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Abstract. Projection matrices from projective spaces P> to P? have long been used in multiple-view geometry
to model the perspective projection created by the pin-hole camera. In this work we introduce higher-dimensional
mappings PX — P2, k =3, 4, 5, 6 for the representation of various applications in which the world we view is no
longer rigid. We also describe the multi-view constraints from these new projection matrices (where k > 3) and
methods for extracting the (non-rigid) structure and motion for each application.

Keywords: dynamic structure from motion, multiple view geometry, multi-linear constraints

1. Introduction

The projective camera model, represented by the
mapping between projective spaces P> — P2, has long
been used to model the perspective projection of the
pin-hole camera in Structure from Motion (SFM) ap-
plications in computer vision. These applications in-
clude photogrammetry, ego-motion estimation, feature
alignment for visual recognition, and view-synthesis
for graphics rendering. There is a large body of liter-
ature on the projective camera model in a multi-view
setting with the resulting multi-linear tensors as the
primitive building-blocks of 3D computer vision. A
summary of the past decade of work in this area with a
detailed exposition of the multi-linear maps with their
associated tensors (bifocal, trifocal and quadrifocal)
can be found in Hartley and Zisserman (2000) and ear-
lier work in Faugeras (1993).

The literature mentioned above is mostly relevant
to a static scene, i.e., a rigid body viewed by an un-
calibrated camera. Recently, however, a new body
of work has appeared (Avidan and Shashua, 2000;
Shashua and Wolf, 2000; Manning and Dyer, 1999;
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Wexler and Shashua, 2000; Han and Kanade, 2000)
which assumes a configuration of points in which
every single point in the configuration can move in-
dependently along some arbitrary trajectory (straight
line path and in some cases second-order) while the
camera is undergoing general motion (in 3D projective
space). For brevity, we will refer to such a scene as
dynamic whereas the conventional rigid body config-
uration would be referred to as static. Dynamic con-
figurations, for example, include as a particular case
multi-body motion, i.e., when each body contains mul-
tiple points rigidly attached to the same coordinate
system (Costeira and Kanade, 1998; Fitzgibbon and
Zisserman, 2000).

In this paper we address the geometry of multiple
views of dynamic scenes from the point of view of
lifting the problem to a static scene embedded in a
higher dimensional space. In other words, we inves-
tigate camera projection matrices of P* — P2, k =3,
4,5, 6 for modeling a static body in k-dimensional pro-
jective space P¥ projected onto the image space P2.
These projection matrices model dynamic situations in
2D and 3D. We will consider, for example, three dif-
ferent applications of P* — P2 which include (i) mul-
tiple linearly moving coplanar points under constant
velocity, (ii) 3D points moving in constant velocity
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along a common single direction, and (iii) Two-body
segmentation in 3D—the resulting tensor is referred to
as the 3D segmentation tensor (P3 — P? models a 2D
segmentation problem). Projection matrix P> — P? is
shown to model moving 3D points under constant ve-
locity and coplanar trajectories (all straight line paths
are on a plane). Projection matrix P® — P? is shown
to model the general constant velocity multiple linearly
moving points in 3D. The latter was derived in the past
by Han and Kanade (2000) for orthographic cameras
while here we take this further and address the problem
in the general perspective pin-hole (projective) setting.

Following the introduction of P¥ — P2 and their
role in dynamic SFM, we describe the construction of
tensors from multi-view relations of each model and
the process for recovering the camera motion parame-
ters (the physical cameras) and the 3D structure of the
scene.

2. Applications of P¥ — P?

We will describe below a number of different appli-
cations for values of k =3, 4, 5, 6. These applications
include multi-body segmentation (we call “segmenta-
tion tensors”) and multiple linearly moving points.

2.1.  Applications for P> — P?

The family of 3 x 4 matrices have been extensively
studied in the context of SFM. These matrices model
the (uncalibrated) pin-hole camera viewing a rigid con-
figuration of points, i.e., a static 2D from 3D scenario.
We present an additional instantiation of P* — P2 in
the context of “2D segmentation” defined below:

Problem Definition 1 (2D segmentation). We are given
2D general views of a planar point configuration con-
sisting of two bodies moving relatively to each other
by pure translation. Describe algebraic constraints nec-
essary for segmenting the two bodies from image
measurements.

Clearly, 4 point matches per body (8 points in total)
uniquely determine the 2D homography between the
two views of the plane, thus a segmentation can be
achieved by searching over all quadruples of matching
points until a consistent set is found (i.e., the resulting
homography agrees on a sufficiently large subset of
points). This approach is general and will work even

when the relative motion between the two bodies is full
projective.

We show that on this kind of problem, where the rela-
tive motion between the two bodies is pure translation,
we can do better. We will first use 8 unsegmented point
matches after which we will need only 3 segmented
point matches (i.e. search over triplets of matching
points). The formulation of the problem is described
next.

Let A, B be the (unknown) homography matrices
from the world plane to views 1, 2 respectively. Let
s be a point on the first body. The image of s in the
first view is p = As and in the second view p’ = Bs.
The image of a point r on the second body would be
p = Ar in the first view, and

dx
p/EBr—l—B dy
0

on the second view, where ¢t = (dx,dy,0) is the
fixed (unknown) translational motion between the two
bodies.

To formulate this as a P3 — P? problem we “lift” s
and r to 3D space by defining P; = (s, 0) " for point s
and P, = (r, 1) for point r on the second body. Define
the following projection matrices:

M; = [A 03]
M, [B Bt]

12

Therefore, M|, M, apply to both bodies in a uniform
manner without the need for prior segmentation. Since
we have formulated the 2D segmentation problem in
the domain of P> — P2, then all the body of work on
static SFM from two views (and more than 2 views)
apply here. For example, a “fundamental” matrix F
can be computed from 8 (unsegmented) points, i.e.,
p'T Fp =0 for all matching points regardless of which
body they come from. The image of F, i.e., Fp, is a
line in the second view which passes through the two
possible images of the point. The null vector of F T is
the point Bt. Each body is represented as a plane in
P3, thus having 3 segmented points would allow us to
fix the plane and in turn segment the scene.

2.2.  Applications for P* — P?

We introduce three different instantiations of P* — P?
in the context of dynamic SFM. The first application



consists of three views of multiple linearly moving
coplanar points under constant velocity, second is con-
stant velocity multiple linearly moving points in 3D
where all trajectories are parallel to each other, and
third is the 3D segmentation tensor.

Problem Definition 2 (Coplanar dynamic scene). We
are given views of a planar configuration of points
where each point may move independently along some
straight-line path with a constant velocity motion.
Describe the algebraic constraints necessary for re-
construction of camera motion (homography matrices),
static versus dynamic segmentation, and reconstruction
of point velocities.

The problem above is a particular case of a more
general problem (same as above but without the con-
stant velocity constraint) addressed by Shashua and
Wolf (2000). The algebraic constraints there were in
the form of a 3 x 3 x 3 tensor called “Htensor” which
requires 26 triplets of point-matches for a solution. We
will show next that the constant-velocity assumption
reduces the requirements considerably to 13 triplets of
point-matches, not to mention that Htensor becomes
degenerate for constant-velocity. The key is a P* — P2
problem formulation as follows.

Let H;, j=0,1,2 denote the homography from
world plane to the j’th view onto the image points
pi=(x;,y;,DT. Let (X, Y, 1) be the coordinates of
the world point projecting onto p;. Note that since the
reconstruction is up to a 3D Affine ambiguity (because
of the constant velocity assumption), then we are al-
lowed to fix the third coordinate of the world plane to 1.
Let dX, dY be the direction of the constant-velocity
motion of the point (X, Y, 1). Let H + denote the left
3 x 2 sub-matrix of H;. We have the following relation:

X
X dx Y

JEH | Y| +jH; |dY | =H;] 1
1 0 dx

dy

where I:Ij isa3 x 5 matrix [H}, jH;‘]. We have there-
fore a P* — P? formalism p; = H; P where P € P*.
The geometry of such projections is described in more
detail in Section 3 and as an example, the center for pro-
jection is no longer a point but an extensor of step 2,
i.e., a line.
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Lets; =(1,0, xj) and r; = (0, 1, y,) Let [, be
any line such that 1} py =0. Then,0=s] p; = sTH P,
0= 12 HzP Therefore, two points and a line prov1de
a constraint as follows:

det S;rHl =0

The determinant expansion provides a multilinear con-
straint with a 3 x 3 x 3 tensor described next. It will
be useful to switch notation: let p, p’, p” replace
Do, P1, p2 respectively, and likewise let s, s’, s” and
r,r',r"” replace s;,r;, j=0,1,2, respectively. The
multilinear constraint is expressed as follows:

ip YkAk_,

where the index notations follow the covariant-
contravariant tensorial convention, i.e., pisi stands
for the scalar product p's and superscripts represent
points and subscripts represent lines. The entries of
the tensor Af-‘j is a multilinear function of the entries of
H ;. The constraint itself is a point-point-line constraint,
thus a triplet p, p’, p” provides two linear constraints

’Js”Ak =0and p'p"r; Af-‘j =0 on the entries of
Ak Therefore 13 matching triplets are sufficient for
a solution (compared to 26 triplets for the Htensor of
Shashua and Wolf (2000)). Further details on the prop-
erties of Af-‘j, how to extract the homographies up to an
Affine transformation, segment static from non-static
points, and how to reconstruct structure and motion are
found in Section 3.

Problem Definition 3 (3D dynamic scene, collinear
motion). We are given (general) views of a 3D con-
figuration of points where each point may move inde-
pendently along some straight-line path with a constant
velocity motion. All the line trajectories are along the
same direction (parallel to each other). Describe the
algebraic constraints necessary for reconstruction of
camera motion (3 x 4 projection matrices), static ver-
sus dynamic segmentation, and reconstruction of point
velocities.

Let P,=(X;,Y;,Z;, )T, i=1,...,n,bea config-
uration of points in 3D (Affine space) moving along
a fixed direction dP =(dX,dY,dZ,0)" such that
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at time j=0,...,m the position of each point is
P; + jX;dP.Let M; denote the j’th 3 x 4 camera ma-
trix, and let p;; denote the projection of P; on view j:

<X

pijEMj(Pi‘f‘j)"idP):[Mj ]MJdP]

N

> =

L

which is again a P* — P2 problem formulation. Fur-
ther details can be found in the Section 3.

Problem Definition 4 (3D segmentation). We are
given three general views of a 3D point configura-
tion consisting of two bodies moving relatively to
each other by pure translation. Describe algebraic con-
straints necessary for segmenting the two bodies from
image measurements.

Clearly, one can approach this problem using trifo-
cal tensors. The motion of each body is captured by a
trifocal tensor which requires 7 points (or 6 points for
a non-linear solution up to a 3-fold ambiguity). Thus,
a segmentation can be achieved by searching over all
6-tuples (or 7-tuples) of matching points until a consis-
tent set is found. This approach is general and applies
even when the relative motion between the two bodies
is full projective.

Just like in the 2D Segmentation problem, since the
relative motion between the two bodies is pure trans-
lation, we can do better. In fact we need to search over
all quadruples of points instead of 6-tuples. The key
is the P* — P? problem formulation which allows us
to describe a multilinear constraint common to both
bodies—as described next.

Let P € P? be a point in 3D. If P is on the first
body, then a set of camera matrices M ]1., j=0,1,2,
provide the image points p; = M| P. Likewise, if P
is on the second body then p; %MJZ.P. Because the
relative motion between the two bodies consists of pure
translation the homography A%, due to the plane at
infinity is the same for the j’th camera matrix of both
bodies:

M} ~ [Agov}] MJZ. ~ [Agovj?].

We “lift” P onto P* by defining P as follows. If P be-

longs to the first body, then P = (P; P, P; P, 0)T.

If P belongs to the second body, then P = (P, P, P 0
Py)T. The P* — P? projection matrix would then be:
M;= [Ac’xjvjlvjz]

The resulting 3 x 3 x 3 tensor would be derived
exactly as above and would require 13 (unsegmented)
points for a linear solution. Each body is represent-
ed by an extensor of step 4 in P4, thus 4 (segmented)
point matches are required to solve for the extensor.
Therefore, once the tensor is found, 4 segmented points
are required to provide a segmentation of the entire
point configuration.

2.3.  Applications for P° — P?

There are a number of instantiations of P> — P2,
The first is the projection from 3D lines represented
by Pliicker coordinates to 2D lines (Faugeras and
Mourrain, 1995): [ = ML where the three rows of M
are the result of the “meet” (Barnabei et al., 1985) op-
eration of pairs of rows of the original 3 x 4 camera
projection matrix, i.e., each row of M represents the
line of intersection of the two planes represented by
the corresponding rows of M.

The resulting multi-view tensors in the straight-
forward sense represent the “trajectory triangulation”
introduced in Avidan and Shashua (2000) which mod-
els the application of a moving point P along a straight
line L such that in the j’th view we observe the pro-
jection of p; of P. Thus, pjTMjL =0 for all views of
P. In the situation of trajectory triangulation, in each
view we have an image P; of a point which lies on
the line in 3D. So p! M;L = p’l; =0. The determi-
nant of the 6 x 6 matrix whose rows are p;.'—l\;[ ; must
vanish. The resulting tensor is 3° and thus would re-
quire 728 matching points across 6 views in order to
obtain a linear solution. Naturally, this situation is un-
wieldy application-wise.

A more tractable tensor (in terms of size) would arise
from adding two more assumptions (i) the motion of the
point is with constant velocity, and (ii) all the line tra-
jectories are coplanar. We have the following problem
definition:

Problem Definition 5 (3D dynamic scene, coplanar
motion). We are given (general) views of a 3D
configuration of points where each point may move
independently along some straight-line path with a
constant velocity motion. All the line trajectories are



coplanar. Describe the algebraic constraints of this
situation.

Following the derivation of Problem 3, the j’th
projection matrix M ; has the form [M;, jM;dP,
JM ;d P,] where M is the corresponding 3 x 4 camera
matrix and d Py, d P, span the 2D plane of trajectories.
The points in P° have the form P; = (X;, Y;, Z;, 1, A;,
wi) T, thus p;j = M P;. The resulting tensorial relation
follows from 3 views, as follows. For a triplet of match-
ing points p, p’, p” denote the lines s = (1, 0, —x) and
r = (0, 1, —y) coincident with p and likewise the lines
s’, 7" and the lines s”, #". Thus the two rows s ' M, and
rTM per camera (and likewise with M’ and M”) form
a 6 x 6 matrix with a vanishing determinant. The de-
terminant expansion provides a multilinear constraint
of p, p, p” with a 3 x 3 x 3 tensor p' p"/ p"* & =0.
Therefore 26 matching triplets across 3 views are suf-
ficient for a solution (compared to 728 points across 6
views).

Finally, we can make the following analogy between
P3 — P? and planar dynamic scenes with general mo-
tion (no constant velocity assumption). The case of pla-
nar dynamic motion across three views was introduced
in Shashua and Wolf (2000), where the constraint is
based on the fact that if p, p/, p” are projections of
a moving point P along some line on a fixed world
plane, then Hp, H'p’, p” are collinear, where H, H’
are homography matrices aligning images 1, 2 onto
image 3 (H, H' are uniquely defined as a function of
the position of the three cameras and the position of
the world plane on which the points P reside). We
make the following claim: in the context of PS> P2,
there exist two such homography matrices H, H' from
images 1, 2 onto image 3, such that the projections of
points P € P> onto the three image planes produces a
set of 3 collinear points.

Claim I(Dynamic coplanar, general motion). Given
three views p, p/, p” of a point configuration in
P € P, there exist homographies H and H’ such Hp,
H'p’, p” are collinear.

Proof: The key observation is that without loss
of generality we can choose a projective coordi-
nate system (in P°) such that the first two pro-
jection matrices are of the form [A343 03«3], and
[03x3 Bsx3]. The third projection matrix will have
some general form [C3,3 D3x3]. Let H=CA~! and
H' =DB7 ! and let P=(pi,..., ps). Then, Hp =
C(p1. p2. p3)" and H'p' = D(pa, ps., ps) ', whereas
p"=C(p1, p2, p3) "+ D(pa, ps, pe) - O
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2.4. Applications for P® — P?

In this section we consider the most general constant
velocity tensor—the tensor of constant velocity in 3D,
where direction of motion is not restricted and the cam-
eras are general 3 X 4 projective cameras.

Problem Definition 6 (3D dynamic scene). We are
given (general) views of a 3D configuration of points.
Each point may move independently along some
straight-line path with a constant velocity motion.
Describe the algebraic constraints necessary for recon-
struction of the points in 3D and their velocities.

Let P,=(X;,Y;,Z;,1)T, i=1,...,n, be a con-
figuration of points in 3D (Affine space) moving
along a direction d P, = (d X;,dY;,dZ;, 0)T such that
at time j=0,1,2,3 the position of each point is
P; + jdP;. Let M; denote the j’th 3 x 4 camera ma-
trix, and M7 denote the left 3 x 3 sub-matrix of
M;. The projection p;; of P; on view j is de-
scribed by p;; = Mjﬁi where Mj =[M; M;‘] and
P=(X;,Y:, Z;,1,dX;,dY:,dZ;)".

The resulting tensorial relation follows from 4
views, as follows. denote by s; =(1,0, —xj)T and
ri=1(0,1,—y;) be lines coincident with the projec-
tions p; = (x;,y;, 1)" of a point P. We construct a
7 x 7 matrix with a vanishing determinant such that it’s
first 6 rows are s;—]rlj and r}—]l;lj, Jj =0, 1,2, and for the
7°th row {”’T M5 where ["” is any line coincident with
the projection ps. The determinant expansion is a mul-
tilinear relations between the image points pg, p1, p2,
denoted now by p, p’, p” and the line /"’ with a 3* ten-
sor B, i.e., pip/jp”kl;’/Blf’].k =0. Since we can take
any line I"” coincident with the 4°th image points each
quadruple of matching points provides 2 linear con-
straints on the tensor, hence 40 matching points across
4 views are sufficient to uniquely (up to scale) deter-
mine the tensor. The process for extracting the camera
matrices M ; up to a 3D affinity is described in Section 3.

2.5.  Summary of Applications

So far, we have discussed multi-view constraints of
scenes containing multiple linearly moving points.
The constraints were derived by “lifting” the non-
rigid 3D phenomena into a rigid configuration in a
higher dimensional space of P*. We have presented
6 applications for various values of k ranging from 3
to 6. To summarize, the table below lists the various
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applications of P* — P? which were presented in the
preceding sections.

Pk Tensor name Size Ref.

P3 2D segmentation tensor 32 2.1
g

P4 2D constant velocity tensor 33 2.2

y

P4 3D segmentation tensor 33 2.2
g

P4 3D constant collinear velocity 33 2.2

P> 3D constant coplanar velocit 33 2.3

P y
P 3D constant velocity tensor 34 2.4

The resulting tensors for each P¥ — P? were reason-
able in terms of size (thus practical) where the largest
tensor of size 3* requiring 40 matching quadruples
across 4 views was for the general, constant velocity,
3D dynamic motion.

3. The Geometry of P¥ — P?

We will derive the basic elements for describing and
recovering the projective matrices of P*¥ — P2, These
elements are analogous to the role homography ma-
trices and epipoles play in the P3 — P? setting) in
Pk — P? geometry. We will start with some general
concepts that are common to all the constructions of
Pk — P2 and then proceed to the detailed derivation
of P* — P? and P® — P2

We use the term extensor (cf. Barnabei et al., 1985)
to describe the linear space spanned by a collection
of points. A point will be extensor of step 1, a line
is an extensor of step 2, a plane is an extensor of
step 3, and a hyper-plane is an extensor of step k in
P*. In P", the union (join) of extensors of step k; and
step k», where k; + k, <n + 1 is an extensor of step
k1 + k>. The intersection (meet) of extensors of step k;
and k; is an extensor of step k; + k, — (n + 1). Given
these definitions, the following statements immediately
follow:

e The center of projection (COP) of a P* — P? projec-
tion is an extensor of step k — 2. Recall that the cen-
ter of projection is the null space of the 3 x (k+ 1)
projection matrix, i.e., the center of projection of
P3 — P? is a point, of P*— P? is a line and of
P — P? is an extensor of step 4.

e The line of sight (image ray) joins the COP and a
point (on the image plane). Thus, for P3 — P? the
line of sight is a line, for P* — P? the line of sight

is plane (extensor of step 2 + 1), and for P® — P? it
is an extensor of step 5.

e The intersection of two lines of sight (a “triangula-
tion” as it is known in P3 — P?) is the meet of two
lines of sights. Thus, in P* — P? the intersection
is either a point or is not defined (2+2—4=0),
i.e., when the two lines are skew. In P*— P2
the intersection always exists and is also a point
(343 —15), and in P° — P? the intersection is a
plane (5 + 5 — 7). Note that simply from these count-
ing arguments it is clear that in P3 — P? two views
of matching points provide constraints on the geom-
etry of camera positions, yet two views in P* — P?
do not provide any constraints (because image rays
always intersect), thus one needs at least 3 views of
matching points in order to obtain a constraint, and
in P® — P2 one would need at least 4 views for a
constraint (two rays intersect at a plane, a plane and a
ray intersect at a point (3 + 5 — 7), thus three image
rays always intersect).

o The “epipole” in P? — P? is defined as the intersec-
tion between the line joining two COPs and an image
plane (thus, for a pair of views we have two epipoles,
one on each image plane). Or, equivalently, if M;, M i
are the projection matrices, then M;null(M j) is
the epipole on view i. This definition extends to
P* — P? where the join of the two COPs is an exten-
sor of step 4 (each COP is an extensor of step 2) and
its meet with an image plane is an extensor of step
4+3-5, ie, is a line. Thus, the epipoles of
P*— P2 are lines on their respective image
planes. This definition, however, does not extend to
P — P2 where the join of two COPs (4 + 4) fills the
entire space P°. We define instead a “joint epipole”,
to be described later.

3.1. The Geometry of P* — P?

Recall from the preceding section that one needs at
least three views of matching points in order to obtain
aconstraint (because two image rays always intersect in
P* — P?). We also noted in Problem 2 that the multi-
linear constraint across three views takes the form of a
3 x 3 x 3 tensor Afj which is contracted by two points
and a line. In other words, let p, p’, p” be three match-
ing points along views 1, 2, 3 and let s”, r” be any two
lines coincident with p”. The multilinear constraint is
expressed as follows:

p"p/js,/c/.Afj =0,



where the index notations follow the covariant-
contravariant tensorial convention, i.e., pi s; stands
for the scalar product p's and superscripts repre-
sent points and subscripts represent lines. The entries
of the tensor Af.‘j is a multilinear function of the
entries of the three projection matrices M, M and M".
The constraint itself is a point-point-line constraint,
thus a triplet p, p’, p” provides two linear constraints
p'ps] A5, =0 and p'p"ir] Af; =0 on the entries of
Af-‘]-. Therefore, 13 matching triplets are sufficient for a
(linear) solution. We will assume from now on that the
tensor Ak is given (i.e., recovered from image mea-
surements) and we wish to recover the 3 x 5 projection
matrices M, M', M".

‘We begin by deriving certain useful properties of the
tensor slices from which we could then recover the ba-
sic elements (epipoles, homography matrices) of the
projection elements.

Claim 2 (Point transfer)
pp A= p™ (1

Proof: Follows from the fact that p p'/ s”A’V =0 for
any line s” coincident with p”. From the covarlant-
contravariant structure of the tensor, p’ p’/ Ak isa pomt
(contravariant vector), let this point be denoted by ¢*.
Hence, ¢*s; =0 for all lines s” that satisfy s; p”* =0.
Thus ¢ and p" are the same. o

Note that the rays associated with p, p’ are extensors
of step 3, i.e., a plane. The intersection of those rays
is a point (as explained in the preceding section), and
thus p’ p'/ A} is the back-projection onto view 3 (pro-
jection of a point is a point). Similarly, let I be some
line in image 3 (extensor of step 2), thus the image ray
associated with a point p’ in image 2 and the extensor
of step 4 associated with the join of /” and the COP of
camera 3 meet at a line (3 + 4 — 5 =2) and let the pro-
jection of this line onto image 1 be denoted by /. The
relationship between p’, 1", [ is captured by the tensor:
pILAY = 1.

Claim 3 (Homography slice). Let §/ be any con-
travariant vector. The 3 x 3 matrix §/ Afj is a homogra-
phy matrix (2D collineation) from views 1 to 3 induced
by the plane defined by the join of the COP of the sec-
ond projection matrix and the image point § in view 2
(i.e., the image ray corresponding to §).
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Proof: Consider (8/ Ak )p' =q*, from the point
transfer Eq. (1) we have that q is the projection onto
view 3 of the intersections of the two planes corre-
sponding to the line of sight p and line of sight § (re-
call that each line of sight is a plane in P* and that
two planes generally intersect at as point). Let 5 de-
note the plane associated with the line of sight §. If
we fix § and vary the point p over image 1, then the
resulting points g are projection of points on the plane
75 onto image 3. Thus the matrix §/ Ai-‘j is projective
transformation from image 1 to image 3 induced by the
plane 5. =

Note that §/ Af-‘. is a linear combination of the three
slices A%, AY, and A% Thus, in particular a slice
(through the “;” index) produces ahomography matrix.
Likewise, &' .Afj is a homography matrix from image 2
to image 3 induced by the plane associates with the
image ray of the point § in image 1.

Now that we have the means to generate homogra-
phy matrices from the tensor, we are ready to describe
the recovery of the epipoles. Let the (unknown) pro-
JeCthIl matrices be denoted by M 1, M2 and M3 Let
ejj= = M;null(M ;) be the epipole (a line) as the projec-
tion of COP j onto view i.

Claim 4 (Epipoles). Let H;; ik G;; be two (full-rank)
homography matrices from view i to view j induced
by two distinct (but arbitrary) planes. The epipole e;
is one of the generalized eigenvectors of H, G[, i.e.,
satisfies the equation:

(I‘II—Jr + AG;)ej,- =0.

Proof: Let H;; be any (full-rank) homography matrix
from view i to view j. Thus, H, r maps lines (dual
space) from view i to view j. Because epipoles are
lines in P* — P? geometry, we have HiJ_.T
and conversely HJeji = e;j. Thus, given two such
homography matrices, there exists a scalar A such that
(H] 4+ 1G)e;i =0. o

~
eij = eji

Note that from slices of Afj we can obtain three
linearly independent homography matrices, thus we
can find a unique solution to ej; (each pair of homog-
raphy matrices produces three solutions). Now that we
have the means to recover epipoles and homography
matrices we can proceed to the central result which is
the reconstruction theorem:

Theorem 1 (reconstruction). There exists a projec-
tive frame for which the first projection matrix takes
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the form [I33; 03x2] and all other projection matrices
(of views 2, 3, .. .) take the form:

[ vjv ]

where H; is a homography matrix from view 1 to j
induced by a fixed (but arbitrary) plane , and v;, v
are two points on the epipole (a line) e;; on view ]
(projections of two fixed points in the COP of camera
1 onto view j).

Proof: Consider two views with projection matrices
M, and M,, a point P in space and matching im-
age points p, p’ satisfying p = M, P and p' = M, P.
Let W be a (full-rank) 5 x 5 matrix representing some
arbitrary projective change of coordinates, then p =
MWW~'P and p'=M,WW~'P, thus we are al-
lowed to choose W at will because reconstruction is
only up to a projectivity in P*. Let C, C’ be two points
spanning the COP of camera 1, i.e., two points span-
ning the null space of M, thus M,C =0and M,C’ =0.
Let W=[U, C, C’] for some 5 x 3 matrix U chosen
such that A7I1 U = I343. Clearly, Ml W =[1343; 03x2].
Let U be chosen to consist of the first 3 columns of

the matrix:
. a1
U=
Cx 1-3

where the subscript 1-3 signals that we are taking only
columns 1-3 from the 5 x 5 matrix, and C, is the
2 x 5 matrix defining the plane =, i.e., C, P =0 for
all P € 7. Recall that a plane in P* is the intersection
(meet) of two hyperplanes (extensor of step 4) because
4 +4 —5=3, thus a plane is defined by a 2 x 5 matrix
whose rows represent the hyperplanes. We have that
MIU = I343. Consider

MyW = M,[U, C, C'1=[MyU, v, v']

where v=M,C and v' = M>C’ are two points on the
epipole e;;. Recall thate;; = Mznull(Ml) and null(Ml)
is spanned by C, C’. What is left to show is that M,U
is a homography matrix H, from view 1 to 2 induced
by the plane 7. This is shown next.

We have that

M, MP\ _
P — —
Cx C. P

p
0 VP em
0

From which we obtain:

~ q-1 ([P
- ~ | M
MzUp:Mz 0
Cx

0

=MP = p/

Thus, we have shown that M,U p = p’ for all matching
points arising from points P € 7. |

Taken together, by using the homography slices
of the tensor we can recover M,. The third projection
matrix M; can be recovered (linearly) from the tensor
and M 1, M2 because the tensor is a multi-linear form
whose entries are multi-linear functions of the three
projection matrices. Finally, it is not difficult to see
that the family of homography matrices (as a function
of the position of the plane ) has the general form
with 7 degrees of freedom:

Hy, =AHy, +vn” +v'n'T,

where A, n, n’ are general.

3.2.  The Geometry of P% — P?

In P® — P? three image rays always intersect. This
is because two extensors of step 5 in P9 intersect in
an extensor of step of at least 5+5—7=3, and an
extensor of step 3 intersects an extensor of step 5 in a
point. Thus we need more then three views of matching
points in order to obtain a constraint. This agrees with
the result we have noted in Problem 6—a multi-linear
constraint across four images le & Which is contracted
by three points and a line.

Let p, p’, p”, p” be four matching points along
views 1,2, 3,4 and let s, r”” be any two lines coinci-
dent with p”’. The multilinear constraint is expressed
as follows:

i 1j 1k il
p'p’'p"s By =0,

The entries of the tensor Bf i are multilinear func-
tions of the entries of the four projection matrices
M 1 Mz, M3 and M4 The constraint itself is a point—
point-point-line constraint, thus a triplet p, p’, p”, p”’
provides two linear constraints p'p'/ p"*s/" B}, =0,
and p'p"p"™r"B;, =0, on the entries of Bl;.
Therefore, 40 matching triplets are sufficient for a
(linear) solution. We will assume from now on that

the tensor ijk was already recovered from image



measurements and we wish to recover the 3 x 7
projection matrices Ml, Mz, ]\713, M4. As in the case of
P* - P2, we will make use of tensor slices while re-
covering some basic elements of the projective settings.
Note that for some of those elements, like homography
matrices from view 2 to view 3, we will resort to per-
muted tensors, i.e., where the matches are for example
point-point-line-point (Bf.‘ﬂ). These permuted tensors
can be recovered from exactly the same image mea-
surements.

Claim 5 (Point transfer)
pip/jp//szl'jk ~ p///l (2)

Proof: Follows from the fact that p’ p'/ p"*s/" B}, =
0 for any line s” coincident with p”. From the
covariant-contravariant structure of the tensor, p’p’’/
p"*B! ;& 1s a point (contravariant vector), let this point
be denoted by ¢'. Hence, g's;” = 0 for all lines s”” that

satisfy s p”! = 0. Thus ¢ and p"” are the same point.
O

The rays associated with p, p’, p” are extensors of
step 5, which as explained in the preceding section
intersect at a point, and thus p’ p'/ p"* B, is the back-
projection onto view 4. Similarly, let /" be some line
in image 4. The image rays associated with a point
p’, p” in images 2 and 3 and the extensor of step 6
associated with the join of I’ and the COP of camera
4 meet at aline (5+5—7) +6 —7=2) and let the
projection of this line onto image 1 be denoted by /.
The relationship between p’, p”,1"”, 1 is captured by
the tensor: p"/ p"™ "B, = 1.

Claim 6 (Homography slice). Let y/ and 8* be any
contravariant vectors. The 3 x 3 matrix y/ Ska k18
a homography matrix (2D collineation) from views 1
to 4 induced by the plane defined by the intersection of
image rays of y and 4.

Proof: Consider (y/8*B];,)p' =q', from the point
transfer Eq. (2) we have that ¢ is the projection onto
view 4 of the intersections of the three rays of sight cor-
responding to p, y, 8. (Recall that each ray of sight is
an extensor of step 5 in P° and that three such extensors
generally intersect at a point.) Let 77, 5 denote the plane
associated with the intersection of the rays of sight of
y and §. If we fix y and é and vary the point p over
image 1, then the resulting points g are projection of
points on the plane 7, ; onto image 3. Thus the matrix
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yi 8k Bf i« 18 projective transformation from image 1 to
image 4 induced by the plane 5. |

Likewise, y'8/ Bf i« 1s ahomography matrix from im-
age 3 toimage 4, and y'§* B is an homography matrix
from image 2 to image 4.

The next item on the list of elementary building
blocks for reconstruction of projection matrices are the
epipoles. However, there are no epipoles in P® — P2
because the join of two COPs (each is a step 4 exten-
sor) fills up the entire space 7. We define instead the
notion of “Joint Epipole” as follows:

Definition I (Joint epipoles). Let C;; be the intersec-
tion (meet) of the centers of two projection matrices
M; and M;:

Cij = null(M;) A null(M).

Cij is a point because 4 + 4 — 7=1. Let cf‘j be the
projection of C;; onto the k’th view, i.e., cl’fj = MkCij.
We refer to cff]- the joint epipole in image k of the COPs
of the projection matrices M;, M ;.

Just as with epipoles in P? — P2, the joint epipoles
are mapped to each other via homography matrices
(which in turn are obtained from the homography slices
of the tensor).

Claim 7 (Joint epipoles). Let Hilzyj(SkBll.jk be a
homography matrix from view 1 to view 4, obtained
by slicing the tensor ijk, then: Hely = c3;.
Proof: The homography matrix y/ 8"85 i from view
1 to view 4 is induced by the plane defined by the
intersection of the rays of sights associated with the
points y and § (see above). Each ray of sight (exten-
sor of step 5) contains its projection center, hence the
plane of intersection of two image rays must contain
the point C»3 (which is the intersection of both projec-
tion centers of views 2, 3)—regardless of the choice of
¥, 8. So any homography of this form H would satisfy
Hcly =, 0

From the result above, and similarly to P* — P2, it
is clear the joint epipoles are generalized eigenvectors
of homography matrices obtained by slicing the tensor.

Now that we have the means to recover epipoles
and homography matrices we can proceed to the (first)
reconstruction theorem.
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Theorem 2 (ReconstructionI). There exists a projec-
tive frame for which the first projection matrix takes
the form [I3x3; I3x3; 03x1] and all other projection
matrices (of views 2, 3,4, ...) take the form:

M;=[H;: G vj]

where H; is a homography matrix from view 1 to j
induced by a fixed (but arbitrary) plane 7w, G; is a
homography matrixfromview 1 to j induced by another
fixed arbitrary plane o and v is the projection of a fixed
arbitrary point contained in the first camera center to
image j.

Proof: Reconstruction in P° is given up to a 7 x 7
projective transformation W. Let C be a point inside
the COP of camera 1, i.e., any point which satisfies
M,C=0. Let W=[U, V, C] for some 5 x 3 matri-
ces U and V chosen such that MIU :MlV = I343.
Clearly, M1W = [I3><3; I3X3; 03><1].

Let U be chosen to consist of the first 3 columns of

the matrix:
=1
M,
U=
Cy
1-3

where the subscript 1-3 signals that we are taking only
columns 1-3 from the inverted 7 x 7 matrix, and Cj, is
the 4 x 7 matrix defining the plane 7, i.e., C, P =0 for
all P € 7. Recall that a plane in 7% is dual to an exten-
sor of step four and thus is defined by the intersection
(meet) of four hyperplanes, i.e a plane is defined by a
4 x 7 matrix whose rows represent these hyperplanes.
We have that ]\711 U = I343. Likewise, let

- q-1
V=
Co 1-3
where C, is the 4 x 7 matrix representing the plane o
Consider

MyW = M[U, V, Cl=[MyU, M3V, v]

where v = MZC. What is left to show is that MZU isa
homography matrix H, from view 1 to 2 induced by
the plane 77, and that M,V is a homography matrix H,
from view 1 to 2 induced by the plane o. The proof of
this is very similar to what was done in the proof of
Theorem 1. O

This reconstruction theorem is not ready yet for prac-
tical use because one needs homographies of two planes
from view 1 and view 2, and homographies for the same
planes from view 1 to view 3. One also needs the pro-
jection to views 2 and 3 of the same point C in the first
camera center. (The fourth camera can then be recov-
ered linearly from the tensor Bf —Whichis multilinear
in the entries of the camera matrices).

Although it is fairly easy to find homography matri-
ces between any two views (simply take slices of the
tensors), it is difficult finding homographies of some
fixed plane across three views. We will show later that
it is possible to select a canonical coordinate system
which allows choosing homography matrices between
two views only (instead of across three views). As a
preparation for this, we define next the “correlation
slices” of the tensor:

Claim 8 (Correlation slices). y8;58} is a mapping
(correlation matrix) from points in the second view to
a line in the third view (or from points in the third view
to lines in the second view). This mapping is associated
with the extensor of step 4 defined by the intersection of
an extensor of step 5 with an extensor of step 6 (5+6 —
7=4). The step 5 extensor is the ray of sight associated
with y (in view 1). The step 6 extensor is the join of the
line in the 4’th image plane § and the projection center
(extensor of step 4) of the forth camera.

Proof: y'p/q*8 B}, =0 iff the lines of sight asso-
ciated with y, p, ¢ and the step 6 extensor associated
with § all intersect in at least one point. Fixing y and
8 we get a fixed extensor of step 5+ 6 —7=4. The
equation p/g*(y'8B};;) =0 implies that the lines of
sight associated with p’/ and ¢* intersect that exten-
sor at a single point. The line of sight associated with
p/ intersects that fixed extensor in an extensor of step
445 — 7 =2—which is a line. Every point ¢g* on the
projection of that line onto view three has to satisfy
plqk (yiélejk) =0, hence the projection of this line is
P 8B O

This correlation matrix can be seen as the “Funda-
mental matrix” of the extensor of step four space, where
the effective “camera centers” are the intersection of
the COP of the P® — P2 projection matrices with that
space.

Using the correlation slices introduced above we
wish to describe a homography matrix H from view 1
onto view 3 associated with a plane which is contained



in the second view projection center (which is a step 4
extensor). Let Q1 = p/s;B};, and Q2 = q/s518},,, be the
correlation matrices described above—each is associ-
ated with an extensor of step 4. Generally, two exten-
sors of step 4 intersect (meet) at a point (4+4 —7=1),
however in this particular case since the image line s is
shared among the two extensors, their meet is a step 3
extensor (a plane). To see why this is so, let Q; be the
step 4 extensor associated with the correlation matrix
01, and let O, be the step 4 extensor associated with
the correlation matrix Q5. Let p, g, s be the embedded
image points and lines in 7°. We have:

Q1= (2VP)A(caVs)
D =(2Vg) A(ca V)

where c;, c4 are the step 4 extensors representing the
projection centers of view 2, 4 respectively; and “Vv”
denotes the join operation and “A” denotes the intersec-
tion (meet) operation. Because the step 6 extensor ¢4V §
is shared, and also noting that (c; V p) A (c2 V §) =3
because p, g are points in view 2, then

QAN =(2VP)A(c2VG) A(caV§)
=C2/\(C‘4\/§)

Therefore, Q; A Q5 is the intersection of a step 4 and
step 6 extensors, which is a plane (4 + 6 — 7 =3) con-
tained in the center of projection ¢, of view 2. Since
01, O, are the mappings from view 1 to view 3 in-
duced by the step 4 extensors Q;, O, respectively1 ,the
mapping Q1 p x Q,p fromview 1 to view 3 is ahomog-
raphy induced by the plane Q; A Q,. The homography
matrix H can be recovered directly (linearly) from the
matrices Q1, Q> by noting that Q] H and Q1 H are
anti-symmetrical—thus providing 6 linear constraints
each for H.

Now that we have a tool for the recovery of ho-
mography matrices which lie inside projection ma-
trix centers we can proceed to the second (simplified)
reconstruction theorem:

Theorem 3 (Reconstruction II). There exists a pro-
Jective frame for which the first and second projection
matrices take the form

M, [l3x3 03x3 Osx1]
My = (055 Dxs 031l

12
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and all other projection matrices (of views 3,4, ...)
take the form:

M;=[Hy; Hy; o]

where H,; is a homography matrix from view 1 to view j
induced by a plane w which is contained in the second
projection matrix center, H,j is a homography matrix
from view 2 to view j induced by a plane o which is
contained in the first projection matrix center, and c1,
is the joint epipole, i.e., the projection onto view j of
the intersection point of the projection centers of views
1,2

Proof: Consider three views with projection matrices
Mj, j=1,2,3,apoint P € PO in space and matching
image points p, p/, p” satisfying p = M, P, p' = M, P
and p” = M5 P. Since reconstruction is determined up
to a projectivity, let W be a (full-rank) 7 x 7 matrix
representing some arbitrary projective change of co-
ordinates (we are allowed to choose W at will). Let C
be the point of intersection of the projection centers of
views 1, 2 (each is a step 4 extensor, thus they intersect
at a point because 444 —7=1), thus M;C =0 and
M,C =0 and M;C = cfz (the joint epipole). Let  be
some plane contained in null(M>) and let o be some
plane contained in null (M 1).Let C; be the 4 x 7 matrix
defining the plane r, i.e., C; P =0 for all P € ; and
let C, be the 4 x 7 matrix defining the plane o. Let
W =[U, V, C]where U, V are 7 x 3 matrices defined
as follows.

~ -1 ~ -1
e, L]
Cx 1-3 Co 1-3
where the subscript 1-3 signals that we are taking
only columns 1-3 from the inverted 7 x 7 matrix. We
have that 1\7[1U=I3X3 and M2V=I. Moreover, the
columns of U consist of points on 7 and since 7 is con-

tziined in null (Mg) we have that MQU =0; and likewise
M,V =0. To see why this is so, recall that

M, b M, P
C.|  \C:P) ™
from which we obtain that Up = P, i.e., U maps the

first image plane onto the plane . Thus, in particular
the columns of U are points on . Taken together, we

VPen

1R
o o
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have that for these choices of planes 7 and o, the first
two projection matrices are:

M\W = [Ly; 033 0351]
MoW = [03x3  xs  0351]

We show next that M3U is a homography matrix from
view 1 to 3 induced by 7. Recall that Up is a point
P en, thus MsUp = M3P = p” where p, p” are pro-
jections of a point in 7r. Similarly, Vp' is a point P € o,
thus M3V p' = M3 P = p” where p’, p’ are projections
of a point on o. Taken together, we have

M3W§[H13 Hy; 0?2]' O

Putting together the correlation slices and the recon-
struction theorem above, we see that for reconstruction
of projection matrices all we need to do is to choose 2
correlation slices from which H;3 is recovered (lin-
early), and choose another pair of correlation slices
from which H,s is recovered. Then, by using homog-
raphy slices we can recover the joint epipole cj, and
we have thus created M3. The fourth projection matrix
M4 can be recovered (linearly) from the tensor and the
three projection matrices.

3.3, Reconstruction of the P°> — P?
Camera Matrices

Given that we have recovered the projection matrices
H;, j=1,2,3, of P* > P2, and the projection matri-
ces MJ, j=1,2,3,4 of P® — P? we wish to recover
the original 3 x 4 camera matrices up to a 3D Affine
ambiguity. The special structure of the matrices H and
M—they have repeated scaled columns—provides us
with linear constraints on a the coordinate change in
Pk — P? which will transform the recovered matrices
H and M to the admissible ones we are looking for.

In the case of P* — P2, since the third column of H;
is unconstrained, the family of collineations of P>
P? that leave the structural form intact is organized as
follows:

o o o o 9
o o o a8 =

= 00 = o
o 2 o o o
AU o o o

Note that we have 9 degrees of freedom up to scale,
which means we have 8 free parameters—2 more than
what is allowed for a 2D affinity. The extra degrees of
freedom could be compensated for by applying another
transformation of the form:

S O O O =
S O O = O
= SH o= O O
S = O O O
- O O O O

The unknown variables /1 and i can be solved using a
single static point, as follows. Let H be the pI'O]eCthH
matrices up to the unknown correction handi.Let H;
to be the left 3 x 3 part of H Let p;, pobea matchmg
pair in views 1,2 of a static point. Then,

1 0 h
pEH |0 1 i |H'p
0 0 1

This gives us two linear equations for solving handi.
The resulting homography matrices (up to a 2D Affine
ambiguity) are:

1 0 h 1 0 2h
H,H |0 1 i Hy |0 1 2
0 0 1 00 1

In the case of P® — P2, the reconstruction of M i
satisfying the structural constraints up to a 3D Affine
ambiguity proceeds along similar lines. The ambiguity
matrix is of this form:

a b ¢ j 0 0 0
d e f kK 0 0 0
g h i I 0 0 O
00 0 m 0 0 O
0 0 0 n a b c
0 0 0 o d e f
00 0 p g h i

This kind of matrices is an Affine transformation on
the left 3 x 4 part of the projection matrix from P to
P2, but it is a different Affine transformation for every
view.



Here again we can take the first recovered camera
matrix to be the left part of the transformed pro-
jective camera matrix. We have to find only some
transformation of the form:

1000000
0100000
0010000
0001000
0004100
0006 010
000 p 00 1

Assuming that we know one static point, we can extract
eight linear constraints on the unknowns 7, 0, p of the
form:

I'Ry
0

S>

ITR,

S O O =
S = O O
-

2n7]
20 =0

A

2p
1

3]

36

3p
1

det
ITR,

S O O = O O O =

ITR;

SO0~ o000~ O o o —

S = O O O = O O

Where R; are the left parts of the transformed pro-
jective camera matrices, and /; are lines through the
tracked static point. The final cameras would be:

1 0 0 n 1 0 0 2n
01 0 o 01 0 20
Ro,R1 ~ | R2 Al

00 1 p 0 0 1 2p
0 0 0 1 0 0 0 1

1 0 0 3n

01 0 3o

R; R

0 0 1 3p

0 0 0 1
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3.4.  Reconstruction of Segmentation Tensors

The stage of the reconstruction of the underlying struc-
ture is (as noted above) application dependent. For re-
construction in the case of the segmentation tensor, we
do not have any special information about structure of
the projection matrices. Here we may use some known
points on one object in order to reconstruct in 2D/3D.

In the planar segmentation tensor case we know that
the space in PP? spanned by points on one object is a
space of rank 3. From 3 point matches in two images (or
even point-line matches), we can reconstruct 3 points
in that rank 3 subspace of P3. Note that using the P*
to P? projection matrices we’ve recovered earlier, we
do not need a forth basis point in order to determine
the projection of each point in this space to the images.
Hence we compute the homography of the first object
is achieved. Now that we know the homographies of
the first object, segmentation is possible, so we can
determine the homography of the second object from
its points. The next stage is to find a transformation
that will make the first 2 columns of the homographies
identical. The resulting solution would be the real ho-
mographies up to an Affine transformation.

The segmentation tensor for the 3D case is similar.
Here we are going to have to use 4 point matches from
one object in order to recover the set of cameras for the
first object over time. These cameras would be defined
up to a projective transformation. Segmentation would
now give us points on the second object, from which
recovery of the motion of the second camera is possible.
Aligning these sets of cameras would give us acommon
Affine reconstruction. Note that both sets of cameras
agree on the homography at infinity. Thus the recovery
of that homography can be achieved for example by
intersecting epipolar lines.

The case of the constant velocity in 3D going in one
direction is similar to the case of the 3D segmentation
tensor. Note that recovery of the image projections of
the common direction in 3D can be achieved, although
we can not use this information as one of our 4 points.
This is because this point has more then one reconstruc-
tion in P* from it’s point matches (as a static point, or
as pure motion, or any combination of the two).

4. Experiments

We describe an experiment for one of the applications
in this paper, the 3D segmentation tensor (Problem 4).
Recall that we observe views of a scene containing
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(a)

(b)

()

(e)

Figure 1. 3D segmentation tensor experiment. See text for details.

two bodies moving in relative translation to one an-
other. The P* — P2 problem formulation requires a
matching set of at least 13 points across 3 views where
the points come from both bodies in an unsegmented
fashion. The triplets of matching points are used to
constructa 3 x 3 x 3 tensor such that with the segmen-
tation of 4 points on one of the bodies one can then
segment the entire scene.

The scene in the experiment, displayed in Fig. 1, con-
sists of arigid background (first body) and a foreground

(d)

consisting of a number of vehicles moving cohesively
together (second body). Image points were identified
and tracked using openCV’s (http://www.intel.com/
research/mrl/research/cvlib/) KLT (Lucas and Kanade,
1981) tracker. Figs. 1(a)—(c) shows the three views,
Fig. 1(d) shows the points which were tracked along
the sequence and used for recovery of the tensor.
Fig. 1(e) shows the 4 labeled points (on the back-
ground body) used to segment the entire scene, and
Fig. 1(f) shows the segmentations result—all point



on the background body were correctly classified as
such.

5. Summary

This paper has two parts. In Section 2 we have shown
that multi-view constraints of scenes containing multi-
ple linearly moving points can be derived by “lifting”
the non-rigid 3D phenomena into a rigid configuration
in a higher dimensional space of P*. And to that end
we have presented 6 applications for various values of
k ranging from 3 to 6.

In the second part of the paper (Section 3) we
worked out the details of describing and recovering
3 x (k 4+ 1) projection matrices (for k =4, 6) from the
multi-view tensors’ slices, and the details of recovering
the 3 x 4 original camera matrices from the projection
matrices.

Note

1. Such a mapping must be a correlation by definition because the
image ray of view 1 intersects the step 4 extensor at a line (5 +
4 — 7=2) whose projection onto view 3 is a line.
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