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In previous lectures we talked about the general framework of online convex optimization and derived an
algorithm for prediction with expert advice from this general framework. To apply the online algorithm, we
need to know the gradient of the loss function at the end of each round. In the prediction of expert advice
setting, this boils down to knowing the cost of each individual expert.

In this lecture, we show that in order to apply the online mirror descent algorithm it suffices to know
an estimate of the gradient. In particular, this yields a no-regret algorithm for a famous problem called “the
multi-armed bandit problem”.

1 Online Mirror Descent with Estimated Gradient
Recall the online mirror descent algorithm we described in Lecture 4. Now suppose that instead of setting vt
to be a sub-gradient of gt(wt), we shall set vt to be a random vector with E[vt] ∈ ∂gt(wt).

Algorithm 1 Online Mirror Descent with Estimated Gradient
Initialize: w1 ← ∇f?(0)
for t = 1 to T

Play wt ∈ A
Pick vt at random s.t. E[vt|vt−1, . . . , v1] ∈ ∂gt(wt)
Update wt+1 ← ∇f?

(
−η
∑t
s=1 vt

)
end for

We now show that the analysis still holds as long as we have some bound on E[‖vt‖2?].

Theorem 1 Suppose Algorithm 1 is used with a function f that is β-strongly convex w.r.t. a norm ‖ · ‖ on A

and has f?(0) = 0. Suppose the loss functions gt are convex and that E
[

1
T

∑T
t=1 ‖vt‖2?

]
≤ V 2. Then, the

algorithm run with any positive η enjoys the expected regret bound,

E

[
T∑
t=1

gt(wt)−min
u∈A

T∑
t=1

gt(u)

]
≤ maxu∈A f(u)

η
+
ηV 2T

2β
.

In particular, choosing η =
√

2βmaxu f(u)
V 2T we obtain

E

[
T∑
t=1

gt(wt)−min
u∈A

T∑
t=1

gt(u)

]
≤ V

√
2 maxu∈A f(u)T

β
.

Proof Apply Corollary 1 from Lecture 4 to the sequence −ηv1, . . . ,−ηvT to get, for all u,

−η
T∑
t=1

〈vt, u〉 − f(u) ≤ −η
T∑
t=1

〈vt, wt〉+
1

2β

T∑
t=1

‖ηvt‖2? .

Rearranging gives,
T∑
t=1

〈vt, wt − u〉 ≤
f(u)
η

+
η

2β

T∑
t=1

‖vt‖2? .
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Taking expectation of both sides with respect to the randomness in choosing vt we obtain that

T∑
t=1

E[〈vt, wt − u〉] ≤
f(u)
η

+
η

2β
T E

[
1
T

T∑
t=1

‖vt‖2?

]
.

At each round, let v̄t = E[vt|vt−1, . . . , v1] ∈ ∂gt(wt). Using the assumptions in the theorem we get that

E

[
T∑
t=1

〈v̄t, wt − u〉

]
≤ f(u)

η
+

η

2β
T V 2 .

By convexity of gt, gt(wt)− gt(u) ≤ 〈v̄t, wt − u〉. Therefore,

E

[
T∑
t=1

gt(wt)−
T∑
t=1

gt(u)

]
≤ f(u)

η
+
ηV 2T

2β
.

Since the above holds for all u ∈ A the result follows.

2 The Multi-Armed Bandit Problem
In the multi-armed bandit problem, there are d arms, and on each online round the learner should choose one
of the arms, denoted It, where the chosen arm can be a random variable. Then, it receives a cost of choosing
this arm, ct,It

∈ [0, 1]. The vector ct ∈ [0, 1]d associates a cost for each of the arms, but the learner only
get to see the cost of the arm it pulls. Nothing is assumed about the sequence of vectors c1, c2, . . .. The
performance of the learner is using by its regret for not always pulling the best arm,

E

[
T∑
t=1

ct,It

]
−min

i

T∑
t=1

ct,i ,

where the expectation is over the randomness of the learner.
This problem nicely captures the exploration-exploitation tradeoff. On one hand, we would like to pull

the arm which, based on previous rounds, we believe has the lowest cost. On the other hand, maybe it better
to explore the arms and find another arm with a smaller cost.

To approach the multi-armed bandit problem we use the general result derived in the previous section.
Let the loss function be gt(w) = 〈w, ct〉 and note that if wt is a probability vector and It ∼ wt, then
gt(wt) = E[ct,It

]. The gradient of the loss is ct, but we don’t know the value of all elements of ct. To
estimate the gradient we shall define a vector vt s.t.

vt,j =

{
ct,j/wt,j if j = It

0 else
.

Clearly, E[vt] = ct. Additionally,

E[‖vt‖2∞] ≤
∑
i

wt,i(ct,i)2/w2
t,i ≤

∑
i

1/wt,i .

To ensure that this quantity is not excessively large we will define the set of allowed distributions to be
A = {w : wi ∈ [γ, 1],

∑
i wi = 1}, where γ is a parameter to be defined later. Thus, E[‖vt‖2∞] ≤ 1/γ.

Applying Theorem 1 we obtain that for all u ∈ A

E

[
T∑
t=1

gt(wt)

]
≤

T∑
t=1

gt(u) +

√
2 log(d)T

γ
.
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Finally, Let Ci =
∑T
t=1 ct,i and note that for each i if we set u to be s.t. ui = 1− (d− 1)γ and uj = γ then

T∑
t=1

gt(u) = Ci + γ
∑
j 6=i

(Cj − Ci) ≤ Ci + γdT .

So, overall,

E

[
T∑
t=1

gt(wt)

]
≤ Ci + γdT +

√
2 log(d)T

γ
.

Setting γ = (2 log(d)T/(d2T 2))1/4 = (2 log(d)/(d2T ))1/4 we obtain the regret bound

E

[
T∑
t=1

gt(wt)

]
≤ Ci +O

(
(log(d)d2T 3)1/4

)
= Õ(d1/2 T 3/4) .

3 An Improved Multi-Armed Bandit Predictor using Local Norms

In this section we derive an algorithm for multi-armed bandit prediction that enjoys the regret boundO(
√
dT ).

The Improvement stems from a more refined analysis of online linear optimization, as we derived in previous
lecture. In particular, for the algorithm we called “Online Mirror Descent II” we derived the following bound.

Lemma 1 Let v1, . . . ,vT be an arbitrary sequence of vectors in [0,∞)d. Then, if we run the “Online
Mirror Descent II” algorithm with the fuction f(w) =

∑
i wi log(wi) we obtain that the following holds for

all u ∈ A ≡ {w ≥ 0 : ‖w‖1 = 1}

T∑
t=1

〈wt − u,vt〉 ≤ η
T∑
t=1

∑
i

wt,iv
2
t,i +

log(d)
η

.

Now, as before, lets apply this lemma with vt = eItct,It
/wt,It

, where It ∼ wt, and take expectation
of the inequality in the lemma. If u = ei

?

, where i? is the best arm in hindsight, than we obtain that the
left-hand side equals:

E
T∑
t=1

〈wt − u,vt〉 = E
T∑
t=1

〈wt − u, ct〉 = E
T∑
t=1

cIt,t −
T∑
t=1

ci?,t .

As for the right-hand side, we have

E
t

∑
i

wt,iv
2
t,i = E

t
wt,Itv

2
t,It

=
∑
j

w2
t,jc

2
t,j/w

2
t,j =

∑
j

c2t,j ≤ d .

Combining all the above we obtain and setting η appropriately we obtain

E
T∑
t=1

cIt,t −
T∑
t=1

ci?,t ≤ ηTd+
log(d)
η
≤ 2
√
T d log(d) .

4 The EXP3 Algorithm
We now derive another algorithm, called EXP3 (which stands for “exponential-weight algorithm for explo-
ration and exploitation), that enjoys a regret bound of O(

√
T ). The algorithm is due to Auer, Cesa-Bianchi,

Freund, and Schapire.
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Remark: Throughout this section, we think about ct as gain that we’d like to maximize rather than a cost.
One can derive a result for minimizing a cost by defining ct,i ← 1− ct,i for all t and i.

Algorithm 2 EXP3
Parameter: γ ∈ (0, 1]
Initialize: w1 = (1, . . . , 1)
for t = 1 to T

Set Zt =
∑d
j=1 wt,j

Set pt,i = (1− γ)wt,i/Zt + γ/d
Pull It randomly according to pt
Receive cost ct,It ∈ [0, 1]
Let vt be the vector with vt,j = ct,j

pt,j
1[It=j]

Update: wt+1,j = wt,je
γvt,j/d

end for

Theorem 2 For any γ ∈ (0, 1) and j ∈ [d] we have∑
t

ct,j − E[Cexp3] ≤ (e− 1)γ
∑
t

ct,j + 1
γ d ln(d)

Proof We have

Zt+1

Zt
=

d∑
i=1

wt+1,i

Zt

=
d∑
i=1

wt,i
Zt

eγvt,j/d

≤
d∑
i=1

wt,i
Zt

(
1 + γvt,j/d+ (e− 2)(γvt,i/d)2

)
,

where in the last inequality we used the inequality ex ≤ 1 + x+ (e− 2)x2 which holds for x ≤ 1.
Denote w̄t,i = wt,i/Zt and using the definition of vt, the above implies:

Zt+1

Zt
≤ 1 + γ

d w̄t,It
vt,It

+ (e− 2)
(
γ
d

)2
wt,It

v2
t,It

.

Since w̄t,It
≤ pt,It

/(1− γ), and using the definition of vt,It
we get

Zt+1

Zt
≤ 1 + γ

d(1−γ)ct,It
+ (e− 2)

(
γ
d

)2 1
1−γ

ct,It

pt,It
.

Taking logarithms of both sides and using ln(1 + x) ≤ x we get

ln
Zt+1

Zt
≤ γ

d(1−γ)ct,It + (e− 2)
(
γ
d

)2 1
1−γ

ct,It

pt,It
.

Summing over t we obtain

ln
Zt+1

Zt
≤ γ

d(1−γ)Cexp3 + (e− 2)
(
γ
d

)2 1
1−γ

T∑
t=1

ct,It

pt,It
.
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On the other hand, for any action j we have

ln
Zt+1

Zt
≥ ln

wT+1,j

Z1
≥ γ

d

T∑
t=1

vt,j − ln d .

Combining the upper and lower bound we obtain

γ

d

T∑
t=1

vt,j − ln d ≤ γ
d(1−γ)Cexp3 + (e− 2)

(
γ
d

)2 1
1−γ

T∑
t=1

ct,It

pt,It
.

Now, take expectation of both sides (w.r.t. to the random choice of It). Note that E[vt|It−1, . . . , I1] = ct and
that E[ct,It/pt,It |It−1, . . . , I1] =

∑
i ct,i ≤ dct,j . Therefore,

E

[
γ

d

T∑
t=1

ct,j − ln d

]
≤ E

[
γ

d(1−γ)Cexp3 + (e− 2)
(
γ
d

)2 1
1−γ d

T∑
t=1

ct,j

]
.

Rearranging the above gives∑
t

ct,j − E[Cexp3] ≤ (e− 1)γ
∑
t

ct,j + 1−γ
γ d ln(d) ,

which concludes our proof.

Corollary 1 Choose γ = min{1,
√
d ln(d)/((e− 1)g}, then for any j s.t.

∑
t ct,j ≥ g we have∑

t

ct,j − E[Cexp3] ≤ 2
√
e− 1

√
gd ln(d) = O(

√
Td ln(d)) .

4.1 Lower bound
Theorem 3 For any d ≥ 2 and T ≥ 1 there exists a distribution over assignments of rewards such that the
expected regret of any algorithm (where expectation is both with respect to the randomization of the algorithm
and the assignments of rewards) is at least Ω(min{

√
dT , T}).

A proof can be find in Auer et. al. paper. The idea is to define a distribution over rewards of arms as follows.
Before the play begins, one action I is chosen uniformly at random to be the “good” action. The rewards of
the good action are chosen i.i.d. to be 1 with probability 1/2 + ε and 0 otherwise for some ε to be defined
later. The rewards of the rest of the arms are chosen to be either 0 or 1 with probability 1/2. Now, the idea is
to show that any function defined on rewards in previous rounds cannot distinguish to well between rewards
that come according to the distribution mentioned above and rewards that come from a uniform distribution.

Online Learning with Partial Feedback-5


