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We present a new non-uniform sampling method for the accurate estimation of mutual information in
multi-modal brain image rigid registration. Most existing density estimators used for mutual information
computation incorrectly assume that the intensity of each voxel is independent from its neighborhood.
Our method uses the 3D Fast Discrete Curvelet Transform to reduce the sampled voxels’ interdependency
by sampling voxels that are less dependent on their neighborhood, and thus provide a more accurate esti-
mation of the mutual information and a more accurate registration. The main advantages of our method
over other non-uniform sampling schemes are that: (1) it provides more accurate estimation of the image
statistics with fewer samples; (2) it is less sensitive to the variability of anatomical structures shapes, ori-
entations, and sizes, and; (3) it yields more accurate registration results. Extensive evaluation on 1000
synthetic registrations between T1 and T2-weighted clinical MRI images and 20 real clinical registrations
of brain CT images to Proton Density (PD) and T1 and T2-weighted MRI images from the public RIRE data-
base show the effectiveness of our method. Our method has the lowest mean registration errors recorded
to date for CT-MR image registration in the RIRE website for methods tested on more than five datasets.
These results indicate that our sampling scheme can be used to achieve more accurate multi-modal reg-
istration required for image guided therapy and surgery.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Multi-modal rigid image registration is a key step in medical
image analysis for diagnosis, Image Guided Therapy (IGT) (Web-
ster et al., 2009) and Image Guided Surgery (IGS) (Gering et al.,
2001; Joskowicz et al., 2006). It is required to align image datasets
from different modalities into a common coordinate frame to pro-
vide an informative, quantitative view of the clinical situation. For
IGS and IGT, the Targets Registration Error (TRE) distribution is of
importance due to patient safety issues. Although many registra-
tion methods have been proposed in the past decade, accuracy
improvement is still possible and of importance for both diagno-
sis, IGT and IGS (Greve and Fischl, 2009). For reviews of existing
image-based registration methods, see (Maintz and Viergever,
1998; Hajnal et al., 2001; Zitova and Flusser, 2003; Modersitzki,
2004).

One of the most popular methods for image registration
compares the intensity values in both images and finds the transfor-
mation that maximizes the similarity between them. Due to the
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non-linear intensity dependency between different imaging modal-
ities, standard intensity similarity measures, such as intensity
difference or intensity correlation measures, are of limited use
for multi-modal image registration. Information-theoretic similar-
ity measures, such as Mutual Information (MI) (Collignon et al.,
1995; Wells et al., 1996), have proved to be superior since they do
not assume a linear relation between the images intensities. Subse-
quent refinements, including Normalized Mutual Information
(NMI) (Studholme et al., 1999) and Mattes’ formulation (Mattes
et al., 2003) increase the registration robustness and convergence
range. For a survey of MI-based registration, see (Pluim et al., 2003).

MI-based registration methods estimate image entropies by
modeling the image voxels as independent and identically distrib-
uted (i.i.d) random variables. However, as shown in Rueckert et al.
(2000), the occurrence of a voxel intensity value is dependent on
its neighboring voxels intensity values, so the voxels should not
be modeled as i.i.d.

To overcome these limitations, we have developed a non-uni-
form sampling scheme based on the 3D curvelet transform (Candes
et al., 2005a; Ying et al., 2005). The curvelet transform is a gener-
alization of the wavelet transform that provides a compact repre-
sentation of the image in the curvelet domain. The curvelet
transform was designed to provide a nearly optimal sparse repre-
sentation of images with non axis-aligned edges (Candes and
Donoho, 2004). It is less sensitive to noise and is not biased to
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axis-aligned structures as other sampling masks (Sabuncu and Ra-
madge, 2004; Bhagalia et al., 2009; Sundar et al., 2007; Luan et al.,
2008).

Fig. 1 illustrates the properties of a mask generated by our
method compared to a mask generated by a gradient-based meth-
od on a 2D synthetic example. The synthetic image consists of a
centered sphere and a noisy background. The gradient-based mask
selects the pixels with the largest gradient magnitude without con-
sidering their edge scale and orientation. Therefore, most of the
mask is related to the noise inside the image. In contrast, our curv-
elets-based mask considers also the edge orientation and scale of
each pixel, and therefore selects regions inside the circle (object)
to the mask rather than selecting regions with noisy pixels. This
suggests that curvelet-based non-uniform sampling can provide a
good estimation of the image entropies with a small number of
samples.

We demonstrate the effectiveness of our method for the regis-
tration of clinical brain T1 to T2-weighted MRI brain images and
for the registration of clinical CT images to Proton Density (PD)
and T1 and T2-weighted MRI images. All images were taken from
the public RIRE database (West et al., 1997). For MRI T2-MRI T1
registration, 1000 synthetic transformations were used to evaluate
the performance of our method on real clinical images with noise
and intensity inhomogeneities. Our method yields a mean and
maximum TRE of 1.6 mm (std = 1.6 mm) and 4.5 mm respectively,
with respect to the ground truth. The mean TRE improvement is
1.5 mm, and maximal TRE improvement is 1.1 mm with respect
to existing sampling methods (Wells et al., 1996; Sabuncu and Ra-
madge, 2004; Bhagalia et al., 2009). For CT-MRI registration, 20 real
clinical situation transformations were computed. Our method
yields a mean and maximum target registration error of 0.73 mm
(std = 0.3 mm) and 1.6 mm, respectively, with respect to the
ground truth. The mean TRE improvement is 0.3 mm and the max-
imal TRE improvement is 1 mm with respect to existing sampling
methods (Wells et al., 1996; Sabuncu and Ramadge, 2004; Bhagalia
et al., 2009). Our method yields the lowest mean registration errors
recorded to date for CT-MR image registration in the RIRE website
for methods tested on at least five datasets, and more accurate re-
sults compared to recently published results on this database
(Hahn et al., 2010) and to other databases with similar image prop-
erties (Wong et al., 2010).

The rest of this paper is organized as follows. Section 2 summa-
rizes previous works that addressed the voxels inter-dependency
in MI estimation and discusses their drawbacks. Section 3 de-
scribes the theoretical motivation of curvelet-based sampling for
MI-based registration. Section 4 presents a brief summary of the
curvelet transform. Section 5 describes our new method for the
generation of the image sampling mask with the curvelet trans-
(a) original synthetic
            image

(b) gradient-based mask (c) Our curvelets-based
               mask

Fig. 1. Illustrative example: (a) original synthetic example. The object is the circle,
with random noise added to it; (b) gradient-based mask, and; (c) our curvelets-
based mask. The masks are overlayed on the original image in red. The gradient-
based mask is sensitive to the noisy pixels while the curvelets-based mask captures
the object edges, and ignores the noisy pixels. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
form. Section 6 describes our two-step curvelet-based registration
method. Section 7 presents the experimental setup and results of a
comparative registration accuracy evaluation. Section 8 concludes
the paper.
2. Previous work

Recent research addresses the inter-voxels dependency by
incorporating spatial information into the similarity measure. We
distinguish between three main approaches: (1) hybrid similarity
measures; (2) higher-order MI, and; (3) non-uniform sampling.

The hybrid methods use a two-term based similarity measure in
which the first term is the intensity-based MI and the second term
incorporates spatial information. Pluim et al. (2000) use a gradient-
based term as the spatial term in their hybrid similarity measure.
Rui and Yen-Wei (2007) use multi-resolution wavelets to compute
the spatial term. Gan et al. (2008) use the Maximum Distance-Gra-
dient (MDG) vector field for the spatial term. These measures have
several drawbacks. First, they often yield less accurate registra-
tions, although they are more robust than those obtained with
standard MI measures. Second, the spatial term significantly in-
creases the computation time. Third, the weight coefficients used
to combine the spatial and MI terms in the similarity measure de-
pend on the registration domain and require extensive fine-tuning.

Higher-order MI based methods consider higher-order image
properties as the random variables instead of the voxels’ intensities
in the MI computation. The higher-order information can include
image gradients (Butz and Thiran, 2001), voxel co-occurrence
matrices, or voxel neighborhood regions (Rueckert et al., 2000;
Russakoff et al., 2004; Bardera et al., 2006), Gaussian scale space
derivatives (Holden et al., 2004; Legg et al., 2009), gradient vector
fields (Yujun and Cheng-Chang, 2006), gradient intensities (Shams
et al., 2007), Gibbs random fields (Zheng, 2008), spatial locations
(Sabuncu, 2006; Staring et al., 2009), or wavelet features (Pauly
et al., 2009). While these measures improve the registration accu-
racy, they require complex and time-consuming computations.

Non-uniform image sampling is an indirect method for reduc-
ing the inter-voxels’ dependency in MI-based registration. The
adaptive sampling replaces the spatial terms and the high dimen-
sional variables that are used in the similarity measure with adap-
tive sampling of voxels that are less dependent on their
neighboring voxels. Voxels along the edges are then used for the
image IPDF’s estimation. Sabuncu and Ramadge (2004) and Bhaga-
lia et al. (2009) estimate the image IPDF by sampling more densely
regions with higher gradient image magnitudes. While this speeds
up the registration, the image gradients are computed locally for
each voxel, and thus cannot detect edge-like structures. Thus, they
are highly sensitive to noisy voxels such as those shown in Fig. 1.
Luan et al. (2008) introduce a qualitative mutual information mea-
sure where the weight of each voxel is computed using its spheri-
cal neighborhood entropy. However, sphere-like regions are not
common anatomical structures. Also, the registration is biased by
noisy regions since they yield higher entropy and thus have a high-
er contribution to the MI value. Sundar et al. (2007) use a multi-
resolution image sampling technique with octrees. An octree built
from the original image is split into spatially adaptive homoge-
neous regions of different sizes according to their content. The
main drawbacks of octree sampling are its high sensitivity to noise
and its bias to axis-aligned structures, which are uncommon in
medical images.
3. Non-uniform sampling for MI estimation

We first define and motivate the use of curvelet-based sampling
for the MI computations for registration. Let f(x) and g(x) be the



(a) MRIT1slice (b) After random shuffling

Fig. 2. Illustration of image entropy estimation: (a) slice of MRI T1 image from the
Brainweb database (Collins et al., 1998), and; (b) synthetic image generated by
randomly shuffling the voxel locations in (a).
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two images where x represents the image spatial domain. The MI
between the images is defined as:

MIðf ðxÞ; gðTðxÞÞÞ ¼ Hðf ðxÞÞ þ HðgðTðxÞÞÞ � Hðf ðxÞ; gðTðxÞÞÞ ð1Þ

where H(f(x)) and H(g(T(x))) are the marginal entropies, and
H(f(x),g(T(x))) is the joint entropy of f(x) and g(T(x)). The registration
goal is to find a transformation T that maximizes the MI based met-
ric between the images:

arg max
T

MIðf ðxÞ; gðTðxÞÞÞ ð2Þ

An image f(x) is an n-dimensional random variable; its marginal en-
tropy is defined as:

Hðf ðxÞÞ ¼ Hðf ðx1Þ; f ðx2Þ; f ðx3Þ; . . . ; f ðxnÞÞ ð3Þ

When all the voxels f(xi) in the image are independent and identi-
cally distributed (i.i.d) random variables, the image entropy is:

Hðf ðxÞÞ ¼
X

x

Hðf ðxÞÞ ð4Þ

Thus, the image marginal entropy can defined as:

Hðf ðxÞÞ ¼ �
XN

i¼1

pðiÞ logðpðiÞÞ ð5Þ

where N is the number of possible intensity values, i is the image
intensity value, and p(i) is its probability. Similarly, the joint entro-
py of images f(x) and g(T(x)) is defined as:

Hðf ðxÞ; gðTðxÞÞÞ ¼ �
XN

i¼1

m
M

j¼1
pði; jÞ logðpði; jÞÞ ð6Þ

where N and M are the number of possible intensity values in
images f and g, respectively, i and j are the indices of the intensity
values in the images, and p(i, j), is the joint intensity probability.
Standard density estimators widely used in medical image registra-
tion are the histogram-based and the Parzen window based estima-
tors (Pluim et al., 2003). To simplify the density estimation, these
estimators assume that the voxel intensities are independent.

However, most of the voxel intensities are not independent
from their neighborhood, and thus the real marginal entropy of
the image f(x) should be defined as:

Hðf ðxÞÞ ¼ �
XN

i¼1

pðijSÞ logðpðijSÞÞ ð7Þ

where S is the dependency neighborhood of the voxels with inten-
sity value i and p(ijS) is the probability that intensity value i will ap-
pear in the image given its dependency neighborhood S. Clearly:

�
XN

i¼1

pðijSÞ logðpðijSÞÞ 6 �
XN

i¼1

pðiÞ logðpðiÞÞ ð8Þ

To illustrate this idea, consider a MRI T1 slice of a brain and the syn-
thetic image created by randomly shuffling the voxel locations in
the original image (Fig. 2). The entropy values of both images com-
puted with Eq. (5) are identical (0.48). However, the original image
compression rate using lossless compression is much higher (0.28)
than that of the synthetic image (0.46) and thus its entropy value
should be much lower when the inter-voxels dependencies are ta-
ken into account.

This bias occurs both in the estimation of the marginal entro-
pies of f and g and in the estimation of the joint entropy between
them. The marginal entropies bias can be assumed to be indepen-
dent of the image pair alignment and thus does not affect the reg-
istration accuracy. However, the joint entropy computation
incorrectly assumes that the intensity of voxel xi in the image f de-
pends only on the intensity of voxel T(xi) in the image g. In practice,
it also depends on the intensity values of the neighboring voxels
T(xi) in the image g (Sabuncu, 2006).

Unfortunately, an explicit model for the inter-voxels dependen-
cies is not available. However, for the entropy estimation, we can
reduce this bias by selecting only voxels that are less dependent
on their neighborhood. Formally, our goal is to design a sampling
function s that minimizes the error between the estimated entropycHsðf ðxÞÞ using the sampling mask s and the real image entropy
H(f(x)):

arg min
s
kcHsðf ðxÞÞ � Hðf ðxÞÞk2 ð9Þ

Note that the real entropy H cannot be directly computed, as the in-
ter-voxels dependencies are unknown. The sampling function s
should select voxels that are less dependent on their neighborhood.
4. The curvelet transform

Wavelets have proven to be very useful tool in signal process-
ing, as they provide sets of sub-band decompositions of one-
dimensional (1D) piecewise smooth functions (Mallat, 1999).
Sub-band analysis captures most of the signal samples interdepen-
dency (Davis and Nosratinia, 1998). Thus, wavelets can be used for
accurate density estimation from both noisy and dependent sam-
ples (Donoho et al., 1996; Masry, 1994).

However, these wavelets properties do not extend directly to
2D and 3D piecewise smooth functions with discontinuities, as
those present in images. Several works describe wavelet exten-
sions to 2D and 3D (Candes et al., 2005a; Freeman and Adelson,
1991; Do and Vetterli, 2005). Among these transforms, the Curv-
elet transform (Candes et al., 2005a; Ying et al., 2005) is a nearly
optimal sparse representation of typical objects f that are C2 except
for discontinuities along piecewise C2 non axis-aligned edges. In
addition, the error bound between the original function f and the
reconstructed function f c

n from n curvelet coefficients is (Candes
and Donoho, 2004):

kf � f c
nk

2
L2
6 K � n�2 � ðlog nÞ3;n!1 ð10Þ

where K is a constant and n is the number of reconstruction coeffi-
cients. This approximation is within a poly-log factor of the optimal
number of samples, which is asymptotically n�2 (Mallat, 1999). The
curvelet-based representation is far more sparse than the image
Fourier decomposition convergence n�

1
2

� �
, and of that of the wavelet

decomposition convergence (n�1). This indicates that the curvelet-
transform coefficients better identify the voxels that are less depen-
dent on their neighbor image regions. Consequently, the curvelet



Original image

1. Sub-band decomposition + 2. spatial partitioning

3. Ridgelet analysis

2D Fourier
transform

1D inverse Radon
transform

1D wavelet
analysis
for each
column

Fig. 3. The curvelet transform computation. The original image (left) is filtered using a high-pass filter to enhance the images edges. Then, the high-pass filtered image is
decomposed into sub-bands (1) to allow the analysis of the edges at different scales. Each sub-band is smoothly partitioned into square regions (2) so that each square is
analyzed separately. The ridgelet transform is then applied to each region (3). It uses the 2D Fourier transform followed by the 1D inverse Radon transform to generate a set of
1D representations of edges in different orientations. Each resulting 1D signal is then analyzed with 1D wavelet-based analysis to detect the edge. This scheme allows the
detection of non-axis aligned edges in different orientations and scales.
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coefficient supporting regions should yield a better estimation of the
image entropy and therefore a more accurate registration.

We briefly describe the 2D curvelet transform next. The Fast
Discrete Curvelet Transform (FDCT) is an invertible map from the
space of 2D images to the set of coefficients C(‘,w,k) representing
2D discontinuities, where ‘ is the scale index, w represents the re-
lated orientation, and k = [k1,k2] is the spatial location in the image.
The curvelet decomposition of an image is constructed in three
steps (Fig. 3):

1. Sub-band decomposition: The image f is filtered into several sub-
bands representing the image response to a low-pass filter and
to a series of band-pass filters at different scales ‘.

2. Spatial partitioning: Each sub-band is smoothly windowed into
square regions at each scale.

3. Ridgelet analysis: Each square region is then decomposed into a
set of 1D directional signals by applying the 2D Fourier trans-
form followed by the 1D inverse Radon transform. Each result-
ing 1D signal is then analyzed with wavelets.

The resulting coefficients sparsely describe the 2D discontinu-
ities of scale ‘ and orientation w at spatial location k. The coeffi-
cients are computed by applying the FDCT to the image:

Cð‘;w; kÞ ¼ FDCT½f ðxÞ� ð11Þ

where x are the spatial coordinates of the image f. This representa-
tion directly extends to the 3D spatial domain, where k = [k1,k2,k3]
(Ying et al., 2005).
5. Curvelet-based sampling mask computation

We now describe how to compute a curvelet-based sampling
function that minimizes the error between the estimated and the
real entropy.
The goal of the sampling function is to identify the most infor-
mative regions at multiple scales based on the image curvelet
decomposition. The sampling function computation consists of
three steps: (1) image curvelet decomposition; (2) discontinuities
coefficients enhancement, and; (3) informative regions identifica-
tion at each scale.

First, we apply the curvelet transform (Eq. (11)) to the image to
obtain a set of curvelet coefficients C at different scales ‘, orienta-
tions w, and spatial locations k. The resulting coefficients are then
enhanced by applying a soft-thresholding function to the curvelet
coefficients:

FðaÞ ¼ a½Sðcða� bÞÞ � Sð�cðaþ bÞÞ� ð12Þ

where S(x) = 1/(1 � e�x) is the sigmoid function, b, c are predefined
threshold parameters, and

a ¼ 1=½Sðcð1� bÞÞ � Sð�cð1þ bÞÞ�

which scales the curvelet coefficients to the [�1,1] range. Coeffi-
cients with small absolute values are considered noise and are thus
set close to zero. Those with large absolute values correspond to
edges and thus are set close to ±1.

To identify the informative regions at scale m, we retain the
curvelet coefficients of this scale and set all others to zero. The
resulting curvelet coefficients eCm are:

eCmð‘;w; kÞ ¼
FðCð‘;w; kÞÞ for ‘ ¼ m

0 for ‘–m

�
ð13Þ

Next, we apply the inverse curvelet transform IFDCT to the
coefficients:

~smðxÞ ¼ IFDCT½eCmð‘;w; kÞ� ð14Þ

The resulting function ~sm describes a new image in which promi-
nent discontinuities are represented by voxels with large absolute
values.



(a) original image
       (MR-PD)

(b) discontinuities
   at coarse scale

(c) discontinuities 
    at fine scale

(d) final coarse
 curvelet mask

Fig. 4. Illustration of the curvelet-based sampling mask computation: (a) original
MR-PD image; (b) discontinuities at a coarse scale generated from the thresholded
curvelets features; (c) discontinuities at a finer scale, and; (d) resulting curvelet-
based mask at the coarse scale, overlayed on a darkened version of the original
image. The mask is shown in bright white.

(a) original image (b) gradient mask (c) curvelet mask

Fig. 5. Illustrative example: (a) original MRI-T2 slice; (b) gradient-based mask, and;
(c) curvelets-based mask. All masks are overlayed on the original image in bright
white. The gradient-based mask captures mostly the skull due to its strong
gradient-magnitude, while our curvelets-based mask captures also less strong
edges inside the brain.
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We generate a binary sampling mask Mm,p from ~sm at each scale
from the resulting images by thresholding. We select the desired
percentage of voxels p with the largest absolute values:

Mm;p ¼ fx : j~smðxÞj > Pp½j~smðx0Þj�g ð15Þ

where Pp½j~smðxÞj� is the pth percentile of the intensities appearing in
image j~smðx0Þj, sorted in descending order. Note that taking the vox-
els with the highest absolute value causes the mask to include the
edge voxels and their neighborhood voxels. It thus better approxi-
mates the i.i.d assumption in the entropy computations. Fig. 4 illus-
trates the mask computation process.

6. Curvelet-based registration method

Our curvelet-based registration method consists of two steps. In
the first step, a coarse registration is computed with an MI-based
similarity measure using stochastic uniform sampling. In the sec-
ond step, the registration is refined by deterministic curvelet-
based sampling. The two steps are necessary because the sampling
mask may reduce the overlap between the images significantly,
and thus yield an erroneous registration. Therefore the mask can
be used only when the images are coarsely aligned. e.g. when their
mean TRE is ±3 mm.

We use the Normalized Mutual Information (NMI):

NMIðf ðxÞ; gðTðxÞÞÞ ¼ Hðf ðxÞÞ þ HðgðTðxÞÞÞ
Hðf ðxÞ; gðTðxÞÞÞ ð16Þ

for both steps, where H is the entropy between the source image f(x)
and the target image g(T(x)) with respect to rigid transformation T.
The target image intensities g(T(x)) are estimated by linear interpo-
lation. The NMI is computed with Parzen-windowed histogram-
based estimators of the image intensity probability distributions
with histogram smoothing (Mattes et al., 2003; Thévenaz and
Unser, 2000).

In the first step, we compute the image histograms and the NMI
with randomly sampled points selected from the source image
with uniform probability. We maximize the NMI with a standard
regular-step gradient descent optimization. New random points
are selected at each iteration. The resulting transformation is then
used as the initial transformation for the second step.

In the second step, we compute the image histograms for the
NMI using all of the voxels included in the curvelet mask at
the coarsest scale, M1,p. The joint histogram estimator bPð�; �Þ of
the source and target images voxel intensities, it and iS, is:

bP f ðxÞ ¼ it ; gðTðxÞÞ ¼ isð Þ ¼ 1
N

X
x2M1;p

Kðf ðxÞ � it ; gðTðxÞÞ � isÞ ð17Þ

where N is the total number of voxels in the mask M1,p, and K(�, �) is a
cubic spline-based Parzen windowing kernel (Mattes et al., 2003).
The optimization algorithm, parameter settings, and halting condi-
tions are the same for both steps.

7. Experimental results

To evaluate the effectiveness of our sampling and registration
method, we conducted two experiments on clinical multi-modal
images. The first one quantifies the performance of curvelet-based
sampling rigid registration between T1 and T2-weighted MRI
images and compares it to uniform (Wells et al., 1996) and gradi-
ent-based (Sabuncu and Ramadge, 2004) sampling. The second
quantifies the performance of curvelet-based sampling rigid regis-
tration between CT and MRI images from different protocols and
compares it to uniform and gradient-based sampling registration.

7.1. Images

We use the multi-modal Retrospective Image Registration Eval-
uation (RIRE) Project database, commonly known as the Vanderbilt
Database (West et al., 1997). The RIRE project is a public domain
platform that is used to compare retrospective multi-modal regis-
tration techniques developed around the world. The database con-
sists of clinical brain images of seven patients (with and without
tumors), including CT, MR Proton-Density (MR-PD), MR T1 time
relaxation (MR-T1), and MR T2 time relaxation (MR-T2). Since
the images are real and not synthetic ones, they include acquisition
noise and intensity inhomogeneity, which make the registration
task more challenging.

The ground-truth registration transformations which constitute
the gold standard were acquired prospectively with implanted
fiducial markers. The transformations remain hidden from the
public. Prior to disclosure, the markers were erased from the
images. Researchers then perform a retrospective blind registra-
tion task and report back to the site their computed registration
transformations. These transformations are then compared to the
gold standard and ranked with respect to other algorithms accord-
ing to their Target Registration Error (TRE). The TRE is measured in
millimeters at ten predefined clinically relevant target locations.
For training purposes, an additional dataset with clinical images
from all modalities is provided with the ground-truth transform.

Although the RIRE database is relatively old, it is, to the best of
our knowledge, the only database for which high-accuracy ground-
truth transformations from attached fiducial markers are available.
Ground-truth transformations from other publicly available data-
sets are much less accurate and include the inherent human oper-
ator or registration algorithm error used to generate them.

Since the image voxels in the RIRE datasets are anisotropic
(x = y = 1.27 mm, z = 4.11 mm), we preprocess them to create iso-
tropic versions for the sampling mask computation only. We apply
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a 3D curvelet transform on the entire volume and generate from it
the corresponding 3D regions representation. We then select the
voxels with the largest absolute values to generate the image sam-
pling mask. The soft-threshold function parameters were set
experimentally to b = 0.1 and c = 40 for all images. For the 3D gra-
dient-based sampling (Sabuncu and Ramadge, 2004), we compute
3D gradient magnitudes by filtering the entire volume in the x, y,
and z directions with the first-order derivative of a Gaussian kernel
(r = 3, voxels = 3.8 mm). The gradient mask is then created by
selecting the voxels with the largest absolute values.
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Fig. 6. Box-plots of the registration results. The results of our method (red) and those of t
percentile used in the masks are shown. On each box-plot the central mark is the median
the most extreme TRE measured on the targets. (a) results for 1000 MRI T2-T1 registratio
references to colour in this figure legend, the reader is referred to the web version of th
Fig. 5 shows a representative example of the mask generated by
our method and by the gradient-based method on a T2 slice from
the RIRE database. Note that although the image includes a rela-
tively large amount of noise and intensity inhomogeneity, our
mask successfully identifies the informative regions inside the
image.

We implemented our curvelet-based rigid registration method
with the curvelet package (Candes et al., 2005b) and with the Elas-
tix software library (Klein et al., 2010). In all cases, we used the NMI
measure from Elastix with 32 histogram bins and a Parzen-window
and method
15% 20%

Our (Cur.)Our (Cur.) Unif.Unif. Grad.Grad.

E distribution box-plots

and method

15% 20%

Our (Cur.)Our (Cur.) Unif.Unif. Grad.Grad.

stribution box-plots

he gradient-based (black) and uniform sampling (blue) with respect to the sampling
, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to
ns, and; (b) results for 20 CT-MRI {T1,T2,PD} registrations. (For interpretation of the
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estimator with a first-order B-spline kernel. A regular-step gradient
descent optimizer with initial step length of 1 and maximum of 200
steps were used for all registrations.

For the coarse registration step, we used stochastic uniform
sampling with 25% of the 3D image voxels. For the fine registration
step, we generated several masks with different sampling percen-
tiles (5–20%) of the voxels with each sampling method and used
them in the registration. The number of scales used for masks gen-
eration depends on the image size. For the images used in this
experiment, only the coarsest scale curvelet-based mask was used
for registration. We found that using finer scale masks induced
additional noise to the registration process and yielded less accu-
rate results. Note that since the images are clinical images with
both noise and intensity inhomogeneity, the results reflect our
method accuracy in actual clinical conditions.

7.2. MRI T2-T1 rigid registration

For MRI T2-MR T1 registration, we use the training set of images
from the RIRE database. For this set, the ground-truth transforma-
tions between the CT and the MR images are available as described
above. Initially, we computed the MRI T2-T1 ground-truth trans-
formation using matrix multiplication. Then, we applied 1000 syn-
thetic transformations to the T1 image in the range of [�23,23]
degrees for the rotation and in the range of [�160,160] mm for
the translation about each axis. Finally, the images were registered
using our method and compared to the uniform and gradient-
based sampling registration results.

The TRE was measured on 10 clinically relevant points defined
by an expert on the T2 image. Fig. 6a summarizes the results of our
method and those of the gradient-based and uniform sampling
with respect to the sampling percentile used in the masks.

For uniform sampling, the number of samples does not improve
the registration accuracy as suggested in Klein et al. (2007). How-
ever, for both gradient-based and curvelet-based sampling, the
number of samples does improve the accuracy. For the 5% sam-
pling percentile, curvelet-based sampling performs worse than
uniform and gradient-based sampling since the curvelet mask
did not include enough information and the gradients mask in-
cludes most of the skull surface which helps it to perform the reg-
istration. For the other sampling percentiles, curvelet-based
sampling consistently yielded a smaller median TRE with a much
tighter distribution compared to that of the gradient-based mask.
The most significant improvement of the curvelet-based sampling
was recorded in the 20% sampling percentile, where the mean TRE
was improved by more than 1.5 mm, which is �50% improvement,
compared to the other sampling methods.

7.3. CT-MRI rigid registration

In this experiment, following the RIRE evaluation framework
(West et al., 1997), the goal was to compute 20 registrations: 6
CT-MRI T1 registrations, 7 CT-MRI T2 registrations, and 7 CT-MRI
PD registrations. The resulting transformations for each registra-
tion were then submitted to the RIRE website (West et al., 1997)
for validation. The TRE was measured on 10 clinically relevant
points defined by the database providers, and were blind to us.

Fig. 6b summarizes the registration results of our method (red)
and those of the gradient-based and uniform sampling with re-
spect to the sampling percentile used in the masks. As in the MRI
T2-T1 experiment, the number of samples does not improve the
registration accuracy using uniform sampling. However, for both
gradient-based and curvelet-based sampling, the number of sam-
ples does improve the accuracy. Curvelet-based sampling consis-
tently yielded a smaller median registration error for all
sampling percentiles, with about 0.3 mm improvement for the
15% sampling percentile compared to the uniform sampling, and
a tighter TRE distribution compared to the gradient-based sam-
pling. The most significant improvement of the curvelet-based
sampling was recorded on the maximal error, which was reduced
from 2.57 mm for uniform sampling to 1.61 mm, an improvement
of about 1 mm (�40%). Using our method with 15% sampling yields
the following results: mean = 0.73 mm, std = 0.3 mm, med-
ian = 0.71 mm, max = 1.61 mm. These are the best results recorded
on the RIRE website to date, compared to other published methods
evaluated on more than 5 registrations, including methods that
used physical coordinates based uniform sampling (Thévenaz
et al., 2008) and parameters optimization (Hahn et al., 2010). Using
more than 15% of the voxels with the curvelet-based sampling
scheme reduced the overall accuracy although the reduction is
negligible. This is explained by the fact that these voxels have
low curvelet coefficients values, and are thus more related to noise.

The registration times were almost linearly dependent on the
number of samples. Both gradient-based and curvelet-based sam-
pling requires almost the same time for each sampling percentile
(120 s for 15% sampling percentile), while uniform sampling re-
quired relatively less time (90 s for 15% sampling percentile), but
yielded less accurate results. The average mask computation time
was on average 10.7 s (std = 0.07 s) for each registration on a
dual-processor 2 GHz PC with 2 GB RAM running Linux.

8. Conclusions

This paper presents a new non-uniform sampling method for
the accurate estimation of the mutual information between two
images. The method uses the 3D Fast Discrete Curvelet Transform
to identify the edges inside the image and therefore to reduce the
voxels’ interdependency for more accurate estimation of the image
entropy. We use a two-step registration scheme with uniform sam-
pling for the MI estimation during the first step for coarse registra-
tion and the curvelet-based sampling mask during the second step
for fine registration.

Our experimental results show that our sampling method yields
a significant improvement in registration accuracy compared to
uniform and gradient-based sampling for both MR T2-MR T1 and
CT-MR multi-modal rigid brain image registration.

We are planning to apply our method to other multi-modal lin-
ear image registration tasks, and with larger span of modalities
such as fMRI.
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