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10k training examples 2.3% error
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e Can always sub-sample and get error of 2.3% using 1 hour
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e Can always sub-sample and get error of 2.3% using 1 hour

@ Can we leverage excess data to reduce runtime ?7
Say, achieve error of 2.3% using 10 minutes ?
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e Background: Machine Learning, Support Vector Machine (SVM)

@ SVM as an optimization problem
@ A Machine Learning Perspective on SVM Optimization

Approximated optimization

Re-define quality of optimization using generalization error
Error decomposition

Data-Laden Analysis

@ Stochastic Methods

e Why Stochastic ?
e PEGASOS (Stochastic Gradient Descent)
e Stochastic Coordinate Dual Ascent
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Background: Machine Learning and SVM

Learning Algorithm

Training Set Output A :

@ Hypothesis set ‘H
(i ya) ¥ YP X - v

4

@ Loss function

N4

@ Learning rule

@ Support Vector Machine
o Linear hypotheses: hy (x) = (w,x)
o Prefer hypotheses with large margin, i.e., low Euclidean norm
o Resulting learning rule:

A 1
argvrvnin 5”“’”2 + ~ ;max{(), 11—y (w,x;)}

Hinge—loss
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Support Vector Machines and Optimization

@ SVM learning rule:
A 1
. 2
argmin o |wl|* 4+ ZE 1 max{0, yi (W, x;)}

@ SVM optimization problem can be written as a Quadratic
Programming problem

A 1 &
. n 2 - .
aringnn 2HW|| + p E &
’ =1

st Vi, 1—yi(w,x;) <& A § 20

@ Standard solvers exist. End of story 7
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Approximated Optimization

@ If we don’t have infinite computation power, we can only
approximately solve the SVM optimization problem
o Traditional analysis
e SVM objective:

P(w) = Z|w|*+ ZE W, X;), i)

e W is p-accurate solution if
P(w) <min P(w) + p

e Main focus: How optimization runtime depends on p ? E.g. IP
methods converge in time O(m3- log(log(%)))

o Large-scale problems: How optimization runtime depends on m 7
E.g. SMO converges in time O(m? log(%))
SVM-Perf runtime is O(/\ﬂp)
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Machine Learning Perspective on Optimization

@ Our real goal is not to solve the SVM problem P(w)

@ Our goal is to find w with low generalization error:

L(W) = E(x,y)NlP’w«W?X)vy)]

@ Redefine approximated accuracy:
e W is e-accurate solution w.r.t. margin parameter B if

L(W)< min L
(W)’w:mI\?SB (w) +e

e Study runtime as a function of € and B
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Error Decomposition

Theorem (S, Srebro '08)

If w satisfies
P(w) < min P(w) + p

then, w.p. at least 1 — & over choice of training set, W satisfies

L(w) < min L(w) +e€

w:||w||<B
with \ B2 log(1/3)
clog(1
= 2
¢ 2 + Am 2
(Following:

Bottou and Bousquet, “The Tradeoffs of Large Scale Learning”, NIPS '08)
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More Data = Less Work 7

L(W) 4

optimization

estimation

approximation
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More Data = Less Work 7

L(w)

optimization

estimation

approximation

@ When data set size increases:
e Can increase p = can optimize less accurately = runtime decreases
e But handling more data may be expensive = runtime increases
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Machine Learning Analysis of Optimization Algorithms

e Given solver with opt. accuracy p(T,m, \)
@ To ensure excess generalization error < € we need that
AB?  clog(1/9)

i 20(T,m, \) <
min ——+ —>——= +2p(T,m, ) <

@ From the above we get runtime T as a function of m, B, ¢
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Machine Learning Analysis of Optimization Algorithms

e Given solver with opt. accuracy p(T,m, \)
@ To ensure excess generalization error < € we need that
AB?  clog(1/9)

i 20(T,m, \) <
min ——+ —>——= +2p(T,m, ) <

@ From the above we get runtime T as a function of m, B, ¢

e Examples (ignoring logarithmic terms and constants, and assuming
linear kernels):

| p(T,m,\) | T(m,B,e)
4

SMO (piatt '08) exp(—T/mz) (%)
SVM-Perf (Joachims '06) % (%)4
SGD (S, Srbero, Singer '07) )\% (%)2
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Stochastic Gradient Descent (Pegasos)

@ Initialize w; =0
@ Fort=1,2,...,T
o Choose i € [m] uniformly at random
o Define
Vi=Aw; — I[yt(wt,xt>>0] Yt Xt
Note: E[V,] is a sub-gradient of P(w) at w;
o Setn =4
o Update:

1
Wit1 = W — Tt Vt = (1 — %)Wt + ﬁ I[yt<wt,xt>>0] Yt X¢

Theorem (Pegasos Convergence)

Elp] < O(M)

AT
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ndence on Data Set Size

Corollary (Pegasos generalization analysis)

~ 1
T(m;e,B) = O | ——
€ 1
B vm
Theoretical Empirical (CCAT)
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Intermediate Summary

@ Analyze runtime (7') as a function of
o excess generalization error (e)
o size of competing class (B)
@ Up to constants and logarithmic terms, stochastic gradient descent
(Pegasos) is optimal — its runtime is order of sample complexity
B\2
2 ((%)")
@ For Pegasos, running time decreases as training set size increases

@ Coming next

e Limitations of Pegasos
o Dual Coordinate Ascent methods
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Limitations of Pegasos

Pegasos is simple and efficient optimization method. However, it has some
limitations:

log(sample complexity) factor in convergence rate

No clear stopping criterion

Tricky to obtain a good single solution with high confidence

Too aggressive at the beginning (especially when A very small)

When working with kernels, too much support vectors

Hsieh et al recently argued that empirically dual coordinate ascent
outperforms Pegasos
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Dual Methods

The dual SVM problem:

1 1
in D wh D) = — E i — g x|
err[&rll]m (o) ere (o) i 1042 2)\m2H i el

Decomposition Methods

@ Dual problem has a different variable for each example

@ = can optimize over subset of variables at each iteration
@ Extreme case

o Dual Coordinate Ascent (DCA) — optimize D w.r.t. a single variable at
each iteration
o SMO - optimize over 2 variables (necessary when having a bias term)
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Linear convergence for decomposition methods

@ General convergence theory of (Luo and Tseng '92) implies linear
convergence

@ But, dependence on m is quadratic. Therefore
T = O(m*log(1/p))
@ This implies the Machine Learning analysis
T = O(B*/eY)

@ Why SGD is much better than decomposition methods ?

e Primal vs. dual ?
e Stochastic ?
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Stochastic Dual Coordinate Ascent

The stochastic DCA algorithm

o Initialize & = (0,...,0) and w =0

@ Fort=1,2,...,T
e Choose i € [m] uniformly at random
o Update: a; = a;; + 7; where

T; = max {—Oéi , min {1 — g, A (Loyi X)) (1||7xzi||<2w’xi>) }}

o Update: w = w + - y;X;

@ Hsieh et al showed encouraging empirical results
@ No satisfactory theoretical guarantee
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Analysis of stochastic DCA

Theorem (S '08)

With probability at least 1 — d, the accuracy of stochastic DCA satisfies

< S 1)
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Analysis of stochastic DCA

Theorem (S '08)

With probability at least 1 — d, the accuracy of stochastic DCA satisfies
8 In(1/4) (1
< N1 =
pP= T

@ Let a* be optimal dual solution

Proof idea:

@ Upper bound dual sub-optimality at round ¢ by the double potential

1 t 2 t+1 2 t+1 t
B [llaf — a7 — ot — o)) + B [D(a ) - D(al)

@ Sum over t, use telescoping, and bound the result using weak-duality
@ Use approximated duality theory (Scovel, Hush, Steinwart '08)

@ Finally, use measure concentration techniques
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Comparing SGD and DCA

SGD : p(m,T,\)

IN

DCA:  p(m,T,\) <

?
Conclusion: Relative performance depends on Am < log(T')

CCAT covl
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==SGD ==SGD
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Combining SGD and DCA ?

@ The above graphs raise the natural question: Can we somehow
combine SGD and DCA 7

@ Seemingly, this is impossible as SGD is a primal algorithm while DCA
is a dual algorithm

@ Interestingly, SGD can be viewed also as a dual algorithm, but with a
dual function that changes along the optimization process

@ This is an ongoing direction ...
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Machine Learning analysis of DCA

@ So far, we compared SGD and DCA using the old way (p)
@ But, what about runtime as a function of ¢ and B ?

e Similarly to previous derivation (and ignoring log terms)

2

SGD : T§B—2
€

2

DCA: T§B—3
€

@ Is this really the case ?
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SGD vs. DCA — Machine Learning Perspective
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SGD vs. DCA — Machine Learning Perspective
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Analysis of DCA revisited

. 1 m
o DCA analysis T' < SV

o First term is like in SGD while second term involves training set size.
This is necessary since each dual variable has only 1/m effect on w.

@ However, a more delicate analysis is possible:

Theorem (DCA refined analysis)

If T > m then with high probability at least one of the following holds
true:

o After a single epoch DCA satisfies L(w) < ﬁni|1|1<BL(w)

1
e DCA converges in time p < Tfm (X +AmB? + B\/ﬁ)

The above theorem implies T' < O(B?/¢?).
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Discussion

@ Bottou and Bousquet initiated a study of approximated optimization
from the perspective of generalization error
@ We further develop this idea
o Regularized loss (like SVM)

o Comparing algorithms based on runtime for achieving certain
generalization error

o Comparing algorithms in the data-laden regime
e More data = less work

@ Two stochastic approaches are close to optimal

@ Best methods are extremely simple :-)
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Limitations and Open Problems

@ Analysis is based on upper bounds of estimation and optimization
error

@ The online-to-batch analysis gives the same bounds for one epoch
over the data (No theoretical explanation when we need more than
one pass)

@ We assume constant runtime for each inner product evaluation (holds
for linear kernels). How to deal with non-linear kernels ?

e Sampling 7
e Smart selection (online learning on a budget ? Clustering ?)

@ We assume X is optimally chosen. Incorporating the runtime of tuning

A in the analysis 7

@ Assumptions on distribution (e.g. Noise conditions) = Better analysis

@ A more general theory of optimization from a machine learning
perspective

Shai Shalev-Shwartz (TTI-C) SVM from ML Perspective Aug'08 25 /25



