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Abstract

We study the problem of designing a two-sided market (double auction) to maximize the gains
from trade (social welfare) under the constraints of (dominant-strategy) incentive compatibility
and budget-balance. Our goal is to do so for an unknown distribution from which we are given
a polynomial number of samples. Our first result is a general impossibility for the case of
correlated distributions of values even between just one seller and two buyers, in contrast to the
case of one seller and one buyer (bilateral trade) where this is possible. Our second result is an
efficient learning algorithm for one seller and two buyers in the case of independent distributions
which is based on a novel algorithm for computing optimal mechanisms for finitely supported
and explicitly given independent distributions. Both results rely heavily on characterizations of
(dominant-strategy) incentive compatible mechanisms that are strongly budget-balanced.



1 Introduction

In principle, designing a market for identical goods should be an easy task: the market should
aggregate the demand from all buyers as well as the supply from all the sellers, compute the market
clearing price, and have the sellers whose value lies below the clearing price sell to the buyers whose
value lie above the clearing price. This maximizes gains from trade and achieves optimal social
welfare.1 Yet, this solution does not take incentives into account: there is an incentive for sellers to
overbid and for buyers to underbid. While in “large” markets one may expect these effects to be
negligible, “small” markets must be carefully designed, taking the agents’ strategic considerations
into account.

The celebrated VCG mechanism can be used to handle the incentives issue by inducing truthful
reporting as dominant strategies. Unfortunately, in trade settings the VCG mechanism is not
budget balanced but rather loses money, and thus is not feasible without an external source of
subsidies. As the VCG mechanism is essentially the unique mechanism that maximizes gains from
trade in dominant strategies, this implies the general impossibility of maximizing gains from trade
in a budget balanced way in dominant strategies. In fact, [MS83] show that maximizing gains from
trade without subsidies is impossible even in the much more relaxed sense of Bayesian incentive
compatibility.2 Furthermore, this holds even for the setting of a bilateral trade in which a single
seller has one item to sell to a single buyer.

Given that it is impossible to fully maximize gains from trade in strategic trade settings without
subsidies, we aim to computationally design strategic budget-balanced mechanisms that have the
highest possible gains from trade. We focus on the simplest class of mechanisms:

Definition 1.1. A market mechanism is called simple if it is: (1) Deterministic (2) Dominant
Strategy Incentive Compatible (DSIC) (3) Normalized (i.e. a participant that does not trade neither
pays nor gets any money.) (4) Ex-post Strongly budget balanced (SBB). I.e., in every instance the
payment by a trading buyer is equal to the amount received by the seller (5) Ex-post individually
rational (i.e., in no instance does any truthful participant get negative utility.)

Our main focus is on a setting where we are given samples from an unknown distribution
of values and our goal is to design a mechanism that has good performance on the underlying
distribution. This setting is naturally viewed as a learning procedure that finds a simple mechanism
with close-to-optimal gains from trade, when the learner only has access to “historical data” of
samples from the underlying distribution of values. Our work thus fits into the recent line of research
of “mechanism design from samples”, see, e.g., [GW21, BSV16, CR14, DHP16, MR16, GHZ19].

The learning problem can be stated as follows. Given a joint distribution V of the values of the
sellers and buyers, where our access to the distribution is by getting random samples from it, we now
aim to find a simple mechanism with the maximum expected gains from trade over the distribution
V. Specifically, we want to learn such a mechanism that, with high probability, approximates the
optimal gains from trade that is obtainable by a simple mechanism for the distribution V, to within
an additive ε. Can this be done from samples? and if so, how many sample points from V do we
need?

1The “gains from trade” are defined as the increase in total welfare due to trade. Optimizing GFT is equivalent
to optimizing social welfare. Approximating GFT in a multiplicative sense may be harder, but in this paper we focus
on additive approximation for which they are equivalent.

2And even if we only require interim individual rationality and weak budget balance.

1



Starting point: bilateral trade

Let us start with the simplest trade setting, that of bilateral trade. For that setting the learning
problem is well understood. In a bilateral trade setting there is a single buyer and single seller
with an item to sell, and their private values for the item are vs and vb, respectively. These pairs
of values (vs, vb) are jointly distributed according to a distribution V. The goal is to find a simple
mechanism with maximum GFT over all simple mechanisms. The starting point for addressing
this type of question is a characterization of the family of possible simple mechanisms, and then
optimize over that family. Luckily, simple mechanisms for bilateral trade have a very limited form:
they are fixed price mechanisms. That is, any simple mechanism is defined by a fixed price p, and
trade occurs, at price p, if vs < p < vb, and no trade happens if vs > p or p > vb (in case of
ties, trade may or may not happen). It follows that the challenge in this case is to learn a price p
such that the fixed-price mechanism with price p maximizes the gains from trade for V (over all
such fixed-price mechanisms). Since this requires learning just a single parameter, p, this is indeed
doable and, as implied by [CBCC+21]3, choosing O(ε−1) sample points and picking the sampled
value4 that yields highest GFT on the sample gives, with high probability, a mechanism that is
optimal up to an additive ε on the real, yet unknown, distribution V. Significantly, this holds for
any joint distribution V, and does not require the buyer’s and seller’s values to be independent.

We thus see that the problem is solved and is relatively simple for bilateral trade settings. Is
this also the case for more involved trade settings?

Beyond bilateral trade: 2 buyers and 1 seller

We saw that for bilateral trade it is possible to learn a good simple mechanism from samples. Can
this be done when we have more than a single buyer and a single seller? To address this we consider
the next most-simple trade setting, that of one seller of a single item, and two buyers (rather than
just one). In the 1-seller 2-buyer setting, the values of the seller for the item vs, the values of the
two buyers are v1 and v2, respectively, and the triplet (vs, v1, v2) is sampled from a joint distribution
V.

Following the blueprint to the learning problem taken for bilateral trade, we first aim to un-
derstand the space of simple mechanisms and the trade allocations that they provide. It turns out
that the class of simple mechanisms for the 1-seller 2-buyer case can be essentially characterized
by a pair of single-parameter functions.

Definition 1.2. A pair (f1, f2) of functions f1, f2 : R+ → R+ ∪ {∞} is called compatible, if for
no pair of values (v1, v2) it holds that v1 > f1(v2) and v2 > f2(v1). A mechanism M is associated
with a pair of compatible functions (f1, f2), if when vs < f1(v2) < v1 it sells the item to player 1
at price f1(v2); when vs < f2(v1) < v2 it sells the item to player 2 at price f2(v1); and there is no
trade if vs > max{f1(v2), f2(v1)}, or if v1 < f1(v2) and v2 < f2(v1).

We show that every simple mechanism has a unique compatible pair of functions that is associ-
ated to it, and, conversely, every pair of compatible functions is associated with a simple mechanism
(Proposition 2). A compatible pair of functions does not completely define a mechanism as it leaves
some flexibility about the outcome in case of ties. We identify a specific tie breaking rule that al-
ways yields the highest gains from trade for a given compatible pair of functions (see Definition
3.4) and denote the associated mechanism under that tie breaking rule by Mf1,f2 . We illustrate

3This paper actually solves a harder problem, in a regret-minimization setting, as well as analyzes several related
models. See Section 1.1 for details.

4It is interesting to note, though, that it does not suffice to choose among some predetermined δ-grid of values.
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the concept of a pair of compatible functions in Figure 1. The pair of compatible functions that
is associated with the GFT-maximizing simple mechanism for the uniform distribution over [0, 1]3

(denoted by U [0, 1]3) is illustrated in Figure 2.

Figure 1: Example of a pair (f1, f2) of com-
patible functions. Such a pair satisfies that
there is no point that is strictly above f2(v1)
and strictly on the right of f1(v2).

Figure 2: The pair of compatible functions
that is associated with the GFT-maximizing
simple mechanism for the uniform distribu-
tion over [0, 1]3.

Arbitrary joint distributions: a negative result

Given the characterization above, it is natural to attempt learning a (nearly) optimal simple mech-
anism by optimizing over all mechanisms Mf1,f2 , over all pairs of compatible functions (f1, f2).
Unfortunately, this class turns out to have infinite “dimension”, and in fact, we show that no low-
dimension subclass suffices for even approximating the gains from trade. The impossibility result
is very general and shows that it is even impossible to learn a “general” mechanism in the sense of
[MS83] that need only be Bayesian incentive compatible, interim individually rational, and weakly
budget balanced.

Theorem 1. Consider the 1-seller 2-buyer setting. There exists a constant c > 0 such that for
every finite t, there does not exist an algorithm that accepts t random samples from any unknown
distribution V on [0, 1]3 and, with high probability, outputs a simple mechanism (or even any general
mechanism) with gains from trade that is within an additive c from the maximum gains from trade
obtainable by a simple mechanism.

This is in strong contrast to the positive result for bilateral trade mentioned above, where O(1/ε)
samples are sufficient for learning an approximately-optimal simple mechanism. This negative result
implies that a slightly more general setting (with two buyers rather than one) is significantly more
challenging for learning, and the results for this setting are fundamentally different than the results
for bilateral trade.

This impossibility result is very general. First, it immediately extends to any double-auctions
setting beyond bilateral trade: In any setting with more than two buyers the result follows from
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making all but one seller and two buyers irrelevant for trade5. If there is only one buyer but multiple
sellers, a symmetric argument proves a similar result. We also note that since the impossibility
is shown for an additive error when values are bounded by 1, it also holds for multiplicative
approximation.

Our proof shows that it is hard to distinguish between the following two extreme cases: the
first where a simple mechanism obtains the first-best (optimal) gains from trade6, and the second
where even a general mechanism does not approximate the first best. Let us briefly outline the
core observation behind this proof. Let S = (s1, s2, . . . , sk) = {(vjs, vj1, v

j
2)}kj=1 be a set of triplets

of values of the seller and the two buyers. We say that S is generic if no value appears more than
once in it, and let U(S) be the uniform distribution over S.

Lemma 1.3. Let S = (s1, s2, . . . , sk) = {(vjs, vj1, v
j
2)}kj=1 be a generic (multi-)set of size k over

[0, 1]3. Consider a 1-seller 2-buyer setting with agents’ values samples from U(S), the uniform
distribution over S. Then there exists a simple mechanism with GFT that equals the first-best GFT
on U(S).

The simple mechanism that extracts the first-best GFT can be viewed as a perfect over-fitting
of the mechanism to the k triplets in S. This simple lemma implies the theorem, since for any
finite number of samples t it is impossible to distinguish between the following two cases: 1) the t
samples are coming from the uniform distribution over [0, 1]3, for which there is a gap between the
first best and what a strategic mechanism can achieve, and 2) the t samples are from U(S) for a
“random” generic set S of size k >> t, for which there is no such gap. This impossibility is due to
the fact that for large enough k, it is unlikely that we sample any element of S more than once.7

The independent case: a learning algorithm

Given our strong negative result for arbitrary joint distributions, we now focus our attention on the
special case where the valuations of the seller and two buyers are sampled independently, that is, the
private values (vs, v1, v2) are sampled from the product distribution Vs ×V1 ×V2. First, we tighten
the partial characterization of optimal simple mechanisms. While, as we saw, the class of simple
mechanisms is too rich to learn, we are able to identify a smaller subclass of simple mechanisms
that for every three independent distributions is guaranteed to include a simple mechanism that has
at least as much GFT as any other simple mechanism. While simple mechanisms can be associated
with arbitrary compatible pairs of functions, we show that for product distributions it is enough to
restrict our search to pair of monotone functions that are tight.

Definition 1.4. A pair (f1, f2) of functions f1, f2 : R≥0 → R≥0 is called tight after (p1, p2) if there
do not exist any values v1 ≥ p1, v2 ≥ p2 such that v1 < f1(v2) and v2 < f2(v1). The functions are
called tight if there exists a point (p1, p2) after which they are tight.

Figure 2 illustrates the pair of compatible functions that is associated with the GFT-maximizing
simple mechanism for the distribution U [0, 1]3. Observe that this pair of functions is tight, with
p1 = p2 = 1

2 , and, additionally, the functions are monotone. Our main characterization result is

5That is, buyers have the minimal value of 0, and sellers have the maximal value of 1.
6The first-best GFT is the expected optimum GFT (expected realized GFT under the given distribution).
7Note that for the bilateral-trade setting an appropriate adjustment of the claim of Lemma 1.3 is not true (consis-

tently with the fact that Theorem 1 does not hold for bilateral trade). That is, consider the set S with two samples
(s, b) taking the realizations (0, 2) and (5, 7) (note that this set of values is generic). As any simple mechanism
for bilateral trade is a fixed-price mechanism, the maximum expected GFT of any simple mechanism on a uniform
distribution over these two samples is 1, while the first-best GFT is 2.
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that tight compatible pairs of monotone functions always suffice for maximizing gains from trade
in the independent case.

Theorem 2. For any three distributions Vs, V1, V2 and any simple mechanism M , there exists a
compatible and tight pair (f∗

1 , f
∗
2 ) of monotone functions such that the GFT of the simple mechanism

Mf∗
1 ,f

∗
2
(as per Proposition 2) on V = Vs × V1 × V2 is at least as large as the GFT of M on V.

For a product distribution V , we denote the optimal gains from trade of a simple mechanism
by OPTsimple(V ). A tight compatible pair of monotone functions that is associated with such a
mechanism is called an optimal pair for the distribution. Figures 3 and 4 demonstrate that optimal
pairs may be far from trivial. Nevertheless, as we will show, the space of tight compatible pairs of
monotone functions has a small enough dimension as to allow efficient learning, where the critical
element is the monotonicity of the functions.

Figure 3: Optimal pair of functions for the
independent distributions vs ∼ U [0, 1], v1 ∼
U [0, 1], v2 ∼ U [0, 12 ]. Note that the buyer
with lower value sometimes trades, e.g., for
values (vs, v1, v2) = (0, 0.4, 0.3).

Figure 4: Optimal pair for vs ∼ U [0, 1],

v1 ∼

{
U [0, 12 ],

1
4

U [12 ,
3
4 ],

3
4

, v2 ∼

{
U [0, 14 ],

3
4

U [12 , 1],
1
4

.

Note that the functions are rather compli-
cated.

Before continuing with our goal of learning from samples, we first present an algorithm that can
find an optimal pair for a finitely supported and explicitly given product distribution, i.e. where
the distribution over each player’s value is given as a finite list of (value, probability) pairs. Such
an algorithm is not trivial and we obtain it using careful dynamic programming.

Theorem 3. There exists a polynomial time algorithm that when explicitly given finite distributions
Vs, V1, V2, outputs a compatible pair of functions (f∗

1 , f
∗
2 ) such that Mf∗

1 ,f
∗
2
maximizes gains from

trade for V = Vs × V1 × V2 over all simple mechanisms.

To learn a good mechanism for a product distribution from a given sample, we use this opti-
mization algorithm over the sample. I.e. our learning algorithm first draws a sample of appropriate
size and then finds the GFT-optimal mechanism for the empirical distribution. Our main result
shows that, with high probability, this mechanism is almost optimal for the true (unknown) product
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distribution as well. The critical element that drives this theorem is the low dimension of the class
of tight and compatible pairs of monotone functions, which as Theorem 2 shows, are sufficient to
consider in order to optimize gains from trade over all simple mechanisms in the case of product
distributions.

Theorem 4. Let Vs, V1, V2 be distributions over [0, 1], and fix ε, δ > 0. Denote the maximum
expected GFT that can be achieved by a simple mechanism on V = Vs × V1 × V2 by OPTsimple(V ).
There exists a polynomial-time algorithm that given sample access to Vs, V1, V2 and parameters
ε, δ, outputs, with probability at least 1 − δ, a mechanism which has an expected GFT of at least
OPTsimple(V )− ε on V, using poly(1ε log

1
εδ ) samples from V.

Note that our learning result is for bounded distributions. Such an assumption is necessary,
as if the support is unbounded, almost all the gains from trade might come from extremely rare
events that are never sampled, and thus a good mechanism cannot be learned.8

Open Problems

Our results in this paper were focused on simple mechanisms for the case of one seller and two
buyers. It would be natural to extend these results along any one of two separate dimensions. First,
rather than consider the “nicest” class of simple mechanisms that are deterministic, dominant-
strategy incentive-compatible, ex-post individual-rational, and strong budget-balanced, it would
be interesting to consider more general classes of mechanisms that relax some (or all) of these
assumptions: to randomized, Bayesian Incentive-compatible, interim individual rationality, and
weak budget-balance, respectively. Second, it is natural to consider the case of more than a single
seller and two buyers: most generally, to the case of k buyers and l sellers, or at least to the case
of k buyers and a single seller.

As mentioned above, our impossibility result does indeed generalize in both dimensions: it holds
both for any number of buyers and sellers (as long as it is beyond the bilateral case) and shows
that learning algorithms that are even allowed to use the most general type of mechanisms cannot
approximate the benchmark set by even the most restricted type of mechanisms.

Our positive result, however, is very specific and it seems that any significant extension along
either of these two dimensions may require new ideas. We leave the challenge of extending our
results along any one of these dimensions (or showing that this would be impossible) as our main
set of open problems.

In terms of numbers of sellers and buyers, we simply do not have any sufficiently good char-
acterization of gains-from-trade maximizing mechanisms for any case with more than one seller
and two buyers, even for independent valuations. I.e. we lack an analog of Theorem 2 that will
allow such mechanisms to be learned. For example we do not even know how to solve the learning
problem in the case of one seller and three buyers with independent valuations.

In terms of the class of mechanisms considered, again we lack sufficiently good characterizations
for any richer class of mechanisms9 and thus we do not know whether richer classes of mechanism
have sufficiently low dimension to be efficiently learned. For example, we do not even know whether
relaxing the strong budget-balance requirement to weak budget-balance may improve the gains-
from-trade, and if so, whether it is possible to learn such mechanisms in the case of one seller and
two buyers with independent valuations.

8As usual, learning results may be also recovered under assumptions that appropriately bound the tail of the
distribution.

9Except for the case of allowing universally-truthful randomized mechanisms rather than deterministic ones, which
one may observe does not improve the gains-from-trade.
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When considering Bayesian Incentive-Compatibility (BIC), one should be careful in the def-
inition of the learning challenge. This is so as the exact notion of BIC may require an exact
specification of the distribution which would not be available from sample data, so it might be
helpful to focus on the weaker notion of ε-BIC. On the other hand, the algorithmic question itself
may be easier. E.g., finding the optimal Bayesian Incentive-Compatible mechanism for a given
sample can be solved using a linear program.

1.1 Additional related work

Prior work [CBCC+21] has studied the bilateral trade problem in a regret-minimization framework
over rounds of seller/buyer interactions, with no prior knowledge on the private seller/buyer val-
uations. They showed that learning a close to optimal simple mechanism can be done in some
challenging online scenarios (but provably not in some even more challenging ones). We study the
easier problem of (offline) learning from samples, but the setting of 1-seller 2-buyers and beyond
(while they study bilateral trade).

The problem of gains-from-trade maximization in trade settings has been extensively studied.
Myerson and Satterthwaite [MS83] show that for bilateral trade settings, the second-best mechanism
has strictly lower GFT than the first best. The second-best mechanism is the mechanism with the
highest GFT subject to being Bayesian Incentive-Compatible (BIC), Interim Individually Rational
(IIR), and ex-ante Weakly Budget Balanced (WBB). In the double auctions setting, McAfee[McA92]
has shown that there is a DSIC mechanisms that is IIR and WBB with GFT that is at least (1−1/q)
fraction of the first best, when q is the size of the efficient trade. This result was extended to
other trade settings, e.g., to spatially-distributed markets [BNP09]. Note that the approximation
provided by this mechanism to the first best is 0 when q = 1, and thus this mechanism gives no
approximation in small markets, and in particular, in single-seller settings (e.g., bilateral trade and
the 1-seller 2-buyer setting we focus on). Recently, it was shown that for bilateral trade (and for
double auctions), the multiplicative gap between the first and second best is only a constant factor
[DMSW22].

For double auctions, [BCGZ18] has presented mechanisms that are constant approximation to
the second best, and are also asymptotically efficient. In [BGG20], a Bulow-Klemperer-style result
for GFT maximization was presented to the double auctions setting, showing that with IID agents,
a variant of the McAfee[McA92] mechanism with an additional buyer ensures at least as much
expected GFT as the first best of the original setting.

A long line of research has studied constant-fraction approximation to the welfare in bilateral
trade [BD21, CW23, KPV22] and more general trade settings [CBGK+20].

2 Model and Notation

Consider a market with one seller and two buyers, where the seller has one indivisible item to sell,
and each buyer wants to buy that item. We denote the seller by s, and the two buyers by b1 and
b2. The private value of the seller for keeping the item is vs ≥ 0, and the private value of buyer
bi ∈ {b1, b2} for getting the item is vi ≥ 0. The triplet of values v = (vs, v1, v2) ∈ R3

≥0 is sampled

from a joint prior distribution V which is supported on a subset of R3
≥0. When referring to vectors

of valuations, we sometime use the standard notation (vi, v−i) to separate the valuation of agent
i from the others. When referring to functions relating to buyer bi, we sometimes omit the b and
refer to them as fi, meaning fbi . Also, when discussing a buyer b ∈ {b1, b2} we sometimes refer to
the other buyer as −b.
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2.1 Simple Mechanisms

In this section we formally define the “simple” mechanisms that we study. Basically, we focus on
(dominant strategy) truthful mechanisms where the buyer who gets the item – if trade occurs –
pays the seller, and no payments occur for non-traders. The basic example of such a mechanism
is where the sale price is determined by bid of the low buyer, and trade happens with the high
bidder if the seller’s bid is lower than the price. A very different type of mechanism of this type
is a sequential one, where the first buyer gets a chance to trade at some fixed price, and only if
the first buyer declines then the second buyer gets a chance to trade at some other fixed price. As
we will see, however, the full space of simple mechanisms is much richer, and contains significant
generalizations.

A deterministic (direct revelation) mechanism M = (A, p) for a 1-seller 2-buyer setting is
constructed from an allocation rule A : R3

≥0 → {s, b1, b2} and a payment function p : R3
≥0 → R3. In

such a direct revelation mechanism, agents are asked to report their valuations (submit bids), and we
denote the profile of reports by v′ = (v′s, v

′
1, v

′
2) ∈ R3

≥0. Given reports v′ = (v′s, v
′
1, v

′
2), the allocation

A(v′) = A(v′s, v
′
1, v

′
2) denotes the agent which ends up with the item, and pi(v

′) = pi(v
′
s, v

′
1, v

′
2)

denotes the payment paid by agent i.10

Denote a trade between the seller and buyer b ∈ {b1, b2} by s → b. Let M = (A, p) be a
mechanism, we define the utilities of the agents with respect to the mechanism M when the values
are v and the reports are v′ as follows:

• Seller s: us(vs, v
′) = −1{A(v′) ̸= s} · vs − ps(v

′).

• Buyer b ∈ {b1, b2}: ub(vb, v′) = 1{A(v′) = b} · vb − pb(v
′).

In a DSIC mechanism it is a dominant strategy for each agent to bid truthfully:

Definition 2.1. A mechanism M is Dominant Strategy Incentive Compatible (DSIC) if for every
agent i ∈ {s, b1, b2}, for every valuation profile v = (vs, v1, v2) and every bidding profile v′ =
(v′s, v

′
1, v

′
2) it holds that

ui(vi, (vi, v
′
−i)) ≥ ui(vi, (v

′
i, v

′
−i))

From now on, whenever a mechanism is DSIC we assume that all the agents are truthful, as
being truthful is a dominant strategy for every agent. When truthfulness also ensures non-negative
utility, participation in the mechanism is individually rational:

Definition 2.2. A mechanism M is ex-post Individually Rational (IR) if for every agent i ∈
{s, b1, b2}, every valuation profile v = (vs, v1, v2) and every bidding profile v′ = (v′s, v

′
1, v

′
2):

ui(vi, (vi, v
′
−i)) ≥ 0

A natural requirement is that the mechanism never loses money. We focus on mechanisms that
also never gain any money:

Definition 2.3. A mechanism M is Strongly Budget-Balanced (SBB) if:

∀v′s, v′1, v′2 :
∑

i∈{s,b1,b2}

pi(v
′
s, v

′
1, v

′
2) = 0

We say that an agent is winning if she is involved in a trade.

10If a payment is negative, that agent receives a payment.
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Definition 2.4 (Winning Outcomes). The Winning Outcomes Wi ⊆ {s, b1, b2} of agent i are a set
of all the outcomes in which agent i is involved in a trade. Specifically:

W1 = {1} W2 = {2} Ws = {1, 2}

As usual, we focus on mechanisms that are normalized (losers pay zero):

Definition 2.5. A mechanism M = (A, p) is called normalized if the payment when losing is
always 0, i.e. for every agent i and for every bidding profile v′ = (v′s, v

′
1, v

′
2), if A(v′) /∈ Wi then

pi(v
′) = 0.

In this paper we focus on simple mechanisms: a mechanism is simple if it is deterministic,
normalized, DSIC, ex-post IR and SBB. As our setting is a single-parameter domain, the standard
general characterization of normalized DSIC mechanisms (monotone allocation with critical value
payments) applies to it. We next present its implications for the model of a seller and two buyers.

First, we define allocation monotonicity. An allocation rule is monotone if a winner does not
become a loser by submitting a better bid:

Definition 2.6. An allocation function A is monotone if:

1. ∀(v′s, v′1, v′2),∀b ∈ {b1, b2}, ∀v′′b ≥ v′b : A(v
′
b, v

′
−b) ∈ Wb ⇒ A(v′′b , v

′
−b) ∈ Wb.

2. ∀(v′s, v′1, v′2),∀v′′s ≤ v′s : A(v′s, v
′
1, v

′
2) ∈ Ws ⇒ A(v′′s , v

′
1, v

′
2) ∈ Ws.

A celebrated result by Myerson [Mye81] implies a characterization of normalized DSIC mech-
anisms in a single-parameter domain. We will use a simple statement of this result, based on
Theorem 9.36 in [NRTV07], as it applies for our domain:

Proposition 1. A normalized mechanism M = (A, p) is DSIC if both of the following conditions
hold:

1. A is monotone.

2. The payment functions define the critical values for winning:

(a) For every buyer b, if v′b > pb(v
′) then he wins, and if v′b < pb(v

′) he loses.

(b) For the seller, if v′s < −ps(v
′) then she wins, and if v′s > −ps(v

′) she loses.

2.2 Gains From Trade

In this paper we focus on optimizing the gains form trade (GFT). Given a joint prior distribution
V over triplet of values v = (vs, v1, v2) ∈ R3

≥0, the unconstrained optimal GFT (first best), denoted
by OPT(V ), is defined to be

OPT(V ) = Ev∼V [max{v1 − vs, v2 − vs, 0}]

We are interested in the gains form trade of simple mechanisms. We next establish some useful
notations.

Definition 2.7 ((Truthful) Gains From Trade). Let M = (A, p) be a 1-seller 2-buyer DSIC mecha-
nism. The (Truthful) Gains From Trade (GFT) of M on valuation profile v = (vs, v1, v2) is defined
to be:

GFT(M, v) =
∑

b∈{1,2}

(vb − vs) · I{A(v) = b}
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Using this notation we can now define the expected GFT of a mechanism for a given prior.

Definition 2.8 (Expected (Truthful) GFT). Let M = (A, p) be a 1-seller 2-buyer DSIC mecha-
nism, and let V be a joint prior over the agents’ valuations. The Expected Gains From Trade of
M on prior V is defined to be:

GFT(M,V) = Ev∼V [GFT(M, v)]

3 Characterization of Simple 1-Seller 2-Buyer Mechanisms

A 1-seller 2-buyer mechanism M = (A, p) has payment functions that depend on the reports of all
agents, yet when the mechanism is simple, this imposes significant constraints on these functions.
These constraints will allow us to represent simple mechanisms in less complicated fashion, by
observing that any such mechanism can be associated with just two (single-parameter) payments
functions, one for each buyer: each of these functions is only a function of one parameter, the report
of the other buyer.

This pair of functions determines the payments for all three agents whenever there is trade. Such
a pair of functions must satisfy a condition that we call compatibility, essentially stating that, as
these functions define critical values for winning, it can never be the case that they imply that both
buyers win together. Thus, we show that any simple mechanism is associated with a unique pair
of (single-parameter) payments functions that are compatible. We also show that any compatible
pair of single-parameter payment functions can be used to construct a simple mechanism that is
associated with these functions, and it maximizes the GFT over all such mechanisms.

3.1 Associated Functions

We next show that any simple mechanism can be associated with two (single-parameter) payments
functions, f1, f2 : R≥0 → R≥0∪{∞} such that this pair of functions (f1, f2) determines the payments
for all three agents whenever there is trade.

Definition 3.1. Let M = (A, p) be a simple mechanism, we define M ’s associated pair of functions
(f1, f2) to be the pair of single-parameter functions f1, f2 : R≥0 → R≥0 ∪ {∞} defined as follows.
For v1, v2 ≥ 0:

f1(v2) =

{
p1(v

′
s, v

′
1, v2), ∃v′s, v′1 : A(v′s, v′1, v2) = b1

∞, otherwise
f2(v1) =

{
p2(v

′
s, v1, v

′
2), ∃v′s, v′2 : A(v′s, v1, v′2) = b2

∞, otherwise

We argue that these functions are indeed well defined (e.g., f1(v2) does the depend on the
choice of v′s and v′1). As M is a DSIC mechanism, by the Taxation Principle, the payment of each
buyer when winning cannot be affected by his own report. Additionally, as the mechanism is SBB
and normalized, when there is a trade, the seller receives the payment of the trading buyer, and
thus the trading buyer’s payment cannot depend on the report of the seller. Therefore, there is a
single parameter function that defines the payment in such a trade, and it can only depend on the
non-trading buyer’s value.

We define the value of the function above for buyer b, to be the payment she is charged when
buying the item, assuming that buyer −b reported v−b, and both the seller and buyer b reported
some hypothetical values that results with b buying the item. The properties we mentioned indicate
that the payment remains consistent in this hypothetical scenario, as in the actual case under
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consideration. This idea is what leads the functions above to be well-defined; for the sake of
completeness we present a proof of these properties in Appendix A.1.

Such a pair of functions must satisfy a condition that we call compatibility :

Definition 3.2 (Compatible Functions). Let f1, f2 : R≥0 → R≥0 ∪ {∞} be functions. The pair
of functions (f1, f2) is called compatible if there do not exist v1, v2 ∈ R≥0, such that (v1 >
f1(v2)) ∧ (v2 > f2(v1)).

Intuitively, the functions f1 and f2 represent the critical values for the buyers to trade, so they
can never imply that both buyers trade concurrently. The compatibility condition does exactly
that - it disallows functions that imply that both buyers are each bidding strictly above his critical
value.

Thus, we can associate every simple mechanism with a compatible pair of (single-parameter)
payment functions:

Lemma 3.3 (Associated Functions). Let M = (A, p) be a simple mechanism, then there exists a
unique pair of compatible functions (f1, f2) s.t. for all v = (vs, v1, v2), if A(v) = b1 then p(v) =
(−f1(v2), f1(v2), 0), and if A(v) = b2, then p(v) = (−f2(v1), 0, f2(v1)). We say that (f1, f2) is the
pair of functions associated with the mechanism M .

The proof of the lemma is deferred to Appendix A.1.

3.2 The Best Mechanism for Compatible Functions

We have shown above that every simple mechanism is associated with a compatible pair of functions.
We next show the other direction - any pair of compatible functions can be used to construct a
simple mechanism such that the mechanism is associated with these functions, and moreover, it
has the highest GFT of all such mechanisms. We first define this mechanism and then in Lemma
3.5 we show that it is simple and associated with the given pair of functions.

Definition 3.4. Let f1, f2 : R≥0 → R≥0 ∪ {∞} be a pair of functions. If the pair (f1, f2) is com-
patible then there exists a mechanism Mf1,f2 = (A, p), which we call the mechanism corresponding
to (f1, f2), that is well-defined and is defined as follows. Given a bidding profile v′ = (v′s, v

′
1, v

′
2) the

allocation and payments of Mf1,f2 are as follows:

1. If v′1 > f1(v
′
2) ≥ v′s: A(v′) = b1, p1(v

′) = −ps(v
′) = f1(v

′
2), p2(v

′) = 0.

2. Else, if v′2 > f2(v
′
1) ≥ v′s: A(v′) = b2, p2(v

′) = −ps(v
′) = f2(v

′
1), p1(v

′) = 0.

3. Else, if (v′1 = f1(v
′
2) ≥ v′s) ∧ (v′2 = f2(v

′
1) ≥ v′s):

for b =

{
b1 v′1 ≥ v′2
b2 v′1 < v′2

, let A(v′) = b, pb(v
′) = −ps(v

′) = v′b, p−b(v
′) = 0

4. Else, if v′1 = f1(v
′
2) ≥ v′s: A(v′) = b1, p1(v

′) = −ps(v
′) = f1(v

′
2), p2(v

′) = 0.

5. Else, if v′2 = f2(v
′
1) ≥ v′s: A(v′) = b2, p2(v

′) = −ps(v
′) = f2(v

′
1), p1(v

′) = 0.

6. Else, A(v′) = s and ps(v
′) = p1(v

′) = p2(v
′) = 0.
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In other words, the mechanism receives bids v′ = (v′s, v
′
1, v

′
2) and calculates the values of the

functions f1(v
′
2) and f2(v

′
1). Since the functions are compatible, at most one of the buyer’s reports

can be strictly greater than their corresponding payment function. If this is the case, the mechanism
performs a trade with the seller whenever the gains in non-negative. Otherwise, one or both of the
buyer’s reports might be equal to their respective payment functions. In this case, performs a trade
between the high value buyer and the seller, whenever the gains in non-negative. Finally, if both
buyers will not trade at their payment function’s value, there is no trade, and the item remains in
the seller’s possession.

Lemma 3.5. For every pair of compatible functions (f1, f2), the mechanism Mf1,f2 is a simple
mechanism and is associated with the pair (f1, f2).

The proof of this lemma can be found in Appendix A.2.
The mechanism described in Definition 3.4 preforms a trade whenever a trade increases the

GFT, and it break ties in favor of higher GFT, and thus it maximizes GFT among all mechanisms
that are associated with the pair of functions (f1, f2):

Lemma 3.6. Let M = (A, p) be a simple mechanism, let (f1, f2) be the pair of functions associated
with M . Let v = (vs, v1, v2) be some (truthful) bidding profile. Then:

GFT(Mf1,f2 , v) ≥ GFT(M, v)

We next present a sketch of the proof, for the full proof see Appendix A.2. If vb > fb(v−b), then
all mechanisms that are associated with (f1, f2) must behave the same way, so the only difference
in allocation can occur in cases of ties, such as when v1 = f1(v2) or v2 = f2(v1). In these cases,
mechanism Mf1,f2 always chooses to trade with the buyer with the higher value - thus maximizing
GFT. Additionally, when the seller’s value is equal to the price, i.e. vs = f1(v2) or vs = f2(v1),
the seller is ambivalent to the trade. When GFT is positive, the mechanism always trades in these
cases, so for every v = (vs, v1, v2) it has optional GFT over all mechanisms that are associated with
(f1, f2).

Taking the expectation over the valuation profiles v we get the following corollary:

Corollary 3.7. Let M = (A, p) be a simple mechanism, let (f1, f2) be the pair of functions asso-
ciated with M . For any joint prior V over the agents’ valuations it holds that:

GFT(Mf1,f2 ,V) ≥ GFT(M,V)

With a slight abuse, throughout the paper we refer to GFT(Mf1,f2 ,V) as the GFT of the
pair (f1, f2) on V. The above corollary shows that GFT(Mf1,f2 ,V) is the maximal GFT that is
obtainable on V by any simple mechanism for which (f1, f2) are its pair of associated functions.

The following summarizes the results of this section.

Proposition 2. Every simple mechanism M is associated with a unique compatible pair of functions
(f1, f2). Conversely, for every compatible pair of functions (f1, f2) there exists a simple mechanism
Mf1,f2. that is associated with this pair. Furthermore, the simple mechanism Mf1,f2 achieves the
highest gains from trade among all simple mechanisms that are associated with the pair (f1, f2).

4 Impossibility of Learning for General Distributions

In this section we show that for unrestricted joint distributions (when values might be correlated),
it is impossible to learn an approximately optimal simple mechanism, even when the support is
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on [0, 1]3. To begin, we show that for every finite joint distribution that satisfies a mild condition
(“generic support)”, there is a simple mechanism that achieves the maximum possible GFT (that is,
there is a simple mechanism that obtains the first-best GFT). Subsequently, we leverage this finding
to demonstrate scenarios where unrestricted joint distributions pose a challenge to the feasibility
of learning approximately optimal mechanisms.

4.1 First-best GFT by a Simple Mechanism

We proceed by introducing a family of distributions for which simple mechanisms are able to
perfectly maximize the GFT (obtain the first best). Specifically, for each distribution in that family,
we present an optimal simple mechanism that is specifically tailored to it, showcasing a form of
extreme overfitting. The core concept behind this overfitting approach is as follows: consider a
collection of triplets where each value is unique and does not repeat (“a generic collection”). When
the support is generic, the value of the lower-value buyer completely reveals the values of the two
other agents, so to extract maximum GFT the mechanism sets the trade price to be the value of
the highest-value buyer. That mechanism is DSIC as the price does not depend on the reports of
the trading agents. In fact, this yields a simple mechanism that extracts the maximum GFT using
the characterization of Proposition 2.

Formally, to be able to extract all GFT it is enough that the distribution is supported on a
generic set of vectors. A set C = {(v11, v12, ..., v1d), ..., (vn1 , vn2 , ..., vnd )} ⊆ Rd

≥0 of n vectors (of length
d) is called generic, if there are no two values that are identical (for all i1, i2 ∈ [d] and j1, j2 ∈ [n]
it holds that vj1i1 ̸= vj2i2 unless i1 = i2 and j1 = j2).

11

For a given generic set we can construct a simple mechanism that extracts all GFT for any
input in that set, by setting the trade price to be the value of the highest-value buyer, deducing
that price from the value of the other buyer.

Definition 4.1. Let C = {(v1s , v11, v12), ..., (vns , vn1 , vn2 )} be a generic set of vectors representing the
support of a finite joint distribution V for values in the 1-seller 2-buyer setting. We define the
functions fC

1 , fC
2 as follows:

∀b ∈ {b1, b2} : fC
b (x) =

{
vkb ∃k : (vks , v

k
1 , v

k
2 ) ∈ C s.t. x = vk−b ≤ vkb

∞ otherwise

Let MfC
1 ,fC

2
be the mechanism associate with the pair (fC

1 , fC
2 ), as defined in Definition 3.4.

Note that since C is a generic set, these functions are well defined.
These functions capitalize on the knowledge encoded within C to establish distinct prices for

each triplet of values. They achieve this by consistently setting the price as the higher buyer’s value
while setting the other’s to ∞. The price for each buyer is set using a condition only on the report
of the other buyer, as necessary for a DSIC mechanism. This approach renders the higher buyer
indifferent and thus prompts acceptance of the trade, whereas the lower buyer is either not offered
the trade or is presented with an offer at ∞ (equivalent to non-offer). Additionally, the functions
are compatible because for every k ∈ [n], if the function fC

b (vk−b) is set to be some value that is

not ∞, then either fC
−b(v

k
b ) = ∞ or fC

b (vk−b) = vkb = vk−b = fC
−b(v

k
b ) and both cases do no violate

compatibility. Hence, the mechanism MfC
1 ,fC

2
is straightforwardly a well-defined simple mechanism,

a fact that can also be directly deduced by Lemma 3.5.
Finally, we need to demonstrate that the mechanism achieves the maximum GFT (first best):

11For our proof to hold it is sufficient that a weaker condition holds: no value repeats more than once in any fixed
coordinate i ∈ [d].
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Lemma 4.2. Let C be a finite generic set, and let V be a probability distribution over that
set. Then the GFT of the simple mechanism MfC

1 ,fC
2

is the unconstrained optimum (first best):

GFT(MfC
1 ,fC

2
,V) = OPT(V ).

Proof. Recall that the optimal GFT is defined to be

OPT(V ) = Ev∼V [max{v1 − vs, v2 − vs, 0}]

To prove the claim we show that for every valuation v = (vks , v
k
1 , v

k
2 ) ∈ C, the GFT obtained by

MfC
1 ,fC

2
is exactly max{v1 − vs, v2 − vs, 0}.

We first consider the case that max{vk1 , vk2} < vks . We prove the claim for max{vk1 , vk2} = vk1
(the case that max{vk1 , vk2} = vk2 is similar and is omitted). In this case fC

1 (vk2 ) = vk1 < vks and
fC
2 (vk1 ) = ∞ > vk2 , and there is no trade in MfC

1 ,fC
2
. The mechanism obtains GFT of 0, and that is

optimal as max{vk1 − vks , v
k
2 − vks , 0} = 0.

Conversely, if max{vk1 , vk2} ≥ vks , then GFT(MfC
1 ,fC

2
, v) = max{vk1 , vk2} − vks . We prove the

claim for max{vk1 , vk2} = vk1 (the other case is similar). In that case fC
1 (vk2 ) = vk1 ≥ vks and

fC
2 (vk1 ) = ∞ > vk2 , and there is trade in MfC

1 ,fC
2

between buyer b1 and the seller, obtaining GFT of

vk1 − vks ≥ 0. This represents the maximum GFT achievable from the triplet (vks , v
k
1 , v

k
2 ), leading to

GFT(MfC
1 ,fC

2
, v) = vk1 − vks = max{vk1 − vks , v

k
2 − vks , 0}.

4.2 Impossibility of Learning for General Distributions

In this section we consider the problem of learning a simple mechanism with GFT that is approxi-
mately optimal over all simple mechanisms, when the values are sampled from some unknown joint
distribution (values may be correlated), and we have sample access to the distribution. We prove
that no learning algorithm is able to distinguish between the case that a simple mechanism can
obtain the optimal GFT (first best), and the case that every simple mechanism can only obtain a
significantly lower GFT.

Suppose that we have a learning algorithm that accepts some finite number t of samples from an
unknown distribution V and presumably learns a simple mechanism that approximately maximizes
GFT for V. We can certainly use such an algorithm to also tell whether for distribution V there
is a large gap between the first-best GFT, and the GFT of the GFT-optimal simple mechanism.

Recall that for distribution V, we denote the optimum GFT (first best) by OPT(V ), the highest
GFT of any simple mechanism by OPTsimple(V ).

Lemma 4.3. Assume that there exists a learning algorithm that accepts t random samples from
any unknown distribution V on [0, 1]3 and, with high probability, outputs a simple mechanism with
GFT that is within an additive c from that of the best simple mechanism for V. Then, there exists
an algorithm that accepts t+O(1/c2) samples and, with high probability, distinguishes between the
following two cases:

1. OPTsimple(V ) = OPT(V ).

2. OPTsimple(V ) ≤ OPT(V )− 6c.

Proof. Denote by St the sample that is comprised of the first t samples from V, by Sc the sample
that consists of the other O(1/c2) samples. Let U(St) and U(Sc) be the uniform distributions on
these multi-sets of samples, respectively. Let M be the simple mechanism that is the result of
running the assumed algorithm on U(St). By assumption, with high probability, the GFT of M on
V is within an additive c from that of the best simple mechanism for V, that is: |GFT(M,V ) −
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OPTsimple(V )| < c. Denote Gc = GFT(M,U(Sc)) the GFT obtained by running M on U(Sc),
and G∗

c = OPT(U(Sc)) the GFT of the first-best mechanism for U(Sc) (i.e. average the value
max{0, v1 − vs, v2 − vs} over all O(1/c2) triplets).

Notice that from the Chebyshev’s inequality, with high probability, |G∗
c−OPT(V )| = |OPT(U(Sc))−

OPT(V )| ≤ c. This holds since the GFT on V is the expected value of max{0, v1 − vs, v2 − vs}
over V, while we took the average GFT of O(1/c2) samples which, with high probability, gives
us a good estimate (specifically to within c) of this expected value. Similarly, with high prob-
ability, |Gc − GFT(M,V)| ≤ c. Again, this holds since we estimated the expected value of
GFT(M,V) using the average of O(1/c2) samples. Combining with the fact that, with high proba-
bility, |GFT(M,V )−OPTsimple(V )| < c (by our assumption on the learned mechanism), we derive
that w.h.p. |Gc −OPTsimple(V )| < 2c.

In case (1), as OPTsimple(V ) = OPTBIC(V ) = OPT(V ), with high probability it holds that:

G∗
c ≤ OPT(V ) + c = OPTsimple(V ) + c ≤ (Gc + 2c) + c = Gc + 3c

⇒ G∗
c −Gc ≤ 3c

In case (2), as OPTsimple(V ) < OPT(V )− 6c, then with high probability it holds that:

G∗
c ≥ OPT(V )− c > OPTsimple(V ) + 5c ≥ (Gc − 2c) + 5c = Gc + 3c

⇒ G∗
c −Gc > 3c

Thus by computing the difference G∗
c − Gc, with high probability we can distinguish between

the two cases.

We will be applying this lemma to cases where not only is OPTsimple(V ) smaller than OPT(V ),
but even the GFT of any Bayesian incentive-compatible and weakly budget-balanced mechanism,
as studied by [MS83], is smaller. So for explicitness let us denote the GFT of the best mecha-
nism from the general class studied by [MS83] (the “second best” there) by OPTBIC(V ). Note
that OPTsimple(V ) ≤ OPTBIC(V ) and whenever OPT(V ) = OPTsimple(V ) then also OPT(V ) =
OPTBIC(V ). We now start with some uncorrelated distribution where the first-best OPT(V ) is
strictly larger than the second-best OPTBIC(V ) (and thus certainly also larger than OPTsimple(V ))
[MS83]. Specifically, vs, v1 and v2 are independently sampled, each distributed uniformly on [0, 1].12

Fix a parameter T and consider a random choice of T >> t triplets S = {(vis, vi1, vi2) | i ∈ [T ]}
where each of these 3T values are chosen uniformly at random in [0, 1], and look at the distribution
on triplets US that is uniform over the triplets in S. Since all values were chosen from a continuous
distribution, clearly, with probability 1, no value appears more than once anywhere in S, and so
we can apply Lemma 4.2 to deduce that almost surely (over the choice of S) there exists a simple
mechanism that extracts the first-best gains from trade from US .

On the other hand, since we specifically started with a distribution for which there is a gap
between the first best and second best (the uniform distribution over [0, 1]3), the GFT of any
simple mechanism is smaller than the first-best by some constant [MS83]. Assuming that we have
an algorithm that learns, using t samples, a simple mechanism that (almost) maximizes gains
from trade, then the previous lemma implies that we can distinguish between the (correlated)
distribution US , for a random S, and the uniform distribution over ([0, 1]3)t. But that, as we will
show, is impossible, as these distributions are statistically close to each other.

12Actually, [MS83] does not explicitly discuss cases apart from bilateral trade. However, for 1-seller 2-buyer uniform
distribution over [0, 1]3, consider the subcase when vs, v1 ≥ 1

2
and v2 < 1

2
(which happens with a constant probability).

Since no trade with buyer 2 is possible, and since buyer 2 value gives no useful information due to independence,
we revert to a bilateral trade setting where [MS83] showed a gap - and so there must also be a gap for uniform
distribution over [0, 1]3.
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Lemma 4.4. Denote by Ut the distribution on t triplets chosen uniformly at random from [0, 1]3.
Let S be chosen by taking a uniformly random sample of T triplets from [0, 1]3, and denote by
US the distribution obtained by choosing t triplets from S uniformly at random. (Both Ut and
US are distributions over ([0, 1]3)t.) If T > 6t2 then for any algorithm that accepts t triplets, the
distribution of the output of the algorithm when fed a random input from Ut is within total variation
distance of at most 1/6 from the distribution of the output when fed a random input from US.

Proof. The total variation distance between the output distributions is well known to be bounded
by the total variation distance between the input distributions, so it remains to bound this total
variation distance from above by 1/6 for the lemma to follow.

The distribution Ut is clearly uniform over ([0, 1]3)t. It remains to show that US has total
variation distance of at most 1/6 from uniform. Restricted to the subset of ([0, 1]3)t where no real
value appears twice, US is also uniform. It remains bound from above the probability that US

places on the complement of this subset. Note that with probability 1 the set S is generic, i.e. no
real value appears twice anywhere in S. Once S has been chosen in a generic way the probability
the t samples contain some repeated value can be easily estimated from above by t2/T < 1/6.

Combining these two lemmata we get the result showing that optimal simple mechanisms cannot
be learned, and in fact it is even impossible to learn a general mechanism (Bayesian incentive-
compatible and weakly budget-balanced in the sense of [MS83]) that approximates the GFT of the
best simple mechanism.

Theorem 1. Consider the 1-seller 2-buyer setting. There exists a constant c > 0 such that for
every finite t, there does not exist an algorithm that accepts t random samples from any unknown
distribution V on [0, 1]3 and, with high probability, outputs a simple mechanism (or even any general
mechanism) with gains from trade that is within an additive c from the maximum gains from trade
obtainable by a simple mechanism.

Proof. Assume that such a learning algorithm exists for c > 0 small enough so that 6c is smaller
than the gap between the first-best and the second best GFT of the uniform distribution over
[0, 1]3, as ensured by [Mye81] (see Footnote 12). Lemma 4.3 shows that the algorithm may be
used to distinguish between a uniform distribution on any generic set for which, by Lemma 4.2,
OPTsimple(V ) = OPT(V ), and the uniform distribution on [0, 1]3 for which OPTsimple(V ) ≤
OPTBIC(V ) ≤ OPT(V ) − 6c. Since the distribution US from the previous lemma is just the
average over all possible sets S of size T (which are generic with probability 1) of the uniform
distribution of t samples from the set S, the algorithm (which accepts t samples from [0, 1]3) also
separates between US and the uniform distribution on ([0, 1]3)t. But this yields a contradiction as
Lemma 4.4 states that no algorithm can achieve such a separation with high probability.

In fact, even if the hypothetical learning algorithm is allowed to output any general mechanism
that provides GFT that are approximately at least as high as those of the best simple mechanism
then the exact same proof of Lemma 4.3 shows that this general mechanism can be used to distin-
guish between the two cases, since still the GFT of the learned general mechanism in the case of
the uniform distribution on [0, 1]3 would be separated from OPT(V ).

5 GFT-Optimal Simple Mechanisms under Independence

In the previous section we have shown that for unrestricted joint distributions, it is impossible
to learn an approximately GFT-optimal simple mechanism. Given this impossibility result for
arbitrary joint distributions, we move to focus on product distributions, where the valuations of
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the agents that are sampled independently. Thus, we assume that the value of seller s is sampled
from Vs, and the value of buyer bi ∈ {b1, b2} is sampled from Vi, so the triplet (vs, v1, v2) is sampled
from the product distributionV = Vs×V1×V2. In this section we establish that under independence,
the GFT of any simple mechanism can also obtained by a simple mechanism characterized by a
compatible pair of associated functions which are monotone, and with a specific structure (being
“tight”). These properties of the pair of functions will enable learning a simple mechanism with
GFT that is close to being GFT-optimal, as described in the following sections.

Consider any simple mechanism M and its pair of associated functions (f1, f2) which is com-
patible. These functions might not be monotone, as can be seen in the example that appears in
Figure 1. We will show that when the valuations are independent, it is possible to modify the two
functions and generate a pair of monotone functions (f∗

1 , f
∗
2 ) that is still compatible, such that the

GFT of Mf∗
1 ,f

∗
2
is at least as high as the GFT of M . For this, we first need to introduce the concept

of compatibility restriction, which given one function deduce the constraints on the other function
that are implied by the compatibility requirement.

Definition 5.1 (Compatibility Restriction). For buyer b ∈ {b1, b2} and a function f−b : R≥0 →
R≥0 ∪ {∞}, we define the compatibility restriction r

f−b

b (v−b) that f−b imposes on fb at v−b as
follows:

r
f−b

b (v−b) =

{
sup{vb|v−b ≥ f−b(vb)} if ∃vb : v−b ≥ f−b(vb)

0 otherwise

We refer to r
f−b

b (·) as the compatibility restriction function of f−b on fb.

An illustration of a compatibility restriction function can be seen in Figure 5. The function r
f−b

b

is clearly monotone non-decreasing, as when v−b increases the supremum is taken over a superset.

Figure 5: An example of the Compatibil-
ity Restriction function rf12 , the compatibil-
ity restriction of f1 on f2.

Figure 6: The intermediate function f̂2, and

the Compatibility Restriction function rf̂21 ,

the compatibility restriction of f̂2 on f1.

We next describe the three-step process that starts with a pair of compatible functions (f1, f2),
and ends with a compatible and tight (see Definition 1.4) pair of monotone functions (f∗

1 , f
∗
2 ). In
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each step the expected GFT of the mechanism that corresponds to the pair of functions (as per
Definition 3.4) does not decrease. We now present how we do one of these step (the two other
steps are similar). Consider any simple mechanism M and its pair of associated functions (f1, f2)
which is compatible. We want to turn f2 into a monotone function f̂2 such that the pair (f1, f̂2) is
compatible, and the GFT of Mf1,f̂2

is at least as high as the GFT of M . To do that we fix f1, and

for every value v1 define the value of f̂2(v1) to be the highest price over all prices that maximizes
the GFT in the bilateral trade between buyer b2 and seller s, under the constraint that the price
is at least rf12 (v1). The function rf12 is monotone non-decreasing and as a result the function f̂2 is
also monotone non-decreasing (see proof in Appendix B).

In the three-step modification process, we first turn f2 into a monotone function f̂2 such that
the pair (f1, f̂2) is compatible, and the GFT of Mf1,f̂2

is at least as high as the GFT of M . Figure

6 shows this new function f̂2 and the compatibility restriction it imposes on f1. Second, we turn
f1 into a monotone function f∗

1 such that the pair (f∗
1 , f̂2) is compatible, and the GFT of Mf∗

1 ,f̂2
is

at least as high as the GFT of Mf1,f̂2
. The third and final step is to modify the monotone function

f̂2 and generate a monotone function f∗
2 such that the pair (f∗

1 , f
∗
2 ) is compatible and does not lose

any GFT, while being tight (see Definition 1.4). Recall that the pair f1, f2 is said to be tight after
(p1, p2) if there is no point above (p1, p2) where both v1 < f1(v2) and v2 < f2(v1). Figure 7 shows
the functions f∗

1 , f̂2, illustrating that they are not tight, and Figure 8 shows the final functions
f∗
1 , f

∗
2 , that are tight.

Figure 7: Illustration of f∗
1 and f̂2. The

lower-right shaded area (in red) represents
points at which the mechanism will use the
posted-price mechanism with price f∗

1 (v2) on
buyer b1 and the seller. Similarly, the upper-
left shaded area (in blue) represents using
price f̂2(v1) on buyer b2 and the seller.

Figure 8: Illustration of the final functions
f∗
1 and f∗

2 . Note that above and to the right
of their first meeting point, there are no pairs
of values strictly between the two curves (no
blank spaces), i.e. they are tight.

In summary, by applying these three modifications on a pair of functions (f1, f2) that is asso-
ciated with a simple mechanism, we get another simple mechanism Mf∗

1 ,f
∗
2
that is associated with

(f∗
1 , f

∗
2 ) that are a compatible and tight pair of monotone functions. We have thus derived the
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main result of this section:

Theorem 2. For any three distributions Vs, V1, V2 and any simple mechanism M , there exists a
compatible and tight pair (f∗

1 , f
∗
2 ) of monotone functions such that the GFT of the simple mechanism

Mf∗
1 ,f

∗
2
(as per Proposition 2) on V = Vs × V1 × V2 is at least as large as the GFT of M on V.

5.1 Proof of Theorem 2

In this section we present the proof of Theorem 2. As stated above, in each of the three steps in
which we change one of the functions, we do so by setting the value at each point to be the best
price over all prices that maximize GFT in the bilateral trade scenario, under the constraint that
the price is not lower than the appropriate compatibility restriction. Formally, we define the best
price under a restriction:

Definition 5.2 (Restricted Best Price). Let Vs, Vb be bounded distributions. We define p∗(r, Vs×Vb),
the Restricted Best Price for distribution Vs × Vb given restriction r ∈ R, to be:

p∗(r, Vs × Vb) = sup

{
arg sup

p≥r
GFT(p, Vs × Vb)

}

When r = 0 there is no restriction on price and we call p∗(0, Vs × Vb) the best price for
distribution Vs × Vb.

In other words, for bilateral trade between seller s and buyer b, the restricted best price is
essentially the highest price that is at least r that obtained the maximal GFT for distribution
Vs × Vb (over all prices that are at least r).

Note that the definition is using sup and argsup, so as defined, it is not clear that the defined
price itself maximizes the GFT. Yet, we prove that it actually does, showing we can substitute the
sup and argsup with max and argmax, respectively. Notably, this isn’t a straightforward result
and typically it would necessitate the GFT function to be continuous — a condition that isn’t met
in this case. However, upper semi-continuity suffices for our specific context, and GFT is indeed
upper semi-continuous. Additionally, the restricted best price is also monotone non-decreasing,
which in combination with the fact that any compatibility restriction function in also monotone
non-decreasing will aid us in modifying the payment functions to be monotone. Detailed proofs of
these properties are available in Appendix B.

We are now ready to define the operator that will be iteratively executed three times, each time
on a different agent. The operator takes as input the function f−b, associated with buyer −b, and
the distributions for the seller s and buyer b, and outputs a new function f̃b for b that gives the
best price for the product distribution Vs × Vb under the constraint imposed by f−b.

Definition 5.3. Fix some distributions VS , V1, V2, and let (f1, f2) be a pair of compatible functions.
Define the function f̃b = g(f−b, Vs × Vb) as the restricted best-price function on Vs × Vb, restricted
by the function f−b. That is, for value v−b the function is defined as follows:

f̃b(v−b) = p∗(r
f−b

b (v−b), Vs × Vb)

The three modification steps we do are defined as follows:

f̂2 = g(f1, Vs × V2) f∗
1 = g(f̂2, Vs × V1) f∗

2 = g(f∗
1 , Vs × V2)
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Note that even though we notate them simply as f̂2, f
∗
1 , f

∗
2 , the function f̂2 actually depends

on f1, the function f∗
1 depends on f̂2, and the function f∗

2 depends on f∗
1 . Also, they all depend on

the distributions Vs, V1 and V2. An illustration of the function f̂2 (which is the result of the first
modification step) is presented in Figure 6.

Crucially, this operator makes the new function monotone, while not violating compatibility:

Lemma 5.4. Fix some distributions VS , V1, V2, and let (f1, f2) be a pair of compatible functions.
The functions f̃1 = g(f1, Vs×V2) and f̃2 = g(f2, Vs×V1) are monotone non-decreasing; additionally,
the pair (f̃1, f2) is compatible, and so is the pair (f1, f̃2).

Additionally, modifying the functions according to the compatibility restrictions does not cause
the new mechanism to lose any GFT, because we changed only one of the functions, and we only
(weakly) improved it at each point:

Lemma 5.5. Let V = Vs × V1 × V2 be a product distribution, and let (f1, f2) be a pair of com-
patible functions. Denote f̃1 = g(f2, Vs × V1) and f̃2 = g(f1, Vs × V2). Then GFT(Mf̃1,f2

,V) ≥
GFT(Mf1,f2 ,V) and GFT(Mf1,f̃2

,V) ≥ GFT(Mf1,f2 ,V).

Detailed proofs of these lemmata can be found in Appendix B.
We proceed by explaining the reason behind iterating over the operator three times, alternating

between the two agents. After two iterations we have a pair of compatible functions are monotone
non-decreasing. This is sufficient for learning a GFT-optimal mechanism in polynomial time, but
by taking an extra iteration we can make learning easier.

To understand this statement, we first point out that there is an ‘empty’ rectangle (no trade)
between (0, 0) and some point (p1, p2), this is illustrated in Figure 7. The values p1, p2 are the
unrestricted best prices, and below them it is preferable for no trade to occur. This ‘empty’
rectangle (0, 0) − (p1, p2) appears in many different distributions, for two examples, see Figure 3
and Figure 4.

In Figure 7, the colored areas represent the points where a trade occurs (given that the seller
agrees) - red for trades s → b1 and blue for s → b2. Notice that above the point (p1, p2), there are
some ‘blank’ rectangles. They are a result of defining f̂2 on the restrictions from f1, which might be
arbitrary. To close these gaps, we perform a third iteration, defining f∗

2 using the restriction from

f∗
1 (the restriction r

f∗
1

2 (v1) at each v1). Intuitively, this means that wherever possible we ‘lower’

f̂2’s value to the previous restricted best price, because now that price is allowed. An illustration
of the result of this step can be seen in Figure 8.

Again, this new function pair (f∗
1 , f

∗
2 ) is compatible and both of the functions are monotone.

However, now we also claim that they are tight - meaning they describe the same curve after the
point (p1, p2):

Lemma 5.6. Let V = Vs×V1×V2 be a product distribution, and let (f1, f2) be a pair of compatible
functions. Let p1, p2 ∈ R be the best prices of Vs × V1 and Vs × V2 respectively, and let f∗

1 , f
∗
2 be

defined as in Definition 5.3. Then the pair (f∗
1 , f

∗
2 ) is tight after (p1, p2).

Proof. Recall that by the definition of a tight pair we need to show that there do not exist any
values v1 ≥ p1, v2 ≥ p2 such that v1 < f∗

1 (v2) and v2 < f∗
2 (v1).

First of all, we claim that ∀v1 : f̂2(v1) ≥ f∗
2 (v1). This is because for f∗

2 we used the restrictions
from f∗

1 , which is itself restricted from f̂2. Therefore, f
∗
2 could use the values of f̂2, or improve by

lowering the price. Increasing it will never occur, because the restricted best price always takes the
maximum among best prices - and so no improvement would be made by increasing the price.
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Now we fix v1 ≥ p1, v2 ≥ p2. If v1 ≥ f∗
1 (v2) - we are done. Otherwise v1 < f∗

1 (v2). Recall that

f̂2 is monotone, and that ∀v1 : f̂2(v1) ≥ f∗
2 (v1). Additionally, f

∗
1 ≥ rf̂21 (v2) = sup{v1|v2 ≥ f̂2(v1)} >

v1, and so ∃v′1 > v1 : v2 ≥ f̂2(v
′
1). Therefore also v2 ≥ f∗

2 (v1).

From this lemma we learn that the pair (f∗
1 , f

∗
2 ) is indeed tight after (p1, p2), and above that

point there will always be a trade when the seller’s value is low enough - as illustrated in Figure 8.
In summary, we prove the main theorem of the section:

Proof of Theorem 2. Let M be a simple mechanism, let (f1, f2) be the associated pair of functions
of M , and let f̂2, f

∗
1 and f∗

2 be defined as in Definition 5.3 for (f1, f2) and the product distribution
V. By using Lemma 5.4 three times, on the pairs of function (f1, f̂2), (f

∗
1 , f̂2) and (f∗

1 , f
∗
2 ), we

derive that the pair of functions (f∗
1 , f

∗
2 ) is compatible, each function is monotone non-decreasing

and by Lemma 5.6 they are tight. Thus, by Lemma 3.5, Mf∗
1 ,f

∗
2
is well-defined and simple. Finally,

by Lemma 5.5 GFT(Mf∗
1 ,f

∗
2
,V) ≥ GFT(Mf1,f2 ,V).

6 Computing a GFT-optimal Simple Mechanism under Indepen-
dence

Before presenting our methodology for learning GFT-optimal mechanisms from samples, we in-
troduce an algorithm designed to find a simple mechanism that maximizes GFT on a product
distribution with finite support, when the product distribution is given to the algorithm as input.
This will be useful in the next section, in which we construct a mechanism when we do not know
the product distribution; rather, we have sample access to it. We show that when we only have
sample access to a product distribution, we can learn a good mechanism by running the algorithm
we present in this section on the empirical distribution generated from enough samples.

In this section we consider the problem of finding a GFT-optimal mechanism for a given finite
product distribution V = Vs × V1 × V2. First, to aid our description and computation of the
algorithm, we construct an ordered set S = {s1 < ... < sm} of size m, which is a union of the finite
supports of the distributions Vs, V1, V2, so that the realized value of every agent is always in S.
Clearly, it is sufficient to define the value of the functions f∗

1 and f∗
2 on on values in S. Moreover,

we claim that to maximize the GFT, it is sufficient to consider only functions that output values
in S. This is so because the mechanisms we consider break ties in favor of trade and in favor of the
higher value. Therefore, rounding a price that is not in S to the closest value in S would result in
the exact same trade in all cases. This fact also allows us to assume that the (unrestricted) best
prices p1, p2 are in S.

We leverage the result presented in Theorem 2, and use a dynamic programming approach to
efficiently compute such a mechanism. Additionally, observe that as we only consider functions
f1, f2 : S → S, since S is finite we consider only a finite number of mechanisms. Therefore the
maximum GFT is attainable and there exists a GFT-optimal mechanism. By this and Theorem
2, we know there is a GFT-optimal mechanism with an associated compatible pair (f∗

1 , f
∗
2 ) of

monotone functions that have the following properties: 1) There is a point (p1, p2) which represents
the unrestricted best prices for each, and up to that point the functions are equal to those values.
2) After (p1, p2) the functions are tight.

Before formalizing our result, we establish some useful notations. We use V ≥r to denote the
distribution of V conditioned on the value being at least r, i.e. Pr[V ≥r = v] = Pr[V = v|V ≥ r].
Similarly, we use the notation V <r for the conditional distribution defined by Pr[V <r = v] =
Pr[V = v|V < r].
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In the first step of the algorithm we find the best prices p1, p2 for distributions Vs × V1 and
Vs × V2, respectively, by iterating over all elements in S (for simplicity, we denote them as p1, p2
and not as indices in S). Then we construct a matrix G that represents values in S × S in the
range from (p1, p2) to (sm, sm), where each element is defined as follows:

G[i, j] = max
Compatible (f1,f2) s.t.
(f1(sj)=si)∨(f2(si)=sj)

{
GFT

(
Mf1,f2 ,

(
Vs × V ≥si

1 × V
≥sj
2

))}
· Pr[V1 ≥ si] · Pr[V2 ≥ sj ]

In other words, each element G[i, j] contains the maximum GFT an optimal simple mechanism

can achieve on the product distribution Vs × V ≥si
1 × V

≥sj
2 , times the probability that v1 ≥ si and

v2 ≥ sj , and conditioned on the fact that the functions f1, f2 begin at, or pass through, si, sj .
For the functions to begin at, or pass through, si, sj they must meet the following condition:
(f1(sj) = si) ∨ (f2(si) = sj).

Since at this step we only need to find the functions f1, f2 from (p1, p2) on-wards and we
know that they pass through that point, this condition is met at (p1, p2) and so if the matrix is
filled in correctly we will be able to use it to construct the functions f1, f2 from (p1, p2) up to
(sm, sm). Figure 9 illustrates the two parts of the functions that we compute in the algorithm (up
to (p1, p2), and from there onward). The definition of G[i, j] requires considering all compatible
pairs of functions that begin at si, sj , and there are exponentially many such compatible pairs of
functions. However, in the next subsection we will show how the matrix can nevertheless be filled
in polynomial time.

When the matrix is full, we can traverse it by following the values that were chosen at each point,
thus constructing the tight part of the compatible and tight pair of functions (f∗

1 , f
∗
2 ). Finally, by

combining this with the part that sets the best prices p1, p2 we get the pair of functions (f∗
1 , f

∗
2 )

that are associated with a GFT-optimal mechanism for the given product distribution.
In summary, we present the main result of this section:

Theorem 3. There exists a polynomial time algorithm that when explicitly given finite distributions
Vs, V1, V2, outputs a compatible pair of functions (f∗

1 , f
∗
2 ) such that Mf∗

1 ,f
∗
2
maximizes gains from

trade for V = Vs × V1 × V2 over all simple mechanisms.

6.1 Description of the Algorithm

As stated previously, there is an exponential number of compatible and tight pairs (f1, f2) of
monotone functions f1, f2 : S → S that begin at si, sj . However we can use the condition that
either f1(sj) = si or f2(si) = sj , and that by Theorem 2 there is a pair of tight and monotone
functions that maximizes GFT, in order to reduce the number of functions that we must consider
to only polynomially many. We first prove the following lemma regarding ties of these functions:

Lemma 6.1. Let V = Vs × V1 × V2 be a finite product distribution supported on the ordered set
S, and let p1, p2 be the best prices for Vs × V1 and Vs × V2, respectively. Denote m = |S|, and let
sm ≥ si ≥ p1, sm ≥ sj ≥ p2. There exists a GFT-optimal mechanism M s.t. the only point where
(f1(sj) = si) ∧ (f2(si) = sj) is where i = j = m.

Proof. Towards a contradiction, assume there is another such point (si, sj) and w.l.o.g. i < m.
Since (f1(sj) = si) ∧ (f2(si) = sj) we know the mechanism must break the tie when the players
report (si, sj). Since the mechanism is optimal, we know the mechanism breaks the tie in favor of
the larger value or arbitrarily if thy are equal. W.l.o.g. assume that the mechanism breaks the tie
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Figure 9: Algorithm 1 finds the values of
f∗
1 , f

∗
2 in two parts. The best prices p1, p2

are found separately, and the matrix G is
computed for the value above (p1, p2), seen
here in the green rectangle.

Figure 10: Option (1) of the simple com-
putation: By setting f2(0.7) = 0.6 we gain
GFT from the magenta column and Vs, and
we add the optimal GFT that can be gained
from the orange rectangle.

in favor of buyer 2, i.e. sj ≥ si. However, we can change f1(sj) = si+1 and the new mechanism will
be equivalent, because for buyer 1 to win he must bid at least si+1. Therefore, there exists such an
optimal mechanism M where the only tie can be i = j = m.

Consider the case that i = j = m does not hold. In that case, if f1(sj) = si then f2(si) > sj ,
because from the compatibility property f2(si) ̸< sj , and from Lemma 6.1 it holds that f2(si) ̸= sj .
Similarly, if f2(si) = sj then f1(sj) > si. Therefore we can consider G[i, j] as the maximum of only
two options:

G[i, j] = max
{

Pr[v1 = si] · Pr[v2 ≥ sj ] · Pr[sj ≥ vs] · (E[v2 | v2 ≥ sj ]− E[vs | sj ≥ vs]) +G[i+ 1, j]

Pr[v1 ≥ si] · Pr[v2 = sj ] · Pr[si ≥ vs] · (E[v1 | v1 ≥ si]− E[vs | si ≥ vs]) +G[i, j + 1]
}

The first option handles the case that f2(si) = sj . In this case, we count the GFT from setting
a price of sj for s → b2, which is Pr[v2 ≥ sj ] · Pr[sj ≥ vs] · (E[v2 | v2 ≥ sj ] − E[vs | sj ≥ vs]). We
need to multiply that by the probability that v1 = si. Finally, since we set f2(si) = sj we know that
f1(sj) > si so we continue to G[i+1, j] which considers the maximum GFT that can be gained on

Vs × V
≥si+1

1 × V
≥sj
2 , times the probability that v1 ≥ si+1 and v2 ≥ sj and conditioned on the fact

that the functions f1, f2 begin at si+1, sj . We can consider only the GFT from this point onwards
because f1(sj) > si and f2(si) = sj . The second option is symmetric.

To illustrate this, we present an example in Figure 10. In this example S includes all multiples
of 0.1. Assume that the goal is to maximize the GFT on the rectangle above (0.7, 0.6), i.e. si =
0.7 and sj = 0.6. In the illustration, the magenta column represents the expected GFT from
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GFT(0.6, Vs × V2) when v1 = 0.7. The orange rectangle represents the maximum possible GFT
from the point (0.8, 0.6). Specifically, this is option (1) that appears above.

As we now have a recursive definition of G, we can compute it using a dynamic program:
Algorithm 1 presents a pseudo-code description of the algorithm.

Algorithm 1 — Computing a GFT-Optimal Mechanism for a Finite Product Distribu-
tion
Input: Finite distributions Vs, V1, V2

Output: A pair of functions (f∗
1 , f

∗
2 ) such that Mf∗

1 ,f
∗
2

GFT-optimal for Vs × V1 × V2

Initialization:
S = supp(Vs)∪ supp(V1)∪ supp(V2)∪ {0, 1}, sort S in increasing order, m =

|S|
Initialize P1, P2, Cs, C1, C2, Es, E1, E2, f

∗
1 , f

∗
2 as arrays of length m:

∀b ∈ {1, 2},∀i ∈ [m] : Pb[i] = Pr[Vb = si], Cb[i] = Pr[Vb ≥ si], Eb[i] = E[Vb|Vb ≥
si]
∀i ∈ [m] : Cs[i] = Pr[Vs ≤ si], Es[i] = E[Vs|Vs ≤ si]

Step 1: Get Best Prices
p1 = maxi∈S{(E1[i]− Es[i]) · C1[i] · Cs[i]} (Best price for Vs × V1)
p2 = maxi∈S{(E2[i]− Es[i]) · C2[i] · Cs[i]} (Best price for Vs × V2)

Step 2: Initialize the matrix G
Initialize G,Gp as a (m+ 1)× (m+ 1) matrices

∀i, j ∈ [m+ 1] : G[i,m+ 1] = 0, G[m+ 1, j] = 0

Step 3: Fill G
For (i = m;S[i] ≥ p1; i−−):
For (j = m;S[j] ≥ p2; j −−):
G1 = P1[i] · C2[j] · Cs[j] ·

(
E2[j]− Es[j]

)
+G[i+ 1, j]

G2 = C1[i] · P2[j] · Cs[i] ·
(
E1[i]− Es[i]

)
+G[i, j + 1]

If G1 ≥ G2:
Gp[i, j] =→

Else:
Gp[i, j] = ↑

G[i, j] = max{G1, G2}

Step 4: Construct f∗
1 , f

∗
2

∀i ∈ [p1],∀j ∈ [p2] : f
∗
1 [j] = p1, f

∗
2 [i] = p2

i = p1, j = p2
While i ≤ m or j ≤ m do:

if G[i, j] ==→:

f∗
2 [i] = j
i++

else:

f∗
1 [j] = i
j ++

Step 5: Return f∗
1 , f

∗
2
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The algorithm is separated into a few steps. First, we initialize the arrays we plan on using.
The P arrays are only needed for the buyers, and at element i they contain the probability of a
buyer having a specific value si. The C and E arrays are created for all three agents. The C arrays
represent the probability of a value being at least si (or at most that value for the seller). The E
arrays contain at element i the expected value conditioned on the fact that the random variable is
at least si (or at most for the seller). Initializing these arrays at the beginning will be helpful later
in the algorithm.

Step 1 finds the best prices for Vs × V1 and Vs × V2 by iterating over all possible values in S
(which is sufficient as we have stated previously). Step 2 initializes the matrix G and sets the values
to 0 where at least one of the coordinates is m+1 (this is outside the support, and is defined so for
convenience). It also initializes Gp which is a ‘pointer’ matrix, which we will use in Step 4 when
constructing f∗

1 , f
∗
2 .

In Step 3 we fill the matrix according to the rule we described above. At G[i, j] we consider
both options: trading s → b1 at si plus the GFT in G[i, j + 1] and trading at s → b2 at sj plus
G[i+ 1, j. We set the value of G[i, j] to be the maximum of these two options, and we set Gp[i, j]
to point to the direction that we used.

Step 4 constructs the payment functions from G. First, we set ∀p2 ≥ j ≥ 0 : f1(j) = p1 and
∀p2 ≥ i ≥ 0 : f2(i) = p2. Then we traverse the matrix from Gp[p1, p2] to Gp[m,m] by following the
pointers. We set them to remember the values that we used at each step, so Gp[i, j] points in the
direction that we need to proceed.

It is clear that Step 3 fills the matrix at G[i, j] according to the simplification of the computation
we presented above. Additionally, it sets the base cases appropriately in Step 2, and constructs
f∗
1 , f

∗
2 by following the maximum path we saved while filling G - therefore Algorithm 1 is correct.

6.2 Proof of Theorem 3

We are now ready to prove the main theorem of this section:

Proof of Theorem 3. Consider the mechanism Mf∗
1 ,f

∗
2
which is the output of Algorithm 1. From the

definitions of best prices we know that up to p1, p2 this mechanism achieves maximum GFT from
trading at the best prices. This accounts for the GFT from Vs×V <p1

1 ×V2 and Vs×V1×V <p2
2 . Also,

by Lemma 5.6 we know that there exists a simple mechanism M with an associated pair (f∗
1 , f

∗
2 )

that are tight after (p1, p2) and that these are unrestricted best prices, so either f∗
1 (p2) = p1 or

f∗
2 (p1) = p2.

As described above, we know that the maximum GFT that can be achieved on Vs×V ≥si
1 ×V

≥sj
2

given that either f1(p2) = p1 or f2(p1) = p2 is equal to G[i, j]. Also, Algorithm 1 constructs the
functions so they achieve this exact GFT. So overall, the mechanism Mf1,f2 that uses the resulting
functions from Algorithm 1 achieves the maximum GFT possible for a simple mechanism over all
Vs × V1 × V2. Additionally, it is clear that Algorithm 1 runs in polynomial time.

7 Learning to Maximize GFT under Independence

In this section we consider learning GFT-optimal mechanisms for a product of distributions that are
supported on [0, 1] (when the support is not necessarily finite), while only having sample access to
the distributions. Given parameters δ, ε > 0 we aim to find, with probability at least 1−δ, a simple
mechanism with GFT that is at most an additive ε lower than the GFT-optimal mechanism tailored
to the product distribution (which is unknown). The learning procedure will run the algorithm
presented in Section 6 on the empirical product distribution that is derived from a polynomial
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(in 1/ε and log 1/δ) number of samples, finding the GFT-optimal mechanism for the empirical
distribution. We show that the resulting mechanism indeed satisfies the requirements.

The main tool we use is the ε-sample:

Definition 7.1 (Def 14.6 from [MU17]). Let (X,R) be a range space and let D be a probability
distribution on X. A set S ⊆ X is an ε-sample w.r.t D if for all sets R ∈ R,∣∣∣∣PrD[R]− |S ∩R|

|S|

∣∣∣∣ ≤ ε

An ε-sample is one in which the empirical distribution over the samples is almost the same as the
underline distribution. Intuitively, sampling enough points from a distribution creates a sample that
represents the original distribution pretty well. In the case of an ε-sample, the original distribution
is sampled enough times so that, with high probability, for every range in the probability space its
weight in the sample is ε-close to its true weight in the distribution.

For some bounded distributions Vs, V1, V2 we denote their respective ε-samples by Ss, S1, S2.
We also denote the uniform distribution over the multiset Si by Ui, i.e. Ui = Uniform(Si). We use
U = Us×U1×U2 to denote the product of these uniform distributions, so sampling from U returns
a triplet of values (us, u1, u2) which were each sampled independently from Us, U1, U2, respectively.

We now claim that a mechanism’s GFT on the underlying product distribution that was sampled
is close to its GFT on the ε-samples:

Lemma 7.2. Let V = Vs × V1 × V2 be a product distribution over [0, 1]3, and let Ss, S1, S2 be
ε-samples for Vs, V1, V2, respectively. Let U = Us × U1 × U2. For every compatible pair (f1, f2) of
monotone non-decreasing functions:

|GFT(Mf1,f2 ,V)−GFT(Mf1,f2 ,U)| ≤ 12ε

Proof sketch. We next briefly explain the idea behind the proof of the lemma, its full proof can be
found in Appendix C. Denote by S the union of the supports of Ss, S1, S2. Denote by ⌈v⌉S and ⌊v⌋S
the rounding up and down of v to the closest value in the ε-sample S, respectively. Additionally,
denote by GFT2(Mf1,f2 ,V) the expected GFT from trades that include buyer b2 (s → b2).

Now fix some v1, and consider GFT2(Mf1,f2 ,V) and GFT2(Mf1,f2 ,U). For now, assume that
the values of f2(v1), f2(⌈v1⌉S), f2(⌊v1⌋S) are ‘close’ in the ε-sense; i.e. the probability of sampling
a value between these values is at most ε. Therefore, with probability 1 − ε, the values of vs, v2
aren’t ‘too close’ to f2(v1), and the same allocation of the mechanism will occur whether we round
the value of v1 before computing the price or not. If there is a significant difference between the
values of f2(v1), f2(⌈v1⌉S), f2(⌊v1⌋S) then the claim above does not necessarily hold. However, such
significant jumps can only occur a small number of times, because f2 is monotone and its range is
in [0, 1]. Therefore, from the properties of ε-samples, the probability of losing a trade in this case
is also O(ε).

Intuitively, this is exactly what happens in the ε-sample: the value of v1 is rounded to some
point in the sample, and the probability of that affecting the resulting allocation is negligible. Addi-
tionally, the expected GFT given that a specific allocation occurs is also not perturbed significantly,
because we have an ε-sample for the participating agents so their expected value for the item is
roughly the same. Thus, by taking the expectation over all values of v1, and symmetrically doing
the same for v2 and considering the GFT from trades s → b1, results in an O(ε) bound for these
differences.

Before using this lemma to reach our final result, we must explain how a mechanism that was
learned on finite samples performs on the underlying distribution (that might be continuous). The
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mechanism we constructed is actually built from two functions f∗
1 , f

∗
2 : S → S, i.e. they are defined

only on a finite set S. In order for them to be defined on the full domain [0, 1], we propose a
simple rounding scheme: round all values v1 /∈ S down and all v2 /∈ S up, so we end up with ⌊v1⌋S
and ⌈v2⌉S . This means that for example, instead of setting the price for s → b2 to be f2(v1) the
mechanism sets it to f2(⌊v1⌋S). Note also that the functions remain compatible, so the mechanism
is still simple.13

Using these results, we propose the following learning algorithm:

Algorithm 2 — Learn an ε-Approximately Optimal Mechanism
Input: Sample access to distributions Vs, V1, V2 supported on [0, 1], parameters ε > 0, δ > 0
Output: A mechanism that achieves, with probability 1−δ, the optimal GFT on Vs×V1×V2

up to O(ε)

Step 1: Sample O
(

1
ε2 ln

1
εδ

)
samples from each Vs, V1, V2 to create Ss, S1, S2

Step 2: Run Algorithm 1 on Ss, S1, S2, get f1, f2
Step 3: Return the mechanism Mf1,f2

In this algorithm we sample the distributions, and with probability at least 1 − δ the samples
we generate are ε-samples. We then run Algorithm 1 on the empirical distributions, and end up
with functions that are associated with a GFT-optimal mechanism for the product of the empirical
distributions. We compare any optimal mechanism for the true distributions V and the optimal
mechanism we computed for U, the uniform distributions over the samples. Since by Lemma 7.2
if the samples are ε-samples both mechanisms achieve O(ε)-close GFT on both V and U, we get
that our computed mechanism achieves close to optimal GFT on V. Full proofs of these claims are
given in the Appendix C.

Summarizing the results from the previous few sections, we arrive at the conclusive theorem:

Theorem 4. Let Vs, V1, V2 be distributions over [0, 1], and fix ε, δ > 0. Denote the maximum
expected GFT that can be achieved by a simple mechanism on V = Vs × V1 × V2 by OPTsimple(V ).
There exists a polynomial-time algorithm that given sample access to Vs, V1, V2 and parameters
ε, δ, outputs, with probability at least 1 − δ, a mechanism which has an expected GFT of at least
OPTsimple(V )− ε on V, using poly(1ε log

1
εδ ) samples from V.

A Missing Proofs From Section 3

A.1 Missing Proofs From Subsection 3.1

For completeness, we next present a proof that if M is a simple mechanism then the payment of a
winning agent does not depend on his report.

Lemma A.1. Let M = (A, p) be a simple mechanism, then for every agent i and ∀vi, v′i, v−i:(
(A(vi, v−i) ∈ Wi) ∧ (A(v′i, v−i) ∈ Wi)

)
∨
(
(A(vi, v−i) /∈ Wi) ∧ (A(v′i, v−i) /∈ Wi)

)
⇒ pi(vi, v−i) = pi(v

′
i, v−i)

13Additionally, notice that from the way we chose to round the values, the functions are still tight. This actually
isn’t necessary, and different rounding schemes that preserve the compatibility are valid here as well.
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Proof. If (A(vi, v−i) /∈ Wi) ∧ (A(v′i, v−i) /∈ Wi) then the claim holds trivially as pi(vi,v−i) =
pi(v

′
i,v−i) = 0. Otherwise, we know that in both cases the outcome is in the set of winning outcomes

for agent i. Assume, towards a contradiction and w.l.o.g, that ∃vi, v′i, v−i : pi(vi, v−i) > pi(v
′
i, v−i).

Then when agent i has value v′i:

ui(vi, (vi, v−i)) = vi − pi(vi, v−i) < vi − pi(v
′
i, v−i) = ui(vi, (v

′
i, v−i))

and this violates the DSIC property.

We use the above to show that if M is a simple mechanism then the payment of a winning
buyer does not depend on his report or on the seller report.

Lemma A.2. Let M = (A, p) be a simple mechanism. For every buyer b and bidding profiles
(vs, vb, v−b), (v

′
s, v

′
b, v−b), if A(vs, vb, v−b) = A(v′s, v

′
b, v−b) = b then pb(vs, vb, v−b) = pb(v

′
s, v

′
b, v−b).

Proof. Let vs, v
′
s, vb, v

′
b, v−b. M is SBB and normalized, so:

∀v : A(v) = b ⇒ pb(v) = −ps(v)

So:

pb(vs, vb, v−b)
(1)
= pb(vs, v

′
b, v−b)

(2)
= −ps(vs, v

′
b, v−b)

(3)
= −ps(v

′
s, v

′
b, v−b)

(4)
= pb(v

′
s, v

′
b, v−b)

where equality (1) and equality (3) follow by Lemma A.1, and equality (2) and equality (4) follow
from the property we stated above.

Lemma A.3. The functions in Definition 3.1 are uniquely defined.

Proof. Let M = (A, p) be a simple mechanism, and consider some bidding profile v = (vs, v1, v2).
For some buyer b, if A(v) = b then by Lemma A.2 we know that for all reports vs, vb s.t.
A(vs, vb, v−b) = b the price is the same. Therefore there is a single value p(v) and we set that
to be the value of fb(v−b) by choosing some arbitrary vs, vb s.t. A(vs, vb, v−b) = b, so this is unique.
Otherwise, there is no bidding profile vb, v−b s.t. A(vb, v−i) = b and so we set fb(v−b) = ∞, and
that is uniquely defined as well.

Lemma A.4. If a simple mechanism M = (A, p) is associated with a pair of functions (f1, f2),
then the pair (f1, f2) is compatible.

Proof. Towards a contradiction, assume that ∃vs, v1, v2 s.t. (v1 > f1(v2)) ∧ (v2 > f2(v1)). By
Definition 3.1 it holds that f1(v2) = p1(vs, v1, v2). By Proposition 1, if v1 > p1(vs, v1, v2) = f1(v2)
then buyer 1 wins. Similarly v2 > p2(vs, v1, v2) = f2(v1) and so buyer 2 wins as well. However, a
mechanism is not feasible if both buyers trade concurrently.

Proof of Lemma 3.3. Let f1, f2 be functions defined as in Definition 3.1. From the way they are de-
fined, ifA(v) = b1 then p(v) = (−f1(v2), f1(v2), 0), and ifA(v) = b2, then p(v) = (−f2(v1), 0, f2(v1)).
Additionally, by Lemma A.4 this pair of functions is compatible. Finally, from Lemma A.3 the
functions are also uniquely defined.
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A.2 Missing Proofs From Subsection 3.2

Proof of Lemma 3.5. As we described previously, the notation of p(v) describes the payment as
such: if there is a trade s → bi, then ps(vs, v1, v2) = −pi(vs, v1, v2), p−bi(vs, v1, v2) = 0. Therefore,
in all cases when there is a trade, the payment of the buyer equals the payment received by the
seller, and the buyer that does not trade pays 0. Additionally, when no trade occurs all of the
payments are 0. Therefore, the sum of payments is 0 at every bidding profile, and the mechanism
is SBB. Furthermore, every losing agent pays 0 so the mechanism is normalized.

Additionally, as the allocation rule is monotone and payments are by critical values, by Proposi-
tion 1 the mechanism is also DSIC. Moreover, since the mechanism is DSIC and normalized it is also
ex-post IR. Finally, from the definition of Mf1,f2 , if A(v) = 1 then p(v) = (−f1(v2), f1(v2), 0) and
if A(v) = 2 then p(v) = (−f2(v1), 0, f2(v1)). Therefore (f1, f2) are the associated pair of functions
of Mf1,f2 .

We will now prove that the mechanism defined in Definition 3.4 maximizes the expected GFT
amongst all mechanisms that share the same associated pair.

Proof of Lemma 3.6. Denote Mf1,f2 = (Â, p̂). We will show that GFT(Mf1,f2 , v) ≥ GFT(M, v)
pointwise:

1. If v1 > f1(v2) ≥ vs: From the definition of f1(v2) we getA(v) = b1 = Â(v), so GFT(Mf1,f2 , v) =
GFT(M, v).

2. Else, if v2 > f2(v1) ≥ vs: From the definition of f2(v1) we get A(v) = b2 = Â(v), so
GFT(Mf1,f2 , v) = GFT(M, v).

3. Else, if (v1 = f1(v2) ≥ vs) ∧ (v2 = f2(v1) ≥ vs): Mf1,f2 obtains the maximal possible GFT in
this case.

4. Else, if v1 = f1(v2) ≥ vs: In this case either M didn’t trade at all and GFT(M, v) = 0 or it
traded with 1. Since Â(v) = b1 we get that in all cases GFT(Mf1,f2 , v) ≥ GFT(M, v).

5. Else, if v2 = f2(v1) ≥ vs: In this case either M didn’t trade at all and GFT(M, v) = 0 or it
traded with 2. Since Â(v) = b2 we get that in all cases GFT(Mf1,f2 , v) ≥ GFT(M, v).

6. Else, A(v) = s = Â(v) and GFT(Mf1,f2 , v) = 0 = GFT(M, v).

B Missing Proofs From Section 5

B.1 Upper Semi-Continuity of GFT

Definition B.1 (Bilateral GFT at price p). Let Vs, Vb be two distributions over the valuations of
the seller and the buyer. We define the Bilateral Gains From Trade at price p as:

GFT(p, Vs × Vb) = E[Vb − Vs|Vb ≥ p ≥ Vs] · Pr[Vb ≥ p ≥ Vs]

For point x0 and δ > 0, let B(x0; δ) be a ball of radius δ around x0.
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Definition B.2. Let f : D → R and let x0 ∈ D. We say that f is upper semi-continuous at x0 if
∀ε > 0 ∃δ > 0 s.t.:

∀x ∈ B(x0; δ) ∩D f(x) < f(x0) + ε

Additionally, we say that f is upper semi-continuous if it is upper semi-continuous at every x ∈ D.

Theorem 5 (Continuity from above, Theorem 2.1 in [Bil95]). Let (Ω,F , P ) be a probability space,
and let A1 ⊇ A2 ⊇ ... be a sequence of subsets of Ω (∀i Ai ⊆ Ω). Define:

A =

∞⋂
n=1

An

then limn→∞P (An) = P (A).

Corollary B.3. Let (Ω,F , P ) be a probability space, and let A1 ⊇ A2 ⊇ ... be a sequence of subsets
of Ω (∀i Ai ⊆ Ω). Then limn→∞ P (An)− P (A) = 0. Additionally, if Ω ⊆ Rk then:

∀ω ∈ Ω, ε > 0 ∃δ > 0 s.t. P (B(ω; δ) ∩ Ω)− P (ω) < ε

Lemma B.4. For any two bounded distributions Vs, Vb, the function GFT(·, Vs × Vb) is upper
semi-continuous.

Proof. W.l.o.g assume Vs, Vb are supported on subsets of [0, 1]. Denote by Ps, Pb the probability
measures on the values of Vs and Vb, respectively. Let p0 ∈ [0, 1], and let ε > 0. For ε > 0, let δs > 0
be such that Ps(B(p0; δs) ∩ [0, 1])− Ps(p0) < ε, and let δb > 0 be such that Pb(B(p0; δb) ∩ [0, 1])−
Pb(p0) < ε (such values exist by Corollary B.3). Let δ = min{δs, δb}. Let p ∈ B(p0; δ) ∩ [0, 1]. We
prove the claim by considering the following two cases:

• p < p0:

GFT(p, Vs × Vb)−GFT(p0, Vs × Vb) =

E[Vb − Vs|Vb ≥ p ≥ Vs] · Pr[Vb ≥ p ≥ Vs]− E[Vb − Vs|Vb ≥ p0 ≥ Vs] · Pr[Vb ≥ p0 ≥ Vs]

= E[Vb − Vs|p0 > Vb ≥ p ≥ Vs] · Pr[p0 > Vb ≥ p ≥ Vs]

−E[Vb − Vs|Vb ≥ p0 ≥ Vs > p] · Pr[Vb ≥ p0 ≥ Vs > p]

≤ Pr[p0 > Vb ≥ p ≥ Vs] = Pr[p0 > Vb ≥ p|p ≥ Vs] · Pr[p ≥ Vs]

≤ Pr[p0 > Vb ≥ p] ≤ Pb(B(p0; δ) ∩ [0, 1])− Pb(p0) < ε

• p > p0:

GFT(p, Vs × Vb)−GFT(p0, Vs × Vb) =

E[Vb − Vs|Vb ≥ p ≥ Vs] · Pr[Vb ≥ p ≥ Vs]− E[Vb − Vs|Vb ≥ p0 ≥ Vs] · Pr[Vb ≥ p0 ≥ Vs]

= E[Vb − Vs|Vb ≥ p ≥ Vs > p0] · Pr[Vb ≥ p ≥ Vs > p0]

−E[Vb − Vs|p > Vb ≥ p0 ≥ Vs] · Pr[p > Vb ≥ p0 ≥ Vs]

≤ Pr[Vb ≥ p ≥ Vs > p0] = Pr[p ≥ Vs > p0|Vb ≥ p] · Pr[Vb ≥ p]

≤ Pr[p ≥ Vs > p0] ≤ Ps(B(p0; δ) ∩ [0, 1])− Ps(p0) < ε

So GFT(·, Vs × Vb) is upper semi-continuous at every point p0, and therefore it is upper semi-
continuous.
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B.2 Restricted Best Price

We next show that in Definition 5.2 of the Restricted Best Price, the supremum is actually a
maximum:

Lemma B.5. Let Vs, Vb be two bounded distributions, then ∃p∗ ∈ R s.t. ∀p ∈ R : GFT(p∗, Vs×Vb) ≥
GFT(p, Vs × Vb).

Proof. By Lemma B.4 the function GFT(·, Vs × Vb) is upper semi-continuous. The function is
also bounded, as the distributions are bounded, so from the extreme value theorem it attains its
supremum.

Lemma B.6. Let Vs, Vb be bounded distributions, and let p∗ be the best price - then p∗ can be
attained.

Proof. By Lemma B.5 we get that argmax
p∈R

GFT(p, Vs×Vb) is well defined. Now, towards a contra-

diction, assume that there is no max

{
argmax

p∈R
GFT(p, Vs × Vb)

}
. Therefore, we have an infinite

increasing series of p1 < p2 < ... s.t. GFT(p1, Vs × Vb) = GFT(p2, Vs × Vb) = .... Again using
the fact that GFT is upper semi-continuous at p, we know that the supremum of this sequence is

attainable, and that there is a max

{
argmax

p∈R
GFT(p, Vs × Vb)

}
.

Lemma B.7. Let Vs, Vb be bounded distributions, then the Restricted Best Price is monotone non-
decreasing in r, i.e. ∀r1 ≤ r2 : p

∗(r1, Vs × Vb) ≤ p∗(r2, Vs × Vb).

Proof. If p∗(r1, Vs × Vb) < r2, then trivially p∗(r1, Vs × Vb) < r2 ≤ p∗(r2, Vs × Vb). Otherwise,

p∗(r1, Vs × Vb) ≥ r2, and also p∗(r1, Vs × Vb) = max

{
argmax

p≥r1

GFT(p, Vs × Vb)

}
. Therefore, there

is no p > p∗(r1, Vs×Vb) s.t. GFT(p, Vs×Vb) ≥ GFT(p∗(r1, Vs×Vb), Vs×Vb). Therefore, p
∗(r1, Vs×

Vb) = p∗(r2, Vs × Vb).

B.3 Proofs for the Modification Steps

Lemma B.8. ∀v1, v2 : f1(v2) ≥ rf21 (v2) ⇐⇒ f2(v1) ≥ rf21 (v1).

Proof.

∀v1, v2 : f1(v2) ≥ rf21 (v2) = sup{v1|v2 ≥ f2(v1)}
⇐⇒ ∀v1, v2 : v1 ≥ f1(v2) ⇒ v2 ≤ f2(v1)

⇐⇒ ∀v1, v2 : v2 ≥ f2(v1) ⇒ v1 ≤ f1(v2)

⇐⇒ ∀v1, v2 : f2(v1) ≥ rf12 (v1) = sup{v2|v1 ≥ f1(v2)}

Lemma B.9. If ∀v1, v2 : f1(v2) ≥ rf21 (v2) (or f2(v1) ≥ rf12 (v1), by Lemma B.8) then the pair
(f1, f2) is compatible.

Proof. Contrariwise and w.l.o.g assume there are v1, v2 s.t. (v1 > f1(v2))∧ (v2 > f2(v1)). However,

f1(v2) ≥ rf21 (v2) = sup{v1|v2 ≥ f2(v1)} ≥ v1 - and this is a contradiction.
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Lemma B.10. Let (f1, f2) be a pair of compatible functions, then each one of the pairs (g(f2, Vs×
V1), f2), (f1, g(f1, Vs × V2)) is compatible.

Proof. Denote f̃2 = g(f1, Vs × V2). From the way we defined f̃2 we know that ∀v1, v2 : f̃2(v1) ≥
rf12 (v1), and so by Lemma B.9 the pair (f1, f̃2) is compatible. The reasoning for the other pair is
symmetric.

Lemma B.11. Let (f1, f2) be a pair of compatible functions, then the functions g(f1, Vs × V2) and
g(f2, Vs × V1) are each monotone non-decreasing.

Proof. By Lemma B.7 the restricted best price is monotone non-decreasing, and as we stated the
compatibility restriction is also monotone non-decreasing. The functions g(f1, Vs×V2) and g(f2, Vs×
V1) are a composition of these functions, and therefore are also monotone non-decreasing.

Proof of Lemma 5.4. Immediate by Lemmata B.10, B.11.

Proof of Lemma 5.5. We prove the second inequality - that GFT(Mf1,f̃2
,V) ≥ GFT(Mf1,f2 ,V),

the proof of the first is similar. Split the GFT to GFT1 and GFT2, as in Notation C.3. For GFT2

and ∀v1 we know that GFT(f̃2(v1), Vs × V2) ≥ GFT(f2(v1), Vs × V2), because f̃2(v1) can be the
same f2(v1) or improve on it.

Since we didn’t change f1, the GFT1 is the same in both sides of the inequality except in cases
of ties. In the case of a tie all that remains here is to show that we didn’t lose any GFT from
changing f2 to f̃2. The only way to lose GFT1 in this case is if we had a tie that b1 won previously
but now loses. This can occur only if at v1, v2 we have f2(v2) ≤ f1(v2) < f̃2(v1). However in this
case what we lose in GFT1 we gain in GFT2 (and maybe even more), so the claim holds.

Therefore, summing all cases we get that GFT(Mf1,f̃2
,V) ≥ GFT(Mf1,f2 ,V).

C Missing Proofs From Section 7

We begin by introducing several well-established definitions and outcomes concerning learning from
samples.

Definition C.1 (Def 14.1 from [MU17]). A range space is a pair (X,R) where:

1. X is a (finite or infinite) set of points;

2. R is a family of subsets of X, called ranges.

In this paper we use the range space where X = [0, 1] and R is the family of all closed intervals
[a, b] ⊆ [0, 1]. It is known that the VC dimension of this range space is 2 ([MU17], page 364).

Lemma C.2. Let V be a distribution over [0, 1], and let S be an ε-sample of V . Then ∀R = [a, b] ⊆
[0, 1] : |Ev∼V [v · Iv{R}]− Es∼U(S)[s · Is{R}]| ≤ ε, where Iv{R} is 1 if v ∈ R and 0 otherwise.

Proof. Note that by the definition of expected value:

Ev∼V [v · Iv{R}] =
∫
R
x dV Es∼U(S)[s · Is{R}] =

∫
R
x dU(S)
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Taking the absolute value of the difference:

∣∣Ev∼V [v · Iv{R}]− Es∼U(S)[s · Is{R}]
∣∣ = ∣∣∣∣∫

R
x dV −

∫
R
x dU(S)

∣∣∣∣
=

∣∣∣∣∫
R
x (dV − dU(S))

∣∣∣∣ (1)

≤
∣∣∣∣∫

R
x · ε

∣∣∣∣ (2)

≤ ε

where (1) is by ε-sample properties, and (2) is because R ⊆ [0, 1].

Theorem 6 (Thm. 14.15 from [MU17]). Let (X,R) be a range space with VC dimension d and
let D be a probability distribution on X. For any ε > 0, 1/2 > δ > 0, there is an

m = O

(
d

ε2
ln

d

ε
+

1

ε2
ln

1

δ

)
such that a random sample from D of size greater than or equal to m is an ε-sample for X with
probability at least 1− δ.

Specifically, in the range space we use where X = [0, 1] and R is the family of all closed intervals
[a, b] ⊆ [0, 1] the VC dimension is 2, and therefore there is a sample of size O

(
1
ε2

ln 1
εδ

)
which is an

ε-sample with probability at least 1− δ. Next, we notate the separate parts of GFT that we gain
from each buyer:

Notation C.3. Let M = (A, p) be a DSIC mechanism for the 1-seller 2-buyer setting. We denote
M ’s expected GFT for prior V generated by trades between the seller and buyer b by GFTb(M,V):

GFTb(M,V) = Ev∼V [(vb − vs) · I{A(v) = b}]

Note that GFT(M,V) = GFT1(M,V) + GFT2(M,V).

The following lemma contains the essence of our ability to achieve robust approximations using
ε-samples. On an intuitive level, it demonstrates that rounding to the worst-case scenario can only
result in a loss of ε GFT during each iteration. This is due to the fact that the potential points
within S encompass a significant portion of the distribution’s weight - so the probability to ‘fall
through the cracks’ and lose GFT is negligible. The next lemma immediately implies Lemma 7.2.

Lemma C.4. Let V = Vs×V1×V2 be a product distribution over [0, 1]3, let Ss, S1, S2 be ε-samples
for Vs, V1, V2, respectively. Let U = Us × U1 × U2. For every compatible pair (f1, f2) of monotone
non-decreasing functions, and every buyer b ∈ {1, 2}:

|GFTb(Mf1,f2 ,V)−GFTb(Mf1,f2 ,U)| ≤ 6ε

Proof. We will prove this for GFT2 and the proof for GFT1 is symmetric. First we must define
how to round up or down to a given sample S:

Definition C.5 (rounding to S). Let S be a finite set, {0, 1} ⊆ S, for every x ∈ [0, 1] the rounding
of x up and down w.r.t. S are defined as follows:

⌈x⌉S = min
s∈S

{s ≥ x} ⌊x⌋S = max
s∈S

{s ≤ x}
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Now let S be the union of the supports of Ss, S1, S2 with {0, 1}, and denote its elements by
S = {0 = s1 < ... < sk = 1}. Fix (si−1, si] and let v1 ∈ (si−1, si]:

GFT2(Mf1,f2 ,V|v1)
(a)
= Ev2∼V2,vs∼Vs [v2 − vs|v2 ≥ f2(v1) ≥ vs] · Prv2∼V2,vs∼Vs [v2 ≥ f2(v1) ≥ vs]

(b)
= Ev2∼V2 [v2|v2 ≥ f2(v1)] · Prv2∼V2 [v2 ≥ f2(v1)]− Evs∼Vs [vs|f2(v1) ≥ vs] · Prvs∼Vs [f2(v1) ≥ vs]

(c)
= Ev2∼V2 [v2|v2 ≥ f2(⌈v1⌉S)] · Prv2∼V2 [v2 ≥ f2(⌈v1⌉S)](1)

+Ev2∼V2 [v2|f2(⌈v1⌉S) > v2 ≥ f2(v1)] · Prv2∼V2 [f2(⌈v1⌉S) > v2 ≥ f2(v1)](2)

−Evs∼Vs [vs|f1(v2) ≥ vs > f2(⌊v1⌋S)] · Prvs∼Vs [f1(v2) ≥ vs > f2(⌊v1⌋S)](3)

−Evs∼Vs [vs|f2(⌊v1⌋S) ≥ vs] · Prvs∼Vs [f2(⌊v1⌋S) ≥ vs](4)

where (a) follows from the definition of GFT, (b) from independence of the random variables, and
(c) is simply splitting the equation to its different parts.

Consider the elements (2) and (3) in the equation above. In both of them, we have the expecta-
tion that is ≤ 1, times the probability that a variable is between the value of f2(v1) and a rounding
of it (either f2(⌈v1⌉S or f2(⌊v1⌋S). However, note that one side of that inequality is strict in both
of them, and it is specifically to the side of the rounding. Therefore, if v1 ∈ S, the probability of
this is exactly 0. Otherwise, we have the probability that the variable v1 is between two elements
in S, but is not itself in S. Since S1 is an ε-sample, the probability of that is at most ε.

We calculate the upper bound on GFT2 of Mf1,f2 on V, but only on trades when v1 ∈ [si, si+1):

GFT2(Mf1,f2 ,V|v1 ∈ (si−1, si])

(a)

≤ Prv1∈V1 [v1 ∈ (si−1, si]] ·
(
Ev2∼V2 [v2|v2 ≥ f2(⌊v1⌋S)] · Prv2∼V2 [v2 ≥ f2(⌊v1⌋S)]

−Evs∼Vs [vs|f2(⌊v1⌋S) ≥ vs] · Prvs∼Vs [f2(⌊v1⌋S) ≥ vs]
)

(b)

≤ (Pru1∈U1 [u1 = si] + ε) ·
(
(Eu2∼U2 [u2|u2 ≥ f2(si)] + ε) · (Pru2∼U2 [u2 ≥ f2(si)] + ε)

−(Eus∼Us [us|f2(si) ≥ vs]− ε) · (Prus∼Us [f2(si) ≥ vs]− ε)
)

(c)

≤ Pru1∈U1 [u1 = si] ·
(
Eu2∼U2 [u2|u2 ≥ f2(si)] · (Pru2∼U2 [u2 ≥ f2(si)]

−Eus∼Us [us|f2(si) ≥ vs] · Prus∼Us [f2(si) ≥ vs]
)
+ 6ε

(d)
= GFT2(Mf1,f2 ,U|u1 = si) + 6ε

where the inequality (a) only increases the GFT by lowering the price for the buyer to f2(⌊v1⌋S)
(this includes both (1) and (2) above) and disregarding the −ε for (3); (b) follows from ε-sample
properties, Lemma C.2, and taking the most extreme options for the signs of ε; (c) is just simplifi-
cation of the elements; and (d) follows from the definition of GFT.

Similarly, we calculate the lower bound on GFT2 of Mf1,f2 on V, but only on trades when
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v1 ∈ [si, si+1):

GFT2(Mf1,f2 ,V|v1 ∈ (si−1, si])

(a)

≥ Prv1∈V1 [v1 ∈ (si−1, si]] ·
(
Ev2∼V2 [v2|v2 ≥ f2(⌈v1⌉S)] · Prv2∼V2 [v2 ≥ f2(⌈v1⌉S)]

−Evs∼Vs [vs|f2(⌈v1⌉S) ≥ vs] · Prvs∼Vs [f2(⌈v1⌉S) ≥ vs]
)

(b)

≥ (Pru1∈U1 [u1 = si]− ε) ·
(
(Eu2∼U2 [u2|u2 ≥ f2(si)]− ε) · (Pru2∼U2 [u2 ≥ f2(si)]− ε)

−(Eus∼Us [us|f2(si) ≥ vs] + ε) · (Prus∼Us [f2(si) ≥ vs] + ε)
)

(c)

≥ Pru1∈U1 [u1 = si] ·
(
Eu2∼U2 [u2|u2 ≥ f2(si)] · (Pru2∼U2 [u2 ≥ f2(si)]

−Eus∼Us [us|f2(si) ≥ vs] · Prus∼Us [f2(si) ≥ vs]
)
− 6ε

(d)
= GFT2(Mf1,f2 ,U|u1 = si)− 6ε

where for (a) we just removed (2) because we are bounding from below and increased to price to
f2(⌈v1⌉S) so we include (3) and (4); and (b), (c), (d) are for the same reasons as above.

Summing over all intervals (si−1, si] and taking the integral over V1, we get the desired bound
for GFT2. Similar calculations hold for getting the desired bound for GFT1.

Proof of Lemma 7.2. Immediate by Lemma C.4.

Using the result of the lemma and the algorithm from the previous section, we claim the
following:

Lemma C.6. Let V = Vs×V1×V2 be a product distribution over [0, 1]3, let Ss, S1, S2 be ε-samples
for Vs, V1, V2, respectively. Let U = Us × U1 × U2. Let M∗

U be a GFT-optimal mechanism on U.
For every simple mechanism M :

GFT(M,V) ≤ GFT(M∗
U ,V) + 24ε

Proof. Since M and M∗
U are simple, by Lemma 3.3 we know that each has a pair of functions

associated with it. Denote the associated pair of M by (f1, f2) and the associated pair of M∗
U by

(fU
1 , fU

2 ). Note that since M∗
U is optimal then GFT(M∗

U ,V) = GFT(MfU
1 ,fU

2
,V). Then:

GFT(M,V)−GFT(M∗
U ,V)

(a)

≤ GFT(Mf1,f2 ,V)−GFT(MfU
1 ,fU

2
,V)

(b)
= GFT(Mf1,f2 ,V)−GFT(Mf1,f2 ,U)

+GFT(Mf1,f2 ,U)−GFT(MfU
1 ,fU

2
,U)

+GFT(MfU
1 ,fU

2
,U)−GFT(MfU

1 ,fU
2
,V)

(c)

≤ GFT(Mf1,f2 ,V)−GFT(Mf1,f2 ,U) + GFT(MfU
1 ,fU

2
,U)−GFT(MfU

1 ,fU
2
,V)

(d)

≤ 24ε

where (a) is by Lemma 3.6 and from the fact that GFT(M∗
U ,V) = GFT(MfU

1 ,fU
2
,V), (b) we added

and subtracted the same elements, (c) is due to Theorem 3 that GFT(Mf1,f2 ,U)≤ GFT(MfU
1 ,fU

2
,U)

because MfU
1 ,fU

2
maximizes GFT on U, and (d) is from using the bound by Lemma 7.2 on f1, f2

and fU
1 , fU

2 .
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Proof of Theorem 4. The algorithm first picks samples Ss, S1, S2, each of size O
(

1
ε2

ln 1
εδ

)
from

Vs, V1, V2, respectively. Let M be a GFT-optimal mechanism for the empirical distribution U =
Us × U1 × U2 (computed in poly-time using Theorem 3). By Theorem 6, with probability at least
1 − δ, the multisets Ss, S1, S2 are ε-samples of the corresponding distributions. Thus, if Ss, S1, S2

are indeed ε-samples then by Lemma C.6 the expected GFT of M on V is at most 24ε less than
the expected GFT of any other mechanism on V – specifically of OPTsimple(V ).
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