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Abstract

In order to estimate the motion of an object, the visual system needs to combine multiple local measure-
ments, each of which carries some degree of ambiguity. We present a model of motion perception whereby
measurements from di�erent image regions are combined according to a Bayesian estimator | the esti-
mated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In
reviewing a large number of previously published phenomena we �nd that the Bayesian estimator predicts
a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from
a single computational strategy that is optimal under reasonable assumptions.
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1 Introduction

Estimating motion in scenes containing multiple, com-
plex motions remains a di�cult problem for computer
vision systems, yet is performed e�ortlessly by human
observers. Motion analysis in such scenes imposes con-

icting demands on the design of a vision system [5]. The
inherent ambiguity of local motion signals means that lo-
cal computations cannot provide enough information to
obtain a correct estimate. Thus the system must inte-
grate many local measurements. On the other hand, the
fact that there are multiple motions means that global
computations are likely to mix together measurements
derived from di�erent motions. Thus the system also
must segment the local measurements.
In this paper we are concerned with the �rst part of the

problem, the integration of multiple constraints. Even if
we know the scene contains only a single object, esti-
mating that motion is nontrivial. This di�culty arises
from the ambiguity of individual velocity measurements
which may give only a partial constraint on the unknown
motion [39] , i.e. the \aperture problem", [13, 2, 17].
To solve this problem, most models assume a two stage
scheme whereby local readings are �rst computed, and
then integrated in a second stage to produce velocity
estimates. Psychophysical [2, 20, 42] and neurophysio-
logical [20, 29] �ndings are consistent with such a model.
The nature of the integration scheme used in the sec-

ond stage remains, however, controversial. This is true
even for the simple, widely studied \plaid" stimulus in
which two oriented gratings translate rigidly in the image
plane (�gure 1a). Due to the aperture problem, only the
component of velocity normal to the orientation of the
grating can be estimated, and hence each grating motion
is consistent with an in�nite number of possible veloci-
ties, a constraint line in velocity space (�gure 1b). When
each grating is viewed in isolation, subjects typically per-
ceive the normal velocity (shown by arrows in �gure 1b).
Yet when the two gratings are presented simultaneously
subjects often perceive them moving coherently and as-
cribe a single motion to the plaid pattern [2, 39].
Adelson and Movshon (1982) distinguished between

three methods to estimate this \pattern motion" { Inter-
section of Constraints (IOC), Vector Average (VA) and
blob tracking. Intersection of Constraints (IOC) �nds
the single translation vector that is consistent with the
information at both gratings. Graphically, this can be
thought of as �nding the point in velocity space that lies
at the intersection of both constraint lines (circle in �g-
ure 1b). Vector Average (VA) combines the two normal
velocities by taking their average. Graphically this cor-
responds to �nding the point in velocity space that lies
halfway in between the two normal velocities (square in
�gure 1b). Blob tracking makes use of the motion of the
intersections [8, 19] which contain unambiguous informa-
tion indicating the pattern velocity. For plaid patterns
blob tracking and IOC give identical predictions | they

would both predict veridical perception.

The wealth of experimental results on the perception
of motion in plaids reveals a surprisingly complex pic-
ture. Perceived pattern motion is sometimes veridical
(consistent with IOC or feature tracking) and at other
times signi�cantly biased towards the VA direction. The
degree of bias is in
uenced by factors including orienta-
tion of the gratings [45, 4, 7], contrast [35], presentation
time [45] and foveal location [45].

Thus even for the restricted case of plaid stimuli, nei-
ther of the three models suggested above can by them-
selves explain the range of percepts. Instead, one needs
to assume that human motion perception is based on at
least two separate mechanisms | a \2D motion" mech-
anism that estimates veridical motion and a crude \1D
motion" mechanism that is at times biased away from
the veridical motion. Many investigators have proposed
that two separate motion mechanisms exist and that
these are later combined [30, 15, 19, 3].

As an example of a two mechanism explanation, con-
sider the Wilson et al. (92) model of perceived direction
of sine wave plaids. The perceived motion is assumed to
be the average of two motion estimates one obtained by
a \Fourier" pathway and the other by a \non-Fourier"
pathway. The \Fourier" pathway calculates the normal
motions of the two components while the \non-Fourier"
pathway calculates motion energy on a squared and �l-
tered version of the pattern.

Both pathways use vector average to calculate their
motion estimates, but the inclusion of the \non-Fourier"
pathway causes the estimate to be more veridical. Wil-
son et al. have shown that their model may predict bi-
ased or veridical estimates of direction depending on the
parameters of the stimulus. The change in model predic-
tion with stimulus parameters arises from the fact that
the two mechanisms operate in separate regimes. Thus
since plaids move in the vector average at short dura-
tions and not at long durations, it was assumed that
the \non-Fourier" mechanism is delayed relative to the
\Fourier" pathway. Since plaids move more veridically
in the fovea than in the periphery, the model non-Fourier
responses were divided by two in the periphery.

The danger of such an explanation is that practically
any psychophysical result on perceived direction can be
accommodated - by assuming that the \2D" mechanism
operates when the motion is veridical, and does not op-
erate whenever the motion is biased. For example, Alais
et al (1994) favor a 2D \blob tracking" explanation for
perceived direction of plaids. The fact that some plaids
exhibit large biases in perceived direction while others
do not is attributed to the fact that some plaids con-
tain \optimal blobs" while others contain \suboptimal
blobs" [3]. Although the data may require these types of
post-hoc explanations, we would prefer a more principled
explanation in terms of a single mechanism.

Evidence that the complex set of experimental results
1
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Figure 1: a. Two gratings translating in the image plane give a \plaid" pattern. b. Due to the aperture problem,
the measurements for a single grating are consistent with a family of motions all lying on a constraint line in velocity
space. Intersection of Constraints (IOC) �nds the single velocity consistent with both sources of information. Vector
Averaging (VA) takes the average of the two normal velocities. Experimental evidence for both types of combination
rules has been found.

on plaids may indeed be explained using a single princi-
pled mechanism comes from the work of Heeger and Si-
moncelli [11, 33, 32, 34]. Their model consisted of a bank
of spatiotemporal �lters, whose outputs were pooled to
form velocity tuned units. The population of velocity
units represented an optimal Bayesian estimate of the
local velocity, assuming a prior probability favoring slow
speeds. Their model worked directly on the raw image
data and could be used to calculate the local velocity for
any image sequence. In general, their model predicted
a velocity close to the veridical velocity of the stimulus,
but under certain conditions (e.g. low contrast, small
angular separation) predicted velocities that were biased
towards the vector average. They showed that these con-
ditions for biased perception were consistent with data
from human observers.

The controversy over the integration scheme used to
estimate the translation of plaids may obscure the fact
that they are hardly representative of the range of mo-
tions the visual system needs to analyze. A model of
integration of local constraints in human vision should
also account for perception of more complex motions
than rigid 2D translation in the image plane. As an
example, consider the perception of circles and derived
�gures in rotation (�gure 2). When a \fat" ellipse , with
aspect ratio close to unity, rotates in the image plane, it
is perceived as deforming nonrigidly [21, 40, 22]. How-
ever, when a \narrow" ellipse, with aspect ratio far from
unity, rotates in the image plane, the motion is perceived
veridically [40].

Unfortunately, the models surveyed above for the per-
ception of plaids can not be directly applied to explain
this percept. These models estimate a single velocity
vector rather than a spatially varying velocity �eld. An
elegant explanation was o�ered by Hildreth (1983) us-
ing a very di�erent style of model. She explained this

and other motion \illusions" of smooth contours with
a model that minimizes the variation of the perceived
velocity �eld along the contour. She showed that for
a rigid body with explicit features, her model will al-
ways give the physically \correct" motion �eld, but for
smooth contours the estimate may be wrong. In the
cases when the estimate was physically \wrong", it quali-
tatively agreed with human percepts of the same stimuli.
Grzywacz and Yuille (1991) used a modi�ed de�nition of
smoothness to explain the misperception of smooth con-
tours undergoing rigid translation [23, 24].

Thus the question of how the visual system integrates
multiple local motion constraints has not a single an-
swer in the existing literature but rather a multitude of
answers. Each of the models proposed can successfully
explain a subset of the rich experimental data.

In this paper we propose a single Bayesian model for
motion integration and show that it can account for a
wide range of percepts. We show that seemingly uncon-
nected phenomena in human vision { from bias towards
vector average in plaids to perceived nonrigidity in el-
lipses may arise from an optimal Bayesian estimation
strategy in human vision.

2 Intuition | Bayesian motion

perception

In order to obtain intuition about how Bayesian motion
perception works, this section describes the construction
of an overly simpli�ed Bayesian motion estimator. As we
discuss at the end of this section, this restricted model
can not account for the range of phenomena we are in-
terested in explaining. However, understanding the re-
stricted model may help understand the more general
Bayesian model.

While the Bayesian approach to perception has re-
2
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Figure 2: a. a \fat" ellipse rotating rigidly in the image plane appears to deform nonrigidly. b. a \narrow" ellipse
rotating rigidly in the image plane appears to rotate rigidly.

cently been used by a number of researchers (see
e.g. [14]), di�erent authors may mean di�erent things
when they refer to the visual system as Bayesian. Here
we refer to two aspects of Bayesian inference - (1) that
di�erent measurements are combined while taking into
account their degree of certainty and (2) that measure-
ments are combined together with prior knowledge to
arrive at an estimate.
To illustrate this de�nition, consider an observer who

is trying to estimate the temperature outside her house.
She sends out two messengers who perform measure-
ments and report back to her. One messenger reports
that the temperature is 80 degrees and attaches a high
degree of certainty to his measurement, while the sec-
ond messenger reports that the temperature is 60 with
a low degree of certainty. The observer herself, without
making any measurements, has prior knowledge that the
temperature this time of the year is typically around 90
degrees. According to our de�nition, there are two ways
in which the observer can be a non Bayesian. First, by
ignoring the certainty of the two messengers and giving
equal weight to the two estimates. Second, by ignoring
her prior knowledge and using only the two measure-
ments.

In order to perform Bayesian inference the observer
needs to formalize her prior knowledge as a probability
distribution and to ask both messengers to report prob-
ability distributions as well | the likelihoods of their
evidence given a temperature. Denote by � the unknown
temperature, and Ea; Eb the evidence considered by the
two messengers. The task of the Bayesian observer is to
calculate the posterior probability of any temperature
value given both sources of evidence:

P (�jEa; Eb) (1)

Using Bayes rule, this can be rewritten:

P (�jEa; Eb) = kP (�)P (Ea; Ebj�) (2)

where k is a normalizing constant that is independent
of �. Note that the right hand side of equation 2 re-
quires knowing the joint probability of the evidence of
the two messengers. Typically, neither of the two mes-
sengers would know this probability, as it requires some
knowledge of the amount of information shared between
them. A simplifying assumption is that the two messen-
gers consider conditionally independent sources of evi-
dence, in which case equation 2 simpli�es into:

P (�jEa; Eb) = kP (�)P (Eaj�)P (Ebj�) (3)

Equation 3 expresses the posterior probability of the
temperature as a product of the prior probability and
the likelihoods. The Maximum a posteriore (MAP) esti-
mate is the one that maximizes the posterior probability.
If the likelihoods and the prior probability are Gaus-

sian distributions, the MAP estimate has a very simple
form | it reduces to a weighted average of the two esti-
mates and the prior where the weights are inversely pro-
portional to the variances. Formally, assume P (Eaj�) is
a Gaussian with mean �a and variance Va, P (Ebj�) is a
Gaussian with mean �b and variance Vb, and the prior
P (�) is a Gaussian with mean �p and variance Vp. Then
��, the MAP estimate is given by:

�� =

1
Va
�a +

1
Vb
�b +

1
Vp
�p

1
Va

+ 1
Vb

+ 1
Vp

(4)

Equation 4 illustrates the two properties of a Bayesian
estimator | the two likelihoods are combined with a
prior and all quantities are weighted by their uncertainty.
Motion perception can be considered in analogous

terms. Suppose the observer is trying to estimate the ve-
locity of a translating pattern. Di�erent image locations
give local readings of the motion with varying degrees of
uncertainty and the observer also has some prior proba-
bility over the possible velocity. In a Bayesian estimation
procedure, the observer would use the local readings in
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Figure 3: A restricted Bayesian estimator for velocity. The algorithm receives local likelihoods from various image
locations and calculates the posterior probability in velocity space. This estimator is too simplistic to account for the
range of phenomena we are intersted in explaining but serves to give intuition about how Bayesian motion estimation
works. Here the likelihoods are zero everywhere except on the constraint line and the MAP estimate is the IOC
solution.
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Figure 4: A restricted Bayesian estimator for velocity. The algorithm receives local likelihoods from various image
locations and calculates the posterior probability in velocity space. This estimator is too simplistic to account for
the range of phenomena we are interested in explaining but serves to give intuition about how Bayesian motion
estimation works. Here the likelihoods are zero everywhere except at distance � from the constraint line and the
MAP estimate is the normal velocity with minimal speed.
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Figure 5: A restricted Bayesian estimator for velocity. The algorithm receives local likelihoods from various image
locations and calculates the posterior probability in velocity space. This estimator is too simplistic to account for
the range of phenomena we are interested in explaining but serves to give intuition about how Bayesian motion
estimation works. Here the likelihoods fall o� in a Gaussian manner with distance from the constraint line, and the
MAP estimate is the vector average.
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order to obtain likelihoods and then multiply these like-
lihoods and the prior probability to �nd the posterior.
This suggests the restricted Bayesian motion estima-

tor illustrated in �gures 3{5. The model receives as in-
put likelihoods from two apertures, and multiplies them
together with a prior probability to obtain a posterior
probability in velocity space. Finally the peak of the
posterior distribution gives the MAP estimate.
Figure 3 shows the MAP estimate when the two like-

lihoods are set to 1 for velocities on the constraint line
and 0 everywhere else. The prior probability is a Gaus-
sian favoring slow speeds (cf. [11]) | the probability
falls o� with distance from the origin. In this case, the
prior probability plays no role, because when the two
likelihoods are multiplied the result is zero everywhere
except at the IOC solution. Thus the MAP estimate will
be the IOC solution.
A second possibility is shown in �gure 4. Here we as-

sume that the likelihoods are zero everywhere except at
velocities that are a �xed distance from the constraint
line. Now when the two likelihoods are multiplied they
give a diamond shaped region of velocity space in which
all velocities have equal likelihood. The multiplication
with the prior probability gives a \shaded diamond" pos-
terior probability whose peak is shown with a dot. In this
case the MAP estimate is the normal velocity of one of
the slower grating.
A third possibility is shown in �gure 5. Here we as-

sume that the likelihoods are \fuzzy" constraint lines
| likelihood decreases exponentially with distance from
the constraint line. Now when the two likelihoods are
multiplied they give rise to a \fuzzy" ellipsoid in veloc-
ity space. The IOC solution maximizes the combined
likelihood but all velocities within the \fuzzy" ellipsoid
have similar likelihoods. Multiplication with the prior
gives a posterior probability whose peak is shown with
the X symbol. In this case the MAP estimate is close to
the vector average solution.
As the preceding examples show, this restricted

Bayesian model may give rise to various velocity space
combination rules, depending on the local likelihoods.
However, as a model of human perception the restricted
Bayesian model su�ers from serious shortcomings:

� The likelihood functions are based on constraint
lines, i.e. on an experimenter's description of the
stimulus. We need a way to calculate likelihoods
directly from spatiotemporal data.

� The likelihood functions only consider \1D" loca-
tions. We need a way to de�ne likelihoods for all
image regions, including \2D" features.

� The velocity space construction of the estimator as-
sumes rigid translation. We need a way of perform-
ing Bayesian inference for general motions, includ-
ing rotations and nonrigid deformations.

In this paper we describe a more elaborate Bayesian
estimator. The model works directly on the image data
and combines local likelihoods with a prior probability
to estimate a velocity �eld for a given stimulus. The
prior probability favors slow and smooth velocity �elds.
We review a large number of previously published phe-
nomena and �nd that the Bayesian estimator predicts a
wide range of psychophysical results.

3 The model

The global structure of our model is shown in �gure 6.
As in mostmotionmodels, our model can be divided into
two main stages - (1) a local measurement stage and (2)
a global integration stage where the local measurements
are combined to give an estimate of the motion of a sur-
face. For present purposes we also include two stages
that are not the focus of this paper - a selection stage
and a decision stage.

3.1 Stage 1 - local likelihoods

The local measurement stage uses the output of spa-
tiotemporal �lters in order to obtain information about
the motion in a small image patch. An important feature
of our model is that the �lter outputs are not used in or-
der to derive a single local estimate of motion. Rather,
the measurements are used to obtain a local likelihood
map| for any particular candidate velocity we estimate
the probability of the spatiotemporal data being gener-
ated by that velocity. This stage of our model is very
similar to the model proposed by Heeger and Simoncelli
(1991) who also suggested a physiological implementa-
tion in areas V1 and MT. Here we use a simpler, less
physiological version that still captures the important
notion of uncertainty in local motion measurements.

There are a number of reasons why di�erent locations
have varying degrees of ambiguity. The �rst reason is
geometry. For a location in which the only image data is
a straight edge, there are an in�nite number of possible
velocities that are equally consistent with the local image
data (all lying on a constraint line). In a location in
which the data is two-dimensional this is no longer the
case, and the local data is only consistent with a single
velocity.

Thus in the absence of noise, there would be only two
types of measurements | \2D" locations which are un-
ambiguous and \1D" locations which have an in�nite
ambiguity. However when noise is considered all loca-
tions will have some degree of ambiguity. In that case
one cannot simply distinguish between velocities that
\are consistent" with the local image data and those
that are not. Rather the system needs to quantify the
degree to which the data is consistent with a particular
velocity.

Here we quantify the degree of consistency using the
7
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Figure 6: The global structure of our model. Similar to most models of motion perception, our model can be divided
into two main stages - (1) a local measurement stage and (2) a global integration stage where the local measurements
are combined to give an estimate of object motion. Unlike most models, the �rst stage extracts probabilities about
local motion, and the second stage combines these local measurements in a Bayesian framework, taking into account
a prior favoring slow and smooth velocity �elds.

gradient constraint [13, 16]:

C(vx; vy) =
X
x;y;t

w(x; y; t)(Ixvx + Iyvy + It)
2 (5)

where vx; vy denote the horizontal and vertical compo-
nents of the local velocity Ix; Iy; It denote the spatial
and temporal derivatives of the intensity function and
w(x; y; t) is a spatiotemporal window centered at (x; y; t).
The gradient constraint is closely related to more physi-
ologically plausible methods for motion analysis such as
autocorrelation and motion energy [28, 26, 1, 32].

Assuming the intensity of a point is constant as it
moves in the image the gradient constraint will be sat-
is�ed exactly for the correct velocity. If the local spa-
tiotemporal window contains more than one orientation,
the correct velocity can be determined. In the presence
of noise, however, the gradient constraint only gives a
relative likelihood for every velocity | the closer the
constraint is to being satis�ed, the more likely that ve-
locity is. A standard derivation under the assumption of
Gaussian noise in the temporal derivative [32] gives the
likelihood of a velocity at a given location:

L(vx; vy) = P (Ix; Iy; Itjvx; vy) = �e�C(vx;vy)=2�
2

(6)

where � is a normalizing constant and �2 is the expected
variance of the noise in the temporal derivative. This pa-
rameter is required in order to convert from the consis-
tency measure to likelihoods. If there is no noise at all in
the sequence, then any small deviation from the gradient
constraint for a particular velocity means that velocity
is extremely unlikely. For larger amounts of noise, the
system can tolerate larger deviations from the gradient
constraint.

To gain intuition about the local likelihood, we dis-
play it as a gray level image for several simple stimuli
(�gures 7{10). In these plots the brightness at a pixel
is proportional to the likelihood of a particular local ve-
locity hypothesis - bright pixels correspond to high like-
lihoods while dark pixels correspond to low likelihoods.

Figure 7a illustrates the likelihood function at three
di�erent receptive �elds on a diamond translating hor-
izontally. Note that for locations which have straight
lines, the likelihood function is similar to a \fuzzy" con-
straint line - all velocities on the constraint line have
highest likelihood and it decreases with distance from
the line. The \fuzziness" of the constraint line is gov-
erned by the parameter � - if we assume no noise in the
sequence, � = 0 , then all velocities o� the constraint line
have zero, but if we assume noise the fallo� is more grad-
ual and points o� the constraint line may have nonzero
probability. Note also that at corners where the local
information is less ambiguous, the likelihood no longer
has the elongated shape of a constraint line but rather is
centered around the veridical velocity. Our model does
not categorize locations into \corners" versus \lines" {
all image locations have varying degrees of ambiguity.
Figure 8 illustrates the likelihoods at the top of a rotat-
ing ellipse. In a \fat" ellipse, the local likelihood at the
bottom of the ellipse is highly ambiguous, almost as in
a straight line. In a \narrow" ellipse, however, the local
likelihood at the bottom of the ellipse is highly unam-
biguous.
In addition to the local geometry, the uncertainty asso-

ciated with a location varies with contrast and duration.
Although the true velocity will always exactly satisfy the
gradient constraint, at low contrasts it will be di�cult
to distinguish the true velocity from other candidate ve-
locities. The degree of consistency of all velocities will
be nearly identical. Indeed in the limiting case of zero
contrast, there is no information at all about the local
velocity and there is in�nite uncertainty. Figure 9 shows
the change in the likelihood function for a �xed � as the
contrast is varied. At high contrasts the likelihood func-
tion is a relatively sharp constraint line, but at lower
contrasts it becomes more and more fuzzy | the less
contrast the higher the uncertainty. This dependence of
uncertainty on contrast is not restricted to the partic-
ular choice of consistency measure. Similar plots were
obtained using motion energy in [32].
Similarly, the shorter the duration of the stimulus the

higher the uncertainty. Since the degree of consistency
8
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Figure 7: A single frame from a sequence in which a diamond translates horizontally. a-c. Local likelihoods at three
locations. At an edge the local likelihood is a \fuzzy" constraint line, while at corners the local likelihood is peaked
around the veridical velocity. In this paper we use the gradient constraint to calculate these local likelihoods but
very similar likelihoods were calculated using motion energy in [32]
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Figure 8: When a curved object rotates, the local information has varying degrees of ambiguity regarding the true
motion, depending on the shape. In a \fat" ellipse, the local likelihood at the top of the ellipse is highly ambiguous,
almost as in a straight line. In a \narrow" ellipse, however, the local likelihood at the top of the ellipse is relatively
unambiguous.
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Figure 9: The e�ect of contrast on the local likelihood. As contrast decreases the likelihood becomes more fuzzy.
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Figure 10: The e�ect of duration on the local likelihood. As duration increases the likelihood becomes more peaked.
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is summed over space and time, it is easier to distinguish
the correct velocity from other candidates as the dura-
tion of the stimulus increases. Figure 10 illustrates this
dependence - as duration increases there is more informa-
tion in the spatiotemporal receptive �eld and hence less
uncertainty. The likelihood function becomes less fuzzy
as duration increases. The quantitative dependence will
of course vary with the size and the shape of the window
function w(x; y; t), but the

We emphasize again that in the �rst stage no decision
is made about the local velocity. Rather in each local re-
gion, a probability distribution summarizes the range of
possible velocities consistent with the local data, and the
relative likelihood of each of these velocities. The com-
bination of these local likelihoods are left to subsequent
processing.

3.2 Stage 2 - Bayesian combination of local

signals

Given the local measurements obtained across the im-
age, the second stage calculates the MAP estimate for
the motion of a single surface. In the restricted Bayesian
model discussed in the introduction, this calculation
could be easily performed in velocity space | it required
multiplying the likelihoods and the prior to obtain the
posterior.

When we consider general motions of a surface, how-
ever, the velocity space representation is not su�cient.
Any 2D translation of a surface can be represented by a
single point in velocity space with coordinates (vx; vy).
However, there is no way to represent a rotation of a
surface in a single velocity space plot, we need a larger,
higher dimensional space. Figure 11 shows a simple gen-
eralization in which motion is represented by three num-
bers | two translation numbers and a rotation angle.
This space is rich enough to capture rotations, but again
is not rich enough to capture the range of surface mo-
tions | there is no way to capture expansion, shearing or
nonrigid deformation. We need a yet higher dimensional
space.

We use a 50 dimensional space to represent the motion
of a surface. The mapping from parameter space to the
velocity �eld is given by:

vx(x; y) =
25X
i=1

�iG(x� xi; y � yi) (7)

vy(x; y) =
50X

i=26

�iG(x� xi; y � yi) (8)

where fxi; yig are 25 locations in the image equally
spaced on a 5x5 grid and G(x; y) is a two dimensional
Gaussian function in image space, with spatial extent
de�ned by �x:

G(x; y) = e
�

x
2+y2

2�2
x (9)

There is nothing special about this particular repre-
sentation | it is merely one choice that allows us to rep-
resent a large family of motions with a relatively small
number of dimensions. We have also obtained similar re-
sults on a subset of the phenomena discussed here with
other, less rich, representations.

As in the restricted Bayesian model, we need to de�ne
a prior probability over the velocity �elds. This is a
crucial part of specifying a Bayesian model - after all,
one can make a Bayesian model do anything by designing
a su�ciently complex prior. Here we choose a simple
prior and show how it can account for a wide range of
perceptual phenomena.

Our prior incorporates two notions: slowness and
smoothness. Suggestions that humans tend to choose
the \shortest path" or \slowest" motion consistent with
the data date back to the beginning of the century
(see [38] and references within). Figure 12a shows two
frames of an apparent motion stimulus. Both horizontal
and vertical motions are consistent with the information
but subjects invariably choose the shortest path motion.
Similarly in �gure 12b, the wagon wheel may be mov-
ing clockwise or counterclockwise but subjects tend to
choose the \shortest path" or slower motion. Figure 12c
shows an example from continuous motion. The mo-
tion of a line whose endpoints are occluded is consistent
with an in�nite family of velocities, yet subjects tend to
prefer the normal velocity, which is the slowest velocity
consistent with the data [39].

However, if taken by itself, the bias towards slow
speeds would lead to highly nonrigid motion percepts in
curved objects. For any image sequence, the slowest ve-
locity �eld consistent with the image data is one in which
each point along a contour moves in the direction of its
normal, and hence for objects this would predict nonrigid
percepts. A simple example is shown in �gure 13 (after
Hildreth, 1983). A circle translates horizontally. The
slowest velocity �eld is shown in �gure 13b and is highly
nonrigid. Hildreth and others [12, 13, 27] have therefore
suggested the need for a bias towards \smooth" velocity
�elds, i.e. ones in which adjacent locations in the image
have similar velocities.

To combine the preferences towards (1) slow and (2)
smooth motions, we de�ne a prior probability on veloc-
ity �elds that penalizes for (1) the speed of the velocities
and (2) the magnitude of the derivatives of the veloci-
ties. Both of these \costs" are summed over the extent
of the image. The probability of the velocity �eld is
inversely proportional to the sum of these costs. Thus
the most probable velocity �eld is one in which the sur-
face is static { both the speed and the derivatives of the
velocity �eld are everywhere zero. Velocity �elds corre-
sponding to rigid translation in the image plane will also
have high probability | since the velocity is constant as
a function of space, the derivatives will be everywhere
zero. In general, for any candidate velocity �eld that
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Figure 11: Parametric description of velocity �elds. The two dimensional velocity space representation can only
represent translational velocity �elds. A three dimensional space can represent translational and rotational velocity
�elds. In this paper we use a 50 dimensional space to represent a rich family of motions including rigid and nonrigid
velocity �elds.
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Figure 12: Examples of the preference for slow motions. a. A temporally sampled wagonwheel appears to rotate in
the shortest direction. b. In the \quartet" stimulus, horizontal or vertical motion is perceived depending on which
is shortest. c. A line whose endpoints are invisible is perceived as moving in the normal, or shortest, velocity.
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Figure 13: Example of the preference for smooth motions. (after [12]) a. A horizontally translating circle. b. The
slowest velocity �eld consistent with the stimulus. Based only on the preference towards slower speeds, this stimulus
would appear to deform nonrigidly.

can be parameterized by ~� we can calculate the prior
probability.

Formally, we de�ne the following prior on a velocity
�eld, V (x; y):

P (V ) = �e�J(V ) (10)

with:

J(V ) =
X
xy

kDv(x; y)k2 (11)

here Dv is a di�erential operator, i.e. it measures the
derivatives of the velocity �eld. We follow Grzywacz
and Yuille (1991) in using a di�erential operator that
penalizes velocity �elds with strong derivatives:

Dv =
1X
n=0

an
@n

@x
v (12)

Note that the sum starts from n = 0 thus Dv also in-
cludes a penalty for the \zero order" derivative - i.e. it
penalizes fast 
ow �elds. For mathematical convenience,
Grzywacz and Yuille chose an = �2n=(n!2n) where � is
a free parameter. They noted that similar results are
obtained when an is set to zero for n > 2. We have also
found this to be true in our simulations. Thus the main
signi�cance of the parameter � is that it controls the ra-
tio between the penalty for fast velocities (a0 = 1) and
the penalty for nonsmooth velocities (a1 = �2=2). We
used a constant value of � throughout (see appendix).

Unlike the restricted Bayesian model discussed in the
introduction, the calculation of the posterior probability
cannot be performed graphically. The prior probability
of ~� for example is a probability distribution over a 50
dimensional space. However, as we show in the appendix
it is possible to solve analytically for the most probable
~�. This gives the velocity �eld predicted by the model
for a given image sequence.

3.3 Selection and Decision

As mentioned in the introduction, in scenes containing
multiple objects, the selection of which signals to inte-
grate is a crucial step in motion analysis (cf. [25]). This
is not the focus of our paper, but in order to apply our
model directly to raw images we needed some rudimen-
tary selection process. We make the simplifying assump-
tion that the image contains a single moving object and
(optionally) static occluders. Thus our selection process
is based on subtracting subsequent frames and thresh-
olding the subtraction to �nd regions that are not static.
All measurements from these regions are combined. The
selection stage also discards all measurements from re-
ceptive �elds lying exactly on the border of the image,
to avoid edge artifacts.

The decision stage is needed in order to relate our
model to psychophysical experiments. The motion in-
tegration stage calculates a velocity �eld, but in many
experiments the task calls for making a discrete decision
based on the perceived velocity �eld (e.g. \up" versus
\down"). In order to model these experiments, the de-
cision stage makes a judgment based on the estimated
velocity �eld. For example, if the experiment calls for
a direction of motion judgment, the decision stage �ts a
single global translation to the velocity �eld and output
the direction of that translation.

3.4 Model Summary

The model starts by obtaining local velocity likelihoods
at every image location. These likelihoods are then com-
bined in the second stage to calculate the most probable
velocity �eld, based on a Bayesian prior favoring slow
and smooth motions. All results described in the next
section were obtained using the Gaussian parameteriza-
tion (equation 7), with a �xed �. Stimuli used as input
were gray level image sequences (5 frames 128x128 pixel
size) and the spatiotemporal window used to calculate
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the likelihoods was of size 5x5x5 pixels.
The only free parameter that varies between exper-

iments is the parameter �. It corresponds to the ob-
server's assumption about the reliability of his or her
temporal derivative estimates. Thus we would expect
the numerical value of � to vary somewhat between ob-
servers. Indeed for many of the illusions we model here,
individual di�erences have been reported for the magni-
tude of the bias (e.g. [45, 15]) although the qualitative
nature of the perceptual bias is similar across subjects.
Although � is varied when modeling di�erent experi-
ments, it is always held constant when modeling a single
experiment, thus simulating the response of a single ob-
server to varying conditions.

4 Results

We start by showing the results of the model on translat-
ing stimuli. Although the Bayesian estimate is a velocity
�eld, we summarize the estimate for these stimuli using
a single velocity vector. This vector is calculated by tak-
ing the weighted mean value of the velocity �eld with
weight decreasing with distance from the center of the
image. Except otherwise noted the estimated velocity
�eld is roughly constant as a function of space and is
well summarized with a single vector.

4.1 The Barberpole illusion - Wallach 35

Phenomena: As noted by Wallach (1935), a grating
viewed through a circular aperture is perceived as mov-
ing in the normal direction, but a grating viewed through
a rectangular aperture is perceived as moving in the di-
rection of the longer axis of the aperture.
Model Results: Figure 14b,d shows the Bayesian esti-

mate for the two stimuli. In the circular aperture the
Bayesian estimate is in the direction of the normal ve-
locity, while in the rectangular one, the estimate is in
the direction of the longer axis of the aperture.
Discussion: Recall that the Bayesian estimate com-

bines measurements from di�erent locations according
to their uncertainty. For the rectangular aperture, the
\terminator" locations corresponding to the edges of the
aperture dominate the estimate and the grating is per-
ceived to move horizontally. In the circular aperture,
the terminators do not move in a coherent direction,
and hence do not have a large in
uence on the estimate.
Among all velocities consistent with the constraint line,
the preference for slow speeds favors the normal velocity.
For the rectangular aperture the Bayesian estimate ex-

hibits signi�cant nonrigidity | at the vertical edges of
the aperture the �eld has strong vertical components.
We also note that although the present model can ac-
count for the basic barberpole e�ect, it does not account
for various manipulations that in
uence the terminator
classi�cation and the magnitude of the barberpole e�ect.
For example, Shimojo et al. (1989) have used stereo-
scopic depth to place the grating behind the aperture

and their subjects tended to perceive the grating as mov-
ing closer to the normal direction even in a rectangular
aperture. A more sophisticated selection mechanism is
required to account for their e�ect.

4.2 Biases towards VA in translating stimuli

4.2.1 Type II plaids - Yo and Wilson (1992)

Phenomena: Yo and Wilson (1992) distinguished be-
tween two types of plaid �gures. In \Type I" plaids
the two normal velocities lie on di�erent sides of the
veridical velocity, while in \type II" plaids both normal
velocities lie on the same side and hence the vector av-
erage is quite di�erent from the veridical velocity (see
�gure 15b,d). They found that for short presentation
times, or low contrast, the perceived motion of type II
is strongly biased in the direction of the vector average
while the percept of type I plaids is largely veridical.
Model Results: Figure 15b,d shows the VA, IOC and

Bayesian estimate for the two stimuli. For type I plaids
the estimated direction is veridical but the speed is
slightly slower than the veridical. For type II plaids the
Bayesian estimator gives an estimate that is far from the
veridical velocity, and that is much closer to the vector
average.
Discussion: The decrease speed observed in the

Bayesian estimate for type I plaids is to be expected
from a prior favoring slow velocities. The bias in di-
rection towards the VA in type II plaids is perhaps less
obvious. Where does it come from?
As pointed out by Heeger and Simoncelli (1991), a

Bayesian estimate with a prior favoring slow speeds will
be biased towards VA in this case, since the VA solution
is much slower. Consider �gure 15b. Recall that the
Bayesian estimate maximizes the product of the likeli-
hood and the prior of the estimate. Let us compare the
veridical IOC solution to the Bayesian estimate in these
terms.
In terms of likelihood the IOC estimate is optimal.

It is the only solution that lies exactly on both con-
straint lines. The Bayesian solution does not maximize
the likelihood, since it does not lie exactly on both con-
straint lines. However, recall that the local likelihoods
are \fuzzy" constraint lines, and hence the Bayesian solu-
tion which is close to both constraint lines still receives
high likelihood. In terms of the prior, however, the
Bayesian solution is much preferred. It is signi�cantly
(about 55%) slower than the IOC solution. Thus a sys-
tem that maximizes both the prior and the likelihood
will not choose the IOC solution, but rather one that is
biased towards the vector average.
Note that this argument only holds when the likeli-

hoods are \fuzzy" constraint lines, i.e. when the system
assumes some noise in the local measurements. A system
that assumed no noise would give zero probability to any
velocity that did not lie exactly on both constraint lines
and would always choose the IOC solution. Recall that
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Figure 14: The \barberpole" illusion (Wallach 35). A grating viewed through an (invisible) circular aperture is
perceived as moving in the normal direction, but a grating viewed through a rectangular aperture is perceived as
moving in the direction of the long axis. a A grating viewed through a circular aperture. b. The Bayesian estimate
for this sequence. Note that the Bayesian estimate is in the normal direction. c. A grating viewed through a
rectangular aperture. d. The Bayesian estimate for this sequence. Note that the Bayesian estimator is now in the
direction of the longer axis. Because measurements are combined according to their uncertainty, the unambiguous
measurements along the aperture edge overcome the ambiguous ones obtained inside the aperture.
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Figure 15: A categorization of plaid patterns introduced by Yo and Wilson (1992). \Type I" plaids have component
motions on both sides of the veridical velocity, while \Type II" plaids do not. a a \type I" plaid moving upward is
typically perceived veridically. b. The IOC, VA and Bayesian estimate for this sequence. Note that the Bayesian
estimate is in the veridical direction. c. a \type II" plaid moving upward is typically perceived to move in the
direction of the vector average. d. The IOC, VA and Bayesian estimate for this sequence. Note that the Bayesian
estimator is biased towards the VA motion, as is the percept of observers. Although the IOC solution maximizes the
likelihood, the VA solution has higher prior probability and only slightly lower likelihood.
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the degree of \fuzziness" of the constraint lines varies
depending on the conditions, e.g. the contrast and du-
ration of the stimulus. Thus the Bayesian estimate may
shift from the VA to the IOC solution depending on the
conditions. In subsequent sections we show that to be
the case.

4.2.2 Biased oriented lines - Mingolla et

al. (1992)

Phenomena: Additional evidence for a vector average
combination rule was found by Mingolla et al. (1992)
using stimuli consisting of lines shown behind apertures
(see �gure 16a). Behind each aperture, a line translates
horizontally, and the orientation of the line is one of two
possible orientations. In the \downward biased" con-
dition, the lines are +15;+45 degrees from vertical, in
the \upward biased" condition, the lines are �15;�45
from vertical and in the \no bias" condition the lines
are +15;�15 degree from vertical. They found that the
perceived direction of motion is heavily biased by the ori-
entation of the lines. In a two alternative forced choice
experiment, the upward, downward and unbiased line
patterns moved in �ve directions of motion. Subjects
were asked to indicate whether the motion was upward
or downward. Figures 17a shows the performance of the
average subject on this task, replotted from [19]. Note
that in the biased conditions, subjects' percept is com-
pletely due to the orientation of the lines and is indepen-
dent of the actual motion.

Model Results: Figure 16b shows the IOC, VA and
Bayesian solution for the stimulus shown in �gure 16a.
The Bayesian solution is indeed biased upwards. Fig-
ure 17b shows the 'percent correct' of the Bayesian model
in a simulated 2AFC experiment. To determine the per-
centage of upward responses, the decision module used
a \soft" threshold on the velocity �eld:

P =
1

1 + exp(��)
(13)

where � is the model's estimated direction of motion.
This corresponds to a \soft" threshold decision on the
model's output. The only free parameter, � was held
constant throughout these simulations. Note that in the
biased conditions, the model's percept is completely due
to the orientation of the lines and is independent of the
actual motion.

Discussion: As in the type II plaid, the veridical ve-
locity is not preferred by the model, due to the prior
favoring slower speeds. The veridical velocity maximizes
the likelihood but not the posterior. In a second set of
simulations (not shown) the terminations of the line end-
ings were visible inside each aperture. Consistent with
the results of Mingolla et al. (1992), the estimated direc-
tion was primarily a function of the true direction of the
pattern and not the orientation.

4.2.3 A manifold of lines (Rubin and

Hochstein 92)

Phenomena: Even in stimuli containingmore than two
orientations, the visual system may be incapable of es-
timating the veridical velocity. Rubin and Hochstein
(1993) presented subjects with a \manifold" of lines
translating horizontally (see �gure 18a). They asked
subjects to adjust a pointer until it matched their per-
ceived velocity and found that the perceived motion was
diagonal, in the direction of the vector average. The
authors also noted that when a small number of hori-
zontally translating dots were added to the display (�g-
ure 18c), the veridical motion was perceived.

Model Results: Figure 18b shows the IOC, VA and
Bayesian solution for the manifold stimulus. The
Bayesian estimate is biased in the direction of the VA.
Figure 18d shows the estimate when a small number of
dots are added. The estimate is now veridical.

Discussion: The bias in the absence of features is ex-
plained in the previous displays | the veridical velocity
maximizes the likelihood but not the posterior. The shift
in percept based on a small number of terminator signals
falls naturally out of the Bayesian framework. Since in-
dividual measurements are combined according to their
uncertainty, the small number of measurements from the
dots overcome the measurements from the lines.

In Rubin and Hochstein's original displays the lines
were viewed through an aperture, unlike the displays
used here where the lines �ll the image. An interest-
ing facet of Rubin and Hochstein's results which is not
captured in our model is that the accidental terminator
signals created by the aperture also had a signi�cant ef-
fect on the perceived motion. Similar to the results with
the barber pole illusion, they found that manipulating
the perceived depth of the aperture changed the in
u-
ence of the terminators. A more sophisticated selection
mechanism is needed to account for these results.

4.2.4 Intermediate solutions - Bowns (1996)

Phenomena: The Bayesian estimator generally gives
a velocity estimate somewhere between \pure" vector
average and \pure" IOC. Evidence against either pure
mechanism was recently reported by Bowns (1996). In
her experiment, a set of type II plaids consisting of orien-
tations 202 and 225 were used as stimuli. Although the
two orientations were held constant, the relative speeds
of the two components were varied. The result was a
set of plaids where the vector average was always right
of the vertical while the IOC solution was always left of
vertical. Figure 19 shows examples of the two extreme
plaids used in her study, along with their velocity space
construction.

Subjects were asked to determine whether or not the
motion was left or right of vertical. It was found that
when the speeds of the two components were similar,
subjects answered right of vertical (consistent with the
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Figure 16: A stimulus studied by Mingolla et al. (1992) suggesting a vector average combination rule. a. a single
frame from a sequence in which oriented lines move horizontally behind apertures. b. The IOC, VA and Bayesian
estimate for this sequence. Note that the Bayesian estimator is biased towards the VA motion, as is the percept of
observers [19].
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Figure 17: a. Results of experiment 1 in [19]. Three variations on the line images shown in �gure 16a moved in
�ve directions of motion. Subjects were asked to indicate whether the lines moved upward or downward. Note that
in the absence of features, the perceived direction was only a function of the orientation of the lines. b. Results of
Bayesian estimator output on the same stimuli. The single free parameter � is held constant throughout.
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Figure 18: a. A single frame from a stimulus introduced by Rubin and Hochstein (1993). A collection of oriented
lines translate horizontally. b. The VA, IOC and Bayesian estimate. The Bayesian estimate is biased in the vector
average direction, consistent with the percept of human subjects. c. When a small number of dots are added to the
display the pattern appears to translate horizontally (Rubin and Hochstein 92). d. The Bayesian estimate shifts to
veridical under these circumstances. Since individual measurements are combined according to their uncertainty, the
small number of measurements from the dots overcome the measurements from the lines.
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Figure 19: Experimental stimuli used by Bowns (1996) that provide evidence against a pure vector average or IOC
mechanism. a. A type II plaid with orientations 202; 225 degrees and relative speeds 1; 0:45. b. The VA, IOC and
Bayesian estimates. The IOC solution is leftward of the vertical while the VA solution is rightward. The Bayesian
estimate is leftward, consistent with the results of Bowns (1996). c. A type II plaid with orientations 202; 225 degrees
and relative speeds 1; 0:75. d. The VA, IOC and Bayesian estimates. The IOC solution is leftward of the vertical
while the VA solution is rightward. The Bayesian estimate is rightward, consistent with the results of Bowns (1996).
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Figure 20: The results of an experiment conducted by Bowns (1996). Subjects indicated if the motion of a plaid
was left of vertical (consistent with VA) or rightwards of vertical (consistent with IOC). The relative speeds of the
two components were varied. The circles show the results of subject LB, while the crosses show the output of the
Bayesian model (� constant throughout). The experimental results are inconsistent with pure VA or pure IOC but
are consistent with a Bayesian estimator.

VA solution) while when the speeds were dissimilar sub-
jects answered left of vertical (consistent with the VA
solution). The circles in �gure 20 show the percentage
of rightward results for a subject in her experiment.

Model Results Figure 19c and d show the Bayesian es-
timate for the two extreme cases. Note that they switch
from left of vertical to right of vertical as the relative
speeds change. In �gure 20 the solid line gives the ex-
pected percent rightward responses for the Bayesian es-
timator. Note that it gives a gradual shift from left to
right as the relative speeds are varied. The parameter �
is held constant throughout.

Discussion: Here again, the prior favoring slower
speeds causes the Bayesian estimator to move away from
the veridical IOC solution. However, the Bayesian esti-
mator is neither a \pure" IOC solution nor a \pure" VA
solution. Rather it may give any perceived velocity that
varies smoothly with stimulus parameters.

The fact that a Bayesian estimator is biased towards
the vector average solution suggests that the VA bias
is not a result of the inability of the visual system to
correctly solve for the IOC solution, but rather may be
a result of a combination rule that takes into account
noise and prior probabilities to arrive at an estimate.

4.3 Dependence of VA bias on stimulus

orientation

4.3.1 E�ect of component orientation - Burke

and Wenderoth (1992)

Phenomena: Even in type II plaids, the perceived di-

rection may be more consistent with IOC than VA [4, 7].
Consider, for example, the type II plaids shown in �g-
ure 21. Burke and Wenderoth (1993) found that for
the plaid in �gure 21a (orientations 200; 210) the per-
ceived direction is biased by about 15 degrees, while for
the plaid in �gure 21c (orientations 185; 225) the per-
ceived direction is nearly veridical with a bias of under
2 degrees. Thus if one assumes independent IOC and
VA mechanisms, one would need to assume that the vi-
sual system uses the IOC mechanism for the plaid in
�gure 21c but switches to the VA mechanism for the
plaid in �gure 21a. Burke and Wenderoth systemati-
cally varied the angle between the two plaid components
and asked subjects to report their perceived directions.
The results are shown in the open circles in �gure 22.
The perceived direction is inconsistent with a pure VA
mechanism or a pure IOC mechanism. Rather it shows
a gradual shift from the VA to the IOC solution as the
angle between the components increases.

Model Results: Figure 22 shows the predicted IOC,
VA and Bayesian estimates as the angles are varied. The
parameter � is held �xed. Note that a single model gen-
erates the range of percepts, consistent with human ob-
servers.

Discussion: To get an intuitive understanding of why
the same Bayesian estimator gives IOC or VA type so-
lutions depending on the orientation of the components,
compare �gure 21b to �gure 21d. Note that in �gure 21b
the two constraint lines are nearly parallel. Hence, a
solution lying halfway between the two constraint lines
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Figure 21: Stimuli used by Burke and Wenderoth (1993) to show that the percept of some type II plaids is more
consistent with IOC than with VA. a. A type II plaid with orientations 20 and 30 degrees is misperceived by about
15 degrees.[7] b. The VA, IOC and Bayesian estimates. The Bayesian estimate is biased in a similar manner to
the human observers. c. A type II plaid with orientations 5 and 45 degrees is is perceived nearly veridically. [7] d.
The VA, IOC and Bayesian estimate. The Bayesian estimate is nearly veridical. The parameter � is held constant
throughout.
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Figure 22: Results of an experiment conducted by Burke and Wenderoth (1993) to systematically investigate the
e�ect of plaid component orientation on perceived direction. All they plaids are \type II" and yet when the relative
angle between the components of the plaid is increased varied, the perceived direction shows a gradual shift from
the VA to the IOC solution (open circles replotted from [7]). The Bayesian estimator, with a �xed � shows the same
behavior
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(such as the VA solution) receives high likelihood for
fuzzy constraint lines. However, in �gure 21d, where the
components have a 40 degrees di�erence in orientation,
the two constraint lines are also separated by 40 degrees.
Thus for a solution to have high likelihood, it is forced to
lie close to the intersection of the two lines, or the IOC
solution. Thus a single, Bayesian mechanism predicts a
gradual shift from VA to IOC as the orientation of the
components is varied.

An alternative explanation of the shift in perceived di-
rection was suggested by Bowns (1996) who pointed out
that there exist features in the \blob" regions of these
plaids that move in di�erent directions as the orienta-
tions of the gratings are varied. Our results do not of
course rule out this explanation, but they show that hy-
pothesizing a specialized \blob" mechanism is not nec-
essary.

4.3.2 Orientation e�ects in occluded stimuli

Phenomena: We have performed experiments with the
stimulus shown in �gure 23a. A rhombus whose four cor-
ners are occluded is moving horizontally. Note that there
are no features on this stimulus which move horizontally
- the two normal velocities are diagonal and the termi-
nator motion is downward. This stimulus is similar to a
type II plaid in the sense that the two normal velocities
lie on the same side of the veridical velocity. However it
requires integration across space rather than across mul-
tiple orientations at a single point. We wanted to see
whether the biases in perceived velocity would behave
the same way as in plaids.

We presented subjects with these stimuli while vary-
ing the angle of one of the sides and asked them to indi-
cate the perceived direction. Results of a typical subject
are shown in �gure 23. Consistent with the result on
plaids [7] subjects percept shift gradually from a bias in
the VA direction to the veridical direction as the angular
di�erence increases.

Model Results: Figure 23 shows the result of the
Bayesian estimator with �xed �. Similar to the results
with plaids, the Bayesian estimate shifts gradually from
a bias in the VA direction to the veridical direction as
the angular di�erence increases.

Discussion: It seems di�cult to reconcile these re-
sults with a \multiple mechanism" model in which the
visual system uses a VA mechanism or an IOC mech-
anism depending on the conditions. First, one would
have to assume that the visual system uses a di�erent
mechanism for nearly identical stimuli, when the relative
orientations is changed. Second, the perceived direction
changes continuously and includes intermediate values
that are inconsistent with either VA or IOC.

Likewise, these results are di�cult to reconcile with a
\feature tracking" explanation of the sort proposed by
Bownes (1996) or by Yo and Wilson (1992) . No mat-
ter what the orientation of the rhombus sides are, there

are never any trackable features moving in the veridical
direction. Yet subjects perceive motion in the veridical
direction when the angle between the two components is
large.

In contrast, as we have shown, these results are consis-
tent with a Bayesian estimation strategy where motion
signals are fused in accordance with their uncertainty
and combined with a prior favoring slow and smooth
velocities. Again, this does not rule out the \multiple
mechanism" explanation, but shows that it is not neces-
sary. A single Bayesian mechanism is su�cient.

4.4 Dependence of VA bias on contrast

4.4.1 E�ect of contrast on type II plaids - Yo

and Wilson (1992)

Phenomena: Yo and Wilson (1992) reported that the
bias towards VA in type II plaids consistently increased
with reduced contrast. For example, Figure 24a,c show
a type II plaid at high contrast and at low contrast. For
durations over 100msec the high contrast plaid is per-
ceived as moving in the veridical direction, while the low
contrast is heavily biased towards the VA solution [45].
Model Results: Figure 24b,d show the VA, IOC and

Bayesian predictions for this stimulus. Obviously, both
VA and IOC solutions are una�ected by the contrast
and hence cannot by themselves account for the percept.
The Bayesian estimate, on the other hand, changes from
veridical to biased as contrast is decreased even though
the only free parameter � is held constant.
Discussion: To gain intuitive understanding of the

change in the Bayesian prediction as contrast as var-
ied, recall from section 3.1 that the contrast changes the
\fuzziness" of the constraint line. Thus at low contrast,
both constraint lines are very fuzzy, and the VA solution
receives relatively high likelihood relative to the IOC so-
lution. We emphasize that this change in \fuzziness"
with contrast does not have to be put in especially to
explain this phenomena. It is a direct consequence of
the probabilistic formulation { at low contrast there is
more uncertainty locally. Figure 25a shows the consis-
tency measure (equation 5) for di�erent vertical veloci-
ties measured at a single location in the stimulus shown
in �gure 24. At low contrast there is only a small dif-
ference between the degree to which the true velocity
satis�es the gradient constraint and the degree to which
other velocities do so. Therefore when the local likeli-
hoods are calculated (equation 6) one obtains �gure 25b.
At lower contrast the likelihood function is less peaked,
and there is more local uncertainty.
While the sharpness of the local likelihoods change

with contrast, the prior probability does not change. As
mentioned earlier, the prior probability of the VA solu-
tion is higher, and hence at low contrasts the Bayesian
solution is biased towards the VA. At high contrast, how-
ever, as the likelihoods become much more peaked, the
prior has less in
uence and the Bayesian estimate ap-
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Figure 23: The stimulus used in an experiment to measure in
uence of relative orientation on perceived direction.
A rhombus whose four corners are occluded was translating horizontally. The angle between the two orientations
was varied. a. A single frame from the sequence. b. The predictions of VA, IOC and the Bayesian estimator for
the direction of motion of the rhombus. One of the orientations is �xed at 40 degrees, and the second orientation
is varied. The VA solution is always far from horizontal (by at least 50 degrees), the IOC prediction is always
horizontal and the Bayesian estimator predicts a gradual shift from horizontal to diagonal as the angle between the
two components is decreased. The results of a single subject are shown in circles.
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Figure 24: A high contrast type II plaid (a) viewed at long durations, may be perceived veridically, but the same
stimulus at low contrast (b) shows a strong VA bias (Yo and Wilson 92). As shown in (b) and (d) the VA and
IOC predictions are not a�ected by contrast, but the Bayesian estimator with a �xed � shows the same shift from
veridical to biased as contrast is decreased.
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Figure 25: a. The local consistency (equation 5) for various vertical velocities measured at a single location in
the stimulus shown in �gure 24. At low contrast there is only a small di�erence between the degree to which the
true velocity satis�es the gradient constraint and the degree to which other velocities do so. b. The local likelihood
(equation 6) for various vertical velocities at the same location. At low contrast there is a higher degree of uncertainty.

proaches the IOC solution.

4.5 Contrast e�ects on line stimuli - Lorenceau

et al 1992

Phenomena: Lorenceau et al. (1993) asked subjects to
judge whether a matrix of oriented lines moved above
or below the horizontal (see �gure 26a) as the contrast
of the display was systematically varied. The results
are replotted in �gure 26b. Note that at low contrasts,
performance is far below chance indicating subjects per-
ceived upward motion while the patterns moved down-
ward. Lorenceau et al. modeled these results using two
separate mechanisms, one dealing with terminator and
other with line motion. The terminator mechanism is
assumed to be active primarily at high contrast and the
line mechanism at low contrast.

Model Results: The solid line in �gure 26b shows the
simulated performance of the Bayesian model on this
task. Again, the percentage of correct responses is ob-
tained by using a \soft" threshold on the model's pre-
dicted direction of motion. Although the model does not
include separate \terminator" and \line" motion mecha-
nisms, it predicts a gradual shift from downward motion
to upward motion as contrast is increased. The param-
eter � is held �xed.

Discussion: The intuition behind the model's perfor-
mance in this task is similar to the one in the plaid dis-
plays. At high contrast, the likelihood is peaked and the
estimated motion is veridical. At low contrast, however,
the likelihood at the endpoints of the lines and along the
lines, is more \fuzzy" and the prior favoring slow veloc-
ities has a large in
uence. Hence, motion is perceived
in the normal velocity which is slower than the veridical
one. There is no need to assume separate terminator and
line mechanisms.

4.5.1 In
uence of contrast on the speed of a

single grating - Thompson et al 1996

Phenomena: Thompson et al. (1996) have shown that
the perceived speed of a single grating depends on the
contrast. Noting that \lower-contrast patterns consis-
tently appear to move slower", they conducted an ex-
periment in which subjects viewed a high contrast (70%)
grating followed by a test low contrast (10%) grating.
The subjects adjusted the speed of the test grating un-
til the perceived speeds were matched (see �gure 27a).
Although the magnitude of the e�ect varied slightly be-
tween subjects, the direction of the e�ect was quite ro-
bust. Typical results are shown in �gure 27b. In order
to match the perceived speed of the low contrast grat-
ing, the high contrast grating needs to move about 70%
slower. Similarly, in order to match the perceived speed
of the high contrast grating, the low contrast grating
needs to move about 150% faster.
Model Results: Figure 27c shows the output of a

Bayesian estimator on this stimulus. For a �xed � the
low contrast grating is predicted to move slower. The
predicted speed match is computed by dividing the esti-
mated speeds of the two gratings.
Discussion: Again, at at low contrast the likelihood

is less peaked and the prior favoring slow speeds dom-
inates. Hence the low contrast grating is predicted to
move slower than a high contrast grating moving at the
same speed.

4.5.2 Dependence of type I direction on

relative contrast - Stone et al. (1990)

Phenomena: Stone et al. (1990) showed subjects a set
of type I plaids and varied the ratio of the contrasts
between the two components. They found that the di-
rection of motion of the plaid was biased in the direction
of the higher contrast grating. The magnitude of the
bias changed as a function of the \total contrast" of the
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Figure 26: A stimulus used by Lorenceau et al. (93) suggesting the need for independent terminator and line motion
mechanisms. A matrix of lines moves oblique to the line orientations. At high contrast the motion of the lines is
veridical while at low contrast it is misperceived a. A single frame from the sequence. b. The results of a two
alternative forced choice experiment (up/down) replotted from Lorenceau et al. (1992) (average subject shown with
circles). The solid line shows the predictions of the Bayesian model. A single Bayesian mechanism would predict
systematic errors at low contrast with an increase in correct responses as contrast is increased.
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Figure 27: An experiment conducted by Thompson et al. (1996) showing that low contrast stimuli appear to move
slower. Subjects viewed a high contrast grating (70%) followed by a test low contrast grating (10%). They adjusted
the speed of the test grating until the perceived speeds were matched. b. Circles show the results averaged over
6 subjects replotted from [36]. In order to match the perceived speed of a low contrast grating, the high contrast
grating needs to move about 70% slower. Similarly, in order to match the perceived speed of a high contrast grating,
the low contrast grating needs to move about 150% faster. Crosses show the output of the Bayesian estimator. At
low contrast, the likelihood is less peaked and the prior favoring slow speeds dominates. Hence the low contrast
grating is predicted to move slower.
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Figure 28: The in
uence of relative contrast on the perceived direction of a moving type I plaid [35]. When both
components are of identical contrasts the perceived motion is in the veridical direction. When they are of unequal
contrasts, the perceived direction is biased in the direction of the higher contrast grating. A similar pattern is
observed in the output of the Bayesian estimator.
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Figure 29: An experiment conducted by Stone et al. (1990) showing the in
uence of relative contrast on the perceived
direction of a moving plaid. Subjects viewed a set of type I plaids and the contrasts of the two components was
systematically varied. a. Results averaged over subjects replotted from. [35]. The direction of motion of the plaid
was biased in the direction of the higher contrast grating and the magnitude of the bias decreases with increased
total contrast. b. The Bayesian estimator gives similar results. (cf. [11]).
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plaid, i.e. the sum of the contrasts of the two gratings.
When the contrast of both gratings was increased (while
the ratio of contrast stayed constant) a smaller bias was
observed. Figure 29a shows data averaged over subjects
replotted from [35].
Model Results: The results of the Bayesian estimator

are shown in �gure 29b. Similar to the results of human
observers, the estimate is biased in the direction of the
higher contrast grating and the magnitude of the bias
decreases with increasing total contrast.
Discussion: Again this is a result of the fact that

as contrast is decreased the local uncertainty decreases.
Thus in �gure 28d, the likelihood corresponding to the
low contrast grating is a very \fuzzy" constraint line.
In this case, although the Bayesian solution does not
lie exactly on both constraint lines it has very similar
likelihood to the IOC solution. In terms of the prior,
however, the Bayesian solution is favored because it is
slower. When both gratings are of identical contrasts,
the likelihoods have equal fuzziness and the Bayesian
solution has the correct direction (although the magni-
tude is smaller than the IOC solution). When the total
contrast is increased, all the likelihoods become more
peaked and the Bayesian solution is forced to lie closer
to the IOC solution.
Although the results of the Bayesian estimator is in

qualitative agreement with the psychophysical results for
this task, the quantitative �t can be improved. Heeger
and Simoncelli (1991) have obtained better �ts for this
data using their model that also includes a nonlinear
gain control mechanism.

4.6 Dependence of bias on duration

4.6.1 Dependence of type II bias on duration -

Yo and Wilson (1992)

Phenomena: Yo and Wilson (1992) reported that the
perceived direction of type II plaids changes with stimu-
lus duration. At short durations, the perceived direction
is heavily biased in the direction of the vector average
and gradually approaches the IOC solution as duration
is increased. Figure 30b shows the results of a single
subject.
Model Results: Figure 30c shows the predictions of

the Bayesian estimator. The model was given 5 frames
of the video sequence, and the local likelihood was calcu-
lated by summing �lter outputs over space and time. In
that respect the results in this section di�er from those
reported in other sections, where only two frames were
used to calculate the local likelihoods. Note the change
in model output with increased duration.
Discussion: As discussed in section 3.1, short dura-

tions serve to make the local likelihood less peaked. In
fact, the short duration acts in the model much like low
contrast (�gure 25). At short durations, there is only
a small di�erence between the degree to which the true
velocity satis�es the gradient constraint and the degree

to which other velocities do so. However, as gradient in-
formation is combined over time, the di�erence becomes
more pronounced and the uncertainty in the local mea-
surement decreases. The shorter the presentation time
the more the local information is ambiguous.
While the sharpness of the local likelihood change with

duration, the prior probability does not. Hence the VA
solution which has a higher prior probability is favored
at short durations, while at long durations the Bayesian
estimate approaches the IOC solution.

4.6.2 Dependence on duration in line drawings

{ Lorenceau et al. 1992

Phenomena: Lorenceau et al. (1992) reported a sim-
ilar e�ect of duration in the discrimination of line mo-
tion. As explained in the previous section, subjects were
requested to judge whether the matrix of lines moved
above or below the horizontal. At short durations, they
found that performance was below chance, indicating
that subjects perceived the lines moving in the normal
direction, but performance improved at longer durations.
Figure 31b shows the results of a single subject replot-
ted from [15]. Despite signi�cant individual variations,
subjects consistently perform below chance at short du-
rations and improve as duration increases.
Model Results: Figure 31c shows the output of the

Bayesian estimator. A single mechanism predicts sys-
tematic errors at short durations with an increase in cor-
rect responses as duration is increased. Note that this
explanation does not require separate \1D" and \termi-
nator" mechanisms. Rather it is explained in the same
way as the in
uence of duration on plaids.
Again, at low durations all local measurements have

higher degree of uncertainty. In the Bayesian model
there is no categorization of location into \1D" or \2D"
but at all locations the gradient constraint is accumu-
lated over space and time. At short durations, therefore,
there is less signal in the local spatiotemporal window,
and hence more uncertainty in the local likelihoods. In
this condition, the prior favoring slow speeds dominates
and perception is in the normal direction. At long du-
rations, the local uncertainty is decreased, and the prior
has a much weaker in
uence.
Discussion: The results reported in this section were

obtained by using a spatiotemporal Gaussian window in
equation 6. This gives an additional free parameter to �t
the data. However the qualitative nature of the results
are unchanged when the window function is changed.
Any summation of information over time would lead to
a decrease in local uncertainty with longer durations.
Thus a Bayesian estimation strategy predicts highly bi-
ased estimates at low durations but more veridical ve-
locity as duration increases.

4.7 Non-translational motions

So far we have discussed stimuli undergoing uniform
translation. Although the model returns a 
ow �eld we
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Figure 30: The in
uence of duration on performance in the experiment conducted by Yo and Wilson (1992). At
short durations, the perceived motion is heavily biased towards the VA, and it approaches the IOC solutions at
long durations. a. a single frame from the sequence. b. The results of subject HRW replotted from [45]. c. The
predictions of a Bayesian estimator. The predicted velocity shows a gradual shift from VA to IOC as duration
increases.
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Figure 31: The in
uence on duration on performance in the experiment conducted by Lorenceau et al. (93). At short
duration, performance is below chance indicating subjects perceive motion in the normal direction, while at long
durations the perceived motion is largely veridical. a. a single frame from the sequence. b. The results of a single
subject replotted from [15]. Despite signi�cant individual variations, subjects consistently perform below chance at
short durations and improve as duration increases. c. The predictions of a Bayesian estimator. A single Bayesian
mechanism would predict systematic errors at short durations with an increase in correct responses as duration is
increased.
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could capture it with a single velocity vector. Now we
show the output of the model on non-translational mo-
tions. We display the output of the model by plotting
arrows at di�erent (arbitrarily chosen) locations of the
image.

4.7.1 Circles and derived �gures in rotation -

Wallach 1956

Phenomena: Musatti (1924) and Wallach et al. (1956)
observed that when circular �gures are rotated in the im-
age plane (e.g by putting them on a turntable) they are
not perceived as rigidly rotating. A rotating circle ap-
pears static, a rotating spiral appears to contract, and a
rotating ellipse appears to deform nonrigidly. In the case
of the rotating ellipse, Wallach et al. (1956) noted that
the perceived rigidity is most pronounced when the el-
lipse is \fat" | with aspect ratio close to unity. Musatti
pointed out that when a small number of rotating fea-
tures are added to the display, the rigid percept becomes
prominent.

Model Results: Figure 32 shows the output of the
Bayesian estimator on these stimuli. As in human per-
ception the rotating circle is perceived as static, the ro-
tating spiral as expanding and the rotating ellipse as de-
forming nonrigidly. Figure 33 shows the model output
on a narrow ellipse and on an ellipse with four rotating
features added. Note that in this case, consistent with
human perception, the predicted motion is much closer
to rotation. The parameter � is held constant.

Discussion: Why does the model \misperceive" these
motions? First note that for the stimuli in �gure 32,
the perceived motions and the rotational motions have
very similar likelihoods. That is, due to the low curva-
ture of the �gure, the local likelihoods are highly am-
biguous. Given that the likelihoods are nearly identical,
the Bayesian estimator is dominated by the prior. Here
again, the \slowness" prior may be responsible for the
percept. Figure 34 shows the total magnitude of the ve-
locity �elds. Note that the rotational velocity is much
faster than the Bayesian estimate, and hence is not fa-
vored.

The Bayesian estimate considers both the likelihood
and the prior. Thus once the rotating stimulus includes
locations that are relatively ambiguous (e.g. the end-
points of a narrow ellipse, or dots 
anking the fat ellipse),
the estimate resembles rotation. The rotation still has
lower prior probability but high likelihood.

A slightly di�erent account of these illusions was given
by Hildreth (1983). Her model chooses the velocity �eld
of least variation that satis�es the gradient constraint at
every location along the ellipse. Although her algorithm
did not include an explicit penalty for fast velocity �elds
it gave similar results to those shown here { a rotating
circle was estimated to be stationary, a rotating spiral
was estimated to be expanding and a rotating fat ellipse
was estimated to be deforming.

Note however that by penalizing the magnitude of the
�rst derivative, Hildreth's algorithm includes an implicit
penalty for fast non-translational velocity �elds. That
is, for all translational velocity �elds, the �rst deriva-
tive is zero everywhere and there is no distinction be-
tween fast and slow �elds. For velocity �elds whose �rst
derivative does not vanish, however, the magnitude of
the �rst derivative increases with increased speed. Thus
Hildreth's algorithm will in general prefer a slow defor-
mation to a faster rotation. It will not, however, prefer
a slow translation to a faster one, and thus can not ac-
count for biases encountered in translating stimuli (e.g.
the VA bias in plaids).

4.7.2 Smooth curves in translation - Nakayama

and Silverman 1988

Phenomena: Nakayama and Silverman (1988) found
that smooth curves including sinusoids, Gaussians and
sigmoids, may be perceived to deform nonrigidly when
they are translated rigidly in the image plane. Figure 35a
shows an example. A \shallow" sinusoid is translating
rigidly horizontally. This stimulus is typically perceived
as deforming nonrigidly. The authors noted that the
perceived nonrigiditywas most pronounced for \shallow"
sinusoids in which the curvature of the curves was small.
Model Results: Figure 35b shows the output of

the Bayesian estimator. For the shallow sinusoid the
Bayesian estimator favors a slower hypothesis than the
veridical rigid translation. Figure 35d shows the output
on the sharp sinusoid. Note that a �xed � gives a non-
rigid percept for the shallow sinusoid and a rigid percept
for the sharp sinusoid.
Discussion: Again this is the result of the tradeo�

between \slow" and \smooth" priors. The nonrigid per-
cept is slower than the rigid translation but less smooth.
For shallow sinusoids, the nonrigid percept is still rel-
atively smooth, but for sharp sinusoids the smoothness
term causes the rigid percept to be preferred. The shape
of sinusoid for which the percept will shift from rigid to
nonrigid depends on the free parameter � which gov-
erns the tradeo� between the slowness and smoothness
terms. The qualitative results however remain the same
| sharp sinusoids are perceived as more rigid than shal-
low ones. Similar results were also obtained with the
other smooth curves studied by Nakayama and Silver-
man | the Gaussian and the sigmoidal curves.

5 Discussion

Since the visual system receives information that is
ambiguous and uncertain, it must combine the input
with prior constraints to achieve reliable estimates. A
Bayesian estimator is the simplest reasonable approach
and the prior favoring slow and smooth motions o�er
reasonable constraints. In this paper we have asked how
such a system will behave. We �nd that, like humans, its
motion estimates include apparent biases and illusions.
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Figure 32: Biased perception in Bayesian estimation of circles and derived �gures in rotations. Due to the prior
favoring slow and smooth velocities, the estimate may be biased away from the veridical velocity and towards the
normal components. These biases are illustrated here. A rotating circle appears to be stationary, a rotating ellipse
appears to deform nonrigidly, and a rotating spiral appears to expand and contract.
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Figure 33: The percept of nonrigid deformation is in
uenced by stimulus shape and by additional features. For a
\narrow" rotating ellipse, the Bayesian estimate is similar to rotation. Similarly, for a \fat" rotating ellipse with
four rotating dots, the estimate is similar to rotation. This is consistent with human perception. The parameter �
is held constant.
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Figure 34: The total magnitude of the velocity �elds arrived at by the Bayesian estimate for the stimuli in 32 as
compared to the true rotation. Note that the rotational velocity is much faster than the Bayesian estimate, and
hence is not favored.
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Figure 35: a. A \shallow" sinusoid translating horizontally appears to to deform nonrigidly (Nakayama and Silverman
1988). b. The nonrigid deformation is also prevalent in the Bayesian estimator. c. A \sharp" sinusoid translating
horizontally appears to translate rigidly (Nakayama and Silverman 1988). d. Rigid translation is also prevalent in
the Bayesian RBF estimator.
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Moreover, this non-veridical perception is quite similar
to that exhibited by humans in the same circumstances.

In recent years a large number of phenomena have
been described in velocity estimation, usually connected
with the aperture problem. In reviewing a long list of
phenomena, we �nd that the Bayesian estimator almost
always predicts the psychophysical results. The predic-
tions agree qualitatively, and are often in remarkable
agreement quantitatively.

The Bayesian estimator is a simple and reasonable
starting point for a model of motion perception. In-
sofar as it explains the data, there is no need to pro-
pose speci�c mechanisms that deal with lines, termina-
tors, plaids, blobs etc. These other mechanisms are often
poorly de�ned, and they are often assumed to turn on
or o� according to special rules.

The Bayesian estimator described here can be applied
to any image sequence that contains a single moving
surface. It works with gratings, plaids, ellipses or spi-
rals without modi�cation. It usually needs only a single
free parameter �, which corresponds to the noise or in-
ternal uncertainty level in the observer's visual system.
Even this parameter remains �xed when the individual
observer and viewing conditions are �xed.

Beyond the speci�cs of our particular model, we have
shown that human motion perception exhibits two fun-
damental properties of a Bayesian estimator. First, ob-
servers give di�erent amounts of weight to information
at di�erent locations in the image - e.g. a small num-
ber of features can profoundly in
uence the percept and
high contrast locations have greater in
uence than low
contrast ones. This is consistent with a Bayesian mech-
anism that combines sources of evidence in accordance
with their uncertainty. Second, the motion percept ex-
hibits a bias towards slow and smooth velocities, consis-
tent with a Bayesian mechanism that incorporates prior
knowledge as well as evidence into the estimation.

Each of these properties have appeared in some form
in previous models. The notion of giving unequal weight
to di�erent motion measurements appears, for example,
in the model suggested by Lourenceau et al. (1992). Min-
golla et al. (1992) suggested assigning these weights ac-
cording to their \saliencies" which would in turn depend
on contrast. In the Bayesian framework, the amount
of weight given to a particular measurement has a con-
crete source | it depends on its uncertainty. Thus the
low weight given to low contrast, short duration or pe-
ripherally viewed features is a consequence of the high
degree of uncertainty associated with them. Moreover,
there is no need to arbitrarily distinguish between \2D"
and \1D" local features | all image regions have vary-
ing degrees of uncertainty, and the strong in
uence of
cornerlike features is a consequence of the relatively un-
ambiguous motion signals they give rise to.

As mentioned in the introduction, the models of Hil-
dreth (1983) and Grzywacz and Yuille (1991) include a

bias towards smooth velocity �elds. However these al-
gorithms do not have the concept of varying degrees of
ambiguity in local motion measurements. They either
represents the local information as a constraint line in
velocity space or as a completely unambiguous 2D mea-
surement. They therefore can not account for the grad-
ual shift in perceived direction of �gures as contrast and
duration are varied.

The smoothness assumption used by Hildreth (1983)
and others, can be considered a special case of the regu-
larization approach to computational vision introduced
by Poggio et al. (1985). This approach is built on the
observation that many problems in vision are \ill-posed"
in the mathematical sense | there are not enough con-
straints in the data to reliably estimate the solution.
Regularization theory [37] provides a general mathemat-
ical framework for solving such ill-posed problems by
minimzing cost functions that are the sum of two terms
{ a \data" term and a \regularizer" term. There are very
close links between Bayesian MAP estimation and reg-
ularization theory (e.g. [18]). In the appendix we show
how the Bayesian motion theory presented here could be
rephrased in terms of regularization theory.

The model of Heeger and Simoncelli (1991) was to the
best of our knowledge, the �rst to provide a Bayesian
account of human motion perception that incorporatea
a prior favoring slow speeds. Indeed the �rst stage of our
model, the extraction of local likelihoods, is very similar
to the Heeger and Simoncelli model. In our model, how-
ever, these local likelihoods are then combined across
space to estimate a spatially varying velocity �eld. In
spatially isotropic stimuli (such as plaids and gratings)
there is no need to combine across space as all spatial lo-
cations give the same information. However, integration
across space is crucial in order to account for motion
perception in more general stimuli such as translating
rhombuses, rotating spirals or translating sinusoids.

Another local motion analysis model was introuced
by Bultho� et al. (1989) who described a simple, par-
allel algorithm that computes optical 
ow by summing
activities over a small neighborhood of the image. Un-
like the Heeger and Simoncelli model, their model did
not include a prior favoring slow velocities and therefore
predicts the IOC solution for all plaid stimuli.

We have attempted to make the Bayesian estimator
discussed here as simple as possible, at the sacri�ce of
biological faithfulness. Thus we assume a Gaussian noise
model, a �xed � and linear gradient �lters. One disad-
vantage of this simple model is that in order to obtain
quantitative �ts to the results of existing experiments
we had to vary � between experiments (but � was al-
ways held �xed when modeling a single experiment with
multiple conditions). Although changing � does not in
general change the qualitative nature of the Bayesian es-
timate, it does change the quantitative results. A more
complicated Bayesian estimator, that also models the
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nonlinearities in early vision, may be able to �t more
data with �xed parameters.
How could a Bayesian estimator of the type discussed

here be implemented given what is known about the
functional architecture of the primate visual system?
The local likelihoods are simple functions (squaring and
summing) of the outputs of spatiotemporal �lters at a
particular location. Thus a population of units in pri-
mary visual cortex may be capable of representing these
local likelihoods [11]. Combining the likelihoods and
�nding the most probable velocity estimate, however, is
a more complicated matter and is an intriguing question
for future research.
Indeed understanding the mechanism by which human

vision combines local motion signals may prove fruitful
in the design of arti�cial vision systems. Human motion
perception seems to accurately represent uncertainty of
local measurements, and to combine these measurements
in accordance with their uncertainty together with a
prior probability. Despite this sophistication motion per-
ception is immediate and e�ortless, suggesting that the
human visual system has found a way to perform fast
Bayesian inference.
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Appendix

5.1 Solving for the most probable velocity �eld

We derive here the equations for �nding the paramet-
ric vector that maximizes the posterior probability. To
simplify the notation, we denote the location (x; y) with
a single vector r. Assume that the velocity �eld v(r) is
composed of a sum of N basis functions with the coef-
�cients de�ned by the parameter vector �. De�ne 	(r)
a 2 by N matrix which give the two components of the
basis functions at location r, then v(r) = 	(r)�. Using
this notation we can now rewrite the likelihoods and the
prior as a function of �.
Recall that the local likelihood is given by:

Lr(v) = �e
�

P
r
w(r)(Ixvx+Iyvy+It)

2=2�2 (14)

(we use the convention that for any probability distribu-
tion � represents the normalization constant that guar-
antees that the distribution sum to unity). By complet-
ing the square, this can be rewritten:

Lr(v) = �e�(v��(r))
t��1(r)(v��(r))=2�2 (15)

where �(r);��1(r) represent the mean and covariance
matrices of the local likelihood.

��1(r) =
X
s

wrs

�
I2x(s) Ix(s)Iy(s)

Ix(s)Iy(s) I2y (s)

�
(16)

and �(r) a solution to:

��1(r)�(r) = y(r) (17)

with

y(r) =
X
s

wrs

�
Ix(s)It(s)
Iy(s)It(s)

�
(18)

Substituting v(r) = 	(r)� into equation 15 gives the
local likelihood of the image derivatives given �:

Lr(�) = �e�(	(r)���(r))
t��1(r)(	(r)���(r))=2�2 (19)

and �nally assuming conditional independence, the
global likelihood for the image derivatives is given the
product of the local likelihoods at all locations:

L(�) = �rLr(�) (20)

We now express the prior probability as a function of �.
Recall that the prior favors slow and smooth velocities:

P (V ) = �e
�

P
r
(Dv)t(r)(Dv)(r))=2 (21)

where D is a di�erential operator. Substituting v(r) =
	(r)� gives the prior probability on �:

P (�) = �e��
tR�=2 (22)

Where R is a symmetric, NxN matrix such that

Rij =
X
r

(D	t
i)(r)(D	j )(r) (23)

where we have used 	i(r) the ith basis �eld, and D	i(r)
the results of applying the di�erential operator D to that
basis �eld.
The posterior is given by:

P (�jI) = �P (�)P (Ij�) (24)

The log-posterior is given by:

logP (�jI) = k � �tR�=2�2p (25)

+
X
r

�(	(r)� � �(r))t��1(r)(	(r)� � �(r))=2�2

(note that the log-posterior is quadratic in � or in other
words the posterior is a Gaussian distribution. Thus
maximizing the posterior is equivalent to taking its
mean)
To �nd �� the value of � that maximizes the posterior

we solve:

A�� = b (26)

with:

A =

 X
r

	t(r)��1(r)	(r)=�2 +R=�2p

!
(27)

b ==

 X
r

	t(r)��1�(r)

!
=�2 (28)

Speci�cally, the parameters we use in these simula-
tions are as follows. The di�erential operator D was
chosen so that the Green's functions corresponding to it
were Gaussians with standard deviation equal to 70% of
the size of the image. The basis �elds were also Gaus-
sians with the same standard deviations. We used 50 ba-
sis �elds, 25 with purely horizontal velocity and 25 with
pure vertical velocity. The centers of the basis �elds were
equally spaced in the image, i.e. were placed on a 5x5
grid. In this case the matrix R has a particularly simple
form. If 	i and 	j are both vertical (or horizontal) then
Rij is simply the value of the ith basis �eld evaluated at
the center of the jth basis �eld. Otherwise, Rij = 0.
To summarize, given an image sequence and a param-

eterization of the velocity �eld, the Bayesian estimate of
motion is obtained by solving equation 26. Finally the
optimal velocity �eld is obtained by v(r) = 	(r)��.

5.2 Relation to regularization theory

There are very close links between Bayesian MAP esti-
mation and regularization theory (e.g. [18]). For com-
pleteness, we now show how to rephrase the Bayesian
motion theory presented here in terms of regularization
theory.
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Regularization theory calls for minimizing cost func-
tions that have two terms: a \data" term and a \reg-
ularizer term". A classical example is function approx-
imation where one is given samples fxi; yig and wishes
to �nd the approximating function. Obviously this is an
ill-posed problem { there are an in�nite number of func-
tions that could approximate the data equally well. A
typical regularization approach calls for minimizing:

J(f) =
X
i

(f(xi) � yi)
2 + �

Z
x

kDf(x)k2dx (29)

The �rst term on the right hand side is the data term
and the second term is the regularizer, in this case regu-
larization is performed by penalizing for high derivatives.
Note that the log posterior in equation 25 can

also be decomposed into two terms that depend on
� . The sum of the log likelihoods

P
r �(	(r)� �

�(r))t��1(r)(	(r)� � �(r))=2�2 and the log prior
��tR�=2�2p. In the language of regularization theory, the
negative sum of the log likelihoods would be the \data
term" and the negative log posterior would be the \reg-
ularizer term".
The negative log posterior, when considered as a \reg-

ularizer" is quite similar to the smoothness regularizer
in equation 29 in that it penalizes for values of � that
correspond to velocity �elds that have large derivatives.
Likewise the negative log likelihood is similar to the data
term in equation 29 in that it penalizes for the squared
error between the observed data and the predicted ve-
locity �eld. The main di�erence, however, is that dif-
ferent observations are given di�erent weights in the log
posterior. Recall from section 2 that in Bayesian MAP
estimation for Gaussian likelihoods the weight of an ob-
servation is inversely proportional to its variance, hence
the ��1 factor in equation 25. Although the regulariza-
tion framework is broad enough to encompass nonuni-
form weights for the data, it does not give a prescription
for how to choose the weights.
An elegant result that can be derived in the regulariza-

tion framework shows that the function f that minimizes
J in equation 29 can be expressed as a superposition of
basis functions (see [9] and references within). In con-
trast, here we assume a particular representation for the
velocity �eld rather than deriving it. We do this be-
cause the number of basis functions required for the op-
timal function f is equal to the number of datapoints. In
the case of motion analysis, this number is prohibitively
large. For computational e�ciency we prefer a low di-
mensional representation. We have found that as long
as one uses the prior over velocity �elds, the exact form
of the representation used is not crucial | very similar
results are obtained with di�erent represenations [41].
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