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Motivation

10k training examples 1 hour 2.3% error

1M training examples 1 week 2.29% error

Can always sub-sample and get error of 2.3% using 1 hour

Can we leverage excess data to reduce runtime ?
Say, achieve error of 2.3% using 10 minutes ?
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Outline

Background: Machine Learning, Support Vector Machine (SVM)

SVM as an optimization problem

A Machine Learning Perspective on SVM Optimization

Approximated optimization
Re-define quality of optimization using generalization error
Error decomposition
Data-Laden Analysis

Stochastic Methods

Why Stochastic ?
PEGASOS (Stochastic Gradient Descent)
Stochastic Coordinate Dual Ascent

Shai Shalev-Shwartz (TTI-C) SVM from ML Perspective Aug’08 3 / 25



Background: Machine Learning and SVM

Hypothesis set H
Loss function

Learning rule

Learning Algorithm
Training Set
{(xi, yi)}mi=1

Output h :
X → Y

Support Vector Machine

Linear hypotheses: hw(x) = 〈w,x〉
Prefer hypotheses with large margin, i.e., low Euclidean norm
Resulting learning rule:

argmin
w

λ

2
‖w‖2 +

1
m

m∑
i=1

max{0, 1− yi 〈w,xi〉}︸ ︷︷ ︸
Hinge−loss
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Support Vector Machines and Optimization

SVM learning rule:

argmin
w

λ

2
‖w‖2 +

1
m

m∑
i=1

max{0, 1− yi 〈w,xi〉}

SVM optimization problem can be written as a Quadratic
Programming problem

argmin
w,ξ

λ

2
‖w‖2 +

1
m

m∑
i=1

ξi

s.t. ∀i, 1− yi 〈w,xi〉 ≤ ξi ∧ ξi ≥ 0

Standard solvers exist. End of story ?
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Approximated Optimization

If we don’t have infinite computation power, we can only
approximately solve the SVM optimization problem

Traditional analysis
SVM objective:

P (w) =
λ

2
‖w‖2 +

1
m

m∑
i=1

`(〈w,xi〉 , yi)

w̃ is ρ-accurate solution if

P (w̃) ≤ min
w

P (w) + ρ

Main focus: How optimization runtime depends on ρ ? E.g. IP
methods converge in time O(m3.5 log(log( 1

ρ )))

Large-scale problems: How optimization runtime depends on m ?
E.g. SMO converges in time O(m2 log( 1

ρ ))
SVM-Perf runtime is O( mλρ )
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Machine Learning Perspective on Optimization

Our real goal is not to solve the SVM problem P (w)
Our goal is to find w with low generalization error:

L(w) = E(x,y)∼P[`(〈w,x〉 , y)]

Redefine approximated accuracy:

w̃ is ε-accurate solution w.r.t. margin parameter B if

L(w̃) ≤ min
w:‖w‖≤B

L(w) + ε

Study runtime as a function of ε and B
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Error Decomposition

Theorem (S, Srebro ’08)

If w̃ satisfies
P (w̃) ≤ min

w
P (w) + ρ

then, w.p. at least 1− δ over choice of training set, w̃ satisfies

L(w̃) ≤ min
w:‖w‖≤B

L(w) + ε

with

ε =
λB2

2
+

c log(1/δ)
λm

+ 2 ρ

(Following:

Bottou and Bousquet, “The Tradeoffs of Large Scale Learning”, NIPS ’08)
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More Data ⇒ Less Work ?

approximation

estimation

optimization

L(w̃)

L(w̃)

m

When data set size increases:
Can increase ρ ⇒ can optimize less accurately ⇒ runtime decreases
But handling more data may be expensive ⇒ runtime increases
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Machine Learning Analysis of Optimization Algorithms

Given solver with opt. accuracy ρ(T,m, λ)
To ensure excess generalization error ≤ ε we need that

min
λ

λB2

2
+
c log(1/δ)
λm

+ 2 ρ(T,m, λ) ≤ ε

From the above we get runtime T as a function of m,B, ε

Examples (ignoring logarithmic terms and constants, and assuming
linear kernels):

ρ(T,m, λ) T (m,B, ε)
SMO (Platt ’98) exp(−T/m2)

(
B
ε

)4
SVM-Perf (Joachims ’06)

m
λT

(
B
ε

)4
SGD (S, Srbero, Singer ’07)

1
λT

(
B
ε

)2
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Stochastic Gradient Descent (Pegasos)

Initialize w1 = 0
For t = 1, 2, . . . , T

Choose i ∈ [m] uniformly at random
Define

∇t = λwt − I[yt〈wt,xt〉>0] yt xt

Note: E[∇t] is a sub-gradient of P (w) at wt

Set ηt = 1
λ t

Update:

wt+1 = wt − ηt∇t = (1− 1
t )wt +

1
λ t

I[yt〈wt,xt〉>0] yt xt

Theorem (Pegasos Convergence)

E[ρ] ≤ O

(
log(T )
λT

)
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Dependence on Data Set Size

Corollary (Pegasos generalization analysis)

T (m; ε, B) = Õ

 1(
ε
B −

1√
m

)2


Theoretical Empirical (CCAT)
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Intermediate Summary

Analyze runtime (T ) as a function of

excess generalization error (ε)
size of competing class (B)

Up to constants and logarithmic terms, stochastic gradient descent
(Pegasos) is optimal – its runtime is order of sample complexity

Ω
((

B
ε

)2)
For Pegasos, running time decreases as training set size increases

Coming next

Limitations of Pegasos
Dual Coordinate Ascent methods
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Limitations of Pegasos

Pegasos is simple and efficient optimization method. However, it has some
limitations:

log(sample complexity) factor in convergence rate

No clear stopping criterion

Tricky to obtain a good single solution with high confidence

Too aggressive at the beginning (especially when λ very small)

When working with kernels, too much support vectors

Hsieh et al recently argued that empirically dual coordinate ascent
outperforms Pegasos
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Dual Methods

The dual SVM problem:

min
α∈[0,1]m

D(α) where D(α) =
1
m

m∑
i=1

αi −
1

2λm2
‖
∑
i

αiyixi‖2

Decomposition Methods

Dual problem has a different variable for each example

⇒ can optimize over subset of variables at each iteration

Extreme case

Dual Coordinate Ascent (DCA) – optimize D w.r.t. a single variable at
each iteration
SMO – optimize over 2 variables (necessary when having a bias term)
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Linear convergence for decomposition methods

General convergence theory of (Luo and Tseng ’92) implies linear
convergence

But, dependence on m is quadratic. Therefore

T = O(m2 log(1/ρ))

This implies the Machine Learning analysis

T = O(B4/ε4)

Why SGD is much better than decomposition methods ?

Primal vs. dual ?
Stochastic ?
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Stochastic Dual Coordinate Ascent

The stochastic DCA algorithm

Initialize α = (0, . . . , 0) and w = 0
For t = 1, 2, . . . , T

Choose i ∈ [m] uniformly at random
Update: αi = αi + τi where

τi = max
{
−αi , min

{
1− αi, λm (1−yi〈w,xi〉)

‖xi‖2

}}
Update: w = w + τi

λm yixi

Hsieh et al showed encouraging empirical results

No satisfactory theoretical guarantee
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Analysis of stochastic DCA

Theorem (S ’08)

With probability at least 1− δ, the accuracy of stochastic DCA satisfies

ρ ≤ 8 ln(1/δ)
T

(
1
λ

+m

)

Proof idea:

Let α? be optimal dual solution

Upper bound dual sub-optimality at round t by the double potential

1
2λm

Ei
[
‖αt −α?‖2 − ‖αt+1 −α?‖2

]
+ Ei

[
D(αt+1)−D(αt)

]
Sum over t, use telescoping, and bound the result using weak-duality

Use approximated duality theory (Scovel, Hush, Steinwart ’08)

Finally, use measure concentration techniques
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Comparing SGD and DCA

SGD : ρ(m,T, λ) ≤ 1
T

log(T )
λ

DCA : ρ(m,T, λ) ≤ 1
T

(
1
λ

+m

)
Conclusion: Relative performance depends on λm
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Combining SGD and DCA ?

The above graphs raise the natural question: Can we somehow
combine SGD and DCA ?

Seemingly, this is impossible as SGD is a primal algorithm while DCA
is a dual algorithm

Interestingly, SGD can be viewed also as a dual algorithm, but with a
dual function that changes along the optimization process

This is an ongoing direction ...
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Machine Learning analysis of DCA

So far, we compared SGD and DCA using the old way (ρ)

But, what about runtime as a function of ε and B ?

Similarly to previous derivation (and ignoring log terms)

SGD : T ≤ B2

ε2

DCA : T ≤ B2

ε3

Is this really the case ?
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SGD vs. DCA – Machine Learning Perspective
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Analysis of DCA revisited

DCA analysis T ≤ 1
λ ρ + m

ρ

First term is like in SGD while second term involves training set size.
This is necessary since each dual variable has only 1/m effect on w.

However, a more delicate analysis is possible:

Theorem (DCA refined analysis)

If T ≥ m then with high probability at least one of the following holds
true:

After a single epoch DCA satisfies L(w̃) ≤ min
w:‖w‖≤B

L(w)

DCA converges in time ρ ≤ c

T −m

(
1
λ

+ λmB2 +B
√
m

)
The above theorem implies T ≤ O(B2/ε2).
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Discussion

Bottou and Bousquet initiated a study of approximated optimization
from the perspective of generalization error

We further develop this idea

Regularized loss (like SVM)
Comparing algorithms based on runtime for achieving certain
generalization error
Comparing algorithms in the data-laden regime
More data ⇒ less work

Two stochastic approaches are close to optimal

Best methods are extremely simple :-)
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Limitations and Open Problems

Analysis is based on upper bounds of estimation and optimization
error

The online-to-batch analysis gives the same bounds for one epoch
over the data (No theoretical explanation when we need more than
one pass)

We assume constant runtime for each inner product evaluation (holds
for linear kernels). How to deal with non-linear kernels ?

Sampling ?
Smart selection (online learning on a budget ? Clustering ?)

We assume λ is optimally chosen. Incorporating the runtime of tuning
λ in the analysis ?

Assumptions on distribution (e.g. Noise conditions)
?⇒ Better analysis

A more general theory of optimization from a machine learning
perspective
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