Information Technology in an Expanding Universe

Scott Kirkpatrick Hebrew University, Jerusalem

A Little History

- Evolving applications of physics (information theory, statistical) mechanics of disorder) to computer science. Examples:
 - '60s scaling
 - '70s renormalization group
 - '75 '85 spin glasses (and simulated annealing)
 - '90s broader study of dynamical systems
 - '85 present neural networks \rightarrow "machine learning"

But computer science is defined by computing practice, and this has evolved dramatically in only 60 years.

Evolution of Computer Science

- '40s to '60s "unit record" era (showing roots in Hollerith cards and hand calculators)
 - Von Neumann self-repairing automata
 - Vannevar Bush Memex
 - Marvin Minsky's apochryphal "vision summer project"
- '70s optimization of polytime algorithms on random-access machines
 - Example, matrix multiply goes as N^2.7
 - Here worst case = average case = all cases
- '75 '85 NP-Complete flowering

CS Evolution, ctd.

'90s Complexity bifurcates into "theory" and "heuristics"

- Theory "non-proliferation agreements" (STOC, FOCS)
 - Nature and methods of proof (e.g. "zero knowledge")
 - Randomization of algorithms
- Heuristics compute cost of potentially exact algorithms (AAAI)
 - Depth-first search, with backtracking
 - Worst-case != typical case
 - Average case behavior sometimes not calculable
 - Increasing importance of computer experiments
- '00s Taking notice of Moore's Law
 - Operating at both ends of the spectrum
 - Need for automation becomes critical as well as fashionable

Appreciation of phase transitions in CS

- Thresholds for properties on graphs entirely parallel evolution
 - Which graphs?
 - Erdos-Renyi random regular graphs
 - Regular or random lattices in metric spaces (2d, 3D...)
 - Now scale-free graphs defined by growth policies
 - Sparse and dense at the same time
 - Percolation threshold at first considered unique
 - Erdos' "double jump" independent of Fisher, Temperley, ...
 - K-core transition known 1st order in RGs, may also occur in 3D
 - K-core rather different in scale-free networks
 - Other thresholds discovered to be sharp in the limit $N \rightarrow$ infty.

Phase transitions in CS, ctd.

- ♦ Phase transitions (transitions which sharpen as N → infty and can be characterized by threshold functions) are now understood to be common in random graphs
 - Friedgut, Achlioptas, et al... (rigorous, and almost what you wanted to know)

any monotonic transition not "captured" by a finite set of (cyclic) graphs will be sharp as N \rightarrow infty

Phase transitions on scale-free networks?

 Because these combine dense and sparse parts, gradual or smeared transitions are the most likely outcome.

Understanding NP-Hard problems

- Efforts to apply physics of disordered materials still incomplete, and widely misunderstood by CS practitioners
- Fu-Anderson (1985) graph partitioning is a spin glass
 - Suggested extrapolation NP Complete problems are spin glasses
 - FALSE e.g. 2D Ising spin glass, no magnetic field
- Workers in SAT and scheduling problems ('91-94) identified "easy – hard – easy" problems, with the "hard" cases coming at phase boundaries.
 - On closer inspection, these are "easy hard less hard"
- Analyze these heuristics by addressing typical case != worst case. Average cost still not well controlled.

NP-Hard problems, ctd.

2 + p SAT example

- NP to P boundary (worst case) occurs as p > 0
- Exponential cost (typical case) starts at p = 0.4
- Suggested extrapolation (by authors) 1st order transitions account for hardness
- (FALSE consider k-core)
- Suggested extrapolation (not by the authors) 1st order transitions explain NP-Completeness (clearly false)
- Recent work on 1-step RSB in 3-SAT
 - Best current generalization RSB accounts for typical case hardness of depth-first search based heuristics.
 - Note that the work also exposes new heuristics which do better

Where do we go next?

Where do the three different types of networks occur?

- Grids dense computing, storage, and communications fabrics
- Scale-free the Internet and things in it
- Random graphs problems derived from other networks
- How big is the Internet, its information space, its underpinnings?
 - At least 20 TB, but > 100 TB of non robot-accessible content
 - No one search engine covers all the accessible material
- How fast is it growing?
 - Still doubling every year, changing at least every two months, but not observed on any shorter timescales.

Where do we go next?

- Many algorithms are developing in a way that makes them distributable
 - E.g. survey propagation, "belief propagation", turbo decoding
- What are the most important issues in managing it, or better, in managing organisms that live in it and grow with it?
 - Things "fail in place" leaving a family of percolation problems
 - Recovery speed more important than mean time to fail
 - You can't optimize a constantly evolving organism, but you can regulate its growth
 - Secret weapons are there effects of RSB in the Web?