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Motivation

Many examples but partial information on each individual example:

Missing values (e.g. medical prognosis)

Partial supervision (e.g. sponsored advertisement)

Latent variables (e.g. Multi-instance learning)

Noise

privacy protected data

Message of this talk:

The availability of many examples can compensate for the lack
of full information on each individual example
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Attribute efficient regression

Each training example is a pair (x, y) ∈ Rd × R
Partial information: can only view O(1) attributes of each individual
example
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Sponsored Advertisement (multi-armed bandit)

Each training example is a pair (x, c) ∈ Rd × [0, 1]k

Partial information: Don’t know c. Can only guess some y and know
the value of cy
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Object Recognition (Latent SVM)

Each training example is a pair (x, y) ∈ Rd × {±1}
Partial information: Latent variable h (represents the pose)
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Privacy preserving learning (Sanitization by noise)

Data custodian has a “clean” dataset S = {x1, . . . ,xm}
Partial information: To maintain privacy, only noisy versions of the
examples are observed
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How more data helps?

Three main techniques:

1 Missing information as noise

2 Active Exploration — try to “fish” the relevant information

3 Inject structure — problem hard in the original representation but
becomes simple in another representation (different hypothesis class)

More data helps because:

1 It reduces variance — compensates for the noise

2 It allows more exploration

3 It compensates for statistical difficulty of learning larger hypotheses
classes
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Attribute efficient regression

Formal problem statement:

Unknown distribution D over Rd × R
Goal: learn a linear predictor x 7→ 〈w,x〉 with low risk:

Risk (generalization error): LD(w) = ED[(〈w,x〉 − y)2]

Training set: (x1, y1), . . . , (xm, ym)

Partial information: For each (xi, yi), learner can view only k
attributes of xi

Active selection: learner can choose which k attributes to see

Similar to “Learning with restricted focus of attention” (Ben-David &

Dichterman 98)
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Dealing with missing information

Usually difficult — exponential ways to complete the missing
information

Popular approach — Expectation Maximization (EM)

Previous methods usually do not come with guarantees
(neither sample complexity nor computational complexity)
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Ostrich approach

Simply set the missing attributes to a default value

Use your favorite regression algorithm for full information, e.g.,

min
w

m∑
i=1

(〈w, x̃i〉 − yi)
2 + λ‖w‖p

p

Ridge Regression: p = 2
Lasso: p = 1

Efficient

Consistent? Sample complexity? How to choose attributes ?
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Partial information as noise

Observation:

x =


x1

x2
...
xd

 =
1

d


dx1

0
...
0

+ . . .+
1

d


0
...
0
dxd


Therefore, choosing i uniformly at random gives

E
i
[dxiei] = x .

If ‖x‖∞ ≤ 1 then ‖dxiei‖∞ ≤ d (i.e. variance increased)

Reduced missing information to unbiased noise

Many examples can compensate for the added noise
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Many examples compensates for noise

True goal: minimize over w the generalization
errorLD(w) = E(x,y)[(〈w,x〉 − y)2]

Loss on one example, (〈w,x〉 − y)2, gives an unbiased estimate for
LD(w)

Averaging loss on many examples reduces variance

In our case, we construct an unbiased estimate of the loss of each
single example

Variance increases but many examples still reduces it back
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Loss-Based Attribute Efficient Regression (LaBAER)

Theorem (Cesa-Bianchi, S, Shamir)

Let ŵ be the output of LaBAER. Then, with overwhelming probability

LD(ŵ) ≤ min
w:‖w‖1≤B

LD(w) + Õ

(
d2B2

√
m

)
,

where d is dimension and m is number of examples.

Factor of d4 more examples compensates for the missing information !

Can we do better?
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Pegasos Attribute Efficient Regression (PAER)

The factor d2 in the bound — because we estimate a matrix xxT

Can we avoid estimating the matrix ?

Yes ! Estimate the gradient of the loss instead of the loss

The gradient of the loss is a vector: ∇`(w) = 2(〈w,x〉 − y)x
Estimating the gradient:

Choose i uniformly from [d] and estimate x as before
Choose j according to P[j] = |wj |/‖w‖1 and set ŷ = sgn(wj)‖w‖1 xj

Note that E[ŷ] = 〈w,x〉
Estimation depends on w

Need an online learning method

Leads to a much better bound
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Comparing Partial to Full information

How many examples/attributes are needed to achieve error ε ?

Below we show: PAER bound
Lasso bound

sparse w? dense w?

Sample complexity d2 d

Attributes complexity d 1
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Demonstration

Averaging over all pairs, full information classifiers have generalization
error of ∼ 1.5%

Our algorithms have generalization error of ∼ 4% while only
observing 4 pixels of each example
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Demonstration
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Intermediate summary

Efficient algorithms, Provably correct (finite sample generalization
bound)

Technique: Replace missing information with noise

Having more examples compensates for the lack of information on
each individual example

Coming next:

Partial supervision

Technique: Active Exploration

Larger regret can be compensated by having more examples
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Second example: Online Ads Placement

For t = 1, 2, . . . ,m

Learner receives side information xt ∈ Rd

Learner places an ad ŷt ∈ [k]

Learner pay cost ct(ŷt)

“Bandit setting” — learner does not know costs of other ads

Goal: Minimize error rate:

err =
1

m

m∑
t=1

ct(ŷt) .
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Simplifying assumptions

Cost vector is eyt

Exists W s.t. ∀r 6= yt, (Wxt)yt − (Wxt)r ≥ µ

Rd
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Halving

It is possible to adapt the Halving algorithm for our task

Sample complexity is order of k2/µ2

ε

But runtime grows like (1/µ)kd′
= (m+ k)Õ(k/µ2)
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How can we improve runtime?

Halving is not efficient because it does not utilize the structure of H
If we knew yt we could have used the Perceptron which utilizes
convexity and is thus efficient

Next approach: Lets try to rely on the Perceptron

But, how can we use Perceptron without knowing the value of yt?
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The Banditron (Kakade, S, Tewari 08)

Let ŷt be the predicting of our current model

Explore: From time to time, instead of predicting ŷt guess some ỹt

Suppose we get the feedback ’correct’, i.e. ỹt = yt

Then, we have full information for Perceptron’s update:
(xt, ŷt, ỹt = yt)

Exploration-Exploitation Tradeoff:

When exploring we may have ỹt = yt 6= ŷt and can learn from this
When exploring we may have ỹt 6= yt = ŷt and then we had the right
answer in our hands but didn’t exploit it

Exploration increases cost but more data compensates for it!
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The Banditron

Theorem

Banditron’s sample complexity is order of k/µ2

ε2

Banditron’s runtime is O(k/µ2)

The crux of difference between Halving and Banditron:

Without having the full information, the version space is non-convex
and therefore it is hard to utilize the structure of H
Because we relied on the Perceptron we did utilize the structure of H
and got an efficient algorithm

We managed to obtain ’full-information examples’ by using
exploration

The price of exploration is a higher regret
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More data improves runtime

Algorithm samples runtime

Halving k2/µ2

ε (m+ k)Õ(k/µ2)

Banditron k/µ2

ε2 k/µ2

runtime

m

Halving

Banditron
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Last example: Latent SVMs

Latent SVM: The goal is to learn a classifier of the form

fw(x) = sgn

(
max

z∈Z(x)
〈w,Φ(x, z)〉

)
,

where w is the parameter vector and Z(x) is a set of possible latent
values.

Felzenszwalb, McAllester and Ramanan used latent SVM for training
a deformable part model for object detection: Φ(xi, z) specifies a
score of a HOG pyramid which is places according to z.
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Latent SVM

In the separable case, the learning problem is to find w with minimal
norm s.t.

∀(x, y) ∈ S, y max
z∈Z(x)

〈w,Φ(x, z)〉 ≥ 1 .

Problem: Non-convex constraints
Main idea: Work with a larger hypothesis class for which the
constraints become convex

x 7→ maxz〈w,Ψ(x, z)〉
x 7→

〈v, ψ
(x)〉
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Latent SVM

Step 1:

Note that for any β > 0 and vector (a1, . . . , ar):

max
z
az ≤

1

β
log

(∑
z

eβaz

)
≤ max

z
az +

log(r)

β

Therefore, for β large enough we have

max
z
〈w,Φ(x, z)〉 ≈ 1

β
log

(∑
z

eβ〈w,Φ(x,z)〉

)
.

Original constraint: y maxz〈w,Φ(x, z)〉 ≥ 1

New constraint: y 1
β log

(∑
z e

β〈w,Φ(x,z)〉) ≥ 1
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Latent SVM

Step 2:

Equivalent constraint:
∑

z e
β〈w,Φ(x,z)〉 ≥ eβ−y

Based on Taylor expansion, can write eβ〈w,Φ(x,z)〉 = 〈v,Ψ(x, z)〉,
where Ψ is a mapping to some Reproducing Kernel Hilbert Space.

Therefore, constraints become convex, and problem is solvable using
the kernel-trick

The price: we learn a larger hypothesis class, hence need more data
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Summary

Learning theory: Many examples ⇒ smaller estimation error

This work: Many examples ⇒ more efficient algorithms for partial
information case

How can more data reduce runtime:
1 Missing information as noise
2 Active Exploration
3 Inject structure
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