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Predicting the next element of a binary sequence

Prediction task
For t = 1,2, . . . ,T

Predict: ŷt ∈ {±1}
Get: yt ∈ {±1}

Suffer loss: `0−1(ŷt , yt ) =

{
1 yt 6= ŷt

0 yt = ŷt

Regret
Best in hindsight y? = sign(

∑
t yt )

Regret: RT =
T∑

t=1

`0−1(ŷt , yt )−
T∑

t=1

`0−1(y?, yt )
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Abstract Prediction Model

Set of decisions S
Set of loss functions L = {` : S → R}

Prediction Game
For t = 1, . . . ,T

Learner chooses a decision wt ∈ S
Environment chooses a loss function `t ∈ L
Learner suffers loss `t (wt )

Goal: Conditions on S and L that guarantee low regret

RT :=
T∑

t=1

`t (wt )−
T∑

t=1

`t (w?)
!

= o(T )
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Outline

Identifying sufficient conditions for predictability
Size matters?
No !
Maybe yes with randomization ?
A modern view: revealing an underlying convexity

Regret and Convex Duality
Generality and related work
Experimental results
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Impossibility Result

S = {±1}
L = {`0−1(wt ,1) , `0−1(wt ,−1)}
Adversary can make the cumulative loss of the learner to be T by
using `t (·) = `0−1(·,−wt )

The loss of the constant prediction w? = sign(
∑

t wt ) is at most
T/2
Regret is at least T/2

Conclusion
In the above example, |S| = |L| = 2.
Small size does not guarantee low regret
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Solution: Randomized Predictions

Learner predicts ŷt = 1 with probability wt

Best in hindsight: y?t = 1 with probability w? where w? = |{t :yt=1}|
T

Analyze the expected regret:

T∑
t=1

E[ŷt 6= yt ]−
T∑

t=1

E[y?t 6= yt ]

There are algorithms that achieve expected regret of O(
√

T )
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A modern view: revealing an underlying convexity

Expected zero-one loss can be rewritten as

E[ŷt 6= yt ] =

{
1− wt if yt = 1
wt if yt = −1

Going back to our abstract model, we get that:
S = [0,1]
L = {`(w) = 1− w , `(w) = w}

Properties
All functions in L are linear (and thus are convex and Lipschitz)
S is convex and bounded
Sufficient conditions for low regret ?
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Are we just playing with formalities ?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

Learner receives a vector (x t
1, . . . , x

t
d ) ∈ [−1,1]d of experts advice

Learner needs to predict a target ŷt ∈ R
Environment gives correct target yt ∈ R
Learner suffers loss |yt − ŷt |
Goal: Be almost as good as the best experts committee∑

t |yt − ŷt | −
∑

t |yt − 〈w?,xt〉| !
= o(T )

Modeling
S is the d-dimensional probability simplex
L = {`x,y (w) = |y − 〈w,x〉| : x ∈ [−1,1]d , y ∈ [−1,1]}
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Environment gives correct target yt ∈ R
Learner suffers loss |yt − ŷt |
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Are we just playing with formalities ?

Example: Convexifying finite decision sets
Learner should predict an element st ∈ S′ = {1, . . . ,N}
Environment presents non-convex loss function `′t : S′ → [0,1]

Learner suffers loss `′t (st )

Goal: Be almost as good as the best pure prediction∑
t `
′
t (st )−

∑
t `
′
t (s

?)
!

= o(T )

Modeling
S is the N-dimensional probability simplex
Prediction st is chosen randomly according to wt ∈ S
L = {`r(w) = 〈w, r〉 : r ∈ [0,1]N}
E[`′t (st )] = ``′t (wt )
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Are we just playing with formalities ?

Example: Convexifying finite decision sets
Learner should predict an element st ∈ S′ = {1, . . . ,N}
Environment presents non-convex loss function `′t : S′ → [0,1]

Learner suffers loss `′t (st )

Goal: Be almost as good as the best pure prediction∑
t `
′
t (st )−

∑
t `
′
t (s

?)
!

= o(T )

Modeling
S is the N-dimensional probability simplex
Prediction st is chosen randomly according to wt ∈ S
L = {`r(w) = 〈w, r〉 : r ∈ [0,1]N}
E[`′t (st )] = ``′t (wt )

Shalev-Shwartz (TTI-C) Regret & Duality Tübingen’08 9 / 28



Sufficient Conditions for low regret

The Online Convex Programming (OCP) model
All functions in L are convex and L-Lipschitz
S is convex and max{‖w‖2 : w ∈ S} = D
Then, there exists an algorithm with regret O(L D

√
T )

This is tight (i.e. the minimax value of the game)

Bibliography
The OCP model was presented by Gordon (1999)
Zinkevich (2003) proved a regret bound of O((L2 + D2)

√
T )
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Dimension independency ?

Yes !
The regret bound does not depend on the dimensionality of S
Similarly to Support Vector Machines, we can use Kernel functions

Yes ?
Consider again the prediction with expert advice problem
d experts, each of which gives an “advice” in [−1,1]

S is the probability simplex and thus D = 1
Lipschitz constant is L =

√
d

Regret is Ω(
√

d T ).
Is this the best we can do ?
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Low regret algorithmic framework for OCP

A low regret algorithmic framework for OCP
Family of sufficient conditions for low regret
In particular – Alternatives to the Lipschitz condition
In the expert committee example – logarithmic dependence on
dimension
Main observation: Relating regret and duality
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Fenchel Conjugate

The Fenchel conjugate of the function f : S → R is f ? : Rd → R

f ?(λ) = max
w∈S

〈w,λ〉 − f (w)

If f is closed and convex then f ?? = f

f (w)
slope

=
λ

−f ?(λ)
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Fenchel Duality

max
λ
−f ?(−λ)− g?(λ) ≤ min

w
f (w) + g(w)

0

0

f(w)

g(w) f(w)+g(w)

-f*(-λ)
-g*(λ)

-f*(-λ)-g*(λ)

tangent  
slope λ tangent 

slope -λ
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Regret and Duality

Recall that our goal is:

∀w? ∈ S,
T∑

t=1

`t (wt )−
T∑

t=1

`t (w?) ≤ L D
√

T

Rewrite it in a ’silly’ way
T∑

t=1

`t (wt ) ≤ min
w∈S

L D
√

T +
T∑

t=1

`t (w)

Replace LD
√

T with a function f : S → R s.t. maxw f (w) ≤ LD
√

T .
E.g. f (w) = c ‖w‖2 for c = L

√
T/D. Obtaining:

T∑
t=1

`t (wt ) ≤ min
w∈S

f (w) +
T∑

t=1

`t (w)

Lower bound of a minimization problem. Duality ?
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Properties of the dual problem

max
λ1,...,λT

−f ?(−
∑

t

λt )−
∑

t

`?t (λt ) ≤ min
w∈S

f (w) +
T∑

t=1

`t (w)

Decomposability of the dual
There’s a different dual variable for each online round
Future loss functions do not affect dual variables of current and
past rounds
Therefore, the dual can be optimized incrementally
To optimize λ1, . . . ,λt , it is enough to know `1, . . . , `t
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Primal-Dual Online Prediction Strategy

Algorithmic Framework
Initialize λ1 = . . . = λT = 0
For t = 1,2, . . . ,T

Construct wt from the dual variables
Receive `t
Update dual variables λ1, . . . ,λt

Lemma
Let Dt be the dual value at round t and w.l.o.g assume D1 = 0.

Assume that maxw∈S f (w) ≤ a
√

T
Assume that Dt+1 −Dt ≥ `t (wt )− a√

T

Then, the regret is bounded by 2a
√

T

The proof follows directly from the weak duality theorem
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Strong convexity and sufficient dual increase

Strong Convexity w.r.t. norm
A function f is σ-strongly convex over S w.r.t ‖ · ‖ if for all u,v ∈ S

f (u)+f (v)
2 ≥ f (u+v

2 ) + σ
8‖u− v‖2

Lemma (Sufficient Dual Increase)
Assume:

f is σ-strongly convex w.r.t. ‖ · ‖
`t is closed and convex
∇t is a sub-gradient of `t at wt

Then, there exists a simple dual update rule s.t.

Dt+1 −Dt ≥ `t (wt )−
‖∇t‖2?

2σ
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Generalized Boundedness-Lipschitz condition

Theorem
Assume:

Exists f : S → R which is 1-strongly convex w.r.t. ‖ · ‖
D = maxw∈S

√
f (w)

`t is closed and convex
‖∇t‖? ≤ L (Lipschitz w.r.t. norm ‖ · ‖?)

Then, there exists an algorithm with regret bound 2 D L
√

T

Example usage – back to expert problem
Take f to be the relative entropy
f is strongly convex w.r.t. ‖ · ‖1 and D =

√
log(d)

‖∇t‖? = ‖xt‖∞ ≤ 1
Regret bound becomes O(

√
log(d) T )
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Self Boundedness instead of Lipschitz

Theorem
Replacing Lipschitz condition with the following self-bounded property:

‖∇t‖ ≤ L
√
`t (wt )

Then,

RT ≤ O

L D
√∑

t

`t (w?) + L2 D2

 .

Examples

`(w) = 1
2(〈w,x〉 − y)2 is (

√
2‖x‖)-self-bounded

`(w) = log(1.26 + exp(−y〈w,x〉)) is (‖x‖)-self-bounded
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Generality and Related Work

L

f (w)

Dua
l u

pd
ate
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Generality and Related Work

L

f (w)

Dua
l u

pd
ate

Family of loss functions (L)

Online Learning
(Perceptron, linear
regression, multiclass
prediction, structured
output, ...)
Game theory (Playing
repeated games,
correlated equilibrium)
Information theory
(Prediction of individual
sequences)
Convex optimization
(SGD, dual
decomposition)
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Generality and Related Work

L

f (w)

Dua
l u

pd
ate

Complexity function (f )
Online learning (Grove,
Littlestone, Schuurmans;
Kivinen, Warmuth;
Gentile; Vovk)
Game theory (Hart and
Mas-collel)
Optimization
(Nemirovsky, Yudin;
Beck, Teboulle,
Nesterov)
Unified frameworks
(Cesa-Bianchi and
Lugosi)
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Generality and Related Work

L

f (w)

Dua
l u

pd
ate

Dual update schemes
Only two extremes were
studied:

Gradient update
(naive update of a
single dual variable)
Follow the leader
(Equivalent to full
optimization)

Our analysis enables the
entire spectrum
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Experiments

Task: route emails to folders
7 users from the Enron dataset
Bag of words representation
6 Algorithms

2 complexity functions (Euclidean and Entropy)
3 dual ascent methods

DA1: Fixed sub-gradient (λt = st ∈ ∂`t(wt))
DA2: Optimal sub-gradient (λt = αtst with optimal αt )
DA3: Optimal (λt = arg maxλD(λ1, . . . ,λt−1,λ, 0, . . .))

Performance expectation
Entropy outperforms Euclidean
DA3 better than DA2 better than DA1
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Experimental Results – 3 Dual Updates

Euclidean complexity Entropic complexity
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Experimental Results – 2 Complexity Functions

D1 D3
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Summary and Future work

Summary
The online convex programming is a powerful model
Achieving low regret by primal-dual algorithmic framework
Sufficient conditions for predictability

Current and future work
Logarithmic regret algorithms
Prediction with limited feedback (Bandit algorithms)
Boosting, sparsity, and `1 norm
Similar sufficient conditions for stochastic optimization (PAC
learning)
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