
Ryszard Kowalczyk Michael Huhns
Zakaria Maamar Quoc Bao Vo (Eds.)

Service-Oriented Computing: Agents,
Semantics, and Engineering

AAMAS 2009 International Workshop, SOCASE 2009
Budapest, Hungary, May 2009
Proceedings

Preface

The areas of service-oriented computing and semantic technology offer much of
interest to the multiagent system community, including similarities in system
architectures and provisioning processes, and powerful tools and standardizations to
enable more flexible and dynamic business process integration and automation.
Similarly, techniques developed in the multiagent systems and semantic technology
areas are having a strong impact on the fast-growing service-oriented computing area.
Other issues, such as quality of service, security, privacy, and reliability are common
problems to both multiagent systems and service-oriented computing.

Service-oriented computing has emerged as an established paradigm for distributed
computing and e-business processing. It utilizes services as fundamental building
blocks to enable the development of agile networks of collaborating business
applications distributed within and across organizational boundaries. Services are self-
contained, platform-independent software components that can be described,
published, discovered, orchestrated, and deployed for the purpose of developing
distributed applications across large heterogeneous networks such as the Internet.

Multiagent systems, on the other hand, also aim at the development of distributed
applications, however, from a different but complementary perspective. Service-
oriented paradigms are mainly focused on syntactical and declarative definitions of
software components, their interfaces, communication channels, and capabilities with
the aim of creating interoperable and reliable infrastructures. In contrast, multiagent
systems are focused on the development of reasoning and planning capabilities of
autonomous problem solvers that actively apply behavioral concepts such as
interaction, collaboration, and negotiation in order to create flexible and fault-tolerant
distributed systems for dynamic and uncertain environments.

Semantic technology offers a semantic foundation for interactions among agents and
services, forming the basis upon which machine-understandable service descriptions
can be obtained, and as a result, autonomic coordination among agents is made
possible. On the other hand, ontology-related technologies, ontology matching,
learning, and automatic generation, etc., not only gain in potential power when used
by agents, but also are meaningful only when adopted in real applications in areas
such as service-oriented computing.

This volume consists of the proceedings of the Service-Oriented Computing: Agents,
Semantics, and Engineering (SOCASE 2009) workshop held at the International Joint
Conferences on Autonomous Agents and Multiagent Systems (AAMAS 2009). The
papers in this volume cover a range of topics at the intersection of service-oriented
computing, semantic technology, and intelligent multiagent systems, such as: service
description and discovery; planning, composition and negotiation; semantic processes
and service agents; and applications.

The workshop organizers would like to thank all members of the Program Committee
for their excellent work, effort, and support in ensuring the high-quality program and
successful outcome of the SOCASE 2009 workshop.

May 2009
Ryszard Kowalczyk
Michael Huhns
Zakaria Maamar
Quoc Bao Vo

Organization

SOCASE 2009 was held in conjunction with the Seventh International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009) on May
11, 2009 in Budapest, Hungary.

Organizing Committee

Ryszard Kowalczyk, Swinburne University of Technology, Australia
Michael Huhns, University of South Carolina, USA
Zakaria Maamar, Zayed University Dubai, United Arab Emirates
Quoc Bao Vo, Swinburne University of Technology, Australia

Program Committee

Jamal Bentahar, Concordia University, Canada
M. Brian Blake, Georgetown University, USA
Athman Bouguettaya, CSIRO, Australia
Jakub Brzostowski, Silesian University of Technology, Poland
Paul Buhler, College of Charleston, USA
Mauro Gaspari, Universita' di Bologna, Italy
Christian Guttmann, Monash University, Australia
Slimane Hammoudi, ESEO, France
Jingshan Huang, Benedict College, USA
Clement Jonquet, Stanford University, USA
Luis Llana, Universidad Complutense de Madrid, Spain
Xuan Thang Nguyen, TIBRA, Australia
Manuel Nunez, Universidad Complutense de Madrid, Spain
Julian Padget, University of Bath, UK
Huaglory Tianfield, Glasgow Caledonian University, UK
Rainer Unland, University of Duisburg-Essen, Germany
Kunal Verma, Accenture, USA
Leandro Krug Wives, Federal University of Rio Grande do Sul, Brazil

Table of Contents

Contract Observation in Web Services Environments ……………………………… 1

Jiri Biba, Jiri Hodik, Michal Jakob, and Michal Pěchouček

Agent-Oriented Service Model for Personal Information Manager ………………… 7

Tarek Helmy, Ali Bahrani, and Jeffery Bradshaw

Agent-based Context Consistency Management in Smart Space Environment ..…. 15

Wan-rong Jih, Jane Yung-jen Hsu, Chang Han-wen,
and Yuhana Umi Laili

Agent-based support for context-aware provisioning of IMS-enabled
ubiquitous services ………………..………………………………………………. 22

Ana Petric, Krunoslav Trzec, Kresimir Jurasovic, Vedran Podobnik,
Gordan Jezic, Mario Kusek, and Igor Ljubi

Agent-based Framework for Personalized Service Provisioning in
Converged IP Networks …………………………………………………………… 29

Vedran Podobnik

Business Modeling via Commitments …………………………………………… 36
 Pankaj Telang and Munindar Singh

http://www.tel.fer.hr/apetric_en
http://www.tel.fer.hr/kjurasovic
http://www.tel.fer.hr/vpodobnik_en
http://www.tel.fer.hr/vpodobnik_en
http://www.csc.ncsu.edu/faculty/mpsingh/

Contract Observation in Web Services Environments

Jiří Bíba, Jiří Hodík, Michal Jakob and Michal Pěchouček
Agent Technology Center, Dept. of Cybernetics, FEE, Czech Technical University

Technická 2, 16627 Prague 6, Czech Republic
{biba, hodik, jakob, pechoucek}@agents.felk.cvut.cz

ABSTRACT
Electronic contracting, based on explicit representation of
different parties’ commitments, is a promising way to spec-
ifying and regulating behaviour in distributed business ap-
plications. A key part of contract-based system is a process
through which the actual behaviour of individual parties is
checked for conformance with contracts set to govern such
behaviour. Such checking requires that relevant information
on the behaviour of the parties, both with respect to the ap-
plication processes they execute and to managing their con-
tractual relationships, is captured. The process of collecting
all such information, termed contract observation, is the sub-
ject of this paper. First, we describe general properties and
requirements of such an observation process; afterwards, we
discuss specifics of realising contract observation in web ser-
vices environments. Finally, we show how contract observa-
tion has been implemented as part of the IST-CONTRACT
web services framework for contract-based systems.

1. INTRODUCTION
Of the ways in which agent behaviour can be regulated in

a multi-agent system, electronic contracting – based on ex-
plicit representation of different parties’ commitments and
the agreement of all parties to them – has significant po-
tential for modern distributed applications. In part, this is
because it explicates different parties’ responsibilities, and
the agreement of all parties to them, allowing businesses to
operate with expectations of the behaviour of others, but
providing flexibility in how they fulfil their own obligations.
Additionally, it mirrors existing (non-electronic) practise,
aiding adoption.

A key element of contract-based systems is contract mon-
itoring, i.e. a process by which the behaviour of individual
parties and their participation in respective business pro-
cesses is checked for compliance with contracts set to reg-
ulate such behaviour. The term monitoring has been tra-
ditionally used to refer both to the process through which
contract-relevant events and states from a running contract-
based distributed system are gathered, and the reasoning
applied over the gathered information in order to determine
the compliance with the respective contracts. Although such
tight coupling can have certain advantages, it limits the ways

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in which both processes can be configured and combined to
meet distinct requirements of different application domains.

In our approach, we therefore separate the data gathering
process, termed contract observation further on, and study
it independently of other operations and process required for
contract monitoring.

Specifically, in Section 2 we analyse the observation pro-
cess in general, primarily from the perspective of the cate-
gories of information that need to be observed in order to
determine fulfilment state of contracts. In Section 3, we
continue by exploring different ways in which the general
observation process can be realised in a web services envi-
ronment. In Section 4 we further narrow down our scope and
describe how contract observation has been implemented in
the IST-CONTRACT middleware [1]. In Section 5 we dis-
cuss related work and we conclude in Section 6.

2. CONTRACT OBSERVATION PROCESS
In general, a contract is a set of restrictions on the be-

haviour of involved contract parties. Such restrictions may
involve both achieve and maintain conditions, e.g. a pro-
hibition to perform a particular operation or an obligation
to keep a certain quantitative measure of agent’s operation
within prescribed limits, respectively. The behaviour of con-
tract parties can be modelled as composed of elementary
units of activity, termed actions further on. Contract be-
haviour restrictions can then be defined in terms of a set of
contract clauses specifying which action is required, prohib-
ited and/or allowed for contract parties under which con-
ditions. These conditions usually refer to the state of the
environment within which the parties operate (termed con-
tracting environment) but can also refer to the state of other
contracts. See [2] for a detailed discussion of contract struc-
ture and semantics.

In order to be able to determine fulfilment of a contract,
it is necessary to observe information at two levels:

1. information about the actions carried out by parties
involved in the contract and the state of the contract-
ing environment (domain-level information)

2. information about the content and life-cycle status of
the contract (contract-level information)

Whereas domain-level information is required to track agent
behaviour (which is subject to contract regulation), contract-
level information is neccessary to track which contracts are
currently active and against which the behaviour of contract
parties should thus be checked for compliance.

1

affects Contract

Contract
Party A

Contract
Party B

Domain

ACL Message

Action

Contract document
status

Contract fulfilment
status

Domain statesaffects

governs
affects

Figure 1: Observation in contract-based systems.
Actions are observed at the domain level; contract-
affecting communication (ACL messages) is ob-
served at the contract level. The information is
processed by the monitor to determine the contract
lifecycle and fulfillment status.

Observing domain-level actions of a contract party agent
requires gathering information on how the agent manipu-
lates the environment in which the contract-regulated pro-
cess executes. In the case of electronic systems, such an
environment comprises a universe of electronic resources;
observing agent’s actions then correspond to the logging of
operations on those resources (e.g. delivering a required file,
transferring an agreed sum, launching a specified process
etc). In order to allow to determine the compliance of a
particular observed action, it is necessary that the observa-
tion process provides, at minimum, (i) the indentity of the
agent performing the action, and (ii) detailed parameters of
the action (e.g. the sum and the destination bank account
in the case of the money transfer action).

In contrast, changes to the content (adding, removing or
modifying contract clauses) and life-status of contracts (sig-
nature, termination, renewal etc) take place through direct
interaction of the respective contract parties. Observing
contract-level information thus requires monitoring the com-
munication between the agents and logging any contract-
affecting operations. The relation between the processes in
a contract-based system and the different categories of in-
formation observed is depicted graphically in Figure 1.

Once the required information from the system is ob-
tained, the actual decision on the contract compliance has
to be made. This is generally a non-trivial operation requir-
ing a reasoner capable of interpreting deontic concepts. Due
to our focus on the observation, a module capable of such
operation, termed monitor, is viewed as a blackbox and its
implementation is not discussed in detail in this paper. We
assume that the input to the monitor contains both domain-
and contract-level information, specifically the state of the
contracting environment, actions performed by the contract
parties, contracts between the parties and the life-cycle sta-
tus of the contracts (in particular whether any given con-
tract is active). In its basic form, the monitor outputs, for
each contract and/or each contract clause, the information
whether the contract and/or the clause is being violated. We
assume that the monitor operates sequentially and is causal
in a sense that for determining the fulfilment state in a par-
ticular point in time it only needs information observed up
to that point in time.

3. OBSERVATION IN WEB SERVICES
ENVIRONMENTS

We now show how the abstract observation processes de-
scribed in the previous section can be realized in web services
(WS) environments. The basic assumption made is that
exeuction of an action in WS environments corresponds to
the invocation of a particular web service.

In general, any interaction between a contract party agent
and other agents and/or resources deployed in a WS envi-
ronment passes through several layers. It starts as an in-
vocation of the agent platform API, continuing down the
architecture through the agent platform messaging layer us-
ing a WS stack which, translating the invocation by a SOAP
processor, creates an HTTP message sent to the other inter-
acting party and/or resource using a TCP/IP connection –
see Figure 2.

In theory, interactions can be intercepted on any of the
above levels. In the following, we assume that the inter-
ception is performed by a special software module termed
sensor which extracts the relevat data and sends them to a
designated collection point. Specifically, we consider the fol-
lowing sensor insertion points (see Figure 2 for a graphcial
overview):

application-level API [both client and server side]: the
sensor is integrated into the contract party applica-
tion code and explicitly called to report inter-agent
messaging and/or action invocation

agent platform plug-in [both client and server side]: the
sensor is integrated into the agent platform so that all
communication and action invocation is automatically
reported

proxy web service [server side only]: the target web ser-
vice is encapsulated within a proxy web service mir-
roring the target web service operations; the proxy
is invoked instead of the target web service and the
sensor is integrated into the code of the proxy service
(the proxy web service can be generated based on the
WSDL of the target web service)

JAX-WS/JVM plug-in [both client and server side]: the
SOAP processor in the JAX-WS library is extended to
integrate the sensor or the sensor is plugged directly
into the JVM; in either case, the container hosting the
web services needs to use such a modified JAX-WS
library or JVM instead of the standard distributions

web service/servlet container plug-in [server side only]:
the target web service deployed in a web service con-
tainer is observed using mechanisms offered by (some)
servlet containers (e.g. Glassfish implements the nec-
essary JSR monitoring and management specifications
to intercept HTTP traffic between the container (server)
and its clients) and a public API to attach the sensor
to is available

http proxy [client side only]: all outbound traffic is fil-
tered at the HTTP layer by a proxy application which
filters SOAP calls and synthesise the required informa-
tion

TCP/IP filter [both client and server side]: all traffic is
filtered at the TCP/IP layer by means of a special ap-
plication (usually integrated directly into the core of

2

HTTP

TCP/IP

SOAP

JVM
Plug-in

HTTP Proxy

TCP/IP
Filter

HTTP

TCP/IP

SOAP

TCP/IP
Filter

JVM
Plug-in

Proxy
Web Service

WS Container
Plug-in

Agent
platform

Agent

Agent
platform

Agent

Platform
Support

Application
Support

Platform
Support

Application
Support

Web Service
Client

Web Service
Server

Agent-based
application

Agent-based
application

Client/Server-side Sensors Application/Network LayersLegend:

Figure 2: Possible implementations of observation sensors in the WS-based contract party interaction stack

the underlying operating system) and HTTP messages
containing SOAP calls are identified and used to syn-
thesise the information to be reported

Table 1 summarises the advantages and disadvantages of
different sensor implementations.

4. OBSERVATION IN THE CONTRACT
FRAMEWORK

In this section, we describe how contract observation has
been implemented in the CONTRACT Framework devel-
oped within the IST-CONTRACT project1. We first over-
view the architecture of the whole framework and then de-
scribe the implemented observation process.

4.1 CONTRACT Framework Architecture
CONTRACT is a WS framework for developing, imple-

menting and monitoring contract-based systems. The core
of the framework is a JAX-WS compliant web-service-based
agent platform2, also developed within the IST-CONTRACT
project. Agents are implemented as stateful web services
which are accessed by means of a single stateless factory
entry point returning a WS-Addressing compliant reference
used for the invocation of individual agent operations. The
web-service interface of each agent offers means for FIPA-
ACL [3] compliant interactions between agents as well as
operations for connecting the agent with external compo-
nents such as a graphical front-end etc.

1http://ist-contract.org
2available from http://ist-contract.sourceforge.net/

4.2 Observation Pipeline
The observation process in the CONTRACT framework

is referred to as the observation pipeline and is realized
through a distributed collaboration of several different types
of agents. After initial research and experimentation, the
agent platform plug-in option has been chosen for imple-
menting the observation gathering sensors (see Section 3
for details). The decision was made because of continuing
difficulty to find a solution at a different level that would
work reliably across a wide range of deployment scenarios
supported. Agent communication and action selection mod-
ules have been therefore equipped with a sensor that reports
any communication and action invocation performed by the
agent.

Altogether, the following components are involved in the
CONTRACT observation pipeline:

• Sensor – an interface implemented by the Contract
Party to allow observation of its contract-related activ-
ities. The Sensor provides domain- and contract-level
data to the Observer agent. The main functionality of
Sensors, which are distributed in the contracting en-
vironment, is the pre-processing of the collected data
into a form of observation reports described by XML
schemas and the submission of these reports to the des-
ignated Observers. Three types of observation reports
are used: action reports for notifications about actions
performed by the contract parties, domain predicate
reports for notifications about state changes of the ob-
served contracting environment, and ACL message re-
ports for communication between the contract party
agents. The Sensor is implemented as a standalone

3

http://ist-contract.org
http://ist-contract.sourceforge.net/

Advantages (+) Disadvantages (–)

application-level API • all information needed for monitoring
is instantly available

• reporting of selected actions
and/or communication can be
(intentionally) omitted

agent platform
plug-in

• all information needed for monitoring
is instantly available

• reporting cannot be circumvented

• communication and action ex-
ecution reporting has to be
supported by the agent plat-
form

proxy web service • the proxy web service code can be
extended by information needed for
monitoring while the target web ser-
vice remains intact and operational

• platform/OS independent

• lack of stable open-source
tools and frameworks imple-
menting this functionality

• may be a performance bottle-
neck

JAX-WS/JVM
plug-in

• transparent for both client and server
solutions (possibly using the same
code)

• does not require any modifications to
existing services and/or clients

• the extension/modification
may not be feasible

• deployment on web ser-
vice/servlet containers may
be difficult

web service/servlet
container plug-in

• usable transparently at the server
side, uses container API

• does not require any modifications to
existing services and/or clients

• container dependence (not all
containers implement the nec-
essary JSR specifications)

http proxy • usable transparently on the client
side

• minimal changes to existing web ser-
vice clients (only configuration)

• platform/OS independent

• more http proxies for more
JVMs on the same computer
may pose performance prob-
lems (stability, robustness,
load)

TCP/IP filter • transparent for both client and server
solutions

• does not require any modifications to
existing services and/or clients

• platform/OS dependent

• may rise security issues
and conflicts with existing
software operating at the
TCP/IP level

Table 1: Comparison of different sensor implementations

Java library providing a reporting API.

• Observer – the central component of the pipeline.
Observer’s main responsibility consists in collecting
data reported by sensors and providing them further to
the other pipeline components. The Observer may by
extended by plug-ins for the pre-processing and pro-
cessing of the stored information. Observer provides
an ACL-compliant interface supporting the Query and
the Subscribe agent communication protocols.

• Monitor – a plug-in module for the Observer process-
ing the observed data to determine contract fulfilment.
In the case of the CONTRACT project, the Monitor
module has been implemented by a means of a reasoner
based on augmented transition networks (see [4] for de-
tails). As its input, the Monitor receives the observa-
tion reports gathered by the encompassing Observer;
the output of the Monitor (the fulfilment state of all
monitored contracts and their clauses) is forwarded to
the Observer from which it is made available to other
components in the system.

• Contract Storer – the agent keeping track of con-
tracts in the system, including their life-cycle status (in
cooperation with the Observer). The contract storer
acts as an authoritative source of information on con-
tract content and life-cycle status, which is used by
other components of the pipeline. Internally, the Con-
tract Storer agent uses an eXist XML database to store
contract documents.

In addition, there is the Analyser agent providing a user
front-end to the pipeline, presenting the contract status and
fulfilment data to the administrators of the monitored con-
tract-based system. Interactions between the components
within the CONTRACT Framework are depicted in Fig-
ure 3; their involvement in individual stages of the contract
life-cycle is depicted in the Figure 4.

The concept of presented pipeline and the underlying WS
framework has been validated on several use-cases, including
modular certification testing, insurance claim handling and
the maintenance and support of aircraft engine units (see [5]
for the description of the use cases).

4

Environment

Contract Party BContract Party A

ACL Messaging Layer

Sensor

Workflow Manager

Sensor

Sensor

ACL Messaging Layer

Sensor

Workflow Manager

Sensor

Observer

Global Monitor

Analyser

Contract Storer

Web Service

Web Service

Web Service

Web Service

Agent communication and actions
(contract negotiation and execution)

Process interactions
(e.g. observations)

Figure 3: Architecture of the CONTRACT framework

5. RELATED WORK
This work focuses on the observation and monitoring of

distributed systems whose operation can be modelled as a
choreography of well-defined elementary actions. This con-
trasts with most of the work on monitoring service level
agreements (e.g. [6, 7, 8]) which focus on continuous evalu-
ation of a set of performance metrics and their comparison
with agreed thresholds.

Approaches more relevant to our work range from theo-
retical concepts establishing service frameworks for contract
descriptions and monitoring (e.g. [9, 10]) to implementations
of tools and other means for run-time monitoring of work-
flow executions based on electronic contracts as declarative
specifications of multi-party cooperative behaviours (such
as [11, 12, 13, 14]).

Mahbub and Spanoudakis [11] use event calculus for defin-
ing monitoring requirements on top of a workflow described
in BPEL4WS [15]. The behaviour requirements are auto-
matically extracted from the workflow description and can
be extended in order to describe an overall behaviour of
a service composition in terms of temporal constraints and
properties of the data processed during web service invoca-
tions.

Barbon et Al. [13] present a monitoring module extending
the open-source Active BPEL workflow engine. The mon-
itoring module intercepts events in the workflow life-cycle
(creation and termination) and invocations of external ser-
vices; based on the recorded data, the monitor checks for
run-time errors, time-outs, and functional properties. The
monitoring specification is expressed as logical formulas in
the RunTime Monitor specification Language (RTML) and
can be automatically translated into a Java code implement-
ing the monitor functionality. The monitoring logic is kept
separate from the BPEL process (no modification required)
but cannot be deployed in other BPEL engines.

Another approach for monitoring workflows is presented
by Baresi et Al. [12]. They provide a tool for annotating
workflows with assertions (monitoring rules) described in
a proprietary Web Service Constraint Language (WS-CoL)
being inspired by the JML [16]. Their approach clearly sepa-

rates the original business logic from the superimposed mon-
itoring code and is independent of any specific workflow en-
gine.

All of the above work, however, views observation as an
inseparable part of the complete monitoring solution. Mod-
ular approach taken in this paper, viewing observation as an
abstract process with multiple possible implementations, is
to our best knowledge novel.

6. CONCLUSIONS
Observation, i.e. the process of obtaining the relevant in-

formation on the operation of a distributed business system,
is a key pre-requisite for determining whether the system
operation complies with contracts set to regulate it. The
observation has to ensure that sufficient information on the
action of contract parties in the system is recorded and pro-
vided in a suitable form. In this paper, we identified the
type and form of information required and analysed possi-
ble ways in which the information can be obtained in web-
services based environments. We then showed a particular
implementation of the observation process, as implemented
by the IST-CONTRACT project in a web services-based
framework for contract-based systems.

7. ACKNOWLEDGEMENTS
The research described is part-funded by the EC FP6

projects CONTRACT (contract No. 034418), I*PROMS Net-
work of Excellence, and also by the Ministry of Education,
Youth and Sports of the Czech Republic grant No. MSM
6840770038. The opinions expressed herein are those of the
named authors only and should not be taken as necessarily
representative of the opinion of the European Commission
or CONTRACT project partners.

8. REFERENCES
[1] Confalonieri, R., Álvarez Napagao, S., Panagiotidi, S.,

Vázquez-Salceda, J., Willmott, S.: A middleware
architecture for building contract-aware agent-based
services. In Kowalczyk, R., Huhns, M.N., Klusch, M.,

5

Analyser

Ph
as

e
1:

Fo

rm
at

io
n

Observer
+ MonitorContract StorerContract Party BContract Party A

Contract document negotiation

1. Proposal uploaded to Contract Storer
2. Proposal negotiated and modified
 by Contract Parties
3a. Proposal signed by Contract Parties

OR
3b. Proposal cancelled
 (in such case the life-cycle is finished)

Ph
as

e
2:

Ex

ec
ut

io
n

Contract commitments fulfilling

1. Observation process is configured (Observer + Monitor and Analyser)
 according to contract document (from Contract Storer)
2. Observation of messages sent and actions performed
 (through Sensors to Observer)
3. Observed data preprocessing (Monitor) and analysis and visualisation (Analyser)

Ph
as

e
3:

Te

rm
in

at
io

n Contract commitments fulfilling

1. Life-cycle status of the contract changed to finished (in Contract Repository)
2. Contract related data observation (by Observer) un-subscribed (by Analyser)
3. Observation finished (Sensors)

Figure 4: Interactions between the CONTRACT framework components during individual stages of the
contract life-cycle

Maamar, Z., Vo, Q.B., eds.: SOCASE 2008:
Proceedings of Intl. Workshop on Service-Oriented
Computing: Agents, Semantics, and Engineering.
Volume 5006 of Lecture Notes in Computer Science.,
Springer (2008) 1–14

[2] Oren, N., Panagiotidi, S., Vazquez-Salceda, J., Modgil,
S., Luck, M., Miles, S.: Towards a formalisation of
electronic contracting environments. In: COIN 2008:
Proceedings of AAAI Workhop on Coordination,
Organization, Institutions and Norms in Agent
Systems. (2008)

[3] FIPA: Foundation for intelligent physical agents
[online]. 〈http://www.fipa.org〉 (12 2003)

[4] Faci, N., Modgil, S., Oren, N., Meneguzzi, F., Miles,
S., Luck, M.: Towards a monitoring framework for
agent-based contract systems. In: CIA ’08:
Proceedings of the 12th international workshop on
Cooperative Information Agents XII, Berlin,
Heidelberg, Springer-Verlag (2008) 292–305

[5] Jakob, M., Miles, S., Luck, M., Oren, N.,
Kollingbaum, M., Holt, C., Vazquez, J., Storms, P.,
Dehn, M.: Case Studies for Contract-based Systems.
In: Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems. (2008)

[6] Keller, A., Ludwig, H.: The WSLA Framework:
Specifying and Monitoring Service Level Agreements
for Web Services. Journal of Network and Systems
Management 11(1) (2003) 57–81

[7] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K.,
Ludwig, H., Pruyne, J., Rofrano, J., Tuecke, S., Xu,
M.: Web Services Agreement Specification
(WS-Agreement). In: Global Grid Forum
GRAAP-WG, Draft, August. (2004)

[8] Schopf, J., Raicu, I.: Pearlman Let al. Monitoring and
discovery in a web services framework: Functionality
and performance of Globus Toolkit MDS4. Technical

report, Technical Report, Mathematics and Computer
Science Division, Argonne National Laboratory, 2006

[9] Xu, L., Jeusfeld, M.: Pro-active Monitoring of
Electronic Contracts. In: Advanced Information
Systems Engineering, Springer (2003) 584–600

[10] Milosevic, Z., Gibson, S., Linington, P., Cole, J.,
Kulkarni, S.: On design and implementation of a
contract monitoring facility. In: Electronic
Contracting, 2004. Proceedings. First IEEE
International Workshop on. (2004) 62–70

[11] Mahbub, K., Spanoudakis, G.: A framework for
requirents monitoring of service based systems. In:
Proceedings of the 2nd international conference on
Service oriented computing, ACM New York, NY,
USA (2004) 84–93

[12] Baresi, L., Guinea, S.: Towards Dynamic Monitoring
of WS-BPEL Processes. In: Service-Oriented
Computing - ICSOC 2005, Springer (2005) 369–282

[13] Barbon, F., Traverso, P., Pistore, M., Trainotti, M.:
Run-time monitoring of instances and classes of web
service compositions. In: ICWS. Volume 6. 63–71

[14] Radha Krishna, P., Karlapalem, K., Chiu, D.: An
EREC framework for e-contract modeling, enactment
and monitoring. Data & Knowledge Engineering 51(1)
(2004) 31–58

[15] OASIS: Oasis web services business process execution
language (wsbpel) [online]. 〈http://www.oasis-
open.org/committees/download.php/18714/wsbpel-

specification-draft-May17.htm〉 (5 2006) Web
Services Business Process Execution Language Version
2.0. Committee Draft May 2006.

[16] Leavens, G., Baker, A., Ruby, C.: Preliminary design
of JML: a behavioral interface specification language
for java. ACM SIGSOFT Software Engineering Notes
31(3) (2006) 1–38

6

An Agent-Oriented Service Model for Personal Information
Manager

Tarek Helmy
King Fahd University of
Petroleum and Minerals,

Dhahran 31261, Mail Box 413,
Kingdom of Saudi Arabia
helmy@kfupm.edu.sa

Ali Bahrani
King Fahd University of
Petroleum and Minerals,

Dhahran 31261, Kingdom of
Saudi Arabia

ali.bahrani.10@aramco.com

Jeffery M. Bradshaw
Florida Institute for Human and

Machine Cognition (IHMC)
Pensacola, FL 32502, U.S.A.

jbrashaw@ihmc.us

ABSTRACT
Building multi-agent-based systems requires great attention to all
phases of the development life cycle in order to come up with a
reusable model of a high quality. The main goal of this paper is
the investigation and development of a methodology for
describing and designing a service model for personal information
manger based on the agent-oriented paradigm. Several agent-
oriented software engineering methodologies are developed to
tailor the special characteristics of multi-agent systems. In this
paper, the Gaia methodology is used to guide us through the
development of an agent-oriented model for a personal
information manager. The proposed model is shown to be
complete, scalable, independent of specific development
frameworks, and supportive of a high degree of autonomous
behavior. The extensibility of the model is shown by elaborating
the original model to support speech recognition and calendar
scheduling based on user’s preferences and learning from history.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Artificial Intelligent, Intelligent
agent. D.2.7 [Software Engineering]: Agent-oriented.

General Terms
Design, Documentation, Reliability, Experimentation.

Keywords
Personal Information Manager, Gaia, Agent-Oriented Software
Engineering Methodology.

1. INTRODUCTION
In their everyday lives, people often use a personal organizer
record and track their personal information. While the first
personal organizers were small books that usually contain a
calendar, an address book, and notebook paper. Personal
Information Manager (PIM) software is increasingly replacing
paper-based approaches.

People spend a lot of time and effort on reading, filtering,
searching and managing their to-do lists, contacts, emails, and
appointments. Hence, scientists in the fields of computer science
and time management have tried (and are still trying) to increase

user productivity by inventing new practices and techniques that
help users to better manage their personal information [11], [12].
Some of these practices can be automated or learned. Software
applications can be developed to support such practices and to
carry out some actions automatically on behalf of the users
without their interactions. In addition, they may be developed so
that they learn user’s preferences and build a user’s profile in
order to accomplish personalized actions. Ideally, relationships
among applications handling different personal information types
are also modeled and leveraged. For example, a new appointment
may be created as the result of email exchanges with someone
who is already stored in the contacts database. The strong
dependencies among components of such applications make it
difficult to handle modifications in an incremental way. The
model being developed in this paper represents a foundation for a
sophisticated PIM that can support a high degree of autonomous
behavior as well as the ability to learn. In addition, its
extensibility allows people to elaborate the model to support
specialized requirements while continuing to take advantage of
existing features. Such extensibility is a key to reduce developer’s
time and effort.

In this paper, we define a development-framework-
independent agent-oriented model for PIMs that integrates the
main features of a generic PIM: Contacts, Tasks, Calendar and
Email. Several artifacts are prepared in different phases of the
development life cycle including: documents, schemas, tables and
diagrams. The Gaia methodology is used to guide us through the
development life cycle [8]. The model contains the agent types
involved in the system and illustrates how they interact with each
other. In addition, it specifies the responsibilities and permissions
of each agent. The paper is organized as follows: Section 2
provides an overview of the related work. Section 3 provides
details of Gaia as a well-known agent-oriented software
engineering methodology. Section 4 shows the extensibility of the
model through the addition of two intelligent agents. Section 5
presents an execution scenario for the model. Finally, Section 6
concludes the paper.

2. RELATED WORK
There are a lot of products and tools for managing users’ Personal
Information (PI). Some of these tools have been proposed in the
research domain, whereas others are innovative commercial
systems. They can be classified into the following categories,
based on the level of integration they provide.

Cite as: An Agent-Oriented Service Model for Personal Information
Manager, Tarek Helmy, Ali Bahrani, Jeffery M. Bradshaw, Proc. of 8th
Int. Conf. on Autonomous Agents and Multi-agent Systems workshops,
Decker, Sichman, Sierra, and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. XXX-XXX. Copyright © 2009, International
Foundation for Autonomous Agents and Multi-agent Systems
(www.ifaamas.org). All rights reserved.

PI-Specific Tools: These tools provide technology aimed at a
specific type of PI such as email messages or tasks on a to-do list.
In addition, they do not consider integration between distinct PI

7

mailto:helmy@kfupm.edu.sa
mailto:ali.bahrani.10@aramco.com
mailto:jbrashaw@ihmc.us

tools as a primary design goal. EMMA, Towel and Data
Mountain are examples of tools in this category. EMMA is an
email system focusing on email management as a process. It
manages the sorting, prioritizing, reading, replying, archiving, and
deleting of email messages. It caters to a wide variety of users by
adopting a knowledge acquisition technique known as “Ripple
Down Rules” (RDR). RDR is an incremental technique in which
the user starts with an empty knowledge base and adds rules while
processing examples [3]. Towel is a task management application
that manages users’ to-do lists, and was developed by SRI
International. It provides a unified environment that enables users
to manage their tasks, delegate tasks to others, or collaborate with
other users. It uses various AI technologies that result in saving
user’s time, reducing load, and improving task performance [10].
Data Mountain is a technique that allows users to place
documents at arbitrary positions in a 3D desktop virtual
environment using a simple 2D interaction technique. Its interface
is designed specifically to take the advantage of human spatial
memory in managing documents (i.e. the ability to remember
where you put something). It is designed with a fixed viewpoint
so that users need not to navigate around the space. Users can
identify and distinguish between documents, both through their
thumbnail representation and also through pop-up titles [7].

Systems providing integration between distinct PI-specific
tools: Tools in this category offer limited integration based on
some kinds of structured information. For example, a tool in this
category may allow the user to access the contact manager when
selecting an email address in a message. Stuff-I’ve-Seen (SIS) is
an example of a tool in this category. It has been developed to
make it easy for people to find information they have seen before.
There are two main concepts in the design of SIS that help it to
achieve information reuse. First, the system provides a unified
index of information that a person has seen on his computer.
Second, because a person has seen the information before, rich
contextual cues such as time, author, thumbnails, and previews
can be used to search for and present information [1, 2]. SIS
indexes many types of information such as emails, web pages,
documents, media files, calendar appointments, file system
hierarchy, email folder hierarchies, favorites, and web pages
history. All of these are integrated into a single index, regardless
of the form or origin of the information.

Systems embedding additional support for managing
multiple types of information within one PI-specific tool:
TaskMaster is an example of tools in this category. It allows the
user to manage multiple types of PI with one PIM tool through
the embedding of extra functionality. It is a client that provides a
mechanism for labeling any item of information with to-do
metadata. In addition, it manages multiple types of PI [1].

Systems consolidating the management of all PI in a single
new interface: This is in contrast to systems that embed PI within
an existing tool. Examples of tools in this category include
MEMOIRS, ContactMap and UMEA, which unify PI
management in a single interface based on time, contacts, and
activities [1]. A MEMOIR is a prototype that has been developed
based on the chronological organization of the PI. It is based on
integrating a user’s diary and filing the system with a
chronological mechanism. The main design goals of this
prototype are to enable PI retrieval based on temporal context,
and to promote retrieving by recognition rather than by coloring
items. ContactMap integrates the management of different PI

based on the representation of a user’s social network, which is
derived from the user’s address book. The interface maps between
a social network, files, bookmarks and email messages. It also
enables users to use the information retrieved from the address
book for communication. Thus, ContactMap integrates both
information management and communication functionality. The
UMEA allows the user to organize multiple types of PI based on
their projects. The design rationale is based on the observation
that a user’s activity often involves multiple PIM tools. Hence,
the user is asked to provide the project name that he is currently
working on. Thereafter, all the information details that is
associated with the proposed model.

3. BUILDING THE MODEL
3.1 Rationale for Selecting Gaia
Formal guidelines on how to progress through different phases of
development life cycle can be helpful. Software development
methodologies are intended to save time and efforts since they are
designed for usability, built according to best practices, and
describe the important steps that the designer should follow [4]. In
general, a software development methodology consists of process,
heuristic rules, artifacts, notations and pattern [4, 5]. A process is
a sequence of phases and activities that guide the developer to
build a system. Heuristic rules are those supporting the developer
in making relevant choices. Artifacts are diagrams, schemas or
documents in the form of text or graphics. Notations are those
which used in representing the artifacts. A pattern is what can be
applied to solve common situations [4, 5]. Over the past two
decades, complex systems have been engineered using powerful
and natural, high-level abstractions. Examples of these
abstractions include procedural abstractions, abstract data types,
objects and components. Software agents can be seen as advanced
abstractions that may be used by software developers to more
naturally understand, develop, and model complex distributed
systems. Since agents provide an advanced abstraction for
complex distributed systems, it is necessary to use software
engineering techniques that are specifically tailored for them.
Existing software development techniques such as object-oriented
analysis and design fail to represent agents’ characteristics. They
fail to adequately capture agents’ flexible and autonomous
behaviors, the richness of the agents’ interactions and the
complexity of the agents’ system organization structure [9]. Gaia
has become well-known as an agent-oriented software
engineering methodology because it is tailored specifically to the
analysis and design of agent-based systems and deals with macro-
level (social) as well as micro-level (agent) design aspects [8]. In
addition, it captures agents’ characteristics of being proactive,
reactive, and having social ability. The Gaia methodology is
characterized by its:
1. Precision: the live-ness and safety properties in role definition

make it accurate and prevent misunderstanding of the modeled
functionality.

2. Accessibility: Gaia is easy to understand and use due to its
simple models and clarity.

3. Expressiveness: Gaia can handle a large variety of systems due
to its generic structure.

4. Modularity: Gaia is modular because of its building blocks
such as roles, protocols and activities.

8

The Gaia methodology enables analysts to move from abstract
concepts to increasingly concrete ones. Abstract concepts are
those used during analysis to conceptualize the system like roles,
permissions, responsibilities, protocols, activities, live-ness and
safety properties. However, concrete concepts are those that are
used within the design process and have direct counterparts in the
runtime system like agent types and acquaintances. The following
sections define the different phases we went through in order to
build the model and the artifacts produced in each phase.

3.2 Requirements
Since Gaia methodology has two phases only, analysis and
design, requirements capture should be done independently
beforehand. The most popular way to capture the potential
function requirements of the system is to use ‘use cases’ where
each use case represents one or more scenarios that demonstrate
how the system should interact with users or other systems. Use
cases are not object-oriented in nature and hence they can be used
to capture the functional requirements of multi-agent systems
without modifications [4]. The first step in developing the use
cases is to define the set of actors that are involved in the story
where actors are the different people or devices that use the
system [6]. The only actor in our PIM example is the user who is
accessing the system and is willing to manage his/her personal
information. The second step is identifying the system’s major
use cases. A use case represents a major piece of functionality
that delivers some valuable functions to the user. In our PIM, the
major use cases identified are: ‘Maintain Tasks’, ‘Maintain
Contacts’, ‘Maintain Calendar’ and ‘Maintain Emails’. In addition
to these four main use cases, there is one use case ‘Verify User’
which needs to be executed as a prerequisite for each of the main
use cases. Hence, this use case is related to the main use cases and
the relationship is of type <<includes>>. See Figure 1 below for
the main use cases diagram.

Figure 1: Main Use Cases Diagram

3.3 Analysis
The objective of the analysis phase in Gaia methodology is to
develop an understanding of the system and its structure. It
includes the identifications of the environment model, the role

model and the interaction model of the system. The following
sections discuss these models for our PIM.

3.3.1 The Environment Model
The environment in Gaia is treated in terms of abstract
computational resources such as variables that are made available
to agents for sensing, affecting or consuming. Such variables are
accessed by agents to be read or changed, or to extract their
values. Hence, the environment model can be shown as a list of
abstract computational resources associated with symbolic names
and characterized by the types of actions agents are performing on
them. In addition, it is also possible to add textual comments and
descriptions to each resource.

Considering our system, we have used four resources;
namely, Tasks Database, Contacts Database, Calendar Database
and Emails Database. The user accessing the system is able to
manage his personal information using these resources, which are
categorized by the user such that, each user is able to
access/manage his information only. For that reason, the user
needs to be authenticated and verified by providing a user’s name
and password in the system’s startup. Obviously, the main
purpose of any PIM is to manage users’ tasks, contacts,
appointments and emails. Hence, the system needs read/write
access to these resources.

Throughout the analysis, design and implementation phases
of the system, the tasks, contacts, calendar items and emails
resources are represented in two-dimensional arrays. The first
index of the array represents the user identification, whereas the
second index represents the resource’s element identification. For
example, the representation Task[i][j] means the jth task for the
user i. These discussions are summarized in Figure 2, which
shows the environment model of the system.

 changes Tasks[i][j] where i=1,…total_users and j=1,…
total_tasks.

 changes Contacts[i][j] where i=1,…total_users and
j=1,… total_contacts.

 changes Calendar Items [i][j] where i=1,… total_users
and j=1, …. total_calendar_items.

 changes Emails[i][j] where i=1,…total_users and j=1,…
total_Emails.

Figure 2: The Environment Model of the System

Maintain
Tasks

Includes
relationship

Maintain
Contacts

Verify
User

3.3.2 The Role Model
Maintain
Calendar Defining a multi-agent system using roles is quite a natural way

of thinking [8]. For example, if we consider a typical company as
a human organization, we can define several roles such as
‘president’, ‘vice-president’, ‘manager’ and so on. These roles
will be instantiated with actual individuals such that an individual
can take the role of a ‘president’ and another one can take the role
of ‘vice-president’. It is also possible in some small companies
that an individual can take more than one role. For example, an
individual can take the role of being a ‘mail fetcher’ and ‘office
cleaner’. In addition, it is possible that a role can be instantiated to
more than one individual such as the ‘salesman’ role. The role
model in Gaia methodology identifies the key roles in the system
and their permissions and responsibilities attributes [9].
Permission attributes identify the resources that can be used to

User

Maintain
Email

9

carry out the role and resource’s limits (‘reads’, ‘changes’ or
‘generates’). In order to represent permissions, Gaia makes use of
the same notation already used for representing the environment
resources. However, the attributes associated with resources are
no longer representing what can be done with such resources from
the perspective of the environment. On the other hand, the
attributes associated with resources are representing what the
agent’s role must, and must not, be allowed to do in order to
accomplish the role’s requirements. Conversely, the
responsibilities’ attributes are those that determine the expected
behavior of a role. Responsibilities are divided into two types:
live-ness responsibilities and safety responsibilities. Live-ness
responsibilities are those that state “something good happens.”
They are so called because they tend to say that the agent carrying
out the role is still alive. They are specified via a live-ness
expression that defines the lifecycle of the role. The general form
of live-ness expression is as follows: Role_Name = expression,
where “Role_Name” is the name of the role whose live-ness
responsibilities are being defined, and “expression” is the live-
ness expression defining the live-ness properties of Role_Name.
The atomic components of a live-ness expression are either
activities or protocols. An activity is somewhat like a method in
object-oriented terms or a procedure in procedural programming
language. An activity is a unit of action that the agent may
perform that does not involve interaction with any other agent. On
the other hand, protocols are activities that require interaction
with other agents. An activity is visually distinguished from a
protocol through underlining. Sometimes, it is insufficient to
specify the live-ness responsibilities of a role. This is because an
agent carrying out a role will be required to maintain certain
invariants while executing. For example, we might require that a
particular agent taking part in an e-commerce application never
spends more money than it has allocated. These invariants are
called ‘safety conditions’, because they usually relate to the
absence of some undesirable condition arising. Safety conditions
in Gaia are specified by means of a list of predicates. The list is
represented as a bulleted list such that each item in the list
expresses individual safety responsibility.

Our PIM manages four types of PI namely: Tasks, Contacts,
Calendar items and Emails. In order to satisfy the requirements,
we have identified the required roles for each PI type, and these
are listed in Table 1. In addition to the roles identified in the
Table 1, we need these additional roles: Facilitator, Task, Contact,
Calendar and Email. The facilitator is used to perform
communication services such as forwarding messages and
displaying interface screens. With this in mind, the task, contact,
calendar and email roles act as a middle layer between the
facilitator role and the other roles in the table. In other words, the
roles are tiered into three levels. The first level contains only the
facilitator role. The second level contains the task, contact,
calendar and emails roles while all the other roles are in the third
level. When the facilitator receives a command from the user, it
forwards it to the 2nd level roles asking them whether they can
satisfy the command. Then, they parse the command and reply
with the name of the responsible 3rd level role that can execute the
command. Then, the facilitator forwards the command to that
specific responsible 3rd level agent asking for execution. Figure 3
shows the tiers of the model. After we have identified the role
hierarchy, we have defined all roles mentioned in the hierarchy

using the recommended Gaia’s role schema. Figure 4 and 5 show
the schemas for the ‘Task’ and ‘Task Creator’ roles as examples.

Table 1: System’s Roles List

Personal
Information

Type

Roles

Task - Task Creator, Task Modifier
- Task Deleter, Task Reassigner

Contact - Contact Creator, Contact Modifier
- Contact Deleter, Contact Searcher
- Contact Sender

Calendar
Items

- Calendar Creator, Calendar Modifier
- Calendar Deleter, Calendar Reminder
- Calendar Inviter, Calendar Invitation Tracker

Emails - Email Creator, Email Deleter
- Email Sender, Email Receiver

Figure 3: Roles Hierarchy

10

Role Name: Task

Description: This role manages the communication between
the facilitator (level 1) and other task roles in level 3.

Protocols and Activities: AwaitCall, Parse, ReplyToIsItYours

Permissions:
This role does not have access to the resources directly.

Responsibilities:
Liveness: Task = (AwaitCall, Parse, ReplyToIsItYours) w

Safety: True

Figure 4: Schema for the Task Role

Role Name: TaskCreator

Description: Create a new Task Item for the logged on user.

Protocols and Activities: AwaitCall, CreateTask

Permissions:
Reads supplied Logged User //Read all tasks for the user who
logged on.
TaskItems[LoggedUser] //Create a new TaskItem i for the user
who logged on.
Generates TaskItems [LoggedUser][i].

Responsibilities:
Liveness: TaskCreator = (AwaitCall•CreateTask)w

Safety: True

Figure 5: Schema for the Task Creator Role

3.3.3 The Interaction Model
This model captures the dependencies and relationships between
the roles of the system. Each interaction between two roles has a
protocol definition. A protocol definition consists of these
attributes:

• Protocol Name: brief description that captures the nature of the
interaction.

• Initiator: the role(s) responsible for starting the interaction.

• Partner: the responder role(s) with which the initiator interacts.

• Inputs: information supplied to the protocol responder during
interaction.

• Description: textual description explaining the purpose of the
protocol and the processing activities implied in its execution.

In order to build the interaction model of our PIM, we have
defined each interaction (protocol) named in the role model using
Gaia’s protocol definition template. For example, in the Task role
schema defined in Figure 4, we have two protocols ‘AwaitCall’
and ‘ReplyToIsItYours’ which are defined in Figures 6 and 7
respectively.

3.4 Design
The objective of the design phase is to transform the abstract
models derived during the analysis phase into a sufficiently low
level of abstractions in order to implement agents. The design
phase includes the generation of the agent model and the

acquaintance model. The following sections discuss these models
for our PIM.

Role Name: Task

Protocol Name: AwaitCall

Initiator: Partner: Input:

Facilitator Task User’s command

Description: Output:

When the user commands the system to
do something, the facilitator will send
the command to all 2nd level roles
(including task role) asking them if the
command is related to them or not.

Command will be
parsed

Figure 6: Definition of AwaitCall Protocol

Role Name: Task

Protocol Name: ReplyToIsItYours

Initiator: Partner: Input:

Task Facilitator None

Description: Output:

This interaction occurs as a reply to the
facilitator in his request about if the
command is related to this role or not. If
it is related then a responsible role from
level 3 will be sent as output.

Yes/No, and the
responsible agent
from level 3.

Figure 7: Definition of ReplyToIsItYours Protocol

3.4.1 The Agent Model
The purpose of the agent model is to document the various agent
types that will be used in the system and the agent instances that
will realize these agent types at runtime. An agent type is a set of
agent roles. However, sometimes there is a one-to-one
correspondence between roles and agent types. A designer can
choose to package a number of closely related roles in the same
agent type for the purpose of convenience or efficiency. The
designer may want to optimize the design by aggregating a
number of agent roles into a single type that carries out all the
functionalities required by all roles. Later, only this agent type
needs to be delivered. In our case, there is a one-to-one
correspondence between roles and agent types. That means we
will deliver as many agent types as roles defined in Figure 3.

3.4.2 The Acquaintance Model
This model defines the communication links that exist between
agent types and simply indicates that communication exists.
However, it does not define what messages are sent or when they
should be sent. The purpose of this model is to identify any
potential communication bottlenecks that may cause problems at
runtime. The acquaintance model is a directed graph with nodes
in the graph corresponding to agent types and arcs corresponding
to communication pathways. Figure 8 below shows the
acquaintance model of the system.

11

3.5 Prototype Implementation
We have developed a prototype for the model for partial
implementation of Tasks and Contacts features. The prototype
was developed using the Microsoft SQL Server 2005 Express
Edition as a back-end database and the AgentBuilder as a multi-
agent development tool. Using Gaia methodology in the analysis
and design phases helps us developing the prototype in minimal
effort. The artifacts produced in the analysis and design phases
can be directly transformed to code. For example, if we consider
the TaskCreator role produced in the analysis phase and defined
in Figure 5, we find that the live-ness expression is:

TaskCreator = (AwaitCall · CreateTask) w

where AwaitCall is a protocol involving communication with
another agent, and CreateTask is an activity that the agent can do
without any communication.

Figure 8: Acquaintance Model

Similarly, in order to find the definition of the AwaitCall
protocol, we refer to the interaction model developed also in the
analysis phase [Figure 9]. The definition of the protocol specifies
that the initiator for the communication is the facilitator agent,
while the TaskCreator agent is the partner. It also specifies that
the input to that interaction is the Task details and the output
expected after the interaction is inserting the task into the
database table. This discussion is directly mapped into the agent’s
rules in the AgentBuilder tool as shown in Figure 10.

Role Name: TaskCreator

Protocol Name: AwaitCall

Initiator: Partner: Input:

Facilitator TaskCreator Task
Details

Description: In this interaction, the Facilitator
agent sends the task details to the TaskCreator in
order to create a new task in the database.

Output:
New task
created.

Figure 9: Definition of AwaitCall Protocol

The interpretation of the snippet in Figure 10 is as follows. If the
KQML message received is from the "Facilitator" (line 1) and
asks the receiver (line 2) to execute the command embedded into
the message (line 3), then the receiver executes a CreateTask

method of object $myTask (line 3 in THEN section). Lines 4 in
the THEN section are used to print to the agent’s console.

WHEN:
1. (%message.sender EQUALS "Facilitator")
2. (%message.performative EQUALS "ask-one")
3. (%message.replyWith EQUALS "doIt")
THEN:
1. DO SystemOutPrintln ("TaskCreator Agent is going to
create the task")
2. SET_TEMPORARY $myTask TO %message.content.myTask
3. DO CreationReturnedValue=$myTaskCreateTask
(%message.content)
4. DO SystemOutPrintln (“Task is created successfully”)

Figure 10: Behavioral Rules of TaskCreatorAgent

4. MODEL EXTENSIBILITY
One important objective of this model; in addition to benefiting
from agents’ characteristics; is to build a PIM model that can be
extended by researchers in order to test their new practices and
algorithms. In this section, we study the ability of the model to
extend it by adding two intelligent agents: the ‘Speech
Recognition Agent’ and the ‘Calendar Scheduler Agent’.

4.1 Adding a Speech Recognition Agent
The purpose of the speech recognition agent is to transform the
speech into a text. The speech recognition agent does not have
direct access to the system resources. Instead, it sends the
command as a text to the facilitator agent. Figure 11 shows the
role’s schema while Figure 12 shows the definition of the unique
protocol involved: ‘SendTextCommand’.

4.2 Adding a Calendar Scheduling Agent
This agent schedules the meetings of the user on his behalf based
on his preferences and the usage history. It also negotiates timing
with other users until agreement is reached. Users’ preferences are
stored as profiles in the database. The user needs to answer a
number of questions posed by the agent in order to allow
supervisory learning. Later, the agent will consult the user’s
profile to schedule meetings at the user’s preferred times. Here
are some questions that can be stored in the user’s profile:
1- Do you like your meetings to be contiguous or scattered

throughout the day? If you like your meetings to be scattered,
what is the minimum time needed between meetings?

2- What are your block days of the week (i.e. the days that you
least want to have meetings)?

3- What are your block times of the day (i.e. the times that you do
not want the agent to schedule meetings)?

4- What is the maximum number of meetings in a day?
5- Who are the people that have high priority? Meetings with high

priority people are given higher precedence in scheduling. For
example, meetings with the user’s manager cannot be
negotiated. In addition, in case of conflict, meetings with low
priority people will be rescheduled to another time.

6- What is the maximum number of negotiations allowed per
meeting without involving the user? This question is asked in
order to stop the agent from negotiating meeting times
infinitely. When negotiation exceeds a user-defined limit, the
user is able to review his schedules manually and negotiate.

12

Role Name: SpeechRecognition

Protocol Name: SendTextCommand

Initiator: Partner: Input:

SpeechRecognition Facilitator Command as text

Description: Output:

This interaction occurs to transfer the
command to the facilitator after it is
converted to text.

Facilitator will
continue the
execution process
of the command.

Figure 12: Definition of SendTextCommand Protocol

In addition to this supervisory learning, the agent learns the user’s
preferences from the history. Clearly, this agent needs some
functionality provided by the model. It needs to access and update
the user’s calendar and contacts, as well as, it needs the emailing
functionality to negotiate meeting times. Hence, the model is
going to be extended. Considering the meeting scheduling
problem, the user can be either an organizer or an attendee. Being
an organizer means he needs to invite other people, whereas an
attendee is invited to a meeting. If the user is an organizer, then
the scheduling and negotiation process will be as follows:
a. The user asks the agent to schedule a meeting with someone.
b. The agent consults the user’s preferences and sends an

invitation to other members by using the emailing functionality
provided by the model.

c. The agent receives Accept, Reject or Propose New Time
replies from the attendees.

d. Steps (b) and (c) are repeated until satisfaction.
On the other hand, if the user is an attendee then the scheduling
and negotiation process will be as follows:
a. The user receives a meeting invitation by email.
b. The agent consults the user’s preferences and sends Accept, or

Reject, or Propose New Time reply to the organizer.
c. Steps (a) and (b) are repeated until satisfaction.
Hence, we have two roles for the CalendarScheduler agent:
organizer and attendee. Figure 13 shows the role’s schemas for

the organizer role while Figure 14 and 15 show the definitions of
the protocols involved in its live-ness expression.

Role Name: SpeechRecognition

Description: This role recognizes speech and transfers it to text.

Protocols and Activities: ListenToCommand, ConvertToText,
SendTextCommand.
Permissions:
//This agent does not have access to the resources directly

Responsibilities:
Liveness: SpeechRecognition = (ListenToCommand•
ConvertToText • SendTextCommand)w

Safety: * True
Figure 11: Schema for the Role SpeechRecognition

Role Name: Organizer

Description: This role organizes a meeting and sends
invitations to attendees.

Protocols and Activities: ScheduleIt, InviteAttendees,
Receive, Accept, Reject
Permissions:
//This agent does not have access to the resources directly

Responsibilities:
Liveness: Organizer = (ScheduleIt•InviteAttendees • Receive,
Accept, Reject)w

Safety: * True

Figure 13: Schema for the Role Organizer

Role Name: Organizer

Protocol Name: InviteAttendees

Initiator: Partner: Input:

Organizer EmailSender Meeting Details

Description: It sends invitations to Output: Invitation

Figure 14: Definition of InviteAttendees Protocol

Role Name: Organizer

Protocol Name:
ReceiveAcceptReject

Initiator: Partner: Input:

EmailReceiver Organizer Invitation response

Description: This interaction occurs
to deliver the invitation response to
the organizer.

Output:

Figure 15: Definition of ReceiveAcceptReject Protocol

5. EXECUTION SCENARIO
Assume that a user wants to create a new task and inserts it into
the database. The following execution steps happen:
1. Once s/he starts the prototype, the facilitator agent does not

have any belief about the user’s identity. Hence, the facilitator
will ask the user to provide the user’s name and password. If
they are valid, then the facilitator will add this fact to its beliefs
and redirect the user to the next step. Otherwise, s/he will be
asked to enter the correct user’s name and password again.

2. The facilitator agent displays a command frame to allow the
user to type his/her command. Assume the user enters the
command: ‘Can you please create a task “Work on initial
conference paper” starting 09/04/2008 and due date is
10/04/2008 with high importance and 30% completed’. Figure
16 shows a snapshot of the command.

13

3. When the user clicks on the Execute button, the facilitator
agent will forward the command as it is to the second-level
agents in the hierarchy of the agent model, asking them
whether the command is related to any one of them.

4. Each second-level agent will study the command and check if it
is related to itself or not. The result of this checking will be sent
to the facilitator with the name of the responsible agent in third-
level agents. In this scenario, the task agent will reply by
saying the command is mine and the specific responsible third-
level agent is the "TaskCreator" agent. Other second-level
agents will reply by saying that the request is not related to
them. In addition, the task agent parses the command and
understands it.

5. The facilitator displays a task confirmation screen based on
how the task agent has interpreted the command [Figure 17].

6. The user can accept the system’s interpretation or change any
values. Once the user clicks on the Save button, the facilitator
agent will send the command to the 3rd responsible agent to
execute it, which in our case is the "TaskCreator".

Figure 17: Task Form

6. CONCLUSION
In this paper, we have discussed the importance of following an
agent-oriented software engineering methodology to build a high
quality PIM model. Using Gaia methodology guided us
throughout the different phases of developing an agent-oriented

model of PIM and helped us in analyzing and designing the
solution. The proposed model represents a foundation for
sophisticated PIMs that have high degree of autonomous behavior
and ability to learn. In addition, it is shown to be extensible.

Figure 16: Command Form

7. ACKNOWLEDGEMENT
We would like to thank King Fahd University of Petroleum and
Minerals for supporting this research work and providing the
computing facilities.

REFERENCES
[1] Boardman, R. Improving Tool Support for Personal Information

Management, 2004. Thesis Report for the degree of Doctor of
Philosophy, pp. 30-60.

[2] Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., and Robbins,
D. C. 2003. Stuff I’ve seen: a system for personal information
retrieval and re-use. Proceedings of the 26th Annual international
ACM SIGIR Conference on Research and Development in
information Retrieval (Canada, July 28 - August 01).
http://doi.acm.org/10.1145/860435.860451

[3] Mao, X., Wang, J., and Chen, J. 2005. Modeling Organization
Structure of Multi-Agent System. In Proceedings of the
IEEE/WIC/ACM international Conference on intelligent Agent
Technology (Sept. 19-22), pp. 116-119.
http://dx.doi.org/10.1109/IAT.2005.102

[4] Nikraz, M., Caire, G., and Bahri, P. A, 2006. A methodology for the
analysis and design of multi-agent systems using JADE. Computer
Systems Science and Engineering, 21(2).

[5] Luck, M., Ashri, R., and d’Inverno, M. 2004 Agent-Based Software
Development. Artech House, Inc.

[6] Pressman, R. S. 2004 Software Engineering: a Practitioner’s
Approach. McGraw-Hill Science/Engineering/Math.

[7] Robertson, G., Czerwinski, M., Larson, K., Robbins, D. C., Thiel, D.,
and van Dantzich, M. 1998. Data Mountain: using spatial memory
for document management. In Proceedings of the 11th Annual ACM
Symposium on User interface Software and Technology (USA,
November 01 - 04). pp. 153-
162.http://doi.acm.org/10.1145/288392.288596

[8] Wooldridge, M., Jennings, N. R., and Kinny, D. 2000. The Gaia
Methodology for Agent-Oriented Analysis and Design. Autonomous
Agents and Multi-Agent Systems (Sep. 2000), pp. 285-
312.http://dx.doi.org/10.1023/A:1010071910869

[9] Zambonelli, F., Jennings, N. R., and Wooldridge, M. 2003.
Developing multi-agent systems: The Gaia methodology. ACM
Trans. Software Engineering. Method. 12, 3 (Jul. 2003), 317-370.
http://doi.acm.org/10.1145/958961.958963

[10] Karen Myers, Pauline Berry, Jim Blythe, Ken Conley, Melinda
Gervasio, Deborah McGuinness, David Morley, Avi Pfeffer, Martha
Pollack , and Milind Tambe, 2007. An Intelligent Personal Assistant
for Task and Time Management, AI Magazine Volume 28 Number 2,
pp. 47-61.

[11] Tarek Helmy, Makoto Amamiya, 2006. Multi-Agent-Based Adaptive
AV Interface. The International Arab Journal of Information
Technology, Vol. 3, No. 4, pp. 291-298.

[12] Tarek Helmy, 2006. Towards a User-Centric Web Portals
Management, International Journal of Information Technology, Vol.
12 No. 1, pp. 1-15.

14

http://doi.acm.org/10.1145/860435.860451
http://dx.doi.org/10.1109/IAT.2005.102
http://doi.acm.org/10.1145/288392.288596
http://dx.doi.org/10.1023/A:1010071910869
http://doi.acm.org/10.1145/958961.958963

Agent-based Context Consistency Management in Smart
Space Environment

Wan-rong Jih Jane Yung-jen Hsu Han-Wen Chang Umi Laili Yuhana
jih@agents.csie.ntu.edu.tw yjhsu@csie.ntu.edu.tw r96922005@ntu.edu.tw yuhana@its-sby.edu

Department of Computer Science and Information Engineering Department of Informatics
National Taiwan University Faculty of Information Technology

Taipei, Taiwan Institut Teknologi Sepuluh Nopember (ITS)

ABSTRACT
Context-aware systems in a smart space environment must
be aware of the surrounding contexts and adapt to chang-
ing contexts in highly dynamic environments. Data man-
agements of contextual information are different from tra-
ditional approaches because of the contextual information
are dynamic, transient, and fallible. Consequently, capabili-
ties to detect context inconsistency and maintain consistent
contextual information are two key issues for managing con-
texts. We propose an ontology-based model for representing,
deducing, and managing consistent contextual information.
In addition, we use ontology reasoning to detect and resolve
context inconsistency problems, which will be described in
a Smart Alarm Clock scenario.

1. INTRODUCTION
It’s obvious that mobile devices, such as smart phone, per-
sonal digital assistants (PDAs), and wireless sensors, are in-
creasingly popular. Moreover, many tiny, battery-powered,
and wireless-enabled devices have been deployed in smart
spaces for collecting contextual information of residents. Cus-
tomized information can be delivered across mobile devices,
based on specific contexts (location, time, environment, etc.)
of the user. The Aware Home[1], Place Lab[17], Smart Meet-
ing Room[6],and vehicles[19] provide intelligent and adap-
tive service environment for assisting users to concentrate
on their specific tasks.

Context-awareness is the essential characteristic of a smart
space, and using the technologies to achieve context-awareness
is a type of intelligent computing. Within a richly equipped
and networked environment, users need not carry any de-
vices with them; instead, applications adapt the available
resources to their processes for delivering services to vicin-
ity of users, as well as tracking the location of users. Cyber-
guide[18] uses the user’s locations to provide an interactive
map service. In the Active Badge[23], every user wears a
small infrared device, which generates a unique signal and

can be used to identify the user. Xerox PARCTab[24] is a
personal digital assistant that uses an infrared cellular net-
work for communication. Bat Teleporting[15] is an ultra-
sound indoor location system.

In a smart space, augmented appliances, stationary comput-
ers, and mobile sensors can be used to capture raw contex-
tual information (e.g. temperature, spatial data, network
measurement, and environmental factor), and consequently
a context-aware system needs to understand the meaning
of a context. Therefore, a model to represent contextual
information is the first issue of developing context-aware
systems. Context-aware services require the high-level de-
scription about the user’s states and environment situations.
However, high-level context cannot be directly acquired from
sensors. The capability to entail high-level contexts from
the existing knowledge is required in context-aware systems.
Consequently, how to derive hight-level contexts is the sec-
ond issue. As we know that people may move to anywhere at
anytime, it is increasingly important that computers develop
a sense of location and context in order to appropriately re-
spond to the user’s needs. How to deliver right services to
right places at the right time will be the third issue. Incon-
sistent contexts may appear in context-aware systems due to
systems should react to the rapid change of contextual infor-
mation. Any systems with inconsistent knowledge will cause
them fail to provide correct services. Therefore, a context-
aware system must maintain a consistency knowledge base
and react to the dynamic change of contexts, which will be
the fourth issue.

In this research, we leverage multi-agent and semantic web
technologies that provides the means to express context and
uses abstract representations to derive usable context for
proactively delivering context-aware service to the user. We
propose an ontology-base model for supporting context man-
agement, which can provide high-level context reasoning and
detect the knowledge inconsistency. In addition, a Smart
Alarm Clock scenario is help for describing the detailed of
our research.

2. BACKGROUND TECHNOLOGIES
An overview of the context models, context reasoning, and
ontology are introduced in this section.

2.1 Context Representation
Context is mainly characterized by four dimensions[9]: lo-
cation, identity, activity and time. Location refers to the

15

exact position where the user is. If we know a person’s iden-
tity, we could easily derive related information from several
data sources such as birth date, social connectivity, or email
addresses. Knowing the location of an entity, we could de-
termine its nearby objects and people.

Many context-aware systems concentrate on location aware
services. Ye et al.[26] use lattice model to represent spatial
structure, which can deal with syntactic and semantic la-
bels. This general spatial model provides both absolute and
relative references for geographic positions, both the con-
tainment and connection relationships can be determined
as well. MINDSWAP Group at University of Maryland In-
stitute for Advanced Computer Studies develops Semantic
geoStuff1 to express basic geographic features such as coun-
tries, cities, and relationships between these spatial descrip-
tors.

The RFC 24452 defines iCalendar format for calendaring and
scheduling applications, which provides users to create per-
sonal activities. Google Calendar3 is a popular web-based
calendar supports iCalendar standard and users can share
their own personal activities with others. These human ac-
tivities are related to people, time, and location. Conse-
quently, the contents of persons’ schedules can help us to
derive their location at a given time.

2.2 Ontology
Strang and Linnhoff-popien[21] concluded that the ontology
are the most expressive model. Gruber[13] defines ontology
as an “explicit specification of a conceptualization”. Ontol-
ogy is developed to capture the conceptual understanding of
the domain in a generic way and provide a semantic basis
for grounding the fine-grained knowledge.

COBRA-ONT[5] provides key requirements for modeling con-
text in a smart meeting application. It defines concepts and
relations of physical locations, time, people, software agents,
mobile devices, and meeting events. SOUPA[7] (Standard
Ontology for Ubiquitous and Pervasive Applications) uses
some other standard domain ontologies, such as FOAF4

(Friend of A Friend), OpenGIS, spatial relations in Open-
Cyc, ISO 8601 date and time formats5, and DAML time
ontology[16]. Clearly, these ontologies provide not only a
rich context representation, but also make use of the abili-
ties of reasoning and sharing knowledge.

2.3 Context reasoning
Design and implementation of context reasoning can vary
depending on types of contextual information that are in-
volved. Early context-aware systems[8, 25, 3] are tightly
coded logics of context reasoning into the behavior of sys-
tems. Implementation for understanding the contextual in-
formation is bound into the programs. Therefore, developed
applications often have rigid implementations and are diffi-
cult to maintain.

1http://www.mindswap.org/2004/geo/geoStuff.shtml
2http://tools.ietf.org/html/rfc2445
3http://calendar.google.com
4http://xmlns.com/foaf/spec/
5http://www.w3.org/TR/NOTE-datetime

Rule-based logical inference can help to develop flexible context-
aware systems by separating high-level context reasoning
from low-level system behaviors. However, context modeling
languages are used to represent contextual information and
the rule languages are used to enable context reasoning. Ac-
cordingly, in most cases, these two types of languages have
different syntax and semantic representations; it is a chal-
lenge that effectively integrates these distinctive languages
to support context-aware systems. A mechanism to con-
vert between contextual modeling and reasoning languages
is one of solutions for this challenge. Gandon and Sadeh[11,
12] propose e-Wallet that implements ontologies as context
repositories and uses a rule engine Jess[10] to invoke the cor-
responding access control rules. The e-Wallet using RDF6

triples to represent contextual information and OWL7 to de-
fine context ontology. Contextual information is loaded into
the e-Wallet by using a set of XSLT8 stylesheets to translate
OWL input files into Jess assertions and rules.

Ontology models can represent contextual information and
specify concepts, subconcepts, relations, properties, and facts
in a smart space. Moreover, ontologies reasoning can use
these relations to infer the facts that are not explicitly stated
in the knowledge base. Ranganathanet al.[20] propose that
ontologies can make it easier to develop programs for reason-
ing about context. Chen[4] proposes that the OWL language
can provide a uniformed solution for context representation
and reasoning, knowledge sharing, and meta-language def-
initions. Anagnostopoulos et al.[2] adopt the Description
Logicas the most useful language for expressing and reason-
ing contextual knowledge. The OWL DL was designed to
support the existing Description Logic business segment and
has desirable computational properties for reasoning sys-
tems. Typical ontology-based context-aware application is
EasyMeeting that uses OWL to define the SOUPA ontology
and OWL DL to support context reasoning. Gu et al.[14,
22] propose an OWL encoded context ontology CONON in
Service Orientated Context Aware Middleware (SOCAM).
CONON consists two layers of ontologies, an upper ontol-
ogy that focuses on capturing general concepts and a do-
main specific ontology. EasyMeeting and SOCAM are use
an OWL DL reasoning engine to check the consistency of
contextual information and provide further reasoning over
low-level context to derive high-level context.

3. SYSTEM ARCHITECTURE
Figure 1 shows our Context-aware System Architecture, which
can continuously proceeds changing contexts and proactively
provides services to the user. The top part of Figure 1 de-
picts a smart space environment, which equipped with de-
vices and applications, such as personal calendar, weather
forecasts, location tracking system, contact list, and shop-
ping list, as well as raw sensing data, can provide contex-
tual information and deliver context-aware services. The
Context Collection Agents obtain raw sensing data from the
context sources and convert the raw context into a semantic
representation. Each Context Collection Agent will deliver
the sensed contextual information to the Context Manage-
ment after receiving sensing data.

6http://www.w3.org/TR/rdf-concepts/
7http://www.w3.org/TR/owl-features/
8http://www.w3.org/TR/xslt

16

Figure 1: A Multi-agent System Architecture

The lower part of Figure 1 illustrates our context-aware sys-
tem architecture, which consists of three components: Con-
text Management, Context Knowledge Base, and Service Ar-
rangement. Functions of Context Management are monitor-
ing the contextual information and managing the environ-
mental resources. Contextual information, domain knowl-
edge, and service profiles are stored in Context Knowledge
Base. Service Arrangement performs service discovery, com-
position, and execution. After assign the specified services,
the system will invoke Service Applications to provide ser-
vice in the smart space environment.

4. CONTEXT-AWARE AGENTS
Agents in Figure 1 accomplish the functions of managing
contextual information and delivering context-aware services.
Functions of Context Management include gathers contexts
from the surrounding environment, provides methods for
querying and storing the contextual information, and pro-
vides the context in an ontology-based representation that
facilities knowledge representation and inference. Service
Arrangement checks whether any service operation can match
the request under the current situation. If no operation
matches the request, it combines operations to match the
request.

4.1 Context Aggregator
Context Aggregator collects contextual information from Con-
text Collection Agents and stores the context to the Context
Repository for context inference, consistency checking, and
knowledge sharing. There are two types of input context, the
raw context and the high-level context. Raw context refers
to the sensing data which directly obtained from context
sources. For example, bed sensors can provide lay-on-bed
sensing and weather forecast API can provide forecasting
information. Context Aggregator subscribes to the speci-
fied Context Collection Agents for retrieving the contextual
information, which define in the context ontology. Conse-
quently, Context Collection Agents are the providers of low-
level contexts while the high-level contexts are derived from
the Ontology Agent and Inference Agent.

4.2 Ontology Agent

Ontology Agent loads and parses an OWL context ontology
into RDF triples, which makes other agents able to represent
and share context in the system. Context Aggregator sends
the current state of contexts to Ontology Agent while the
subscribed context changed. The other agents can send their
queries to Ontology Agent for retrieving the updated knowl-
edge. According to the structures and relationships between
contexts that define in the context ontology, the Ontology
Agent performs the subsumption reasoning for deducing new
contextual information. For example, it can deduce the su-
perclasses of a specified class and decides whether one class
is subsumed by another, e.g., a building may spatially sub-
sume a room.

4.3 Inference Agent
Inference Agent adopts an OWL DL reasoning engine for
supporting context reasoning and conflict detection. When
Inference Agent receives contextual information from Ontol-
ogy Agent, the reasoning engine will fire rules and trigger
actions that may deduce new high-level contexts and de-
rive service requests. Combining the inferred contexts with
the original context ontology, Inference Agent can detect
the context inconsistency. Either new high-level contexts or
service requests can be derived from Inference Agent and
deliver to Context Aggregator or Service Discovery Agent,
respectively.

4.4 Service Discovery Agent
Service Discovery Agent maintains the service ontology. An
OWL-S9 file defines the service ontology, which includes
three essential types of knowledge about a service: service
profile, process model, and service grounding. The OWL-S
service profile illustrates the preconditions required by the
service and the expected effects that result from the exe-
cution of the service. A process model describes how ser-
vices interact and how the functionalities offer, which can
be exploited to solve the goals. The role of service ground-
ing is to provide concrete details of message formats and
protocols. According to the description in service ontology,
Service Discovery Agent keeps the atomic services informa-
tion. When the Service Discovery Agent receives a service
request, it checks whether any single service satisfies the re-
quirement under the current situation. If an atomic service
can accomplish the request, the associated service grounding
information will be delivered to the Service Delivery Agent.

4.5 Service Composition Agent
If a service request cannot be achieved by a single service,
Service Composition Agent will compose atomic services to
fulfill the request. The service profile of a service ontology
defines the service goals, preconditions, and effects. Accord-
ing to these semantic annotations, AI planning has been
investigated for composing services. The state transition
is defined by the operations, which consist of preconditions
and effects. Initial states of the AI planner are combined the
current contexts and context ontology. The service request
is the planning goal. Therefore, giving initial states, goals,
and operations, Service Composition Agent will derive a ser-
vice execution plan, which is a sequence of operations that
starts from initial states and accomplishes the given goal.

9http://www.w3.org/Submission/OWL-S/

17

4.6 Service Delivery agent
Service ontology defines the information for service ground-
ing, which specifies the details of how an agent can access a
service. According to the description of service grounding,
Service Delivery Agent invokes the specified Service Appli-
cation with the required protocol and message contents.

5. CONTEXT ONTOLOGY MODEL
Context-aware applications need a unified context model
that is flexible, extendible, and expressive to adapt the va-
riety of context features and dependency relations. The on-
tology models can fulfill these requirements; therefore, we
deploy an ontology context model to represent contextual
information in smart space environment. The ontology is
inspired by the need to share knowledge about locations,
time, and activities so that context-aware applications can
infer the environmental contexts and trigger services.

5.1 Context Repository
Context Repository stores a set of consistent context, which
including location, person, and activity information. Ei-
ther raw or high-level context has a unique type identity
and value. The associated value is the timestamp represents
when the corresponding context is arrived. Context ontology
defines the classes of contexts and the relationships between
the instances of context objects. A RDF-triple represents a
context that contains a subject, a predicate, and an object.
Subject is a resource named by a URI with an optional an-
chor identity. The predicate is a property of the resource,
and the object is the value of the property for the resource.
For example, the following triple represents “Peter is sleep-
ing”.

<http://...#Peter>

<http://...#participatesIn>

<http://...#sleeping>

Where Peter represents subject, participatesIn is a predi-
cate, and the activity sleeping is an object. We use subject
and predicate as the compound key of Context Repository.
When a context has been updated, the associated timestamp
will be changed accordingly.

5.2 Ontologies
An ontology is a data model that represents a domain and
is used to reason about the objects in that domain and their
relations. We define a context ontology depicts in Figure 2
as a representation of common concepts about the smart
space environment. Context information are collected from
real-world classes (Person, Location, Sensor, Time, HomeEn-
tity), and a conceptual class Activity. The class hierarchy
represents an is-a relation; an arrow points from a subclass
to another superclass. A class can have subclasses that rep-
resent the concepts more specific than their superclass. For
example, we can divide the classes of all locations into indoor
and outdoor locations, that is, Indoor Location and Outdoor
Location are two disjoint classes and both of them belong to
Location class. In addition, the subclass relation is transi-
tive, therefore, the Livingroom is a subclass of Location class
because Livingroom is a subclass of Indoor and Indoor is a
subclass of Location.

Figure 2: A Context Ontology

The relationship between classes is illustrated in Figure 3.
The solid arrows describe relation between subject resources
and object resources. For example, isLocatedIn describes the
relation between the instances of Person and Location while
the instances of Person is the subject resources and instances
of Location is the object resources.

Figure 3: Context Relationship

A service ontology defined by OWL-S is for describing avail-
able services that comprises service profile, service model,
and service grounding.

5.3 Rules
Rules of a rule-based system serve as IF-THEN statements.
Context rules can be triggered to infer high-level context.
According to the description of Figure 3, a rule for detecting
the location of a user is showed as follows:

[Person_Location:

(?person isIdentifiedBy ?tag)

(?tag isMoveTo ?room)

->

(?person isLocatedIn ?room)

]

18

Patterns before -> are the conditions, matched by a specific
rule, called left hand side (LHS) of the rule. On the other
hand, patterns after the -> are the statements that may be
fired, called right hand side (RHS) of the rule. If all the
LHS conditions are matched, the actions of RHS will be
executed. The RHS statement can be either asserted new
high-level contexts or delivered a service request.

Rule Person_Location is an example that can deduce high-
level context. The ?person is an instance of class Person,
?tag is an instance of MovableSensor, and ?room is an in-
stance of Room, the rule Person_Location declares that if
any person ?person is identified by a movable sensor ?tag

and this movable sensor is move to a room ?room, we can
deduce that ?person is located in ?room.

6. CONTEXT MANAGEMENT AND REA-
SONING MECHANISM

In order to make our research easier to understand, we use a
simple example to describe the detail mechanism of context
management and reasoning.

In a smart space, a Smart Alarm Clock can check
Peter’s schedule and automatically set the wake-
up alarm for helping him not miss his daily first
task. If Peter does not wake up within 5-minute
period after the alarm is sent, send another sound
of alarm and increases its volume. If Peter wake
up earlier then the alarm time, the alarm will be
disabled.

6.1 Context Reasoning
In order to archive Smart Alarm Clock, we have to collect Pe-
ter’s schedule to decide the alarm time and should reasoning
whether Peter is awake or not. Google Calendar Data API10

can support the information of Peter’s calendar events. The
position-aware sensors, bed pressure sensors, etc. can help
to detect whether user on the bed or not. For example,
RFID technologiescan be used to recognize and identify the
activities of Peter. Using a wireless-based indoor location
tracking system can determine Peter’s location with room-
level precision.

Figure 4 shows the instance relationships for detecting whether
Peter is currently sleeping or not. The word within an oval
represents a class and the box represents an instance of the
corresponding class. For example, bed is an instance of
Furniture class. Dashed line indicates the connection of a
class and its instance. Each solid arrow reflects the direc-
tion of object property relationship that directs from domain
to range. In addition, an inverse property can be declared
while reverse the direction of a line. For example, the inverse
object property of isAttachedTo is hasSensor.

A boolean data type property isOn is associated with Sensor
class for detecting whether the value of instances is on or off.
If someone is on the bed, value of the sensor bed sensor will
be on, that is, the value of isOn is true. Otherwise, when
nobody touches the bed, the value of isOn has to be false.
When an event of wake-up call has been triggered, a rule

10http://code.google.com/apis/calendar/

Figure 4: A Context Snapshot

for detecting the value of bed sensor can be used to decide
whether it is necessary to deliver the alarm service or not.

For reasoning high-level contexts, we apply rule-based rea-
soning with horn clauses into the ontology model. The
rule Person_activity can deduce what’s the activity the
user currently involved. For example, in Figure 4, when
the time is up, given the location of Peter and the status
of bed sensor, the rule Person_activity will be triggered
and can deduce whether Peter is sleeping or not. The rule
Invoke_service can deduce what’s the service for deliver-
ing to the user. Given the instances of Figure 4, the rule
Invoke_service reflects “if Peter is sleeping, deliver smart
alarm service”.

[Person_activity:

(?person touch ?entity)

(?entity hasSensor ?sensor)

(?sensor providesInfoOf ?activity)

->

(?person participatesIn ?activity)]

[Invoke_service:

(?person participatesIn ?activity)

(?activity invokes ?service)

->

(?service isProvidedTo ?person)]

6.2 Context Management
Changes of environmental contexts are transient in the sense
of that any context may appear and vanish at anytime. Al-
gorithm 1 shows how the Context Aggregator manages the
contextual information.

We use RDF-triple to represent a context while an associ-
ated compound key comprises the subject and object. When
a new context is arrived, Context Aggregator uses the key
of new context to query Context Repository. If a context
exists in Context Repository and the associated predicate
represents one-to-one relationship, the new context will re-
place the old one. Otherwise, the new context will be in-
serted into Context Repository. Functions update(keyc, c)
and insert(keyc, c) perform the context replacement and in-
sertion, respectively. When a context is vanished, it should

19

Algorithm 1 Maintaining Context Repository

1: Input: c is the new context
2: C: Context Repository
3: rdfi: RDF-triple (si, pi, oi) of a context i
4: keyi: key of context i in Context Repository
5: for all i ∈ C do
6: if isOutdated(i) then
7: delete(i)
8: end if
9: end for

10: if ∃i ∈ C s.t. keyi = keyc and isOne2One(pc) then
11: update(keyc, c)
12: else
13: insert(keyc, c)
14: end if

be removed. function delete(i) can remove the specified con-
text from Context Repository. We use a decay function to
determine the existence of a context. Different context is
associated with a different decay function. This function
can either be an objective function for predicating a speci-
fied activity or simply be a constant function. The function
isOutdated(i) apply the context decay function to decide
whether the context is existed or not.

6.3 Inconsistency Resolution
The Context Repository is dynamically updated for reflect-
ing the change of context. Therefore, we must ensure incor-
rect or outdated contexts are not existed in Context Repos-
itory. If a raw context is changed, some of the inferred high-
level contexts may be changed. For example, if Peter walks
from living room to bedroom, the corresponding RDF-triple
will be changed from <Peter isLocatedIn living_room>

to <Peter isLocatedIn bedroom>. Context Aggregator will
update the location context of Peter because the property
isLocatedIn is one-to-one relationship. If a predicate allow
multiple relationships, the original context will be reserved.

It is a challenge that when a raw context is changed, we
need to updated the associated high-level contexts. How-
ever, it is hard to find the corresponding high-level contexts
by using the context dependency of inference rules. Updat-
ing a context may easily trigger the infinite context depen-
dency checking and can lead to unpredictable situations. We
categorize the data in Context Repository to three types:
core knowledge, raw-level context, and high-level context.
The OWL ontologies define the contents of core knowledge
that are static and persistent. The raw-level context is the
raw sensing data that delivers from the Context Collection
Agents in Figure 1. Using the core knowledge and raw-level
context, a rule-based reasoning can deduce high-level con-
texts. When a raw context has been removed, we discard the
original set of high-level context and perform context rea-
soning. Clearly, the deduced high-level contexts are consis-
tent with the current raw contexts and the Context Reposi-
tory can maintain the context consistency. This approach is
simple, but can efficiently resolve the context inconsistency
without recursively check the context dependency.

7. IMPLEMENTATION

Our agent is deployed on JADE11 (Java Agent DEvelopment
Framework), which is a FIPA-compliant software framework
for multi-agent systems, implemented in Java and comprised
several agents. Jena12 is a Java framework for building Se-
mantic Web applications, is used for providing a program-
matic environment for RDF, RDFS, and OWL. Moreover,
we use an open-source OWL Description Logics (OWL DL)
reasoner Pellet13 that developed by Mindswap Lab at Uni-
versity of Maryland, to infer high-level contexts and detect
context conflicts.

8. CONCLUSION AND FUTURE WORK
This research presents a context management mechanism
in a smart space. We integrate context-aware technologies,
semantic web, and logical reasoning for providing context-
aware services. An ontology-based model supports reasoning
mechanism, which can deduce high-level contexts and detect
context consistency.

We use a simple scenario to demonstrate the mechanism
of context management. However, this simple case does
not show the power of context reasoning. Therefore, design
other scenarios that can explain and evaluate our approach
is one of our future direction.

9. REFERENCES
[1] G. D. Abowd, C. G. Atkeson, A. F. Bobick, I. A. Essa,

B. MacIntyre, E. D. Mynatt, and T. E. Starner. Living
laboratories: the future computing environments
group at the georgia institute of technology. In
Proceedings of Conference on Human Factors in
Computing Systems (CHI ’00): extended abstracts on
Human factors in computing systems, pages 215–216,
New York, NY, USA, 2000. ACM Press.

[2] C. B. Anagnostopoulos, A. Tsounis, and
S. Hadjiefthymiades. Context awareness in mobile
computing environments. Wireless Personal
Communications: An International Journal,
42(3):445–464, 2007.

[3] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:
Context-aware reflective mIddleware system for mobile
applications. IEEE Transactions on Software
Engineering, 29(10):929 – 945, 2003.

[4] H. Chen. An Intelligent Broker Architecture for
Pervasive Context-Aware Systems. PhD thesis,
University of Maryland, Baltimore County, 2004.

[5] H. Chen, T. Finin, and A. Joshi. An ontology for
context-aware pervasive computing environments. The
Knowledge Engineering Review, 18(3):197–207,
September 2003.

[6] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and
D. Chakraborty. Intelligent agents meet the semantic
web in smart spaces. IEEE Internet Computing,
8(6):69–79, November – December 2004.

[7] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA:
Standard ontology for ubiquitous and pervasive
applications. In The First Annual International
Conference on Mobile and Ubiquitous Systems:

11http://jade.tilab.com/
12http://jena.sourceforge.net/
13http://pellet.owldl.com/

20

Networking and Services (MobiQuitous’04), pages
258–267, August 2004.

[8] M. H. Coen. Building brains for rooms: designing
distributed software agents. In Proceedings of the
Conference on Innovative Applications of Artificial
Intelligence (IAAI’97), pages 971–977. AAAI Press,
1997.

[9] A. K. Dey. Providing architectural support for building
context-aware applications. PhD thesis, Georgia
Institute of Technology, 2000. Director-Gregory D.
Abowd.

[10] E. Friedman-Hill. Jess in Action: Java Rule-Based
Systems. Manning Publications, Greenwich, CT, USA,
2003.

[11] F. L. Gandon and N. M. Sadeh. A semantic e-wallet
to reconcile privacy and context awareness. Lecture
Notes in Computer Science: The SemanticWeb
(ISWC 2003), 2870:385–401, October 2003.

[12] F. L. Gandon and N. M. Sadeh. Semantic web
technologies to reconcile privacy and context
awareness. Journal of Web Semantics, 1(3):241–260,
2004.

[13] T. R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition,
5(2):199–220, June 1993. Special issue: Current issues
in knowledge modeling.

[14] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An
ontology-based context model in intelligent
environments. In Proceedings of Communication
Networks and Distributed Systems Modeling and
Simulation Conference, pages 270–275, 2004.

[15] A. Harter, A. Hopper, P. Steggles, A. Ward, and
P. Webster. The anatomy of a context-aware
application. Wireless Networks, 8(2 – 3):187 – 197,
March – May 2002.

[16] J. R. Hobbs and F. Pan. An ontology of time for the
semantic web. ACM Transactions on Asian Language
Information Processing (TALIP), 3(1):66–85, 2004.
Special Issue on Temporal Information Processing.

[17] S. S. Intille. Designing a home of the future. IEEE
Pervasive Computing, 1(2):76–82, April 2002.

[18] S. Long, D. Aust, G. Abowd, and C. Atkeson.
Cyberguide: prototyping context-aware mobile
applications. In Conference companion on Human
factors in computing systems (CHI ’96), pages 293 –
294, Vancouver, British Columbia, Canada, April 13 –
18 1996. ACM Press.

[19] G. Look and H. Shrobe. A plan-based mission control
center for autonomous vehicles. In IUI ’04:
Proceedings of the 9th international conference on
Intelligent user interfaces, pages 277–279, New York,
NY, USA, 2004. ACM Press.

[20] A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell.
Reasoning about uncertain contexts in pervasive
computing environments. IEEE Pervasive Computing,
3(2):62–70, 2004.

[21] T. Strang and C. Linnhoff-popien. A context modeling
survey. In Workshop on Advanced Context Modelling,
Reasoning and Management at The Sixth
International Conference on Ubiquitous Computing
(UbiComp 2004), Nottingham, England, 2004.

[22] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung.

Ontology based context modeling and reasoning using
OWL. In Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and
Communications Workshops (PERCOMW ’04),
page 18, Washington, DC, USA, 2004. IEEE
Computer Society.

[23] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The
active badge location system. ACM Transactions on
Information Systems (TOIS), 10(1):91–102, January
1992.

[24] R. Want, B. N. Schilit, N. I. Adams, R. Gold,
K. Petersen, D. Goldberg, J. R. Ellis, and M. Weiser.
An overview of the PARCTAB ubiquitous computing
experiment. Personal Communications, 2(6):28 – 43,
December 1995.

[25] H. Wu, M. Siegel, and S. Ablay. Sensor fusion for
context understanding. In Proceedings of IEEE
Instrumentation and Measurement Technology
Conference, Anchorage, AK, USA, May 21 – 23 2002.

[26] J. Ye, L. Coyle, S. Dobson, and P. Nixon. A unified
semantics space model. In J. Hightower, B. Schiele,
and T. Strang, editors, Proceedings of the 3rd
International Symposium on location- and
Context-Awareness (LoCA 2007), volume 4718 of
Lecture Notes in Computer Science, pages 103–120,
September 2007.

21

Agent-Based Support for Context-Aware Provisioning of
IMS-Enabled Ubiquitous Services

Ana Petric
University of Zagreb
Faculty of Electrical

Engineering and Computing
Unska 3, Zagreb, Croatia

ana.petric@fer.hr

Krunoslav Trzec
Ericsson Nikola Tesla

Krapinska 45, Zagreb, Croatia
krunoslav.trzec@

ericsson.com

Kresimir Jurasovic
University of Zagreb
Faculty of Electrical

Engineering and Computing
Unska 3, Zagreb, Croatia

kresimir.jurasovic@fer.hr
Vedran Podobnik
University of Zagreb
Faculty of Electrical

Engineering and Computing
Unska 3, Zagreb, Croatia

vedran.podobnik@fer.hr

Gordan Jezic
University of Zagreb
Faculty of Electrical

Engineering and Computing
Unska 3, Zagreb, Croatia
gordan.jezic@fer.hr

Mario Kusek
University of Zagreb
Faculty of Electrical

Engineering and Computing
Unska 3, Zagreb, Croatia
mario.kusek@fer.hr

ABSTRACT
Multimedia applications executed on mobile devices allow
users to be present and communicate with other users, any-
where and anytime, through wide area cellular networks,
wireless local area networks (WLAN), or fixed networks. In
order to enable ubiquitous personalized services, communi-
cation systems should allow users to specify their context,
or their mobile devices and network infrastructures should
automatically sense their context and offer enhanced ser-
vice provisioning solutions. In this paper, we propose an
agent-based solution that supports context-aware provision-
ing of IP multimedia subsystem (IMS)-enabled ubiquitous
services. Using agent technology, multimedia communica-
tion, controlled by SIP and enriched with context-related
events delivered by SIP’s event mechanism, can be seam-
lessly provisioned, taking into account not only mobility is-
sues and context-awareness, but also the semantics of ex-
changed events. This paper proposes a multi-agent system
that will enable users to consume context-aware ubiquitous
services in a seamless (i.e., automated) way, providing opti-
mal provisioning of SIP-based multimedia services according
to user preferences.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific Archi-
tectures; H.3.4 [Systems and Software]: Distributed sys-
tems; I.2.11 [Distributed Artificial Intelligence]: Intel-
ligent Agents, Multiagent Systems

General Terms
Management, Performance, Design
Cite as: Agent-Based Support for Context-Aware Provisioning of
IMS-Enabled Ubiquitous Services, Ana Petric, Krunoslav Trzec, Kresimir
Jurasovic, Vedran Podobnik, Gordan Jezic, Mario Kusek and Igor Ljubi,
Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
context-aware service provisioning, IMS-enabled services, ses-
sion mobility, multi-agent system

1. INTRODUCTION
The advent of the Internet and the development of the

Next Generation Network (NGN) is enabling a lifestyle as-
piring to digital humanism where people’s daily activities
are becoming more digitalized, convenient and intelligent
[20]. Actors on telecom markets are pursuing innovations
and launching new value-added services (VAS) [4] in order
to increase revenue. This new market demand and techno-
logical development has led to the convergence of different
domains (i.e., telecommunications, information technology
(IT), the Internet, broadcasting and media), all involved
in the telecom service provisioning process. The ability to
transfer information embodied in different media into digital
form to be deployed across multiple technologies is consid-
ered to be the most fundamental enabler of convergence [8].

The evolved network should aim at taking changing cus-
tomer demands into account and creating spontaneous, adap-
tive services that can be delivered anytime, anywhere, to any
device the user prefers. Therefore, the realization of the full
potential of convergence will make it necessary for opera-
tors to deploy a dynamic, cooperative and business-aware
consistent knowledge layer in the network architecture in
order to enable ubiquitous personalized services. Provid-
ing such context-aware services transparently to the user is
not only challenging from a network point of view, but also
places severe requirements on service provisioning. This is
particularly true when the service is to be accessed across
several administrative domains, i.e., in a multi-provider en-
vironment.

The number of telecom value-added service consumers
is rising continuously. Moreover, the competition among
stakeholders in the telecom market, as well as the NGN con-
cept which introduces a whole new spectrum of services, en-
ables consumers to be very picky. Consequently, realization
of the full potential of the NGN will make it necessary for
service providers to offer dynamic, ubiquitous and context-

22

aware personalized services. Moreover, a large part of NGN
services will provide multimedia sessions which will be com-
posed of different audio and/or video communications with a
certain quality of service (QoS) [6]. Providing such services
to consumers transparently is challenging from the technical,
business and social points of view.

The rest of the paper is structured as follows. Section
2 addresses the position of our multi-agent system in the
telecommunications environment it is placed in. Further-
more, it gives an overview of the main technological founda-
tions used in our proof-of-concept prototype which enables
advanced service provisioning options in the NGN. Section
3 describes the architecture and the main features of our
multi-agent system, while Section 4 presents the agent-based
personalized session mobility service. Section 5 concludes
the paper and gives an outline for future work.

2. TECHNOLOGICAL FOUNDATIONS
Our proof-of-concept prototype is placed in a telecommu-

nications environment and it is based on the following tech-
nological foundations presented in this section: the IP Mul-
timedia System (IMS), the Session Initiation Protocol (SIP),
the Java Agent DEvelopment (JADE) framework, the Java
Expert System Shell (JESS) and Asterisk. In the designed
multi-agent system, intelligent software agents use different
technologies (e.g., IMS, JADE, JESS, Asterisk) to enable
personalized service provisioning, automated coordination
of network operator’s operations and automated interaction
between all entities in an NGN environment.

2.1 Telecommunications Environment
Today we are witnessing the fusion of the Internet and

mobile networks into a single, but extremely prominent and
globally ubiquitous, technology: the Network [15]. The Net-
work will enable the transformation of physical spaces into
computationally active and intelligent environments [19], char-
acterized by ambient intelligence where devices embedded in
the environment provide seamless connectivity and services
at all times. The vision of the Network is becoming a real-
ity with the new generation of communication systems: the
NGN [12].

One of the fundamental principals in the NGN is the sep-
aration of services from transport [1]. This separation repre-
sents a horizontal relationship in the NGN where the trans-
port stratum and the service stratum can be distinguished.
The transport stratum encompasses the technical processes
that enable three types of connectivity: user-to-user, user-
to-service platform and service platform-to-service platform
connectivity. On the other hand, the service stratum is com-
prised of business processes that enable (advanced) telecom
service provisioning assuming that the earlier stated types of
connectivity already exist. Each stratum can have multiple
layers, representing vertical relationships, where each layer
can be distinguished into a data (or user) plane, a control
plane and a management plane. In our model, we intro-
duce intelligent agents into the control plane and the man-
agement plane of the service stratum. These agents are in
charge of gathering context information that is required for
service personalization (i.e., service management) and facil-
itating personalized application-level mobility (i.e., service
control).

2.2 IP Multimedia System

The first step in seamless provisioning of personalized
ubiquities services is enabled by deployment of the IP Multi-
media System (IMS) with the aim of offering IP-based real-
time multimedia services. IMS enables the convergence of
mobile and wireline networks into a single unified infrastruc-
ture in all its forms by supporting services independent of
access. It has a layered structure comprised of 1) a service
layer, 2) a control layer, and 3) a connectivity layer. The ser-
vice layer consists of application and content servers which
execute value-added services for a user. The control layer
is composed of network control servers for managing call or
session set-up, modification and release. The most impor-
tant is the Call Session Control Function (CSCF). This layer
also contains a full suite of support functions, such as provi-
sioning, charging and operations and maintenance (O&M).
Interworking with other operators’ networks and/or other
types of networks is handled by border gateways. The con-
nectivity layer is comprised of routers and switches, both
for the backbone and for the access network. IMS takes the
concept of layered architecture one step further by defining a
horizontal architecture where service enablers and common
functions can be reused for multiple applications.

With IMS, user personal services are achieved via a dy-
namically associated, user-centric, service independent and
standardized access point, the CSCF. The service architec-
ture is user-centric and is highly scalable. However, IMS
does not have a common framework for context-awareness
across all functions in the control layer in order to auto-
matically adapt service availability and delivery to heteroge-
neous networks and dynamically changing environments. In
order to enable seamless provisioning of personalized ubiq-
uities services in a converged telecom network, we propose
an agent-based common framework for context- awareness.

2.3 Session Initiation Protocol
By applying SIP for call/session control in the mobile In-

ternet, personalized ubiquitous services can incorporate all
types of media, from continuous media to application shar-
ing. Besides support for multimedia information, SIP en-
ables seamless integration of user devices such as 3G mobile
phones and laptops. Moreover, SIP enables integration of
devices with resources embedded in the users environment,
such as video projectors, video cameras, and loudspeakers.
Active multimedia sessions can be moved from one device
to another or can be split across devices [16, 2].

In addition to mobility support, SIP enables deployment
of context-aware services by utilizing its event mechanism
extension which scales to a large number of users spread
across different administrative domains. SIP event mecha-
nism can be used for exchange of context-related information
such as a user’s current location, device capabilities, network
characteristics, a user’s interests, presence, time of day, etc.
It is important that the exchange of context information is
as privacy-conscious as possible (i.e., users should control
the which part of their context information is revealed to
others). Furthermore, wherever possible, context-aware ser-
vices should take advantage of user defined policies, rather
than requiring direct user interaction. For example, policies
can be triggered dynamically by presence and location in-
formation. By using agent technology and SIP, multimedia
communication can be seamlessly provisioned, taking into
account not only mobility issues and context-awareness, but

23

also the semantics of exchanged events. This can be accom-
plished through the introduction of formally (i.e., ontology-
based) described metadata representing SIP events which
enables intelligent agents to understand context information
and dynamically trigger provisioning operations. Therefore,
we propose building intelligent agents (Personal Assistants)
that will enable users to consume context-aware ubiquitous
services in a seamless way, providing enhanced provisioning
of SIP-based multimedia services according to user prefer-
ences.

2.4 Java Agent DEvelopment Framework
The proposed multi-agent system was implemented using

the Java Agent DEvelopment (JADE1) framework. JADE
is a software framework used for developing agent-based ap-
plications in compliance with the Foundation for Intelligent
Physical Agents (FIPA2) specifications. These specifications
define standard agent interaction protocols and other key as-
pects of a multi-agent system allowing interaction between
different agent platforms and software components.

JADE agents are identified by a unique name (Agent IDen-
tifier - AID). Assuming that the agents know each oth-
ers names, they can communicate transparently regardless
of their actual location. Communication is performed us-
ing Agent Communication Language (ACL) messages which
agents exchange between themselves. The architecture is
based on two agents that are initiated each time the platform
is started - the Agent Management Service (AMS) agent and
the Directory Facilitator (DF) agent. The AMS agent ex-
erts supervisory control over access and use of the platform.
The DF agent provides a Yellow Pages service which en-
ables agents to find other agents providing the services they
requires in order to achieve their goals. The third compo-
nent of the platform is the Agent Communication Chan-
nel (ACC). The ACC is a Message Transport System that
controls the exchange of all messages within the platform,
including messages to/from remote platforms.

2.5 Java Expert System Shell
Rule-based programming is appropriate for problems that

are difficult to solve using traditional algorithmic methods
[9]. Consequently, it has to be executed by a of run-time
system that understands how to control its flow and how to
use declarative information to solve problems. A rule-based
program does not consist of one long sequence of instruc-
tions; instead, it is made up of discrete rules, each of which
applies to a subset of the problem. A rule engine determines
which rules apply at any given time and executes them ac-
cordingly.

Our service provisioning solution has adopted the Java
Expert System Shell (JESS)3 as both a rule engine and a
scripting language for the specification of rules. JESS was
developed at Sandia National Laboratories in Livermore,
California in late 1990s [9]. Using Jess, Java software can be
built with the capacity to “reason” using knowledge that the
programmer supplies in the form of declarative rules. JESS
rules are very similar to ’if-then’ statements in traditional
programming languages. The rule-based system uses rules
to reach conclusions from a set of premises. A JESS rule-
based system consists of a working memory, an inference

1http://jade.tilab.com
2http://www.fipa.org
3http://herzberg.ca.sandia.gov/jess/

engine and a rule base. The rule base contains all the rules
that the system knows, while the working memory contains
all the facts that the system works with. The inference en-
gine has three components: a pattern matcher, an agenda
and an execution engine. The pattern matcher decides which
rules should be activated during the current cycle by com-
paring all of them with the facts currently present in the
working memory. This list of rules is then stored in the
agenda. The execution engine executes the first rule from
the list, along with adding removing or modifying existing
facts in the working memory if necessary. The entire process
is then repeated.

2.6 Asterisk
Asterisk4 is an open source telephony engine and toolkit.

It was originally created in 1999 and it represents an imple-
mentation of a telephone Private Branch eXchange (PBX5).
Telephones connected to Asterisk can access the Public
Switched Telephone Network (PSTN) and Voice over Inter-
net Protocol (VoIP) services. It provides SIP and PSTN-
based phones with call and session functionalities. Every
SIP phone can register through it and can use it to call
other SIP and PSTN phones. Asterisk also provides han-
dlers for defining presence and session information since it
can send event messages to components in the system when
such events occur. In this paper, we consider the following
two compliant Asterisk interfaces which we use in our pro-
totype: The Asterisk Management Interface (AMI) which
allows our multi-agent system to control and monitor the
Asterisk system; and the Asterisk Gateway Interface (AGI)
which allows our multi-agent system to control the Asterisk
dial plan.

3. A-STORM MULTI-AGENT SYSTEM
The Agent-based Service and Telecom Operations Man-

agement (A-STORM) multi-agent system is part of the pro-
totype that deals with agent-based service provisioning. The
prototype has been developed in order to explore the possi-
bilities of implementing ontology-based user
profiling/clustering, context-aware service personalization
and rule-based software deployment in the 3G mobile net-
work. Figure 1 shows the implemented multi-agent system
in the proof-of-concept prototype.

The Business Manager Agent and the Provisioning Man-
ager Agent belong to the group of business-driven provision-
ing agents whose task is to perform provisioning operations
according to business strategies defined in a rule-based sys-
tem. These strategies take into account business related
information (such as user categories, service tariffs, season
period, location of service execution, type of service content,
business-to-business (B2B) relationships, etc.).

The Deployment Coordinator Agent and Remote Mainte-
nance Shell agents can be categorized as service deployment
agents that provide end-to-end solutions for efficient service
deployment by enabling software deployment and mainte-
nance at remote systems. Moreover, they provide so-called
software component mobility (i.e., software components can
seamlessly be relocated from one network node to another).

The Charging Manager Agent, Group Manager Agent,
Session Manager Agent and Preference Manager Agent form

4http://www.asterisk.org
5http://en.wikipedia.org/wiki/Asterisk (PBX)

24

Figure 1: A-STORM proof-of-concept prototype architecture

a group of context management agents. They gather con-
text information from network nodes and terminals (e.g.,
trigger events in SIP/PSTN call model, balance status, ter-
minal location) and enable user personalization through the
execution of context-dependent personal rules.

The Business Manager Agent, Charging Manager Agent,
Provisioning Manager Agent, Deployment Coordinator Agent
and Remote Management Shell Agents’ tasks are beyond
the scope of this paper. For a more detailed description
of these agents and their functionalities can be found in [14,
18, 5, 7, 10, 13]. Their features are prerequisites for context-
aware provisioning of IMS-enabled ubiquitous services. Two
agents (the Preference Manager Agent (PMA) and the Ses-
sion Manager Agent (SMA)) discussed later in this paper
are incorporated in the prototype in order to facilitate per-
sonalized application-level mobility features supported by
SIP. Furthermore, they provide semantic interoperability of
context information delivered by the SIP event mechanism.

The context information that is required for service per-
sonalization is managed by the PMA which follows per-
sonal rules specified by the user it represents. The personal
rules depend on context information (e.g., user location, ses-
sion/balance status, presence) gathered from network nodes

that are, for example, part of an Online Charging System6

or an IMS, enhanced with a location enabler and a media
gateway towards traditional PSTN terminals. Moreover, the
PMA handles the knowledge base which contains profiles of
user preferences and terminal capabilities, enabling service
personalization in different types of user devices. Each user
in the NGN should have its own PMA. The SMA is created
at the beginning of the session and is in charge of monitoring
the session in progress.

3.1 Agent-Based Support for Session Mobility
Device mobility in an all-IP mobile network is elegantly

enabled by the mobile IP protocol. However, in order to ex-
ploit the full power of mobility in the Mobile Internet, per-
sonal and session mobility also have to be addressed. Such
mobility can be enabled in the application level with SIP
support. In particular, personal (pre-call) mobility occurs
when a mobile user moves to another network prior to re-
ceiving or making a call. After the mobile user has obtained
a new IP address, it registers with a SIP server allowing in-
coming invitations to be re-directed to the mobile user’s cur-
rent location. Session (mid-call) mobility, on the other hand,

6http://www.ericsson.com/mobilityworld/sub/open/
technologies/charging solutions/tools/diameter charging sdk

25

occurs when the user changes a terminal, moves to another
network, or switches to another network interface during an
ongoing session. After the mobile user has obtained a new
IP address it re-invites the correspondent host in order to
re-establish communication. However, addressing personal
and session mobility in a dynamic heterogeneous environ-
ment, in which both resources and services vary in terms of
availability and configuration, is a real challenge.

3.2 SIP-Based Knowledge Exchange of Service
Context

Context-awareness refers to the ability to detect and incor-
porate information regarding the user, network conditions,
terminal capabilities, etc. The SIP event mechanism rep-
resents an elegant and scalable solution for the delivery of
all types of context information. This information can be
spread over different devices, can involve several pieces of
service logic, and may reside in several administrative do-
mains. However, the SIP event mechanism does not pro-
vide any application-level semantic description of the deliv-
ered events between distributed parties. We propose a solu-
tion for semantic interoperability by building an agent-based
knowledge exchange system that will enable the sharing and
unambiguous understanding of context-related information
through the use of ontologies.

The intelligent agents used in our prototype are equipped
with reasoning capabilities enabling them to understand in-
formation delivered to them by the SIP event mechanism.
Namely, they are able to understand ontology-based con-
text information by utilizing a description logic (DL)-based
reasoning engine. Consequently, there is a high degree of
automation in knowledge exchange between software agents
in the prototype. The agents (e.g., the GMA and the PMA)
use OWLS-MX [11], a hybrid semantic matching tool which
combines logic-based reasoning with approximate matching,
based on syntactic IR similarity computations. The GMA
uses this for semantic clustering of users, while the PMA
uses it for the discovery of eligible services according to user
preferences.

4. CASE STUDY
Figure 2 shows entities included in the case study de-

scribed in this section. All entities communicate with each
other by exchanging ACL or SIP messages.

The LocalNote service [3] can be described as a location-
triggered instant messaging service. It provides a mecha-
nism for sending short text messages whereby the sender
can specify the area in which the recipient must reside in or-
der to receive the message. The LocalNote Content Server
(LCS) is the core server of the LocalNote service and is used
to trigger redirection of the established SIP session. It con-
tacts the IMS enabler, known as the Location Enabler (LE),
which is used to obtain information regarding recipients’ po-
sitions. The PMA subscribes to a user’s location, while the
LE notifies the PMA when the user enters the area specified
in his subscription.

4.1 SIP Entities
In this subsection, we describe the SIP elements that are

used in our proof-of-concept prototype. Basic SIP elements
present in a typical SIP network are: User Agents, SIP
Proxy Servers, SIP Registrars and Redirect Servers. These

elements are often only logically separate entities that are
physically co-located.

User Agents are Internet end points that use SIP to find
each other and negotiate session characteristics. They usu-
ally reside on users’ computers in the form of applications,
but can also reside in mobile phones, PSTN gateways, PDAs
and so on. In our prototype, we consider two users: Alice
and Bob. Bob’s User Agent is on his office desktop PC,
while Alice has two User Agents: one on her mobile phone
and the other on her office PSTN phone.

SIP allows creation of an infrastructure of network hosts
called SIP Proxy Servers. They are important entities in the
SIP infrastructure because they perform routing of session
invitations according to invitee’s current location, authen-
tication, accounting and many other important functions.
The most important task of a Proxy Server is to route ses-
sion invitations “closer” to the callee.

Redirect Servers respond to a SIP request with an address
where the SIP message should be redirected. It maps a
destination address (in the SIP message) to one or more
addresses and returns the new address list to the originator
of the SIP request. The location of the intended recipient is
retrieved from the location database maintained by the SIP
Registrar.

The Registrar is a special SIP entity that receives reg-
istrations from users, extracts information regarding their
current location and stores this information in a location
database. The location database is then used by the Proxy
Servers. Due to their tight coupling with Proxy and Redirect
Servers, Registrars are usually co-located with them.

Proxy Servers are referred to as CSCFs [17]. We distin-
guish between Proxy CSCFs (P-CSCF), Serving CSCFs (S-
CSCF), and Interrogating CSCFs (I-CSCF). A P-CSCF rep-
resents the point of contact between the user terminal and
the rest of the network. A S-CSCF provides services to the
user while an I-CSCF’s role is to find the proper S-CSCF
for a particular user.

In our proof-of-concept prototype we used the Ericsson
Service Development Studio7 to simulate an IMS environ-
ment and run Application Servers (e.g., PCS, LE).

4.2 Session Mobility
In order to make or receive a SIP call, the user must regis-

ter, after which Asterisk informs the user’s PMA about the
registration. The PMA updates the user’s rule engine with
information that the user is available.

User Bob initiates a SIP session with user Alice. Aster-
isk establishes the session and creates the SMA in charge
of the created session. Bob is connected with his desktop
PC, while Alice is in town talking to Bob from her mobile
phone. The SMA informs Alice’s and Bob’s PMAs, which
must update their databases. When Alice’s PMA updates
her database with the information that she is in an ongo-
ing session on her mobile phone, a rule is triggered. This
rule states that when Alice enters her office talking on her
mobile phone, the session should be redirected to her office
PSTN phone. Consequently, the PMA sends a message to
the LE, requesting notification when Alice enters her office.
The LCS subscribes to information regarding Alice’s loca-
tion with the LE.

During an ongoing session, Alice arrives to her office. The

7http://www.ericsson.com/mobilityworld/sub/open/
technologies/ims poc/tools/sds 40

26

Figure 2: Session mobility

LE sends a notification message to the LCS, which in turn
forwards this message to Alice’s PMA. Her new location
is written in her database, triggering another rule which en-
sures that the PMA informs the SMA that the session should
be redirected. The SMA then sends a redirect request to As-
terisk which initiates redirection of the ongoing session from
Alice’s mobile phone to her office PSTN phone. After the
session has been redirected to the PSTN phone, the mobile
phone is excluded from the rest of the session.

5. CONCLUSION AND FUTURE WORK
Agent technology presents a promising solution for service

provisioning problems associated with 3G mobile networks.
The A-STORM multi-agent system, which consists of intelli-
gent and mobile agents, provides possibilities for implement-
ing proactive optimized service deployment, charging-aware
service provisioning, and support for multi-provider environ-
ments in the 3G mobile network. We propose a multi-agent
architecture which, in conjunction with SIP, can realize the
mobility of SIP-based ubiquitous services. The functional-
ities of two agents (the Preference Manager Agent (PMA)
and the Session Manager Agent (SMA)) are presented. The
PMA follows personal rules, specified by its user, and man-
ages the context information that is required for service per-
sonalization. After a session between two users has been
established, the SMA is created and is in charge of monitor-
ing and managing the ongoing session. In cooperation with
SIP entities, these two types of agents enable personalized
session mobility.

Further development of our multi-agent system is aimed
at enabling context- aware provisioning of group-oriented
services that will use context information, not only in IMS-
based networks, but also in emerging sensor networks.

6. ACKNOWLEDGMENTS
The work presented in this paper was carried out within

research projects 036-0362027-1639 “Content Delivery and
Mobility of Users and Services in New Generation Networks”,
supported by the Ministry of Science, Education and Sports
of the Republic of Croatia, and “Agent-based Service &
Telecom Operations Management”, supported by Ericsson
Nikola Tesla, Croatia.

7. ADDITIONAL AUTHORS
Igor Ljubi, University of Zagreb, Faculty of Electrical En-

gineering and Computing, Unska 3, Zagreb, Croatia, email:
igor.ljubi@fer.hr

8. REFERENCES
[1] General principles and general reference model for

next generation networks. Technical Report ITU-T
Recommendation Y.2011, Telecommunication
Standardization Sector, 2004.

[2] S. Berger, H. Schulzrinne, S. Sidiroglou, and X. Wu.
Ubiquitous computing using SIP. In C. Papadopoulos
and K. C. Almeroth, editors, NOSSDAV, pages 82–89.
ACM, 2003.

[3] A. Brajdic, O. Lapcevic, M. Matijasevic, and
M. Mosmondor. Service composition in IMS: A
location based service example. In 3rd Int. Symposium
on Wireless Pervasive Computing, 2008. ISWPC
2008, pages 208–212, Santorini, Greese, 2008.

[4] J. Damsgaard and L. Marchegiani. Like Rome, a
mobile operator’s empire wasn’t built in a day!: a
journey through the rise and fall of mobile network
operators. In M. Janssen, H. G. Sol, and R. W.
Wagenaar, editors, ICEC, volume 60 of ACM

27

International Conference Proceeding Series, pages
639–648. ACM, 2004.

[5] G. Dumic, V. Podobnik, G. Jezic, K. Trzec, and
A. Petric. An agent-based optimization of service
fulfillment in next-generation telecommunication
systems. In Z. Car and M. Kusek, editors, Proceedings
of the 9th International Conference on
Telecommunications ConTEL 2007, pages 57–63,
Zagreb, Croatia, 2007.

[6] F. Ghys and A. Vaaraniemi. Component-based
charging in a next-generation multimedia network.
IEEE Communications Magazine, 41(1):99–102,
January 2003.

[7] D. Grubisic, K. Kljaic, I. Ljubi, A. Petric, and
G. Jezic. An agent-based user selection method for
business-aware service provisioning. In Proceedings of
the 15th International Conference on Software,
Telecommunications and Computer Networks, pages
1–5, Split, Croatia, 2007.

[8] H. Hanrahan. Network Convergence: Services,
Applications, Transport, and Operations Support. John
Wiley & Sons, Inc., New York, NY, USA, 2007.

[9] E. F. Hill. Jess in Action: Java Rule-Based Systems.
Manning Publications Co., Greenwich, CT, USA,
2003.

[10] G. Jezic, M. Kusek, S. Desic, O. Labor, A. Caric, and
D. Huljenic. Multi-agent system for remote software
operations. In V. Palade, R. J. Howlett, and L. C.
Jain, editors, KES, volume 2774 of Lecture Notes in
Computer Science, pages 675–682. Springer, 2003.

[11] M. Klusch, B. Fries, and K. P. Sycara. Automated
semantic web service discovery with OWLS-MX. In
H. Nakashima, M. P. Wellman, G. Weiss, and
P. Stone, editors, AAMAS, pages 915–922. ACM,
2006.

[12] I. Ljubi, V. Podobnik, and G. Jezic. Cooperative
mobile agents for automation of service provisioning:
A telecom innovation. In ICDIM, pages 817–822.
IEEE, 2007.

[13] I. Lovrek, G. Jezic, M. Kusek, I. Ljubi, A. Caric,
D. Huljenic, S. Desic, and O. Labor. Improving
software maintenance by using agent-based remote
maintenance shell. In ICSM, pages 440–449. IEEE
Computer Society, 2003.

[14] A. Petric, I. Ljubi, K. Trzec, G. Jezic, M. Kusek,
V. Podobnik, and K. Jurasovic. An agent based
system for business-driven service provisioning. In
B. O’Sullivan and K. Orsvarn, editors, Proceedings of
the AAAI’07 Workshop on Configuration, pages
25–30. AAAI Press, 2007.

[15] V. Podobnik, A. Petric, K. Trzec, and G. Jezic.
Software agents in new generation networks: Towards
the automation of telecom processes. In L. C. Jain and
N. T. Nguyen, editors, Knowledge Processing and
Decision Making in Agent-Based Systems, chapter 4,
pages 71–99. Springer-Verlag, Berlin Heidelberg, 2009.

[16] H. Schulzrinne, X. Wu, S. Sidiroglou, and S. Berger.
Ubiquitous computing in home networks. IEEE
Communications Magazine, 41(11):128–135, 2003.

[17] H. Sinnreich and A. B. Johnston. Internet
communications using SIP: delivering VoIP and
multimedia services with Session Initiation Protocol.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[18] A. Vrancic, K. Jurasovic, M. Kusek, G. Jezic, and
K. Trzec. Service provisioning in telecommunication
networks using software agents and rule-based
approach. In Proceedings of the 30th International
Convention MIPRO 2007, pages 159–164, 2007.

[19] J. S. Weiser. The coming age of calm technology. In
R. Denning, editor, Beyond Calculation: The Next
Fifty Years of Computing. Copernicus, 1998.

[20] J. L. Yoon. Telco 2.0: a new role and business model.
IEEE Communications Magazine, 45(1):10–12, 2007.

28

Agent-based Framework for Personalized Service
Provisioning in Converged IP Networks

Vedran Podobnik
University of Zagreb, Faculty of

Electrical Engineering and
Computing

Unska 3
HR-10000 Zagreb, Croatia

vedran.podobnik@fer.hr

Maja Matijasevic
University of Zagreb, Faculty of

Electrical Engineering and
Computing

Unska 3
HR-10000 Zagreb, Croatia

maja.matijasevic@fer.hr

Ignac Lovrek
University of Zagreb, Faculty of

Electrical Engineering and
Computing

Unska 3
HR-10000 Zagreb, Croatia

ignac.lovrek@fer.hr

Lea Skorin-Kapov
Ericsson Nikola Tesla, R&D Center

Krapinska 45
HR-10000 Zagreb, Croatia

lea.skorin-kapov@ericsson.com

Sasa Desic
Ericsson Nikola Tesla, R&D Center

Krapinska 45
HR-10000 Zagreb, Croatia

sasa.desic@ericsson.com

ABSTRACT
In a global multi-service and multi-provider market, the Internet
Service Providers will increasingly need to differentiate in the
service quality they offer and base their operation on new,
consumer-centric business models. In this paper, we propose an
agent-based framework for the Business-to-Consumer (B2C)
electronic market, comprising the Consumer Agents, Broker
Agents and Content Agents, which enable Internet consumers to
select a content provider in an automated manner. We also discuss
how to dynamically allocate network resources to provide end-to-
end Quality of Service (QoS) for a given consumer and content
provider.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific Architectures,
H.3.3 [Information Search and Retrieval]: Information
Filtering, Selection Process, I.2.11 [Distributed Artificial
Intelligence]: Intelligent Agents, Multiagent Systems, K.4.4
[Electronic Commerce], K.6.4 [System Management]: Quality
Assurance.

General Terms
Management, Performance, Economics.

Keywords
Agent-based B2C e-market, Quality of Service, Internet business
environment, Provider selection.

1. INTRODUCTION
The Internet service providers (ISPs) and IP-based telecom
network operators are turning towards new business opportunities

in a global multi-service and multi-provider market. With
consumers typically having several multi-purpose end-user
devices, the number and variety of personal, work, and home
related services offered will also grow. As “plain broadband”
wired/wireless Internet access is likely to become a commodity in
the next 10 years or so [1], the ISPs will have to differentiate in
the service quality they offer, and base their operation on new,
consumer-centric business models. Such models involve a number
of actors involved in service delivery, from the user (consumer of
the service) to the end service provider, where the selection of the
service provider is a non-trivial issue, considering an electronic
market (e-market) with a number of service providers offering the
same or similar service. The challenge is twofold: first, how to
select “the best” service provider, given the user preferences and
semantic service descriptions; and second, once the selection is
made, how to dynamically allocate network resources on an end-
to-end basis. The main contribution of this paper focuses on the
first issue by proposing a novel agent-based framework for
service provider selection. This process is based on service
discovery which considers not only the semantic matching, but
also the price and reputation of the service provider, in which it
differs from other approaches found in literature. Section 2 gives
the problem formulation, while Section 3 presents the model. We
discuss the second issue, end-to-end Quality of Service (QoS) in
Section 4. Section 5 concludes the paper.

2. ROLES AND RELATIONSHIPS IN THE
ELECTRONIC MARKET
There are a number of actors present in the Internet business
environment who need to establish relationships in order to
provide consumers with converged services. An actor may take on
a number of roles in a particular scenario, and furthermore a
number of actors can play the same role. The key roles and
relationships, shown in Figure 1, include Consumer, Access Line
Provider, Primary Service Provider (PSP), Internet Service
Provider (ISP), Content Provider (CP), and Transport Provider
(TP) [14].

Cite as: Agent-based Framework for Personalized Service Provisioning
in Converged IP Networks, Vedran Podobnik, Maja Matijasevic, Ignac
Lovrek, Lea Skorin-Kapov, and Sasa Desic, Proc. of International
Workshop on Service-Oriented Computing: Agents, Semantics, and
Engineering @ AAMAS 2009, May, 11, 2009, Budapest, Hungary.
Copyright © 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

29

Figure 1. Roles and relationships of actors in the Internet

business environment.

The Consumer is a role which typically represents the human
user. The Access Line Provider is a role representing the owner of
the access line. The ISP, in the most general sense, is a business
entity providing a user with service(s). To differentiate between
the responsibilities of an ISP which involve dealing with (e.g.,
multimedia) content, and those related to managing the transport
of the content over the network infrastructure, we introduce the
roles of CP and TP, respectively. The role of ISP as CP will be
relevant for the first problem addressed in this paper – the
selection of the service provider, while the role of TP will be
relevant for the second issue – ensuring the end-to-end QoS. From
now, we will refer to CP and TP, instead of just “ISP”, to
disambiguate roles. The PSP is an ISP which provides to a
consumer the service of Internet access and consequently has a
business relationship with that consumer. It may be noted that a
particular consumer can have multiple PSPs, but only one PSP
can be active at any one time. By adopting the “one-stop
responsibility” concept [5], the PSP is also perceived as being
responsible for coordinating the QoS negotiation and adaptation

process, while further relying on the services of sub-providers in
order to secure an end-to-end service and quality level to the
consumer. Figure 1 also shows the relationships between roles as
Business-to-Customer (B2C) and Business-to-Business (B2B).

Our proposed agent based framework addresses the many-to-
many relationship between Consumer and ISP in the B2C
electronic market, as shown in Figure 2. The roles are modeled by
using an agent paradigm [15], as follows: 1) the consumer
representation is represented by a Consumer Agent, 2) the content
provisioning is represented by a Content Agent, and 3) the
brokering between Consumer Agents and Content Agents is
represented by a Broker Agent. The Broker Agent belonging to a
certain ISP offers not only its own content (acting as a CP), but
also the content offered (advertised) by other ISPs or CPs to
which this ISP has established business relationships, as shown in
Figure 2.

The issue of selecting a content provider has significant
implications for all aspects of service provisioning. In the multi-
provider network, a consumer will typically have a choice of a
(possibly large) number of ISPs/CPs for a given content, as shown
in Figure 2. He or she may also have personal preferences
regarding service options, device, and/or a particular
wireline/wireless access network. We assume that the Consumer
Agent containing these preferences is formed at the time of
signing a contract with a PSP (e.g., fixed access via xDSL at
home, and mobile access via HSPA in a 3G mobile network), and
it resides within the PSP. Given all that, it is the task of the Broker
Agent to discover the content and select the best match for the
particular content request that corresponds to the given consumer
preferences. It is also assumed that the scale of the problem is
such that it cannot be solved by exhaustively querying all possible
CPs.

As a running example we use the following problem, illustrated in
Figure 3: the user (Consumer) wants to view video-clips with
Bayern goals from the latest Bundesliga round on her dual
3G/WLAN mobile phone. Her current (active) PSP is ISP1. There
are several CPs offering and advertising their service of providing
video clips of European football matches (CPi, ISPj, ISPk) to ISP1.
The ISP1 has a business and technical relationship (SLA [5]) with
ISPj, and ISPj has one with ISPk. After receiving the Consumer

Figure 2. The proposed agent framework for B2C electronic market.

30

request for content, the content from ISPk is selected as the best
match (the most eligible content). Then the QoS negotiation and
adaptation takes place on end-to-end basis for a given consumer,
service, and ISPs involved in service delivery, and having
completed that, the service provisioning starts.

Figure 3. Problem illustration by example

3. SELECTION OF THE CONTENT
PROVIDER
The first step in the process of selecting the content provider is
discovery. The state-of-the art discovery mechanisms are based on
matching the semantics of resource (e.g., content) descriptions
(i.e., semantic matchmaking) [7][10][18], rather than keyword
matching [6]. The semantic dimension of resources such as
multimedia content has been exploited in order to evaluate
“interesting” inexact matches [3]. Most approaches suggested for
semantic discovery use standard DL (Description Logic)
reasoning to automatically determine whether one resource
description matches the other. Our discovery mediator in the B2C
e-market differs from previous approaches in that it considers the
actual performance of businesses which act as ISPs/CPs (with
respect to both price and reputation) in addition to semantic
matchmaking. The mechanism on which the mediator is based is
the Semantic Pay-Per-Click Agent (SPPCA) auction, a novel
auction mechanism based on Pay-Per-Click (PPC) advertising
auctions [6], but adapted for agent environment and enhanced
with a semantic dimension [13].

3.1 The Architecture of Electronic Market for
Content Trading
A description of the proposed agent-mediated B2C e-market
architecture (Figure 2) follows along with a demonstration of how
it operates.

3.1.1 The Content Agent
In the proposed B2C e-market agents trade with various types of
content (formally defined as a set ࣣࣝ):

ࣣࣝ ൌ ൛ࣻࣷଵ, ࣻࣷଶ, … , ࣻࣷ|ࣣࣝ|ൟ,

which is provided by different Content Providers (formally
defined as a set ࣝ࣪):

ࣝ࣪ ൌ ൛ࣷऀଵ, ࣷऀଶ,… , ࣷऀ|ࣝ࣪|ൟ.

Content Providers are represented in the e-market by Content
Agents (formally defined as a set ࣛࣝ࣪):

ࣛࣝ࣪ ൌ ൛ࣵࣷऀభ, ࣵࣷऀమ, … , ࣵࣷऀ|ࣝ࣪|ൟ.

An ࣵࣷऀ౟ represents a ࣷऀ୧ which offers a certain content ࣻࣷ୧ that is
described by content ontology, whose fragment (describing video
clips of European football matches) is presented later in this work.
Initially, ࣵࣷऀ౟ wishes to advertise its content (advertised ࣻࣷ୧ is
denoted as ࣻࣷୟୢ୴) at discovery mediator (i.e., the Broker Agent).
An ࣵୡऀ౟ accomplishes that by participation in the SPPCA.

3.1.2 The Consumer Agent
Consumers of ࣣࣝ (formally defined as a set ࣝ):

ࣝ ൌ ൛ࣷଵ, ࣷଶ,… , ࣷ|ࣝ|ൟ,

are represented on the e-market by Consumer Agents (formally
defined as a set ࣛࣝ):

ࣛࣝ ൌ ൛ࣵࣷభ, ࣵࣷమ, … , ࣵࣷ|ࣝ|ൟ.

An ࣵࣷ౟ acts on behalf of its human owner (i.e., consumer) in the
discovery process of suitable ࣻࣷୟୢ୴ and subsequently negotiates
the utilization of that content. An ࣵࣷ౟ wishes to get a best-ranked
advertised content which is appropriate with respect to its needs
(requested ࣻࣷ୧ is denoted as ࣻࣷ୰ୣ୯).

3.1.3 The Broker Agent
Mediation between content requesters and content providers is
performed by Broker Agents (formally defined as a set ࣛࣜ):

ࣛࣜ ൌ ൛ࣶࣵభ, ࣶࣵమ, … , ࣶࣵ|ࣜ|ൟ.

There is one ࣶࣵ౟ located at every ISP and it mediates between ࣷ
(i.e., ࣵࣝ) to whom this ISP is PSP and all ࣷऀ (i.e., ࣵࣝ࣪) which
advertised its content at this ࣶࣵ౟. An ࣶࣵ౟ enables ࣛࣝ࣪ to advertise
their content descriptions and recommends the most eligible
content to ࣵࣝ in response to their requests. It is assumed that ࣶࣵ౟
is a trusted party which fairly mediates between content requesters
and content providers.

3.2 The Content Discovery Model
Figure 4 presents interactions between ࣵࣷ౟ and ࣶࣵ౟ which enable
content discovery in the proposed B2C e-market. The ࣵࣷ౟ , by
sending CFP (Call for Proposal) to ࣶࣵ౟, requests two-level
filtering of advertised content descriptions to discover which is
the most adequate for its needs. Along with the description of
requested content ࣻࣷ୰ୣ୯, the CFP includes the set of matching
parameters (to be explained later) that personalize the discovery
process according to the consumer preferences. First-level
filtering (ଵࣹ ׷ ࣣࣝ ՜ ࣣࣝ) is based on semantic matchmaking
between descriptions of content requested by ࣷ୧ (i.e., ࣵࣷ౟) and

CPi

ISPk
ISP2

ISP1 ISPj

Consumer
end host

e2e QoS

ISP1=PSP CPi ISPj ISPkConsumer ISP2

active

request content

advertise content

advertise content

advertise content

Selection of most eligible content
(ISPk selected)

negotiate QoS negotiate QoS

Service provisioning starts

content delivery with ensured e2e QoS

31

those advertised by ࣷऀ (i.e., ࣵࣝ࣪). Content which passes the first
level of filtering (ࣹࣻࣷభ ؿ ࣣࣝ) is then considered in the second
filtering step. Second-level filtering (ࣹଶ ׷ ࣣࣝ ՜ ࣣࣝ) combines
information regarding the actual performance of ࣷऀࣹభ (ࣷऀ which
offer ࣹࣻࣷభ) and prices bid in SPPCA by corresponding ࣹࣵࣝ࣪భ (ࣵࣝ࣪
that represent ࣷऀ which offer ࣹࣻࣷభ). The performance of ࣷऀࣹభ
(with respect to both price and reputation) is calculated from the
previous ࣛࣝ feedback ratings. Following filtering, the most
eligible content (ࣹࣻࣷమ ؿ ࣹࣻࣷభ: หࣹࣻࣷమห=1) is chosen and
recommended to the ࣵࣷ౟ in response to its request.

Figure 4. The थधܑ discovers the most eligible content

advertised at थदܑ.

Figure 5 explains how the SPPCA auction, which is part of the
discovery process, operates. The SPPCA auction is divided into
rounds of fixed time duration. To announce the beginning of a
new auction round, the ࣶࣵ౟ broadcasts a CFB (Call for Bid)
message to all the ࣵࣝ࣪ which have registered their ࣻࣷୟୢ୴ for
participation in the SPPCA auction. Every CFB message contains
a status report. In such a report, the ࣶࣵ౟ sends to the ࣵࣷऀ౟
information regarding events related to its advertisement which
occurred during the previous auction round. The most important
information is that regarding how much of the ࣵࣷऀ౟ budget was
spent (i.e., the advertisement bid price bidࣻࣷ౗ౚ౬ multiplied by the
number of recommendations of its ࣻࣷୟୢ୴ to various ࣵࣝ). In
response to a CFB message, an ࣵࣷऀ౟ sends a BID message.

Figure 5. The SPPCA auction.

3.2.1 Semantic Matchmaking of Content
Descriptions
In the multi-agent system implementing the proposed B2C e-
market model, the Semantic Web technology [9] is used to
describe content. Namely, for describing content we use W3C’s
OWL-S (Web Ontology Language for Services), which is an

OWL-based (Web Ontology Language) (Figure 6) technology for
describing the properties and capabilities of Web Services in an
unambiguous, computer interpretable mark-up language.

Figure 6. The OWL ontology fragment describing video clips

of European football matches

Our ࣶࣵ౟ uses OWLS-MX [8], a hybrid semantic matching tool
which combines logic-based reasoning with approximate
matching based on syntactic IR similarity computations. As the
notion of match rankings is very important, OWLS-MX enables
computation of the degree of similarity between compared service
descriptions, i.e., the comparison is assigned a content
correspondence factor (M). Namely, the OWLS-MX matchmaker
takes as input the OWL-S description of ࣵࣷ౟ desired content ࣻࣷ୰ୣ୯,
and returns a set of relevant content which match the query ࣹࣻࣷభ.
Relevant content is annotated with its individual degree of
matching similarity value (i.e., Mࣻࣷ౨౛౧,ࣻࣷ౗ౚ౬). There are six possible
levels of matching [8]. The first level is a perfect match (also
called an EXACT match) which is assigned a factor M ൌ 5.
Furthermore, we have four possible inexact match levels which
are as follows: a PLUG-IN match (M ൌ 4), a SUBSUMES match
(M ൌ 3), a SUBSUMES-BY match (M ൌ 2) and a NEAREST-
NEIGHBOUR match (M ൌ 1). If two content descriptions do not
match according to any of the above mentioned criteria, they are
assigned a matching level of FAIL (M ൌ 0). An ࣵࣷ౟ specifies its
desired matching degree threshold (i.e., the M୫୧୬), defining how
relaxed the semantic matching is.

3.2.2 The Performance Model of Content Providers
A performance model tracks the past performance of ࣝ࣪ in the
B2C e-market. Our model monitors two aspects of a ࣷऀ୧
performance – the reputation of the ࣷऀ୧ and the cost of utilizing
the ࣻࣷ that ࣷऀ୧ is offering.

After utilizing the recommended content, an ࣵࣷ౟ gives an ࣶࣵ౟
feedback regarding ࣷऀࣹమ , both from the reputation viewpoint
(called the reputation rating ሺQ א ሾ0.0, 1.0ሿሻ) and the cost
viewpoint (called the price rating ሺP א ሾ0.0, 1.0ሿሻ). A rating of
0.0 is the worst (i.e., the ࣷऀࣹమ could not provide the content at all
and/or utilizing the content is very expensive) while a rating of 1.0
is the best (i.e., the ࣷऀࣹమ provides a content that perfectly
corresponds to the ࣷ୧ needs and/or utilizing the content is cost-
efficient). The overall ratings of ࣷऀ୧ can be calculated in a

32

number of ways. In our approach, we use the EWMA-based
(Exponentially Weighted Moving Average) learning [11].

3.2.3 Calculating a Recommended Ranked Set of
Eligible Services
After an ࣶࣵ౟ receives a CFP message from an ࣵࣷ౟ (Figure 4), the
discovery mediator finds the best-suitable content ࣹࣻࣷమ and
recommends it to the ࣵࣷ౟ in response to its request. The final
rating Rࣻࣷ౗ౚ౬ of a specific ࣻࣷୟୢ୴ at the end of discovery process is
given by:

Rࣻࣷ౗ౚ౬ ൌ
α ൈ

Mࣻࣷ౨౛౧,ࣻࣷ౗ౚ౬
5 ൅ β ൈ Qࣷऀ౗ౚ౬ ൅ γ ൈ Pࣷ ऀ౗ౚ౬

α ൅ β ൅ γ
ൈ bidࣻࣷ౗ౚ౬ (1)

A higher rating means that this particular ࣻࣷୟୢ୴ is more eligible
for the consumer’s needs (i.e., ࣻࣷ୰ୣ୯ሻ; α, β and γ are weight
factors (i.e., matching parameters from CFP message in Figure 4)
which enable the ࣵࣷ౟ to personalize its request according to its
owner’s (i.e., ࣷ୧Ԣsሻ needs regarding the semantic similarity,
reputation and price of a ࣻࣷୟୢ୴, respectively; Mࣻࣷ౨౛౧,ࣻࣷ౗ౚ౬
represents the content correspondence factor (M), but only ࣻࣷୟୢ୴
with M higher than threshold M୫୧୬ are considered; Qࣷऀ౗ౚ౬ and
Pࣷ ऀ౗ౚ౬ represent the quality and price ratings of a particular ࣷऀୟୢ୴,
respectively; bidࣻࣷ౗ౚ౬ is the bid value for advertising an ࣻࣷୟୢ୴ in
the SPPCA auction.

Since our performance model monitors two aspects of the ࣷऀୟୢ୴
performance (i.e., its reputation and price), the ࣵࣷ౨౛౧ defines two

Figure 7. An example of the discovery process.

33

weight factors which determine the significance of each of the two
aspects in the process of calculating the final proposal
(β represents a weight factor describing the importance of ࣷऀୟୢ୴
reputation while γ represents a weight factor describing the
importance of content prices at ࣷऀୟୢ୴). Furthermore, an ࣵࣷ౨౛౧ can
specify whether information regarding the semantic similarity of
ࣻࣷ୰ୣ୯ and ࣻࣷୟୢ୴ is more important to it or information regarding
an ࣷऀୟୢ୴ performance. Thus, the ࣵࣷ౨౛౧ also defines parameter α
which is a weight factor representing the importance of the
semantic similarity between ࣻࣷࣻࣷ and ࣻࣷୟୢ୴. In our example
(Figure 7) where requested content are video-clips with Bayern
goals from the latest Bundesliga round (OWL-Sࣻࣷ୰ୣ୯ ൌ

http://fer. hr/content/bayern. owl), α ൌ 3, β ൌ 1 and γ ൌ 5. This
means that the ࣵࣷ౨౛౧ is looking for an inexpensive ࣻࣷୟୢ୴ and it is
not very concerned with the ࣷऀୟୢ୴ reputation.

4. ENSURING END-TO-END QOS
Once the consumer, by using the mechanism described in the
previous section, selected the CP, the end-to-end QoS needs to be
negotiated with her PSP. For ensuring end-to-end QoS, support in
the network is needed to negotiate and adapt QoS to match the
consumer preferences, service profile, and network capabilities;
and thus create a basis for service and price differentiation [2]. A
general QoS negotiation scenario involves four steps: 1) a host
initiating a service on another host; 2) the addressed host
providing a service offer/answer; 3) the initiating host responding
to the offer/answer; and 4) service delivery. We assume that all
ISPs are QoS-aware, i.e., that they control and administer the

necessary infrastructure for providing QoS-based services,
regardless of which lower layers mechanisms are used. The
selection of QoS provisioning mechanisms in the access and core
network is performed in the TPs. Depending on the type of the
network, this may involve various service control entities that
handle QoS signaling, QoS policy control, and interaction with
underlying network QoS mechanisms, as well as typical "support
functions" (if and when needed), such as consumer authorization,
authentication, accounting, auditing, and charging. During the
process of QoS (re)negotiation, signaling flows typically traverse
a number of functional network entities along the end-to-end path
between communication endpoints, as shown in Figure 8 [16]. It
should be noted that the signaling (control) and data flows are
separated, and that the resource managers in the data plane are
"vertically" controlled by session control functions, which
interface with the end-points and the internal databases related to
consumers and services.

In an actual network architecture, functional entities may be
mapped to one or more network nodes. The end points are shown
as hosts (Host A, Host B) or application servers (Content Server,
3rd party Content/Application Servers). The additional
functionality which must be implemented in the host may include,
for example: a GUI for consumer preferences management,
capability to negotiate session QoS (e.g., SIP (Session Initiation
Protocol) interface), resource management capability (e.g.,
DiffServ), and mobility (e.g., Mobile IP’s Mobile Host entity).
Having in mind the CP selection procedure described in the
previous section, we assume that a Consumer A, attached to the
NGN by using Host A, has selected a PSP here shown as PSP

Figure 8. End-to-End QoS provisioning

34

Domain (Consumer A), to perform service control functions and
offer access to 3rd party applications and services.

This service provider is then responsible for AAA functions
(consumer authentication, authorization, and accounting), service
provisioning, and maintaining a database for storing consumer-
related data. It further interacts with an underlying network
provider, for example, a 3G mobile network provider, which
provides media connectivity functions. In a real life scenario, a
single operator may take on multiple roles, including that of both
a service and a network provider.

While the initial service matching and resource mapping may be
based on QoS classes and SLA, more advanced mechanisms are
needed to take into account dynamic changes in service profile
(e.g., consumer willingness to pay for the service), network
capabilities (e.g., due to handover), and service parameters (e.g.,
types of media streams comprising the service). Although the
architecture proposed here is generic, in our previous work we
considered a converged IP-based network based on 3GPP IP
Multimedia Subsystem (IMS) [17]. In a pure-IP approach, SIP can
be applied for session signaling, Diameter for policy control and
AAA, and any QoS enabling mechanism may be applied at the
network layer, including those for IP QoS interconnection
[2][4][12].

5. CONCLUSION
In this paper, we proposed an agent-based framework for the B2C
e-market where interactions between Consumer Agents, Broker
Agents and Content Agents enable Internet consumers to select
the most eligible content provider in an automated manner. The
main benefit of the proposed approach is that in a situation with
many ISPs/CPs offering the same or similar content, the user
could not search for the content manually, nor exhaustively, nor
could the best match be found based solely on semantic
descriptions. Finally, we have discussed how end-to-end QoS
could be negotiated once the content provider is selected.

6. ACKNOWLEDGMENTS
The authors acknowledge the support of research project “Content
Delivery and Mobility of Users and Services in New Generation
Networks” (036-0362027-1639), funded by the Ministry of
Science, Education and Sports of the Republic of Croatia, and
projects "Agent-based Service & Telecom Operations
Management" and "Future Advanced Multimedia Service
Enablers" of Ericsson Nikola Tesla, Croatia.

7. REFERENCES
[1] Anderson, J.Q., and Rainie, L. 2006. The future of the

Internet II. Technical report, Pew Internet and American Life
Project, http://www.pewinternet.org .

[2] Briscoe, B., and Rudkin, S. 2005. Commercial models for IP
quality of service interconnect. BT Technology Journal 23, 2,
171–195.

[3] Di Noia, T., Di Sciascio, E., Donini, F.M., and Mong, M.
2004. A System for Principled Matchmaking in an Electronic
Marketplace. International Journal of Electronic Commerce
8, 4, 9–37.

[4] Howarth, M.P., et al. 2005. Provisioning for interdomain
quality of service: the MESCAL approach. IEEE
Communications Magazine 43, 6, 129–137.

[5] ITU-T Recommendation E.860. 2002. Framework of a
service level agreement.

[6] Jansen, B.J. 2006. Paid Search. IEEE Computer 39, 7, 88–90.
[7] Keller, U., Lara, R., Lausen, H., Polleres, A., and Fensel, D.

2005. Automatic Location of Services. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. Lecture Notes in Computer
Science 3532, pp. 1–16. Springer, Heidelberg.

[8] Klusch, M., Fries, B., and Sycara, K. 2006. Automated
Semantic Web Service Discovery with OWLS-MX. In: 5th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 915–922. ACM,
Hakodate.

[9] Leuf, B.: The Semantic Web. 2006. Crafting Infrastructure
for Agency. John Wiley & Sons, New York.

[10] Li, L., and Horrock, I. 2003. A Software Framework for
Matchmaking Based on Semantic Web Technology. In: 12th
International World Wide Web Conference (WWW), pp.
331–339. ACM, Budapest.

[11] Luan, X. 2004. Adaptive Middle Agent for Service Matching
in the Semantic Web: A Quantitive Approach. PhD Thesis,
University of Maryland.

[12] Masip-Bruin, X. et al. 2007. The EuQoS System: A Solution
for QoS Routing in Heterogeneous Networks, IEEE
Communications Magazine 45, 2, 9–103.

[13] Podobnik, V., Trzec, K., and Jezic, G. 2006. Auction-Based
Semantic Service Discovery Model for E-Commerce
Applications. In: Meersman, R., Tari, Z., Herrero P., et al.
(eds.) OTM 2006. Lecture Notes in Computer Science 4277,
pp. 97–106. Springer, Heidelberg.

[14] Podobnik, V., and Lovrek, I. 2008. Multi-Agent System for
Automation of B2C Processes in the Future Internet. In: 27th
IEEE Conference on Computer Communications
(INFOCOM) Workshops, pp. 1–4. IEEE Press, Phoenix.

[15] Podobnik, V., Jezic, G., and Trzec, K. 2008. Towards New
Generation of Mobile Communications: Discovery of
Ubiquitous Resources. Electrotechnical Review 75, 1-2, 31–
36.

[16] Skorin-Kapov, L. 2007. A framework for service-level end-
to-end quality of service negotiation and adaptation. PhD
Thesis, University of Zagreb.

[17] Skorin-Kapov, L., Mosmondor, M., Dobrijevic, O., and
Matijasevic, M. 2007. Application-level QoS negotiation and
signaling for advanced multimedia services in the IMS. IEEE
Communications Magazine 45, 7, 108–116.

[18] Sycara, K., Paolucci, M., Anolekar, A., and Srinivasan, N.
2004. Automated Discovery, Interaction and Composition of
Semantic Web Services. Journal of Web Semantics 1, 1.

35

Business Modeling via Commitments

Pankaj R. Telang and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

prtelang@ncsu.edu, singh@ncsu.edu

ABSTRACT

Existing computer science approaches to business modeling offer

low-level abstractions such as data and control flows, which fail to

capture the business intent underlying the interactions that are cen-

tral to real-life business models. In contrast, existing management

science approaches are high-level but not only are these semifor-

mal, they are also focused exclusively on managerial concerns such

as valuations and profitability.

This paper proposes a novel business metamodel based on com-

mitments that considers additional agent-oriented concepts, specif-

ically, goals and tasks. It proposes a set of business patterns and

algorithms for checking model completeness and verification of

agent interactions. Unlike traditional models, our approach mar-

ries rigor and flexibility, providing a crisp notion of correctness and

compliance independent of specific executions.

1. INTRODUCTION
Real-life service engagements generally involve long-lived, com-

plex interactions among two or more autonomous business part-

ners. We define a business model as a specification of a way in

which a service engagement is carried out. We address the problem

of creating, enacting, and verifying business models from a high-

level, yet rigorous standpoint.

Service organizations form complex business relationships with

other organizations to exchange value. Competition continually

forces organizations to improve their operations. Such improve-

ments include out-sourcing or in-sourcing business tasks based on

appropriate strategic considerations. Mergers, acquisitions, and al-

liances change the partners of a value network. The business pro-

cesses needed to support such dynamic interactions tend to be com-

plex.

Existing techniques for modeling, operationalizing, and evolving

such processes are inadequate, because they are based on low-level

abstractions at the level of data and control flows, expressed in or-

chestrations or choreographies. These specifications do not capture

the business intent of the interactions. They tend to over-constrain

business behavior by mandating the exchange of a predetermined

set of messages usually in an unnecessarily restrictive temporal or-

der.

This paper proposes a commitment-based business metamodel,

which captures value exchanges among business partners in terms

Cite as: Business Modeling via Commitments, Pankaj R. Telang, Munin-
dar P. Singh, Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of their commitments. This paper defines patterns based on the

above metamodel as well as algorithms to verify the correctness of

service engagements with respect to their designs.

Contributions. The main contributions of this paper are (1)

a commitment-based metamodel that describes value exchanges

among business partners, (2) a set of business modeling patterns,

and (3) algorithms for verifying (a) implemented agent interactions

with respect to a business model and (b) the completeness of a busi-

ness model.

Organization. Section 2 presents the business metamodel and a

set of business patterns. Section 3 applies the patterns to create a

model for an insurance claim processing scenario. Sections 4 and

5 introduce notions of compliance and completeness respectively,

and provide algorithms for checking them. Section 6 compares our

approach with related work.

2. METAMODEL AND PATTERNS
A business model seeks to capture value exchanges and the evo-

lution of commitments among business partners. We characterize

a business model via a set of business relationships, the partici-

pants of which we term (business) partners. The partners execute

tasks for each other that enable achieving their respective goals.

Importantly, our approach defines relationships in terms of the cre-

ation and manipulation of commitments among the partners. To

enter into a business relationship, each partner takes on the com-

mitments that the relationship specifies. The partner presumably

possesses the capabilities that the relationship requires—these are

presumably required to perform the tasks that would discharge the

specified commitments.

We associate interaction protocols with business relationships in

two main ways. Interaction protocols are crucial both to (1) cre-

ating or modifying a business relationship, such as via negotiation

and (2) to enacting a business relationship. Figure 1 illustrates our

metamodel. The following paragraphs describe the key concepts.

Agent: a computational representation of a business partner.

An agent captures the autonomy and heterogeneity of a real-world

business. An agent has goals and possesses a set of capabilities that

enable it to execute business tasks. For each business relationship

in which an agent participates, it enacts one or more roles in that

relationship.

Role: an abstraction over agents that helps specify a business

relationship. Each role specifies the commitments expected of the

agents who play that role along with the capabilities they must pos-

sess to function in that role.

Goal: a state of the world that an agent desires to be brought

about [3]. In simple terms, an agent’s goals are its ends. An agent

achieves a goal by executing appropriate tasks.

Task: a business activity viewed from the perspective of an agent.

36

executes

requires

refers

Agent

Commitment

debtor/creditor

Role

plays

desires

Goal

Task
Business

Relationship
contains

Figure 1: Business model

Value transfers between the agents when they execute tasks for one

another.

Capability: an abstraction of the tasks that an agent can per-

form.

Commitment: a directed obligation from a debtor to a credi-

tor [8]. A commitment C(DEBTOR, CREDITOR, antecedent, con-

sequent) denotes that the DEBTOR is obliged to the CREDITOR

for bringing about consequent if antecedent holds. A commit-

ment C(BUYER, SELLER, goods, pay) means that buyer commits

to paying the seller if goods are delivered. When the seller delivers

goods, the buyer becomes unconditionally committed to paying. In

the event that the buyer makes a payment, this commitment is dis-

charged.

At run-time, commitments arise between agents, but at design-

time we specify them between roles. Being able to manipulate

commitments yields the flexibility needed in open interactions. A

commitment may be created. When its consequent is brought about,

regardless of whether antecedent holds or not, it is discharged, i.e.,

satisfied. If its antecedent is brought about then it is detached.

The creditor may assign a commitment to another agent. Con-

versely, a debtor may delegate a commitment to another agent. A

debtor may also cancel a commitment and a creditor may release

the debtor from the commitment. Further, a commitment moves

among four main states: active (when it is created and (presum-

ably) being worked upon), pending (when it has been delegated

and is not being worked upon), satisfied, and violated.

Business relationship: a set of interrelated commitments among

two or more roles that describe the value to be exchanged among

the roles.

In simple terms, each agent’s main motivation behind forming a

business relationship is to access the capabilities of others.

2.1 Running Example
We evaluate the proposed metamodel and patterns via a real-

world insurance claim processing use case involving AGFIL, an

insurance company in Ireland [4]. AGFIL underwrites automobile

insurance policies. Fig. 2 shows the parties and processes involved

in the business service of (emergency) claim processing that AG-

FIL provides.

To provide this service, AGFIL must provide claim reception and

vehicle repair to the policy holders. Additionally, it needs to assess

claims to protect against fraud. AGFIL depends on its partners,

Notify

Lee

C.S.

Obtain

claim

form

Check

claim

form Amend

estimate

Reconcile

info
Finalize

claim

Gather

info

Validate

info

Assign

garage

Notify

AGFIL

Receive

car

Estimate

repair

cost
Inspect

car

Repair

car
Invoice

Obtain

details

Contact

garage

Assign

adjustor

Agree

repair

Check

invoice

Estimate

< 500

E

u

r

o

p

A

s

s

i

s

t

AGFIL

Lee C. S.

Repairer

Figure 2: Insurance claim processing [4]

Europ Assist (EA), Lee Consulting Services (CS), and repairers,

for executing these tasks. EA provides a 24-hour helpline for cus-

tomers to report a claim and provides an approved repairer garage.

CS assesses and presents invoices to AGFIL on behalf of the re-

pairers. A network of approved repairers provide repair services.

AGFIL retains the authority for final claim approvals.

2.2 Patterns
A pattern, in the context of this paper, is a recipe for modeling

recurring business scenarios. This section describes a key set of

such patterns, which could seed a potential business model pattern

library. Section 3 demonstrates the effectiveness of this simple set

of patterns on an existing use-case based on a real-life scenario.

Of the 13 attributes in the classical template for object oriented

design patterns [6], we use name, intent, motivation, implementa-

tion, and consequences to describe our patterns. Here the conse-

quences of a pattern allude to the practical consequences of ap-

plying the pattern, i.e., the assumptions underlying the model. The

pattern figures use the notation of Fig. 1, and additionally show two

directed edges for each commitment: from the debtor to the com-

mitment and from the commitment to the creditor. The subscript

on a commitment indicates its state: A for active, D for detached,

S for satisfied, and P for pending. The patterns are expressed in

terms of roles and would be instantiated by the agents who adopt

the specified roles. Each role of a pattern must be adopted by some

agent in order for the resulting business relationship to be executed.

2.3 Unilateral Commitment

R1 R2 R1 R2

C1A

Create C1

C1 = C(R1, R2, p, q)

Figure 3: Unilateral commitment

Intent: A performer commits to a beneficiary for value transfer.

There is no commitment from the beneficiary.

Motivation: For example, a conference committee member com-

mits to a program chair to review a paper that the program

37

asks the member to review it. The chair makes no converse

commitment.

Implementation: A commitment is created from the performer

(R1) to the beneficiary (R2) for a value transfer. Figure 3

shows this pattern.

Consequences: This presumes a side benefit to the performer.

2.4 Commercial Transaction

R1 R2 R1 R2

C1A

Create C1

Create C2

C1 = C(R1, R2, p, q)

C2 = C(R2, R1, q, p)

C2A

Figure 4: Commercial transaction

Intent: This pattern expresses a value exchange between two trad-

ing partners. The trading partners negotiate and, upon agree-

ment, commit to each other for the specified value transfers.

Motivation: A typical barter motivates this pattern. For example,

a seller and a buyer agree to exchange goods for payment.

A more conventional barter would be when the parties ex-

change goods and services rather than money for goods or

services.

Implementation: A pair of reciprocal commitments between the

trading partners (R1 and R2, treated symmetrically) specify

the pattern. Figure 4 shows this pattern.

Consequences: In general, the antecedents and consequents of the

commitments are both composite expressions. Importantly,

we need a mechanism to ensure progress by in essence break-

ing the symmetry, e.g., via a form of concession [10].

2.5 Outsourcing

Intent: An outsourcer delegates a task to a subcontractor, typically

because the outsourcer lacks the necessary capabilities or ex-

pects some other benefit such as a more efficient solution or

a lower risk of failure.

Motivation: Many business organizations outsource noncore ac-

tivities. As an example, consider a customer who signs up

for cable television service. The cable operator commits to

the customer for installation. Instead of staffing its entire ser-

vice area, the cable operator outsources the installation task

in several regions to its local partners in those regions.

Implementation: The outsourcer is the current debtor (R1). The

current debtor and the new debtor (R2) create a relationship,

following which the current debtor delegates the commit-

ment to the new debtor. The existing commitment becomes

pending; the new commitment becomes active. The creditor

is unchanged. Figure 5 shows this pattern.

Consequences: The business relationship between the new and

old debtors would be a standing arrangement, which must

have a scope and lifetime no smaller than that of the dele-

gated commitment. The commitment from the old debtor is

pending and must either be considered discharged or reacti-

vated depending on how the new debtor performs.

R1 R2 R1 R2

C3ACreate C3

Create C4

C1 = C(R1, R3, r, s)

C2 = delegate(C1, R2) = C(R2, R3, r, s)

C3 = C(R1, R2, delegate(C1, R2), p)

C4 = C(R2, R1, p, delegate(C1, R2)

C4A

R3

C1A

R3

C1A

p

Create C2

R1 R2

C3S

C4S

R3

C1P
C2A

Figure 5: Outsourcing

2.6 Standing Service Contract

R1 R2 R1 R2

C1A

C2A

Create C1

Create C2

p

Create C3

Create C4

R1 R2

C1S

C2S

C3A

C4A

C1 = C(R1, R2, Create(C3) ^ Create (C4), p)

C2 = C(R2, R1, p, Create(C3) ^ Create (C4))

C3 = C(R2, R1, r, s)

C4 = C(R2, R1, t, u)

Figure 6: Standing service contract

Intent: A service provider negotiates with a consumer for provid-

ing service over a specified duration, and creates a pair of

commitments. The consumer’s request for a service instance

detaches the standing commitment. The provider then cre-

ates one or more commitments for providing the service in-

stance.

Motivation: A business service such as plumbing maintenance or

a line of credit from a bank refers to (potentially) numer-

ous service instances. Whenever the faucet leaks (within

specified limitations), the plumber will fix it. Whenever the

customer submits a check for an amount up to the specified

credit limit, the bank will disburse funds.

38

Implementation: The service provider (R1) and consumer (R2)

enter into the following commitments. Here, C1 and C2 are

reciprocal commitments (as in the commercial transactions

pattern) that describe the standing service contract. C3 and

C4 arise from the consumer exercising the service contract.

Figure 6 shows this pattern.

Consequences: The standing contract must be of sufficiently large

scope to cover the cases of interest but should generally be

bounded in the effort it requires. This pattern can be applied

multiple times as when a consumer pays a subscription every

month to obtain a continuing plumbing warranty.

3. AGFIL BUSINESS MODEL
This section applies the patterns to the AGFIL scenario and de-

scribes the resulting business model. AGFIL, an insurer (I), has a

goal to provide emergency service, which requires the capabilities

for claim reception, claim assessment, claim finalization, and ve-

hicle repair. Except claim finalization, which it possesses locally,

AGFIL acquires the remaining capabilities from its partners.

The insurer delegates to the call center its claim reception com-

mitment to the policy holder. Although the commitment from the

insurer to the policy holder for claim reception is not created yet,

the insurer chooses to set up the delegation earlier. The outsourcing

pattern models this scenario. The insurer selects EA as a call cen-

ter provider (C). The selection process is out of our present scope.

Figure 7 shows how the outsourcing pattern applies.

C1. C(C, I, payCallcenter, create(C3))

C2. C(I, C, create(C3), payCallcenter)

C3. C(C, P, reportAccident, receiveClaim)

C I C I

C1A

C2A

C I

C1D

C2S

C I

C1S

C2S

C3A

P

Create C1

Create C2

payCallcenter

Create C3

Figure 7: Claim reception: Outsourcing

The insurer and the call center agree upon the payment that the

insurer makes to the call center, for providing claim reception to

the policy holder, and create commitments C1 and C2. The com-

mitment C1 means the call center commits to the insurer for cre-

ating commitment C3, which is to receive claims from the policy

holder, provided the insurer pays the call center. The commitment

C2 means the insurer commits to the call center for payment if the

call center creates C3. The insurer pays the call center, and there-

fore discharges C2 and detaches C1. Later, the call center creates

C3 and discharges C1.

The insurer outsources the claim assessment capability to Lee

CS, an assessor. In this case, the outsourcing pattern does not ap-

ply since the insurer is not delegating a commitment. That is, the

insurer requires claim assessment for itself. Instead, the commer-

cial transaction pattern models this scenario.

C4. C(A, I, payAssessor ∧ reqAssessment, agreeToRepair)

C5. C(I, A, agreeToRepair, payAssessor)

The commitment C4 means the assessor commits to the insurer,

for negotiating repair cost and to bring about the agreement to re-

pair with the repairer, provided the insurer pays the assessor and

makes a request for assessment. The commitment C5 means the

insurer commits to the assessor for the payment provided the as-

sessor brings about agreement to repair.

The assessor outsources the vehicle inspection to an adjuster (D).

The commercial transaction pattern models this scenario. Since

this scenario is similar to the claim assessment scenario, to save

space, we do not describe it in detail.

A policy holder (P) desires to get insurance. Through a directory

service, the policy holder locates AGFIL, the insurer. The policy

holder and the insurer interact to setup the insurance service con-

tract. The service contract pattern models this scenario. Figure 8

shows how the service contract pattern applies.

C8. C(P, I, insurance, payInsurer)

C9. C(I, P, payInsurer, insurance)

C10. C(I, P, reportAccident, receiveClaim)

C11. C(I, P, requestService, repairVehicle)

P I P I

C8A

C9A

Create C8

Create C9

payInsurer

P I

C8S

C9D

Create C10

Create C11

P I

C8S

C9S

C10P

C11A

Figure 8: Insurance purchase: Service contract

Commitment C8 means the policy holder commits to the insurer

for payment if insurance is provided, and commitment C9 means

the insurer commits to the policy holder for insurance if the policy

holder pays the insurer. To provide insurance, the insurer creates

the commitments C10 and C11, that is, insurance = create(C10) ∧
create(C11). Commitment C10 means the insurer commits to re-

ceiving claim if the policy holder reports an accident, and in com-

mitment C11, the insurer commits to repairing the (insured) vehi-

cle if the policy holder requests repair service for it. The insurer

changes the status of commitment C10 to pending, since it has del-

egated that commitment to the call center. Recall that C3 results

from the delegation of C10. That is, C3 = delegate(C10, C).

To assess a claim, the assessor has the adjuster inspect the vehi-

cle. The assessor negotiates with the repairer. By bringing about an

agreement to repair, the assessor satisfies its commitment to the in-

surer C4. Figure 9 shows how the outsourcing pattern now applies

between the insurer, the repairer, and the policy holder.

39

agreeToRepair

Create C12

Create C13

R

A I

C4A

P

C11A

R

A I

C4S

P

C11A

C12A C13A

Create C14

payRepairer

R

A I

C4S

P

C11P

C12A C13S

C14A

R

A I

C4S

P

C11P

C12S C13S

C14A

Figure 9: Vehicle repair: Outsourcing

C12. C(I, R, delegate(C11, R) ∧ agreeToRepair, payRepairer)

C13. C(R, I, payRepairer, delegate(C11, R))

C14. delegate(C11, R) = C(R, P, requestService, repairVehicle)

Commitment C12 means the insurer commits to the repairer for

paying the repair charges, if the repairer accepts the delegation of

C11 and creates C14. Commitment C13 means the repairer com-

mits to accepting the delegation of commitment C11 if the insurer

pays. In the delegated commitment C14, the repairer commits to

the policy holder for vehicle repair when the policy holder requests

for repair. The repairer satisfies the commitment C13 by creating

C14, and detaches C12. Later the insurer discharges C12 by paying

the repairer. Note that it is not necessary for the insurer to pay the

repairer at this time, and other evolutions are possible. For exam-

ple, the repairer may repair the vehicle, that is, satisfy the commit-

ment C14, before the insurer pays. We describe one possible model

evolution above.

4. VERIFYING AGENT INTERACTIONS
This section presents an algorithm for verifying if each partner

complies with a business model. An agent complies with a business

model if it discharged each detached commitment of which it is the

debtor. We consider a UML sequence diagram as a low-level model

for agent interactions. The agents may exchange multiple messages

for executing one task. For example, the policy holder may report

an accident by sending a message to the insurer; the insurer may

request additional information, leading to further messages. In the

interaction model (based on a sequence diagram), we assume that

upon completing a task, the executor of the task sends a message

asserting its completion.

Given a business model and an interaction model, Algorithm 1

returns a set of violated commitments. We assume that the inter-

action model captures all agent interactions. The algorithm iterates

over the commitments from the business model and evaluates the

antecedent and consequent of each using the tasks asserted in the

interaction model. The antecedent and consequent of a commit-

ment are formulae each containing a disjunction of tasks. The eval
procedure evaluates these based on the tasks asserted in the interac-

tion model. The commitments whose consequent evaluates to true

are satisfied, whereas the commitments whose antecedent evalu-

ates to true, but whose consequent evaluates to false, are detached

Algorithm 1: verifyInteractions(m, i): Verify agent interac-

tion model i with respect to business model m

C = m.C; // Model Commitments1

CS = (); // Satisfied commitments2

CV = (); // Violated commitments3

T = i.T ; // Tasks completed in the interaction model4

foreach c ∈ C do5

if (eval(c.consequent, T) = true) then6

CS.add(c);7

foreach ((c ∈ C) ∧ (c /∈ CS)) do8

if (eval(c.antecedent, T) = true) then9

CV.add(c)10

return CV ;11

commitments that are violated. The debtors of the violated com-

mitments are the agents that do not comply with the given business

model (within the scope of the given interaction model).

Policy Holder Call Center

reportAccident

receiveClaim

(a) (b)

Policy Holder Call Center

receiveClaim

(c)

Policy Holder Call Center

reportAccident

Figure 10: Verifying agent interactions

For example, in the AGFIL business model, consider the com-

mitment C10 = C(C, P, reportAccident, receiveClaim). An inter-

action model in which neither of the tasks, reportAccident and re-

ceiveClaim, are asserted, is a trivial case where both agents, the

policy holder (P) and the call center (C), comply with the business

model. In Fig. 10(a), the policy holder reports an accident, and

detaches the commitment C10. The call center receives the claim,

and therefore, satisfies the detached commitment C10. In this case,

both the agents comply with the business model. In Fig. 10(b), the

call center receives the claim and satisfies the commitment C10.

This is another case where both the agents comply with the busi-

ness model. In Fig. 10(c), the policy holder reports an accident,

but the call center does not receive the claim. The call center vio-

lates the detached commitment C10, and lacks compliance with the

business model.

5. COMPLETENESS
Agents enter in a business relationship for achieving their re-

spective goals. A business model in which all agents achieve their

goals is complete. It is important to check for model completeness,

since in its absence, some agents will not achieve goals and desire

to leave the relationship. That is, the business model will not be

stable.

The Algorithm 2 checks a model for completeness. For each

agent, the algorithm checks if the agent can achieve all of its goals.

40

Algorithm 2: verifyCompleteness(m): Verify completeness

of business model m
C = m.C; // Model Commitments1

A = m.A; // Agents2

foreach (a ∈ A) do3

G = a.G; // Agent goals4

foreach (g ∈ G) do5

GT = g.T ; // Tasks for goal6

AT = a.T ; // Agent tasks7

task: foreach ((t ∈ GT) ∧ (t /∈ AT)) do8

foreach (c ∈ C) do9

if ((c.creditor = a)∧10

(t ∈ tasks(c.consequent)) ∧
(tasks(c.antecedent) ⊂ AT)) then

next task;11

return false;12

return true;13

An agent a can achieve a goal g, if it can execute all the tasks re-

quired for that goal. In case where the agent cannot execute all the

tasks required for its goal, the model must contain commitments

from other agents to execute the remaining tasks. Additionally,

the agent a should be able to execute the tasks specified in the an-

tecedents of those commitments. In the model, if there is an agent

who cannot achieve a goal, then the algorithm returns false indicat-

ing that the model lacks completeness. Otherwise, the algorithm

returns true.

For example, consider the AGFIL business model. The assessor

has the goal of claim assessment. To assess a claim, the assessor

needs to inspectVehicle and agreeToRepair. The assessor has the

capability of bringing about agreeToRepair, but it lacks the capa-

bility to inspectVehicle. In this case, for completeness, the model

must contain commitment from some other agent to inspectVehi-

cle. Additionally, the assessor should be able to bring about the an-

tecedent of that commitment. For example, C(D, A, payAdjuster,

inspectVehicle) is a commitment required for model completeness,

assuming the assessor can payAdjuster.

6. DISCUSSION
This section compares our approach with some existing approaches.

Existing high-level approaches capture business organizations and

value exchanges among them [1]. Many of these approaches are

semiformal and are developed for valuation and profitability anal-

ysis. They lack a rigorous treatment of business relationships (as

via commitments) and lack a corresponding business-level notion

of compliance.

Gordijn and Wieringa [7] propose the e3-value approach, which

captures a business organization as an actor. This is similar to the

notion of an agent from our model. Actors execute value activities

similar to the tasks in our model. In e3, a value interface aggregates

related in and out value ports of an actor to represent economic reci-

procity. This concept is close to our concept of commitment, but it

lacks formal semantics and doesn’t yield equivalent flexibility. For

example, commitments can be delegated unlike value interfaces.

Due to this, an e3 model may capture value exchange among two

actors, but during execution, the exchange and interaction may take

place between two different actors.

Tropos [2] is an agent-oriented software methodology based on

concepts of actor, goal, plan, and actor dependencies. The concepts

of role, goal, and task from our model are similar to the Tropos

concepts of actor, goal, and plan, respectively. A key difference

between our model and Tropos is the concept of commitment. In

Tropos, a dependency means that a depender actor depends on a de-

pendee actor, for executing a plan or achieving a goal. This concept

of dependency does not model what is required of the depender, and

the dependee unconditionally adopts the dependency. Our debtor,

creditor, and consequent are similar to the Tropos dependee, de-

pender, and dependum, respectively. Unlike a dependency, a com-

mitment includes an antecedent that brings it into full force. This

allows modeling of reciprocal relationships between economic en-

tities, which is lacking in the concept of dependency.

Opera is a framework for modeling multiagent societies [9], though

from the perspective of a single designer or economic entity. In

contrast, we model interactions among multiple entities. Opera’s

concepts of landmark, scene, and contract are close to our concepts

of task, protocol, and commitment, respectively. However, Opera

uses traditional obligations, which lack the flexibility of commit-

ments.

Amoeba [5] is a process modeling methodology based on com-

mitment protocols. This methodology creates model in terms of

fine-grained messages and commitments. In contrast, our model is

at a higher level of abstraction containing business goals, tasks, and

commitments.

Conclusion: The main contributions of this paper are a busi-

ness metamodel, a set of modeling patterns, and algorithms for

verifying compliance and completeness of service engagements to

business models. Our set of business model patterns is clearly not

exhaustive; nor do we expect any set of patterns to be exhaustive—

hundreds of patterns exist for programming and for software archi-

tecture, and the domain of business models is at least as complex as

those. However, our core set of patterns shows how we may con-

struct additional patterns. Future work includes development of a

methodology for business modeling, model formalization and com-

plexity analysis, and graphical tools for creating business models.

7. REFERENCES
[1] Birger Andersson, Maria Bergholtz, Ananda Edirisuriya,

Tharaka Ilayperuma, Paul Johannesson, Jaap Gordijn,

Bertrand Grégoire, Michael Schmitt, Eric Dubois, Sven

Abels, Axel Hahn, Benkt Wangler, and Hans Weigand.

Towards a reference ontology for business models. In

David W. Embley, Antoni Olivé, and Sudha Ram, editors,

Conceptual Modeling - ER 2006, 25th International

Conference on Conceptual Modeling, Tucson, AZ, USA,

November 6-9, 2006, Proceedings, volume 4215 of Lecture

Notes in Computer Science, pages 482–496. Springer, 2006.

[2] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto

Giunchiglia, and John Mylopoulos. Tropos: An

agent-oriented software development methodology.

Autonomous Agents and Multi-Agent Systems, 8(3):203–236,

2004.

[3] BRG. The business motivation model, 2007.

[4] Sinead Browne and Michael Kellett. Insurance (motor

damage claims) scenario. Document Identifier D1.a,

CrossFlow Consortium, 1999.

[5] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh.

Amoeba: A methodology for modeling and evolution of

cross-organizational business processes. ACM Transactions

on Software Engineering and Methodology (TOSEM), 2009.

To appear.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable

41

Object-Oriented Software. Professional Computing Series.

Addison-Wesley, Reading, MA, 1995.

[7] Jaap Gordijn and Roel Wieringa. A value-oriented approach

to E-business process design. In Johann Eder and Michele

Missikoff, editors, Advanced Information Systems

Engineering, 15th International Conference, CAiSE 2003,

Klagenfurt, Austria, June 16-18, 2003, Proceedings, volume

2681 of Lecture Notes in Computer Science, pages 390–403.

Springer, 2003.

[8] Munindar P. Singh. An ontology for commitments in

multiagent systems: Toward a unification of normative

concepts. Artificial Intelligence and Law, 7:97–113, 1999.

[9] Hans Weigand, Virginia Dignum, John-Jules Ch. Meyer, and

Frank Dignum. Specification by refinement and agreement:

Designing agent interaction using landmarks and contracts.

In Paolo Petta, Robert Tolksdorf, and Franco Zambonelli,

editors, ESAW, volume 2577 of Lecture Notes in Computer

Science, pages 257–269. Springer, 2002.

[10] Pınar Yolum and Munindar P. Singh. Enacting protocols by

commitment concession. In Proceedings of the 6th

International Joint Conference on Autonomous Agents and

MultiAgent Systems (AAMAS), pages 116–123, May 2007.

42

	Preface2009
	SOCASE09
	ContractObservation-SOCASE09-camera ready-fixed
	Introduction
	Contract Observation Process
	Observation in Web Services Environments
	Observation in the CONTRACT Framework
	CONTRACT Framework Architecture
	Observation Pipeline

	Related Work
	Conclusions
	Acknowledgement
	References

	Helmy-SOCSW09
	INTRODUCTION
	RELATED WORK
	BUILDING THE MODEL
	Rationale for Selecting Gaia
	Requirements
	Analysis
	The Environment Model
	The Role Model
	The Interaction Model

	Design
	The Agent Model
	The Acquaintance Model

	Prototype Implementation

	MODEL EXTENSIBILITY
	Adding a Speech Recognition Agent
	Adding a Calendar Scheduling Agent

	EXECUTION SCENARIO
	CONCLUSION
	In this paper, we have discussed the importance of following
	ACKNOWLEDGEMENT
	REFERENCES

	AAMAS09W05
	SOCASE-P11
	Agent-based Framework for Personalized Service Provisioning in Converged IP Networks (AAMAS format)
	socase-09-paper-12-camera-ready

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

