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The Fundamental Theorem of Learning Theory

For Binary Classification

h 1
Uniform e Learnable trivial
Convergence = with ERM J:>[ Learnable }

J

NFL (W'96)

Finite VC |

VC = Vapnik and Chervonenkis, W = Wolpert
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e Fundamental Theore

For Regression

R )
Uniform trivial Learnable trivial
5 ) :>[ Learnable j
Convergence with ERM ]
J
BLW'36,ABCH’'97 e

Finite fat- «swohBLW'96,ABCH 07
shattering

BLW = Bartlett, Long, Williamson. ABCH = Alon, Ben-David, Cesa-Bianchi, Hausler. KS = Kearns and Schapire
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For general learning problems?

Uniform | vl Learnable |
{ Convergence )L with ERM :>[ Learnable j

J

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence



For general learning problems?
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@ Not true
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For general learning problems?

Uniform | e
Convergence

)

@ Not true

Learnable
with ERM

trivial

:>[ Learnable }

o Not true in “Convex learning problems” !
o Not true even in “multiclass categorization” !

@ What is learnable ? How to learn ?
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@ Definitions

© Leamnability without uniform convergence

© Characterizing Learnability using Stability

e Characterizing Multiclass Learnability

© Analyzing specific, practically relevant, classes

© Open Questions
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The General Learning Setting (Vapnik)

@ Hypothesis class H
@ Examples domain Z with unknown distribution D
@ Loss function £: H x Z - R

Given: Training set S ~ D™

Goal: Solve:

gg—tlL(h) where L(h)zzr]VED[ﬁ(h,z)]

in the Probably (w.p. > 1 — §) Approximately Correct (up to €) sense
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The General Learning Setting (Vapnik)

@ Hypothesis class H
@ Examples domain Z with unknown distribution D
@ Loss function £: H x Z - R

Given: Training set S ~ D™

Goal: Solve:

gg—tlL(h) where L(h)zzr]VED[ﬁ(h,z)]

in the Probably (w.p. > 1 — §) Approximately Correct (up to €) sense

m

1
Training loss: Lg(h) = — E 0(h, z;)
m
i=1
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@ Binary classification:
o Z=Xx{0,1}
o h € His a predictor h : X — {0,1}
o U(h, (x,y)) = 1[h(z) # y]
@ Multiclass categorization:
e Z=Xx)Y
e h € Hisa predictor h: X — Y
o U(h, (x,y)) = 1[h(z) # y]
@ k-means clustering:
o Z=R4
o H C (R%)F specifies k cluster centers
o L((p1s- -y pk), 2) = ming [[p; — 2|
@ Density Estimation:
e h is a parameter of a density py(z)
o U(h,z) = —logpn(2)

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence



Learnability, ERM, Uniform convergence

e Uniform Convergence: For m > myc(e, d)

LB IVheEH, |Ls(h)— L(R)| <4 >1-6
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Learnability, ERM, Uniform convergence

e Uniform Convergence: For m > myc(e, d)

LB WheH, |Ls(h) ~ L(h)| <d > 19
o Learnable: A4 s.t. for m > mpac(e,9),

SN]P)Dm L(A(9)) < 2&1?1{1 L(h)+€e|>1-9
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Learnability, ERM, Uniform convergence

e Uniform Convergence: For m > myc(e, d)

LB WheH, |Ls(h) ~ L(h)| <d > 19
o Learnable: A4 s.t. for m > mpac(e,9),

SN]P)Dm L(A(9)) < gél’}_ll L(h)+€e|>1-9

o ERM:
An algorithm that returns A(S) € argming,cq Ls(h)
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Learnability, ERM, Uniform convergence

Uniform Convergence: For m > myc(e, d)

LB IVheEH, |Ls(h)— L(R)| <4 >1-6

Learnable: 3A s.t. for m > mpac(e, ),

SN]P)Dm L(A(9)) < gél’}_ll L(h)+€e|>1-9

o ERM:
An algorithm that returns A(S) € argming,cq Ls(h)

Learnable by arbitrary ERM (with rate mggy (€, 0))
Like “Learnable” but A should be an ERM.
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For Binary Classification

Uniform trivia Learnable
Convergence with ERM

J

trivial

:>[ Learnable j

71
Finite VC } NFL (W0)
myc(€,0) = Mmgru(€,0) = Mpac(e,d) =~ _hVC(H)elog(l/d)
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Outline

© Leamnability without uniform convergence

Shai Shalev-Shwartz (Hebrew U) Learnability Beyond Uniform Convergence Oct'12 10 / 34



Counter Example — Stochastic Convex Optimization

Consider the family of problems:
e 7 is a convex set with maxpey ||h] <1

e For all z, ¢(h, z) is convex and Lipschitz w.r.t. h
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Counter Example — Stochastic Convex Optimization

Consider the family of problems:
e 7 is a convex set with maxpey ||h] <1

e For all z, ¢(h, z) is convex and Lipschitz w.r.t. h

Claim:

@ Problem is learnable by the rule:
m
oA 2 1
argmin 22| h||* + =y L(h, 2)
hem " ; '

@ No uniform convergence
@ Not learnable by ERM
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Counter Example — Stochastic Convex Optimization

Proof (of “not learnable by arbitrary ERM")

@ 1-Mean 4+ missing features
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Counter Example — Stochastic Convex Optimization

Proof (of “not learnable by arbitrary ERM")
@ 1-Mean 4+ missing features

z=(a,r), a € {0,1}¢, z € R?, ||z|| <1

Uh, (0, 2)) = /32, cilhi — x:)?

Take Plo; = 1] =1/2, Plxa =] =1

Let A be s.t.
R _ Jl—n =i
J M O0.W.

If d is large enough, exists i such that h() is an ERM
But L(h)) > 1/y/2
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Counter Example — Stochastic Convex Optimization

Proof (of “not even learnable by a unique ERM")

Perturb the loss a little bit:

(h, (a,x)) = \/Z a;(hi — ;)% + EZ 27 (h; —1)2

@ Now loss is strictly convex — unique ERM

e But the unique ERM does not generalize (as before)
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For general learning problems?

R 7
Uniform e Learnable trivial
Convergence :>{ with ERM J:>[ Learnable j

J

@ Not true

o Not true in “Convex learning problems” ! v
o Not true even in “multiclass categorization” !
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Counter Example — Multiclass

o X —aset, Y =1{0,1,2,...,2%1 —1}
o Let n: 2% — Y be defined by binary encoding
e H={hr:T C X} where

_J0 x¢T
hr(e) = {n(T) zeT
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Counter Example — Multiclass

o X —aset, Y =1{0,1,2,...,2%¥ —1}
o Let n:2% — Y be defined by binary encoding
o H={hp:T C X} where

_Jo r¢T
hr(e) = {n(T) zeT

e Claim: No uniform convergence: myc > |X|/€
e Target function is hy
e For any training set S, take T =X\ §
o Lg(hr) =0 but L(hy) = P[T]
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Counter Example — Multiclass

o X —aset, Y =1{0,1,2,...,2%1 —1}
o Let n:2% — Y be defined by binary encoding
e H={hp:T C X} where

hT(x):{O x¢T

n(T) z€T

@ Claim: H is Learnable: mpyc <

Let T be the target

A(S) = hr if (z,n(T)) € S

A(S) = hy if S = {(21,0),..., (2, 0)}

In the 1st case, L(A(S)) = 0.

In the 2nd case, L(A(S)) = P[T]

With high probability, if P[T] > € then we'll be in the 1st case

1
€
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Counter Example — Multiclass

TUC g | X|.
mpAC

e If|X| — oo then the problem is learnable but there is no uniform
convergence!
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Outline

© Characterizing Learnability using Stability
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Characterizing Learnability using Stability

A sufficient and necessary condition for learnability is the existence of
Asymptotic ERM (AERM) which is stable.

U f RI\]P'OS,MNPR'OS trivial
{ ConC;f’gre",lce —>( ERM is stable == 3 stable AERM |

J

[ Learnable }
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More formally

Definition (Stability)

We say that A is €gtaple (1 )-replace-one stable if for all D,

E [6(A(SY);2") — L(A(S); 2')| < estable(m).

.
S,2! i
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More formally

Definition (Stability)

We say that A is €gtaple (1 )-replace-one stable if for all D,

E [6(A(SY);2") — L(A(S); 2')| < estable(m).

!
Sz’ i

Definition (AERM)

We say that A is an AERM (Asymptotic Empirical Risk Minimizer) with
rate €erm(m) if for all D:

s L, ILs(A(5)) — min Ls(h)] < eerm(m)
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Proof sketch: (Stable AERM is sufficient and necessary for

Learnability)

Sufficient:
o For AERM: stability = generalization
o AERM+-generalization = consistency
Necessary:
e J consistent A =
3 consistent and generalizing A’ (using subsampling)
o Consistent+generalizing = AERM
o AERM+-generalizing = stable
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Intermediate Summary

@ Learnability <= 3 stable AERM

@ But, how do we find one?

@ And, is there a combinatorial notion of learnability (like VC
dimension) ?

Oct'12 21 /34
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Outline

@ Characterizing Multiclass Learnability
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Why multiclass learning

@ Practical relevance

@ A simple twist of binary classification
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The Natarajan Dimension

Natarajan dimension: Maximal size of N-shattered set where:

C'is N-shattered by H if 3f1, fo € H s.t. Vo € C, fi(x) # fa(z), and for
every T' C (' exists h € H with

h(z) = {fl(x) ?fa;eT
fo(z) fxeC\T
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The Natarajan Dimension

Natarajan dimension: Maximal size of N-shattered set where:

C'is N-shattered by H if 3f1, fo € H s.t. Vo € C, fi(x) # fa(z), and for
every T' C (' exists h € H with

h(z) = {fl(x) ?fa;eT
fo(z) fxeC\T

e When |Y| = 2, Natarajan dimension equals to VC dimension
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Does Natarajan dimension characterize multiclass
learnability ?

Theorem (Natarajan'89, Ben-David et al 95)

If H is a class of functions with Natarajan dimension d then

d+1n(1/0) dIn(|Y|) In(1/€) +1In(1/9) '

€ €

< mPAC(ev 5) <
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Does Natarajan dimension characterize multiclass
learnability ?

Theorem (Natarajan'89, Ben-David et al 95)

If H is a class of functions with Natarajan dimension d then

d(/0) _ sy < (YD) /o) +In(1/8)

€ - €

Remark:
o A large gap when ) is large

@ Uniform convergence rate does depend on Y
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How to design good ERM algorithm?

e Consider again our counter example: ) = {0, ... 21X — 1} and
H={hp:T C X} with

hT(x)—{O x¢T

n(T) z€T
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How to design good ERM algorithm?

e Consider again our counter example: ) = {0, ... 21X — 1} and
H={hp:T C X} with

hT(x)—{O x¢T

n(T) z€T

e Bad ERM:

o If S =(x1,0),...,(2m,0) return Ay with T = X\ {z1,..., 2}
e Good ERM

o If S =(x1,0),...,(xm,0) return hy
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How to design a good ERM algorithm?

Definition

A has an essential range r if Yh € H,3Y'(h) with |V'(h)| < r s.t. for all
S labeled by h we have A(S) € V'(h)

A Principle for Designing Good ERMs

A good ERM is an ERM that has a small essential range ]

If a learner has an “essential” range r then

< dln(r/€e) +1n(1/9)

ma(e,0) < p
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Characterizing Multiclass Learnability

For any H of Natarajan dimension d,

d+1n(1/0) < mppele.d) < dIn(d/e) +In(1/9) ‘

€ €
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Characterizing Multiclass Learnability

For any H of Natarajan dimension d,

d+1n(1/0) < mppele.d) < dIn(d/e) +In(1/9) ‘

€ €

e Cannot rely on uniform convergence / arbitrary ERM
@ Maybe there's always an ERM with a small essential range ?

@ Holds for symmetric classes
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Outline

© Analyzing specific, practically relevant, classes
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Sample Complexity of Specific classes

@ Enables a rigorous comparison of known multiclass algorithms

o Previous analyses (e.g. ASS'01,BL'07): how the binary error translates
to multiclass error

@ Multiclass predictors:

One-vs-All (OvA)

Multiclass SVM (MSVM): arg max; (W z);

Tree Classifiers (TC), with O(|)|) nodes

Error Correcting Output Codes (ECOC), with code-length O(|)|)

o Use linear predictors in R? as the binary classifiers
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Sample Complexity of Specific classes

@ Enables a rigorous comparison of known multiclass algorithms

o Previous analyses (e.g. ASS'01,BL'07): how the binary error translates
to multiclass error

@ Multiclass predictors:

One-vs-All (OvA)

Multiclass SVM (MSVM): arg max; (W z);

Tree Classifiers (TC), with O(|)|) nodes

Error Correcting Output Codes (ECOC), with code-length O(|)|)

o Use linear predictors in R? as the binary classifiers

The sample complexity of all the above classes is ©(d |Y)|).
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Comparing Approximation Error

Definition

o We say that H essentially contains H' if for any distribution, the
approximation error of H is at most the approximation error of #'.

@ H strictly contains H' if, in addition, there is a distribution for which
the approximation error of # is strictly smaller than that of #'.
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Comparing Approximation Error

MSVM v/ v v/
OvA v v X
TC/ECOC v X X

* Assuming tree structure and ECOC code are chosen randomly
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Comparing Approximation Error

TC OvA MSVM | random ECOC
Est. d|y| d|y| d|y| d|y|
Approx. > MSVM > MSVM best incomparable
error ~1/2ifd < |Y) ~1/2ifd < |Y)
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Open Questions

Equivalence between uniform convergence and learnability breaks even
in multiclass problems

What characterizes multiclass learnability ?
What is the corresponding learning rule ?
What characterizes learnability in the general learning setting 7

What is the corresponding learning rule ?
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Open Questions

Equivalence between uniform convergence and learnability breaks even
in multiclass problems

What characterizes multiclass learnability ?
What is the corresponding learning rule ?
What characterizes learnability in the general learning setting 7

What is the corresponding learning rule ?

THANKS
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