Efficient learning with partial information on each individual example

Shai Shalev-Shwartz

School of Computer Science and Engineering The Hebrew University of Jerusalem

Joint work with Nicolo Cesa-Bianchi, Ohad Shamir, Sham Kakade, Ambuj Tewari
Vision Seminar, Weizmann Inst., Jan. 2010

Motivation

Many examples but partial information on each individual example:

- Missing values (e.g. medical prognosis)
- Partial supervision (e.g. sponsored advertisement)
- Latent variables (e.g. Multi-instance learning)
- Noise
- privacy protected data

Message of this talk:
The availability of many examples can compensate for the lack of full information on each individual example

Attribute efficient regression

- Each training example is a pair $(\mathbf{x}, y) \in \mathbb{R}^{d} \times \mathbb{R}$
- Partial information: can only view $O(1)$ attributes of each individual example

Sponsored Advertisement (multi-armed bandit)

- Each training example is a pair $(\mathbf{x}, \mathbf{c}) \in \mathbb{R}^{d} \times[0,1]^{k}$
- Partial information: Don't know c. Can only guess some y and know the value of c_{y}

תוצאות 1-10 מתוך $1 \rightarrow$ hotels in israel (0.25 שניות) $58,400,000$ עבר
קישורם ממומנים קישורים ממומנים
RAMOT RESORT HOTEL Hotel Rooms, luxury Suites \& Cabins Overlooking the Sea of Galilee www.ramot-nofesh.com

Marmilla Hotel Jerusalem Jerusalem newest \& most fashionable Lifestyle 5 Stars Luxury Hotel wnw.MamillaHotel com

Tel Aviv Hotel
Tel Aviv - Book Now Amazing Discounts - Up To 80\% Off HotelsCombined.com/Tel_Aviv

Accomodation in Tel Aviv The Ultimate Tel Aviv Experience For Short\&Medium Length Stays Tel-Aviv.ipp-pages co.il

Tel Aviv Hotel

Compare more than 99000 hotels Low Prices Guarantee! Hotels.com/tel-aviv
Intemet Access in Israel Connect your Laptop to the Internet with a cellular modem for $€ 10 /$ day

75\% Off in Tel Aviv Hotels Book your room online!

ת ת ת
Cheap Tel Aviv Hotels GalaHotels.com/Enjoy-Tel.Aviv

Gordon Inn Hostel Israel
Specials from $\$ 60$ in Tel Aviv Israe Three minutes walk to the beach www.hostelstelaviv.com
Hilton Hotels in Israel
A choice of superb Hilton hotels in Israel. Book online today! www. Hilton.com/Israel
טיפ: חפש תוצאות בעברית בלבד. תוכל לבחור את שפת החיפוש שלך בהעדפות

- israel hotels

HOTELS.CO.IL - מלונות בישראל - israel hotels

 Israel Special We offer a huge choice of Israel hotels, T x Aviv Hotels - Jorusalem Hotels - Dead Sea Hotels

> התאחדות המלונות

התאחדות המלומות בישראל , HHA מלומת בארץ: אילת,ירושלים,תל אביב, איחעים במלומת, חדשות מלומות, האתר הרשמי של התאחדות המלומות בישראל.

Object Recognition (Latent SVM)

- Each training example is a pair $(\mathbf{x}, y) \in \mathbb{R}^{d} \times\{ \pm 1\}$
- Partial information: Latent variable h (represents the pose)

Privacy preserving learning (Sanitization by noise)

- Data custodian has a "clean" dataset $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$
- Partial information: To maintain privacy, only noisy versions of the examples are observed

How more data helps?

Three main techniques:
(1) Missing information as noise
(2) Active Exploration - try to "fish" the relevant information
(3) Inject structure - problem hard in the original representation but becomes simple in another representation (different hypothesis class)

More data helps because:
(1) It reduces variance - compensates for the noise
(2) It allows more exploration
(3) It compensates for statistical difficulty of learning larger hypotheses classes

Attribute efficient regression

Formal problem statement:

- Unknown distribution \mathcal{D} over $\mathbb{R}^{d} \times \mathbb{R}$
- Goal: learn a linear predictor $\mathbf{x} \mapsto\langle\mathbf{w}, \mathbf{x}\rangle$ with low risk:
- Risk (generalization error): $L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{\mathcal{D}}\left[(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}\right]$
- Training set: $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$
- Partial information: For each $\left(\mathbf{x}_{i}, y_{i}\right)$, learner can view only k attributes of \mathbf{x}_{i}
- Active selection: learner can choose which k attributes to see

Similar to "Learning with restricted focus of attention" (Ben-David \& Dichterman 98)

Dealing with missing information

- Usually difficult - exponential ways to complete the missing information
- Popular approach - Expectation Maximization (EM)

Previous methods usually do not come with guarantees (neither sample complexity nor computational complexity)

Ostrich approach

- Simply set the missing attributes to a default value

- Use your favorite regression algorithm for full information, e.g.,

$$
\min _{\mathbf{w}} \sum_{i=1}^{m}\left(\left\langle\mathbf{w}, \tilde{\mathbf{x}}_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{p}^{p}
$$

- Ridge Regression: $p=2$
- Lasso: $p=1$

Ostrich approach

- Simply set the missing attributes to a default value
- Use your favorite regression algorithm for full information, e.g.,

$$
\min _{\mathbf{w}} \sum_{i=1}^{m}\left(\left\langle\mathbf{w}, \tilde{\mathbf{x}}_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{p}^{p}
$$

- Ridge Regression: $p=2$
- Lasso: $p=1$
- Efficient
- Consistent? Sample complexity? How to choose attributes ?

Partial information as noise

- Observation:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\frac{1}{d}\left(\begin{array}{c}
d x_{1} \\
0 \\
\vdots \\
0
\end{array}\right)+\ldots+\frac{1}{d}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
d x_{d}
\end{array}\right)
$$

- Therefore, choosing i uniformly at random gives

$$
\underset{i}{\mathbb{E}}\left[d x_{i} \mathbf{e}^{i}\right]=\mathbf{x}
$$

- If $\|\mathbf{x}\|_{\infty} \leq 1$ then $\left\|d x_{i} \mathbf{e}^{i}\right\|_{\infty} \leq d$ (i.e. variance increased)
- Reduced missing information to unbiased noise
- Many examples can compensate for the added noise

Many examples compensates for noise

- True goal: minimize over \mathbf{w} the generalization $\operatorname{error} L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{(\mathbf{x}, y)}\left[(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}\right]$
- Loss on one example, $(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}$, gives an unbiased estimate for $L_{\mathcal{D}}(\mathbf{w})$
- Averaging loss on many examples reduces variance
- In our case, we construct an unbiased estimate of the loss of each single example
- Variance increases but many examples still reduces it back

Loss-Based Attribute Efficient Regression (LaBAER)

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of LaBAER. Then, with overwhelming probability

$$
L_{\mathcal{D}}(\hat{\mathbf{w}}) \leq \min _{\mathbf{w}:\|\mathbf{w}\|_{1} \leq B} L_{D}(\mathbf{w})+\tilde{O}\left(\frac{d^{2} B^{2}}{\sqrt{m}}\right)
$$

where d is dimension and m is number of examples.

Loss-Based Attribute Efficient Regression (LaBAER)

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of LaBAER. Then, with overwhelming probability

$$
L_{\mathcal{D}}(\hat{\mathbf{w}}) \leq \min _{\mathbf{w}:\|\mathbf{w}\|_{1} \leq B} L_{D}(\mathbf{w})+\tilde{O}\left(\frac{d^{2} B^{2}}{\sqrt{m}}\right)
$$

where d is dimension and m is number of examples.

- Factor of d^{4} more examples compensates for the missing information!

Loss-Based Attribute Efficient Regression (LaBAER)

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of LaBAER. Then, with overwhelming probability

$$
L_{\mathcal{D}}(\hat{\mathbf{w}}) \leq \min _{\mathbf{w}:\|\mathbf{w}\|_{1} \leq B} L_{D}(\mathbf{w})+\tilde{O}\left(\frac{d^{2} B^{2}}{\sqrt{m}}\right)
$$

where d is dimension and m is number of examples.

- Factor of d^{4} more examples compensates for the missing information!
- Can we do better?

Pegasos Attribute Efficient Regression (PAER)

- The factor d^{2} in the bound - because we estimate a matrix $\mathbf{x x}^{T}$
- Can we avoid estimating the matrix ?
- Yes! Estimate the gradient of the loss instead of the loss
- The gradient of the loss is a vector: $\nabla \ell(\mathbf{w})=2(\langle\mathbf{w}, \mathbf{x}\rangle-y) \mathbf{x}$
- Estimating the gradient:
- Choose i uniformly from [d] and estimate \mathbf{x} as before
- Choose j according to $\mathbb{P}[j]=\left|w_{j}\right| /\|\mathbf{w}\|_{1}$ and set $\hat{y}=\operatorname{sgn}\left(w_{j}\right)\|\mathbf{w}\|_{1} x_{j}$
- Note that $\mathbb{E}[\hat{y}]=\langle\mathbf{w}, \mathbf{x}\rangle$
- Estimation depends on \mathbf{w}
- Need an online learning method
- Leads to a much better bound

Comparing Partial to Full information

- How many examples/attributes are needed to achieve error ϵ ?
- Below we show: $\frac{\text { PAER bound }}{\text { Lasso bound }}$

	sparse \mathbf{w}^{\star}	dense \mathbf{w}^{\star}
Sample complexity	d^{2}	d
Attributes complexity	d	1

Demonstration

- Averaging over all pairs, full information classifiers have generalization error of $\sim 1.5 \%$
- Our algorithms have generalization error of $\sim 4 \%$ while only observing 4 pixels of each example

Demonstration

Intermediate summary

- Efficient algorithms, Provably correct (finite sample generalization bound)
- Technique: Replace missing information with noise
- Having more examples compensates for the lack of information on each individual example

Intermediate summary

- Efficient algorithms, Provably correct (finite sample generalization bound)
- Technique: Replace missing information with noise
- Having more examples compensates for the lack of information on each individual example

Coming next:

- Partial supervision
- Technique: Active Exploration
- Larger regret can be compensated by having more examples

Second example: Online Ads Placement

For $t=1,2, \ldots, m$

- Learner receives side information $\mathbf{x}_{t} \in \mathbb{R}^{d}$
- Learner places an ad $\hat{y}_{t} \in[k]$
- Learner pay cost $c_{t}\left(\hat{y}_{t}\right)$
- "Bandit setting" - learner does not know costs of other ads

Goal: Minimize error rate:

$$
\mathrm{err}=\frac{1}{m} \sum_{t=1}^{m} c_{t}\left(\hat{y}_{t}\right) .
$$

Simplifying assumptions

- Cost vector is $\mathbf{e}^{y_{t}}$
- Exists W s.t. $\forall r \neq y_{t},\left(W \mathbf{x}_{t}\right)_{y_{t}}-\left(W \mathbf{x}_{t}\right)_{r} \geq \mu$

Halving

- It is possible to adapt the Halving algorithm for our task
- Sample complexity is order of $\frac{k^{2} / \mu^{2}}{\epsilon}$
- But runtime grows like $(1 / \mu)^{k d^{\prime}}=(m+k)^{\tilde{O}\left(k / \mu^{2}\right)}$

How can we improve runtime?

- Halving is not efficient because it does not utilize the structure of \mathcal{H}
- If we knew y_{t} we could have used the Perceptron which utilizes convexity and is thus efficient
- Next approach: Lets try to rely on the Perceptron
- But, how can we use Perceptron without knowing the value of y_{t} ?

The Banditron (Kakade, S, Tewari 08)

- Let \hat{y}_{t} be the predicting of our current model
- Explore: From time to time, instead of predicting \hat{y}_{t} guess some \tilde{y}_{t}
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_{t}=y_{t}$
- Then, we have full information for Perceptron's update: $\left(\mathbf{x}_{t}, \hat{y}_{t}, \tilde{y}_{t}=y_{t}\right)$

The Banditron (Kakade, S, Tewari 08)

- Let \hat{y}_{t} be the predicting of our current model
- Explore: From time to time, instead of predicting \hat{y}_{t} guess some \tilde{y}_{t}
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_{t}=y_{t}$
- Then, we have full information for Perceptron's update:
$\left(\mathbf{x}_{t}, \hat{y}_{t}, \tilde{y}_{t}=y_{t}\right)$
- Exploration-Exploitation Tradeoff:
- When exploring we may have $\tilde{y}_{t}=y_{t} \neq \hat{y}_{t}$ and can learn from this
- When exploring we may have $\tilde{y}_{t} \neq y_{t}=\hat{y}_{t}$ and then we had the right answer in our hands but didn't exploit it
- Exploration increases cost but more data compensates for it!

The Banditron

Theorem

- Banditron's sample complexity is order of $\frac{k / \mu^{2}}{\epsilon^{2}}$
- Banditron's runtime is $O\left(k / \mu^{2}\right)$

The Banditron

Theorem

- Banditron's sample complexity is order of $\frac{k / \mu^{2}}{\epsilon^{2}}$
- Banditron's runtime is $O\left(k / \mu^{2}\right)$

The crux of difference between Halving and Banditron:

- Without having the full information, the version space is non-convex and therefore it is hard to utilize the structure of \mathcal{H}
- Because we relied on the Perceptron we did utilize the structure of \mathcal{H} and got an efficient algorithm
- We managed to obtain 'full-information examples' by using exploration
- The price of exploration is a higher regret

More data improves runtime

Algorithm	samples	runtime
Halving	$\frac{k^{2} / \mu^{2}}{\epsilon}$	$(m+k)^{\tilde{O}\left(k / \mu^{2}\right)}$
Banditron	$\frac{k / \mu^{2}}{\epsilon^{2}}$	k / μ^{2}

Last example: Latent SVMs

- Latent SVM: The goal is to learn a classifier of the form

$$
f_{\mathbf{w}}(\mathrm{x})=\operatorname{sgn}\left(\max _{z \in Z(\mathbf{x})}\langle\mathbf{w}, \Phi(\mathrm{x}, z)\rangle\right)
$$

where \mathbf{w} is the parameter vector and $Z(\mathbf{x})$ is a set of possible latent values.

- Felzenszwalb, McAllester and Ramanan used latent SVM for training a deformable part model for object detection: $\Phi\left(\mathbf{x}_{i}, z\right)$ specifies a score of a HOG pyramid which is places according to z.

Latent SVM

- In the separable case, the learning problem is to find \mathbf{w} with minimal norm s.t.

$$
\forall(\mathbf{x}, y) \in S, \quad y \max _{z \in Z(\mathbf{x})}\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle \geq 1
$$

Latent SVM

- In the separable case, the learning problem is to find \mathbf{w} with minimal norm s.t.

$$
\forall(\mathbf{x}, y) \in S, \quad y \max _{z \in Z(\mathbf{x})}\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle \geq 1
$$

- Problem: Non-convex constraints

Latent SVM

- In the separable case, the learning problem is to find \mathbf{w} with minimal norm s.t.

$$
\forall(\mathbf{x}, y) \in S, \quad y \max _{z \in Z(\mathbf{x})}\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle \geq 1
$$

- Problem: Non-convex constraints
- Main idea: Work with a larger hypothesis class for which the constraints become convex

Latent SVM

Step 1:

- Note that for any $\beta>0$ and vector $\left(a_{1}, \ldots, a_{r}\right)$:

$$
\max _{z} a_{z} \leq \frac{1}{\beta} \log \left(\sum_{z} e^{\beta a_{z}}\right) \leq \max _{z} a_{z}+\frac{\log (r)}{\beta}
$$

- Therefore, for β large enough we have

$$
\max _{z}\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle \approx \frac{1}{\beta} \log \left(\sum_{z} e^{\beta\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle}\right)
$$

- Original constraint: $y \max _{z}\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle \geq 1$
- New constraint: $y \frac{1}{\beta} \log \left(\sum_{z} e^{\beta\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle}\right) \geq 1$

Latent SVM

Step 2:

- Equivalent constraint: $\sum_{z} e^{\beta\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle} \geq e^{\beta-y}$
- Based on Taylor expansion, can write $e^{\beta\langle\mathbf{w}, \Phi(\mathbf{x}, z)\rangle}=\langle\mathbf{v}, \Psi(\mathbf{x}, z)\rangle$, where Ψ is a mapping to some Reproducing Kernel Hilbert Space.
- Therefore, constraints become convex, and problem is solvable using the kernel-trick
- The price: we learn a larger hypothesis class, hence need more data

Summary

- Learning theory: Many examples \Rightarrow smaller estimation error
- This work: Many examples \Rightarrow more efficient algorithms for partial information case
- How can more data reduce runtime:
(1) Missing information as noise
(2) Active Exploration
(3) Inject structure

