Approximation Algorithms for CAs with
Complement-Free Bidders

Shahar Dobzinski* Noam Nisan' Michael Schapirat

November 4, 2004

Abstract

We exhibit two approximation algorithms for the allocation problem in com-
binatorial auctions. The running time of these algorithms is polynomial in the
number of items m and in the number of players n, even though the “input
size” is exponential in m. The first algorithm provides an O(logm) approxima-
tion for the case of complement-free bidders. The second algorithm provides
an improved 2-approximation for the more restricted case of “XOS bidders”, a
class which strictly contains submodular bidders. We also prove lower bounds
on the possible approximations achievable for these classes of bidders. These
bounds are not tight and we leave the gaps as open problems.

“The School of Computer Science and Engineering, The Hebrew University of Jerusalem,
shahard@cs.huji.ac.il.

fThe School of Computer Science and Engineering The Hebrew University of Jerusalem,
noam@cs.huji.ac.il.

#The School of Computer Science and Engineering The Hebrew University of Jerusalem
mikesch@cs.huji.ac.il.

1 Introduction

In a combinatorial auction, a set M of items, |M|=m, is sold to n bidders. The
combinatorial character of the auction comes from the fact that each bidder values
bundles of items, rather than valuing items directly. l.e., the i’th bidder’s value
for each bundle is given by a valuation function v;, where for each subset S C M,
v;(S) denotes the value (maximum willingness to pay) of the bundle S for bidder i.
We assume that for each bidder i, v; is normalized (i.e. v;(#) = 0), and monotone
(for each S CT C M, v;(S) < wv;(T)). The goal is to partition the items between
the bidders in a way that maximizes the “social welfare” — the sum of players’
values of the sets that they get. I.e. to find an allocation S;...S,,, S;NS; =0
for ¢ # j, that maximizes) ; v;(S;). This problem is the common abstraction of
many complex resource allocation problems both in computational settings and in
economic settings and has received much attention both from the computational
points of view and from the economic points of view — see the recent book [3].

The computational hardness of this problem is double: first, the “input” here
is of exponential size — each v; is described by 2™ real numbers, while we would
like our algorithms to run in time polynomial in both m and n — i.e. in time
that is poly-logarithmic in the input size. Second, even for valuations that are
succinctly described, the optimization problem is computationally hard. Much work
has thus been directed at identifying special cases that can be efficiently solved or
approximated, as well as understanding the underlying computational limitations —
see chapters 10 — 13 of [3].

Due to the exponential size of the input (that is, exponential in the parameters
we care about), there are two approaches to formalize the computational model in
which the allocation algorithms must work — specifically how the input valuations are
specified and accessed. The first approach calls for fixing some “bidding language”
in which the input valuations will be encoded, and requires the algorithms to run
in polynomial time in the input length, under this encoding. This approach makes
sense in cases for which a sufficiently natural bidding language exists. The second
approach is a “concrete complexity” approach: the input valuations are given as
“black boxes” and the type of queries that the algorithm may make to these input
valuations is fixed. There are three types of query models that are commonly used:

1. Value queries: The query specifies a subset S C M of items and receives the
value v;(S) as the reply. This query is very natural from a “computer science”
point of view, but in general is quite weak.

2. Demand queries: The query specifies a vector p = (py...pp,) of “item prices”,
and the reply is the set that would be “demanded” by the queried bidder
under these item prices. Le., the subset S that maximizes v;(S) — > jes P
This query is natural from an economic point of view as it corresponds to
“revealed preferences” of the bidders (i.e. what is directly observable from
their behavior). It is known that these queries are strictly stronger than value
queries (and in particular can simulate them in polynomial time) [2].

Valuation General
Class Valuation Demand | Communication
I
General O(&) 2] O(m?2) [2] 1
m 5 —€
) 12 Q(m#~) [
CF O(m?) O(log m) > 2
XO0S <2
>3
SM < 28]
> 1.02 (P#£NP) > 1+ 55 [14]
GS 1[1]

Figure 1: For each class of valuations, we specify the best approximation factor that is
acheivable in polynomial time. models. Results without references are presented in this

paper.

3. General queries: In this model we allow any kind of query to each valuation
function (but the query is always to a single valuation function). This model
captures the communication complexity (between the bidders) of the problem,
and due to its strength is mostly interesting for lower bounds.

The computational complexity of the allocation problem with general valuations
is almost completely understood: in polynomial time, the optimal allocation can
be approximated to within a factor of O(y/m) but not to a factor of m!/2=¢ for
any € > 0. This is true both in the bidding langauge model for even single-minded
bidders [9, 15]. The lower bound applies to general queries, where the upper bound
requires demand queries [2], but value queries do not suffice.

In this paper we study the complexity of the allocation problem in the important
special case where the input valuations are known not to have any complementar-
ities. Le., where all input valuations are sub-additive: v(SUT) < v(S) 4+ v(T) for
all ;T !. In [8] a strict hierarchy of subclasses within this class of valuations is
exhibited: OXS C GS C SM C XOS C CF. The classes C'F and SM are easy to
define: C'F is the class of sub-additive (complement-free) valuations; SM is the set
of submodular valuations, i.e., v(SUT) +v(SNT) < v(S)+v(T) for all S,T. We
will not define the class GS, “(gross) substitute” valuations here, but we will note
that economists often assume valuations to be in this class as in some sense this
corresponds to “convex economies”. The clagsses OXS and XOS are defined syn-
tactically as what can be defined by OR-of-XORs (resp. XOR-of-ORs) of singleton
valuations. See [12] for definitions of the OR and XOR operations in this setting.
For our purposes, the class XOS is the set of valuations v that can be represented
by a [X m matrix p, where v(S) = maxy_;. > e Prj-

Tt is also possible to consider the “dual” class of substitute-free valuations (v(SUT) > v(S) +
v(T), for disjoint S, C M). However, it turns out that the lower bound for general valuations
[14], also stands for this class.

The allocation problem gets gradually harder within this hierarchy: a strongly
polynomial time algorithm exists if the input valuations are given in the OXS
language; a polynomial time algorithm using demand queries based on linear pro-
gramming exists for the class GS [14]. For the class SM no polynomial time al-
gorithm exists: NP-hardness for some simple bidding language is shown in [8] and
an exponential communication lower bound is shown in [14]. However, [8] exhibit
a polynomial-time 2-approximation algorithm that uses only value queries. No ap-
proximation algorithms (better than the O(y/m)-approximation for general valua-
tions) were previously known for the higher levels in this hierarchy?.

We provide new approximation algorithms for these two levels:

Theorem: There exists a polynomial time algorithm that finds a O(logm) approx-
imation for valuations in the class C'F' using demand queries.

This algorithm is based on a careful randomized rounding of the linear pro-
gramming formulation of the problem; a deterministic algorithm is obtained via
derandomization.

We also provide an algorithm that uses the weaker value queries, and yields a
worse approximation ratio. The main novelty in this algorithm is the fact that it is
incentive compatible. I.e. the dominant strategy of all bidders is to always report
their true valuations.

Theorem: There exists an incentive compatible polynomial time algorithm that
finds a O(y/m)-approximation for valuations in the class C'F using value queries.
For the more restricted class XOS we obtain an improved approximation ratio.

Theorem: There exists a polynomial time algorithm that finds a 2-approximation
for valuations given in the XOS language.

The algorithm is greedy but very different from the algorithm of [8] designed for
the more restricted SM class. We also provide a semantic characterization of the
class XOS.

We prove lower bounds for approximation for CF and XOS. The class CF
does not have a natural bidding language and so the lower bound is in the query
model. The lower bound for the class XOS is actually two separate lower bounds:
an NP-hardness result for the bidding language model, and a communication lower
bound for the query model. No hardness result for approximation to within any
constant factor for any of these classes was previously known.

Theorem: Exponential communication is required for approximating the optimal
allocation among C'F' valuations to within any factor less than 2

Theorem: (1) It is NP-hard to approximate the optimal allocation among valua-
tions given in the XOS language to within any constant factor less than e/(e — 1).

>This situation is similar to several other cases where submodular functions can be handled
in sub-linear time, but nothing positive is known for more general functions. In particular this
includes the celebrated algorithms for minimization of submodular functions [?, ?].

(2) Exponential communication is required for approximating the optimal allocation
among X OS valuations to within any factor less than 4/3.

Our results do not completely settle the complexity of approximate allocation
among either submodular (SM) or sub-additive (C'F') valuations (or XOS valua-
tions). We suggest here the following “natural” conjectures:

Conjecture 1: Finding a better than O(logm)-approximation of the optimal allo-
cation among CF valuations requires an exponential amount of communication.
This would match our upper bound.

Conjecture 2: Finding a better than O(y/m)-approximation of the optimal allo-
cation among CF' valuations requires an exponential number of value queries.

This would match our upper bound, and highlight the gap between C'F' and SM
(for which a 2-approximation using value queries exists), and also show that demand
oracles are indeed required to achieve the O(logm) approximation.

Conjecture 3: There is a constant ¢ > 1 such that any approximation of the opti-
mal allocation for SM valuations to a factor better than c¢ requires an exponential
amount of communication.

This would strengthen the known lower bound of 1 + 1/(2m) of [14]. We are
able to prove a result in this direction that is weaker in two aspects: the bound is
only for value queries rather than general communication, and it is conditional upon

P+ NP.

Structure of the Paper

In section 2 we present the approximation algorithms for the class CF and the
associated lower bound. Section 3 presents the algorithm for the class XOS and
the associated lower bounds. Details of most proofs are postponed to the appendix.

2 Approximating Auctions with CF Valuations

Let us start with an imprecise description of the main idea of the algorithm. Ran-
domized rounding of the LP-relaxation is a standard technique, and our algorithm
uses it. However, when one attempts randomized rounding on packing problems
such as combinatorial auctions, the results are not good: a randomized choice will
very likely yield non-feasible solutions, unless the probabilities taken reduce the ex-
pected quality of solution by a large O(y/m) factor. However, these non-feasible
solutions are only a logarithmic factor away from feasibility. For general valuations
this does not help, but this is the reason that the k-duplicate version of combinatorial
auctions can be well approximated.

The main observation at the heart of our algorithm is that one may partition
this logarithmically-non-feasible solution into a logarithmic size family of feasible
solutions. For the case of complement-free valuations, the quality of one of these
solutions may be bounded from below.

Let us now get more precise. We present here an algorithm for the allocation
problem with n complement-free valuations. We assume that we have a demand
oracle for each of the input valuations. In subsection 2.1 we first present a top-level
description of the algorithm and then fill in the details of the steps. The proof of
correctness appears in subsection 2.2.

In section 2.2 we describe an incentive compatible O(y/m)-approximation algo-
rithm). In section 2.4 we present a lower bound — the lower bound is for a general
communication model and thus applies to any algorithm that has any type of oracle
access to the valuations.

2.1 The Algorithm
Input: The input is given as a set of n demand oracles for the n valuations v;.

Output: An allocation T7,...,T,, which is an O(logm) approximation to the optimal
allocation.

The Algorithm: We first describe the basic steps of the algorithm and then provide
the details regarding the implementation of each step.

1. Solve the linear relaxation of the problem: Mazimize: ¥;gxz; sv;(S) Subject
to:

e For each item j: X; gje52i5 <1
e for each bidder i: Ygz; 5 <1
e for each i, S: z; 5 >0

2. Use randomized rounding to find a “pre-allocation” S, ..., S, of pairs < i, .5; >
with the following properties, where k = ¢-log(m), and ¢ > 0 is a constant to
be chosen later:

e Each item j appears at most k times in {S;};, with j € S;.
o 2ivi(Si) > 5 - (8i,5i,50i(S)).

3. For each bidder i, partition S; into a disjoint union S; = S;1 U ... U S¥ such

)

that for each 1 <4y <iy <mand 1 <7 <k, it holds that ST, NS}, = 0.

4. Find the r that maximizes }; v;(S]), and for each ¢ allocate T; = S to bidder
1.

We now mention the details of each step:

1. Solving the Linear Program: Even though the linear program has expo-
nentially many variables, it may still be solved in polynomial time. This is
done by solving the dual linear program using the ellipsoid method. Using
the ellipsoid method requires a “separation” oracle, and this may be directly
implemented using the demand oracles of the bidders. Details appear in [14].

2. Randomized Rounding: For each bidder ¢ we independently choose a set
S; by performing the following random experiment: each set S is chosen with
probability x; s, and the empty set is chosen with probability 1 — Xgz; g. If
any of the required constraints is violated, then the this stage is repeated
from scratch. This randomized step may be converted to be deterministic by
derandomizing using the generator of [11] as explained in [16].

3. Partitioning each S;: This is done as follows: for each ¢ = 1...n and each
r=1..k, welet S| = {j € S;|j appears in exactly — 1 of the sets S;...S;_1 }.

4. Choosing the best partition: This step is straight forward.

Theorem 2.1 If all input valuations are complement-free then the algorithm pro-
duces an allocation that is a 2k = O(logm)-approximation to the optimal one.

2.2 Analysis

Proof: Let us keep track of the “quality” of solution implied by the intermediate
steps.

1. The first step returns the optimal fractional solution OPT* = ¥; sz; sv;(S),
which is an upper bound to the value of the optimal allocation, O PT.

2. The detailed calculations needed to prove that this step indeed ends with a
solution that satisfies all the required conditions are given in appendix A.1. At
this point we will indicate the types of calculations used and what they yield.
From the first inequality of the LP and using Chernoff bounds one can show
that for every item j, the probability that it appears in more than £ chosen
sets is exponentially small in k. The expected value of }; v;(S;) at this stage
is only slightly less than ¥; gz; sv;(S) = OPT*. It follows that with very high
probability none of the required constraints are violated, and thus we have
Sivi(S) > - OPT*

3. The main point here is that indeed for every fixed r, the sets {S] }; are pair-
wise disjoint and are thus a valid allocation. This follows directly from the
construction, as every the duplicate instances of every item j are allocated to
sets S, with sequentially increasing r. Note that we always keep r < k since
each item appears in at most k sets in {S;}.

4. The crucial use of complement-freeness comes here: since for each fixed 1,
Si = U, S7, the fact that v; is complement free implies that >, v;(S]) > v;(S;).
By summing over all ¢ we get that >, >, v;(S]) = >, >, vi(SF) > >, vi(Si) >
+-OPT*. 1t is now clear that by choosing the r that maximizes y_; v;(S7) we
get that >, v;(S]) > ngT*. Thus the allocation T} = S7,...,T, = 5], is an
O(log(m)) approximation to the optimal allocation (and even to the optimal

fractional allocation).

2.3 An Incentive-Compatible CF Auction With Value Queries

The only general technique known for making combinatorial auctions incentive com-
patible is the VCG mechanism (a definition of incentive compatibility and VCG can
be found in appendix A.2). Unfortunately, using VCG requires solving the auction
optimally - approximations of the optimal social welfare do not suffice [13, 9]. How-
ever, the amount of communication required for optimally solving combinatorial
auctions is exponential.

In this section we present a way of overcoming this obstacle: limiting the set of
possible allocations to a much simpler set. Optimal allocations within this set can
be optimally found. Thus, VCG prices can be efficiently calculated, and incentive
compatibility follows. Therefore, we are left with showing that the optimal solution
within the restricted set of solutions always provides an approximation to the original
problem.

The algorithm also answers another question: how well can the optimal social
welfare be approximated using only valuation queries, given that all bidders’ valua-
tions are CF. The approximation ratio achieved in this section is O(y/m).In contrast,
for general valuations a lower bound of = is known ([2]).

Let us now describe the algorithm:
Input: Each bidder ¢ submits m + 1 bids: b;(M), and b;({j}) for each j € M.

Output: An allocation T1,..., T}, which is an O(y/m) approximation to the optimal
allocation.

The Algorithm:
The algorithm chooses the best allocation out of the following two:

1. All items are allocated to the bidder that maximizes b;(M).

2. The best allocation in which each bidder gets at most one item.

Theorem 2.2 If all the valuations are CF, the algorithm has the following proper-
ties:

1. Running time polynomial in n and m.

2. Provides an O(y/m)-approzimation to the optimal allocation

3. Ensures incentive compatibility by using a pricing scheme computable in poly-
nomial time.

2.4 A Lower Bound

Theorem 2.3 For every e > 0, any (2— €)-approzimation algorithm for a combina-
torial auction with bidders that have CF wvaluations, requires an exponential amount
of communication.

The proof of the theorem can be found in appendix A.4, and is based on showing
a reduction from an auction presented in [14].

3 A 2-Approximation Algorithm for XOS Valuations

As mentioned before, it is known that SM C XOS C CF (all inclusions are strict).
While submodular auctions can be approximated to a factor of 2, no constant ap-
proximation factor was previously known for the higher levels of the hierarchy. The
best known approximation ratio for CF auctions is O(logm), presented earlier. This
section shows that a constant approximation ratio is achievable even for XOS auc-
tions.

Unlike the semantically defined classes SM and CF, the class XOS was syntacti-
cally defined by [8]. This bidding language defines the largest valuations class known
to be contained in CF. XOS is also very expressive and, in particular, contains the
class of submodular valuations.

We offer two more reasons for the importance of XOS as a bidding language.
First, there exist simple reductions from many interesting problems (e.g. MAX-
3-SAT and MAX-k-COVER) to XOS auctions (see the lower bounds proofs for
examples). Another reason is that we offer a natural semantic characterization to
this syntactically defined class (“supporting prices”).

The section begins by presenting the semantic characterization of XOS. We then
go on to describing the algorithm itself and related lower bounds. Proofs not given
in this section can be found in appendix B.

3.1 Supporting Prices

It turns out that XOS valuations have a unique property that makes XOS auctions
approximable - existence of supporting prices for each bundle.

Definition 3.1 A wvector of prices pi...pm (V5 p;j > 0) supports the bundle S in
valuation v if:

* Vji¢Spj=0
i Zjespj = v(S5).
e For every bundle T, 3= ,;crpj < v(T).

The next proposition shows that existence of supporting prices for every bundle
is a semantic characterization of the syntactic XOS class.

Proposition 3.2 A wvaluation v is in the class XOS if and only if every bundle S
has supporting prices.

Our algorithm will be presented by using oracles for “supporting prices” queries
as well as demand oracles.

Definition 3.3 In a supporting prices query the question is a bundle S and the
answer is a vector of supporting prices for it.

In appendix B.1 we show that if the input is given in the form of an XOS
expression, these two oracles can be simulated in time polynomial in the input size.

We do not know whether a supporting prices query can be simulated using only
demand oracle queries if the input is not given in the XOS language. However, for
the more restricted class of submodular valuations the following holds:

Proposition 3.4 The supporting prices of submodular valuations can be calculated
in polynomial time using only a valuation oracle.

3.2 The Algorithm

This greedy algorithm chooses an arbitrary order of bidders and goes over them,
one by one. Each bidder is asked for his demand bundle at given prices. The prices
are updated after each step.

Input: n valuations v;, for each of them we are given a demand oracle and a
supporting prices oracle.

Output: An allocation 54,...,S, which is a 2 approximation to the optimal allo-
cation.

The Algorithm:

1. Initialize Sy = ... =S, =0, and p;...p,, =0

2. For each bidderz=1...n:

a) Let S; be the demand of bidder 4 at prices pi...pp,.

()
(b)
(c)

)

(d) For all j € S;, update p; = g;.

For all i’ < i take away from S! any items from S;: Sy < Sy — S;.

Let q1...gm be supporting prices for S; in v;.

3.3 Analysis

Theorem 3.5 The algorithm provides o 2 approximation to the optimal allocation.

The full proof is in appendix B.4 and is obtained by putting together the two
following lemmas:

Lemma 3.6 The social welfare of the allocation generated by the algorithm is at
least the sum of items’ prices at the end of the algorithm (after the n’th stage).

Lemma 3.7 The social welfare of the optimal allocation is at most twice the sum
of items’ prices at the end of the algorithm.

The example in B.5 shows that the algorithm does not achieve an approximation
ratio better than 2. However, if all bidders have the same valuation the approxima-
tion guaranteed by the algorithm is improved to -%;. Theorem 3.9 shows that this
ratio is the best possible, as no polynomial-time algorithm achieves a better ratio,
unless P = NP.

Theorem 3.8 If all bidders have the same X0S valuation, the algorithm provides
an %5 -approxvimation ratio.

A proof of this theorem can be found in appendix B.6.

3.4 Lower Bounds

There are two ways of getting the algorithm’s input: one can assume that the input
is given in XOS encoding and require the algorithm to run in time polynomial to
the input size (rather than n and m). Another option, is to treat the valuations as
“black boxes” and assume that we have supporting-prices and demand oracles.

For this reason we prove two lower bounds: The first is a lower bound in the
NP-hardness model that applies when the input is in XOS encoding. The second
lower bound is in communication and applies when the input is accessed via oracles.

Both proofs can be found in appendix B.

Theorem 3.9 It is NP-hard to approximate the optimal allocation among valua-
tions given in the XOS language to within any constant factor less than e/(e —1).

This theorem is proved by showing a reduction from MAX-k-COVER.

Theorem 3.10 Ezponential communication is required for approzimating the opti-
mal allocation among X OS valuations to within any factor less than 4/3

The theorem is proved by showing a reduction to the communication version of
SET-COVER shown in [10]. The proof uses techniques from the proof of theorem
3.9 and from [4].

10

References

1]

2]

[9]

[10]

[11]

[12]

Alejandro Bertelsen and Daniel Lehmann. Substitutes valuations: M#-
concavity. Working Paper.

Liad Blumrosen and Noam Nisan. On the computational power of ascending
auctions, 2004.

P. Cramton, Y. Shoham, and R. Steinberg (Editors). Combinatorial Auctions.
MIT Press. Forthcoming., 2005.

Uriel Feige. A threshold of In n for approximating set cover. Journal of the
ACM, 45(4):634-652, 1998.

T. Groves. Incentives in teams. FEconometrica, pages 617-631, 1973.

J. Hastad. Some optimal inapproximability results. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 1-10,
1997.

Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum
coverage problem. Inf. Process. Lett., 70(1):39-45, 1999.

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions
with decreasing marginal utilities. In ACM conference on electronic commerce,
2001.

Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav Shoham. Truth revelation
in approximately efficient combinatorial auctions. In JACM /9(5), pages 577
602, Sept. 2002.

Noam Nisan. The communication complexity of approximate set packing and
covering. In ICALP 2002.

Noam Nisan. RL is contained in SC. In Proceedings of the twenty-fourth annual
ACM symposium on Theory of computing, pages 619-623. ACM Press, 1992.

Noam Nisan. In P. Cramton and Y. Shoham and R. Steinberg (Editors), Com-
binatorial Auctions. Chapter 1. Bidding Languages. MIT Press. Forthcoming.,
2005.

Noam Nisan and Amir Ronen. Computationally feasible vcg-based mechanisms.
In ACM Conference on Electronic Commerce, 2000.

Noam Nisan and Ilya Segal. The communication requirements of efficient
allocations and supporting prices, 2003. Working paper. Available from
http://www.cs.huji.ac.il/ "noam/mkts.html.

11

[15] Tuomas Sandholm. An algorithm for optimal winner determination in combi-
natorial auctions. In IJCAI-99, 1999.

[16] D. Sivakumar. Algorithmic derandomization via complexity theory, 2002.

A CF

A.1 Details of Stage 2

We will require the following version of the Chernoff bounds:

Theorem: (Chernoff Bound) Let X7,...X,, be independent Bernoulli trials such
that for 1 < i <mn, Pr[X; = 1] =p;. Then for X = X; + ... + Xp,, 4 > p1 + ...pn,
and any 0 > 2e — 1 we have.

PriX > (14 6)u] < 27#0

We now prove that the last two conditions in stage 2 hold (with constant probabil-
ity).

Lemma A.1 The probability that there is an item that appears in more than k sets
in {S;} is at most mcl,z

Proof: Fix an item j. Let Z; ; be the random variable that determines whether j
appears in S;. Obviously, Z; ; receives values in {0,1}. Because of the randomized
rounding method we used, we have that the variables {Z; ;}; are independent. We
define Z; = %;Z; ; (i.e. Z; is the number of times item j appears in {S;}). By the
linearity of expectation and the first condition of the LP formulation we have that
E[Z;] < 1. We can now use the Chernoff bound to get:

Pr[item j appears in more than k bundles in {S;}] =

1
Pr[Z; > c-log(m)] < 9~ (e=1)log(m) o
By applying the union bound we get that the probability that any one of the items
appears in more than k& bundles in {S;} is smaller than —tt7 = mc —. U

Let A be the random variable that gets the value of X;v;(S;) after step 2. Let
B, s be the event that there is an item that appears at least r times in {S;}, but
no item appears more than s times in {S;}. We will now bound from below the
expectation of F(A|B;) (i.e. the expectation given that each item was assigned to
some bidder and no item appears in more than k sets in {S;}).

Lemma A.2 E(A|By;) > 5 - OPT*
Proof: Clearly,

OPT" = E[A] = PT’[BI,k]E(A|BI,k)+2§22P7“[B(t—1)k+1,t-k]E(A|B(t—1)k+1,t-k) [A.1]

12

on the other hand, for every ¢ > 2, the following inequality holds:

(mtk-OPT")

" 1
Pr[B(t—l)k—l—l,t-k]E(A|B(t—1)lc+1,t~lc) < Pr[B(t—l)Ic-H,th](mtk'OPT) < m—1)(c—1)

To see that the first inequality holds, consider an extreme scenario in which each
item appears exactly ¢ - k times in {S;}. Furthermore, assume that each item is
given to a different bidder, and that each bidder values his item as OPT™.

In the second inequality, we use an argument similar to the one in the previous
lemma in order to bound the probability from above (Chernoff bound).
Observe, that for each ¢ > 2, sufficiently large m, there is a choice of ¢ > 0 such

that:
1

m(t—1)(c—1) (

mtk - OPT™) > (m(t+ 1)k - OPT™)

mtlc—1)

therefore, there exists a geometric series, with a multiplier of %, that bounds the
series of summands from above:

1 " %
2?22 Pr[B(t—l)k—l—l,t-k]E(A|B(t—1)k:+1,t~k:) S ZzQW(mtkOPT) S (20(10g m)OPT)

mc—2

We can now use equality A.1, to complete the proof of the lemma. L]

We have shown that with good probability it is possible to create a a solution
for which all the necessary conditions hold.

A.2 Definition of VCG

Theorem: (derived from [5]) Let b; be a vector of bids submitted by the i’th bidder,
such that b;(S) denotes the bid on bundle S (for every S). A combinatorial auction
is incentive compatible if the payment p; of the i’th bidder is defined to be:

Pi = Sk 2ibe(Or) — Sk bk (0} 1)

where Oy, ..., Oy, is the optimal allocation (given by,...,b,), and Ofi, w.ry O % is the op-
timal allocation in the same auction without the ’th bidder (given by,...,b;—1,bi41,..,0p).

A.3 Proof of Theorem 2.2
Proof:

1. Clearly, the first allocation can be calculated in polynomial time. Observe,
that finding the second allocation is equivalent to finding the maximal weighted
match in a bipartite graph: for each item j define a vertex a;, and for each
bidder i define a vertex b;. Let the set of edges be E' = U] jenr(ayj, b;). Define
the cost of each edge (aj,b;) to be v;({j}). Finding the maximal weighted
match is equivalent to finding the best allocation in which each bidder gets
at most one item. The maximal weighted match in bipartite graphs can be
solved in polynomial time in m and n [?].

13

2. Let OPT = {T1,...,Tk,Q1,...,Q;} be the optimal allocation in the original
auction, where for each 1 < i < k, |T;| < y/m, and for each 1 < i < [,
|QZ| > \/ﬁ Let |OPT| = Zﬁzle(Ql) + ElevZ(T,)

The first case we consider is when Eézlvi(Qi) > Ei?zlvi(Ti). Clearly, Eézlvi(Qi) >
@. Since | < /m (otherwise, more than m items were allocated), for the

bidder i that maximizes v;(0;) it holds that v;(M) > v;(Q;) > 'gf/’%'. Thus,

by assigning all items to bidder ¢ we get the desired approximation ratio.

We now consider the case where ¥, v;(T}) > %L, v;(Q;). Clearly, 2F_v;(T;) >
|OPT|
5.

For each i, 1 < ¢ < k, let ¢; = argmaxjer, vi({j}). Notice, that

vi({c}) > v]g‘z) (this is due to the CF property: |T;|-v;({¢;}) > Ejenvi({5}) >

v;(T;)). Since for all i’s |T;| < /m, we have that: S jv;(c;) > E“”Tgl) >
|oPT|

NG By assigning ¢; to bidder 7 we get an allocation in which every bidder

gets at most one item with a social welfare of X¥_ v;({c;}) > |20—\1/3n—7;|. The

second allocation, therefore, guarantees at least that social welfare.

We conclude that the approximation the algorithm produces is at least O(y/m).

3. We use VCG prices to obtain an incentive compatible combinatorial auction.
The calculation of these prices requires solving an additional auction for each
of the bidders. Note that these additional auctions are smaller in size (one
less bidder). Thus, as was previously shown, the calculation of the prices can
be done in polynomial time.

O

A.4 Proof of Theorem 2.4

Nisan and Segal [10] present an auction in which each bidder’s valuation is restricted
to values in {0, 1}. They show that distinguishing between the case that the optimal
social welfare is 1, and the case that it is n, requires exponential communication.

Denote by v; the valuation of the i’th bidder in the Nisan-Segal auction. Define
new CF valuations in the following manner: v}(S) = v;(S)+ 1. One can easily verify
that these new valuations are indeed CF.

Let us now consider a combinatorial auction with these valuations. We can see
that distinguishing between the following cases requires exponential communication:
the optimal social welfare is n + 1, and the optimal social welfare is 2n. Hence, we
have proved that for every n > 2 achieving f—&—approximation requires exponential
communication, and the theorem follows.

B XOS

The reader is referred to [8] for a more comprehensive discussion of the XOS class.
The notation of [8] (in particular, for representing XOS valuations) will be used in

14

some of the proofs.

B.1 Simulating Oracles

Lemma B.1 The following two queries can be answered for an XOS valuation given
as an XOS expression in time polynomial in the input size:

o A demand query.

o A supporting prices query.

Proof: Given an XOS valuation and a vector of prices we wish to simulate a
demand oracle. First, let us note that one can easily simulate a demand oracle (in
polynomial time) for an additive valuation (choose all the profitable items). Since
the input is given as an XOS formula (in the form of a matrix) and each clause is
an additive valuation, it is enough to simulate a demand oracle for each clause and
choose the most profitable option. As there is only a polynomial number of such
clauses the entire process requires polynomial time. The proof of proposition 3.2
contains a method of finding supporting prices to a given bundle of items. U

B.2 Proof of Proposition 3.2

Proof: First, we show that XOS valuation indeed has supporting prices. Given an
XOS valuation and a set S we choose the clause that maximizes the value of S and
assign the values of the items in the clause to the same items in S (other items are
valued as 0). Obviously the sum of prices is indeed v(S). The value of each T' C S is
at least the sum of prices, since the clause sets a lower bound to the possible value of
v(T'). In the other direction, given a valuation which has supporting prices, we will
build an XOS valuation as follows: For each S C M create a clause which consists
of the supporting prices of S. Observe that the valuations are indeed equal.]

B.3 Proof of Proposition 3.4

Proof: To calculate the supporting prices for some group of S C M items, first
choose an arbitrary order of these items. Set the price p; of the j’th item to be its
marginal utility given the previous j-1 items (i.e. v(1U2U...Uj)—v(1U2U...U(5—1))).
Observe that v(S) = X;cgp;. It’s easy to see that for every T' C S v(T') > Zjcrpi,
since by definition of SM the marginal utility does not increase when items are
added. L]

B.4 Proof of Theorem 3.5

Proof: For each T C M, we denote by p*(T') the total price of the items in subset
T at the i’th stage of the algorithm. Let A’ = p‘(M) — p* (M), i.e. the total
difference in prices between stages (i — 1) and ¢ (with p0(M) = 0). Let Ay, ..., A, be

15

the allocation generated by the algorithm. Let Oy, ..., O, be the optimal allocation.
We will prove the X,;v;(0;) < 2%;v;(A;). To do so, we prove three simple lemmas:

Lemma B.2 The social welfare of the allocation generated by the algorithm is at
least the sum of items’ prices at the end of the algorithm (after the n’th stage). ILe.
P (M) < Zjvi(4;).

Proof: Consider a specific bidder . Let T' be the bundle assigned to that bidder by
the algorithm in stage ¢. Obviously A; C T'. Since T corresponds to a specific clause
in the XOS formula, we have that p‘(A4;) < v;(4;) (due to the supporting prices
property). However, since p*(A;) = p"(A4;) (the items in A; were not reassigned after
the i’th stage, and so their prices were not altered), we have that p"(A4;) < v;(4;),
and so p" (M) = X7 p"(4;) < B v;(A). L
Lemma B.3 The prices assigned to the items throughout the algorithm are non-

decreasing.

Proof: By contradiction. Let v;(S) maximize the demand given a prices vector p,
i.e. vi(S) = mawycp rcmvi (T). Let g be a supporting prices vector for S. Now,
assume there is an item j € S for which ¢; < p;. The supporting prices property
ensures that ¥,cg_j1y@ < vi(S —{j}) and Eresq, = v;(S). Hence:
0i(S) = Xrespr = Brestr — Srespr = (@5 — Pj) + Ses—nat — Sre(s—{jhPt) <
(Btes— @ — Sies—{ippr) <vilS —{}) — Bie(s— Pt

and this is a contradiction to the way v;(S) was chosen. U

Lemma B.4 The social welfare of the optimal allocation is at most twice the sum

of items’ prices at the end of the algorithm. ILe. ¥;v;(0;) < 2p™(M).

Proof: Since for each i, 1 <i < n, A" = maxyca(v;(T) — p~'(T)), we have:
v;(05) —piil(Oi) < Al

since the prices do not decrease throughout the algorithm, the following inequality
holds: _
vi(0;) —p"(0;) < A"
by summing up on both sides of the equation we get:
2?:11)1'(01') — Eip"(Oi) S EiAi
Eivi(0;) — p" (M) < p"(M)
Eﬂ)l(ol) S QpH(M)

Putting the lemmas together we have that

16

B.5 Example of Approximation Ratio of 2

Consider a combinatorial auction with two goods, 1 and x5, and two bidders. The
first bidder’s valuation is v1({z1}) = vi({z2}) = vi({z1 U z2}) = 1. The valuation
of the second bidder is va({z1}) = 0, v2({z2}) = vo({zx1 Uze}) = 1. Clearly, a
social welfare of 2 can be achieved by allocating x; to the first bidder, and z» to
the second bidder. However, the first bidder might wish to get zo at the first stage,
and the optimal social welfare achieved is only 1. Hence, the approximation ratio
achieved by the algorithm is only 2.

B.6 Proof of Theorem 3.8

Proof: The proof of the theorem relies on the proof of [7] which studies the
Budgeted Maximum Coverage Problem. We note that this proof, and the techniques
presented in that paper can be used to prove the results of [7] in a more general
setting. However, this is beyond the scope of this paper. The notation throughout
this proof is the same as in the proof of theorem 3.5. To prove the theorem we will
first prove two lemmas:

Lemma B.5 After iteration i of the algorithm we have that

(200 o' (M) < (M) —pi (M) (= AT,

Proof: By definition A" = mazrcp (v;i(T)—p*~'(T)). Hence, foreach j, 1 <j <n
vi(05) = p"~1(05) < A",
Since all bidders have the same valuation the following inequality holds:
vi(05) = p'~1(05) < AL
By summing up on j (on both sides of the equation) we get:
i (0;) — pt H(M) < nA”

and the lemma follows. [l

Lemma B.6 After the i’th iteration of the algorithm the following holds:
1. .
(1= (1= —)")(Zivi(0:)) < p'(M)

Proof: We prove this lemma by induction on i. For i=1, p'(M) = v (M) >
1%0;(0;). If we assume correctness for (i — 1) then:

p(M) = p~! (M) + A

17

by the previous lemma and the induction step,

1 ; 1 1

pi(M) > p' (M) + E(Eivi(oi) —p' " (M)) = Ezivi(oi) +(1- E)pi_l(M) >
L5250 (00) + (1= 2)(1 = (1= 1)) (Sis(01)) = (1 = (1 = 1)) (Saws(Os
n 0i(0;) + (_E)(— (_E))(Ziwi(0;)) = (1 = (_E)) (Eivi(05))
]
Using the previous lemma we get:
-1 1
‘ ——Zivi(05) < (1= (1 = —)")(Z0i(0:)) < p"(M) < Biwi(Ai)

the right inequality was proved in theorem 3.5.]

B.7 Proof of Theorem 3.9

Proof: We will show a polynomial-time reduction from MAX-k-COVER. MAX-k-
Cover is defined as follows: Given m items, and a collection of subsets of these items,
the objective is to maximize the number of items which can be covered by k subsets.
It is known that it is NP-hard to approximate this problem within a better factor
than —%; [4]. This problem can easily be converted into a combinatorial auction
with XOS valuations: given an instance of MAX-k-COVER, we create an auction
with k£ bidders and m goods. Each bidder has the same XOS valuation in which
there is a clause for each subset in the original problem, and the value of every item
in the clause is 1. The items in each clause are connected with ORs and the clauses
are connected with XORs. Clearly, every choice of k subsets in the original problem
corresponds to an allocation in the combinatorial auction with the same value. All
we need to do is to assign all items in set 7 to bidder 7 (and avoid assigning one
item to more then one bidder). In the other direction, every allocation corresponds
to a choice of k sets in the original problem with at least the social welfare value:
We choose £ subsets, so that subset ¢ contains the items in the clause maximizing
bidder ¢’s gain. This way we are guaranteed that the number of items covered is no
less than the social welfare. The theorem follows.]

B.8 Proof of Theorem 3.10

Proof: In [10] it is shown that any algorithm achieving a (3 log m — €) approxima-
tion for the SET-COVER problem (as defined there) requires exponential commu-
nication. In [4] (proposition 12), it is shown how to deduce a lower bound for MAX-
k-COVER by a reduction from SET-COVER. An analogous method produces a
communication lower bound of % to the communication version of MAX-k-COVER.
In this version of the problem we have k players, each holding a collection of subsets
of 1..m. We are interested in maximizing the number of items covered by k& subsets
when subset 7 can only be chosen from player i’s subsets. An argument similar to the

18

one in theorem 3.9 shows that there is an approximation preserving reduction from
this version of MAX-k-COVER to an auction where the bidders have different XOS
valuations. Hence, any algorithm with approximation ratio better than % requires
exponential communication. We note that assuming the set-cover communication
lower bound can be improved to In(m) (as is the case with the computational lower

bound), the threshold specified in this theorem can be improved to % . L]

C A Constant Lower Bound for Approximating Sub-
modular Auctions

Theorem C.1 Using valuation queries only, it is NP-hard to approximate the op-
timal allocation among submodular to within any constant factor less than 1.02.

Proof: We will prove the lower bound by reducing from MAX-CUT. MAX-CUT
is the problem of finding a partition of vertices in a graph G, such that the cut
(the number of edges with one vertex in either side of the partition) is maximized.
Given a graph G = (V, E), define a two bidder auction as follows: the goods will
be the vertices, and the two bidders will have an identical valuation functions:
v(S) = | Ui jerlies (4,7)]- Observe that these valuations are indeed submodular,
and that for every S, v(S) can be calculated in polynomial time. Each allocation
defines a cut, and each cut defines an allocation. The total social welfare of an
allocation is |E|, plus the number of edges which have been counted twice (once for
each bidder). The edges which have been counted twice, are the cut defined by the
allocation. Denote by ALG the number of edges that have been counted twice in
the combinatorial auction, and by OPT the number of edges in the maximum cut.
Recalling that the maximum cut consists of at least half of the edges, we have that

|E| + ALG _ 20PT + ALG _ 2 N ALG
|E|+OPT = 30PT 3 30PT

[6] sets a lower bound of % — ¢ for approximating MAX-CUT. We can now con-
clude that it is NP-hard to approximate combinatorial auctions with submodular
valuations within a factor of % — €. L]

19

