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Predicting the next element of a binary sequence

Prediction task

Fort=1,2,.... T

@ Predict: y; € {£1}

@ Get: y; € {£1}

T n# n
0 yi=r

@ Best in hindsight y* = sign(>", yr)

o Suffer loss: ¢o_1(¥1, 1) = {

T T
o Regret: Rr = > Llo_1(J1.y0) — > Lo—1(y*, %)
= =1
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Abstract Prediction Model

@ Set of decisions S
@ Set of loss functions £ = {¢: S — R}

Prediction Game

Fort=1,...,T
@ Learner chooses a decision w; € S
@ Environment chooses a loss function ¢; € L
@ Learner suffers loss ¢;(w;)

@ Goal: Conditions on S and £ that guarantee low regret

T T
Rr = 3 t(w) =" f(w?) £ o(T)
=1 =1
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@ |dentifying sufficient conditions for predictability

o Size matters?

e No!

o Maybe yes with randomization ?

@ A modern view: revealing an underlying convexity

@ Regret and Convex Duality
@ Generality and related work
@ Experimental results
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Impossibility Result

e S={+£1}

o L= {f(),l(Wt, 1) s fofl(Wt, *1)}

@ Adversary can make the cumulative loss of the learner to be T by
using 4¢(-) = o—1(-, —w;)

@ The loss of the constant prediction w* = sign(}_; w;) is at most
T/2

@ Regretis at least T/2

@ In the above example, |S| = |£] = 2.
@ Small size does not guarantee low regret
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Solution: Randomized Predictions

@ Learner predicts y; = 1 with probability w;
@ Best in hindsight: y; = 1 with probability w* where w* = {/=11
@ Analyze the expected regret:

T T
S B[R # vl - Y Elyt # vl
=1 =1

@ There are algorithms that achieve expected regret of O(v/'T)
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A modern view: revealing an underlying convexity

@ Expected zero-one loss can be rewritten as

N 1 — Wt if yt = 1
E =
[Vt # il {Wt iy = 1
@ Going back to our abstract model, we get that:
e S=10,1]
o L={l(w)=1—-w, {(W)=w}

Properties
@ All functions in £ are linear (and thus are convex and Lipschitz)
@ Sis convex and bounded

@ Sufficient conditions for low regret ?
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Are we just playing with formalities ?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

@ Learner receives a vector (xi,...,x%) € [-1,1]9 of experts advice
@ Learner needs to predict a target j; € R

@ Environment gives correct target y; € R

@ Learner suffers loss |y; — i

@ Goal: Be almost as good as the best experts committee

S — 9l = X lve — (wr xty| £ o(T)
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Are we just playing with formalities ?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

@ Learner receives a vector (xi,...,x%) € [-1,1]9 of experts advice
@ Learner needs to predict a target j; € R
@ Environment gives correct target y; € R
@ Learner suffers loss |y; — i
@ Goal: Be almost as good as the best experts committee
S lve— il = Selye — (W xt)| = o(T)
Modeling
@ Sis the d-dimensional probability simplex
© L= {lyy(w)=ly—(wW,x)|:xe[-1,1%ye[-1,1]}
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Are we just playing with formalities ?

Example: Convexifying finite decision sets

@ Learner should predict an element s; € &' = {1,... N}
@ Environment presents non-convex loss function ¢; : 8’ — [0, 1]
@ Learner suffers loss ¢}(st)

@ Goal: Be almost as good as the best pure prediction
|

2opti(se) =22, 44(s7) = ofT)
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Are we just playing with formalities ?

Example: Convexifying finite decision sets
@ Learner should predict an element s; € &' = {1,... N}
@ Environment presents non-convex loss function ¢; : 8’ — [0, 1]
@ Learner suffers loss ¢}(st)
@ Goal: Be almost as good as the best pure prediction

St(s) = S (s) = ofT)

Modeling
@ Sis the N-dimensional probability simplex
@ Prediction s; is chosen randomly according tow; € S
@ L= {f(w)=(w,r) :rec]0 1]V}
o E[li(st)] = Loy (Wi)
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Sufficient Conditions for low regret

The Online Convex Programming (OCP) model
@ All functions in £ are convex and L-Lipschitz
@ Sis convex and max{|wl|z:we S} =D
@ Then, there exists an algorithm with regret O(L D v/T)
@ This is tight (i.e. the minimax value of the game)

v

Bibliography

@ The OCP model was presented by Gordon (1999)
@ Zinkevich (2003) proved a regret bound of O((L? + D?)v/T)
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Dimension independency ?

@ The regret bound does not depend on the dimensionality of S

@ Similarly to Support Vector Machines, we can use Kernel functions

Shalev-Shwartz (TTI-C) Regret & Duality Tubingen’08 11/28



Dimension independency ?

@ The regret bound does not depend on the dimensionality of S
@ Similarly to Support Vector Machines, we can use Kernel functions

@ Consider again the prediction with expert advice problem
d experts, each of which gives an “advice” in [—1, 1]

S is the probability simplex and thus D = 1
Lipschitz constant is L = v/d

Regret is Q(v/d T).

Is this the best we can do ?

A\
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Low regret algorithmic framework for OCP

@ A low regret algorithmic framework for OCP
@ Family of sufficient conditions for low regret
@ In particular — Alternatives to the Lipschitz condition

@ In the expert committee example — logarithmic dependence on
dimension

@ Main observation: Relating regret and duality
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Fenchel Conjugate

The Fenchel conjugate of the function f: S — Ris f* : R? — R

F(A) = max (w,x) — f(w)

If fis closed and convex then f** = f

60\6
=
=

N\

%)
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Fenchel Duality

max —(=A) =g (\) < m“i,n f(w) + g(w)
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Fenchel Duality

N

tangent
slope -A

tangent
slope A
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Regret and Duality

@ Recall that our goal is:

T T
Ywre S, > l(w) = (w) < LDVT
t=1

t=1
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Regret and Duality

@ Recall that our goal is:

T T
Ywre S, > l(w) = (w) < LDVT
t=1 t=1
@ Rewrite it in a ’silly’ way

T T
Z&(Wt) < vr\l,’lelg LDﬁJrZEt(W)

t=1 t=1
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Regret and Duality

@ Recall that our goal is:
T T
Ywre S, > l(w) = (w) < LDVT
t=1 t=1
@ Rewrite it in a ’silly’ way
T T
> t(wy) < min LDVT +>" £(w)
t=1 wes =1
@ Replace LDV/T with a function f : S — R s.t. maxy f(w) < LDVT.
E.g. f(w) = c||w|? for ¢ = Lv/T/D. Obtaining:

T T
> li(wy) < min f(w) + > l(w)
t=1 t=1
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Regret and Duality

@ Recall that our goal is:

T T
Ywre S, > l(w) = (w) < LDVT
t=1 t=1
@ Rewrite it in a 'silly’ way
T T
D li(wr) < min LDVT +> " ti(w)
t—1 wes =1
@ Replace LDV/T with a function f : S — R s.t. maxy f(w) < LDVT.
E.g. f(w) = c||w]|® for ¢ = L/T/D. Obtaining:
T T
> l(wy) < min f(w) + > Li(w)
t—1 wes t—1

@ Lower bound of a minimization problem. Duality ?
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Properties of the dual problem

Jmax_ —f*(— Z Ze*(x,) < m|nf +Z£t(w

Decomposability of the dual

@ There’s a different dual variable for each online round

@ Future loss functions do not affect dual variables of current and
past rounds

@ Therefore, the dual can be optimized incrementally
@ To optimize A1,..., Ay, itis enough to know 41, ..., ¢;
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Primal-Dual Online Prediction Strategy

Algorithmic Framework

@ Initialize A1 =...=A7=0
@ Fort=1,2,..., T
@ Construct w; from the dual variables

o Receive ¢;
o Update dual variables A1, ..., A;
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Primal-Dual Online Prediction Strategy

@ Initialize A1 =...=A7=0
@ Fort=1,2,..., T
@ Construct w; from the dual variables

o Receive ¢;
o Update dual variables A1, ..., A;

| A\

Lemma
Let D; be the dual value at round t and w.l.o.g assume D1 = 0.

@ Assume that maxyes f(W) < av'T
@ Assume that Dy, 1 — Dt > {i(Wy) — %

Then, the regret is bounded by 2av'T

The proof follows directly from the weak duality theorem
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Strong convexity and sufficient dual increase

Strong Convexity w.r.t. norm

A function f is o-strongly convex over Sw.r.t | - | if forallu,ve S

O > 1(45Y) + lu — v

A\

Lemma (Sufficient Dual Increase)
Assume:
@ fis o-strongly convex w.r.t. || - ||
@ /; is closed and convex
@ V; is a sub-gradient of ¢; at wW;
Then, there exists a simple dual update rule s.t.

V]2

Dir1 — Dt > L(wy) — 5o

\
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Generalized Boundedness-Lipschitz condition

Assume:

@ Exists f: S — R which is 1-strongly convex w.r.t. || - ||
@ D = maxyes /(W)

@ /; is closed and convex

@ ||Vill« < L (Lipschitz w.r.t. norm || - ||«)

Then, there exists an algorithm with regret bound 2 D L VT
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Generalized Boundedness-Lipschitz condition

Theorem

Assume:

@ Exists f: S — R which is 1-strongly convex w.r.t. || - ||

@ D = maxyes /f(W)

@ /; is closed and convex
@ ||Vill« < L (Lipschitz w.r.t. norm || - ||«)
Then, there exists an algorithm with regret bound 2 D L /T

v

Example usage — back to expert problem
@ Take f to be the relative entropy

@ fis strongly convex w.r.t. || - ||{ and D = +/log(d)
O [[Vills = [[Xfloc <1

@ Regret bound becomes O(/log(d) T)

\

Shalev-Shwartz (TTI-C)

Regret & Duality

Tlbingen’08 19/28



Self Boundedness instead of Lipschitz

Theorem

Replacing Lipschitz condition with the following self-bounded property:

Vil < L+/Li(wi)

Rr < O(LD Iy e(wr) + L2 D2) :
t

o ((w) = I((w,x) — y)?is (v2||x]))-self-bounded
@ /(w) =log(1.26 + exp(—y(w,X))) is (||x||)-self-bounded

Then,

Examples
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Generality and Related Work

AN

f(w)

W
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Generality and Related Work

@ Family of loss functions (£)

f(w)A e Online Learning
(Perceptron, linear
regression, multiclass
prediction, structured
output, ...)
o Game theory (Playing
repeated games,
i correlated equilibrium)
O o Information theory
X (Prediction of individual
Q\\,?f sequences)
o Convex optimization
(SGD, dual
decomposition)

~
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Generality and Related Work

@ Complexity function (f)
f(w) ° inine learning (Grove,
Littlestone, Schuurmans;
Kivinen, Warmuth;
Gentile; Vovk)
o Game theory (Hart and
Mas-collel)
o Optimization
L (Nemirovsky, Yudin;
g Beck, Teboulle,
X Nesterov)
O‘\‘fb e Unified frameworks
(Cesa-Bianchi and
Lugosi)

Shalev-Shwartz (TTI-C) Regret & Duality Tubingen’08



Generality and Related Work

AN

f(w) @ Dual update schemes
@ Only two extremes were
studied:

@ Gradient update
(naive update of a
single dual variable)

@ Follow the leader

W

o L (Equivalent to full
6'8\ optimization)
,»\"Q e Our analysis enables the
QX entire spectrum
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@ Task: route emails to folders
@ 7 users from the Enron dataset

@ Bag of words representation
@ 6 Algorithms

e 2 complexity functions (Euclidean and Entropy)
e 3 dual ascent methods
@ DA1: Fixed sub-gradient (A = st € 9¢:(W¢))
@ DA2: Optimal sub-gradient (A; = axs; with optimal «)
@ DA3: Optimal (A; = argmaxx D(A1, ..., Ai—1,X,0,...))
@ Performance expectation

e Entropy outperforms Euclidean
o DAS3 better than DA2 better than DA1
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Experimental Results — 3 Dual Updates

Euclidean complexity Entropic complexity
“ ‘ ‘ ‘ ‘ ‘ ‘ DAL ‘ ‘ ‘ ‘ ‘ ‘ DAL
[IbA2 s [IbA2

A3 EDA3

relative error
relative error
N
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Experimental Results — 2 Complexity Functions

DA D3

Il Euclidean Il Euclidean
Il Entropic 45 Il Entropic

relative error
relative error
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Summary and Future work

@ The online convex programming is a powerful model

@ Achieving low regret by primal-dual algorithmic framework
@ Sufficient conditions for predictability

Current and future work

@ Logarithmic regret algorithms
@ Prediction with limited feedback (Bandit algorithms)
@ Boosting, sparsity, and ¢4 norm

@ Similar sufficient conditions for stochastic optimization (PAC
learning)
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