Efficient learning with partial information on each individual example

Shai Shalev-Shwartz

School of Computer Science and Engineering The Hebrew University of Jerusalem

Joint work with Nicolo Cesa-Bianchi, Ohad Shamir, Sham Kakade, Ambuj Tewari

Vision Seminar, Weizmann Inst., Jan. 2010

Jan'10 1 / 30

Many examples but partial information on each individual example:

- Missing values (e.g. medical prognosis)
- Partial supervision (e.g. sponsored advertisement)
- Latent variables (e.g. Multi-instance learning)
- Noise
- privacy protected data

Message of this talk:

The availability of many examples can compensate for the lack of full information on each individual example

Attribute efficient regression

- Each training example is a pair $(\mathbf{x}, y) \in \mathbb{R}^d imes \mathbb{R}$
- Partial information: can only view O(1) attributes of each individual example

Sponsored Advertisement (multi-armed bandit)

- Each training example is a pair $(\mathbf{x}, \mathbf{c}) \in \mathbb{R}^d \times [0, 1]^k$
- Partial information: Don't know c. Can only guess some y and know the value of c_u

	hotels in israel	Google
	חפש דפים בעברית 🔘	
(שניות 0.25) hotels in israel עבור 58,400,000 -1 מתוך כ- 10.25 שניות	an	אינטרנט 🗄 <u>הצג אפשרויות</u>
ם ממומנים קישורים ממומנים	קישור	Cheap Tel Aviv Hotels
RAMOT RESORT HOTEL	75% Off in Tel Aviv Hotels Book your room on	line! GalaHotels.com/Enjoy-Tel.Aviv
Hotel Rooms, luxury Suites & Cabins		Gordon Inn Hostel Israel
Overlooking the Sea of Galilee	Specials from \$60 in Tel Aviv Israe Three minutes walk t	
www.ramot-nofesh.com		Hilton Hotels in Israel
Mamilla Hotel Jerusalem	A choice of superb Hilton hotels in Israel. Book	
Jerusalem newest & most fashionable		
Lifestyle 5 Stars Luxury Hotel . www.MamillaHotel.com	ר את שפת החיפוש שלך ב <u>העדפות</u>	טיפ: <u>חפש תוצאות בעברית בלבד</u> . תוכל לבחור
	י מלוו	- israel hotels - מלונות בישראל
Tel Aviv Hotel	על כל מלון כולל תיאור, מיקום, מבצעים ואפשרות הזמנה.	אתר המרכז מלונות מכל אזורי הארץ. המידע
Tel Aviv - Book Now! Amazing Discounts – Up To 80% Off		מלונות באילת - מלונות בים המלח - מלונות בו
HotelsCombined.com/Tel_Aviv		/www.hotels.co.il - <u>עותק שמור</u> - <u>דומה</u>
Accomodation in Tel Aviv		<u>israel hotels - מלונות בישרא</u>
The Ultimate Tel Aviv Experience	המוביל בישראל לשיווק מלונות וחופשות בשיווק ישיר. כל הגורמים ערכת בעותו ווימשו	אתר www.hotels.co.il אתר ה המופיעים בו מנהלים את פעילותם במי
For Short&Medium Length Stays !	עוסו באופן עבמאי www עותק שמור - דומה - © או א	
Tel-Aviv.ipp-pages.co.il		a distante la facerat
Tel Aviv Hotel	Reviews on hotels in Israel Hotels in Israel V	- <u>Hotels in Israel</u> - [מרגם דף זה] - <u>Hotels in Israel</u>
Compare more than 99000 hotels.	Israel Special Hotel	Deals and reviewed hotels in israel
Low Prices Guarantee! Hotels.com/tel-aviv		s - Jerusalem Hotels - Dead Sea Hotels
Hotels.com/tel-aviv	- <u>man</u> - 🖓 🛧 🗵	- www.hotels-in-israel.com/ עותק שמור
Internet Access in Israel		התאחדות המלונות
Connect your Laptop to the Internet with a cellular modern for €10/day	ארץ: אילת,ירושלים,תל אביב, אירועים במלונות, חדשות מלונות,	התאחדות המלונות בישראל , IHA , מלונות בי האתר הרשמי של התאחדות המלונות בישראל
www.telroam.com		האתר הרשמי של התאחדות המלונות בישראל www.iha.org.il/ - עותק שמור - דומה - 🗇 🕅
Restaurants of level		A A A A A A A A A A A A A A A A A A A
	rning with partial information	1

Shai Shalev-Shwartz (Hebrew University)

learning with partial information

4/30

Object Recognition (Latent SVM)

- Each training example is a pair $(\mathbf{x}, y) \in \mathbb{R}^d \times \{\pm 1\}$
- Partial information: Latent variable *h* (represents the pose)

Privacy preserving learning (Sanitization by noise)

- Data custodian has a "clean" dataset $S = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$
- Partial information: To maintain privacy, only noisy versions of the examples are observed

Three main techniques:

- Missing information as noise
- Output Active Exploration try to "fish" the relevant information
- Inject structure problem hard in the original representation but becomes simple in another representation (different hypothesis class)

More data helps because:

- It reduces variance compensates for the noise
- It allows more exploration
- It compensates for statistical difficulty of learning larger hypotheses classes

Formal problem statement:

- \bullet Unknown distribution ${\mathcal D}$ over ${\mathbb R}^d \times {\mathbb R}$
- \bullet Goal: learn a linear predictor $\mathbf{x}\mapsto \langle \mathbf{w},\mathbf{x}\rangle$ with low risk:
- Risk (generalization error): $L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{\mathcal{D}}[(\langle \mathbf{w}, \mathbf{x} \rangle y)^2]$
- Training set: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$
- Partial information: For each (x_i, y_i) , learner can view only k attributes of x_i
- Active selection: learner can choose which k attributes to see

Similar to "Learning with restricted focus of attention" (Ben-David & Dichterman 98)

- Usually difficult exponential ways to complete the missing information
- Popular approach Expectation Maximization (EM)

Previous methods usually do not come with guarantees (neither sample complexity nor computational complexity) • Simply set the missing attributes to a default value

• Use your favorite regression algorithm for full information, e.g.,

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \tilde{\mathbf{x}}_i \rangle - y_i)^2 + \lambda \|\mathbf{w}\|_p^p$$

- Ridge Regression: p = 2
- Lasso: p = 1

- Simply set the missing attributes to a default value
- Use your favorite regression algorithm for full information, e.g.,

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \tilde{\mathbf{x}}_i \rangle - y_i)^2 + \lambda \|\mathbf{w}\|_p^p$$

- Ridge Regression: p = 2
- Lasso: p = 1
- Efficient
- Consistent? Sample complexity? How to choose attributes ?

• Observation:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \frac{1}{d} \begin{pmatrix} dx_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \frac{1}{d} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ dx_d \end{pmatrix}$$

• Therefore, choosing *i* uniformly at random gives

$$\mathbb{E}_i[dx_i\mathbf{e}^i] = \mathbf{x} \; .$$

- If $\|\mathbf{x}\|_{\infty} \leq 1$ then $\|dx_i \mathbf{e}^i\|_{\infty} \leq d$ (i.e. variance increased)
- Reduced missing information to unbiased noise
- Many examples can compensate for the added noise

- True goal: minimize over \mathbf{w} the generalization error $L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{(\mathbf{x},y)}[(\langle \mathbf{w}, \mathbf{x} \rangle - y)^2]$
- Loss on one example, $(\langle {f w}, {f x} \rangle y)^2$, gives an unbiased estimate for $L_{\cal D}({f w})$
- Averaging loss on many examples reduces variance
- In our case, we construct an unbiased estimate of the loss of each single example
- Variance increases but many examples still reduces it back

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of LaBAER. Then, with overwhelming probability

$$L_{\mathcal{D}}(\hat{\mathbf{w}}) \leq \min_{\mathbf{w}: \|\mathbf{w}\|_1 \leq B} L_D(\mathbf{w}) + \tilde{O}\left(rac{d^2 B^2}{\sqrt{m}}
ight) \; ,$$

where d is dimension and m is number of examples.

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of LaBAER. Then, with overwhelming probability

$$L_{\mathcal{D}}(\mathbf{\hat{w}}) \leq \min_{\mathbf{w}: \|\mathbf{w}\|_1 \leq B} L_D(\mathbf{w}) + \tilde{O}\left(rac{d^2 B^2}{\sqrt{m}}
ight) \;,$$

where d is dimension and m is number of examples.

• Factor of d^4 more examples compensates for the missing information !

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of LaBAER. Then, with overwhelming probability

$$L_{\mathcal{D}}(\mathbf{\hat{w}}) \leq \min_{\mathbf{w}: \|\mathbf{w}\|_1 \leq B} L_D(\mathbf{w}) + \tilde{O}\left(rac{d^2 B^2}{\sqrt{m}}
ight) \;,$$

where d is dimension and m is number of examples.

Factor of d⁴ more examples compensates for the missing information !
Can we do better?

- The factor d^2 in the bound because we estimate a matrix $\mathbf{x}\mathbf{x}^T$
- Can we avoid estimating the matrix ?
- Yes ! Estimate the gradient of the loss instead of the loss
- The gradient of the loss is a vector: $abla \ell(\mathbf{w}) = 2(\langle \mathbf{w}, \mathbf{x} \rangle y)\mathbf{x}$
- Estimating the gradient:
 - Choose i uniformly from [d] and estimate \mathbf{x} as before
 - Choose j according to $\mathbb{P}[j] = |w_j| / \|\mathbf{w}\|_1$ and set $\hat{y} = \mathrm{sgn}(w_j) \|\mathbf{w}\|_1 x_j$
 - Note that $\mathbb{E}[\hat{y}] = \langle \mathbf{w}, \mathbf{x}
 angle$
- $\bullet\,$ Estimation depends on ${\bf w}$
- Need an online learning method
- Leads to a much better bound

• How many examples/attributes are needed to achieve error ϵ ? PAER bound Below we show: • Lasso bound

	sparse \mathbf{w}^{\star}	dense \mathbf{w}^{\star}
Sample complexity	d^2	d
Attributes complexity	d	1

3 🕨 🖌 3

- \bullet Averaging over all pairs, full information classifiers have generalization error of $\sim 1.5\%$
- Our algorithms have generalization error of $\sim 4\%$ while only observing 4 pixels of each example

Demonstration

Intermediate summary

- Efficient algorithms, Provably correct (finite sample generalization bound)
- Technique: Replace missing information with noise
- Having more examples compensates for the lack of information on each individual example

Intermediate summary

- Efficient algorithms, Provably correct (finite sample generalization bound)
- Technique: Replace missing information with noise
- Having more examples compensates for the lack of information on each individual example

Coming next:

- Partial supervision
- Technique: Active Exploration
- Larger regret can be compensated by having more examples

For $t = 1, 2, \ldots, m$

- Learner receives side information $\mathbf{x}_t \in \mathbb{R}^d$
- Learner places an ad $\hat{y}_t \in [k]$
- Learner pay cost $c_t(\hat{y}_t)$
- "Bandit setting" learner does not know costs of other ads

Goal: Minimize error rate:

$$\mathsf{err} = rac{1}{m} \sum_{t=1}^m c_t(\hat{y}_t) \; .$$

Simplifying assumptions

- Cost vector is \mathbf{e}^{y_t}
- Exists W s.t. $\forall r \neq y_t$, $(W\mathbf{x}_t)_{y_t} (W\mathbf{x}_t)_r \geq \mu$

- It is possible to adapt the Halving algorithm for our task
- Sample complexity is order of $\frac{k^2/\mu^2}{\epsilon}$
- But runtime grows like $(1/\mu)^{kd'} = (m+k)^{\tilde{O}(k/\mu^2)}$

- $\bullet\,$ Halving is not efficient because it does not utilize the structure of ${\cal H}$
- If we knew y_t we could have used the Perceptron which utilizes convexity and is thus efficient
- Next approach: Lets try to rely on the Perceptron
- But, how can we use Perceptron without knowing the value of y_t ?

- Let \hat{y}_t be the predicting of our current model
- Explore: From time to time, instead of predicting \hat{y}_t guess some \tilde{y}_t
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_t = y_t$
- Then, we have full information for Perceptron's update: $(\mathbf{x}_t, \hat{y}_t, \tilde{y}_t = y_t)$

- Let \hat{y}_t be the predicting of our current model
- Explore: From time to time, instead of predicting \hat{y}_t guess some \tilde{y}_t
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_t = y_t$
- Then, we have full information for Perceptron's update: $(\mathbf{x}_t, \hat{y}_t, \tilde{y}_t = y_t)$
- Exploration-Exploitation Tradeoff:
 - When exploring we may have $\tilde{y}_t = y_t \neq \hat{y}_t$ and can learn from this
 - When exploring we may have $\tilde{y}_t\neq y_t=\hat{y}_t$ and then we had the right answer in our hands but didn't exploit it
- Exploration increases cost but more data compensates for it!

The Banditron

Theorem

- Banditron's sample complexity is order of $\frac{k/\mu^2}{\epsilon^2}$
- Banditron's runtime is $O(k/\mu^2)$

Theorem

- Banditron's sample complexity is order of $\frac{k/\mu^2}{\epsilon^2}$
- Banditron's runtime is $O(k/\mu^2)$

The crux of difference between Halving and Banditron:

- Without having the full information, the version space is non-convex and therefore it is hard to utilize the structure of ${\cal H}$
- Because we relied on the Perceptron we did utilize the structure of ${\cal H}$ and got an efficient algorithm
- We managed to obtain 'full-information examples' by using exploration
- The price of exploration is a higher regret

More data improves runtime

Algorithm	samples	runtime
Halving	$rac{k^2/\mu^2}{\epsilon}$	$(m+k)^{\tilde{O}(k/\mu^2)}$
Banditron	$\frac{k/\mu^2}{\epsilon^2}$	k/μ^2
	↑ :	

Jan'10 25 / 30

3 ×

• Latent SVM: The goal is to learn a classifier of the form

$$f_{\mathbf{w}}(\mathbf{x}) = \mathsf{sgn} \left(\max_{z \in Z(\mathbf{x})} \langle \mathbf{w}, \Phi(\mathbf{x}, z)
angle
ight) \; ,$$

where \mathbf{w} is the parameter vector and $Z(\mathbf{x})$ is a set of possible latent values.

 Felzenszwalb, McAllester and Ramanan used latent SVM for training a deformable part model for object detection: Φ(x_i, z) specifies a score of a HOG pyramid which is places according to z.

• In the separable case, the learning problem is to find w with minimal norm s.t.

$$orall (\mathbf{x},y) \in S, \quad y \max_{z \in Z(\mathbf{x})} \langle \mathbf{w}, \Phi(\mathbf{x},z)
angle \ \geq \ 1 \; .$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

 $\bullet\,$ In the separable case, the learning problem is to find ${\bf w}$ with minimal norm s.t.

$$orall (\mathbf{x},y) \in S, \quad y \max_{z \in Z(\mathbf{x})} \langle \mathbf{w}, \mathbf{\Phi}(\mathbf{x},z)
angle \ \geq \ 1 \; .$$

• Problem: Non-convex constraints

Jan'10

(日) (同) (三) (三)

• In the separable case, the learning problem is to find w with minimal norm s.t.

$$orall (\mathbf{x},y) \in S, \quad y \max_{z \in Z(\mathbf{x})} \langle \mathbf{w}, \Phi(\mathbf{x},z)
angle \ \geq \ 1 \; .$$

- Problem: Non-convex constraints
- Main idea: Work with a larger hypothesis class for which the constraints become convex

Step 1:

• Note that for any $\beta > 0$ and vector (a_1, \ldots, a_r) :

$$\max_{z} a_{z} \leq \frac{1}{\beta} \log \left(\sum_{z} e^{\beta a_{z}} \right) \leq \max_{z} a_{z} + \frac{\log(r)}{\beta}$$

• Therefore, for β large enough we have

$$\max_{z} \langle \mathbf{w}, \Phi(\mathbf{x}, z) \rangle \approx \frac{1}{\beta} \log \left(\sum_{z} e^{\beta \langle \mathbf{w}, \Phi(\mathbf{x}, z) \rangle} \right)$$

- Original constraint: $y \max_z \langle \mathbf{w}, \Phi(\mathbf{x}, z) \rangle \geq 1$
- New constraint: $y \frac{1}{\beta} \log \left(\sum_{z} e^{\beta \langle \mathbf{w}, \Phi(\mathbf{x}, z) \rangle} \right) \ge 1$

.

Step 2:

- Equivalent constraint: $\sum_{z} e^{\beta \langle \mathbf{w}, \Phi(\mathbf{x}, z) \rangle} \ge e^{\beta y}$
- Based on Taylor expansion, can write $e^{\beta \langle \mathbf{w}, \Phi(\mathbf{x}, z) \rangle} = \langle \mathbf{v}, \Psi(\mathbf{x}, z) \rangle$, where Ψ is a mapping to some Reproducing Kernel Hilbert Space.
- Therefore, constraints become convex, and problem is solvable using the kernel-trick
- The price: we learn a larger hypothesis class, hence need more data

- Learning theory: Many examples \Rightarrow smaller estimation error
- This work: Many examples \Rightarrow more efficient algorithms for partial information case
- How can more data reduce runtime:
 - Missing information as noise
 - 2 Active Exploration
 - Inject structure