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PAC Learning

X - domain set

Y = {±1} - target set

Predictor: h : X → Y
Training set: S = (x1, h

?(x1)), . . . , (xm, h
?(xm))

Learning (informally): Use S to find some h ≈ h?

Learning (formally)

D - a distribution over X
Assumption: instances of S are chosen i.i.d. from D
Error: err(h) = P[h(x) 6= h?(x)]
Goal: use S to find h s.t. w.p. 1− δ, err(h) ≤ ε

Prior knowledge: h? ∈ H
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Complexity of Learning

Sample complexity — How many examples are needed ?

Vapnik: exactly VC(H) log(1/δ)
ε

Using the ERM (empirical risk minimization)

Computational complexity — How much time is needed ?

Naively: it takes Ω(|H|) to implement the ERM
Exponential gap between time and sample complexity (?)

This talk — joint time-sample dependency

err(m′, τ)
def
= min

m≤m′
min

A:time(A)≤τ
E[err(A(S))]

Sample complexity — arg min{m′ : err(m′,∞) ≤ ε}
Data laden — err(∞, τ)
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Main Conjecture

Main Question

How much time, τ , is needed to achieve error ≤ ε as a function of sample
size, m?

τ

m
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Warmup example

X = {0, 1}d

H is 3-term DNF formulae:

h(x) = T1(x) ∨ T2(x) ∨ T3(x), where each Ti is a conjunction
E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)
|H| ≤ 33d therefore sample complexity is order d/ε
Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find
h ∈ H s.t. err(h) ≤ ε

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

τ

m
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How more data reduces time?

Observation: T1 ∨ T2 ∨ T3 = ∧u∈T1,v∈T2,w∈T3(u ∨ v ∨ w)

Define: ψ : X → {0, 1}2(2d)3 s.t. for each triplet of literals u, v, w
there are two variables indicating if u ∨ v ∨ w is true or false

Observation: Exists Halfspace s.t. h?(x) = sgn(〈w, ψ(x)〉+ b)

Therefore, can solve ERM w.r.t. Halfspaces (linear programming)

VC dimension of Halfspaces is the dimension

Sample complexity is order d3/ε

x 7→ h(x)

x 7→ sgn(〈w
, ψ(x)〉+ b)
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Trading samples for runtime

Algorithm samples runtime

3-DNF d
ε 2d

Halfspace d3

ε poly(d)

τ

m

3-DNF

Halfspace
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But,

The lower bound on the computational complexity is only for proper
learning — there’s no lower bound on the computational complexity
of improper learning with d/ε examples

The lower bound on the sample complexity of Halfspaces is in the
general case — here we have a specific structure

The interesting questions:

Is the curve really true ? Can one construct ’correct’ lower bounds ?

If the curve is true, one should be able to construct more algorithms
on the curve. How?
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Second example: Online Ads Placement

For t = 1, 2, . . . ,m

Learner receives side information xt ∈ Rd

Learner predicts ŷt ∈ [k]

Learner pay cost 1[ŷt 6= h?(xt)]

“Bandit setting” — learner does not know h?(xt)

Goal: Minimize error rate:

err =
1

m

m∑
t=1

1[ŷt 6= h?(xt)] .
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Linear Hypotheses

H = {x 7→ argmax
r

(W x)r : W ∈ Rk,d, ‖W‖F ≤ 1}

Rd
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Large margin assumption

Assumption: Data is separable with margin µ:

∀t, ∀r 6= yt, (Wxt)yt − (Wxt)r ≥ µ

Rd
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First approach – Halving

Halving for Bandit Multiclass categorization

Initialize: V1 = H
For t = 1, 2, . . .

Receive xt

For all r ∈ [k] let Vt(r) = {h ∈ Vt : h(xt) = r}
Predict ŷt ∈ arg maxr |Vt(r)|
If 1[ŷt 6= yt] set Vt+1 = Vt \ Vt(ŷt)

Analysis:

Whenever we err |Vt+1| ≤
(
1− 1

k

)
|Vt| ≤ exp(−1/k) |Vt|

Therefore: err ≤ k log(|H|)
m

Equivalently, sample complexity is k log(|H|)
ε
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Using Halving

Step 1: Dimensionality reduction to d′ = O( ln(m+k)
µ2 )

Step 2: Discretize H to (1/µ)kd′
hypotheses

Apply Halving on the resulting finite set of hypotheses

Analysis:

Sample complexity is order of k2/µ2

ε

But runtime grows like (1/µ)kd′
= (m+ k)Õ(k/µ2)
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How can we improve runtime?

Halving is not efficient because it does not utilize the structure of H
In the full information case: Halving can be made efficient because
each version space Vt can be made convex !

The Perceptron is a related approach which utilizes convexity and
works in the full information case

Next approach: Lets try to rely on the Perceptron
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The Mutliclass Perceptron

For t = 1, 2, . . . ,m

Receive xt ∈ Rd

Predict ŷt = arg maxr(W
t xt)r

Receive yt = h?(xt)

If ŷt 6= yt update: W t+1 = W t + U t

U t =



0 . . . 0
...

0 . . . 0
. . . xt . . .
0 . . . 0

...
0 . . . 0
. . . −xt . . .
0 . . . 0

...
0 . . . 0



Row yt

Row ŷt

Problem: In the bandit case, we’re blind to value of yt
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The Banditron (Kakade, S, Tewari 08)

Explore: From time to time, instead of predicting ŷt guess some ỹt

Suppose we get the feedback ’correct’, i.e. ỹt = yt

Then, we have full information for Perceptron’s update:
(xt, ŷt, ỹt = yt)

Exploration-Exploitation Tradeoff:

When exploring we may have ỹt = yt 6= ŷt and can learn from this
When exploring we may have ỹt 6= yt = ŷt and then we had the right
answer in our hands but didn’t exploit it
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The Banditron (Kakade, S, Tewari 08)

For t = 1, 2, . . . ,m

Receive xt ∈ Rd

Set ŷt = arg maxr(W
t xt)r

Define: P (r) = (1− γ)1[r = ŷt] + γ
k

Randomly sample ỹt according to P

Predict ỹt

Receive feedback 1[ỹt = yt]

Update: W t+1 = W t + Ũ t

where

Ũ t =



0 . . . 0
...

0 . . . 0

. . . 1[yt=ỹt]
P (ỹt)

xt . . .

0 . . . 0
...

0 . . . 0
. . . −xt . . .
0 . . . 0

...
0 . . . 0



Row ỹt

Row ŷt
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The Banditron (Kakade, S, Tewari 08)

Theorem

Banditron’s sample complexity is order of k/µ2

ε2

Banditron’s runtime is O(k/µ2)

The crux of difference between Halving and Banditron:

Without having the full information, the version space is non-convex
and therefore it is hard to utilize the structure of H
Because we relied on the Perceptron we did utilize the structure of H
and got an efficient algorithm

We managed to obtain ’full-information examples’ by using
exploration

The price of exploration is a higher regret
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Trading samples for runtime

Algorithm samples runtime

Halving k2/µ2

ε (m+ k)Õ(k/µ2)

Banditron k/µ2

ε2 k/µ2

τ

m

Halving

Banditron
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Next example: Agnostic PAC learning of fuzzy halfspaces

Agnostic PAC:

D - arbitrary distribution over X × Y
Training set: S = (x1, y1), . . . , (xm, ym)

Goal: use S to find hS s.t. w.p. 1− δ,

err(hS) ≤ min
h∈H

err(h) + ε
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Hypothesis class

H = {x 7→ φ(〈w,x〉) : ‖w‖2 ≤ 1}, φ(z) = 1
1+exp(−z/µ)

-1 1

1

Probabilistic classifier: P[hw(x) = 1] = φ(〈w,x〉)

Loss function: err(w; (x, y)) = P[hw(x) 6= y] =
∣∣∣φ(〈w,x〉)− y+1

2

∣∣∣
Remark: Dimension can be infinite (kernel methods)
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First approach — sub-sample covering

Claim: exists 1/(εµ2) examples from which we can efficiently learn
w? up to error of ε

Proof idea:

S′ = {(xi, y
′
i) : y′i = yi if yi〈w?,xi〉 < −µ and else y′i = −yi}

Use surrogate convex loss 1
2 max{0, 1− y〈w, x〉/γ}

Minimizing surrogate loss on S′ ⇒ minimizing original loss on S
Sample complexity w.r.t. surrogate loss is 1/(εµ2)

Analysis

Sample complexity: 1/(εµ)2

Time complexity: m1/(εµ2) =
(

1
εµ

)1/(εµ2)
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Second Approach – IDPK (S, Shamir, Sridharan)

Learning fuzzy halfspaces using Infinite-Dimensional-Polynomial-Kernel

Original class: H = {x 7→ φ(〈w,x〉)}

Problem: Loss is non-convex w.r.t. w

Main idea: Work with a larger hypothesis class for which the loss
becomes convex

x 7→ φ(〈w,x〉)

x 7→ 〈v, ψ(x)〉
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Step 2 – Learning fuzzy halfspaces with IDPK

Original class: H = {x 7→ φ(〈w,x〉) : ‖w‖ ≤ 1}
New class: H′ = {x 7→ 〈v, ψ(x)〉 : ‖v‖ ≤ B} where ψ : X → RN s.t.
∀j, ∀(i1, . . . , ij), ψ(x)(i1,...,ij) = 2j/2 xi1 · · ·xij

Lemma (S, Shamir, Sridharan 2009)

If B = exp(Õ(1/µ)) then for all h ∈ H exists h′ ∈ H′ s.t. for all x,
h(x) ≈ h′(x).

Remark: The above is a pessimistic choice of B. In practice, smaller B
suffices. Is it tight? Even if it is, are there natural assumptions under
which a better bound holds ?
(e.g. Kalai, Klivans, Mansour, Servedio 2005)
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Proof idea

Polynomial approximation: φ(z) ≈
∑∞

j=0 βjz
j

Therefore:

φ(〈w,x〉) ≈
∞∑

j=0

βj(〈w,x〉)j

=
∞∑

j=0

∑
k1,...,kj

2−j/2βj2
j/2wk1 · · ·wkj

xk1 · · · ·xkj

= 〈vw, ψ(x)〉

To obtain a concrete bound we use Chebyshev approximation
technique: Family of orthogonal polynomials w.r.t. inner product:

〈f, g〉 =

∫ 1

x=−1

f(x)g(x)√
1− x2

dx
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Infinite-Dimensional-Polynomial-Kernel

Although the dimension is infinite, can be solved using the kernel trick

The corresponding kernel (a.k.a. Vovk’s infinite polynomial):

〈ψ(x), ψ(x′)〉 = K(x,x′) =
1

1− 1
2〈x,x′〉

Algorithm boils down to linear regression with the above kernel

Convex! Can be solved efficiently

Sample complexity: (B/ε)2 = 2Õ(1/µ)/ε2

Time complexity: m2
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Trading samples for time

Algorithm sample time

Covering 1
ε2µ2

(
1
εµ

)1/(εµ2)

� �

IDPK
(

1
εµ

)1/µ
1
ε2

(
1
εµ

)2/µ
1
ε4
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Summary

Trading data for runtime (?)

There are more examples of the phenomenon ....

Open questions:

More points on the curve (new algorithms)

Lower bounds ??? Can you help ?
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