. J. ALG. DISC. METH. .- © 1985 Society for Industrial and Applied Mathematics
,, No. 4, October 1985 ’ . 014

PROFILE SCHEDULING OF -
OPPOSING FORESTS AND LEVEL ORDERS*

DANNY DOLEVY AND MANFRED K. WARMUTH

Abstract. The question of existence of a schedule of a given length for n unit length tasks on m identical
ocessors subject to precedence constraints is known to be NP-complete [Ullman, J. Comput. System Sci.,
)(1976), pp. 384-393]. For a fixed value of m we present polynomial algorithms to find an optimal schedule
)r two families of precedence graphs: level orders and opposing forests. In the case of opposing forest our
Jgorithm is a considerable improvement over the algorithm presented in [Garey et al., SIAM J. Alg. Disc.
deth., 4 (1983), pp. 72-93].

1. Introduction. The goal of deterministic scheduling is to obtain efficient
algorithms under the assumption that all the information about the tasks to be scheduled
isknown in advance [Co76], [GL79]. One of the fundamental problems in deterministic
scheduling is to schedule a collection of n partially ordered, unit length tasks on a
mnumber of identical processors. As in [GJ83], [DW84a], [DW84b] we dllow the number

of identical processors to vary with time. This is described by a sequence of natural
numbers, called a profile specifying how many processors are available at each unit
of time (time slot). The breadth m, of a profile is an upper bound on the number of
processors available at any time. A profile is strazght if the number of available
processors is the same at any time.

% A schedule for a given profile is a partitioning of all the tasks into a sequence of
sets which does not violate the precedence constraints and the number of tasks in each
set does not exceed the number of available processors specified by the profile for the
corresponding time slot.

& Various aspects of scheduling theory have been extensively studied in recent years

[GL79] and many scheduling problems are known to be NP-complete [GJ79). The first

NP-completeness result on scheduling with precedence constraints was published by

Ullman [U175]. He showed that the existence of a schedule of a given length on a

straight profile for a collection of unit length tasks subjected to precedence constraints

is NP-complete in case where the breadth of the profile is a variable of the problem,
that is, the breadth of the profile is not bounded by a constant. This problem remains

. NP-complete even for precedence graphs of special forms [GJ83], [Ma81], [Wa81].

} Polynomial algorithms have been developed only for a few special cases of
SChedulirig unit length tasks with precedence constraints. The first polynomial algorithm
was developed by Hu [Hué61]. It produces an optimal schedule for a straight profile

. 30f arbitrary breadth if the precedence graph is either an inforest or an outforest. Hu’s
dlgorithm produces a schedule according to the Highest Level First (HLF) strategy,

. neaning tasks of higher level are chosen over tasks of lower level and among tasks of
the same level ties are broken arbitrarily. Restricted versions of HLF provide optimal

:\SChedules if the precedence graph is an interval order [PY79], [Ga81], or if the number

- of avajlable processors is two [FK71], [CG72], [Ga82].

- The major scheduling problem remaining open is whether the scheduling of an

0 itrary graph is NP-complete or polynomial for fixed number (m = 3) of processors.

thls paper we address two special cases of the above open problem. We utilize the

* Received by the editors August 2, 1982, and in revised form May 31, 1984.

. .'!‘ IBM Research Laboratory, San Jose, California 95193. Current address: Institute of Mathematics and
mputer Science, Hebrew University, Jerusalem, Israel.

1 Computer Science Department, University of California, Santa Cruz, California 95064.

665

-0

e R —

666 _ DANNY DOLEV AND MANFRED K. WARMUTH

results presented in [Wa81], [DW84a] to obtain polynomial algorithms for two familjeg
of precedence constraints (precedence graphs): level orders and opposing forests, A
graph is a level order if-each connected component is partitioned into some k levelg
Ly, -, Ly, such that for every two tasks x € L; and y € L;, where i> j, x precedeg .
We present an algorithm for finding optimal schedules for this class that requires timg
and space O(n™""). An opposing forest [GJ83] is a graph composed of intrees and
outtrees only. It is a generalization of the cases solvable by Hu’s [Hu61] algorittim,
Garey, et al., [GJ83] presented a polynomial algorithm for finding an optimal schedyle
in the case of opposing forest and straight profile of fixed breadth m = 3. Their algorithy -
costs O(n™*2m=5 log n) time and O(n) space. The algorithm we presented for thig
case is bounded by O(n*""?log n) time and O(n™"") space. For the special case m=3
there exist a linear algorithms to find an optimal schedule [DW84a], [GJ83].
Our polynomial algorithms are based on the reduction theorem, which is proved
in § 3. The reduction theorem is another form of the elite theorem [DW84a]. It reduces -
the number of components we have to consider at each step of the algorithm to at :
most m—1 (the highest ones) and therefore enables us to obtain efficient algorithms,
Notice that if the breadth of the profile is a variable of the problem rather than -
fixed, then scheduling a level order or an opposing forest becomes NP-complete [GJ83], -
[Ma81],[Wa81]. Thus our algorithms are expected to have a high complexity (exponen-
tial in the breadth m). A similar case was published in [DW84b]. It was shown that
scheduling a precedence graph of bounded height on a profile of fixed breadth is
polynomial. For profiles of arbitrary breadth the problem is again NP-complete [LR78]},
even if there is an arbitrary number of processors in only one time slot and one
processor in all other slots [Wa81], [DW84a].
In § 2 we present the main notions used in the rest of the paper. Section 3 contains
the reduction theorem. In §§ 4 and 5 we present the polynomial algorithm for leve
orders and opposing forests, respectively. '

2. Basic definitions and properties.

2.1. Graph definitions. A (precedence) graph G is a directed acyclic graph given
as a tuple (V, E), where V is the set of n vertices (or tasks) and E the set of edges of =
G. A (directed) path m of length r in a precedence graph G =(V, E) is a sequence of
vertices x,, * * * , X,, such that the edge (x;, x;4,), for 0Si=r—1, is in E. A precedence *,
graph G specifies the precedence constraints between the vertices (tasks) of G. We .,
assume that if a task x has to be executed before a task y, then there exists a (directed) ‘
path of positive length from x to y in G, that is, x is a predecessor of y, and y is 8
successor of x. In the case where the longest path from a vertex x to a vertex y is the
edge (x, y), x is an immediate predecessor of y and y is an immediate successor of x. .
Vertices x and y are incomparable, if x is neither a predecessor nor a successor of y. ’“
A set of vertices is incomparable if for any two vertices x and y of the set, x and ¥ *
are incomparable, that is, there is no path between any two distinct vertices of the set- =

By h(G) we mean the height of G, which is the length of the longest path in G
For a vertex x€ G (i.e., x€ V) we denote by h(x) the length of the longest path that
starts at x. A vertex with no successors has zero height. Vertices with identical height
are said to be at the same level. Observe that all vertices of the same level aré:
incomparable. ‘ i

The graph G' is a (closed) subgraph of G if every vertex of G’ has the sames
successors in G’ as it has in G. A vertex of G, is initial if it has no predecessors. NOt€
that an initial vertex of G is not necessarily of maximum height in G. A set of 1 high'e"tf
initial vertices of G is a subset of initial vertices containing the t highest ones. Thes

FREREINFVELE i

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 667

2 resolved arbitrarily. If there are less than ¢ initial vertices then the- set-consists of
{ of them.

i Let R be a set of initial vertices of G; then G—R is the closed subgraph of G
Dtamed by removing all the vertices of R from G. Given two graphs G=(V, E) and
'_'—(V’ E"), then GU G’ denotes the graph (VU V', EU E’). The graph G=(V, E)
. composed of {G,, - - -, G,} if these closed subgraphs (called components of G) are
.decomposition of G into its connected components, that is each closed subgraph is
, connected graph and there are no edges between veruces of dlﬁerent components
herefore G=U;G.
% An inforest (respectively outforest) is a graph in which each vertex has at most
one immediate successor (respectively one immediate predecessor). Notice that out-
forest is composed of components, each of which has exactly one initial vertex and it
consists of this vertex and all its successors. A component of an outforest is called
puttree and similarly a component of an inforest is called intree. ’
% In a level order graph each component has the following form: Every vertex of
. level i precedes all vertices of the component from all the levels below i. Note that all
vertices of the same component of a level order that are at the same level are isomorphic.
Thus, we can assume that such a component is given as a tuple specifying how many
vertices are in each level of the component.

~ 2.2. Profile definitions. We partition the time scale into time slots of length one.
The time interval [i — 1, i) for i = 1 is the ith time slot. A profile is a sequence of positive
integers specifying the number of identical processors that are available in each time
slot. We shall interpret profile M =(m, - - -, m;), where d is its length, to mean that
§ for cach slot i in [0, d) there are m; processors available.

& & The breadth of profile M is the upper bound on the number of processors that
& are available at any time slot of M. The profile of Table 2.1 has breadth 4. Throughout
& the paper we denote the breadth of the given profile with the letter m. We call a profile
M straight if m;=m, for all 1=i=d.

i
€

TABLE 2.1
A schedule for G fitting the profile M =(2,4,2,1,1).

slot 1 2 3 4 6

P lalisls] 1
P, 1512109

Ps 7

Ps 8

m; 2 4 2 1 1

% 2.3. Schedule definition. A schedule S for a precedence graph G is a sequence
“Of sets (S)y, * * *, (S)k such that:

(i) the sets (S),, for 1=i=k, partition the vertices of G;

(ii) if x€(S); and y e (S),, for 1 =i=j=k, then there is no path from y to x.

, 4;; The length of a schedule A (S) is the index of the last nonempty set in the sequence.
A minimal length schedule is called optimal The schedule S fits the proﬁle M if the
’%gth of S is not greater than the length of the profile and the cardinality of (S); is
Iot greater than m,. The set of tasks (S); get executed in the ith time slot, that is |(S),]
the m; processors of slot i each execute a task of (S); during the time interval
1, 7). Note that all the tasks have unit length, which corresponds to the length of

me slot. An example is given in Fig. 2.1 and Table 2.1. The ithslot of S, 1=i= A(S),

668 DANNY DOLEV AND MANFRED K. WARMUTH

4 5
- 3 : :
6 7 8 9
F1G. 2.1. A precedence graph G.

has m; —|(S);| idle periods meaning that there are this many processors idle during tlme
slot i of S. _

Given a precedence graph G and profile M, the initial problem is to determine
if a schedule S exists for G and M. If a feasible schedule does exist, then we look for
the shortest schedule S for G that fits M. In the first issue we allow the pOSSIblhty
that there does not exist a schedule for G that fits M. In the second we assume that
there exists a feasible schedule and we are only interested in an optimal schedule.

A schedule S is an HLF-schedule for G and M if (S), 1=i=\(S), is a set of m;

highest initial tasks of the closed subgraph of G induced by all tasks scheduled in slot ===

i of S or later. HLF-schedules have the following property. Assume task x is scheduled
in slot i and y is scheduled in slot j. If h(x)> h(y), then either i =j or there is a_
predecessor of x in the jth slot. We say that HLF produces an optimal schedule if any.
HLF-schedule is optimal; that is, if an optimal schedule can be constructed by choosing
higher initial tasks before lower ones and choosing arbitrarily among initial tasks of
the same height. Note that the schedule of Table 2.1 is not a HLF-schedule; moreover,

no HLF-schedule is optimal for G (Fig. 2.1) and the profile of Table 2.1.

2.4. The median. The following definition relates the number of components of
a graph and the heights of the components with m; where m is the breadth of the proﬁle.'f

DEeFINITION. The median of precedence graph G with respect to a given m,;
denoted by w(G), is one plus the height of some mth highest component of G. If the
graph has less than m components, then the median is 0.

For example, if the precedence graph is the one in Fig. 2.2 and the breadth of
the given profile is three, then the median is three because three is one plus the height .
of the third highest component. For the graph described by Fig. 2.1 the median is 0
with respect to m=3.

We use the median to split the precedence graph G into two subgraphs. Let*
G = H(G)U L(G), where the high-graph H(G) contains all components of G that areé :
strictly higher than the median; the low-graph L(G) is the remaining subgraph of G.
Note that H(G) has at most m —1 components. Fig. 2.2 presents such a splitting of a -
precedence graph. We sometimes write u(G, m), H(G, m) and L(G, m) to denote the
median, the high-graph and the low-graph, respectively, for a specific m.

m =3

%/ - - - - median

F1G. 2.2. The decomposition of a graph G into H(G) and'L(G); * denote vertices of H(G) and 0 vem“‘
of L(G).

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS - 669

The following properties of the medlan are used in the current paper.

PROPERTIES OF THE MEDIAN.

M1: There are at most m—1 components of G having height at least u(G).

M2: If u(G)>0, then there are at least m components of G having height at
tp(G)—1.

M3: If G has at most m —1 components of height at least h, then u(G)=h.

M4: If G has at least m components of height at least h—1, then u(G)= h.

The above properties follow directly from the definition of the medxan Further
;pertles of the median were given in [DW84a]. -

3. Reduction theorem. In this section we present our main result, the reduction
;orem. We also prove several related theorems that are needed in later sections. The
juction theorem is a consequence of the MERGE Algorithm. The following lemma
iplies the correctness of the MERGE Algorithm. A component of a graph G is called
incipal if its height is at least h(G)—1.

LeMMA 3.1. Let G be a graph and let G' be a subgraph of G obtained by removing
set of q highest ‘initial tasks from G. Then G’ contains at least as many principal
omponents as the original graph G, unless h(G')=0.

Proof. If the lemma holds for g =1, then it clearly holds for arbitrary g. Let x be
. highest vertex of G, I be the principal component of G that contains x and

= G—{x}. Assume h(G')>0. To show that G' contains at least as many principal

:omponents as G observe that h(I)=h(G)> 0 and therefore I —{x} contains a prin-

dipal component of G'. Furthermore all principal components of G other than I are

also principal components of G', because h(G') = h(G). We conclude that the number
of principal components does not decrease when x is removed. 0

The following algorithm shows how one can “merge” a schedule for a collection

of subgraphs with a collection of subgraphs of lower height to get a schedule for the

‘combined graph.

i

él ArLcoriTHM 3.1. (the MERGE Algorithm)
Input: ~ A graph L=U]_; L, such that h(L))= h(L)—1;
a graph H=U{, H, such that h(H;)>h(L), and g+rzm
a schedule S for H and M with p idle periods, where M is a profile
: of breadth m.
Output: A schedule S’ for HUL and M such that S’ is not longer than the
schedule S in the case where p =|L|; and otherwise, S’ is longer than

S but has idle periods only in its last slot.

T

f-r 1. k=0
g s
. While h(L)>0 do
% 21. k=k+1
2.2. While (S)x is not full and not all initial vertices of H are scheduled in

(8)x do

2.2.1. Transfer an initial vertex of H from a slot after k to (S')w
2.3. Fill (§"), with mk—l(S’)kf highest initial vertices of L.
2.4. Remove the vertices of (S"), from L, H and its subgraphs H.
2.5. While there is a subgraph H; of H, such that h(H;)= h(L) do

2.5.1. Transfer the graph H; from H to L.

g=q—-1;r=r+1
2.5.2. Remove the vertices of H; from S'.

670 DANNY DOLEV AND MANFRED K. WARMUTH

3. While L is nonempty do
3.1, k=k+1 i
3.2. While (S"), is'not full or L is not empty do
3.2.1. Add a vertex of L to slot k of S’ and remove it from L.

A hzgh level description of the MERGE algorithm. The aim of the algorithm is tq "
“merge” the schedule S for H and M with the vertices of L producing a schédule S’
for HU L and M. The length of S’ depends on the relationship between p, the number?‘
of idle penods in S and the number of vertices in L. If p> |L|, then there is enough :
“space” in S for all vertices of L and the resulting schedule S’ is at most as long as
S. Otherwise, S does not have enough idle periods and S’ is longer than S. In thls
case, S’ only has idle periods in its last slot.

At Step 1 of the algorithm we initialize S’ with the schedule S for H and M'f
During Steps 2 and 3 the vertices of L are added into in S’. While doing so we
sometimes reschedule vertices of H in S’ (see Steps 2.2.1 and 2.5.2).

If h(L)=0, then “merging” is easy (see Step 3). In this case, L is a set of smglef
vertices. The algorithm consecutively fills the slots of S’ with vertices of L until L 1sif
empty.
If h(L)>0, then “merging” is slightly more involved (see Step 2). The vanable'yf
g will be the number of subgraphs H; that are left in H. All of these graphs will have
height bigger than h(L). If some of them drop down to height h(L) during Step 24,
then these subgraphs are transferred from H to L at Step 2.5. The variable r has the
following meaning. During the algorithm it will be assumed that L has at least r.
principal components. The sum of g and r is at least m throughout the loop 2. This
assures that there will be at least m initial vertices in HU L, at least q in H and at
least r in L. We transfer components from H to L to avoid that some subgraphs H{
of H get completely scheduled and the sum of q and r drops below m. e

Correctness of the MERGE algorithm: In the new schedule S' the precedence’
constraints specified by G are not violated, because we iteratively add vertices to S"
(Steps 2.2.1, 2.3 and 3.2) that are initial in the unscheduled portion of H U L. Loop 2
has the followmg invariant: L has at least r principal components and H has q
subgraphs H; of height bigger than h(L) and g+ rzm. 4

Note that by the definition of H, L, g and r the loop invariant trivially holds aftCt‘
Step 1. We want to show that if the loop invariant holds before Step 2.1 and h(L) is.

bigger than zero then it holds after Step 2.5, or h(L) equals zero. 5,
' At Step 2.4 only initial vertices are removed from H, H; and L. Therefore, their.
height can drop at most by one. This assures that after Step 2.4 the graph H contains
q subgraphs H,; of height at least h(L). By Lemma 3.2 we know that after Step 24:_:
either the graph L contains at least r principal components or h(L) = 0. Note that at
Step 2.3 (S"), was filled with highest initial vertices of L. At Step 2.5 all subgraphs H, [
of H that dropped down to height h(L) are transferred from H to L. The height h(L}
and the sum g+ r does not change during Step 2.5. Furthermore, if before Step 2. 5. ‘
L has at least r principal components then L has also at least r principal components
after Step 2.5.1, since each H; that is transferred contains at least one component 0%
height h(L). ThlS completes the proof of the invariant of Loop 2.

The following claim completes the proof of correctness. It shows that if p>|u
then A(S")=A(S), and if p<|L| then A(§")> A(S) and S’ has idle periods only in ‘ts
last slot.

CrLam 3.1,

(i) After Step 3 the schedule (S'),, - - -, (S')x_, does not have any idle periods..gja

PROFILE SCHEDULING: OPPOSING FOREDLID, AINL mnm v me wr =

- (ii) After Step 3 either k=A(S") or A(S')=A(S).

(m) If A(S8')> A(S) then S’ can have idle periods only in its last slot.

* (v) p=|L| if and only if A(S)SA(S).

Proof of (i). By the loop invariant we know that the current slot is filled up in
Steps 2.2 and 2.3. Thus, the schedule (8", -+ -, (8", does not have any idle periods
when Step 3 is reached. At Step 3 all the slots, except may be the last one, are completely
glled. This completes the proof of (i).

_ § Proof of (ii). At Step 1 the schedule S’ is initialized with S, and therefore
A(S)=A(S). During Steps 2 and 3 the algorithm never adds any vertices to any slot .
of S' with a higher index than the current slot k. On the other hand, in Steps 2.2.1 and
1.5.2 there are vertices removed out of slots with higher indices than the current slot
k. This implies that after Step 3, k=A(S") or A(S")= A(S).

- Proof of (iii). If A(S")> A(S) then (ii) implies that k = A(S’) after Step 3. Applymg
(i) we get that S’ can have idle periods only in its last slot.

i Proof of (iv). Assume A(S’)> A(S); then by (iii) we know that S’ can have idle
§ periods only in its last slot. In particular, there are no idle periods in slots 1 through
4 A(S) of S’, which implies that ¥ 5" m,<|H|+|L|. Since p can be expressed as
; ,(m“sl) m;)—[HI it follows that p<|L|.

. To prove the opposite direction of (iv) assume that p <|L|. Expressing p as
$2% m, —|H| implies that ¥}’ m, <|H|+|L|. Since S’ is a schedule for HU L, we
have |[H|+|L|=Y1"" m,. Combining both inequalities we get YA m, <Y m, which
implies A(S) <A(S").

Herewith we completed the proof of the claim and the proof of correctness of the
MERGE algorithm. 0O

The MERGE algorithm is linear even if G is not transitively reduced [AH74].

LemmMma 3.2 [Wa81]. The MERGE algorithm can be implemented in time and space
O(n+e), where n is the number of vertices and e the number of edges in HU L.

Proof. We only give a general idea of the implementation of the MERGE algorithm.
A complete description appears in [Wa81]. We keep track of the set of current initial
vertices of H and L; call these sets Iy and I, respectively. Whenever we remove
vertices from these sets we add the vertices that become initial to the list.

In Step 2.2.1 we can choose any vertex of I that is not already in (S'),. On the
other hand, vertices of I; should be scheduled according to their height (Step 2.3).
Thus we need a data structure that will enable us to retrieve vertices from I; efficiently.
: § We represent I, as an array of lists, where the entry I, (h) points to a linked list of all
'@ the initial vertices of height h (in arbitrary order); see [DW84a], [Wa81] for details.

4 Asshown in the proof of correctness there are always enough initial vertices in I; (h(L))

and I (h(L)—1) to fill (S"), in Step 2.3. Thus it is enough to pick vertices of the last
and second to last nonempty list of I;. This is the main reason for the fact that the

MERGE algorithm can be implemented in O(n+e) time. We do not have to do a
Complicated search to find highest vertices in Step 2.3. ,

For Step 2.5 we need to keep track of the heights of the subgraphs H, This is
easy since during each iteration of the loop the height of a subgraph H; can drop at
most by one. To be able to transfer components easily we need to keep track of the
‘Vertices of each H; and keep pointers from each vertex of G to all its occurrences in
,:the data structures. This completes the summary of the proof. U
“#%- The reduction theorem is an immediate consequence of the following theorem,
ln which we apply the MERGE algorithm 3.1.

- THeoreM 3.1. Let G be a graph and M be a profile of breadth m. Given a schedule

S for the high-graph of G and M that has p idle periods, then with the MERGE algorithm

672 DANNY DOLEV AND MANFRED K. WARMUTH

one can find a schedule S' for the whole graph G and M in time and space O(n+ e) thag
has the following form:
(i) if p=|L(G)| then S is at most as long as S;
(ii) if p<|L(G)| then S’ is longer than S and has idle periods only in its last slo:,
Proof. We run the MERGE algorithm on the following input parameters: :
H is the high-graph and L the low-graph of G;
q is the number of components of H (G) and Hl, - -+, H, are the components o

H(G);)
r=m-—qand L,,---,L,_, are some r—1 principal components of L(G); T
L, is the remaining subgraph of L(G) after removing L,,---, L,_;.

Note that h(H;)> h(L), for 1=i=gq, since H consists of all components of G
that have height higher than the median of G, and L consists of all components which
are at most as high as the median. By property M1 of the median we know that H(G)™"
has less than m components, and therefore ¢ <m. Note that H(G) might be empty .
and g = 0. Property M2 says that G has at least m components of height u(G, m)-1, =
This implies that L,, - - -, L, exist and that h(L;)Z h(L(G))—1, for 1 =i=r. Note that
h(L(G))= n(G). It is easy to see that the input parameters can be found in t1mer
O(n+e). Using Lemma 3.2 the proof is completed. 0

We are now ready to present the main result of this section, the reduction theorem.

It shows that finding an optimal schedule for G and M reduces to finding an optlmal
schedule for H(G) and M.

THEOREM 3.2 (the reduction theorem). Let G be a graph and M be a profile ¢
breadth m. Then given an optimal schedule for the high-graph of G and M, the MERGE
algorithm finds an optimal schedule for the whole graph G and M in time and space:z;
O(n+e). :

Proof. Let S be the given opt1ma1 schedule for H(G) and M. In Theorem 3.1 w
showed that with the MERGE algorithm one.can find a schedule S’ for G and M i
time and space O(n+e) which has the following form:

(i) if p=|L(G)|, then A(S)=A(S);

(ii) p<|L(G)|, then A(S")>A(S) and S’ has idle periods only in its last slot. '

We want to show that the optimality of S for H(G) and M implies the optimality
of S’ for G and M. Every schedule that has only idle periods in its last slot is optimal.
Therefore, if p<|L(G)| then S’ is optimal. In the case p = |L(G)|, S’ is at most as lon
as S. An optimal schedule for G and M has to be at least as long as an optim
schedule for H(G) and M, since H(G) is a closed subgraph of 'G. Thus in the case 3

=|L(G)] we get A(S") = A(S) and the optimality of S implies the optimality of S".

The following corollary of the reduction theorem implies that in the case where
H(G) is empty finding an optimal schedule is linear.

COROLLARY 3.1. If H(G) is empty then HLF is optimal for G and M and an HL
schedule can be found in time and space O(n+e).

Proof. The “empty schedule” is an optimal schedule for the empty graph H (G
and M. The MERGE algorithm (applied as in Theorem 3.1) produces an arbitrary
HLF schedule. Such a schedule has idle periods only in its last slot and is therefo
optimal. 0O '

The fact that HLF is optimal in the case where H(G) is empty is also 1mphcd b
the elite theorem of [DW84al].

The following theorem shows that the length of an optimal schedule is determme
by the high-graph and the cardinality of the low-graph. The structure of the low-grap
is not important. '

TreOREM 3.3. Let Gand I be graphs such that H(G, m)= H(I, m) and |L(G, m)|

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 0/

(L m)l Let M be a profile of breadth m. Then the optimal schedules for G and M and
r I and M have the same length.

Proof. Let S be some optimal schedule for H(G)= H(I) and M. Let p be the
gmber of idle periods in the schédul€ S. Note that all optimal schedules for H(G) =
{(I) and M have the same number of idle periods, since they have the same length

nd since they contain the same vertices.
In Theorem 3.1 we showed that with the MERGE algorithm one can find a
chedule S’ for G and M whose length only depends on the relationship between.p
nd |L(G)|. In the same way we can find a schedule S for I.and M by “merging” S
gith L(I). Since S is a schedule for H(G)= H(I) and since |L(G)|=|L(I)| we have
mat A(S") = A(S). In the reduction theorem we showed that both S’ and S are optimal
for G and I, respectively. This completes the proof of the theorem. 0O

In the following theorem we show which subsets of the set of initial vertices of a
graph start an optimal schedule for this graph. Iterating this theorem we can find an
optimal schedule for the whole graph. The elite theorem of [DW84a] is a stronger
version of this theorem. »

THEOREM 3.4. Let G be a graph, M be a profile of breadth m and I be the set of
initial vertices of H(G, m). If there exists a schedule for G and M then:

; Case |I|> m,. There exists a set, R of m, vertices of I which starts some schedule
§ for H(G) and M, and for any such set R there exists a schedule for G and M starting
with R.

Case |I|=m,. For any set T of m,—|I| highest initial vertices of L(G) there exists

d a schedule for G and M starting with IU T.
] Proof. We first show that if there exists a schedule for G and M, then there exists
4 aschedule for H(G) and M that has min (m,, |I]) vertices in its first slot. Let S be a
¥ schedule for G and M. By removing the vertices of L(G) from S we get a schedule
S for H(G) that fits M. Now, if the first slot of S has idle periods and not all vertices
of I are scheduled in the first slot of S, then we can move vertices of I from higher
slots to the first slot of S. We keep on doing this until either the first slot becomes
filled up or all the vertices of I are scheduled in the first slot. The resulting schedule
has the form we are looking for. It has min (m,, |I|) vertices in its first slot.

Case]I|> m,. Let S be a schedule for H(G) and M starting with a set R of m,
vertices of I As shown above such a schedule always exists. We now “merge” S with
L(G) as done in Theorem 3.1. The schedule S’ for G and M constructed by the
MERGE algorithm starts also with R, since Steps 2.2 and 2.3 are redundant for k=1.
To see that the schedule S’ for G fits the profile M we observe that there exists a
schedule for G and M and therefore there is enough “space” in the profile M.

z Case |I|=m,. Let S be a schedule for H(G) and M starting with the set I. We
showed already that such a schedule exists. Let T be a set of m; —|I| highest initial
vertices of L(G). We again “merge” S with L(G) as in Theorem 3.1. The MERGE
algorithm constructs a schedule S’ for G and M that starts with I and a set of m, —|I|
highest initial vertices of L(G)= L. Note that Step 2.2 is redundant for k=1, since
(8), contains all initial vertices of H(G). Assume the set T is chosen at Step 2.3 as a
set of m;—|I| highest initial vertices of L(G). Then S’ starts with IU T, which we

Wanted to show. 0O

i

1 4. Level orders. In this section, we present a polynomial algorithm for finding an
°pt1ma1 schedule in the case where the graph is a level order of ¢ components (where
‘1 is a positive constant) and a profile of unbounded breadth m. Our algorithm runs
ln txme O(mn%) and uses space O(n?).

674 DANNY DOLEV AND MANFRED K. WARMUTH

By property M1 of the median we know that H(G, m) has less than m components,
Therefore, combining the O(m?n?) algorithm with the reduction theorem 3.2 we
get the following result; An optimal schedule for a graph G, such that H(G, m)isga
level order, and a profile of constant breadth m 23 can be found in time and space
O(n™™1),

Level orders are a proper subclass of the class of series parallel digraphs [TL79]
which in turn is a proper subclass of the class of totally interacting digraphs [Go76],
In [Go76] it was shown that HLF produces an optimal schedule if the graph is totally
interacting and the profile is straight and of breadth two. It is an easy exercise to see
that this result holds for nonstraight profiles of breadth two. Note that HLF does not
produce an optimal schedule if m =2 and the graph is arbitrary. In this case, restricted
forms of HLF produce an optimal schedule [CG72], [Ga80a].

HLF also produces an optimal schedule for a single level order component (in
linear time). By applying the reduction theorem we obtain an O(n+e) time bound
for any graph whose high-graph consists of at most one level order component. On
the other hand, neither HLF nor restricted HLF produce an optimal schedule even if
the whole graph is a level order of two components and the profile is straight and of
breadth three. In Fig. 4.1, we give an example to show this. An optimal schedule §
for this graph and the straight profile of breadth three is: {11,10,9'}, {10,877},
{9,6',5'}, {8,7,4}, {6,5,3}, {4,3,2}, {2,1, 1'}. Note that this schedule has no idle
periods, while any HLF schedule will have idle periods in its second slot.

1 10
9 10° 9
8 7 L o
6 5 6’ 5
4 3 4 3
2 1 2 1

F1G. 4.1. HLF is not optimal for three processors.

To describe some special properties of level orders we use the following definitions:
Given two graphs G=(V, E) and G'=(V’, E’). Then G is (transitively) isomorphic t0 .
G’ if and only if there exists a bijective function f: V-~ V’, such that for all vertices X
and y of V, we have the following: x precedes y in G if and only if f(x) precedes
f(y) in G'. Note that the fact that f is bijective implies that |V|=|V’|. Two vertices ¥
and y of the same graph G are isomorphic to each other if and only if x maps into J
in an isomorphism of G onto itself. Many closed subgraphs of a level order aré
isomorphic. This is the main reason why scheduling a constant number of level orde'l'f
components is polynomial. There will be only a polynomial number of possible closed‘
subgraphs that we need to handle in the algorithm. =

LEMMA 4.1. Let G be a level order with one component. Then all closed subg"aPh;
of G that have the same number of vertices are transitively isomorphic. @

Proof. We want to show that all closed subgraphs of G with k vertices (k= ”)
are isomorphic. Let h be the maximum height such that G has less than k vertices of :
height smaller than k. Let n, be the number of vertices in G of height smaller than h- :
It is easy to see that every closed subgraph of G with k vertices is of height h, ‘t

PROFILE SCHEDULING: OPPOSING-FORESTS AND LEVEL ORDERS 675

ntams all vertices of G of height smaller than h, and k — n, initial vertices of height

% This completes the proof since within each component of a level order graph all

Pertices of the same level are isomorphic. [

. We now apply Lemma 4.1 to [evel orders with g components

LEMMA 4.2. Let G be a level order with components H,, - - -, H,. If I and J are two

» dosed subgraphs of G containing the same number of vertices from each component, then
';s transitively zsomorphlc to J.

f- Proof. Let I,, -, I, be the subgraphs of I that contain all vertices of I from -
'components H,,-- H , respectively. Define J,, - - -, J, similarly. Since I and J are

Flosed subgraphs of G, we conclude that I, and J, are closed subgraphs of H, for

1< r=gq. The graphs I and J contain the same amount of vertices from each H,, that

s, 1L = |7.]. By Lemma 4.1 we conclude that I, is isomorphic to J. This implies that
115 isomorphic to J. 0O

|- DerINITION 4.1. Let G be a level order with components H,, ,H; and I be

2 closed subgraph of G. Then I is represented by the tuple (n,, - - -, q) if I contains
n, vertices of H, 1=r=gq. ' ’

~ . In the following corollary we rewrite Lemma 4.2 using this definition.

COROLLARY 4.1. Let G be a level order with the components H,, - -+, H,. If two
subgraphs of G are represented by the same tuple, then they are isomorphic. All closed
subgraphs of G correspond to O(n?) distinct tuples.

Proof. The first part of the corollary follows directly. from Lemma 4.2 and Defini-
tion 4.1.

Every closed subgraph of G can be represented by some tuple (ny, - -, ng). By
Definition 4.1 we know that 0=n,=|H,|, for 1=r=gq. Since |H,|=n, all closed sub-
graphs of G can be represented by at most (n+1)* tuples. Clearly, (n+1)9=(g+1)nf;
since g is constant, this implies that (n+1)?=0(n?). O

The above corollary describes the key property of level orders that guarantees the
polynomial algorithms. A level order with g components contains at most O(n%)
equivalence classes of closed subgraphs. During the scheduling algorithm, we will keep
track of all of these closed subgraphs via dynamic programming.

The following length function is used recursively in the polynomial algorithms
" we present later.
§ DerFINITION 4.2. Let G be a graph. Denote by A(G, m) the length of an optimal
Schedule for G fitting the straight profile of breadth m.
| LEMMA 4.3. The length function A can be calculated by the following recursive
i formula:

A, m)=0;

(4 1) A(G, m)=1+min {A(G—R, m)|
R is a set of initial vertices of G, 1=|R|= m})

F '

% " Proof. The proofis clear from the following fact. Let R be any set of initial vertices

| of G such that 1=|R|=m. Then A(G— R, m)=A(G, m)—1if and only if there exists

an optimal schedule for G fitting a straight profile of breadth m with R iniits firstslot. O

i We will now apply the recursive formula (4.1) to evaluate A for all closed subgraphs

: of a level order.

% LEMMA 4.4. Let G be a level order with a constant number q of components. Then
}(I m) can be evaluated for all closed subgraphs I of G in time O(m®n?) and space o(n?).

- % Proof. The following algorithm evaluates A (G) via dynamic programming, within

¥ time O(mn?).

676 DANNY DOLEV AND MANFRED K. WARMUTH

ALGORITHM 4.1.
1. A(¢)=0
2. fork'=1tondo
2.1. for all closed subgraphs I of G with k vertices do

2.1.1. A(I):=1+min ({A(I —R)| R is a set of initial vertices of I and
1=|I|=m}).

The correctness follows from Lemma 4.3. To obtain the time bound we need to
show more explicitly how we gather the information during the execution of the
algorithm. Let H,,---, H, be the components of a level order graph. For every
component H,, denote by TOP (p,) the number of initial vertices in the closed subgraph
of H, that contains p vertices. By Lemma 4.1 all such closed subgraphs are isomorphic,
Furthermore, a level order component is completely specified by a sequence of natural
numbers specifying how many vertices are in each level. Therefore, TOP (p, r), for
every 0=p=|H,| and 1 =r= g, can be created in linear time.

By Corollary 4.1, all closed subgraphs of G can be represented by O(n?)
equivalence classes. Each equivalence class is determined by a vector n=
(ny, ny, - -+, ny) in |Hy| X|Hy X+ - - X|H,|, where n; is the number of vertices from
component H;. For every such a vector i1 denote by (A, m) the set of all vectors A’
obtained from 7 by removing for every i, n; — n| initial vertices from the closed subgraph
of H; (represented by n;), such that 1=Y?_. (n,—n))=m and n,—n!=TOP (n, i).

Note that n,—n,=m, which implies that |®(#A, m)|=0((m+1)?). Clearly
(m+1)?=(g+1)m?; since q is a constant, we have |R(7, m)|= O(m?).

Algorithm 4.1 can be rewritten as follows:

ALGORITHM 4.1".
1. A(¢)=0
2'. for ki=1to n do
2.1". for all A€ |Hy|X|H,| X" - -x|H,|, such that ¥7_ n =k do
2.1.1". A(A)=1+min {A(7")|n" € R(7, m)}).

At Step 2.1', we partition all O(n?) tuples according to the number of vertices
they contain. This can be done in time O(n?). To implement Step 2.1.1’, we make use
of the data structure for TOP (p, r). Since there are O(m?) choices for 7i1’, we get the
time bound O(m?n9), which completes the proof of the time bound. The algorithm
needs O(n?) space to represent all equivalence classes. The array TOP and all remaining
data structures require only O(n) space. [0

Having analyzed the function A for all closed subgraphs of a level order G with
g components, we can retrieve an optimal schedule for G and the straight profile of
breadth m.

THEOREM 4.1. Let G be a level order with a constant amount q =2 of components.
An optimal schedule for G and the straight profile of breadth m can be found in time
O(min?) and space O(n?).

Proof. Lemma 4.4 implies that we can prepare the values A(I, m) for all closed

subgraphs I of G in time O(mn?) and space O(n?). We use these values to find an
optimal schedule for G.

ALGORITHM 4.2.

1. k=0

2. while G is nonempty do
2.1, k=k+1

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 677

2.2. Let R be a subset of initial vertices of G such that 1=|R|=m and
AMG-R)=A(G)-1 : :

2.3. Sk:_—"R —- -

24. G=G-R

If we use in Step 2.2 the vector representation for the closed subgraphs then it is

- to see that the total number of different R we scan in Step 2.2 is bounded by
17). Clearly every other step is bounded by O(q). This implies that the total time
plexity for both algorithms (Algorithm 4.1 and Algorithm 4:2) is O(mn?). O
We extend Theorem 4.1 to nonstraight profiles of breadth m. For that we need to
ae the definition of the function A.

DEFINITION 4.3. Let G be a graph and M =(m,, - - -, m,) be a profile of breadth
Then '

A(G, M) = min ({k|there exist a schedule for G and (Mg_r+1," my)}).

Note that k is the length of the profile (my_y+1, " - -, Mmg). Note also that if m is
iight, then Definition 4.3 degenerates to Definition 4.2.
LEMMA 4.5. The function A can be expressed recyrsively as follows:

Ao, M)=0;

2) MG, M)=1+min ({A(G—R, M)|R is a set of initial vertices of G
and 1=|R|= M4 r(G-RM)})-

Proof. The proof foliows directly from the following observations:

(i) A(G, M) is undefined if and only if there exists no schedule for G fitting M.

(ii) If A(G, M) is defined, then there exists aset R suchthat1= |IR|= my_\ c.mr+15
nd A(G—-R,M)=A(G, M)—-1.

(iii) If A(G, M) is defined, then for any set R, such that |R|= my_(c,m+ and
(G-—R,M)=A(G, M)—1, there exists a schedule for G fitting the profile
Ma-r(G.M)+1>* ° ° » Mag) Which starts with R. O '

As in Lemma 4.4 we evaluate the function A for all closed subgraphs of the level
rder G achieving the same time bound as for straight profiles.

LEMMA 4.6. Let G be a level order with a constant amount q of components, and
‘et M be a profile of breadth m. Then A(I, M) can be evaluated for all closed subgraphs
lof G in time O(mn?) and space O(n?).

Proof. As with Lemma 4.4 and Algorithm 4.1, the only change is in Step 2.1. We
replace the recursive formula for straight profiles (4.1) by the recursive formula for
arbitrary profiles (4.2). Since my_,(G—rm)+1 = m, We get the same time bound. 0O

Knowing the function A we are ready to retrieve a schedule in a similar fashion
as in Theorem 4.1 and Algorithm 4.2.
§ THEOREM 4.2. Let G be a level order with a constant amount of components, and
;Jﬂ M be a profile of breadth m. Then a schedule for G and M' = (Ma_rG.my+1s " " > Ma)
i can be found in time O(mn?) and space O(n?).

Proof. Applying Lemma 4.6 we find A(I, M) for all closed subgraphs. I of G. To

retrieve a schedule for G and M’ we use Algorithm 4.2 of Theorem 4.1. Let b be
(G, M), where G is the original graph and M the profile. Since M is not necessarily

raight, we change the bound of |R| from m to my_pse O

" The reversed graph GR of a graph G is a graph obtained by reversing all the edges

'in G. For a profile M =(my, m,,- -+, m,) we define the reversed profile M® to be

MR = (mg, my_y, -+ -, my). The reversed schedule SR is defined accordingly.

PRI ST
D, SALE

=3

o

T

73

678 DANNY DOLEV AND MANFRED K. WARMUTH

In the subsequent corollary we apply Theorem 4.2 on the reversed graph GR® ang
reversed profile M* to find an optimal schedule for G and M. '

COROLLARY 4,3. Let.G, q and M be defined as in Theorem 4.2. An optimal schedule
for G and M has length A\(GR, M®) and can be found in time O(m®n?) and space O(n?),

Proof. Rewriting Definition 4.3 for the case where the arguments of A are the
graph G® and the profile MR =(mg, my_,, - - -, m;) we get the following:

A(GR, M®) =min ({k|there exists a schedule for G® and (m,, My, ", rﬁl)}).

Reversing the graph G* and the profile (my, my_y, "+, ml.) the above formula can be
rewritten as:

A(GR, MR®)=min ({k|there exist a schedule for G and (my, - - -, mi)}).

We conclude that A(GR®, M®) is the length of an optimal schedule for G and M.

To prove the second part of the corollary we observe that when G is a level order
GR is also. Applying Theorem 4.2 to G® and MR we get a schedule S for G* and
MR in time O(m*%n?), where M'® is the profile (m, (" p®y, * - -, my). Since A(G®, M®)
is the length of an optimal schedule for G and M, we conclude that SR is an optimal
schedule for G and M. 0O

Note that A(G, M) is not the Iength of an optimal schedule for G and M. It is
also not the length of an optimal schedule for G and M’ (defined as in Theorem 4.2).

We could have defined A(G, M) as the length of an optimal schedule for G and M

replacing Definition 4.3. Then the recursive formula corresponding to (4.2) would be:

A, M)=0

A(G, M) =1+min ({k|]A(H, M) =k,
(43) where H is a subgraph of G obtained by removing
o at least one and no more than m., terminal vertices}),

where a terminal vertex is a vertex with no successors.

The scheduling algorithms described in the paper obtain optimal schedules by’

iteratively removing sets of initial vertices from the remaining graph and scheduling
them in the first, second, - - - time slot (for instance, see Algorithm 4.2). Formula (4.3)
corresponds to doing the scheduling process ““backwards”: Iteratively remove sets of
terminal vertices from the remaining graph and schedule them in the last, second to
last, - - - time slot. We choose the standard way of scheduling—that is, to iteratively
remove sets of initial vertices—even though scheduling “backwards” would make
Corollary 4.3 unnecessary.
Combining Corollary 4.1 with Theorem 3.2 we prove the final result of this section.
COROLLARY 4.4. Let G be a graph such that H(G, m) is a level order and M a
profile of constant breadth m = 3. Then an optimal schedule for G and M can be found
in O(n™™") time and space.
Proof. Let g be the number of components of H(G, m). If g =0, then by Corollary
3.1 an optimal schedule for G and M can be found in time and space O(n+e)~
O(n™™"), since m=3. If g=1, then Corollary 4.3 shows that an optimal schedule for
H(G, m) and M can be found in time O(m7n?) and space O(n?). Property M1 of
the median implies that g < m—1; therefore O(mn?)=O(m™ 'n™"), which equals
O(n™™"), since m is constant.
So far we have shown that an optimal schedule for H(G) and M can be found
in time and space O(n™"). By the reduction theorem, we conclude that an optimal
schedule for the whole graph G and M can be found within the same time and space

" bounds. O

. ~.
s e emnrs, ot kA B

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 679

j 5. Inforests and outforests. In this section we give polynemial algorithms for
 fnding an optimal schedule if the precedence graph is an inforest, an outforest or an
fpposing forest and the profile has constant breadth m = 3. For inforest we present
30 0(n™ ") algorithm, for outforestar O(n™ " log n) algorithm and an O(n*™* log n)
gigorithm for opposing forest. All three algorithms require O(n™") space. The
algorithm for opposing forest assumes that the profile is straight, whereas the algorithms
for inforest and outforest work for arbitrary profile.

7 A profile M is called nondecreasing (respectively, nonincreasing). if m;=m,,, .
(respectively, m; = m;.,), for 1 =i = d. The algorithms of [GJ83] for obtaining optimal
schedules for inforests, outforests and opposing forests are less time efficient than ours:
the algorithm for opposing forests requires O(n™*2m=s log n) time, and the algorithms
3§ for outforests and inforests assume nondecreasing and nonincreasing profiles, respec-
ively, and require O(n™ ™ ®log n) time.

‘ As in the case of scheduling level orders, deciding whether a feasible schedule
; exists for each of the three types of forests becomes NP-complete if the breadth of the
. profile is a variable of the problem instance [GJ83], [Mag1],[Wa81]. The corresponding
{ problems stay NP-complete even in the following restricted cases: nondecreasing profile
{ and outforest graph, nonincreasing profile and inforest and straight profile and oppos-
{ ing forest [GJ83], [Ma81], [Wa81]. In other related cases HLF produces an optimal
|3 schedule even if the breadth of the profile is unbounded: straight and inforest [Hu61]
{ or outforest [Br81], [DW84a], nonincreasing profile and outforest [DW84a] and non-
4 decreasing profile and inforest [DW84a]. Note that forests are special cases of series
parallel digraphs [LT79] and therefore HLF produces an optimal schedule for forests
and profiles of breadth 2 [Go76].

In this section we first present an algorithm for scheduling an outforest on a profile
of O(1) breadth. To do this we observe that there are at most O(n™ ") choices for the
high-graph of a closed subgraph of an outforest. This fact is used to define an
equivalence relation on the set of all closed subgraphs of an outforest. The equivalence
relation partitions this set into a polynomial amount of equivalence classes. Two
subgraphs of the same equivalence class have the same high-graph and the same
number of vertices in their low-graph. We then define a length function on the
equivalence classes similar to the previous section. All closed subgraphs of one
equivalence class have the same length. This length is related to the length of the
optimal schedules of the subgraphs of the equivalence class. As in the previous section,
the length function is evaluated via dynamic programming. We then use the length
function in an algorithm which finds an optimal schedule for an outforest and a profile
of constant breadth. This algorithm is similar to the MERGE Algorithm 3.1. To get
an optimal schedule for an inforest we apply the outforest algorithm to the reversed
profile and the reversed inforest, which is an outforest. Our algorithm for opposing
forest is obtained by combining the inforest algorithm with a result of [GJ83].

Let T be a subset of the vertices of G, then CLOSE (T) is the closed subgraph
induced by T, that is, the subgraph which contains the vertices of T and all the
successors.

The following theorem implies that we have to keep track of O(n™ ') high-graphs
while scheduling an outforest. This result will imply the O(n™™") time and space bound
for scheduling an outforest on a profile of constant breadth m.

i’ THEOREM 5.1. The high-graph of a closed subgraph of an outforest G and breadth
m contains less than m initial vertices. All closed subgraphs of G have O(n™™") different
high-graphs.

% Proof. Since G is an outforest, every closed subgraph J of G is, as is the high-graph
of J. By property M1 of the median we know that H(J, m) consists of less than m

¥

680 DANNY DOLEV AND MANFRED K. WARMUTH

components, which in this case are outtrees. Each outtree corresponds to exactly o,
initial vertex and therefore H(J; m) corresponds to a set of less than m initia] vertie
that are incomparable with each other. On the other hand, each set of up to me
incomparable vertices-of G induces an outforest which is the high-graph of so‘rﬁ
closed subgraph of G. Since m is constant, there are O(n™"") choices for a set of u
to m—1 vertices. This completes the proof of the theorem. 0O .
DeFINITION 5.1. Let J and K be two closed subgraphs of a graph G. Then th
subgraphs J and K are equivalent, J = K, if and only if they have the same high—'grap o
and the number of vertices of J and K that do not have any predecessors above the
corresponding medians is the same. That is,

J=K iff (H(J)=H(K) and |L(J)| = |L(K)|).

Theorem 3.3 and Theorem 5.1 are the motivation for the definition of the
equivalence relation. From Theorem 3.3 we know that if two closed subgraphs are
equivalent then the length of their optimal schedules for a given profile of breadth m
is the same. Theorem 5.1 implies that if m is a constant, then there is a polynomial
number of different equivalence classes.

Let J be a closed subgraph of a graph G. Then INIT (J) denotes the set of-all
initial vertices of J. Note that the closed subgraph J is completely determined by :
INIT (J) in the sense that J consists of INIT (J) plus all successors of the vertices of
this set, that is J = CLOSE (INIT (J)). The equivalence class to which J belongs is
completely specified by H(J) (or INIT (H(J))), and |L(J)|. We denote the equivalence
class of J as the tuple [INIT (H(J)), |L(J)|]. Applying this notation we get the following:
A closed subgraph K of G is in the equivalence class [I, w] iff INIT (H(K))=1I and
IL(K)|=w. . '~

The length function we use in this section is a function of an equivalence class
instead of a graph as in § 4. ‘ :

DEFINITION 5.2. Let G be an outforest, let [I, w] be an equivalence class of G,
and M be a profile of breadth m. Then the length A(I, w, M) is the minimum k for
which there exists a schedule for the members of [I,w] fitting the proﬁlg
(Mg _jery, - - * my). ‘ :

The function A is well defined because of Theorem 3.3. This theorem implies that
for any two subgraphs K and J, such that K = J, there exists a schedule for J and
M'=(my_y4y, -+, my) if and only if there exists one for K and M’. Notice that the
length A(I, w, M) is undefined if and only if there exist no schedules for the closed
subgraphs of [I, w] that fit M.]
' In the following lemma we show how to calculate the value of A (I, w) from A (I, 0).

LEMMA 5.1. Let [I, 0] be an equivalence class, M =(m,, - - - , my) be a profile, and
p be the number of idle periods in a schedule for CLOSE (I) and M’
(Ma_x0)+1,* * *» Ma). Then

undefined if A(I,0, M) is undefined,
AL w, M)=¢ A(L,0, M) if A(1,0, M) is defined and p= w,
X if A(1,0, M) is defined and p<w,
where

i=d-—-k+1

X=min({k|k§l and i m; = |CLOSE (I)|+ w})

Proof. Case A(I,0, M) undefined. Since the closed subgraphs of [I, w] have at

% PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 0ot

t as many vertices as the closed subgraphs of [I O] the value of /\(I w) is also

el
%deﬁned and if A(I, 0) is defined, then A (I, w)= A(I, 0).
For the case where A(I, 0) is defined, let S be a schedule for CLOSE (I) and M.

15 schedule S has p idle periods and

p=(i mi)—ICLOSE(I)i.‘

i=d—A(L0)+1

o @w@% g

Case p=w. By Theorems 3.1 and 3.3, we know 'that_for any graph J of [I, w]
there exists a schedule S’ for J and M. Note that J €[I, wlifand only if INIT (H(J))=1
and |L(J)| = w and S’ has p —w idle periods. We conclude that if p= w, then A (I, w) =
A(L 0).
Casep <w. Clearly A (I, w) = X since the subgraphs of [I, w] contain |[CLOSE (I)|+

§ v vertices. If X is undefined, then there is not enough “space” in the profile M to

¥ schedule a graph of [I, w] and therefore A(I w) is undefined also.

For the case where X is defined we want to show that for each member of [I, w]

{1 there exists a schedule that fits M =(my_34,, * +, my). Since A > A(I, 0), the schedule

§ s for CLOSE (I) and M’ can be embedded into the profile M. Therefore, there exists

a schedule for CLOSE (I) and M, and such a schedule has more than w idle periods,

4 since ¥, s., m=|CLOSE (I)|+w. By applying Theorems 3.1 and 3.3 again, we
' 4 conclude that there exists a schedule for any member of [, w] and M ; therefore,
L w)=A,if p<w. O :

We now want to show that the calculation of A(I, w) from A (I, 0) as described in
4 the previous lemma can be implemented efficiently.

] LemMA 5.2. Let G be an outforest and M be a profile of constant breadth m = 3.
i Given the appropriate data structures, which can be created in time and space o(n™™1),
‘& then for any equivalence class [I, w] of G, A(I, w, M) can be calculated from A(I,0, M)

‘4 in constant time.

Proof. The following data structures can be created in time and space O(n™" B
and allow us to calculate A(I, w, M) in constant time from A(I, 0, M).

Data structure A= (U, N, L). Let G be an outforest and M be a variable profile
of breadth m.

~ (i) For every xe G, U[x] is one plus the number of successors of x in G.
"+ (ii) Foreveryset T of up to m—1incomparable vertices of G, U[T}=},_; Uly].
Note that if T is a set of incomparable vertices then U[T]=|CLOSE (T)|.

(iii) For every k, I=k=d, N[k] is the total number of available processors in
the subprofile (my_j4q, - -+, my). That is, N[k] =Z?=d—k+1 m,. Note that k is the length
of the subprofile.

(iv) For every r, 1=r=NI[d], L[r] is the length of the shortest profile
(mg_gsv, + -+, my) having a total amount of r available processors. Therefore, L[r]=
min ({k|N[k]= r}).

The properties of data structure A which we need for proving Lemma 5.2 are:

Al. Given the value of A(I, 0) then the value of A(I, w) can be calculated in
Constant time.

A2. The data structure A can be created in time and space O(n™™").

Proof of Property Al. By Theorem 5.1 and Definition 5.1 we know that |[I|=m —1,
] _Since G is an outforest. In Lemma 5.1 a formula was given to calculate A(I, w) from
A(I, 0). Using the arrays U, N and L we can rewrite this formula in the following way:

_fAL0) | ifpz=w,
)‘(I’w)‘{L{U[I]+w] if p<w.

682 DANNY DOLEV AND MANFRED K. WARMUTH

Furthermore, the number-of idle periods p in a schedule for CLOSE (I) and PrOﬁle"’i ,'
(Mg-x10)+1> " * *» Ma) can be expressed as: p= N[A(I,0)]— U[I]. Therefore, if datg .
structure A is glven,_‘and-/\(I 0) and I is known, then A(I, w) can be calculated jp .

constant time.

Proof of Property A2. (i) Determining the number of successors of each vertex of -

the outforest G can be done in one traversal of the outforest. Thus the array U can =

be evaluated for all vertices of G in time O(n).

(ii) There are O(n™™") choices for a set T of up to m—1 vertices. For a given T

the value U[T] can be found in constant time, since m is constant. Therefore, U cap
be evaluated for all sets T in time O(n™™").

(iii) and (iv) The matrices N and L can easily be created in time O(n).

This completes the proof of the properties of data structure A and therefore alsg
the proof of Lemma 5.2. [

As in the previous section we give a recursive . formula for the function A. While
scheduling a graph we repeatedly remove sets of initial vertices from the graph. The
notation AE* B denotes that B is obtained from A by removing R, which is a set of
initial vertices. '

Using the above notation we can give a recursive formula for A(Z, 0):

(51) A(L0)=1+min ({A(, w)|([L, 0D) = (I, w']) A 1=|R|S ma_yrrn})-

The notation ([I, 0]) i ([I', w']) means the following: Let J be a graph of [I, 0],
then by removing R, which is a subset of I, from J, we obtain a subgraph J', where
Jell',w]

The correctness of the above formula is obvious. We make all possible choices to

remove sets of initial vertices and we recurse on the remaining graph. This formulais .
used to evaluate A(Z, 0) for all sets I of up to m—1 incomparable vertices of G via

dynamic programming.

LEMMA 5.3. Let G be an outforest and M be a profile of constant breadth m. Then B

the function A can be evaluated for all equivalence classes [I, 0] of G in time and space
o(n™™M.
Proof. The following algorithm evaluates A for all [, 0] of G in time O(n™™").

ALGORITHM 5.1.
1. A(¢,0)=0
2. fori=1to n do

2.1. for all sets I of up to m—1 incomparable vertices of G,
such that |[CLOSE (I)|=1i do

2.1.1. A(L 0):=1+min ({A(I", w)|([L 0D > ((I', w])

and 1=|R|=m,_,s, w')})

Proof of correctness. The correctness follows from (5.1). Notice also that at StCP :
2.1.1 |CLOSE (I')]<|CLOSE (I)| since |R|z 1. As shown in Lemma 5.1 the value of -

A(I', q') is determined by A(I, 0) and w.

Proof of the bounds. By Theorem 5.1 and Definition 5.1 we know that for any |
equivalence class [I, w] of an outforest G, [I|=m—1 and I is a set of incomparable .
vertices. Note that }I { is constant when m is constant. There are O(n™" 1) different sets -

of up to m—1 vertices of G. Claim 5.1 below implies that with an appropriate data

structure, we can determine in constant time whether the vertices of a given set of -

cardinality up to m—1 are incomparable or not. Therefore, all sets of up to m—1

incomparable vertices of G can be found in time and space O(n™"'). We then creaté

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 683

Zita structure A in time and space O(n™" '} and bucket sort all sets T of up to m—1
mcomparable vertices of G according to U[T]. Thus, Claim 5.1 and Lemma 5.2 imply
fat Steps 2 and 2.1 can be implemented in time O(n™™").

£+ CLAIM 5.1. Given the preorder number and the number of successors for every vertex
JG then for any set T of up to m—1 vertices of G it can be determined in constant
sime whether T is a set of incomparable vertices or not.

% Proof of the claim. Let p(x) denote the preorder number and n(x) the number of ‘
successors of the vertex x of G. Now for any two vertices x and y of G, x precedes -

yifand onlyif p(x)=p(y) = p(x)+ n(x) (see [AH74] for details). To decide in constant

time whether some set T of up to m—1 vertices of G is incomparable or not we use

the following fact: T is a set of incomparable vertices if and only if for every x and

yof T, x does not precede y. Since T has a constant size, this can be done in constant

§ time, which completes the proof of the claim. 0O

! Since the preorder number and the number of successors of every vertex can be

4 found in O(n) time the claim implies that Steps 2 and 2.1 can be implemented in time

4 0(n™"). By Theorem 5.1 there are O(n™ ") sets of up to m — 1 incomparable vertices

of G. Thus Step 2.1.1 gets executed O(n™") times and to get an overall O(n™™") time

‘bound we need to show that Step 2.1.1 can be implemented in constant time.

] In Lemma 5.2 we showed that A(I’, w') can be calculated in constant time given

2 data structure A and A(I',0). At Step 2.1.1 the value of A(I’,0) has been calculated

4 already since |[CLOSE (I")| < |CLOSE (I)|.

The set R is a subset of the set I and |I|<m. Since m is constant, there is only
g 2 constant amount of choices for R. Thus to prove that Step 2.1.1 is constant we have
B left to show that given a set R then [I', w'] can be determined in constant time. This
is achieved by the following data structure.

Data structure B. The outforest G is represented by its adjacency lists [AH74],
in which the immediate successors of every vertex of x are given in a linked list sorted
according to decreasing height. -

Properties of data structure B.

B1. Let J be a closed subgraph of G, let R be a subset of INIT (H(J)), and let
A (INIT(H())), un(J), L)) S (I, w', w'). Then (I',u', w') can be obtained from
3 (INIT(H(J)), u(J), |[L(J)|) in constant time.

B2. Data structure B can be created in time O(n). A

Proof of Property B1. For every vertex x € R, let T, be a set of m highest immediate
suécessors of x. If x has less than m immediate successors then let T, be all immediate
successors of x. Define T to be the following set of vertices: T:=
{INIT (H(J)) — R}U (User (T3)).

Obviously T can be found in O(m?) time, since the immediate successors of x € R
are given in decreasing height. |[INIT (H(J))|<m and |T|<m?® Note that O(m?) =
O(1), because m is constant. Since G is an outforest every vertex of T corresponds
to an outtree in J’, which is the subgraph of J obtained by removing the set R from
J All the roots of height at least as high as the mth highest component of J' are
Contained in T. Therefore, u(J') =’ is one plus the height of an mth highest vertex
of T. If | T| < m then u'is set to zero. Furthermore, I' = INIT (J') is a subset of T, i.e.,
I'is the set of all vertices of T of height bigger than w'. Since the size of T is constant,
IL and I' can be determined in constant time. Finally w’ is computed as follows:

=|L(J")|= ULI]+|L(J)|- U[I']-|R|. This completes the proof of Property Bl of
data structure B.

’Q Proof of Property B2. All vertices of G can be bucket sorted according to their
- ,helght in linear time. Create the adjacency lists of G as follows: starting at the highest

684 DANNY DOLEV AND MANFRED K. WARMUTH

vertices and continue according to decreasing height, insert each vertex to the end of -

the adjacency list of the immediate predecessor of it (in constant time). Thus data
structure B can be constructed in time O(n). -

To complete thie proof of the time bound we still have to show that in Step 211
[I', w'] can be determined in constant time when I and R are given. This follows from
Property B1 of data structure B. Note that at Step 2.1.1, J = CLOSE (1) = H(J), u(J) =g
and |[L(J)|=0. O _ L :

We are now ready to present the main result of this section.

. THEOREM 5.2. Let G be an outforest and M = (m,, - - - , my) be a profile of constant
breadth m. Then it can be determined in time and space O(n™') whether there exists a
schedule for G and M. If such a schedule exists, then we can find a schedule for G fitting
the profile (My_j(1wys1,* * *, Ma), where Ge[I, wl, in time O(n™"). '

Proof. To determine whether there exists a schedule for G and M, we apply
Lemma 5.3 and evaluate A for all equivalence classes [1, 0] of G (Algorithm 5.1). This
can be done in time and space O(n™"). Given the value of A(I, 0), itis easy to calculate
A(L, w) (see Lemma 5.3). Note that A(, w) is defined if and only if there exists a
schedule for G and M (see Definition 5.2). Thus we showed that one can decide in
time and space O(n™™') whether there exists a schedule for G and M.

If such a schedule exists then the following algorithm finds a schedule for G
fitting the profile M’ = (mu_y(1w)+1, " * -, Ma), such that Ge[I, w], in time and space
O(n™1).

ALGORITHM 5.2.

1. I;=INIT(H(G)) I_==INIT(L(G)) u=u(G);

A= A(I |L(G)))
2. forki==d—A+1tod do
21. j=k—d+A
if |Iy]> my A
2.1.1. then Find R such that ([I,;, 0]) > ([I’, w']),
|R|=my, and A(I',w)=d -k

. (8);=R
2.1.2. else Find a set T of my —|I| highest vertices of I,
(S);=IyUT

(S),
2.2. Determine Iy, I}, p' such that (Iy, I, u) —= (I'y, I, 1')
In=Iy I;=11 p=pu'

Proof of correctness. Assume we are before Step 2.1 and the Loop 2 has been

executed already several times, that is, vertices of the original graph G have been put

- into the slots 1,2, -+, k—d+A —1 of S. Let G be the remaining graph at this point, .
that is, the closed subgraph of the original graph that has not been scheduled yet. E
Then applying the notation of the algorithm we have: Iy = I(H(G)), I, = I(L(G)) :

and u = u(G).

It is easy to see that both at Step 2.1.1 and 2.1.2 the set (S); is a subset of.the ;
initial vertices of G. Thus in the constructed schedule S the precedence constraints

specified by the graph G are not violated.

The correctness of Algorithm 5.2 is shown by proving the following loop invariant:

There exists a schedule for G and (my, - - -, my).

&,

7,

At Step 1 we set A to A(Iy,|L(G)|) and we know that this value is defined. The

definition of the function A (Definition 5.2) implies that there exists a schedule for G »
and (my_,4y,- -+, my) after Step 1. Therefore, the invariant holds for k= d—)\‘*'l' -
before the first execution of Loop 2. '

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 685

? We now want to prove the following: If there exists a schedule ‘for G and
.rﬂk, -, my) before Step 2.1, then there exists a schedule for G’ and (M., * -+, my)

Jfter Step 2.2, such that (G)—--» (&'). The proof of the above implication follows
from Theorem 3.4.
" Case |Iy|>m,. By Theorem 3.4 there exists a set R of my vertices of I, that
starts a schedule for H(G) and (my,---,m,). Define I' and w' such that
([I,.,, 1])] L ([LI', w']). Since there exists a schedule for H(G) ‘and (m,, - - , my) starting
with R we have A([I', w'])=d — k. So far we have shown that the set R as defined in
Step 2.1.1 exists.

On the other hand, any set R that is defined as in Step 2.1.1 starts a schedule for
H(G) and (my, - - -, my). This is implied by the fact that A(I', w')=d — k. Define H

such that (H(G))> (H), then He[I', w'] and there exists a schedule for H and
(Mys1, -+, mg), since A(I', w') = d — k. Note that (my,, - - -, my) has length d — k. By
~Theorem 3.4 we conclude that R as defined in Step 2.1.1 starts a schedule for G and
{ (my, * -+, my), since it starts one for H(G) and (my, - - -, m,). This implies that there
§ exists a schedule for G’ and (M, - -+, my), since (S);= R and (G)—R+ (G".
" Case |Iy|=m,. Then by Theorem 3.4 we know that for any set T of m,—|I4|
highest vertices of I;, there exists a schedule for G and (my, - - -, m,) starting with
i Iy U T. This implies that there exists a schedule for G’ and (my., - - -, my). Note that

at Step 2.1.2 (S);=I4U T and (G)& (G"). This completes the proof of the loop
invariant and the proof of correctness of Algorithm 5.2.

Proof of time bound. First, we create the data structures A and B in time and space
O(n™). Represent Iy as a doubly linked list. Implement I, as an array of linked
lists, where the linked list I;(h) contains all vertices of I, of the height h.

Step 1. Evaluate the function A for all equivalence classes [I, 0] of G. By Lemma
5.3 this can be done in time and space O(n™"). Create all the above data structures,
and evaluate w and A in the same time bound.

Step 2. We want to show that the loop can be 1mplemented in time O(n).

Case |Iy|> my. Step 2.1.1. Since |Iy|<m and m is constant, there is only a
3 constant amount of subsets R of I; such that IR] = m,. For each set R we can determine
1 in_constant time whether A(I", w')=d — k. Note that we know A(I’, 0) and therefore
by Lemma 5.2, A(I', w') can be determined in constant time. We conclude that Step
2.1.1 can be implemented in constant time.

Step 2.2. In the case |Iy|> m,. Step 2.2 can be easily implemented in overall time
O(n). By Property B1 of data structure B, Iy and u' can be determined in constant
time. Note that (S); < Iy. To determine I} we look at all immediate successors of the
vertices of (S);. If such an immediate successor has height at most u’, then we add it
to the appropriate list of I; in constant time. Since each vertex gets added exactly
once to the array of list I, this costs overall time O(n).

- Case |Ig|=m, Step 2.2.1. By property M2 of the median we know that G has
at least m components of height at least u — 1. Exactly |Iy| of these components have
height bigger than w and therefore, G has at least m —|I| = m, —|I;| components of
height and u — 1. Thus I; has at least m; —|Iy| vertices in the lists I; () and I (n — 1),
and the set T of Step 2.1.2 can be found in constant time.

& Step 2.2. In the case |I;)= m, we do Step 2.2 in two steps:

(i) (IH’ IL9 l‘l‘) -’ (IH, IL, /I),

- I '
(ii) (IHs IL9 ﬁ) _F; (I,Ha 'L’ l‘L’)

686 DANNY DOLEV AND MANFRED K. WARMUTH

That is, we first remove the set T and determine I; and g, and then we remove the
set Iy and determine Iy, I7, u'. Note that (S);=1Iy U T. The reason why we can 4,
Step 2.2 in two steps is that L(G) and H(G) are disjoint.

To show that Step~(i) can be done in overall time O(n), we observe that T cap
be removed from I, in constant time. Note that T is a set of my —|I| highest verticeg
of lists I; (u) and I;(u —1). To find I; we insert all immediate successors of the verticeg
of T into the appropriate list of I;. Since each vertex gets added at most once this cap
be done in overall time O(n). To determine i we observe that & =u —1if T containg
all vertices of I;(u) and I (u—1); otherwise ‘i = u. Note that if @=pwu —1 then T
contains all vertices of I,(w). Thus H(G) and therefore I; does not change when T
is removed from G.

We showed already that Step 2.2(ii) can be done in overall time O(n) (see
implementation of Step 2.2 in the case where |Iy|> my).

This completes the proof of the time bound of Algorithm 5.2. Note that the
expensive part was to evaluate the function A in time O(n™"!) retrieving a schedule
is linear. This also completes the proof of Theorem 5.2. O

We now apply Theorem 5.2 to find an optimal schedule for an outforest.

COROLLARY 5.1. Let G be an outforest and M be a profile of constant breadth m,
Then an optimal schedule for G and M can be found in time O(n™ ' log m) and O(n™)
space. '

Proof. We do a binary search to determine

min ({d’|d'=d and there exists a schedule for G and (m,, - - -, mg)}).

For every d'=d we can, by Theorem 5.2, decide in time and space O(n™"") whether
there exists a schedule for G and (m,, - - -, m). Since we can assume that d =n, we
have to do this O(log n) times during the binary search. This completes the proof of
the O(n™ 'log n) time bound. O

COROLLARY 5.2. Let G be an inforest and M be a profile of constant breadth m.
Then an optimal schedule for G and M can be found in time and space O(n™').

Proof. Since G is an inforest, G® is an outforest. We apply Theorem 5.2 to the
outforest G® and M* and find a schedule for G® and (My(wy * * *» my) in time and
space O(n™""), where [I, w] is the equivalence class of G of which G is an element
of. Interpreting the definition of the function A (see Definition 5.2) we see that A (L, w)
is the length of an optimal schedule for G and M. We used the same trick to prove
Corollary 4.1. 0O .

To prove our time bound for an opposing forest we use the following result of
[GJ83].

THEOREM 5.3. A schedule for an opposing forest fitting a straight profile of breadth
m and length d can be found in time O(d™ 't(n, m,d)) and space O(s(m, n, d)+m),
where t(n',m’,d') and s(n', m', d’) are the time and space, respectively, that it takes 10 -
find .a schedule for an inforest with n' vertices and a nondecreasing profile of constant .
breadth m' and length d'.

Proof. Corollary 2.2.1 of [GJ83]. O

We now combine Corollary 5.2 with Theorem 5.3:

THEOREM 5.4. Let G be an opposing forest and M a strazght profile of constant
breadth m. Then a schedule S for G fitting M can be found in time O(n*™*) and spacé
o(n™™). .

Proof. Let t(n,m,d) and s(n, m, d) be defined as in Theorem 5.3. By Corollary
5.2 we know that t(n, m,d)=0O(n™"") and s(n, m,d)= O(n™'). Applying Theorem
5.3 we follow that it takes time O(d™ 'n™") and space O(n™"") to find a schedule

S

PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 687

G fitting M. We can easily assume that d <n. Otherwise it is trivial to find a
iedule for G fitting M. Using the fact that d < n, we get the O(n*™ %) time bound. O
Note that Corollary 5.2 gives a more general result than we need to prove the
ove theorem. The O(n™!) time bound is for arbitrary profiles of constant breadth
and not only for nondecreasing profiles. Furthermore, in Corollary 5.2 we showed
at one can find an optimal schedule in time and space O(n™"') and not just any
:hedule that fits the profile.

AH74]
:BrS 1]
[CG72]

[Co76]
[DW84a]

[DW84b)
[FK71]

[Gas2]
[Ga81]
[GI79]
[GI83]

[GL79]
[Go76]

[Hu61]
[LR76]

[LT79]

[Masg1]
[PY79]

[u17s]
[Wag1]

REFERENCES h .

A. V. AHo, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

J. BRUNO, Deterministic and stochastic scheduling problems with treelike precedence constraints,
NATO Conference, Durham, England, July 1981.

E. G. COFFMAN, JR. AND R. L. GRAHAM, Optimal scheduling for two-processors systems, Acta
Inform., 1 (1972), pp. 200-213.

E.G. COFFMAN, JR., ed., Computer and Job Shop Scheduling Theory, John Wiley, New York, 1976.

D. DoLEV AND M. K. WARMUTH; Scheduling flar graphs, Reseach Report 84-04, Hebrew Univ.,

Jerusalem, March 1984.

, Scheduling precedence graphs of bounded height, J. Algorithms 5 (1984), pp. 48-59.

M. Fuil, T. KasamMi aND K. NINoMiva, Optimal sequencing of two equivalent processors,
SIAM J. Appl. Math., 17 (1969), pp. 784-789; Erratum, 20 (1971), p. 141.

H. N. GABOW, An almost linear algorithm for two processor scheduling, . ACM, 29 (1982), pp.
766-780.

, A linear-time recognition algorithm for interval dags, Inform. Proc. Lett., 12 (1981), pp.
20-22.

M. R. GAREY AND D. S. JouNsON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

M. R. GAREY, D. S. JouNsON, R. E. TARJAN AND M. YANNAKAKIS, Scheduling opposing
forests, this Journal, 4 (1983), pp. 72-93.

R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN, Optimization
and approximation in deterministic sequencing and scheduling: A survey, Ann. Discr. Math., 5
(1979), pp. 287-326.

D. K. GoYAL, Scheduling series parallel structured tasks on multiprocessor computing systems,
Technical Report CS-76-034, Dept. of Computer Science, Washington State Univ., Pullman,
September, 1976. :

N. C. Hu, Parallal sequencing and assembly line problems, Oper. Res., 9 (1961), pp. 841-848,

J. K. LENSTRA AND A. H. G. RINNooY KAN, Complexity of scheduling under precedence
constraints, Oper. Res., 26 (1976), pp. 22-25.

E. L. LAWLER, R. E. TARJAN AND J. VALDES, The recognition of series parallel digraphs, Proc.
11th Annual Symposium on Theory of Computing, Atlanta, GA, April 30-May 2, 1979, pp.
1-12. :

E. W. MAYR, Well structured parallel programs are not easier to schedule, Technical Report
STAN-CS-81-880, Dept. of Computer Science, Stanford Univ., Stanford, CA, September, 1981.

C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Scheduling interval-ordered tasks, SIAM L
Comput., 10 (1979), pp. 405-409.

J. D. ULLMAN, NP-complete scheduling problems, J. Comput. System Sci., 10 (1976), pp. 384-393.

M. K. WARMUTH, Scheduling on profiles of constant breadth, Ph.D. Thesis, Dept. Computer
Science, Univ. Colorado, Boulder, August 1981.

i wd e o

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

