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Abstract

Strategic behavior in a finite market can cause inefficiency in the allo-
cation, and market mechanisms differ in how successfully they limit this
inefficiency. A method for ranking algorithms in computer science is
adapted here to rank market mechanisms according to how quickly in-
efficiency diminishes as the size of the market increases. It is shown
that trade at a single market-clearing price in the k-double auction is
worst-case asymptotic optimal among all plausible mechanisms: evalu-
ating mechanisms in their least favorable trading environments for each
possible size of the market, the k-double auction is shown to force the
worst-case inefficiency to zero at the fastest possible rate.
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1 Introduction

The rules that determine how trading proceeds within a market can be regarded
as an algorithm for solving the problem of the market, which is to allocate units
from the traders who initially own them to those who value them most highly.
Market mechanisms and computer algorithms are more than just analogous. Al-
most every financial exchange in the world is developing a computerized trading
system to complement or even substitute for its floor trading system. In the
field of experimental economics, trade is commonly studied using a computer
network to regulate exchange among subjects. The market mechanism in each
of these cases is explicitly a computer algorithm.

The relationship between market mechanisms and algorithms is used in this
paper to show that a family of common market mechanisms is optimal in a
sense motivated by the study of algorithms in computer science. This is part
of an effort to develop a theory of market mechanisms, analogous to the the-
ory of auctions. Currently, economic theory provides little guidance to financial
exchanges in the selection of computer algorithms and floor procedures for trad-
ing. A theory of market mechanisms would both provide such guidance and also
complement the rich literature on markets in experimental economics, which is
currently the main source of guidance in the design of market mechanisms.

The family of k-double auction (or k-DA) mechanisms is proven to be optimal
here, where each choice of the index k € [0, 1] determines a different mechanism
in the family. The k-DA operates as follows. Bids and offers are simultaneously
submitted by the traders and then aggregated to form supply and demand
curves. Using the weight k, a market-clearing price p = (1 — k)a + kb is
selected from the interval [a,b] of all possible market-clearing prices. Buyers
whose bids were above p then trade with sellers whose offers were below p.
The k-DA institutionalizes Marshall’s model of supply and demand as a market
mechanism. It is a practical method for organizing trade that is well-grounded
in classical microeconomic thought.!

If the market is perfectly competitive, then the k-DA solves the problem of
the market exactly in the sense that its allocation is efficient. If the market has
only a finite number of traders, however, then the k-DA’s allocation may be in-
efficient, i.e., there may be “error” in this algorithm’s solution. This may occur
because traders in a finite market who privately know their preferences need not
act as price-takers and their strategic efforts to influence price in their favor can
cause inefliciency in the allocation. Such inefficiency is common among market
mechanisms, for every such mechanism must manage the strategic behavior of
the traders as each attempts to manipulate the market’s outcome in his favor.
Interpreted as an algorithm, the error of a market mechanism in computing the
gains from trade is the fraction of the expected potential gains from trade that
are inefficiently not achieved by the traders because of their strategic behavior.
Market mechanisms differ in how successfully they limit this error. Reflecting

IThere are a multitude of other market mechanisms that are used in practice, studied the-
oretically, and tested in experiments. See Friedman (1993) for a survey of these mechanisms,

including the k-DA.



the theory of perfect competition, however, the error in any reasonable mecha-
nism should converge to zero as the number of traders on each side of the market
increases to infinity.

It is common in computer science to evaluate an algorithm by bounding
its error with a function of some measure m of a binding constraint on the
operation of the algorithm. The number m could, for instance, be the number
of numerical inputs into the algorithm, the number of iterations the algorithm
is permitted, or some measure of the amount of time that the algorithm is
allowed to approximate the exact solution to the problem. A bound of this kind
expresses the rate at which error diminishes as the constraining mesure m is
relaxed, with error converging to zero as m goes to infinity. An algorithm with
a faster rate of convergence is deemed superior to an algorithm with a slower
rate of convergence because, for sufficiently large m, it approximates the exact
solution of the problem more accurately than the slower algorithm.

We adapt this methodology from computer science to rank the k-DA relative
to other market mechanisms in a simple model of trading. The trading model
is as follows. There are m buyers, each of whom wishes to purchase at most one
unit of an indivisible, homogeneous good, and m sellers, each of whom has one
unit of the good to sell. The number m is the size of the market. Each buyer 4
and each seller j privately knows the value v; or cost c; that he places on a unit.
Buyer i receives a payoff of v; — x; when he purchases a unit and pays x; while
seller j receives payoff y; — c¢; when he sells his unit and receives a payment of
y;- A trader who does not trade receives zero as his payoff. A trader privately
knows his own value/cost and regards the values of all buyers as independent
draws from the distribution G(-) and the costs of all sellers as independent draws
from the distribution F(-). All of the above is common knowledge among the
traders. A pair (G, F) is an environment.? Tt is assumed in this paper that
the distributions G and F are C! functions with support [0,1] and respective
densities g and f. An independent private values model with quasilinear utility
is thus assumed here and the Bayesian game approach of Harsanyi (1967-68) is
used to analyze the strategic behavior of traders.

A “maximin” approach is used to evaluate mechanisms. For each m, the
error of a mechanism in a particular environment (G, F') is the fraction of the
expected potential gains from trade (calculated with respect to G and F') that
are inefficiently not achieved by the mechanism in equilibrium. Error defined
in this manner measures ex ante incentive efficiency in the sense of Holmstrom
and Myerson (1983). The worst-case error of the mechanism is computed by
maximizing this error over a set of possible environments. The rate at which
their worst-case errors converge to zero is then used to compare mechanisms.

2 A model of Telser (1978) explains (G, F) as the demand and supply of the limiting con-
tinuum market: 1 — G(p) is the mass of buyers and F(p) the mass of sellers in a continuum
market who can profitably trade at the price p. The finite market that we consider is ob-
tained by independently sampling m buyers from the demand curve 1 — G and m sellers from
the supply curve F. Common knowledge and symmetry of beliefs in the finite market both
follow from common knowlege of demand and supply in the continuum market together with
common knowledge of the sampling process.



The meaning of this comparison is illustrated by the problem of selecting a
mechanism for a market in which the environment and the number m of traders
on each side of the market may vary: a mechanism whose worst-case error
converges to zero at a faster rate than that of some alternative mechanism
guarantees superior performance over the class of environments whenever the
market is sufficiently large.

The k-DA is compared in this paper to mechanisms that satisfy for each
m and each environment both interim individual rationality (i.e., each trader’s
conditional expected payoff as a function of his value/cost is nonnegative) and
ex ante budget balance (the expected sum of the transfers among the traders is
nonnegative, so that the mechanism on average does not require a subsidy to
operate). These rather weak restrictions are satisfied by most common mecha-
nisms for trading.® The main result of this paper is that the k-DA is worst-case
asymptotic optimal among all mechanisms for organizing trade that satisfy these
two constraints. “Asymptotic” refers here to the ranking of mechanisms using
rates of convergence and “worst-case” refers to the evaluation of each mecha-
nism in its least favorable environment for each value of m. Stated simply,
this result means that the k-DA’s worst-case error over a set of environments
converges to zero at the fastest possible rate. Our result complements an ear-
lier result of Wilson (1985) concerning the optimality of the k-DA. He showed
that it is interim incentive efficient in the Holmstrom-Myerson sense when m is
sufficiently large.

It is noteworthy that our optimality result concerns a property of this simple,
well-motivated mechanism across a range of possible environments and sizes
of the market, rather than simply for a single, fixed environment and size of
market. Our result thus responds to the “Wilson critique” (Wilson, 1987) of
mechanism design. Wilson criticized this field for focusing upon the problem of
designing a mechanism explicitly for each specific problem (e.g., as determined
here by the specification of an environment and a market size). An economic
consultant asked for advice on the selection of a mechanism may not know all the
parameters that specify the problem, and the parameters may change over time;
theoretical results that describe how the mechanism should be chosen assuming
detailed knowledge of the problem may thus have little value to the consultant.
The more meaningful task for mechanism design is thus to establish the sense
in which a simple mechanism performs reasonably well across the variety of
problems that might be encountered in practice, which is the nature of our
result.

We discuss below in the next four sections (i) the model, (ii) a result on the
k-DA, (iii) a formal statement of our main result, and (iv) the analogy to the
asymptotic analysis of algorithms in computer science. Proofs then follow in

3Most common mechanisms (such as the k-DA) satisfy the stricter constraints of ez post
budget balance (the transfers among the traders balance for every sample of values/costs) and
ex post individual rationality (no trader is ever forced to accept an unprofitable trade). We
use the weaker constraints of interim individual rationality and ex ante budget balance here
because optimizing over this larger class of mechanisms strengthens the sense in the k-DA is
deemed optimal.



sections 6 and 7. Besides guaranteeing superior performance in a sufficiently
large market, it is reasonable to hypothesize that a market mechanism exhibiting
a faster rate of convergence than another mechanism will also be more efficient
in small markets. Such hypotheses concerning algorithms in computer science
are commonly tested through numerical computations that compare the fast
algorithm to slower algorithms in a variety of small problems. In the next-to-last
section we report the results of a set of such computations that compare the k-
DA across a variety of environments and small sizes of markets to the constrained
efficient mechanism. The constrained efficient mechanism achieves, for each
choice of the environment and each size of market, the maximum possible gains
from trade obtainable by an interim individually rational and ex ante budget
balanced mechanism. The gains from trade achieved in the k-DA are almost
indistinguishable in these computations from those of the constrained efficient
mechanism, even in markets with as few as eight traders on a side. These
computations thus support the hypothesis that the k-DA performs almost as
well as any market mechanism can, even in very small markets.

2 The model

Having defined the trading problem in the introduction, we next define market
games and mechanisms. To begin, a generic set of environments is denoted as

E. A market game ¢,,, of size m over the set of environments E consists of:

1. a strategy set A; for each of the 2m traders;

2. an outcome mapping ,, : (Hfjl Ai) x E — (]0,1] x R)*™ that specifies
for each trader his probability of receiving an unit along with a monetary
transfer as functions of the profile of strategies and the environment;

3. the selection of a Bayesian-Nash equilibrium in the game defined by (1)
and (2) for each environment (G, F) € E.

A market mechanism over E is a sequence ® = (¢,,)men in which ¢,, is a
market game of size m over E.

Efficiency dictates that in each sample of 2m values/costs the m units must
be allocated to the traders with the m highest values/costs. In the efficient al-
location, buyers whose values are among the top m values/costs purchase units
from sellers whose values are among the m smallest values/costs. Let I',,(G, F)
denote the expected potential gains from trade among the 2m traders, com-
puted with respect to the joint distribution of their 2m values/costs. The value
?.,(G, F) denotes the expected gains from trade achieved by the 2m traders

40ur definition of a market game is unusual in that (i) the outcome mapping ¢,,, can depend
upon the environment and (ii) an equilibrium is specified for each environment. Property (i)
allows the market game to be chosen optimally for each environment, which is a central theme
in mechanism design. Property (ii) is part of the definition of the game purely because this
simplifies the discussion.



in the selected equilibrium of the market game ¢,, when (G, F) is the envi-
ronment. Qur measure of inefficiency of a market game is relative inefficiency
e(d,,, G, F),which is the fraction of the expected potential gains from trade in
the environment (G, F') that are inefficiently not achieved in the selected equi-
librium of ¢,,:

G,F)—¢,,(G,F)
I'n(G,F) ' @)

e(p,,, G, F) = Lo

Myerson and Satterthwaite (1983) showed in the case of bilateral trade (m =
1) that e(¢,,, G, F) > 0 in any market game ¢,, satisfying interim individual
rationality and ex ante budget balance. This result was later extended to
arbitrary values of m by Williams (1997, Thm. 4). These results imply that
an interim individually rational and ex ante budget balanced mechanism & is
necessarily inefficient, regardless of the size of the market m.

3 Results on the k-DA

A k-DA mechanism ®FPA = (d):;DA)meN is the sequence of market games
described at the beginning of this paper® together with the selection for each m
of an equilibrium for the market of size m in the environment (G, F) that has

the following three properties:

1. The equilibrium is symmetric in the sense that each buyer uses the same
function B,,(-) and each seller uses the same function S, (-) to select his
bid/ask as functions of his value/cost.

2. At every v;,¢; € [0,1], By, (vi) < v; and Sy, (¢j) > ¢, i.e., traders do not
use dominated strategies.

3. The sets {v; | By, (v;) >0} and {¢;|S,, (¢j) < 1} have positive measure,
which implies that trade occurs with positive probability.

An equilibrium satisfying 1-3 is denoted (B, Sy,). With our definition of a
mechanism, each rule for selecting an equilibrium defines a different k-DA. The
precise rule for choosing an equilibrium, however, is immaterial for our purposes
as long as the selected equilibrium satisfies these three properties. Notice that
property 2 insures that each equilibrium (B,,, Sy,) satisfies interim individual
rationality, and the rule that all trades in the k-DA are consummated at a
market-clearing price insures that every equilibrium satisfies ex ante budget
balance. Any k-DA mechanism thus satisfies these two constraints.

5The rules of the k-DA are defined in detail in Rustichini et. al. (1994, p. 1045). We
will not be analyzing the operation of this mechanism in this paper, relying instead on results
drawn from this earlier paper. It is thus sufficient here to understand that the game form
¢E—dperates as described in the introduction.



The following theorem concerning the rate at which the relative inefficiency
of the k-DA mechanism converges to zero is the main result on the k-DA that
is needed in this paper.

Theorem 1 (Rustichini, Satterthwaite and Williams (1994)) There ex-
ists a continuous function k : R+ — R+ such that

k(¢,7)
m2

e(pl P4 G F) <

m

(2)
in any environment (G, F') satisfying 0 < ¢ < g,f <7.

In other words, e(qﬁ’f,;DA,G, F) =0 (#) This theorem follows from Theo-
rem 3.2 of Rustichini, Satterthwaite, and Williams (1994), which states that
e(qS:;DA,G,F ) is bounded above by ég for some function ¢ of G, F, and k.
In (2) we have replaced ¢ with a bound that holds for all k£ € [0,1] and that
expresses the dependence of the bound on G and F explicitly in terms of the
bounds ¢ and g on the densities. A function k(g,q) that satisfies (2) can be
obtained by working through the proofs of Theorems 3.1 and 3.2 in Rustichini,
Satterthwaite, and Williams (1994).

The existence of a k-DA mechanism for an environment (G, F') requires the
existence for each m of an equilibrium of the form (B,,,S;,) in the market of
size m. As with many games of incomplete information with continuous type
spaces, one expects that equilibria exist in the A-DA for each size of market
m, but existence is difficult to prove. The issue of existence of equilibria is
sidestepped in this paper by assuming for each 0 < ¢ <1 <G the existence of a
set of environments E(g,q) with the following properties:

1. Each (G, F) € E(q,7) satisfies the bounds 0 <¢< g, f <7.

2. For each (G, F) € E(q,q), an equilibrium of the form (B,,, S,,) exists in
Hh-DA B

3. The uniform environment (G*, F*) in which both G and F are uniform
on [0,1] is in E(q,q).

Restriction 1 is imposed with the bound (2) in mind: the densities g and f
are bounded above and away from zero in order to define a single bound on
relative inefficiency in the k-DA that holds over the entire set E(q,q). This
will be important in the worst-case analysis that follows. The existence of a set
of environments F(q,q) for which equilibria in the k-DA exist is supported by
Leininger, Linhart, and Radner (1989) and Satterthwaite and Williams (1989),
which prove the existence of a variety of equilibria in the case of ¢)’f"D (i-e.,
the bilateral k-DA) over a broad class of environments, and by Williams (1991),
who proved existence of a unique smooth equilibrium in qﬁi;DA (the 1-DA) for a
generic set of environments, including the uniform case (G*, F*). The existence
of F(q,q) is also supported by our experience with computing equilibria in the
k-DA, as illustrated below in section 8.



4 The main result

A market game ¢,,, is evaluated over a set of environments E according to its
worst-case relative inefficiency e*°"(¢,,,, E), which is defined as

e (b, E) = sup e(oy,, G, F). 3)
(G,FeE

Given a set F of environments, a mechanism & defines a sequence of worst-case
relative inefficiency values. A mechanism ® is worst-case asymptotic optimal
over E among some set M of mechanisms defined on FE if the sequence of worst-
case relative inefficiency values for any other mechanism in M cannot converge
to zero at a faster rate than the sequence defined by the mechanism ®. This
notion of optimality is captured by the following definition.

Definition 2 Given a set E of environments and a set M of mechanisms
defined on E, a mechanism ® is worst-case asymptotic optimal over E
among mechanisms in M if, for any other mechanism ®* € M, there exists a
constant n € Rt such that

e (G E) <1 (dr,, E) (4)
for allm € N.
The main theorem of this paper can now be stated.

Theorem 3 For each q,7 satisfying 0 < ¢ <1 <G, a k-DA mechanism Pl—DA
is worst-case asymptotic optimal over the set of environments E(q,q) among all
interim individually rational and ex ante budget-balanced mechanisms defined

on E(q,7).

The strength of this result is emphasized by noting that the constraints that
it imposes on a mechanism are weak enough to allow the possibility that the
mechanism operates over time, consummates trades at a number of different
prices, runs surpluses and deficits that cancel only in expectation, or compels
traders on occasion to accept losses ex post. A great variety of market mech-
anisms are thus covered by Theorem 3. While at first glance the restriction
to the set of environments F(q,q) in the theorem seems to weaken the sense in
which the k-DA is proven optimal, there are two points concerning the freedom
to choose ¢ and G that show that this is not the case. First, F(q,q) can in-
clude a great range of possible environments if ¢ chosen to be small and g large.
Second, because the theorem fundamentally concerns worst-case relative ineffi-
ciency, there is a sense in which the optimality of the k-DA is strengthened by
choosing F(q,q) to be an arbitrarily small set, for it is in this way made clear
that optimality of the k-DA does not depend upon consideration of extreme
environments. As we next discuss, the special case of the theorem in which
g =q=1and E(q,q) contains only the uniform environment is in fact the basis
of the proof of the theorem.



Let ¢ = (¢5%)men denote a mechanism with the property that, for each
m and each environment (G, F) in FE, ¢;, maximizes the achieved gains from
trade in the environment (G, F') subject to the constraints of interim individual
rationality and ex ante budget balance.® Alternatively, ¢°¢ can be described as
a market game ¢,, that solves the constrained optimization problem

r(r;in e(p,,, G, F) (5)
subject to the constraints on ¢,, of interim individual rationality and ex ante
budget balance. A market game ¢;. that solves (5) is constrained efficient
in the environment (G, F); ¢, is constrained efficient in E if it solves (5) for
every (G, F) € E. A mechanism ®° is constrained efficient in (G, F) (or E) if
each of its market games ¢ is constrained efficient in (G, F') (or E). Solving
for ¢7¢ is the central problem in Bayesian mechanism design. The existence
and the properties of ®° will be discussed in section 6. Notice that any
interim individually rational and ex ante budget-balanced mechanism ® defined
on F(q,q) satisfies

e (P, E(0,7) > €(¢y,, G, FY) > e(y,,, G4 F) (6)

for each m, where the first inequality is true because (G*, F*) € E(q,7) and
the second holds because ¢;. solves (5). As demonstrated below, Theorem 3 is
a consequence of the following theorem.

Theorem 4 There exists a positive number vy such that

ce u u 7
(i, G FY) > . (7)

Establishing this lower bound on the relative inefficiency of the constrained
efficient mechanism in the uniform environment constitutes most of the formal
analysis of the paper. This theorem is proven in sections 6 and 7. We now
show how the proof of our main result follows directly from it.

Proof of Theorem 3. Letting ® denote an alternative mechanism defined
on E(g, 7), we need to find a positive number 7 that satisfies, for all m € N|

" (¢ PR B0, 7)) < (e (8, B0, D))

Inequalities (6) and (7) together imply

(0 Bl 2 2 = (1) (B2,

w2~ \slgn) ) \"m?

Theorem 1 then implies

(b Bla ) > (s ) 6k P Bla )

x(2,9)

The proof is then completed by setting nn = .

6Recall that the constraint of incentive compatibility is implicit in our definition of a
mechanism.



5 An analogy to a method for analyzing algo-
rithms in computer science

Theorem 3 applies a method used in computer science for the asymptotic anal-
ysis of algorithms. We now discuss this method in order to clarify the meaning
of our result. A general theory of the asymptotic analysis of algorithms is
developed in Traub, Wasilkowski, and Woznikowski (1988, Ch. 10). For sim-
plicity, we discuss this method here in the familiar problem of approximating an
integral of a function, where the analogy to the market problem is transparent.
This analogy is summarized in Table 1.

In the same way that a market problem is specified by an environment (G, F),
an integration problem is specified by a continuous function h : [0,1] — R. The
solution T'(h) of the integration problem is the exact value of fol h(t)dt. The
goal of the integration problem is to approximate I'(h) knowing only the values
of h at the m + 1 points {-~ | 0 <i < m}. An algorithm ® for approximating
T'(h) is a sequence ® = (¢,,,)men in which ¢, is a function of the m + 1 values
h(0), h(%) - ,h(mT_l)7 h(1). Given an algorithm ®, the solution I'(h) for an
arbitrary C2 function h cannot be computed exactly by ¢,, for any finite value of
m. This is analogous to the problem an outsider would face in trying to achieve
all gains from trade knowing only the reported values/costs of the traders: error
is fundamentally part of each problem.

It is common to measure an algorithm in the integration problem using
absolute error, which is defined for an algorithm @, a function &, and a value of
m as

e(P, ) = |0 (h) = ¢y, (B)]-

It is sometimes more meaningful in the evaluation of algorithms to study relative
error, i.e.,

Our notion of relative inefliciency is analogous to relative error. We use a
relative measure of error in part because the solution (or expected potential
gains from trade) T',,,(G, F') that is approximated in the market problem grows
linearly with the size of the market m.

Any reasonable algorithm for the integration problem should approximate
I'(h) more accurately as m increases. Formally, this means

lim e(¢,,, h) =0

for all h. Algorithms differ, however, in how quickly their errors converge to

zero. In order to pursue a worst-case analysis of algorithms for the integration
&h

=z <q for some

)

problem, we now assume that h is C? and satisfies |%

10



Table 1:

the Integration Problem

The Analogy Between the Market Allocation Problem and

Market

Integration

Problem:

Class of
problems E':

Algorithm
P = (¢,):

Error:

Bound on

e (¢, )
for all ¢,,:

Worst-case
asymptotic
optimal
algorithm:

An inferior
algorithm:

achieve I';,, (G, F'), the
expected gains from trade in
the market of size m when
(G, F) is the environment

(G, F)e E(q,9) =

G, F are C' on [0,1] >

q< f,g <qfor
0<g<1<7

®,, is a game along with a rule
for selecting an equilibrium for

each (G, F)

relative error: e (¢, G, F)

_ (G, F)—¢,,(G,F)

- T (G,F)

e (b, E(0,0) 2 72
where v € RT

the k-double auction _(D"“D A
e(¢57%, G, F) < S22 yhere

k(¢,7) € RT
the fixed-price mechanism P77,

w00l B0.7) > <o
where f € RT

approx. ['(h) = f01 h(z)dx
using (h(l‘i))ogigm, where

he E(q) &

his C? on [0,1] 5|%|,
2

dh) < gforgeRT

G (M(x0), ..., h(Tp))

is any function

absolute error: e (¢,,,h) =

IT(h) = ¢, (R (2)))]

e (P, E(q)) > %
where v € RT

the trapezoid rule ®!",

(P h) < 152

the rectangle rule ®7°¢,

e (¢ E(q)) = 75

— 2m

11




q € R*. Let E(q) denote the set of C? functions on [0,1] that satisfy these
bounds. It is well-known among those who study the integration problem that

(B B@) = sup el h) > 1 (8)
q

7

for some constant «.” This is analogous to our Theorem 4. The trapezoid

algorithm ®*" approximates fol h(z)dx by

o (n0 () ) = Mjih(%)

Its error satisfies the bound

ir q
(0. ) < i )
for all h € E(q) (Davis and Rabinowitz, 1975, p.42). Analogous to the k-DA,
it is clear from (8) and (9) that the trapezoid rule is a worst-case asymptotic
optimal algorithm over E(q).

While worst-case asymptotic optimality does not determine a unique al-
gorithm in either of these problems, it does distinguish some algorithms as
markedly inferior. In the integration problem, the midpoint algorithm (defined
for even values of m) is also worst-case asymptotic optimal over E(q) (Davis and
Rabinowitz (1975, p.42)), as is Simpson’s Algorithm. The rectangle algorithm
®7¢¢ is defined by the formula

gree <h(0),h<%> ,h(1)> E%Eh(%)

2

Its worst-case error satisfies
e (P12, B(q)) = 5,

2m

and so it is an inferior algorithm.®

"This is discussed in Traub et. al. (1988, p. 375-76). Early results of this kind can be
found in Bakhvalov (1959). A proof in the special case of q = 1 can be found in Novak (1988,
p.- 37). It is straightforward to generalize this proof to arbitrary values of q.

8There is a close relationship in the integration problem between worst-case error and the
degree of differentiability of the class of functions considered: if A is restricted to the class

d'h
= {nec o ||| <ar<i<a),

then e*°"(¢,,, E™(q)) > % for some 8 € Rt in any algorithm ®. If the typical integration
problem consists of a C* function h € E* (g), then the widespread use of Simpson’s Algorithm
is consistent with the fact that it is worst-case asymptotic optimal over E4(q), while the
trapezoid algorithm is not. The analogy between the integration problem and the market
breaks down at this point, for there is no economic reason to believe that the selection of a
market mechanism should be closely tied to the degree of differentiability of the distributions
G and F.

12



In the market problem, the generalization of the fixed-price mechanism of
Hagerty and Rogerson (1985) to markets of arbitrary size has a relative ineffi-
ciency that is at least % for some 3 € RT (Gresik and Satterthwaite (1989,

p- 319)). The asymptotic approach ranks this mechanism as inferior, which
supports common economic intuition. There are two other mechanisms be-
sides the k-DA that are known to be worst-case asymptotic optimal. First,
the constrained efficient mechanism ®¢¢ is itself worst-case asymptotic optimal
over any set E of environments on which it is defined. Second, McAfee (1992)
designed an interim individually rational mechanism that generates a monetary
surplus. Ex ante payments can be devised to return the expected surplus to
the traders and thereby insure that the ex ante budget constraint is satisfied
with equality. If such payments are included as part of the mechanism, then it
too is worst-case asymptotic optimal over E(q,q).

Such ex ante payments, however, must vary with the environment. Altered
in this way, McAfee’s mechanism shares the flaw of the constrained efficient
mechanism, which is that its outcome function depends upon the environment.
This flaw renders a market mechanism implausible for actual use. If such
payments are disallowed in McAfee’s mechanism and the surplus is instead re-
garded as a cost of arranging trade, then its worst-case error is at least % for
some § € RT (Rustichini, Satterthwaite, and Williams, 1992). McAfee’s mech-
anism without payments is thus inferior to the k-DA in a worst-case asymptotic
analysis. Though we suspect that other mechanisms besides the k-DA can be
both worst-case asymptotic optimal and robust in the sense that their outcome
functions do not vary with the environment, examples of such mechanisms have
not yet been found.

6 The constrained efficient mechanism

All that remains to be proven is Theorem 4, which bounds below the error
e(gye, G, F*) of the constrained efficient market game ¢7- in the uniform en-
vironment (G*, F*) by —&r. The purpose of this section is to establish several
results concerning ®°¢ that are needed in section 7 for the proof of Theorem 4.
Let o € [0,1]. A key to characterizing this mechanism is a trader’s a-virtual
utility, which is defined for a buyer/seller as a function of his privately-known
value/cost by the following formulas: a buyer’s a-virtual utility function is

G(’Ul) —1
\I/Z v;) = v + a—————,
(vi) (o)
and a seller’s a-virtual utility function is
F(cj)

Ul (c;) =c; + af(cj) .

The environment (G, F) is regular if, for each a, the functions W, (-), ¥, (-) are
increasing on [0,1]. The uniform environment is regular and the discussion in
this section is restricted to regular environments.
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For a sample of 2m values/costs of the traders, let t(j) denote the jth smallest
a-virtual utility among the corresponding 2m a-virtual utilities:

ty St < ... <tiam)-

Recall that the definition of a market mechanism ® specifies an equilibrium in
each market game ¢,, for each environment (G, F). For a given e € [0,1], a
market game ¢,,, is an a-market game in the environment (G, F) if ¢,,, allocates
the m units to buyers and sellers whose a-virtual utilities are among the top m
values ¢(,,41) < tonpo) < oo < tiam). Trades thus occur in an a-market game
between buyers whose a-virtual utilities are at least ¢(,,41) and sellers whose a-
virtual utilities are no more than ¢(,,). For a sequence A = (@, )men, a market
mechanism @ is an A-mechanism in the environment (G, F) if for each m the
market game ¢,, is an o,,-market game in this environment. As summarized
in the theorem below, the key insight of the Gresik-Satterthwaite derivation
of the constrained efficient mechanism is that an interim individually rational,
ex ante budget balanced mechanism is constrained efficient in the environment
(G, F) if and only if it is an A*-mechanism for a particular sequence A* =
(o (G, F))men defined below. This insight is a general principle of Bayesian
mechanism design.?

Because allocation according to a-virtual utilities is central to the discussion
of constrained efficiency, it is helpful to develop some intuition before proceeding
to the theorem. Notice that

Wh(v;) = v; and Wi(c;) = ¢,

and so the m items are allocated in an o« = 0 market game according to the true
values/costs of the traders. An o = 0 market game is thus efficient; as noted
earlier, however, it cannot also be both ex ante budget balanced and interim
individually rational. Notice also that W% (0) < 0, U3 (1) > 1,

R el S C))
v =0 (v) ) >0,
and
5 (o) o= o 00
T (c) o 20

Except in the case of v = 1, ¢ = 0 or @« = 0, a buyer’s a-virtual utility is
thus less than his value and a seller’s a-virtual utility exceeds his cost, with the
differences increasing in «. Increasing the value of « distorts the allocation

9In a general mechanism design problem, efficiency is a mapping that specifies an outcome
as a function of the true types of the agents. The general principle is that the outcome in a
constrained efficient revelation mechanism is determined by applying the efficiency mapping to
the a~virtual utilities of the agents, where « is chosen so that the mechanism is ex ante budget
balanced. This principle originated in Myerson (1981), which concerned the constrained
efficient mechanism for auctioning an item. It is derived as a general principle in Wilson
(1993) and it appears in almost all derivations of constrained efficient mechanisms.
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of a a-market game further and further away from efficiency. Allocating the
m units to those traders with the largest a-virtual utilities therefore becomes
increasingly inefficient as « increases. It should not be surprising that the
key issues in the remainder of the paper are (i) the rate at which the sequence
(ot (G*, F*))men that determines the constrained efficient mechanism in the
uniform environment decreases to zero as m increases to infinity, and (ii) the
relationship between this rate and the rate at which e(¢;., G*, F*) converges to
Zero.

Some notation is needed to state the theorem. Let 0., = (v1, ..., Upn, €1, -..Cpn)
denote a sample of 2m values/costs. Given o,, and a € [0, 1], for buyer i define

Palom) as

iy LW () > b
Pa(7m) :{ 0if WG (05) < tmry)

and for the jth seller define ¢/ (c,,) as

; 1if Uo () <t
J = a\%j) = ¥(m)
qa(ﬂm) B { 0 if \I/z(Cj) > t(m)

These are indicator functions that equal one if and only if the trader trades in
the given sample o when items are allocated by an a-market game. Define the
function Sur(a, m, G, F) by the formula

Sur(a,m, G, F) = € (Zwﬂvi)pg(am)) > v | |- (10)

This function is crucial because the equation Sur(a,m,G, F) = 0 determines
the value of o, (G, F) that characterizes the constrained efficient market game
in this environment. The rather complicated formula (10) fits the standard
format of such formulas in Bayesian mechanism design problems. Fortunately,
we will develop below an alternative to (10) that avoids much of its complexity.

Theorem 5 (Gresik and Satterthwaite, 1983) The following statements
are true in the case of a reqular environment (G, F).

1. For each m > 1, there exists a unique o, (G, F) € (0,1) that satisfies
Sur(aX, (G, F),m,G, F) = 0.

2. Let A* = (a,(G, F))men. A constrained efficient mechanism exists in
the environment (G, F) and is an A*-mechanism. Conversely, any A*-
mechanism that satisfies interim individual rationality and ex ante budget
balance is constrained efficient in this environment.

Theorem 5 combines a number of results in Gresik and Satterthwaite (1983)
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to characterize the constrained efficient market game.'%!' Of greatest interest

for our purposes is an interpretation of Sur(o,m,G, F) that follows directly
from their derivation of this game. Consider any o-market game ¢,, in the
market of size m with the property that any buyer ¢ whose value v; equals zero
and any seller j whose cost ¢; equals one has, conditional on his value/cost, an
expected payoff equal to zero from participating in ¢,,. Assume also that ¢,, is
interim individually rational but not necessarily ex ante budget balanced, i.e.,
the expected gains from trade that ¢,, generates may differ from the sum of the
expected payoffs that it distributes to the traders. The quantity Sur (a, m, G, F)
equals this market game’s expected surplus, i.e.,

Sur (o,m,G,F) = the expected gains from trade generated
by the a-market game ¢,, (11)
— the sum of the ex ante expected payoffs received

by the 2m traders in this market game.

This interpretation of Sur (a, m, G, F) is important because it will be used to
establish a formula for this function that is substantially simpler than (10).12
We consider next the family of two-price A-mechanisms, which is a particular
family of A-mechanisms in which a buyer with value zero and a seller with cost
one each have an interim expected payoff of zero. A formula for the expected
surplus Sur (o, m, G, F') is derived below from the features of this family of
mechanisms. The interpretation of Sur (a, m,G, F) as the expected surplus
establishes that this alternative formula is equivalent to (10), which would be

10This theorem follows from Theorems 2 and 3 of their paper together with the following
three observations. First, while Gresik and Satterthwaite assume the stronger constraint of ex
post budget balance, only the weaker constraint of ex ante budget balance is needed to derive
Theorem 5 above. They showed that transfers in a constrained efficient mechanism can always
be altered to satisfy ex post budget balance without disturbing the constrained efficiency of
the mechanism. Second, Williams (1997, Thm. 4) proved that Sur(0,m,G, F) < 0. This
inequality implies both that ¢S5 cannot be an o = 0 market game (which is one of the possible
conclusions of their theorems) and also (together with their Theorem 3) the existence of a
solution to Sur{a), (G, F),m,G,F) = 0. Third, any o, (G, F) that solves this equation
is shown by Gresik and Satterthwaite to define a constrained efficient allocation. Because
inefficiency is increasing in «, the solution o, (G, F') must therefore be unique.

M Results of this kind are now standard in the derivation of constrained efficient mechanisms.
Because the relevant material of Gresik and Satterthwaite (1983) is unpublished, the reader
may wish to consult the derivation in Myerson and Satterthwaite (1983), which presents the
main ideas of the analysis in the simplified setting of bilateral trade (m = 1), or the general
discussion in Wilson (1993).

12Tn the Gresik-Satterthwaite derivation, the constraints of incentive compatibility and in-
terim individual rationality are first applied to show that the search for a constrained efficient
market game can be restricted to the family of a-market games. The expected surplus is
then computed in an arbitrary a-market game by subtracting the expected payoffs of the
2m traders from the total expected gains from trade. It is then clear in their analysis that
the interim expected payoff of a buyer with value zero or a seller with cost one both equal
zero in the constrained efficient market game, in which case the expected surplus reduces to
Sur (o, m, G, F'). The equation Sur (o, (G, F),m, G, F) = 0 that characterizes the constrained
efficient mechanism is thus simply the ex ante budget constraint applied to this reduced form
of the optimization problem, which completes their derivation of the constrained efficient
mechanism.
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difficult to prove by directly reducing one of these formulas into the other. This
alternative formula for Sur (o, m, G, F)) makes it much easier to examine how
the value o, (G, F) that characterizes the constrained efficient market game
varies as m increases.

For a given sequence A = (qu)men, define the two-price A-mechanism

P24 = ((153,’1‘4) as follows. For given m, starting with values/costs as
meN

reported by the traders, compute the q,,-virtual utilities as functions of these
reports and rank the results. Allocate the m units to the traders whose «,,-
virtual utilities are the m largest (i.e., those at or above t(m+1)); items are
allocated in the case of a tie of ¢(,,) = t(;n41) first by assigning items to those
traders whose a,-virtual utilities are strictly above ¢(;,11), second to buyers
whose a,,-virtual utilities equal ?(,,11), and last to sellers whose a,,-virtual
utilities equal £(,,,1 1), using a fair lottery whenever necessary. Each buyer who
purchases a unit pays (\Ilgm)_l(t(m)) as his price and each seller who sells his
unit receives (W5 )7 (t(41y). Traders who fail to trade neither receive nor pay
a monetary transfer. As discussed below, reporting one’s true value/cost is the
unique dominant strategy for each trader in this market game. In this dominant
strategy equilibrium, the m items are allocated to traders whose a,,-virtual util-
ities are among the m largest, which confirms that this is an «,,,-market game.
The selection of this equilibrium for each m and each (G,F) completes the
definition of the two-price A-mechanism.

In order to verify that honest reporting defines the unique dominant strategy
equilibrium, consider a buyer with value v who considers reporting v*. Let )
denote the mth smallest a,,-virtual utility among the 2m — 1 values computed
using the reports of the other traders. The selected buyer’s ex post payoff is:

v — (W ) Mugny) if W, (V%) > ugm);
(v — (W0, ) (ugn)) if W, () = upm); (12)
0if W (0°) < .

In (12) 7 represents the probability that the selected buyer receives an item if
randomization is needed to complete the allocation. The value of © depends
only upon the values and costs reported by the 2m — 1 other traders. It is
clear from (12) that the selected buyer maximizes his ex post payoff through his
choice of v* if he receives v — (\I/Zm)*l(u(m)) when it is positive and zero when
it is not. Regularity implies that

v— (WP

[e230)

)71(U(m)) >0 \Ifgm (’U) > U(py)-

This equivalence implies that v* = v is the unique report that guarantees the
selected buyer receives v— (U8, )7!(u () exactly when it is positive. Similar to
the second-price Vickrey auction, it follows that v* = v is the selected buyer’s
unique dominant strategy. A similar argument establishes that honestly re-
porting his cost is the unique dominant strategy of every seller. Notice that
ties among the «,,-virtual utilities occur with probability zero in this dominant
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strategy equilibrium. Consequently we ignore this event in the remainder of
this paper.

Two properties of this mechanism are noteworthy. First, the dominant
strategy equilibrium is interim individually rational. A buyer with value v;
trades only if \Ilgm (vi) > t(m), which, by the assumption of regularity, implies
that v; > (¥4 )7(t(n)). The price (V5 )~ (f,n)) he pays when he buys
is thus no more than his value v;. A similar argument shows that the price
received by a seller is at least as large as his cost. Second, a buyer with value
v; = 0 or a seller with cost ¢; =1 has an expected payoff equal to zero because
a trader with this value or cost never trades. If buyer i, for instance, has value
v; = 0, then his virtual utility is ¥4 (0) < 0. The a,-virtual utility of a seller
with cost ¢; = 0 is W% (0) = 0. Regularity thus implies that the c,,-virtual
utilities of the m sellers surely exceed the q,,-virtual utility of the ith buyer.
The ith buyer thus never trades, for his a,,-virtual utility cannot be among the
m largest.

Recall from the discussion of (11) that because a two-price A-mechanism
has these two properties, the expected surplus in (;Si;A is Sur(am,m,G, F).
We now derive a formula for Sur(a,,,m,G, F) from this mechanism. Let
H (t(m),t(m+1)) denote the expected number of trades conditional on the values
of the mth and the (m+1)st a,,-virtual utilities ¢(,,y and (;;,..1). The expected
surplus conditional on #(,,) and ¢, 1) is

H (tn) ton) (92,)7 (o) = (92,) 7 (bnsn) ) (13)

because (W4, ) ((;,) is the price that buyers pay and (ws)~! (t(mt1)) is the
price that sellers receive. Notice that

(U2 ) ) = tamy and (U2, )" (i) < tonta)-

Consequently, even though t(,,,11) > t(m), the price (\I/gm)*l(t(m)) paid by buy-
ers can be either above, below or equal to the price (\Ilgm)*l(t(mﬂ)) received
by sellers, depending on the values of a,,, () and #(;,41). The conditional
expected surplus (13) can thus be either positive, negative, or zero. Tak-
ing expectations with respect to the joint distribution of ¢(,,) and #(,,41) and
replacing o, with the generic parameter a produces the desired formula for

Sur(a, m, G, F):
Sur(a,m, G, F) = (14)
& [H (tmy tomsn) (¥5) " (o) = (@2) " (temin) )] -

Eq. (14) is clearly different from the standard representation of Sur(a, m, G, F)
in (10), for (14) depends upon both the transfers and the allocation rule in the
two-price A-mechanism while (10) depends only upon the allocation rule.
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7 A lower bound on the inefficiency of the con-
strained efficient mechanism in the uniform
environment

The alternative formula (14) for the expected surplus is valuable because it
makes the equation Sur(a,(G*, F*),m,G*, F*) = 0 solvable for a lower bound
on of (G* F*). This bound is derived below in Lemma 6. The bound is
then used in Theorem 4 to establish the desired lower bound on e(¢;,, G*, F*).
Because these two results concern only the uniform environment (G*, F*) and
a fixed market size m, “o,(G*, F'*)” is replaced in this section by the generic
parameter “a”, except in the statement of the lemma.

We begin by reducing the equation Sur(a,m,G% F*) = 0. Uniformity
implies that:

—1 t m +«
W) = (a)uae (8)7 () =020,
s sy — t m—+1
‘I/a(Cj) = (]- + O[)Cj <~ (\Ila) ! (t(m+1)) = 1( + Oé) '

Substitution of the above formulas for (\I/g)_1 (t(m)) and (ws)~! (t(m+1)) into
(14) implies

u u 2(:rn +a tm 1
Sur(a,m,G*, F*) =& H(t(m)7t(m+1)) ( (1:_0[ — 1(++a)>:|

The equation Sur(a,m,G*, F*) = 0 can be then solved for a:

€ [H (ten, tont) (Eentn) — tom)]
E [H (timy: timt))]

The expected number of trades H (t(m), t(m+1)) given t(,y and t(,,41) is clearly
no more than m, which implies

o EH (toms o) (Eontn) — tom)] (15)

- m

o =

Notice that the right side of (15) still depends upon « because its value affects
the distributions of #(,,) and #(,;,41)-

Lemma 6 There exists a constant T € Rt such that the value o, (G*, F*),
which characterizes the constrained efficient mechanism in the uniform environ-
ment, is at least = for all m.

Proof. Starting from (15) it is sufficient to show that there exists a constant
7 such that

E[H (t (1), tom)) Ema1) — tam))] = T (16)
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Because this proof concerns the distributions of the traders’ a-virtual utilities,
it is helpful to note that buyers’ and sellers’ a-virtual utilities are independently
and uniformly distributed on [—a, 1] and [0,1 + «] , respectively. Trade occurs
only among buyers and sellers whose a-virtual utilities are in [0,1], for an a-
virtual utility of a buyer that is in [—c, 0) is surely below those of all sellers and
the a-virtual utility of a seller in (1,1 + «] is surely above those of all buyers.

The left side of (16) is calculated by summing over the m? events distin-
guished by the number of a-virtual utilities from each of the two sides of the
market that lie within [0,1]. For 1 <¢,j < m, define A, ; as the event in which
exactly ¢ buyers’ a-virtual utilities and j sellers’ a-virtual utilities lie in [0, 1].
We have

E [(tpnsry = tomy) H(tmirys tmy) | =

D ElEmin) = tam) H (Ens), tmy) | Aig ] - Pr(Ai ), (17)

1<i,j<m

where the events in which either ¢ = 0 or 7 = 0 are omitted because no trades
occur in these cases (i.e., H(t(mt1),tm)) =0).
We next simplify three terms in (17) in the event A; ;. First, observe that

- () )

This follows from the distributions of buyers’ and sellers a-virtual utilities: for
either a buyer or a seller, 1_+a is the probability that his a-virtual utility is in
[0, 1] and ¢ is the probability that it is outside this interval. Second, consider
H(t(ms1),:t(m))- In event A; ;, the a-virtual utilities of exactly i buyers’ and
J sellers” are independently and uniformly distributed on [0,1]. Consequently,
there are exactly m—i a-virtual utilities of buyers below 0. The values ¢(,,) and
t(m41) in the entire sample of 2m «-virtual utilities are thus respectively the
ith and the (¢ + 1)st among those within [0,1]. The expected number of trades
H(t(m_H), t(m)) in event A; ; given the values of t(,,,) and #(,,4.1) therefore equals
the expected number of the i buyers’ a-virtual utilities that are among the j
largest in this sample of i 4 j a-virtual utilities from the uniform distribution
J

on [0,1]. In such a sample, T s the probability that the a-virtual utility of

any one of these 7 + j traders is among the j largest. It follows that #jjis the
expected number of buyers whose a-virtual utilities are among the j largest,
and so

ij .
H(t(mt1),tm)) = 7 in the eventA, ;. (19)
Third, t(;;41) — t(m) is the difference between the ith and (i + 1)st values in
this sample of i + j a-virtual utilities that are independently and uniformly
distributed on [0,1]. Tt follows from David ((1981), ex. 3.1.1, p. 35) that

1

—_— 20
t+j7+1 (20)

Eltmtr) = tamy | Aigl =
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Substituting (18), (19), and (20) into (17) produces

El(tmr1) = ton) H (Eanr 1) tm))] =

2 OO EE) = e

The remainder of this proof is a calculation that bounds (21). It follows
from the definition of a binomial coefficient that

() ES) ) - (20 020 e (55) (7)

Recall that 1 < ¢, 5 < m, which implies that

o/ 1 1 m? 11
mo| —— | —— > = > .
i+j)\i+ji+1) " 2m@2m+1) 4+2 76

The expression in (21) is thus at least

; < - 1> < - 1> ( +1 >i+j< + >2m_(i+j)

6 1§Zz’,j§ i—1 j—1 1+a 1+«
; < 1 >2 m < 1> < 1) < 1 >i+j_2< ; >2 o
6\1+« 1S2i,jﬁ 1 —1 j—1 14+« 14+«

which after replacing ¢ with ¢ + 1 and j with j + 1 becomes
D S (s (L B
tTa 1<4,j<m—1 ! J tTa tTa

This expression factors as

) B &)

Applying the binomial expansion, this equals
2
1121+am717112
6\1+a l1+a 14+« S 6\l+a)
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We thus have

2
1 1
t —t H(t t > = >
(‘:[( (m+1) (m)) ( (m+1)» (m))} =56 <1 +Oé> =94’

where the last inequality holds because « € [0,1]. =
Using Lemma 6 we can now prove Theorem 4.

Proof of Theorem 4.  Let s(;) denote the jth smallest value/cost in a
sample of 2m buyers’ values and sellers’ costs in the uniform environment. A
lower bound on the expected value of the unrealized gains from trade will be
computed by bounding a portion of the losses in the event D that is defined by
the following two conditions:

L. s(n) is a seller’s cost and s, 11y is a buyer’s value;

2. Y0 (S(mr1)) < U (S(m)) € S(mr1) — Sm) < 227

Recall that efficiency requires that the m items be assigned to the traders with
the m highest values/costs while a constrained efficient market game ¢;- assigns
the items to the traders with m highest a-virtual utilities. Condition 1 implies
that both the buyer with value s(,,,1) and the seller with cost s(,,) should
trade for the sake of efficiency, either with each other or with others. Because
Y? () is increasing and ¢; < 9% (c;), the m — 1 a-virtual utilities of traders
whose values/costs exceed s(,,41) are above w’;(s(mﬂ)). Condition 2 implies
that there is an additional a-virtual utility above dzg (s(m_H)), for a total of at
least m. The buyer whose value equals s(,, ;1) thus does not trade in oo A
similar argument shows that the seller with cost s(,,) also does not trade. The
unrealized gains from trade are therefore at least s(,,41) — 5(;,) in event D.

A lower bound on Iy, (G¥, F*) — ¢ (G, F'*) will now be computed by inte-
grating s(;41) — S(m) over event D. Define w = s(;,,4.1) — () and let p(w;m)
denote its density function. Notice first that, for any given value of w, the
probability that s(,, 1) is a buyer’s value and s(,,) is a seller’s cost equals %.
This is true because each trader’s value/cost is independently drawn from the
same distribution. A lower bound on 'y, (G¥, F*) — ¢y (G*, F*) is thus given
by (22):

]_ a+1
La(G' 1) = (G FY) > 1 [T wptemde @22
0
1 [2w
> —/ wp(w; m) dw. (23)
4 Jo

Because - < a € [0,1], it follows that ;S5 > § > 5. This implies (23).
The integral in (23) is straightforward to evaluate given that buyers’ values
and sellers’ costs are distributed uniformly on [0,1]. Eq. (2.3.1) in David (1981,
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p. 11) implies that

2m/! l-w M1 _ g )Ly
p(w;m) = m/o 2" (1 )" de. (24)

Integration by parts implies that for j, k <1,

1—w 1—w
. Eo
/ (1 -z — w)lde = / — 291~z — w)F .
0 0 j+1

Applying this formula to (24) a total of m — 1 times and then simplifying pro-

duces p(w;m) = 2m (1 —w)*"~'.  This formula allows us to evaluate the

integral in (23):

P 1—(1+7)(1—5%)2m

2m
/0 w p(w;m) dw = 1 . (25)

The term (1 — #)2’" in (25) is positive and decreasing in m to lim,, (1 —

5-)?™ = e~7. Substitution into (22)-(23) thus implies
1 1—(147e "™ _ v
F U Fu _ Ace U Fu _ I
(G FY) -~ GG ) > g x> L
where
1 1-(1Q4mne ™
Y= X ——M—
4 3

To show that v > 0, regard 7 as a variable and note that: (i) 1—(14+7)e ™ =0
at 7 =0; (i) £[1—(1+7)e 7] =7e™ >0for 7 > 0. It follows that v > 0 for
the positive value of 7 given by Lemma 6.

Turning finally to e(¢5:, G*, F*), we have

m

GU, F*) — ¢%(G¥, Fv) y
> .
T, (GY, F) mL(GY, )

r
6( ce7Gu’Fu) = m(

m

The expected potential gains from trade I',,,(G*, F'*) are at most m because at

most m trades can be made, each of value one or less. Therefore, e(dy., G, F'*) >
2. m
m2"

8 A numerical comparison of the k-DA with the
constrained efficient mechanism

Our main result is that the k-DA is worst case asymptotic optimal over F (g, q)
among the class of interim individually rational and ex ante budget balanced

mechanisms. There are two shortcomings of this statement of optimality. First,
that it is worst case means that a set of environments may exist in E(g,q) for
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which some mechanism has a faster rate of convergence to efficiency than does
the £-DA. Second, that it is asymptotic means that a mechanism may exist
that is more efficient in some environments if the market is sufficiently small.
The worst case asymptotic approach is in part a mathematical expedient that
reduces the evaluation of algorithms over a range of problems to a single case
(the worst one) and a single statistic (the rate of convergence of error to zero).
This approach is largely justified by pragmatism, for it allows progress to be
made in the difficult task of comparing algorithms.

The rate at which worst-case error converges to zero is a meaningful statis-
tic for ranking algorithms if it reflects practical experience in applying the al-
gorithms to solve problems. The rapid rate of convergence of Simpson’s rule
relative to the rectangle rule in the integration problem, for instance, is meaning-
ful because it reflects the superiority of Simpson’s rule as a practical method in
many problems. A proof of worst case asymptotic optimality of the k-DA should
therefore be supported with a panel of numerical experiments that, for small
markets and a variety of different environments, demonstrates that this mech-
anism’s worst case asymptotic optimality accurately reflects its performance
both absolutely and relative to other mechanisms. This numerical testing is
important not only for checking the robustness of our worst-case asymptotic
optimality result, but also for formulating precise predictions of equilibrium
behavior that can be tested in the laboratory using human subjects.!3

This section initiates such a numerical test. We compare the 0.5-DA to
the constrained efficient mechanism across four environments and for the mar-
ket sizes m = 2, 4, and 8. These numerical experiments suggest, irrespective
of the tested environment, that the 0.5-DA achieves approximately quadratic
convergence even in small markets and nearly matches the constrained efficient
mechanism’s performance in markets as small as m = 8. While examining four
environments and three sizes of markets is limited as a test, the results are no-
tably consistent for this cross section of economically plausible environments.'*

Table 2 summarizes the results of this test. To understand the table fully,
we must first explain Figures 1-4, each of which depicts equilibria in the 0.5-
DA for m=2, 4 and 8 in one of the four environments. In each figure the
upper left square depicts the density functions g and f for the environment
(G, F). The next three squares depict for market sizes 2, 4, and 8 a set of
equilibria < B,,,S,, > that are symmetric, undominated, result in trade with
positive probability, and in which each of the strategies B,, and S,, is a smooth
function over the closure of the interval of those values/costs for which the
trader’s conditional probability of trading is positive. The diagonals in the
squares represent honest reporting of a trader’s value/cost through his choice

13Experimental evaluation of the k-DA has been initiated by Kagel and Vogt (1993) and
by Cason and Friedman (1997). Both rely upon computational work in Satterthwaite and
Williams (1989b) and Rustichini, Satterthwaite and Williams (1992).

14T, our knowledge these are the first numerical experiments with the k&-DA and the con-
strained efficient mechanism beyond the uniform environment in the case of m > 1. Leininger,
Linhart, and Radner (1989) computed equilibria in the k-DA in the bilateral case in non-
uniform enviroments.
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of a bid/offer. The gap between a strategy and the diagonal thus reflects de-
viation from price-taking behavior. Each strategy B,, lies below the diagonal,
representing underbidding by each buyer, while each strategy S,, lies above the
diagonal, reflecting the effort of each seller to push the price upwards. Every
strategy B,, pairs with a particular strategy .S,, in the figure to define an equi-
librium. As detailed in Satterthwaite and Williams (1993), these equilibria are
computed by numerically solving the system of differential equations defined by
the first order conditions for equilibrium. The initial points for the solutions
shown are a sequence of points on an appropriately chosen line. Consequently,
these graphs approximate a slice through the set of smooth equilibria for the
given environment and market size.

The uniform environment (G*, F'*) is examined in Figure 1. It is included
here because it is both the cornerstone of the worst case analysis of this paper
and because it is commonly used in computing examples. We consider bell-
shaped density functions in the remaining three figures, consistent with common
intuition about economically relevant distributions. Figure 2 depicts the case
in which both G and F equal the Beta distribution with parameters 5 and 5
(B(5,5) symbolically). The remaining two figures examine the effect of shifting
the mass of this distribution leftward and rightward. Figure 3 depicts the case
of G = B(5,3) and F = B(3,5), while Figure 4 depicts the case of G = B(3,5)
and F = B(5,3). The two parameters of the Beta distribution are chosen in
each case both to produce the desired shape of the density function and also
to insure that the distribution satisfies regularity. This property is needed to
insure the sufficiency of the first order conditions for equilibria in the 0.5-DA
and because the constrained efficient mechanism is well-understood only when
the distributions are regular.

Each figure illustrates convergence of equilibria to truthful revelation as the
size of the market increases from 2 to 4 and then to 8. As can be confirmed with
a ruler, the rate of this convergence is consistent with the O (%) rate established
in Rustichini, Satterthwaite, and Williams (1994, Thm. 3.1). In addition to
this convergence, each figure shows that the bundles of buyers’ strategies and
of sellers’ strategies become smaller as m increases, even more rapidly than
required by the convergence to truthful revelation. For m = 8 the equilibrium
is nearly unique. While this does not formally resolve the issue of equilibrium
selection (it appears that a continuum of equilibria continues to exist), this issue
clearly becomes less and less interesting as the size of the market increases.
Except in the the uniform environment, convergence to honest reporting seems
to lag a bit for buyers with values near v = 1 and for sellers with costs near
¢ =0. As can be inferred from the figures, however, the bid of a buyer whose
value is near 1 is almost certain to be among the largest of the 2m bids/offers;
as a consequence, such a buyer almost certainly trades without affecting the
price. Similar remarks apply to a seller whose cost ¢ is near 0. Therefore, as
Table 2 verifies, the misreporting at extremes of value and cost is unlikely to
cause inefficiency and therefore has almost no effect on the relative inefficiency
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Table 2. A Comparison of the 0.5-DA Mechanism $0-5-DPA
with the Constrained Efficient (CE) Mechanism ®° across
Four Environments (G, F') and Three Market Sizes m

0.5-DA CE
e (¢2;5'DA7 ) Mechanism
(G, F) m Ghn L max e (¢°,:) ()
G=G"= 2 0.400 0.058 0.065 0.058 0.226
F=F" 4 0.889 0.015 0.016 0.015 0.123
B(1,1) 8 1.882 0.0037  0.0037 0.0037  0.062
G=DB(55) 2 0.203 0.054 0.059 0.054 0.233
F=B(55 4 0.445 0.011 0.013 0.011 0.123

8 0936 0.0032  0.0032 0.0032  0.062

G=DB(53) 2 0553 002 0036 0029 0.141
F=B(3,5 4 1137 00070 0.0079 0.0070 0.074

8 2317 00017 00022 00017 0.039
G=DB(3,5 2 00529 0.12 0.16 0.12  0.354
F=B(53) 4 0137 0052 0057 0051 0.253

8 0317 0.014 0.014 0.014 0.140

of the equilibria.1®

Table 2 reports the error in both the 0.5-DA and the constrained efficient
mechanism over these four environments and three sizes of market. The first
three columns specify the environment (G, F'), the size of the market m, and
the expected potential gains from trade T'(-). The next two columns list relative
inefficiencies in the 0.5-DA. Figures 1-4 display a multiplicity of equilibria in
each environment and for each size of market, and each of these equilibria has
a different relative inefficiency. In the fourth and fifth columns we report the
minimum and the maximum values of e((;S?f*da, G, F) over the equilibria that
are graphed. While not extrema in a formal sense, they do approximate the
inefficiency of the most efficient and the least efficient smooth equilibria. The
last two columns concern the constrained efficient mechanism. The column
labeled e(¢5c, G, F) is the minimum possible error among all interim individually

m
rational and ex ante budget balanced mechanisms in the market determined by

S Formally, this lag in convergence at ¢ = 0 and v = 1 is attributable to the density of the
Beta distribution in each of these cases equaling zero at these points. The O(L) convergence
result of Rustichini et. al. (1994) assumes that the densities are bounded both above and
below, away from zero. It is easy to infer from the proof of this result that the O(%) holds
in the cases considered in Figures 2-4 on any proper subinterval [e,1 — £] of [0, 1].
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(G, F) and by m. It is the benchmark against which we evaluate the 0.5-DA.
Finally, the column labeled o, (G, F) lists the value of « that characterizes the
constrained efficient market game in each environment and size of market.

The first three rows of Table 2 concern the uniform environment (G*, F'*).
Notice that o, (G*, F*) decreases approximately by a factor of 2 each time
that m doubles, consistent with Lemma 6. Similarly, e(¢5., G, F*) decreases
by a factor of 22 = 4 as m doubles, consistent with Theorem 4. With an eye
towards the worst case and the asymptotic nature of our optimality result, note

the following two points:

1. As m increases from 2 to 4 and then to 8 in each of the four environments,
the relative inefficiency of the least efficient (and hence of each) smooth
equilibrium of the 0.5-DA rapidly approaches that of the constrained effi-
cient mechanism. In each of the four environments for market size m =8
the relative inefficiency of each equilibrium is almost indistinguishable
from that of the constrained efficient mechanism.

2. In each of the three non-uniform environments, both o, (G, F') and e(¢,, G, F)
replicate the convergence rates observed in the uniform environment. The
rates of convergence established for the constrained efficient mechanism in
Lemma 6 and Theorem 4 thus appear to hold even in these small markets

and non-uniform environments.

Point 1 supports our use of rate of convergence as a summary statistic for mea-
suring the performance of the k—DA, for its worst-case asymptotic optimality
mirrors its nearly optimal performance in these small markets. Point 2 sug-
gests that the uniform environment is typical of environments and not an oddity,
which supports our use of it as a convenient worst case. This also is supported
by the theory, for uniformity is invoked in our proofs only to simplify several
difficult formulas involving order statistics: nothing in the proofs suggests that
relative inefficiency in the constrained efficient mechanism depends crucially on
the assumption of uniformity. We thus conclude by conjecturing that the k-DA
is in fact asymptotically optimal over E(q,q), i.e., it exhibits the fastest possible
rate of convergence of relative efficiency to zero in the case of each environment
(G,F) in E(q,7).
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Figure 1: Bundles of equilibrium strategies if v; ~ G = B(1,1) and ¢; ~ F =
B(1,1).
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Figure 2: Bundles of equilibrium strategies if v; ~ G = B(5,5) and ¢; ~ F =
B(5,5).
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Figure 3: Bundles of equilibrium strategies if v; ~ G = B(5,3) and ¢; ~ F =
B(3,5).

32



bid/offer
! 2
m:
21 g(v)
N , 081 seller
15 Strategies
0.6
1
0.4
0.5 0.2 Buyer
Strategies
0
0O 02 04 06 08 1 02 04 06 08 1
bid/offer cost/value bid/offer cost/value
1 1
m=4 m=38
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 04 06 08 1 0.2 04 06 08 1
cost/value cost/vali

Figure 4: Bundles of equilibrium strategies if v; ~ G = B(3,5) and ¢; ~ F =
B(5,3).
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