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1.1 Introduction

The basic problem of energy minimization in an MRF comes up in many
different application domains ranging from statistical physics [1] to
error correcting codes [5] and protein folding [17]. Linear Programming
(LP) Relazations are a standard method for approximating combinato-
rial optimization problems in computer science [3] and have been used
for energy minimization problems for some time [2,5,9]. LP relaxations
have an advantage over other energy minimization schemes in that they
come with an optimality guarantee — if the LP relaxation is “tight” i.e.
the solution to the linear program is integer , then it is guaranteed to
give the global optimum of the energy.

Despite this advantage, there have been very few applications of LP
relaxations for solving MRF problems in vision. This can be traced
to the computational complexity of LP solvers — the number of con-
straints and equations in LP relaxation of vision problems is simply
too large. Instead, the typical algorithms used in MRF minimization
for vision problems are either based on message-passing (in particu-
lar belief propagation (BP) and the tree reweighted version of belief
propagation (TRW)) or on graph-cuts.

In the last five years, however, an intriguing connection has emerged
between message passing algorithms, graph cut algorithms and LP
relaxation. In this chapter, we give a short, introductory treatment
of this intriguing connection (focusing on message passing algorithms).
Specifically, we show that BP and its variants can be used to solve
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1.1 Introduction 3

LP relaxations that arise from vision problems, sometimes far more
efficiently than using off the shelf LP software packages. Furthermore,
we show that BP and its variants can give additional information that
allows one to provably find the global minimum even when the LP
relaxation is not tight.

1.1.1 Energy minimization and its Linear Programming
Relaxation

The energy minimization problem and its LP relaxation were described
in the introduction, and we briefly define them here again in a
slightly different notation (that will make the connection to BP more
transparent).

For simplicity, we discuss only MRFs with pairwise cliques in
this chapter, but all statements can be generalized to higher-order
cliques [15].

We work with MRFs of the form:

Pr(a) = o [T exp(- i) T exp(-¥s (o) (1.1)

<ij>

We wish to find the most probable configuration «* that maximizes
Pr(z) or equivalently, the one that minimizes the energy:

x* = arg minz D, (x;) + Z Ui (x, x;) (1.2)

ij

For concreteness, let’s focus on the stereo vision problem (figure 1.1).
Here z; will denote the disparity at a pixel ¢ and ®;(z;) will be the
local, data term in the energy function while ¥;;(x;,x;) is the pair-
wise, smoothness, term in the energy function. As shown in [4] for
many widely used smoothness terms (e.g. the Potts model) exact mini-
mization is NP hard. Figures 1.1b,c show the results of graph cuts and
ordinary belief propgation on the Potts model energy function. In this
display, the lighter a pixel is the further away it is calculated to be from
the camera. Note that both graph cuts and BP calculate the depth of
the hat and shirt to have “holes” - there are pixels inside the hat and
the shirt whose disparity is calculated to be larger than the rest of the
hat. Are these mistakes due to the energy function or the approximate
minimization 7

We can convert the minimization into an integer program, by intro-
ducing binary variables g;(z;) for each pixel and ¢;;(x;, x;) for any pair
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4 1 Linear programming and variants of Belief Propagation

a b C

Figure 1.1 a. A single frame from a stereo pair. Finding the disparity is often done
by minimizing an energy function. b. The results of graph cuts using a Potts model
energy function. c. The results of ordinary BP using the same energy function.

of connected pixels. We can then rewrite the minimization problem as:

{a;, 47} = arg minz Zqi(xi)fbi(aai) + Z Z Vi (i, 75)qi (24, 75)

<37> T;,T;

(1.3)
The minimization is done subject to the following constraints:

¢ij(zi,z;) € {0,1}

o aylzia) = 1

T, Ty

> ajlwnz) = gla)

where the last equation enforces the consistency of the pairwise
indicator variables with the singleton indicator variable.

This integer program is completely equivalent to the original MAP
problem, and is hence computationally intractable. We can obtain the
linear programming relaxation by allowing the indicator variables to
take on non-integer values. This leads to the following problem:

The LP relaxation of Pairwise Energy Minimization:
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1.1 Introduction 5
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Figure 1.2 The number of variables and constraints in a stereo problem with 30
disparities as a function of image size. Even modestly sized images have millions of
variables and constraints. The largest image that could be solved with commercial
LP software on a machine with 4GB of memory in [16] is approximately 50 x 50.

minimize:
T = D> ais(@s ) Vis(wa ) + D> gilw:) Wilas) (1.4)
<ij> xi, T, i x;
subject to:
gij(zi,z;) € [0,1] (1.5)

D ai(@nz) = g(x;) (L.7)

This is now a linear program — the cost and the constraints are linear.
It can therefore be solved in polynomial time and we have the following
guarantee:

Observation If the solutions {g;;(z;, z;), ¢;(x;)} to the MAP LP relax-

ation are all integer, that is g¢;;(z;, z;),qi(x;) € {0,1}, then z} =
arg max,, ¢;(z;) is the MAP.
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6 1 Linear programming and variants of Belief Propagation

1.1.2 The need for special purpose LP solvers

Having converted the energy minimization problem to a linear program
(LP), it may seem that all we need is to use off the shelf LP solvers
and apply them to computer vision problems. However, by relaxing
the problem we have increased the size of the problem tremendously —
there are much more variables in the LP than there are nodes in the
original graph.

Formally, denote by k; the number of possible states of node i. The
number of variables and constraints in the LP relaxation is given by:

Nvariables = Z k;i + Z kzk]

<i,j>

Nconstraints - Z (kz + kj + 1)

<i,j>

The additional }:_, . 2k;k; bound constraints, derived from
equation (1.5), are usually not considered part of the constraint matrix.

Figure 1.2 shows the number of variables and constraints as a function
of image size for a stereo problem with 30 disparities. If the image is
a modest 200 x 200 pixels and each disparity can take on 30 discrete
values, then the LP relaxation will have over 72 million variables and
four million constraints. The vertical line shows the largest size image
that could be solved using a commercial powerful LP solver (CPLEX
9.0) using a desktop machine with 4GB of memory in [16]. Obviously,
we need a solver that can somehow take advantage of the problem
structure in order to deal with such a large-scale problem.

1.2 Ordinary Sum-Product Belief Propagation and
Linear Programming

The sum-product belief propagation (BP) algorithm was introduced by
Pearl [11] as a method for performing exact probabilistic calculations on
singly connected MRF's. The algorithm receives as input a graph G and
the functions Fj;(x;, z;) = exp(—V(x;, x;)), Fi(x;) = exp(—¥;(z;)). At
each iteration, a node z; sends a message m;;(z;) to its neighbor in the
graph x;. The messages are updated as follows:

mij(x;) — oy Y Fyglas, a)Fo(xa) [ mwi(e) (1.8)

T keEN;\j
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1.2 Ordinary Sum-Product Belief Propagation and Linear Programming 7

where N;\j refers to all neighbors of node z; except x;. The constant
«;; is a normalization constant typically chosen so that the messages
sum to one (the normalization has no influence on the final beliefs).
Given the messages, each node can form an estimate of its local “belief”

defined as:

bi(x;) o Fy(x;) H mji(x;) (1.9)

JEN;

and every pair of nodes can calculate their “pairwise belief”:

bij(wi,x5) oc Fy(wi) Fy(x) Fyg(wiwy) [ mwa(w) [ mus(e) (1.10)

keEN;\j k?GNj\i

Pearl showed that when the MRF graph is singly-connected, the
algorithm will converge and these pairwise beliefs and singleton beliefs
will exactly equal the correct marginals of the MRF (i.e. b;(z;) =
Pr(x;),bij(z;, ;) = Pr(z;, x;)). But when there are cycles in the graph,
neither convergence nor correctness of the beliefs is guaranteed. Some-
what surprisingly, however, for any graph (with or without cycles) there
is a simple relationship between the BP beliefs and the LP relaxation.

In order to show this relationship, we need to define the BP algorithm
at temperature 7. This is exactly the same algorithm defined above
(equation 1.8) and the only difference is the definition of the local func-
tions Fy;(x;, z;), Fi(z;). The new definition depends both on the energy
function parameters ¥;;(z;, x;), ®;(z;) as well as a new parameter T
which we call “temperature”.

1

Fij(fl:i,l‘j) = eXP—T\I’ij(%‘,%‘) (111)
1

Fi(z;) = exp—f‘bi(fﬂi) (1.12)

Observation: For any MRF as T" — 0 there exists a fixed-point of
ordinary BP at temperature T" whose beliefs approach the LP solution.

This observation follows directly from the connection between BP
and the Bethe Free Energy [18]. As explained in the previous chapter,
there is a one to one correspondence between the fixed points of BP at
temperature T and stationary points of the following problem.
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8 1 Linear programming and variants of Belief Propagation

The Bethe Free Energy Minimization Problem: Minimize:

GUVLET) = D0 bl x) Wi, 2) + > > b)) ®i(x:)

-T (Z H(b;;) + Z(l - degi)H(bi)> (1.13)

subject to:

X4, Tj

D obilwiay) = b(xy) (1.16)

where H(b;) is the Shannon Entropy of the belief H(b;) =
=2, bi(w:) Inb;(x;) and deg, is the degree of node 7 in the graph.

Comparing the Bethe Free Energy Minimization problem and the LP
relaxation problem, we see that the constraints are the same, and the
first term in the objective is also the same. The only difference is the
existence of additional, entropy, terms in the Bethe Free Energy. But
these terms are multiplied by T so that as T" — 0 the two problems
coincide (recall that the Shannon entropy is bounded).

Figure 1.3 illustrates the convergence of the Bethe Free Energy to
the LP relaxation. We consider a graphical model corresponding to a
toroidal grid. The nodes are binary and all the pairwise potentials are
of the form:

- (11)

These potentials correspond to an Ising model with a uniform external
field — nodes prefer to be similar to their neighbors and there is a prefer-
ence for one state over the other. In order to visualize the approximate
free energies, we consider beliefs that are symmetric and identical for
all pairs of nodes:

bij = (i 1—(xy+2y) )

STENNING: “CHAPTER” — 2009/12/28 — 19:21 — PAGE 8 — #8



1.2 Ordinary Sum-Product Belief Propagation and Linear Programming 9

T=0.1

=

T

Figure 1.3 Contour plots of the Bethe free energy (top) and a convex free energy
(bottom) for a 2D Ising model with uniform external field at different temperatures.
The stars indicate local stationary points. Both free energies approach the LP as
temperature is decreased, but for the Bethe free energy, a local minimum is present
even for arbitrarily small temperatures.

Note that the MAP (and the optimum of the LP) occur at x = 1,y =
0 in which case all nodes are in their preferred state. Figure 1.3 shows
the Bethe free energy (top) for this problem for different temperatures.
At high temperature, the minimization problems are quite different,
but as temperature is decreased the Bethe Free Energy is dominated
by the linear term and becomes equivalent to the LP relaxation.

Note, however, that the convergence of the Bethe Free Energy prob-
lem to the LP relaxation, does not guarantee that any BP fixed-point
will solve the LP relaxation as the temperature approaches zero. It only
guarantees that there exists a good fixed-point, but there may be other
fixed-points as well. The stars in figure 1.3 indicate the local stationary
points of the Bethe Free Energy. A bad local minimum exists for small
temperatures at * = 0,y = 0. This corresponds to a solution where all
nodes have the same state but it is not the preferred state.

1.2.1 Convex BP and the LP Relaxation

In order to avoid local minima, we need a version of the Bethe Free
Energy that has a unique stationary point. The question of when the
Bethe Free Energy has a unique stationary point is surprisingly deli-
cate (see e.g. [8,12-14]) and can depend non-trivially on the graph and
the energy function. Perhaps the simplest condition that guarantees a
unique stationary point is convezity. As illustrated in figure 1.4a a 1D
function is convex, if its second derivative is always positive and this
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10 1 Linear programming and variants of Belief Propagation
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Figure 1.4 Two 1D functions defined on the range [0, 1]. The function on the left is
the negative Shannon entropy and is convex. The function on the right (an inverted
Gaussian) has a unique stationary point but is not convex. In order to guarantee
uniqueness of BP fixed points, we seek free energies that are convex.

a b

Figure 1.5 a. The solution to the LP obtained by running convex BP. Using
convex BP we can solve the LP relaxation for full sized images. Pixels for which the
LP solution is fractional are shown in black. b. A binary image indicating in white
the pixels for which the LP solution is fractional.

guarantees that it has a unique stationary point. Convexity is a suffi-
cient condition for uniqueness of stationary points but is not necessary.
Figure 1.4b shows a 1D function that has a unique stationary point, but
is not convex. Nevertheless, the easiest way to guarantee uniqueness of
BP fixed-points is to require convexity of the free energy.
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1.2 Ordinary Sum-Product Belief Propagation and Linear Programming 11

In dimensions larger than one, the definition of convexity simply
requires positivity of the Hessian. This means that the convexity of
the free energy does not depend on the terms in the energy function
U,i(z,z;), ®i(z;). These terms only changes the linear term in the
free energy and do not influence the Hessian. Thus the free energy
will be convex if the sum of entropy terms are convex. This sum of
entropies Hg = > .. H(b;;) + > (1 — deg;)H(b;) is called the Bethe
entropy approximation. The negative Bethe entropy can be shown to
be convex when the graph is a tree or has a single cycle. However, when
the graph has multiple cycles, as in the toroidal grid discussed earlier,
the Bethe negative entropy is not convex and hence BP can have many
fixed-points.

We can avoid this problem by “convexifying” the Bethe entropy. We
consider a family of entropy approximations of the form:

H =Y ciH(by)+ Y cH(b) (1.17)

Heskes [8] has shown that a sufficient condition for such an approx-
imate entropy to be convex is if it can be rewritten as a positive
combination of three types of terms: (1) pairwise entropies (e.g. H(b;;))
(2) singleton entropies (e.g. H(b;)) and (3) conditional entropies (e.g.
H(b;j) — H(b;)). Thus the Bethe entropy for a chain of three nodes
will be convex since it can be written Hz = Hyo + Hy3 — H, which
is a positive combination of a pairwise entropy Hi» and a conditional
entropy H,3 — Hy. However, for the toroidal grid discussed above, the
Bethe entropy cannot be written in such a fashion. To see this, note
that a 3x3 toroidal grid has nine nodes with degree 4 and 18 edges.
This means that the Bethe entropy will have 27 negative entropy terms
(i.e. nine times we will subtract 3H; ). However, the maximum num-
ber of negative terms we can create with conditional entropies is 18
(the number of edges) so we have more negative terms than we can
create with conditional entropies. In contrast, the entropy approxima-
tion >, (Hi; — H;) is convex, since it is the sum of 18 conditional
entropies.

Given an approximate entropy that satisfies the convexity conditions,
we can replace the Bethe entropy with this new convex entropy and
obtain a convex free energy. But how can we minimize it ? It turns out
that a slight modification to the BP update rules gives a new algorithm
whose fixed-points are stationary points of any approximate free energy.
The algorithm defines an extra scalar variable, for each node i: p; =
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12 1 Linear programming and variants of Belief Propagation

C*Zﬁ and for each edge ij p;; = pjc;; (note that p;; may be

different than p;;). Using these extra scalars the update equations are:

i PL sz i—1
mi; () g F”J x, i) FP (x;) H mps (x;)my; ()77~ (1.18)
T; kEN;\Jj

bi(z;)) = Fl(zy) H mil (x (1.19)

JEN(i
bij(wi, ;) = Ej(fi@j)?"F‘pi(ﬂfi)ij(%) (1.20)
H g (i )myi ()77 H mpkj (z;) mw(ajj)pi'j_l
kEN;\j kEN;\i

Note that this algorithm is very similar to ordinary BP, so it requires
very little modification to an existing implementation of BP. In partic-
ular, we can use algorithms for efficient calculations of BP messages
for certain energy function (e.g. [6]). Note that for the Bethe Free
Energy, ¢;; = 1 and ¢; = 1 — deg,; (and thus p;, p;; = 1) the above
update equation reduces to ordinary BP. However, by choosing c;;, ¢;
so that the approximate free energy is convex, we can guarantee that
this modified algorithm will have a single, unique fixed-point at any
temperature.

Returning to the toroidal grid we discussed earlier, figure 1.3 (bot-
tom) shows the convexified free energy (with an entropy approximation
of the form 18H,, — 18H;) for this problem for different tempera-
tures. As was the case for the Bethe Free Energy, at high temperature,
the minimization problems are quite different, but as temperature is
decreased the free energy is dominated by the linear term and becomes
equivalent to the LP relaxation. However, unlike the Bethe free energy,
the convex free energy always has a unique minimum (indicated by
the star) so that the fixed point of the generalized BP algorithm is
guaranteed to give the LP solution.

An important special case of a convex free energy are the class of “tree
reweighted” (TRW) free energies. In these free energies the entropy
is approximated as a linear combination of entropies over trees H =
>, p-H,. For this free energy, the generalized BP algorithm reduces
to the TRW algorithm (since p; = 1 and p;; = p;; in this case).

To summarize, by choosing a convex free energy and running the gen-
eralized BP algorithm at small temperature we can approximate the LP
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1.3 Conver Maz-Product BP 13

solution. Returning to the stereo problem depicted in figure 1.1, even
though standard LP solvers fail on such a large problem, convex BP
solved it in less than two hours. The results are shown in figure 1.5a,b.
In figure 1.5a we display the disparity encoded by the LP solution. If the
LP solution was indeed integer, we display the disparity for which the
LP solution was nonzero. If the LP solution was fractional, that pixel is
shown in black. In figure 1.5b we show a binary mask indicating which
pixels had non-integer values in the LP solution. The existence of such
pixels means that the LP relaxation is not tight.

1.3 Convex Max-Product BP

Although we have shown that one can use sum-product convex BP to
solve the linear program, one needs to be able to run the sum-product
algorithm at sufficiently small temperatures. There are two problems
with this approach. First, running the algorithm at small temperatures
requires defining F}; = exp(—V,;(z;, z;)/T), Fi(z;) = exp(—P;(z;)/T)
for small T. Note that as 7' — 0 we are dividing by a number
that approaches zero and this can cause numerical problems. In the
appendix, we discuss how to implement the algorithm in “log space”,
i.e. by working with the logarithms of the potentials and messages. This
can greatly increase the numerical precision at low temperatures.

A second problem, however, is that it is not obvious how to choose
the temperature so that it is “sufficiently small”. As evident by our
discussion in the previous section, we need the temperature to be small
enough so that the entropy contribution is negligible relative to the
the average energy. So the requirement of the temperature being “suffi-
ciently small” is problem dependent — as we change terms in the energy
function the scale of the average energy may change as well requiring
a different temperature.

In order to avoid choosing a “sufficiently small” temperature, we can
work with the “zero temperature limit” of the convex BP algorithm.
This algorithm, called the max-product convex BP algorithm is exactly
the same as equations 1.18 but with the “sum” operator replaced with
a “max”. It is easy to show that as the temperature T" approaches zero,
the update equations of the sum-product algorithm at temperature T’
approach those of the max-product algorithm at 7' = 1. Formally, if a
set of messages form a fixed-point of sum-product at temperature 1. As
T — 0, then these same messages raised to the 1/T power, will form a
fixed-point of the max-product algorithm. This proof follows from the
fact that the ¢, norm approaches the max norm as p — oo [7,15].
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14 1 Linear programming and variants of Belief Propagation

a b C

Figure 1.6 a Results of using convex max product BP on the stereo problem
shown in figure 1.1a. Pixels for which there are ties in the belief are shown in black.
b. A binary image indicating which pixels had ties. Note that these are exactly the
same pixels for which the LP solution had non-integer values (see figure 1.5). ¢ The
global optimum found by resolving the tied pixels and verifying that the conditions
for optimality hold. Note that this solution is not much better than the local optima
found before (figure 1.1.). Both the hat and the shirt of the foreground person are
calculated to have “holes”.

Despite this direct connection to the sum-product algorithm, the
max-product algorithm is more difficult to analyze. In particular, even
for a convex free energy approximation, the max-product algorithm
may have multiple fixed points even though the sum-product algorithm
has a unique fixed-point. Thus one cannot guarantee that any fixed-
point of convex max-product BP will solve the linear programming
relaxation.

An important distinction in analyzing the fixed-points of max-
product BP is the notion of “ties”. We say that a belief at a node
has a tie if it does not have a unique maximizing value. Thus a belief
of the form (0.7,0.2,0.1) has no ties while the belief (0.4,0.4,0.2) has
a tie. Max-product fixed points without ties can be easily shown to
indeed correspond to a limit of the sum product algorithm at zero
temperature. This leads to the following result.

Claim: If max-product convex BP converges to a fixed-point without
ties, then the assignment z; = argmax,, b;(x;) is the global minimum
of the energy function.

This result is analogous to the claim on the LP relaxation. Only if
the LP relaxation ends up being integral can we say that it corresponds
to the global minimum of the energy.
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1.3 Conver Maz-Product BP 15

Unfortunately, in many vision problems neither is the LP all integer
nor are the max-product beliefs all tied. A typical example is shown in
figure 1.6a where we have indicated in black the pixels for which ties
exist (these same pixels are, not coincidentally, the pixels where the
LP solution is non-integral). In all the non-tied pixels we have shown
the disparity that maximizes the beliefs at the fixed-point. It can be
seen that a small number of pixels are black (see also the mask of black
pixels shown in figure 1.6b), so that we cannot guarantee optimality of
the solution. Yet the disparities at the non-tied pixels seem reasonable.
Under what conditions can we “trust” the values in the non-tied pixels
o

In recent years, a number of results have been obtained that allow
us to still prove partial optimality of an assignment obtained by maxi-
mizing the belief at a non-tied node after running max-product convex
BP. Partial optimality means that we can fix the values at the non-
tied nodes and only optimize over the remaining, tied, nodes. Under
certain conditions, this procedure can still be guaranteed to find the
global optimum.

We list here some results on partial optimality and refer the reader
to [15,16] for more exact definitions and proofs.

® When each node has only two possible states, partial optimality
holds.

® (Consider the subgraph formed by looking only at the tied nodes. If
this graph is a tree partial then partial optimality holds.

® (Consider the subgraph formed by looking only at the tied nodes.
Define its boundary as those nodes in the subgraph that are also
connected to other nodes. If the beliefs at the boundary nodes is
uniform then partial optimality holds.

e (Consider the subgraph formed by looking only at the tied nodes.
Define a new energy function on this subgraph and find the assign-
ment in the tied nodes that minimizes this energy function. If that
assignment does not contradict the beliefs at the boundary of the
subgraph, then partial optimality holds.

Note that verifying that partial optimality holds may require addi-
tional computation after running max-product convex BP. Yet in many
vision problems, we have found that this verification can be done effi-
ciently and this allows us to provably find the global optimum of the
energy function. Code implementing these verification steps is avail-
able at http://www.cs.huji.ac.il/~ talyam/stereo.html. Figure 1.6¢ shows
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16 1 Linear programming and variants of Belief Propagation

the global optimum of the energy function for the image shown in
figure 1.1.Although this is the global optimum for the energy func-
tion, it still suffers from mistakes. In particular, the calculated depth
for the hat and the shirt still has holes. This indicates that a crucial
part of stereo research is choosing a good energy function to minimize.

1.4 Discussion

Despite the NP-hardness of energy minimization in many computer
vision problems, it is actually possible to find the global optimum of
the energy in many instances. Theoretically, this could be done by
relaxing the problem into a linear program. However, the large number
of variables and constraints makes this linear program unsuitable for
standard LP solvers. In this chapter, we have reviewed how variants of
belief propagation can be used to solve the LP relaxation. Furthermore,
we have shown how the max-product convex BP algorithm can be used
to find the global optimum even if the LP relaxation is not tight.

While we have focused on the connection between BP and the LP
relaxation, it can also be shown that the alpha expansion graph cut
algorithm is also intimately connected to the same LP relaxation. In
particular, Komodakis and Tzritas [10] have shown that the alpha
expansion algorithm can be seen as an iterative “ primal integer-dual”
algorithm for solving the LP relaxation. Thus the graph cuts algorithm
and BP, which are often seen as competing algorithms, are actually
closely related. One important conclusion from this relationship, is that
both algorithms are not expected to work well when the LP relaxation
is loose. Indeed, despite the success recounted here in finding global
optima for some energy functions in stereo vision, for other energy
functions the number of “tied” pixels is far too large for the methods
described here to be successful. Understanding the conditions under
which energy minimization problems in computer vision have a tight
LP relaxation is a promising direction for future research.
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1.5 Appendix - implementation details

1.5.1 Implementation in log space

To be able to run the algorithm with a small temperature T, we
use the log-space — that is, we work directly with the costs/energies
®;, U;; instead of the potentials F;, F};, and a set of messages nj;(x;) =
T log m,i(x:).

Yet when running sum-product, we need to sum over terms which are
the exponent of the log-terms calculated, and then take the log again.
Thus rewriting the generalized BP updates in log space gives:

nji(z;) = —Tlog» exp [ — [ @;(x;) + M + > i) — (1= pig)nigly) | /T

x; Pij keN;\i

(1.21)
For efficiency and numerical stability, we use the following equality:

log (exp(z) + exp(y)) = x + log (1 + exp(y — z)) (1.22)

for x > y. In particular, when z is much greater than y we can ignore the
second term and avoid exponentiating or taking the logarithm during
the message update.

1.5.2 Efficient message computation for Potts-model

Calculating the vector mj;(x;) is actually performing a matrix-vector
multiplication:

mji = Aij - Yj (1.23)

Where A;; is a matrix and y; is a vector. In the case of the gener-
alized BP update the matrix and vector are given by: A;;(x;,z;) =

1/pij . 0;5—1
F/" (i, ;) and y;(z;) = Fj(2;) [Tyenpa miy (@) -miy’ ™ (z;).

We consider the case where the pairwise-potentials are of Potts
model, and thus A;; = (a;; — b;;) - I + b;; Thus, we obtain:

Ay = (ai; — big)y; +big > () (1.24)

Lj
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18 Linear programming and variants of Belief Propagation

Note that this way, we could compute the outgoing messages vector
my; in O(|X;| + | X;|) complexity: one loop of O(|X;|) for computing
the sum S; = >° y;(z;), and another loop of O(|X;|) for computing
the value:

myi(z;) = (aij — bij)y; (i) + bi;S; (1.25)

for each assignment z;.
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