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The Resilience of WDM Networks to
Probabilistic Geographical Failures

Pankaj K. Agarwal, Alon Efrat, Shashidhara K. Ganjugunte,
David Hay, Swaminathan Sankararaman and Gil Zussman

Abstract—Telecommunications networks, and in particular
optical WDM networks, are vulnerable to large-scale failures
in their physical infrastructure, resulting from physical attacks
(such as an Electromagnetic Pulse attack) or natural disasters
(such as solar flares, earthquakes, and floods). Such events
happen at specific geographical locations and disrupt specific
parts of the network but their effects cannot be determined
exactly in advance. Therefore, we provide a unified framework to
model network vulnerability when the event has a probabilistic
nature, defined by an arbitrary probability density function. Our
framework captures scenarios with a number of simultaneous
attacks, when network components consist of several dependent
sub-components, and in which either a 1+1 or a 1:1 protection
plan is in place. We use computational geometric tools to provide
efficient algorithms to identify vulnerable points within the net-
work under various metrics. Then, we obtain numerical results
for specific backbone networks, demonstrating the applicability
of our algorithms to real-world scenarios. Our novel approach
allows to identify locations which require additional protection ef-
forts (e.g., equipment shielding). Overall, the paper demonstrates
that using computational geometric techniques can significantly
contribute to our understanding of network resilience.

Index Terms—Network survivability, geographic networks,
network protection, computational geometry, optical networks.

I. INTRODUCTION

TELECOMMUNICATION networks are crucial for the
normal operation of all sectors of our society. During a

crisis, telecommunication is essential to facilitate the control of
physically remote agents, provide connections between emer-
gency response personnel, and eventually enable reconstitution
of societal functions. However, telecommunication networks
rely heavily on physical infrastructure (such as optical fibers,
amplifiers, routers, and switches), making them vulnerable to
physical attacks, such as Electromagnetic Pulse (EMP) attacks,
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Fig. 1. The fiber backbone operated by a major U.S. network provider
[43] and an example of two attacks with probabilistic effects (the link colors
represent their failure probabilities).

as well as natural disasters, such as solar flares, earthquakes,
hurricanes, and floods [11], [19], [20], [54], [55].

Physical attacks or disasters affect specific geographical
area and will result in failures of neighboring components.
Therefore, it is important to consider their effects on the
physical (fiber) layer as well as on the (logical) network layer.
Increasingly, networks use a shared infrastructure to carry
voice, data, and video simultaneously. Thus, failures in the
this infrastructure will lead to a breakdown of vital services.

Although there has been significant research on network
survivability, most previous works consider a small number of
isolated failures or focus on shared risk groups (e.g., [9], [16],
[35], [40], [49], [57] and references therein). On the other
hand, work on large-scale attacks focused mostly on cyber-
attacks (viruses and worms) (e.g., [8], [22], [33]). In contrast,
we consider events causing a large number of failures in a
specific geographical region.

This emerging field of geographically correlated failures
has started gaining attention only recently [2], [25], [26], [37]–
[39], [45], [46], [55]. However, unlike most of the recent work
in this field, we focus on probabilistic attacks and on multiple
simultaneous attacks. One example of such a scenario is shown
in Fig. 1 which depicts the fiber backbone operated by a major
U.S. network provider [43] and two attacks with probabilistic
effects (the link colors represent their failure probabilities).

The effects of physical attacks can rarely be determined
exactly in advance. The probability that a component is
affected by the attacks depends on various factors, such as
the distance from the attack’s epicenter to the component,
the topography of the surrounding area, the component’s
specifications, and even its location within a building or
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a system.1 In this paper, we consider probability functions
which are non-increasing functions of the distance between
the epicenter and the component. We assume these functions
have a constant description complexity, and allow them to be
either continuous or discontinuous (e.g. histograms). Then, we
develop algorithms that obtain the expected vulnerability of the
network. Furthermore, while [25], [26], [37]–[39], [45], [46],
[55] consider only a single event, our algorithms allow the
assessment of the effects of several simultaneous events.

We focus on wavelength-routed WDM optical networks, es-
pecially at the backbone [40], [49]. We model the network as a
graph, embedded in the plane, in which each node corresponds
to an optical cross-connect (OXC) and each link corresponds
to an optical fiber (which are usually hundreds or thousands of
kilometers long). Along each link there are amplifiers, which
are spaced-out approximately equally and are crucial to traffic
delivery on the fiber. Data is transmitted on this graph on
lightpaths, which are circuits between nodes. While lightpaths
can be established by the network dynamically, lightpath-
provisioning is a resource-intensive process which is usually
slow. If many links fail simultaneously (as in the case of a
physical attack or a large-scale disaster), current technology
will not be able to handle very large-scale re-provisioning
(see for example, the CORONET project [13]). Therefore, we
assume that lightpaths are static, implying that if a lightpath is
destroyed, all the data that it carries is lost. We note that our
results are applicable to any network in which end-to-end paths
are static and known in advance. This includes, for example,
MPLS networks without label swapping at intermediate nodes.

We also consider networks that are protected by a dedi-
cated path protection plan. Under such plans, every (primary)
lightpath has a predefined backup lightpath on which data
can be transmitted if the primary lightpath fails. Protection
plans are pre-computed before a failure event, and therefore,
it is reasonable to assume that they can be applied even after
large-scale failures. Common approaches include 1+1 or 1:1
dedicated protection plans (see [40], [49]). Conceptually, in the
1+1 protection plan, the data is sent twice along primary and
backup lightpaths, implying that data is lost only when both
lightpaths fail simultaneously. A 1:1 dedicated protection, on
the other hand, allows using a backup lightpath for low-priority
traffic. Once the primary lightpath fails, traffic is shifted to the
backup lightpath, and the low-priority traffic is disregarded.

Finally, we consider networks with dynamic restoration
capabilities, i.e., where traffic may be dynamically rerouted in
the event of an attack to avoid data loss. In general, devising
efficient restoration algorithms, especially when required to
handle large-scale failures, is a challenging task. Dynamic
restoration schemes are more efficient in utilizing network
capacity, but have slower recovery time and often cannot
guarantee quality of restoration. With the current technology,
large-scale dynamic restoration is mostly infeasible. However,
this capability will emerge in future optical networks [13].

We note that, in between dedicated path protection and
fully-dynamic restoration, there are other protection techniques

1Characterizing the failure probability function of each component is
orthogonal to this research, and we assume it is given as an input.

that trade between the robustness of the network and the
complexity of the technique (cf. [40] for a complete survey
of these techniques). In this paper, we focus only on the two
endpoints of this scale, while we leave for future research
how to adapt our proposed algorithms to more sophisticated
techniques.

Our goal is to identify the most vulnerable locations in the
network, where vulnerability is measured either by expected
number of failed components or by the expected total data loss.
Our model allows for the consideration of failure probabilities
of compound components by evaluating the effect of the attack
on their sub-components (e.g., the failure probability of a
fiber, due to failure of some amplifiers). We consider the
vulnerability of the network in terms of three measures: (i)
expected component damage: The expected number of network
components directly damaged by attacks or the expected
amount of traffic lost due to the attacks, (ii) average two-
terminal reliability: The expected number of node pairs in the
network which are able to communicate post-attack and (iii)
expected maximum flow: the maximum post-attack flow.

We first develop algorithms for a single attack scenario
under the first two vulnerability measures outlined above. Our
algorithms provide a tradeoff between accuracy and running
time; we can provide arbitrarily small errors, albeit with high
running time. Although these algorithms have to be executed
offline in preparation for disasters, efficiency is important
as numerous options and topologies need to be considered.
Moreover, our algorithms also work under deterministic attack
effects and achieve better results than the prior ones [38].

Next, we consider the case of k simultaneous attacks under
the vulnerability measure of expected component damage and
provide approximation algorithms for computing the most
vulnerable set of k locations. This problem is hard not only
due to its probabilistic nature but also due to the combinatorial
hardness of the deterministic problem.

For networks with protection plans, we provide approxima-
tion algorithms to identify pairs of vulnerable locations that
will have a high effect on both primary and backup paths. For
future networks with dynamic restoration capability, network
resilience can be measured in terms of the expected maximum
flow measure. However, we show that computing this measure
is #P-Complete and hence cannot be found in any reasonable
time. We discuss options for mitigating this evaluation barrier.

Finally, we provide experimental results demonstrating the
applicability of our algorithms to real backbone networks.
Among other things, we show that even when the approxima-
tion algorithms only guarantee low accuracy (thereby, having
low running time), the results are very close to optimal. This
would allow checking various scenarios and settings relatively
fast.

In summary, the contributions of this paper are fourfold:
1) This is the first paper to present a general probabilistic

model for geographically-correlated failures, as well as
efficient approximation algorithms for finding the most
vulnerable locations in the network under two measures.
Our algorithms trade accuracy with efficiency, where
we can provide arbitrarily small errors, albeit with high
running time. In addition, we provide the first set of
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Fig. 2. Failure probability function: (a) deterministic model, (b) probabilistic attack (inverse distance function) for a node, (c) probabilistic attack (Gaussian
function) for a link.

algorithms that deal with simultaneous attacks.
2) We provide algorithms that take into account pre-

computed protection plans.
3) For networks with dynamic restoration capabilities, the

network resilience corresponds to the maximum post-
attack flow. We show that computing this measure is
#P-Complete and discuss options for mitigating this
evaluation barrier.

4) Importantly, this paper demonstrates that geometric tech-
niques can significantly contribute to our understanding
of network resilience.

The rest of the paper is organized as follows: Section II
reviews related work, and Section III states the network model
and the problem. we present in Section IV algorithms for
analyzing network vulnerability by a single location, and
extend them to multiple attacks in Section V. We study
the effect of protection and restoration plans in Sections VI
and VII. We present experimental results in VIII and conclude
and discuss future work in Section IX.

II. RELATED WORK

Network survivability and resilience is a well-established
research area (e.g., [9], [40], [49], [57] and references therein).
However, most of the previous work in this area and, in
particular in the area of physical topology and fiber networks
(e.g., [16], [35]), focused on a small number of fiber failures
(e.g., simultaneous failures of links sharing a common physical
resource, such as a cable, conduit, etc.). Such correlated link
failures are often addressed systematically by the concept of
shared risk link group (SRLG) [28]. Additional works explore
dependent failures, but do not specifically make use of the
causes of dependence [32], [50], [52].

In contrast with these works, we focus on failures within
a specific geographical region (e.g., [10], [20], [54]), im-
plying that the failed components do not necessarily share
the same physical resource. To the best of our knowledge,
geographically correlated failures have been considered only
in a few papers and under very specific assumptions [25],
[26], [37]–[39], [45], [55]. In most cases, the assumption is
that the failures of the components are deterministic and that
there is a single failure. Perhaps closest to this paper are the
problems studied in [10], [17], [18], [38], [46], and [51]. In
particular, Neumayer et al. [38] recently obtained results about
the resilience of fiber networks to geographically correlated

failures when attacks have a circular area of effect in which
links and nodes may fail. However, they only consider a single
attack scenario with deterministic effects. Rahnamay-Naeini et
al. [44], on the other hand, consider a stochastic setting with
multiple attacks. However, unlike our paper, they deal with
random attack locations and not with probabilistic effects of
a failure on nearby components.

Another closely related theoretical problem is the network
inhibition problem [41], [42], in which the objective is to
minimize the value of a maximum flow in the graph, where
there is a cost associated with destroying each edge, and a fixed
budget is given for an orchestrated attack (namely, removing
a set of edges whose total destruction cost is less than the
budget). However, previous works dealing with this setting
and its variants (e.g., [12], [42]) did not study the removal of
(geographically) neighboring links.

Notice that when the logical (i.e., IP) topology is considered,
wide-spread failures have been extensively studied [22], [33].
Most of these works consider the topology of the Internet as
a random graph [8] and use percolation theory to study the
effects of random link and node failures on these graphs. These
studies are motivated by failures of routers due to attacks by
viruses and worms rather than physical attacks.

III. MODEL AND PROBLEM FORMULATION

The optical network is represented as a graph G = (V,E),
where V is a finite set of nodes in the plane, and E is a set
of links. We assume that each link is a straight line segment.
Recall that each node corresponds to an optical cross-connect
(OXC) and each link corresponds to an optical fiber. Each link
e ∈ E has a capacity ce ≥ 0. A lightpath π is a path in G; let
tπ be the amount of data transmitted over π per unit of time.

In certain types of attacks, links are not affected directly.
Recall that each link has a sequence of amplifiers. A link
becomes unusable if any of the amplifiers becomes unusable.
In such a case, we model amplifiers also as nodes of G and
the portions of a link between two adjacent amplifiers are
considered edges. We consider nodes and edges of G as simple
components, and lightpaths as compound components. A link
is a simple or compound component, depending on whether it
is regarded as a single edge of G or a sequence of amplifiers.

The input is a set Q = {q1, . . . , qm} of network com-
ponents; each component q has an associated weight wq
indicating either lightpath traffic or link capacity.
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Fig. 3. Failure probability for a compound component.

Probabilistic Attack Model. An attack induces a spatial
probability distribution on the plane, specifying the damage
probability at each location (see Fig. 2). First consider simple
components. We define the probability distribution function
f : Q × R2 → R≥0. Given an attack location p ∈ R2 and
q ∈ Q, f(q, p) is the probability that q is affected by an attack
at p. Let d(q, p) be the Euclidean distance between p and
q.2 We assume f is non-increasing of d(p, q) and of constant
description complexity.3 We allow f to be discontinuous,
e.g., a piecewise-constant function (histogram). For a fixed
q ∈ Q, we use the function fq : R2 → R≥0 to denote its
probability distribution function, as the function of the location
of attack. Here are some examples of fq: in the deterministic
setting, f(q, p) is 1 if d(p, q) ≤ r and 0 otherwise, for some
parameter r. Alternatively, one could use a more sophisticated
function, for example, where fq(p) depends on the distance
from p to q or the length of the portion of link q within the
attack radius, which also decreases with distance. In many
applications f(q, p) is given, or can be computed as a function
of the distance from p to q. Two examples of fq that we use
in our experimental results are:

• fq decreases linearly with the Euclidean distance, e.g.,
f(q, p) = max{0, 1− d(q, p)} (the circular area of effect
is similar to the geometric models in [38], [45]); and

• fq decreases exponentially with d(p, q), e.g. Gaussian
distribution f(q, p) = βe−αd(q,p)2 for constants α, β > 0,
chosen appropriately to normalize the distribution.

For a compound component π composed of a sequence of
simple components 〈q1, . . . , qr〉, we define its probability of
being damaged by an attack at p, fπ(p), to be the probability
that at least one of its simple component if damaged, i.e.,

fπ(p) = 1−
∏
q∈π

(1− fq(p)). (1)

Figures 2 and 3 illustrate cases where fπ decreases expo-
nentially with the distance for both types of components.
A simpler definition of the probability of failure of π is
fπ(p) = |π′|/|π| where π′ = {q ∈ π | fq(p) ≥ δ} for some
fixed parameter δ > 0. For networks with protection plans (see

2More precisely, d(p, q) is the minimal Euclidean distance between p to
any point along q: d(p, q) = minx∈q ‖pq‖, where ‖ · ‖ is the Euclidean
distance.

3Intuitively, by constant description complexity we mean functions that
can be expressed as a constant number of polynomials of constant maximum
degree or simple distributions like the Gaussian distribution.

Section VI), we assume that data is lost, if and only if both
the primary and backup lightpaths are affected.

Given Q and a fixed integer k ≥ 1, our goal is to find
a set P of k locations so that simultaneous attacks at P
have the highest expected impact on the network. We consider
three measures of impact of P on the network: (i) expected
component damage, (ii) average two-terminal reliability, and
(iii) expected maximum flow.

Expected Component Damage. For a set of attack locations
P , let Φ(Q,P ) denote the expected total weight of failed
components in Q (see the example in Fig. 4). By linearity
of expectation, we get

Φ(Q,P ) =
∑
q∈Q

wq

1−
∏
p∈P

(1− fq(p))

 . (2)

If P = {p}, we set

Φ(Q, p) := Φ(Q,P ) =
∑
q∈Q

wqfq(p).

For a given integer k ≥ 1, let Φ(Q, k) = max|P |=k Φ(Q,P )
and Φ(Q) = Φ(Q, 1).

The weight wq of each component enables us to define
various measures in a unified manner: if Q is the set of
amplifiers and wq is set to 1 (for all q), then Φ(Q,P ) is
the expected number of failed amplifiers. Similarly, if Q is
the set of fibers and for any fiber q, wq = cq (q’s capacity),
then Φ(Q,P ) yields the expected capacity loss of attacks in P .
Finally, if Q is the set of lightpaths and wq = tq , then Φ(Q,P )
is the expected loss in traffic, unless there is a protection (or
restoration) plan in place. It is important to notice that, by
linearity of expectation, Φ(Q,P ) corresponds to the expected
value of the measure under consideration, regardless of any
dependency between the various components in Q. Therefore,
even in the extreme situations in which two components share
the same physical resource (e.g., lightpaths that share the same
fiber, or fibers that share the same conduit), one can evaluate
Φ(Q,P ) by considering each component separately.

When components are points in the plane (that is, amplifiers
or OXCs) and fq(p) = max{0, 1 − d(p, q)}, the problem is
related to the Fermat-Weber problem [21], [34] (i.e., finding
a point that minimizes the average distance to a given set of
points). However, the approximate solutions for the Fermat-
Weber problem and our problem can be quite different.

Average Two-Terminal Reliability. Given a set of probabilities
of failure on the network components (induced by the attacks
at locations P ), the two-terminal reliability for a given node
pair s, d in the network is the probability that they remain
connected after the attack. The average two-terminal reliabil-
ity, denoted by χ(Q,P ) is the expected number of node-pairs
which remain connected after the attack. Formally,

χ(Q,P ) =
1

|V |2
∑
i,j∈V

χij(P )), (3)

where χij(P ) is the probability that i is connected to j given
the set P of attack locations. The quantity χ measures the
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Fig. 4. (a,b): Expected damage for a triangle network and Gaussian probability distribution function with (a) small variance, (b) large variance. (c) Expected
damage for a fiber network.

network’s post-attack connectivity. For an integer k ≥ 1, let
χ(Q, k) = max|P |=k χ(Q,P ) and χ(Q) = χ(Q, 1).

Given probabilities of failure on links/nodes in a network,
the problem of computing the two-terminal reliability (the
probability that a specific pair of nodes is connected) and all-
terminal reliability (the probability that some pair of nodes
is disconnected) are well-known intractable problems [15]
indicating that our problem is intractable as well. In the case of
the all-terminal reliability problem, there exists a randomized
fully polynomial time approximation scheme [29], [30] but the
problem is significantly different from our problem.

Expected Maximum Post-Attack Flow. This quantity mea-
sures the maximum flow in the network once the components
have failed between predetermined source and destination
nodes. This is useful to determine the location maximizing
data loss in networks with dynamic restoration capabilities
(which re-route traffic to avoid data loss). We show that the
problem of finding such a location is intractable.

IV. ASSESSING VULNERABILITY TO A SINGLE ATTACK

In this section, we present algorithms for computing the
vulnerability of a set Q of simple or compound components
to a single attack. Section IV-A describes an approximation
algorithm for computing the maximum expected damage by
a single attack for the case of simple components, IV-B
extends this algorithm to compound components and IV-C
describes approximation algorithms for computing a location
minimizing average two-terminal reliability. Our algorithms
have a tunable parameter ε > 0 providing a tradeoff between
accuracy and efficiency. We note that, in order to measure the
performance of our algorithms, we introduce other parameters
but these are not inputs to the algorithm. We begin by
introducing two geometric concepts, which will be used by
the algorithms.

Arrangement. Let Γ = {γ1, . . . , γm} be a set of (simple)
geometric regions (e.g., disks, triangles, hippodromes) in R2;
regions in Γ may overlap. The arrangement of Γ, denoted
by A(Γ), is the planar subdivision induced by Γ. Namely,
its vertices are the intersection points of the boundaries of
regions in Γ, its edges are the maximal connected portions of
the boundaries of the regions not containing a vertex, and its
faces are the maximal connected regions of R2 not containing

r

Λq2,Y

Λq3,Y

Λq1,Y

q1

q2 q3

ζ

Fig. 5. The arrangement which corresponds to probabilistic attacks of 3
links q1, q2, and q3, such that each has 3 superlevel sets. The shaded region
ζ is an example of one of the faces of the arrangement.

the boundary of any region;4 see Fig. 5. The complexity of
A(Γ), which we denote by κ(Γ), is the total number of its
vertices, edges, and faces. Since A(Γ) is a planar graph, this
quantity is proportional to the number of edges. In the worst
case κ(Γ) = O(m2) provided that any pair of boundaries
intersect in O(1) points, but in our cases it will be much
smaller – closer to O(m). Let D(Γ) be the planar dual graph of
A(Γ) – its nodes (resp. edges, faces) are the faces (resp. edges,
nodes) of A(Γ). We label each edge of D(Γ) with the region
of Γ whose boundary contains the corresponding dual edge of
A(Γ) [23, Page 44]. See [5] for details on arrangements.

Let α : Γ→ R+ be a weight function. For a point p ∈ R2,
we define its depth with respect to Γ and α to be

∆(Γ, α, p) =
∑

{γ∈Γ|p∈γ}

α(γ).

If α(γ) = 1 for all γ ∈ Γ, then ∆(Γ, p) := ∆(Γ, α, p) is
the number of regions of Γ containing p. We set ∆(Γ, α) =
maxp∈R2 ∆(Γ, α, p) to be the maximum depth and denote the
maximum number of regions containing a point by ∆(Γ).

Superlevel sets. Let h : R2 → R be a bivariate function.
For a value t ∈ R, we define the t-superlevel set of h to be
the closure of the set h≥t = {x ∈ R2 | h(x) ≥ t}. If h is
continuous, then h(x) = t for all points on the boundary of
the t-superlevel set. Given two parameters δ > 0 and s ∈ Z+,
we define

Y (δ, s) = {yi := (1− δ)i | 0 ≤ i ≤ s}.

4We assume that the boundaries of two regions are either disjoint or
intersect transversally at a finite number of points.



6

Given Y := Y (δ, s) and a simple component q, let λq,i be
the yi-superlevel set of fq . Let Λq,Y = {λq,i | 0 ≤ i ≤ s}.
Since we have assumed fq to be a non-increasing function of
distance from q, the two following properties hold.

1) For all i ≤ s, λq,i is a simply connected region and
λq,i ⊆ λq,i+1. Hence A(Λq,Y ) is a set of “nested” faces;
see Fig. 2.

2) Let a, b be two points lying in the same face of A(Λq,Y ).
If a, b lie in the outermost (unbounded) face, then
fq(a), fq(b) ≤ (1−δ)s, otherwise fq(a) ≥ (1−δ)fq(b).

A. Expected Damage for Simple Components

Let Q be a set of m weighted simple components—Q is
a set of links or a set of nodes (amplifiers), let wq > 0 be
the weight of q ∈ Q, and let ε > 0 be a parameter. We
describe two algorithms for computing a point p̃ such that
Φ(Q, p̃) ≥ (1−ε)Φ(Q). We first describe our basic algorithm
MAXEXPECTEDDAMAGELOCATION, which is a Las Vegas
algorithm to compute p̃. Then, we present a faster Monte
Carlo algorithm, albeit with a slight probability of finding
a point whose induced damage is less than (1 − ε)Φ(Q).
MAXEXPECTEDDAMAGELOCATION is a building block in
our other algorithms for more sophisticated scenarios.

MAXEXPECTEDDAMAGELOCATION — A Las Vegas al-
gorithm. The algorithm, whose running time is, in practice,
O((m/ε) log2(m/ε)), has the following four main steps:

1) Superlevel sets generation for each component q, taking
into account the approximation parameter ε.

2) Computation of the corresponding arrangement. This
procedure is randomized with guaranteed expected run-
ning time. The arrangement induces a function f̃ ap-
proximating f , which is constant within each face.

3) Efficient computation of f̃ for each face.
4) MAXEXPECTEDDAMAGELOCATION returns an arbi-

trary point in the face whose f̃ is maximal.
We turn now to the details of each step and prove the

correctness of the algorithm. Without loss of generality,
we assume that maxp∈R2 fq(p) = 1 for all q and that
maxq∈Q wq = 1. If necessary, we scale the weights and
probability distribution functions so that this may be true.

We set δ = ε/4, s = dlog1−ε(δ/m)e, and Y = Y (δ, s).
Note that s = O((m/ε) log(m/ε)). Set Λq = Λq,Y for all
q ∈ Q and Λ =

⋃
q∈Q Λq . We assume that the superlevel

sets of different components intersect transversally, i.e., if two
superlevel sets intersect, there always exists a region adjacent
to the intersection points. We compute A(Λ) and its dual graph
D(Λ). For each q ∈ Q, we define a new function f̃q : R2 → R:

f̃q(p) =

{
0, if p /∈ λq,s,
(1− δ)i, if i = min{j | p ∈ λq,j}.

(4)

Set
Φ̃(Q, p) =

∑
q∈Q

wq f̃q(p). (5)

Note that f̃q(p), and thus Φ̃(Q, p) is the same for all points
p in a face ζ ∈ A(Λ), and we use f̃q(ζ) and Φ̃(Q, ζ)
to denote these values, respectively. Further, let ζ1 and ζ2

be two adjacent faces of A(Λ) sharing an edge e ⊆ λq,i.
f̃q′(ζ1) = f̃q′(ζ2) for all components q′ 6= q. Thus, if we
have computed Φ̃(Q, ζ1) then we can compute Φ̃(Q, ζ2) from
Φ̃(Q, ζ1) by updating a single term in (5). By performing
a depth-first search on D(Λ), we compute Φζ = Φ(Q, ζ)
for each node ζ of D(Λ) (each face ζ of A(Λ)) and re-
turn a point p̃ from a face ζ̃ of A(Λ) that maximizes Φζ ,
i.e., ζ̃ = arg maxζ∈D(Λ) Φ̃ζ . Since the boundary curves of
superlevel sets of two components intersect transversally, we
can prove that Φ̃(p̃) = maxp∈R2 Φ̃(p). The correctness of the
algorithm follows from the following two lemmas.

Lemma 1. For any q ∈ Q and for any point p ∈ R2,

fq(p) ≥ f̃q(p) ≥

{
fq(p)− δ/m, if p /∈ λq,s,

(1− δ)fq(p), otherwise.

Proof: By construction of superlevel sets and the def-
inition of f̃q , fq(p) ≥ f̃q(p) for all p ∈ R2. If p /∈ λq,s
then fq(p) < δ/m, and f̃q(p) = 0. If i ≤ s is the smallest
index such that p ∈ λq,i, then fq(p) ≤ (1 − δ)i−1 and
fq(p) = (1− δ)i, implying that f̃q(p) ≥ (1− δ)fq(p).

Lemma 2. Φ(Q, p̃) ≥ (1− ε/2)Φ(Q).

Proof: Let p∗ = arg maxp∈R2 Φ(Q, p). Let QI = {q ∈
Q | p∗ ∈ λq,s} and QE = Q \QI . Then using Lemma 1,

Φ̃(Q, p∗) =
∑
q∈QI

wq f̃q(p
∗) +

∑
q∈QE

wq f̃q(p
∗)

≥
∑
q∈QI

wq(1− δ)fq(p∗) +
∑
q∈QE

wq(fq(p
∗)− δ/m)

≥ (1− δ)
∑
q∈QI

wqfq(p
∗)−

∑
q∈QE

wqδ/m

≥ (1− δ)Φ(Q, p∗)− δ ≥ (1− ε/2)Φ(Q),

since Φ(Q, p∗) ≥ 1 by our normalization. The lemma now
follows because Φ̃(Q, p̃) ≥ Φ̃(Q, p∗).

Finally, the running time of the algorithm is bounded by
the time spent in computing A(Λ), plus O(κ(Λ)) to compute
Φ̃ζ for all faces ζ ∈ A(Λ). The former takes O(|Λ| log |Λ|+
κ(Λ)) = O((m/ε) log2(m/ε)+κ(Λ)) expected time (see [5]).
Note that κ(Λ) is O(|Λ|) plus the number of pairs of superlevel
sets in Λ whose boundaries intersect. Let κ(Q, δ) denote the
number of such pairs in Λ for a given parameter δ. In the
worst case κ(Q, δ) = O((m2/ε2) log2(m/ε)) but in practice
it is closer to (m/ε) log(m/ε). We conclude the following.

Theorem 1. Let Q be a set of m simple components, and let
f be a probability function defined for the components in Q,
let ε > 0 be a parameter. Then a point p̃ can be computed
in expected time O((m/ε) log2(m/ε) + κ(Q, ε/4)) such that
Φ(Q, p̃) ≥ (1− ε)Φ(Q).

Monte Carlo Algorithm. We now describe a faster Monte
Carlo algorithm to compute such a point p̃ (the exact running
time of the algorithm depends on the type of simple compo-
nents considered, see Theorem 2). We do this by formulating
the problems as computing a point of maximum depth in
a set of weighted regions and adapting the algorithms of
Agarwal et al. [4] or Aronov and Har-Peled [6]. Λq and Λ
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are as above. We define a weight function β : Λ → R+ as
follows. For a superlevel set λq,i, we define

β(λq,i) =

{
wq(1− δ)s if i = s,

wqδ(1− δ)i otherwise.

Lemma 3. For any point p ∈ R2, ∆(Λ, p) = Φ̃(Q, p).

Proof: Fix a component q. If p /∈ λq,s, then Φ̃(Q, p) = 0
and p does not lie in any superlevel set of Λq . Let i ≤ s be
the smallest index such that p ∈ λq,i. If i = s, ∆(Λq, p) =
wq(1− δ)s and f̃q(p) = (1− δ)s. If i < s, then

∆(Λq, p) =
∑
j≥i

wqβ(λq, i) = wq

s−1∑
j=i

δ(1− δ)j + wq(1− δ)s

= wq(1− δ)i(1− (1− δ)s−i) + wq(1− δ)s

= wq(1− δ)i = wq f̃q(p).

Hence ∆(Λ, p) =
∑
q∈Q ∆(Λq, p) = Φ̃(Q, p).

The problem of computing p̃ thus reduces to computing the
point of the maximum depth in Λ. We reduce this problem
to computing the deepest point in a multiset of unweighted
regions. Set |Λ| = n. For each component λq,i ∈ Λ, we set

β̃(λq,i) =

⌊
2n

δ
β(λq,i)

⌋
and keep only those superlevel sets for which β̃(λq,i) ≥ 1.
Next we make β̃(λq,i) copies of λq,i and let Λ̃ be the
resulting multiset of superlevel sets. By construction, |Λ̃| ≤∑n
i=1

∑
j≥1(2n/δ)(1− δ)j = O

(
(n2/δ2) log (n/δ)

)
. We do

not compute the set Λ̃ explicitly; we will generate various
subsets of Λ̃ as needed. The following lemma is the crux of
our algorithm.

Lemma 4. (δ/2n)∆(Λ̃) ≥ (1− δ/2)∆(Λ, β).

Proof: Let p̃ be the point of maximum depth with respect
to Λ, β. If p̃ ∈ λq,i then p̃ lies in all b(2n/δ)β(λq,i)c copies
of λq,i in Λ̃. Hence,

∆(Λ̃, p̃) ≥
∑

λq,i|p̃∈λq,i

(
2n

δ
β(λq,i)− 1

)
=

2n

δ
∆(Λ, β, p̃)− n =

2n

δ
(1− δ/2)∆(Λ, β, p̃),

since ∆(Λ, β) ≥ 1. Hence, the lemma holds.
We now describe an algorithm that computes a point p̄ such

that ∆(Λ̃, p̄) ≥ (1 − δ/2)∆(Λ̃). The following lemma is a
slightly adapted form of the lemma in [6] (cf. Corollary 3.2).

Lemma 5. Let ∆ = ∆(Λ̃), ñ = |Λ̃|, 0 < δ̃ < 1/2 be
fixed, r ≥ ∆/4 be an integer, and R̃ ⊆ Λ̃ be a multiset
formed by picking each region Λ̃ with probability ψ =

ψ(δ̃, r) := min
(
c1(log ñ/rδ̃2), 1

)
, independently, where c1

is an appropriate constant. Then:
(i) If ∆(R̃) ≥ 2rψ, then with high probability ∆ ≥ 3r/2.

(ii) If ∆(R̃) ≤ (1− δ̃)rψ, then with high probability ∆ ≤ r.
(iii) For all p ∈ R2, such that ∆(R̃, p) ≥ (1 − δ̃)rψ,

(1 − δ̃)∆(Λ̃, p) ≤ ∆(R̃,p)
ψ ≤ (1 + δ̃)∆(Λ̃, p), with high

probability.

In view of Lemma 5, the point p̄ can be computed by doing
an exponential search, as described in [6]. There are two non-
trivial steps: (i) Choosing the multiset R̃. (ii) A depth threshold
procedure that determines whether ∆(R̃) ≥ (1 − δ̃)rψ. If
so, then return a point p such ∆(R̃, p) ≥ (1 − δ̃)rψ. Recall
that we do not compute the set Λ̃ explicitly. We observe that
the number of copies of λq,i chosen in R̃ follows a binomial
distribution B(β̃q,i, ψ) with parameters β̃q,i and ψ. So we draw
a value νq,i ∼ B(β̃q,i, ψ) in O(log β̃q,i) = O(logm) time
and associate νq,i as the weight ν(λq,i) of λq,i. If νq,i = 0,
we ignore λq,i. Let R ⊆ Λ be the resulting subset, and let
R̃ be the resulting multiset. Then for any point p ∈ R2,
∆(R̃, p) = ∆(R, ν, p). We can use the procedure described
in [1], [6] to check whether ∆(R, ν, p) ≥ (1 − δ̃)rψ. The
expected running time of these procedures is O(|R| log |R|+ρ)
where ρ is the number of vertices in A(R) whose depth with
respect to R, ν (i.e., depth w.r.t. R̃) is at most rψ.

Since ν(λq,i) ≥ 1 for all superlevel sets in R, ρ is bounded
by the number of vertices whose unweighted depth is at most
ρ. Using the argument in Clarkson and Shor [14] (see also
[48]), it can be shown that ρ = O(σ(Q) log2(n)/ε4), where
σ(Q) is the maximum number of vertices on the boundary of
the union of a subset of superlevel sets in Λ, If Q is a set of
nodes then σ(Q) = m, but if Q is a set of links, then σ(l) can
be Ω(m2) in the worst case even though it is O(m) in practice.
Since the decision procedure is invoked logm times, the over-
all running time of this procedure is O(σ(Q) log4(m/ε)/ε4).
Lemmas 2, 3, 4 imply that Φ(Q, p̄) ≥ (1− ε)Φ(Q). Indeed,

δ

2n
∆(Λ̃, p̄) ≥ δ

2n
(1− δ/2)∆(Λ̃) ≥ (1− δ/2)∆(Λ, β)

= (1− δ/2)2Φ(Q) ≥ (1− δ/2)2(1− 2δ)Φ(Q)

≥ (1− 3δ)Φ(Q) ≥ (1− ε)Φ(Q).

Hence, we obtain the following:

Theorem 2. Let Q be a set of m simple components, f a
probability distribution function, and ε > 0 be a parameter.
A point p̃ ∈ R2 can be computed in O(σ(Q) log3(m/ε)/ε4)
expected time such that with high probability Φ(Q, p̃) ≥ (1−
ε)Φ(Q), where σ(Q) is the parameter as defined above and
its value lies between m and m2.

B. Expected Damage for Compound Components

Let Π = {π1, . . . , πm} be a set of m compound components
and let 0 < ε < 1 be a parameter. We wish to compute a point
p̃ ∈ R2 such that Φ(Π, p) ≥ (1 − ε)Φ(Π). We can use the
algorithm described for simple components but the difficulty
is that a superlevel set of fπ , is not a simply connected region
of constant size – its boundary may be disconnected and may
have too many edges; see Fig. 3. So computing a superlevel set
of π is expensive. Hence, we use a slightly different approach.

Let Q be the set of simple components in the compound
components of Π. Set

∑
π∈Π |π| = n. We say that a simple

component q is affected by an attack at a location p if
fq(p) ≥ ε/(4mn), otherwise we say that an attack at location
p has no affect on of q. For a compound component π ∈ Π,
σπ be the maximum number of simple components in π
that can be affected by an attack at some location, and let
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σΠ = maxπ∈Π σπ. In practice σ := σΠ is a constant, though
it may be as large as |Q| in the worst case.

We set δ = ε/4σ, s = log1−δ(ε/4mn) =
O((σ/ε) log(n/ε)). For each q ∈ Q, let Λq = Λq,Y , and Y =
Y (δ, s) and let Λ =

⋃
q∈Q Λq , |Λ| = O((σn/ε) log(n/ε)).

Next, let f̃q be the same as in (4), and we now define:
f̃π(p) = 1−

∏
q∈π(1− f̃q(p)), Φ̃(Π, p) =

∑
π∈Π wπ f̃π(p).

Note that for any q ∈ Q if a point p 6∈ λq,s then q is not
affected by an attack p. We compute A(Λ), compute Φ̃(Π, ζ)
for each face ζ of A(Λ), and return a point p̃ from a face ζ̃
that maximizes the value of Φ̃(Π, ζ). The total time taken by
this algorithm is O(|Λ| log |Λ|+κ(Λ)). The correctness of the
algorithm follows from the following two lemmas.

Lemma 6. Let Xi ∈ (0, 1) for 1 ≤ i ≤ k, let 0 < δ <
1/k be a parameter, and for 1 ≤ i ≤ k let X̃i be a value
such that Xi ≥ X̃i ≥ (1 − δ)Xi. If g(X1, . . . , Xk) = 1 −∏k
i=1(1−Xi), then g(X1, . . . , Xk) ≥ g(X̃1, . . . , X̃k) ≥ (1−

kδ)g(X1, . . . , Xk).

Proof: Since X̃i ≤ Xi, the first inequality is true. For j ≤
k, let

(
X
j

)
denote the family of subsets of X1, . . . , Xk of size j.

Then, g(X1, . . . , Xk) =
∑
j≥1(−1)j+1

∑
R∈(X

j )
∏
Xi∈RXi.

The value of g(X̃1, . . . , X̃k) is minimum when X̃i = (1 −
δ)Xi. Therefore,

g(X̃1, . . . , X̃k) ≥
∑
j≥1

(−1)j+1
∑

R∈(X
j )

(1− δ)j
∏
Xi∈R

Xi

≥ (1− δ)k
∑
j≥1

(−1)j+1
∑

R∈(X
j )

∏
Xi∈R

Xi

≥ (1− kδ)g(X1, . . . , Xk).

We now prove the main lemma.

Lemma 7. For any π ∈ Π and for any p ∈ R2, fπ(p) ≥
f̃π(p) ≥ (1− ε/2)fπ(p)− ε

2m .

Proof: It suffices to prove the second inequality. Fix a
point p ∈ R2. Let ΠA ⊆ Π be the set of simple components
affected by p, and let ΠNA ⊆ Π be the set of remaining simple
components; set t = |ΠNA|. The f̃q(p) ≥ 0 and fq(p) ≤
ε/4mn for all components q ∈ ΠNA. Therefore, by Lemma 6,

f̃π(p) ≥ 1−
∏
q∈ΠA

(1− f̃q(p))

≥ (1− ε/4)

[
1−

∏
q∈ΠA

(1− fq(p))
]

=
1− ε/4

(1− ε/4mn)t

[
(1− ε/4mn)t −

(1− ε/4mn)t
∏
q∈ΠA

(1− fq(p))
]

≥ (1− ε/2)

[
(1− ε/4m)−

∏
q∈π

(1− fq(p))
]

≥ (1− ε/2)fπ(p)− ε

4m
.

Using the above lemma and following the proof of
Lemma 2, we obtain the following.

Corollary 1. Φ(Π) ≥ Φ̃(Π, p̃) ≥ (1− ε)Φ(Π).

Putting everything together, we obtain the following:

Theorem 3. Let Π be a set of m compound components,
let Q be the set of simple components in them, and let n =∑
π∈Π |π|. Let f be a probability distribution function, and let

0 < ε < 1 be a parameter. A point p̃ such that Φ(Π, p̃) ≥ (1−
ε)Φ(Π) can be computed in expected time O(σnε log2(n/ε) +
κ(Q, ε/4σ)) time, where σ is the maximum number of simple
components of a component in Π that are affected by an attack
and κ(Q, ε/4σ) is the same as defined above.

We note that in the worst case σ = n and κ(Q, ε/4σ) =
O(σ2n2 log2(n/ε)/ε2) = O((n4/ε2) log2(n/ε)), but in prac-
tice σ is a small constant and κ(Q, ε/4σ) = O(|Λ|) =
O((n/ε) log(n/ε)). Furthermore, we can also use the Monte
Carlo algorithm by sampling components in Π. However, it is
hard to prove an improved bound on its running time because
the complexity of superlevel sets can be large.

C. Average Two-Terminal Reliability

Let Q be a set of m simple components and let 0 < ε <
1/2 be a parameter. We describe an algorithm for computing
a point p̃ such that χ(Q, p̃) ≤ (1 + ε)χ(Q) (as defined in
Section III). Our algorithm follows the same paradigm as in
Sections IV-A and IV-B: (i) compute a set of superlevel sets,
(ii) compute χ(Q, pϕ) for a point pϕ in each face ϕ of their
arrangement and (iii) return a point pϕ∗ with lowest χ.

We make two assumptions on the effects of the attacks:

A1: We assume a local attack whose range is limited to r
which is small compared to the network’s environment
size. Formally, we assume that an attack at p can only
affect a small number of components, i.e., if, for an attack
at p, Qp = {q ∈ Q | d(p, q) ≤ r}, then |Qp| ≤ k. We
assume k to be a constant. In the context of this section,
we call k the maximum depth (note that this is different
from the weighted depth defined in Section IV).

A2: An attack on the network cannot destroy any component
with very low or very high probability: If a component
has a probability smaller than ε to fail (or survive), we
assume that this is indeed the case. More formally, for
an attack at p affecting a component q, we assume that
fq(p) is either 0 or 1 or lies in the interval (ε, 1− ε).

For each component q, we construct the ymin-superlevel set
of fq where ymin = ε and denote this by λq,min. Note that, by
A2, for every location outside λq,min, fq takes the value 0. Let
Λmin = {λq,min | ∀q ∈ Q} and Amin = A(Λmin) denote the
arrangement of Λmin. We call Amin the coarse arrangement.
In every face ϕ of Amin, the set of components in Q which
have positive probability of failure stays the same. We denote
this set by Q(ϕ). Note that |Q(ϕ)| ≤ k.

At a higher level, the algorithm traverses the faces of Amin

so that, at each face ϕ, we may maintain the connected
components of Q\Q(ϕ). For more details on how this may be
done, we refer the reader [23, Chapter V] in which a procedure
for performing this traversal efficiently is described.

At each face, we construct a fine arrangement in a manner
similar to Sections IV-A and IV-B. We set δ = ε/8k, s =
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log1−δ(ε/(1 − ε)) = O((k/ε) log(1/ε) and compute Y :=
Y (δ, s). For a component q, let λq,i denote the yi-superlevel
set of fq and let λ′q,i denote the yi-superlevel set of 1−fq . Let
Λq = {λq,i | 0 ≤ i ≤ s} ∪ {λ′q,i | 0 ≤ i ≤ s} and let Λ(ϕ) =
∪q∈Q(ϕ)Λq . By the properties of superlevel sets, for all i ≤ s,
λq,i and λ′q,i are simply connected regions and λq,i ⊆ λq,i+1

(similarly, λ′q,i ⊆ λ′q,i−1). Thus, the arrangement A(Λ(ϕ)) is a
set of “nested” faces. In each case, we choose δ = ε/4k and s
such that ε(1 + δ)s ≥ (1− ε). Therefore, s = O(kε log 1

ε ). Let
ζ be a face of a fine arrangement A(Λ(ϕ)) contained inside a
face ϕ of the coarse arrangement Amin.

Recall that at face ϕ of Amin, we maintain the set of
connected components of Q \ Q(ϕ). At a face ϕ of Amin,
the algorithm traverses the faces of A(Λ(ϕ)) inside ϕ by
performing a depth-first search on the dual graph D(Λ(ϕ)) of
A(Λ(ϕ)) similar to the algorithm in Section IV-A. At each face
ζ, we compute the probabilities of all possible failure scenarios
of components Q(ϕ) (since |Q(ϕ)| ≤ k, there are possible 2k

such scenarios corresponding to each subset of Q(ϕ) failing).
For each scenario, we insert the components which are not
failed into the set of connected components of Q \Q(ϕ) and
compute the number of pairs of nodes connected. A weighted
sum over all scenarios with the weights corresponding to the
probabilities gives the value of χ(ϕ). Finally, the algorithm
reports the minimum over all faces. We refer the reader to
[23, Chapter V] for the complete details of this procedure.

The correctness of the algorithm follows from the following
lemma. Consider a face ζ of A(Λ(ϕ)) contained in a face ϕ of
Amin and a single scenario of failure of components in Q(ϕ)
where only the components in a set Qf ⊂ Q(ϕ) fail. Further,
we denote by χQf

(p), the probability of this scenario taking
place when the attack is at a point p ∈ ζ.

Lemma 8. For two points p1 and p2 in the same face ζ of
A(Λ(ϕ)) and a specific subset Qf ⊆ Q(ϕ) failing, χQf

(p1) ≥
χQf

(p2), then χQf
(p1) ≤ (1 + ε)χQf

(p2).

Proof: For an attack at a point p ∈ ϕ, we have

χQf
(p) =

∏
q∈Qf

fq(p) ·
∏

q∈Q(ϕ)\Qf

(1− fq(p))

Since for each q ∈ Qf , fq(p2) ≥ (1− δ)fq(p1) and similarly,
for each q ∈ Q(ϕ) \ Qf , 1 − fq(p2) ≥ (1 − δ)fq(p1) where
δ = ε/8k, we have:

χQf
(p2) ≥

(
1 +

ε

4k

)k
χQf (p1),

since 1/(1 − (ε/8k)) ≤ 1 + (ε/4k) for 0 < ε < 1/2. The
proof follows since (1 + ε

4k )k ≤ (1 + ε
4 (e− 1)) ≤ (1 + ε).

Summing over all scenarios, clearly, the algorithm provides
a (1 + ε)−approximation of the optimal value.

We now analyze the running time of the algorithm. The
arrangement Amin may be computed in time O(m logm +
|Amin|). |Amin | = km since the maximum depth is k and
Λmin is a set of pseudo-disks (see [14], [47]). For each face
ϕ of Amin, the time spent in computing χ is exponential
in k (since we examine 2k failure scenarios of Q(ϕ)) and
independent of m (since |Λ(ϕ)| is independent of m). The
traversal of the faces of Amin may be accomplished in

time O(km log2m + km log k) steps for each of which we
need to traverse the fine arrangement (see [23, Chapter V]
for full details). Thus, the total time for the algorithm is
O(ckm(log2m + log k)) where ck is exponential in k and
independent of m.

Theorem 4. Under assumptions A1 and A2, given a set Q
of m simple components, a point p̃ such that χ(Q, p̃) ≤
(1 + ε)χ(Q, p∗), where p∗ is the location that minimizes χ,
can be computed in O(ckm(log2m+ log k)) time. Here ck is
independent of m but exponential in the maximum depth k.

V. ASSESSING VULNERABILITY TO MULTIPLE
SIMULTANEOUS ATTACKS

We now consider scenarios in which k attacks may happen
simultaneously. Our goal is therefore to identify the set P of
k locations, for which Φ(Q,P ) is maximized over all possible
choices of k locations. In general, finding this set P is NP-
hard, since maximizing the value of Φ is a generalization of the
well-known maximum set cover problem [27]. Nevertheless,
we show that the function Φ satisfies two key properties
monotonicity and submodularity, which are used to develop an
approximation algorithm. Again, as before, this approximation
algorithm has a tunable parameter ε which provides a tradeoff
between the approximation factor and running time.

At a high level, the greedy algorithm works in k iterations.
At each iteration, we choose a location for an attack. Let Pi =
{p1, p2, . . . , pi} be the set of locations chosen after i iterations.
At iteration i + 1, we pick the location that has the highest
impact in terms of expected component damage given that we
have already chosen P1. In order to quantify this impact, we
define the notion of revenue of a location p given Pi, which
is denoted by Rev(p, Pi) and defined as follows:

Rev(p, Pi) = Φ(Q,Pi ∪ {p})− Φ(Q,Pi).

A perfect greedy algorithm would pick a point p∗i+1 /∈ Pi
which maximizes the revenue Rev(p, Pi) over all points
p ∈ R2. However, implementing the greedy algorithm exactly
may be possible for certain functions fq(·) (e.g., square of
the Euclidean distance), but in general it might be difficult.
Thus, our approximate greedy algorithm finds a location p̂i+1

such that Rev(p̂i+1, Pi) ≥ (1 − ε) Rev(p∗i+1, Pi). Notice
that Rev(p, Pi) =

∑
q∈Q µ(q, Pi)fq(p), where µ(q, Pi) =

w′q
∏
pi∈Pi

(1 − fq(pi)). Thus, the approximate greedy pro-
cedure may be implemented using the algorithms from in
Section IV after modifying the weights of the components
to µ(q, Pi) (instead of w′q).

Let P ∗ be the set of k locations which maximizes Φ(Q,P )
over all possible P . We now show that Φ satisfies the key prop-
erties: monotonicity and submodularity. These two properties
immediately imply that a perfect greedy algorithm achieves
a (1 − 1/e)–approximation [36]. Since our algorithm is only
approximately greedy, this results in an overall approximation
factor of (1− 1

e1−ε ) [24], for any 0 < ε < 1.
Monotonicity intuitively means that the expected damage

only increases with number of attacks. Formally, Φ(Q, ·) is
monotonically non-decreasing, i.e., Φ(Q,P1) ≤ Φ(Q,P2), for
any set P2 ⊇ P1 (this stems from the fact that µ(q, P2) ≤
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µ(q, P1), for any q ∈ Q). Φ(Q, ·) also exhibits the “law of
diminishing returns” property or submodularity: for a given
attack p and two sets of attacks P1 and P2 such that P2 ⊇ P1,
the revenue of p is lower with respect to P2 than with respect
to P1. The following lemma captures this property.

Lemma 9. Φ(Q, ·) is a submodular function. Namely, for any
two set of points P1 and P2, such that P2 ⊇ P1, and any
point p ∈ R2, Φ(Q,P1∪{p})−Φ(Q,P1) ≥ Φ(Q,P2∪{p})−
Φ(Q,P2), i.e., Rev(p, P1) ≥ Rev(p, P2).

Proof: If p ∈ P2, Φ(Q,P2∪{p})−Φ(Q,P2) = 0 and the
proof is trivial. If p /∈ P2, Rev(p, P2) =

∑
q∈Q µ(q, P2)fq(p)

and Rev(p, P1) =
∑
q∈Q µ(q, P1)fq(p). Since µ(q, P2) ≤

µ(q, P1) for any q ∈ Q, the claim follows.
It is important to note that our proof holds for both types

of components (simple and compound), and hence, the greedy
algorithm works for both cases. Clearly, our algorithm takes
O(kg(Q)) where g(Q) is the time required to perform each
step, i.e., the running time of MAXEXPECTEDDAMAGELO-
CATION from Sections IV-A and IV-B. Thus, in practice, for
a set Q of m simple components, the running time would
be O(k(m/ε) log2(m/ε)) and for a set Q of compound
components such that n =

∑
π∈Q |π|, the runnning time would

be O(k(n/ε) log2(n/ε)).

Theorem 5. Let Q be a set of m simple or compound
components, let f be a probability function defined for the
simple components in Q and let 0 < ε < 1 be a parameter. A
set of k points P̃ such that Φ(Q, P̃ ) ≥ (1−(1/e1−ε))Φ(Q, k)
can be found in time O(kg(Q)) where g(Q) is the time
required for finding a single location maximizing Φ(Q).

VI. NETWORKS WITH A PROTECTION PLAN

In networks with a protection plan in place at time of
deployment, the determination of paths (both primary and
backup) during design-time often takes geographical correla-
tion into account. The primary and backup lightpaths tend to
be fiber-disjoint or even to be part of different Shared Risk
Link Groups (SRLGs). For example, the fibers should not be
close physically. Thus, it is likely that a reasonable protection
plan will cope with a single attack. In this section, we evaluate
the resilience of a protection plan to two simultaneous attacks.

Formally, we are given a set Π of pairs of lightpaths (πi, π
′
i),

where πi and π′i are the primary and backup paths. Let Ti and
ti be, respectively, the high-priority and low-priority traffic on
these lightpaths (for 1+1 protection, ti is always 0). Thus, one
loses ti when either πi or π′i fails, or Ti + ti if both fail at
once. We may consider three possible events at which there is
a loss of traffic: (i) πi fails and π′i does not fail, denoted by
E1, (ii) πi does not fail and π′i fails, denoted by E2, and (iii)
both πi and π′i fail, denoted by E3. Given two attack locations
p1 and p2, the probabilities of the three events are as follows:

Pr(E1) = gπ′i(p1)gπ′i(p2)(fπi
(p1) + fπi

(p2)gπi
(p1))

Pr(E2) = gπi
(p1)gπi

(p2)(fπ′i(p1) + fπ′i(p2)gπ′i(p1))

Pr(E3) = fπi
(p1)fπ′i(p1)gπ′i(p2) + fπi

(p2)fπ′i(p2)gπ′i(p1)

+fπi
(p1)fπ′i(p2)gπi

(p2) + fπi
(p2)fπ′i(p1)gπi

(p1)

+fπi
(p1)fπ′i(p1)fπi

(p2)fπ′i(p2)

where, gπ(p) denotes 1− fπ(p). Hence, the expected loss on
the ith pair is given by:

Φi({p1, p2}) = ti(Pr(E1) + Pr(E2) + Pr(E3))

+(ti + Ti)Pr(E3) (6)

For the entire network, we get Φ(Π, {p1, p2}) =∑
i Φi({p1, p2}). We next show how to find locations {p̃1, p̃2}

such that Φ(Π, {p̃1, p̃2}) approximates Φ(Π, 2), the maximum
expected loss over all pairs of locations. Notice that one can
also measure the worst-case vulnerability of the protection
plan by the value of Φ(Π, 2) and use this value to compare
the resilience of alternative plans.

The algorithm proceeds in a manner similar to MAXEX-
PECTEDDAMAGELOCATION in Section IV. First, we scale
the values of ti and Ti for every pair (πi, π

′
i) such that

maxi(Ti + ti) = 1. Next, similar to IV-B, we choose
δ = ε/(c1σ) where σ is the maximum number of simple
components in any path (primary or backup) and c1 is a
constant whose choice is described later. We also choose s
such that (1 − δ)s ≤ (ε/2n), where n is the sum of the
lengths of all paths. Note that s = O((σ/ε) log(n/ε)). With
these values, we compute Y := Y (δ, s) and compute the
arrangement Λ of superlevel sets of both f and g = 1− f for
all simple components based on Y (similar to Section IV-C).

The approximation factor of both f and g for a single path
follows similar to Lemma 7. Now, we compute the value
Φ(Π, {p1, p2}) for every pair of faces of Λ where p1 and p2

may be located and pick the pair which maximizes Φ, say
{p̃1, p̃2}. Since there is at most a multiplication of four terms
in Eq. (6), we choose the constant c1 needed for determining
s in such a manner that c1ε ≤ 1− 4

√
1− ε. With this choice,

following the proof of Lemma 2, we may show that the
Φ(Π, {p̃1, p̃2}) ≥ (1 − ε)Φ(Π, 2). The running time of the
algorithm is quadratic in the size of the arrangement.

Theorem 6. Let Π be a set of lightpath pairs designating the
protected paths, let Q be the constituent simple components
and let n = σ(π,π′)∈Π|π|+|π′|. Let f be a probability function
defined for the simple components in Q and let 0 < ε < 1 be a
parameter. A set of 2 points {p̃1, p̃2} such that Φ({p̃1, p̃2}) ≥
(1 − ε)Φ(Π, 2) can be found in time O(((σ)/ε) log2(n/ε) +
(κ(Q, ε/(c1σ)))2) where σ is the maximum number of simple
components in any lightpath and κ is the complexity of the
arrangement of superlevel sets of Q.

VII. NETWORKS WITH RESTORATION ALGORITHMS

In a network with dynamic restoration capabilities, where
traffic may be re-routed dynamically based on failed com-
ponents, the optimal quality of restoration (in terms of post-
attack traffic carried by the network between predetermined
source nodes and destination nodes) is the maximum flow of
the residual network. Therefore, finding the most vulnerable
location in such a setting is equivalent to finding the location
whose corresponding attack minimizes the expected maximum
flow. However, under a probabilistic setting, finding the ex-
pected maximum flow of a graph is #P -complete. This is
true even if all links have unit weight (that is, a connectivity
problem), and even if the graphs are planar. It is important
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Fig. 6. Variation of Φ, normalized by the sum over the entire network, with the attack radius for a linear failure probability function.

to note that although one is not directly required to compute
the exact value of the expected maximum flow in order to
find the most vulnerable location, and, in some cases, one can
compare the effects of two locations without such computation
(e.g., when the failure probability of one location dominates
the other), in the general case, such computation is necessary
(e.g., two locations affecting disjoint sets of links and there is
no third location that can be used for comparison). Thus, we
obtain the following result. whose complete proof appears in
Appendix A.

Theorem 7. Computing the most vulnerable location in term
of expected maximum flow is #P -complete.

Essentially, this hardness result implies that finding the most
vulnerable location requires an exponential-time algorithm in
the number of affected links. Such algorithms might be feasible
to implement when the number of these links is bounded
by a small constant κ. The most intuitive approach is by
complete state enumeration. Such an algorithm considers one
candidate location at a time (obtained by the corresponding
arrangement, as in Section IV); each location p defines a
probabilistic graph G = (V,E) where every edge e ∈ E
has a failure probability f(e, p). Let E1 denote the edges
with zero failure probability, and E2 the rest of the edges.
The algorithm enumerates all subsets of E2 and for each such
subset S, it first computes the probability for such a failure
pattern: PrS =

∏
e∈S f(e, p)

∏
e∈E2\S(1 − f(e, p)); then, it

computes the maximum flow FS in GS = (V,E1 ∪ S). The
expected maximum flow is

∑
S⊆E2

PrS ·FS , and its com-
putation requires 2|E2| ≤ 2κ maximum-flow computations.5

Alternative techniques, such as graph simplification, graph
factoring, and inclusion-exclusion based approaches have also
been studied [15]. However, all suggested algorithms still
require exponential running time.

VIII. EXPERIMENTAL RESULTS

We have obtained numerical results of the algorithms
of Section IV for three networks within continental USA:
Level 3’s network of 230 links [31], Qwest’s fiber-optic

5Note that the arrangement of Section IV induces only an approximate
solution. In this case, we need to scale the error parameter ε inversely with
κ to avoid accumulating errors in the computation.

Fig. 7. Locations found by MAXEXPECTEDDAMAGELOCATION on Qwest’s
network, a Gaussian f -function on simple components for various radii.

network of 181 links [43], and XO Communications’ long-
haul network of 71 links [56]. We used lightpath information
(compound components) for the last two (65 lightpaths in
case of Qwest’s network and 37 for XO). In addition, for
Qwest’s network, we used the transmission rates of lightpaths
to determine their weights. We conducted simulations with
five accuracy values ε = {0.1, 0.2, . . . , 0.5} for links (simple
components) for k = 1, 2, i.e., up to two attacks. For
lightpaths, we used three values 0.2, 0.35, 0.5 and simulated
one attack (k = 1). For each case, we considered five attack
radii, ranging between 60 and 300 miles and two f functions:
one that decreases linearly with the distance, and the other
that follows a Gaussian distribution (see Section III).

Fig. 6 shows the change in Φ with attack radius for a linear
f for both links and lightpaths. We normalized the value
of Φ, so that 100% implies the sum of the weights of all
network components. Clearly, the marginal gain for increasing
the attack radius is limited, and even small attacks of radius 60
miles can cause large damage, if they are placed in vulnerable
locations. Moreover, increasing k to just two causes more than
1.5 times the number of links to fail indicating that there are
multiple locations with similarly high impact. Fig. 7 depicts
examples of best single attack locations on Qwest’s network
for a Gaussian f on links, and various radii.

We also compared Φ for different values of ε. Table I shows
the results for links and lightpaths when the attack radius
(resp., standard deviation) is 180 miles for the linear (resp.,
Gaussian) f -function. Here, ΦL and ΦG respectively denote
Φ under linear and Gaussian f -functions. Our results show no
perceptible change in Φ when ε is changed, neither for links
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TABLE I
VALUES OF Φ FOR LINKS AND LIGHTPATHS UNDER LINEAR f -FUNCTION

(ΦL) AND GAUSSIAN f -FUNCTION (ΦG). THE TOTAL WEIGHT OF
LIGHTPATHS IS 1193 AND 37 FOR QWEST AND XO RESPECTIVELY.

Level3 Qwest XO
ΦL ΦG ΦL ΦG ΦL ΦG

Links, k=1 20.5 69.4 14.1 37.2 6.1 15.6
Links, k=2 38.8 105.2 25.7 62.9 10.6 25.9
Lightpaths, k=1 - - 475.7 615.1 11.1 15.8

Fig. 8. Example with four links, where Φ varies significantly with ε.
MAXEXPECTEDDAMAGELOCATION selects attack location with Φ = 2.677
for ε = 0.5 (see arrangement on the left) and Φ = 3.788–approximately
40% more–for ε = 0.1 (arrangement on the right). Notice that the fiber-links
(in green) do not intersect (but their end-points are in close proximity).

nor for lightpaths. This conclusion holds for all 3 networks,
for both f -functions and for various attack radii. This may be
due to the fact that, in these networks, the locations found lie
extremely close to a link and in many cases, close to a node,
avoiding the worst-case (in terms of accuracy).

However, there do exist cases where Φ varies significantly
with ε: in Fig. 8, 4 links of length 5 units are placed as shown
with a small gap at the center. When the f -function is Gaussian
with a standard deviation of 2.2 units and ε = {0.1, 0.5},
the values of Φ computed by MAXEXPECTEDDAMAGELOCA-
TION are 3.79 and 2.68, respectively. While such cases where
Φ varies significantly with ε exist, our results show that, in
practice, the dependence on ε is very limited.

To validate our algorithm, we also computed Φ for all three
networks when attack locations are restricted to a fine grid
of cell size 0.6 × 0.6 miles. Fig. 4 (c) shows the effects on
Qwest’s network, of attacks of radius 180 miles centered at
grid points. The point corresponding to the maximum value of
Φ lies less than 0.5 miles from our algorithm’s output (shown
in red in Fig. 4(c)) and the values of Φ are also almost the
same. These results further reinforce the conclusion that our
algorithm is, in practice, close to optimal.

Finally, we compared the total number of locations exam-
ined by MAXEXPECTEDDAMAGELOCATION as well as the
actual execution times for all values of ε. Fig. 9 shows the
results for Qwest’s network for three attack radii. We see that
the complexity of the arrangement as well as the execution
times for smaller values of ε are far higher than that for
larger values showing that using larger values provides large
reductions in running time with minimal loss of accuracy.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we provided a unified framework to identify
vulnerable point(s), given a WDM network embedded in the
Euclidean plane. A unique feature of our framework is its

ability to cope with a wide range of probabilistic attack and
failure models.

The basic building block of our framework is the al-
gorithm MAXEXPECTEDDAMAGELOCATION, which locates
efficiently a point in the plane that causes arbitrarily close to
maximum expected damage on a network comprised of sim-
ple components. By its tolerance factor ε, MAXEXPECTED-
DAMAGELOCATION trades accuracy with running time. We
further extended and improved MAXEXPECTEDDAMAGELO-
CATION in various ways that allow it to deal with compound
components, simultaneous attacks, networks equipped with a
protection plan and to deal faster with simpler networks or
distributions. We also evaluated its performance by simulation
on three real WDM networks. Our numerical results show,
quite surprisingly, that MAXEXPECTEDDAMAGELOCATION
finds a location very close to optimal, even when taking a
high tolerance factor ε (e.g., when it runs very fast but with
a loose guarantee on the quality of its output). This makes
MAXEXPECTEDDAMAGELOCATION an even more attractive
tool for assessing network resilience.

Future research directions include adapting our algorithms
to more sophisticated protection techniques, developing effi-
cient planning methods for geographically-resilient networks
and investigating the effect of adding minimal infrastructure
(e.g., lighting-up dark fibers) on network resilience, as well as
proving hardness results for approximation schemes. More-
over, we plan to determine how to use low-cost shielding for
existing components to mitigate large-scale physical attacks.

REFERENCES

[1] P. K. Agarwal, D. Z. Chen, S. K. Ganjugunte, E. Misiołek, M. Sharir,
and K. Tang, “Stabbing convex polygons with a segment or a polygon,”
in Proc. ESA, Sep. 2008.

[2] P. K. Agarwal, A. Efrat, S. K. Ganjugunte, D. Hay, S. Sankararaman, and
G. Zussman, “Network vulnerability to single, multiple, and probabilistic
physical attacks,” in Proc. MILCOM, Nov. 2010.

[3] ——, “The resilience of wdm networks to probabilistic geographical
failures,” in Proc. IEEE INFOCOM, Apr. 2011.

[4] P. K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. H. M. Smid, and
E. Welzl, “Translating a planar object to maximize point containment,”
in Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 42–53.

[5] P. Agarwal and M. Sharir, “Arrangements and their applications,”
Handbook of Computational Geometry, pp. 49–119, 2000.

[6] B. Aronov and S. Har-Peled, “On approximating the depth and related
problems,” in Proc. ACM-SIAM SODA, Jan. 2005.

[7] M. O. Ball, C. J. Colbourn, and J. S. Provan, “Network reliability,” in
Network Models, ser. Handbooks in Operations Research and Manage-
ment Science. Elsevier, 1995, vol. 7, ch. 11, pp. 673– 62.

[8] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[9] R. Bhandari, Survivable networks: algorithms for diverse routing.
Kluwer, 1999.

[10] D. Bienstock, “Some generalized max-flow min-cut problems in the
plane,” Math. Oper. Res., vol. 16, no. 2, pp. 310–333, 1991.

[11] J. Borland, “Analyzing the Internet collapse,” MIT Technology
Review, Feb. 2008. [Online]. Available: http://www.technologyreview.
com/Infotech/20152/?a=f

[12] R. L. Church, M. P. Scaparra, and R. S. Middleton, “Identifying critical
infrastructure: the median and covering facility interdiction problems,”
Ann. Assoc. Amer. Geographers, vol. 94, no. 3, pp. 491–502, 2004.

[13] G. Clapp, R. Doverspike, R. Skoog, J. Strand, and A. V. Lehmen,
“Lessons learned from CORONET,” in OSA OFC, Mar. 2010.

[14] K. L. Clarkson and P. W. Shor, “Applications of random sampling in
computational geometry, II,” Discrete Comput. Geom., vol. 4, pp. 387–
421, Sep. 1989.

[15] C. J. Colbourn, The Combinatorics of Network Reliability. Oxford
University Press, 1987.



13

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5

#
 o

f 
lo

c
a

ti
o

n
s
 (

in
 m

il
li

o
n

s
) 

Accuracy parameter ε 

Radius = 60 miles

Radius = 120 miles

Radius = 180 miles

(a) # of locations vs ε

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5

R
u

n
n

in
g

 T
im

e
 (

s
e

c
o

n
d

s
) 

Accuracy parameter ε 

Radius = 60 miles

Radius = 120 miles

Radius = 180 miles

(b) Running time vs ε

Fig. 9. Number of locations examined by MAXEXPECTEDDAMAGELOCATION and running times vs ε for various radii given a linear probability function.

[16] O. Crochat, J.-Y. Le Boudec, and O. Gerstel, “Protection interoperability
for WDM optical networks,” IEEE/ACM Trans. Netw., vol. 8, no. 3, pp.
384–395, 2000.

[17] N. Dinh, Y. Xuan, M. T. Thai, P. Pardalos, and T. Znati, “On new
approaches of assessing network vulnerability: hardness and approxi-
mation,” IEEE/ACM Trans. Netw., vol. 20, no. 2, pp. 609–619, Apr
2012.

[18] N. Dinh, Y. Xuan, M. T. Thai, E. K. Park, and T. Znati, “On approxima-
tion of new optimization methods for assessing network vulnerability,”
in Proc. IEEE INFOCOM, Mar. 2010, pp. 2678–2686.

[19] W. R. Forstchen, One Second After. Tom Doherty Associates, 2009.
[20] J. S. Foster, E. Gjelde, W. R. Graham, R. J. Hermann, H. M. Kluepfel,

R. L. Lawson, G. K. Soper, L. L. Wood, and J. B. Woodard, “Report
of the commission to assess the threat to the United States from
electromagnetic pulse (EMP) attack, critical national infrastructures,”
Apr. 2008.

[21] R. L. Francis, Facility Layout and Location: An Analytical Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1974.

[22] L. K. Gallos, R. Cohen, P. Argyrakis, A. Bunde, and S. Havlin, “Stability
and topology of scale-free networks under attack and defense strategies,”
Phys. Rev. Lett., vol. 94, no. 18, 2005.

[23] S. K. Ganjugunte, “Geometric hitting sets and their variants,” Ph.D.
dissertation, Duke University, 2011.

[24] P. R. Goundan and A. S. Schulz, “Revisiting the greedy approach to
submodular set function maximization,” Working paper, 2008.

[25] A. F. Hansen, A. Kvalbein, T. Cicic, and S. Gjessing, “Resilient routing
layers for network disaster planning,” in Proc. ICN, Apr. 2005.

[26] M. M. Hayat, J. E. Pezoa, D. Dietz, and S. Dhakal, “Dynamic load
balancing for robust distributed computing in the presence of topological
impairments,” Wiley Handbook of Science and Technology for Homeland
Security, 2009.

[27] D. Hochbaum and A. Pathria, “Analysis of the greedy approach in
problems of maximum k-coverage,” Naval Research Logistics (NRL),
vol. 45, no. 6, pp. 615–627, 1998.

[28] IETF Internet Working Group, “Inference of Shared Risk Link
Groups,” Nov. 2001, Internet Draft. [Online]. Available: http:
//tools.ietf.org/html/draft-many-inference-srlg-02

[29] D. R. Karger, “A randomized fully polynomial time approximation
scheme for the all-terminal network reliability problem,” SIAM Rev.,
vol. 43, no. 3, pp. 499–522, 2001.

[30] D. R. Karger and R. P. Tai, “Implementing a fully polynomial time
approximation scheme for all terminal network reliability,” in Proc.
ACM-SIAM SODA, Jan. 1997.

[31] Level 3 Communications, Network Map. [Online]. Available: http:
//www.level3.com/interacts/map.html

[32] G. Liu and C. Ji, “Scalability of network-failure resilience: Analysis
using multi-layer probabilistic graphical models,” IEEE/ACM Trans.
Netw., vol. 17, no. 1, pp. 319 –331, Feb. 2009.

[33] D. Magoni, “Tearing down the Internet,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 6, pp. 949–960, Aug. 2003.

[34] Z. A. Melzak, Companion to Concrete Mathematics; Mathematical
Techniques and Various Applications. Wiley, New York, 1973.

[35] A. Narula-Tam, E. Modiano, and A. Brzezinski, “Physical topology
design for survivable routing of logical rings in WDM-based networks,”
IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1525–1538, Oct. 2004.

[36] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of

approximations for maximizing submodular set functions - I,” Math.
Prog., vol. 14, no. 1, pp. 265–294, Dec. 1978.

[37] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in Proc. IEEE INFOCOM, Mar. 2010.

[38] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters,” in Proc. IEEE
INFOCOM, Apr. 2009.

[39] ——, “Assessing the impact of geographically correlated network fail-
ures,” in Proc. IEEE MILCOM, Nov. 2008.

[40] C. Ou and B. Mukherjee, Survivable Optical WDM Networks. Springer-
Verlag, 2005.

[41] C. A. Phillips, “The network inhibition problem,” in Proc. ACM STOC,
May 1993.

[42] A. Pinar, Y. Fogel, and B. Lesieutre, “The inhibiting bisection problem,”
in Proc. ACM SPAA, Jun. 2007.

[43] Qwest, Network Map. [Online]. Available: http://www.qwest.com/
largebusiness/enterprisesolutions/networkMaps/

[44] M. Rahnamay-Naeini, J. Pezoa, G. Azar, N. Ghani, and M. Hayat,
“Modeling stochastic correlated failures and their effects on network
reliability,” in Proc. IEEE ICCCN, Aug. 2011.

[45] A. Sen, S. Murthy, and S. Banerjee, “Region-based connectivity: a new
paradigm for design of fault-tolerant networks,” in Proc. IEEE HPSR,
2009.

[46] A. Sen, B. Shen, L. Zhou, and B. Hao, “Fault-tolerance in sensor
networks: a new evaluation metric,” in Proc. IEEE INFOCOM, Apr.
2006.

[47] M. Sharir, “The clarkson-shor technique revisited and extended,” in Proc.
ACM SoCG, Jun. 2001, pp. 252–256.

[48] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and their
Geometric Applications. Cambridge University Press, 1995.

[49] A. K. Somani, Survivability and Traffic Grooming in WDM Optical
Networks. Cambridge University Press, 2005.

[50] J. Spragins, “Dependent failures in data communication systems,” IEEE
Trans. Commun., vol. 25, no. 12, pp. 1494 – 1499, Dec. 1977.
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APPENDIX A
PROOF OF THEOREM 7

The proof is by reduction from the s−t expected maximum
flow problem, in which one need to compute the expected
maximum flow from node s to node t. We restrict our graphs
to be with capacity 1 and all edge failure probabilities to be the
same (in our case, 1/2). It is known that the problem is still
#P -complete [7]. In addition, by enumerating over all possible
combinations, and since for each instance the maximum flow
is integral, one can verify that the value of the expectation
is a multiple of 1

2n . Trivially, the expected maximum flow is
bounded by n.

Let G be such a network of n links (all their weights are
1) and let R denote its physical diameter. Assume, without
loss of generality, that d(s, t) = R. We define the following
f -function to determine geographical failures:

f(p, q) =

{
1
2 d(p, q) ≤ R
0 otherwise

Note that f induces a uniform reliability problem on G.
We next show how to construct a family of graphs so that

by finding their most vulnerable location (in terms of expected
s−t flow), one can compute the value of the expected s−t flow
on the original graph, hence establishing that finding the most
vulnerable location is in #P . Note that our family graphs will
contain exponential number of graphs (each of polynomial
size), however we will need to consider only a polynomial
number of them (and can construct them on-the-fly).

We first consider a simple serial-parallel construction: Given
a graph G, where the probability that s′ is connected to t′ is C,
then (i) if one adds an edge (s′′, s′) then the probability that s′′

is connected to t′ is C/2; (ii) if one add an edge (s′, t′) then
the probability that s′ is connected to t′ is 1/2 +C/2. With a
combination of x serial-parallel compositions, one can build a
sequence of graphs, Gser/par(i), (for any 1 ≤ i < 2x) whose
distinguished nodes are connected with probability i/2x. We
scale the physical length of the edges so that the physical size
of the entire graph is R (implying that a single attack can
affect all edges). In the rest of the proof, we fix x to be 2n.

Let F be the value of the maximum flow of G had all the
edges not failed (this can be computed in polynomial time).
At each iteration, we use some graph Gser/par(i), where the
capacity of all its edges is F . We connect nodes t and s′

by n2 parallel edges of capacity F and length larger than R
(see Fig 10). Note that the expected minimum cut size (and
hence induced bottleneck) on Gser/par(i) is exactly F i

22n .

Our reduction follows by a binary search on the parameter
i of the family of the graphs: In general, at each iteration,
we compute the most vulnerable location in term of expected
maximum flow between s to t′ and distinguish between five
different cases:

1) The location affects only G. This implies that the
expected s-t flow is strictly less than F i+1

22n . We will
continue in the next iteration with smaller value of i (in
a binary search manner).

2) The location affects only G and the n2 parallel edges.
Failure on the parallel edges affects the maximum flow
if and only if all edge fail. Since this happens with
probability 1

2n2 , the expected s-t flow is strictly less
than F i+1

22n . We will continue in the next iteration with
smaller value of i (in a binary search manner).

3) The location affects only the n2 parallel edges. This
implies that the expected maximum flow is more than
F (1 − 1

2n2 ), which by the granularity of the values of
the expected maximum flow implies that it is F (and
the algorithm finishes).

4) The location affects only Gser/par(i). This implies that
the expected s-t flow is strictly more than F i−1

22n . We
will continue in the next iteration with higher value of
i (in a binary search manner).

5) The location affects Gser/par(i) and the n2 parallel
edges. This, again, implies that the expected s-t flow
is strictly more than F i−1

22n . We will continue in the
next iteration with higher value of i (in a binary search
manner).

We start with i = 22n−1. When the binary search completes,
we get the accurate value of G’s expected maximum s-t flow.
The number of iterations is bounded O(log 22n) = O(n) and
therefore our reduction is polynomial, as required.
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