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Abstract

Estimating motion in scenes containing multiple moving objects

remains a di�cult problem in computer vision. A promising ap-

proach to this problem involves using mixture models, where the

motion of each object is a component in the mixture. However, ex-

isting methods typically require specifying in advance the number

of components in the mixture, i.e. the number of objects in the

scene.

Here we show that the number of objects can be estimated auto-

matically in a maximum likelihood framework, given an assumption

about the level of noise in the video sequence. We derive analytical

results showing the number of models which maximize the likeli-

hood for a given noise level in a given sequence. We illustrate these

results on a real video sequence, showing how the phase transitions

correspond to di�erent perceptual organizations of the scene.
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Figure 1a depicts a scene where motion estimation is di�cult for many computer

vision systems. A semi-transparent surface partially occludes a second surface,

and the camera is translating horizontally. Figure 1b shows a slice through the

horizontal component of the motion generated by the camera - points that are

closer to the camera move faster than those further away. In practice, the local

motion information would be noisy as shown in �gure 1c and this imposes con
icting

demands on a motion analysis system - reliable estimates require pooling together

many measurements while avoiding mixing together measurements derived from the

two di�erent surfaces.
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Figure 1: a: A simple scene that can cause problems for motion estimation. One surface
partially occludes another surface. b: A cross section through the horizontal motion �eld
generated when the camera translates horizontally. Points closer to the camera move
faster. c: Noisy motion �eld. In practice each local measurement will be somewhat noisy
and pooling of information is required. d: A cross section through the output of a multiple
motion analysis system. Points are assigned to surfaces (denoted by di�erent plot symbols)
and the motion of each surface is estimated.
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Figure 2: The \correct" number of surfaces in a given scene is often ambiguous. Was the
motion here generated by one or two surfaces?

Signi�cant progress in the analysis of such scenes has been achieved by multiple

motion analyzers - systems that simultaneously segment the scene into surfaces and

estimating the motion of each surface [9]. Mixture models are a commonly used

framework for performing multiple motion estimation [5, 1, 10]. Figure 1d shows

a slice through the output of a multiple motion analyzer on this scene - pixels are

assigned to one of two surfaces and motion information is only combined for pixels

belonging to the same surface.

The output shown in �gure 1d was obtained by assuming the scene contains two

surfaces. In general, of course, one does not know the number of surfaces in the

scene in advance. Figure 2 shows the di�culty in estimating this number. It is not

clear whether this is very noisy data generated by a single surface, or less noisy

data generated by two surfaces. There seems no reason to prefer one description

over another. Indeed, the description where there are as many surfaces as pixels is

also a valid interpretation of this data.

Here we take the approach that there is no single \correct" number of surfaces for

a given scene in the absence of any additional assumptions. However, given an

assumption about the noise in the sequence, there are more likely and less likely

interpretations. Intuitively, if we know that the data in �gure 2a was taken with

a very noisy camera, we would tend to prefer the one surface solution - adding

additional surfaces would cause us to �t the noise rather than the data. However, if

we know that there is little noise in the sequence, we would prefer solutions that use

many surfaces, there is a lot less danger of \over�tting". In this paper1 we show,

following [6, 8] that this intuition regarding the dependence of number of surfaces to

assumed noise level is captured in the maximum likelihood framework. We derive

analytical results for the critical values of noise levels where the likelihood function

undergoes a \phase transition" { from being maximized by a single model to being

maximized by multiple models. We illustrate these transitions on synthetic and real

video data.

1One of the simulations presented here (�gures 6{8) was previously reported in
CVPR96 [10]



1 Theory

1.1 Mixture Models for optical 
ow

We begin with a brief review of mixture models for optical 
ow (cf. [5, 1]). The

scene is modeled as composed of K surfaces with the velocity of each surface at

location (x; y) given by (uk(x; y); vk(x; y). The velocity �eld is parameterized by a

vector �k. A typical choice [9] is the a�ne representation:

uk(x; y) = �k
0
+ �k

1
x+ �k

2
y (1)

vk(x; y) = �k
4
+ �k

5
x+ �k

6
y (2)

The a�ne family of motions includes rotations, translations, scalings and shears. It

corresponds to the 2D projection of a plane undergoing rigid motion in depth.

Each pixel is assumed to belong to exactly one surface and corresponding pixels

in subsequent frames are assumed to have identical intensity values, up to imaging

noise which is modeled as a Gaussian with variance �2.

The task of multiple motion estimation is to �nd the most likely motion parameter

values given the image data. A standard derivation (see e.g. [1]) gives the following

log likelihood function for the parameters �:

l(�) =
X
x;y

log(

KX
k=1

e�R
2

k
(x;y)=2�2) (3)

With Rk(x; y) the residual intensity at pixel (x; y) for velocity k:

Rk(x; y) = Ix(x; y)u
k(x; y) + Iy(x; y)v

k(x; y) + It(x; y) (4)

where Ix; Iy; It denote the spatial and temporal derivatives of the image sequence.

Although our notation does not make it explicit, Rk(x; y) is a function of �k through

equations 1{2.

As in most mixture estimation applications, equation 3 is not maximized directly,

but rather an Expectation-Maximization (EM) algorithm is used to iteratively in-

crease the likelihood [3].

1.2 Maximum Likelihood not necessarily with maximum number of

models

It may seem that since K is �xed in the likelihood function (equation 3) there is

no way that the number of surfaces can be found by maximizing the likelihood.

However, maximizing over the likelihood may lead to a a solution in which some

of the � parameters are identical [6, 5, 8]. In this case, although the number of

surfaces is still K, the number of distinct surfaces may be any number less than K.

Consider a very simple case whereK = 2 and the motion of each surface is restricted

to horizontal translation u(x; y) = u; v(x; y) = 0. The advantage of this simpli�ed

case is that the likelihood function is a function of two variables and can be easily

visualized.

Figure 3 shows the likelihood function for the data in �gure 2 as � is varied. Ob-

serve that for small values of �2 the likelihood has two maxima, and at both these
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Figure 3: The log likelihood for the data in �gure 2 undergoes a phase transition when �

is varied. For small values of � the likelihood has two maxima, and at both these maxima
the two motions are distinct. For large �

2 the likelihood function has single maximum at
the origin, corresponding to the solution where both velocities are equal to zero, or only
one unique surface.

maxima the two motions are distinct. For large �2 the likelihood function has sin-

gle maximum at the origin, corresponding to the solution where both velocities are

equal to zero, or only one unique surface. This is a simple example where the ML

solution corresponds to a small number of unique surfaces.

Can we predict the range of values for � for which the likelihood function has a

maximum at the origin? This happens when the gradient of the likelihood at the

origin is zero and the Hessian has two negative eigenvalues. It is easy to show

that the if the data has zero mean, the gradient is zero regardless of �. As for the

Hessian, H direct calculation gives:

H = c

�
E
2�2

� 1 � E
2�2

� E
2�2

E
2�2

� 1

�
(5)

where E is the mean squared residual of a single motion and c is a positive constant.

The two eigenvalues are proportional to �1 and E=�2�1. So the likelihood function

has a local maximum at the origin if and only if E < �2. (see [6, 4, 8] for a similar

analysis in other contexts).

This result makes intuitive sense. Recall that �2 is the expected noise variance.

Thus if the mean squared residual is less than �2 with a single surface, there is no

need to add additional surfaces. The result on the Hessian shows that this intuition

is captured in the likelihood function. There is no need to introduce additional

\complexity costs" to avoid over�tting in this case.

More generally, if we assume the velocity �elds are of general parametric form, the

Hessian evaluated at the point where both surfaces are identical has the form:

H = c

�
E
2�2

� F � E
2�2

� E
2�2

E
2�2

� F

�
(6)

where E and F are matrices:

E =
X
x;y

R2(x; y)d(x; y)d(x; y)t (7)



F =
X
x;y

d(x; y)d(x; y)t (8)

with d(x; y) =
@R(x;y)

@�
, and R(x; y) the residual as before.

A necessary and su�cient condition for the Hessian to have only negative eigenvalues

is:

kF�1Ek < �2 (9)

Thus when the maximal eigenvalue of F�1E is less than �2 the �t with a single

model is a local maximum of the likelihood. Note that F�1E is very similar to a

weighted mean squared error, with every residual weighted by a positive de�nite

matrix (E sums all the residuals times their weight, and F sums all the weights, so

F�1E is similar to a weighted average).

The above analysis predicts the phase transition of a two component mixture likeli-

hood, i.e. the critical value of �2 such that above this critical value, the maximum

likelihood solution will have identical motion parameters for both surfaces. What

happens when the mixture has K > 2 components? It can be shown that in this

case the Hessian has the same eigenvalues as in the K = 2 case, except that some

eigenvalues have multiplicity larger than one. The condition for all eigenvalues to

be negative gives the exact same critical value for �2. This predicts the �rst phase

transition of a k component mixture - the likelihood will be maximized when all

k parameters are identical for �2 above the same critical value but not for �2 be-

low that value. Analyzing the subsequent phase transitions in the k component

case is more di�cult. To �nd the transition from two models to three, we need

to evaluate the Hessian at the parameter location that gives two distinct models.

The transition happens at the largest value of �2 where the Hessian ceases to have

only negative eigenvalues. In general, this transition will depend in a complicated

manner on the speci�c parameter values of the two model solution. In the case

when the two models are well separated in parameter space, it can be shown that

the Hessian has block diagonal structure. For this special case, the second and third

phase transitions can be calculated using equation 9 where the matrices E;F are

calculated on subsets of the full data.

2 Results

The fact that the likelihood function undergoes a phase transition as � is varied

predicts that a ML technique will converge to di�erent number of distinct models

as � is varied. We �rst illustrate these phase transitions on a 1D line �tting prob-

lem which shares some of the structure of multiple motion analysis and is easily

visualized.

Figure 4a shows data generated by two lines with additive noise, and �gure 4b

shows a phase diagram calculated using repeated application of equation 9; i.e. by

solving equation 9 for all the data, taking the two line solution obtained after the

transition, and repeating the calculation separately for points assigned to each of

the two lines.

Figure 5 shows the output of an EM algorithm on this data set. Initial conditions

are identical in all runs, and the algorithm converges to one, two, three or four

distinct lines depending on �.
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Figure 4: a: data generated by two lines. b: the predicted phase diagram for the
likelihood of this dataset in a four component mixture. The phase transitions are at
� = 0:084; 0:112; 0:8088
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Figure 5: The data in �gure 1 are �t with one, two, three or four models depending on
�. The results of EM with identical initial conditions are shown, only � is varied. The
transitions are consistent with the theoretical predictions.
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Figure 6: The �rst phase transition. The algorithm �nds two segments corresponding
to the tree and the rest of the scene. The critical value of �

2 for which this transition
happens is consistent with the theoretical prediction.

Figure 7: The second phase transition. The algorithm �nds three segments - branches
which are closer to the camera than the rest of the tree are segmented from it. Since the
segmentation is based solely on motion, portions of the 
ower bed that move consistently
with the branches are erroneously grouped with them.

We now illustrate the phase transitions on a real video sequence. Figures 6{ 8

show the output of an EM motion segmentation algorithm with four components

on the MPEG 
ower garden sequence (cf. [9, 10]). The camera is translating in

the scene, and objects move with di�erent velocities due to parallax. The phase

transitions correspond to di�erent perceptual organizations of the scene - �rst the

tree is segmented from the background, then branches are split from the tree, and

�nally the background splits into the 
ower bed and the house.

3 Discussion

Estimating the number of components in a Gaussian mixture is a well researched

topic in statistics and data mining [7]. Most approaches involve some tradeo�

parameter to balance the bene�t of an additional component versus the added

complexity [2]. Here we have shown how this tradeo� parameter can be implicitly

speci�ed by the assumed level of noise in the image sequence.

While making an assumption regarding � may seem rather arbitrary in the abstract

Gaussian mixture problem, we �nd it quite reasonable in the context of motion es-

timation, where the noise is often a property of the imaging system, not of the

underlying surfaces. Furthermore, as the phase diagram in �gure 4 shows, a wide



Figure 8: The third phase transition. The algorithm �nds four segments { the 
ower bed
and the house are segregated.

range of assumed � values will give similar answer, suggesting that an exact speci-

�cation of � is not needed. In current work we are exploring the use of weak priors

on � as well as comparing our method to those based on cross validation [7].

Our analytical and simulation results show that an assumption of the noise level

in the sequence enables automatic determination of the number of moving objects

using well understood maximum likelihood techniques. Furthermore, for a given

scene, varying the assumed noise level gives rise to di�erent perceptually meaningful

segmentations. Thus mixture models may be a �rst step towards a well founded

probabilistic framework for perceptual organization.
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Derivations

Claim: For a k component mixture model, the Hessian evaluated at the location

where all models are identical has block structure:

H = c

0
BB@

A B B � � �
B A B � � �
B B A � � �
� � � � � � � � � � � �

1
CCA (10)

with:

A = (1�
1

k
)
E

�2
� F (11)

B = �
1

k

E

�2
(12)

and E;F as de�ned in equations 7{8.

Proof: This is obtained by direct calculation. Take the second derivative of the log

likelihood and simplify.

Claim: The eigenvalues of H are the eigenvalues of�F and the eigenvalues of E
�2
�F .

Proof: Let v1 be an eigenvector of F with eigenvalue � , construct the vector

v = [v1; v1 � � � v1]
t then v is an eigenvector of H with eigenvalue ��. To see this,

use block multiplication to calculate Hv = [�Fv1;�Fv1 � � � � Fv1]
t. This gives

n eigenvectors of H . Now, let v1 be an eigenvector of E
�2

� F with eigenvalue

�, construct the vector v = [�1v1; �2v1; � � ��kv1]
t with

P
i �i = 0. Then v is an

eigenvector of H with eigenvector �. Again,this can be seen by block multiplication.

Since for any v1 we can manufacture k � 1 linearly independent v vectors, this

method gives n � (k � 1) eigenvalues of H , which together with the n eigenvalues

constructed earlier, give all nk eigenvalues of H.

Claim: A necessary and su�cient condition for H to have only negative eigenvalues

is:

kF�1Ek < �2 (13)

Proof: We have shown that all eigenvalues ofH are either eigenvalues of �F or those

of E
�2

� F . Since F is positive de�nite, �F has all negative eigenvalues regardless

of �2. Thus H will be negative if and only if E
�2

� F < 0 or F�1E < �2I .


