bitcoin.org/bitcoin.pdf, 2009.

21

https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://ethereum.org/en/whitepaper
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf


[Nis23] Noam Nisan. Serial monopoly on blockchains. arXiv preprint arXiv:2311.12731, 2023.

[PS24] Paolo Penna and Manvir Schneider. Serial monopoly on blockchains with quasi-patient
users. arXiv preprint arXiv:2405.17334, 2024.

[Rou21] Tim Roughgarden. Transaction Fee Mechanism Design. In Proceedings of the 22nd ACM
Conference on Economics and Computation, EC ’21, page 792, 2021.

22


	Introduction
	Background on Blockchains
	The EIP-1559 algorithm and its parameters
	Our Main result
	Lower Bounds
	Maximum Block size
	Dependence on Range of per-unit Values

	Model Extensions
	Partially Patient Bidders
	Multi-dimensional Fees

	Strategic Points of View

	Model and Notations
	Blocks, Schedules, and Social Welfare
	Online Scheduling Algorithms

	EIP-1559 has High Welfare for Patient Bidders
	Warm up: a Greedy Online Algorithm
	Our Main Result
	Proof of The Main Lemma

	Lower Bounds
	Augmentation of Price-Based Algorithms must depend on Value Range
	Online Algorithms need to Relax the Maximum Block Size
	Lower Bounds Examples for the EIP-1559 Algorithm
	c=2 Does not Suffice for the EIP-1559 Algorithm
	EIP-1559 suffers a single logarithmic loss in the range size


	Model Extensions
	Partially Patient Bidders: Online Algorithms must Lose a Constant Factor
	Multidimensional Case: Online Algorithms Must Lose a Constant Factor


