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Abstract

We study efficient, Bayes-Nash incentive compatible mechanisms
in a social choice setting that allows for informational and allocative
externalities. We show that such mechanisms exist only if a congru-
ence condition relating private and social rates of information sub-
stitution is satisfied. If signals are multidimensional, the congruence
condition is determined by an integrability constraint, and it can hold
only in non-generic cases such as the private value case or the sym-
metric case. If signals are one-dimensional, the congruence condition
reduces to a monotonicity constraint and it can be generically satis-
fied.

We apply the results to the study of multi-object auctions, and
we discuss why such auctions cannot be reduced to one-dimensional
models without loss of generality.

1 Introduction

There exists an extensive literature on efficient auctions and mechanism de-
sign. A lot of attention has been devoted to the case where each agent i has a
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quasi-linear utility function that depends on the chosen social alternative, on
information (or signal) privately known to i, and on a monetary transfer, but
does not depend on information available to other agents. In this framework,
a prominent role is played by the Clarke-Groves-Vickrey (CGV) mechanisms
(see Clarke, 1971, Groves, 1973, Vickrey, 1961). These are mechanisms that
ensure both that an efficient decision is taken and that truthful revelation of
privately held information is a dominant strategy for each agent. This re-
sult holds for arbitrary dimensions of signal spaces and for arbitrary signals’
distributions1.
In this paper we study the case where each agent has a quasi-linear util-

ity function having as arguments the signals received by all agents and the
chosen social alternative. Hence, besides allocative externalities, we allow
for informational externalities, and we speak of ”interdependent valuations”.
Signals may be multi-dimensional, but we assume that they are indepen-
dently drawn across agents. (Signal independence is the most seriously re-
strictive assumption; observe though that this assumption is not required for
the result in the one-dimensional case of Section 5.)
Interdependent valuations naturally appear in many (two-stage) games

studied in applications. In those applications the role of the social alterna-
tives is played by possible allocations of property rights (such as licenses,
patents, control rights over firms, etc...) at stage one. These allocations
influence then the interaction among agents at stage two. For example, con-
sider an oligopoly model with n firms producing an homogenous good. Each
firm i is characterized by a vector of parameters ci0, which usually contains
(possibly private) information about fixed costs, marginal costs, etc... The
profit of each firm is given by a function Πi(ci0, c

−i
0 ). Assume now that an

innovation appears such that a firm licensed to use the innovation will be
characterized by a new vector ci, which is private information. A social al-
ternative can be described by the set L of licensed firms. The valuation of
firm i for alternative L is given by the change in profits relative to status-quo:
Πi((cj)j∈L, (c

j
0)j /∈L)−Πi(ci0, c−i0 ). Note how firm i0s valuation depends both on

who else is licensed (allocative externalities), and on information available to

1It is well known that, generally, CGV mechanisms cannot simultaneously satisfy con-
ditions such as budget-balancedness and individual rationality (for example, Myerson and
Satterthwaite’s (1983) impossibility result can be obtained as a corollary of this fact).
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other firms2.
Our model can be applied to the study of multi-object auctions. There

are many auction papers that go beyond the private values case (e.g., the
literature following Milgrom andWeber, 1982), but almost all of them restrict
attention to situations where there is one object (or there are several identical
units), signals are one-dimensional, agents are ex-ante symmetric and do not
care about what other agents receive at the auction3. Applications of the
present model to auctions allow for several heterogenous objects, asymmetries
among bidders, and both allocative and informational externalities4.
In the social choice framework considered here, Williams and Radner

(1988) have shown that, in general, no efficient, dominant-strategy incentive
compatible mechanisms exist5. Important insights about auctions with infor-
mationally interdependent valuations (but without allocative externalities)
can be found in Maskin (1992) and Dasgupta and Maskin (1998). Maskin
(1992) considers an auction for an indivisible object and observes that no
efficient, incentive-compatible auction exists if a buyer’s valuation for that
object depends on a multi-dimensional signal (see further comments on this
result in Section 4 below). Dasgupta and Maskin (1998) study multi-object
auctions where agents have one-dimensional signals and where there are no
allocative externalities. They construct a mechanism that achieves efficient
allocations (under appropriate conditions on marginal valuations). Ausubel

2The private information held by each firm is typically multidimensional, since it in-
cludes information about fixed costs, marginal costs, etc... Since fixed and marginal costs
do not affect competition in the same way, they cannot be reduced to a one-dimensional
parameter without loss of generality. If several types of licenses were sold, the private
information would include cost parameters for each type of license thus increasing the
dimensionality of the signal space even further.

3Auction models emphasizing the role of allocative externalities in a one-object setup
are discussed in Jehiel and Moldovanu (1996) and Jehiel, Moldovanu and Stacchetti (1996,
1999).

4These features will, in general, give rise to multidimensional signal spaces, since the
payoff-relevant part of the signal varies with the chosen alternative (e.g., with the acquired
bundle or with the entire distribution of objects among agents).

5Cremer and McLean (1985,1988) and McAfee and Reny (1992) have given conditions
under which a principal can extract the full surplus available when types are correlated.
Full extraction mechanisms are, in particular, efficient. Neeman (1998) shows that these
results do not hold in a model that can be interpreted as one where agents have multidi-
mensional signals, and signals have some private and some common components. Aoyagi
(1998) presents a general existence result of efficient, budget balanced and incentive com-
patible mechanisms when agents have finitely many correlated types. None of the above
papers covers the present framework ( i.e., a continuum of mutually payoff relevant mul-
tidimensional types), but we suspect that correlation among types allows some possibility
results. On the other hand, the mechanisms displayed in the literature above are not very
intuitive and require potentially unlimited transfers.
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(1997) and Perry and Reny (1998) present specific bidding procedures that
achieve efficient allocations for a one-dimensional model with M identical
units and no allocative externalities. Ausubel assumes symmetry among
bidders and constant marginal valuations. Perry and Reny drop symmetry
and allow for decreasing marginal valuations.
This paper is organized as follows: In Section 2 we present the social

choice model. In Section 3 we obtain a characterization theorem for Bayesian
incentive compatible direct mechanisms. In Section 4 we exhibit impossibility
results about efficient, Bayesian incentive compatible mechanisms. We only
require value maximization, and we completely ignore budget-balancedness
and any other properties. Hence, we show that providing incentives for truth-
ful revelation of privately held information is not compatible even with a very
weak efficiency requirement.
The logic behind the impossibility results is as follows: An incentive

compatible mechanism generates for agent i a (convex) equilibrium expected
utility function Vi(·) : Si → < , where Si is the multidimensional type space
of that agent. By a well-known calculus result (Schwarz’s Theorem), the
cross-derivatives of such functions are equal6. This requirement implies sev-
eral equalities involving the conditional expected probabilities with which
the various alternatives must be chosen in incentive compatible mechanisms
(these expected probabilities form the gradient of Vi(·))7. The impossibility
results follow by showing that the conditional expected probabilities gener-
ated by efficient mechanisms satisfy the required equalities only under very
restrictive conditions.
The first result is obtained for situations where incentive compatibility

implies that an informational variable has a zero marginal effect on some
of the conditional expected probabilities, while this variable is relevant for
efficiency considerations. Theorem ?? shows impossibility for the case where
there is at least one agent possessing essential information that affects other
agents, but does not directly affect the owner of that information. A sim-
ilar argument is used in Example ?? which shows that efficient, incentive
compatible mechanisms may not exist if there exist an alternative k and an
agent i such that agent i ´s signal affecting her valuation for alternative k is
multidimensional (this corresponds to Maskin’s (1992) example).
Our main impossibility result is Theorem ?? (which is significantly dif-

ferent from Maskin’s example and from other impossibility theorems iden-

6This is the mathematical statement of the pretty obvious fact that the net height
covered by climbing a mountain is independent of the path of ascent.

7A very similar phenomenon appears in the classical demand theory for several goods
(see Chapter 3 in Mas-Colell, Whinston and Green, 1995): the matrix of price derivatives
for a demand function arising from utility maximization must be symmetric.
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tified so far). We consider there a framework where each agent i has a
K−dimensional signal si. The coordinate sik is a one-dimensional sig-
nal affecting the valuations of all agents for alternative k. This framework
is critical since, a-priori, all informational variables may have a non-zero
marginal effect on the conditional expected probabilities generated by incen-
tive compatible mechanisms, and we cannot use the method sketched above.
The argument showing impossibility is now more refined: the conditional
expected probabilities generated by an efficient mechanism satisfy the con-
ditions implied by the equality of the cross derivatives only if a congruence
condition relating private and social rates of informational substitution is
satisfied. The congruence condition holds only for a closed, zero-measure set
of parameters8.
Since the constraints imposed by Schwarz’s Theorem apply as soon as

signals are multidimensional, results similar to Theorem ?? hold as soon as
there is at least one agent whose signal is of dimension d ≥ 2. In Section 5
we study the remaining case where the signal spaces of all agents are one-
dimensional. For that case we construct a mechanism that is efficient and
incentive compatible if a monotonicity condition on marginal valuations is
satisfied. Our treatment is based on the idea (which can be traced back to
Pigou) that transfers should stand for the cumulative effect of one’s action
(here a signal report) on all other agents. The first illustration of this idea in
an auction context with interdependent valuations appears in Dasgupta and
Maskin (1998).
The expected equilibrium utility functions Vi(·) depend here on a real-

valued signal, and there are no cross-derivatives to consider. The imple-
mentability condition reduces to a monotonicity constraint that can be sat-
isfied in non-trivial cases.
Concluding comments are gathered in Section 6. In particular, we com-

ment on the difficulty of finding constrained efficient (i.e., second-best) mech-
anisms.

2 The Model

There are K social alternatives, indexed by k = 1, ...K and there are N
agents, indexed by i = 1, .., N . Each agent i has a signal (or type) si which
is drawn from a space Si ⊆ <K×N according to a continuous density fi(si),
independently of other agents’ signals. Each agent i knows si, and the den-
sities {fj(·)}Nj=1 are common knowledge. The idea is that the coordinate sikj

8We show that the congruence condition is satisfied in situations where either symmetry,
or the private values assumption hold.
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of si influences the utility of agent j in alternative k9. We assume that the
signal spaces Si are bounded and convex10.
If alternative k is chosen, and if i obtains a transfer xi, then i

0s utility is
given by V ik (s

1
ki, ..., s

n
ki)+xi, where V

i
k (s

1
ki, ..., s

n
ki) =

Pn
j=1 a

j
kis

j
ki, and where the

scalar parameters11 {ajki}1≤k≤K,1≤j,i≤N are common knowledge. We assume
throughout the paper that ∀i, ∀k, aiki ≥ 0.

2.1 An Application to Auctions

Consider an auction where a setM of heterogenous objects is divided among
n + 1 agents (agent zero is the seller, the rest are potential buyers). An
alternative is a partition µ of M, µ = {Mi}Ni=0 , where Mi is the set of
objects allocated to bidder i, i = 1, 2, ...N andM0 is the set of unsold objects.
Bidder i0s piece of information siµj summarizes, from the point of view of i, the
important aspects for j (say, attributes of the objects in Mj) given partition
µ.
This framework allows for informational and allocative externalities and

for asymmetric bidders. Particularly simple cases are: 1) The private val-
ues case where V iµ(·) is only a function of siµi ; 2) The private values case
without allocative externalities where V iµ(·) is only a function of siµi, and
V iµ(·) = V iµ0(·) for all partitions µ and µ0 such that i receives the same set
of objects , etc... Even these simple cases require, in general, multidimen-
sional signals. In our introductory licensing example both informational and
allocative externalities emerge naturally.

3 Direct Revelation Mechanisms

By the revelation principle, we can restrict attention to direct, incentive
compatible mechanisms. We first define Direct Revelation Mechanisms and
then turn to incentive compatibility.
Let S denote the Cartesian product

QN
i=1 S

i, with generic element s. De-
fine S−i as the type space of agents other than i, with s−i as generic element.

9We address below (see Example 4.3) situations where the signal of an agent i affecting
the utility of agent j in alternative k is itself multidimensional.

10Convexity is assumed for convenience. If Si is simply connected all results go through
unchanged.

11The analysis directly extends to the case where the valuation functions include also
a constant, i.e., V i

k (s
1
ki, ..., s

n
ki) =

Pn
j=1 a

j
kis

j
ki + b

i
k (because such constants do not affect

incentives).
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A function p : S → <K such that ∀k, s, 0 ≤ pk(s)≤ 1 and ∀s,PK
k=1 pk(s) =

1 is called a social choice rule. A social choice rule (SCR) is said to be effi-
cient if

∀s, pq(s) 6= 0⇒ q ∈ argmax
k

NX
i=1

V ik (s
1, ..sN) = argmax

k

NX
i=1

NX
j=1

ajkis
j
ki.

A direct revelation mechanism (DRM) is defined by a pair (p, x) where
p is a social choice rule, and x : S → <N is a payment scheme. The term
pk(s) is the probability that alternative k is chosen if the agents report signals
s = (s1, ..., sN), and xi(s) is the transfer to agent i if the agents report signals
s. A DRM is efficient if the associated social choice rule is efficient12.
Given a payment scheme x and a social choice rule p, we now define

for each agent i the conditional expected payment function yi : S
i → <

and the conditional expected probability assignment functions qi : Si → <K
associated with x and p :

yi(t
i) =

Z
S−i
xi(t

i, s−i)f−i(s−i)ds−i

qik(t
i) =

Z
S−i
pk(t

i, s−i)f−i(s−i)ds−i.

Assume that agent i believes that all other agents report truthfully and
assume that i reports type ti when his true type is si. Then, i0s expected
utility is given by:

Ui(t
i, si) =

Z
S−i
[
X
k

(pk(t
i, s−i) ·

NX
j=1

ajkis
j
ki)]f−i(s

−i)ds−i + yi(ti) =

X
k

aikis
i
kiq

i
k(t

i) +
X
k

Z
S−i
[(pk(t

i, s−i) ·X
j 6=i
ajkis

j
ki)]f−i(s

−i)ds−i + yi(ti).(1)

Define also

Vi(s
i) = Ui(s

i, si).

12We ignore here (as in the CGV approach) the (ex post) ”budget balancedness” con-
dition, which imposes

P
i xi(s) ≤ 0, ∀s. In other words, we abstract from efficiency losses

due to potential external subsidies.
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3.1 Incentive Compatible Mechanisms

A DRM is (Bayes-Nash) incentive compatible if:

∀i, ∀si, ti ∈ Si, Ui(si, si) ≥ Ui(ti, si).
For the characterization of incentive compatible mechanisms we need two

definitions.
A (possibly multivalued) mapping Ψ : Si → <K×N is monotone if (x0 −

x1)·(x∗0−x∗1) ≥ 0 for any set of pairs (xi, x∗i ), i = 0, 1, such that x∗i ∈ Ψ(xi).13
A vector-field Ω : Si → <K×N is conservative if Rγ Ω = 0 for every closed

curve γ in Si. Conservativeness is a necessary and sufficient condition for Ω
to be the gradient of a function ω : Si → <.
Let (p, x) be a DRM, and let {qi(·)}ni=1 be the associated conditional

probability assignments. For each agent i, let Qi(si) : <K×N → <K×N be
the vector field, where, for each alternative k, the kith coordinate is given
by aikiq

i
k(s

i) and the kjth coordinate, j 6= i, is zero. Then (p, x) is incentive
compatible if and only if the following conditions hold:

1. ∀i, the vector field Qi(·) is monotone and conservative.
2. ∀i, ∀si, ti ∈ Si, Vi(si) = Vi(ti) + R si

ti Q
i(τ i)dτ i 1415

See Appendix.

4 Impossibility Results

In an incentive compatible mechanism (p, x) we have Vi(s
i) = maxti Ui(t

i, si).
The function Vi(·) is convex (see the proof of Theorem ??), and hence twice
differentiable almost everywhere. Assuming that Vi(·) is differentiable at si
we obtain by the Envelope Theorem that:

∀k, ∂Vi
∂siki

(si) = aikiq
i
k(s

i) (2)

13Note the analogy with the classical ”law of demand”.
14The integral can be defined on any path connecting ti and si since the vector field

Qi(·) is conservative. For example, we can choose a straight line, to obtainR si

ti Q
i(τ i)dτ i =

R 1

0
Qi((1− α)ti + αsi)) · (si − ti).dα

15Note that the Theorem implies a ”Revenue Equivalence” result. The conditional
expected payment of agent i in any incentive compatible mechanism is solely a function of
the associated expected probability assignment, and of the expected utility of an arbitrary
type. Any two incentive compatible mechanisms with the same probability assignment
yield, up to a constant, the same conditional expected payments.
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∀k,∀j 6= i, ∂Vi
∂sikj

(si) = 0 (3)

Assuming that Vi(·) is twice continuously differentiable at si, we obtain
by Schwarz’s Theorem that the cross-derivatives at si must be equal. This
implies :

∀k, k0, aiki
∂qik(s

i)

∂sik0i
=

∂Vi
∂sik0i∂s

i
ki

(si) =
∂Vi

∂siki∂s
i
k0i
(si) = aik0i

∂qik0(s
i)

∂siki
; (4)

∀k, k0, ∀j 6= i, aiki
∂qik(s

i)

∂sik0j
=

∂Vi
∂sik0j∂s

i
ki

(si) =
∂Vi

∂siki∂s
i
k0j
(si) = 0 . (5)

The idea behind the following impossibility results is to check whether effi-
cient mechanisms yield conditional expected probability assignment functions
that satisfy conditions ?? and ??.
Note that an efficient SCR is piece-wise constant. Hence, for efficient

mechanisms we obtain that the associated functions {qi(·)}ni=1 are everywhere
continuously differentiable by assuming, for example, that the (convex) type
spaces have a non-empty interior and a piece-wise smooth boundary, and
that for all i and all si ∈ Si, fi(si) > 0.
We first focus on the simpler condition ??.
Let p̂ be an efficient SCR, and let {q̂i(·)}Ni=1 be the associated conditional

expected probability assignments. The variable ŝikj is said to be essential if
there exist si, ti ∈ Si such that:

1. sik0j0 = t
i
k0j0 for all (k

0, j0) 6= (k, j) .
2. sikj 6= tikj .
3. q̂ik(s

i) 6= q̂ik(ti).

Note that unless alternative k is always welfare-dominated (or always
welfare superior) or the density fi(·) is degenerate (i.e., does not have full-
dimensionality), all variables ŝikj such that a

i
kj 6= 0 are essential16.

Assume that i, j, k exist such that i 6= j, aiki 6= 0, and ŝikj is essential.
Then efficient, incentive compatible DRMs do not exist.

16Since an efficient SCR is uniquely defined almost everywhere, the definition of essen-
tiality does not depend on the specific SCR p̂ which is used.
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Let si, ti satisfy the conditions in Definition ??, let (p, x) be an efficient,
incentive-compatible DRM with associated conditional expected probability
assignments {qi(·)}Ni=1. By efficiency, we must have qi(ui) = q̂i(ui) for all
ui ∈ Si. Since aiki 6= 0, we obtain by equation ?? and by the construction
of si, ti, that qi(si) = qi(ti). Since, by definition, q̂i(si) 6= q̂i(ti), we obtain a
contradiction.
We next show that the simple phenomenon displayed in Theorem ?? has

a deeper consequence. So far we have assumed that ŝikj , agent i
0 s piece of in-

formation affecting the utility of agent j in alternative k, is one-dimensional.
We next look at an example where this requirement is not satisfied. An
impossibility result in such situations has been observed by Maskin (1992).
What we show here is that Maskin’s result is a consequence of the phenom-
enon displayed in Theorem ??.
There are two agents i = 1, 2 and two alternatives k = A,B. Signals are

two-dimensional, si = (si1, s
i
2), i = 1, 2. Valuations are given by: V

1
A(s

1, s2) =
s11 + a(s

1
2 + s

2
2) , V

1
B(s

1, s2) = 0, V 2A(s
1, s2) = 0 , V 2B(s

1, s2) = s21 + a(s
1
2 + s

2
2).

(Imagine an auction for an indivisible good where the components si1 ,
i = 1, 2, are the private parts of the signals while the components si2 are
common parts).
Consider the change of variables:

ti = (ti1, t
i
2) = (s

i
1 + as

i
2, s

i
2)

In the ti type space we obtain: V 1A(t
1, t2) = t11 + at

2
2 , V

1
B(t

1, t2) = 0,
V 2B(t

1, t2) = t21 + at
1
2 , V

2
A(t

1, t2) = 0.
Hence, agent 1 has a signal t12 which does not affect her utility (in par-

ticular it does not affect her utility in alternative A), but affects the utility
of agent 2 in alternative B. In incentive compatible mechanisms we obtain
by condition ?? that agent 1’s interim expected probability for alternative
A is independent of t12 , while t

1
2 is essential for the determination of ex-post

efficiency. The impossibility result follows as in Theorem ??.
The example17 can be extended to the case where V 1A(s

1, s2) = s11+ as
1
2+

bs22 and V
2
B(s

1, s2) = s21+as
2
2+ bs

1
2. Even when the dependence of an agent’s

valuation on the signal of another agent is very small (i.e., b is very close to
zero), efficiency cannot be attained.
Our results so far suggest that, in order to obtain generic existence of

efficient and incentive compatible mechanisms, it is necessary that ∀i, j, i 6= j,
∀k, sikj is a function of the signals sik0i , k0 = 1, ...K, and that each sik0i is one-
dimensional. Since we want to remain in the linear framework, we consider

17Compte and Jehiel (1998) look at related examples in order to study the value of
competition in standard auctions.
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the case where ∀i, j, i 6= j, ∀k, sikj is a linear function of sik0i, k0 = 1, ...K. In
order to make the argument as transparent as possible, we simplify further
by assuming below that ∀i, j, i 6= j, ∀k, sikj = siki.
Hence, we now look at K− dimensional type-spaces, and we denote by sik

agent i’s one-dimensional piece of information affecting (possibly in different
ways) the utility of all agents in alternative k.
In this setup, the impossibility of efficient, incentive compatible mecha-

nisms is less immediate. The question is whether the conditional expected
probability assignment functions generated by efficient mechanisms satisfy
the more complex condition ??.
To be precise, recall that we have derived conditions 4.3 and 4.4 for

signals of dimension K×N. For each K-dimensional signal eti, define eVi(eti) ≡
Vi(t

i) and eqik(eti) ≡ qik(t
i) , where ti is the K × N−dimensional signal such

that tikj = etik for all k, j. Assuming that Vi(ti) is differentiable at ti, we obtain
by conditions 4.3 and 4.4 that:

∀k, ∂
eVi
∂etik (eti) =

X
j

∂Vi
∂tikj

(ti) = aikiq
i
k(t

i) = aikieqik(eti).
The equality of cross-derivatives implies that :

aiki
∂eqik(eti)
∂eti
k
0
= ai

k
0
i

∂eqi
k0 (
eti)

∂etik (6)

In order to simplify notation, we drop from now on the ”tilde” and denote
by si = (si1, ...s

i
K) a K−dimensional signal of agent i, yielding expected

probability assignments {qik(·)}Kk=1 , and equilibrium utility Vi(·).
Assume that (p, x) is an efficient DRM that is incentive compatible for

agent i. Let k, k0 be any pair of alternatives such that: 1) aik0i 6= 0 ; 2) There
exists a type ti such that qik(s

i) 6= 0, qik0(si) 6= 0 for all si in a neighborhood
of ti 18. Then it must be the case that

aiki
ai
k0 i
=

PN
j=1 a

i
kjPN

j=1 a
i
k
0
j

. (7)

See Appendix19.
Condition ?? is a congruence requirement between private and social rates

of information substitution (see Example below for more intuition about

18Note that qi
k(t

i) 6= 0, qi
k0(ti) 6= 0 imply that PN

j=1 a
i
k

0 j
6= 0 and that PN

j=1 a
i
kj 6= 0.

19The Theorem has also converse: If condition ?? is satisfied, and if an efficient SCR p
yields, for each agent i a monotone vector field Qi(·) then there exists a payment schedule
xi(·) such that (p, x) is incentive compatible for i.
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these terms). The implied algebraic relations among parameters cannot be
generically satisfied20. Note that condition ?? is trivially satisfied in two
interesting and much studied cases: the private values case where ∀i, j, i 6=
j, ∀k, aikj = 0, and the symmetric case where ∀i, j, k, aikj = aiki.

?? There are two agents i = 1, 2 and two alternatives k = A,B. Signals
are two dimensional, si = (siA, s

i
B), i = 1, 2. For i = 1, 2 let −i denote the

agent other than i. Valuations are given by:

V ik (s
i, s−i) = aikis

i
k + a

−i
ki s

−i
k , i = 1, 2, ; k = A,B

Assume that an efficient, incentive compatible DRM exists, and denote it
by (p, x). Let qik(·) denote i0s interim expected probability that the mechanism
chooses alternative k.
We will first show that, as a consequence of equation ??, incentive com-

patible mechanisms must yield the same vector of conditional expected prob-

ability assignments for types of agent i, i = 1, 2, lying on lines with slope
ai

Ai

ai
Bi
.

We next show that efficient mechanism yield the same vector of conditional

expected probability assignments for types lying on lines with slope
ai

Ai+a
i
A−i

ai
Bi+a

i
B−i
.

Hence, incentive compatibility can be consistent with efficiency only if these
two slopes are equal.
We know that

∀i, ∀si, qiA(si) + qiB(si) = 1. (8)

Consider agent 1. Equation ?? yields

a1A1
∂q1A(s

1)

∂s1B
= a1B1

∂q1B(s
1)

∂s1A
. (9)

By taking the derivative with respect to s1A in identity ??, we get

∂q1B(s
1)

∂s1A
= −∂q

1
A(s

1)

∂s1A

By equation ??, we get:

a1A1
∂q1A(s

1)

∂s1B
+ a1B1

∂q1A(s
1)

∂s1A
= 0. (10)

20i.e., the set of parameters satisfying the condition is closed and has Lebesgue-measure
zero.
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Fix now t1 = (t1A, t
1
B) such that the assumptions in the Theorem are satisfied,

and consider a line in the type space of agent 1 having the form s1 = s1(z) =

(t1A + z, t
1
B +

a1
A1

a1
B1
· z). By equation ?? we have:

dq1A(t
1
A + z, t

1
B +

a1
A1

a1
B1
· z)

dz
=
∂q1A(s

1)

∂s1A
+
a1A1
a1B1

∂q1A(s
1)

∂s1B
= 0. (11)

Hence, in incentive compatible mechanisms the function q1A(·) is constant
along lines having the form (t1A + z, t

1
B +

a1
A1

a1
B1
· z) (by equation ?? the same

is of course true for the function q1B(·)).
We now turn to the consequences of efficiency. Alternative A is chosen

by an efficient DRM at reports (s1, s2) iff

2X
i=1

2X
j=1

ajAis
j
A ≥

2X
i=1

2X
j=1

ajBis
j
B

This is equivalent to:

(a1A1 + a
1
A2)s

1
A − (a1B1 + a1B2)s1B ≥ (a2B1 + a2B2)s2B − (a2A1 + a2A2)s2A (12)

Efficiency implies that:

q1A(s
1) =

Z
∆(s1)

f2(s
2)ds2

where ∆(s1) = {s2 such that condition ?? is satisfied}.
Consider a line in agent 1’s type space having the form s1 = s1(z) =

(t1A+z, t
1
B+

a1
A1+a

1
A2

a1
B1
+a1

B2
z). For any two signals θ1, τ1, on this line, we have∆(θ1) =

∆(τ1). Therefore q1A(s
1(z)) does not depend on z. Taking the derivative with

respect to z, and multiplying by (a1B1 + a
1
B2) 6= 0, this yields :

(a1B1 + a
1
B2)
∂q1A(s

1)

∂s1A
+ (a1A1 + a

1
A2)
∂q1A(s

1)

∂s1B
= 0 (13)

Equations ?? and ?? yield together:

a1A1
a1B1

=
a1A1 + a

1
A2

a1B1 + a
1
B2

. (14)

The same reasoning yields an analogous condition for i = 2.
Two remarks regarding Theorem ?? follow.
Technically, Theorem ?? applies to the case where the dimensionality of

signal spaces coincides with the number of alternatives K ≥ 2. But it should
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be clear that the same type of results can be obtained whenever the inte-
grability constraint expressed by the equality of cross-derivatives bites (i.e.,
whenever, for at least one agent, the dimensionality of the signal space is
greater than one.) For signal spaces of any dimension d, 1 < d ≤ K, effi-
ciency and incentive compatibility imply together algebraic conditions on the
parameters (analogous to condition ??) that cannot be generically satisfied.
An illustration is offered in Example ?? in the Appendix.
Dasgupta and Maskin (1998) suggest that the ”second best” mechanism

for a multidimensional model can be analyzed by performing a reduction to
a one-dimensional model for which an efficient mechanism can be sometimes
constructed (see next Section). The constructed mechanism is then ”con-
strained efficient” for the original multidimensional model. Simple dimension
reductions are indeed available in two cases: 1) The only integrability con-
straints are of the form given by condition ??, which implies that incentive
compatible mechanisms cannot condition on a variable ŝikj, j 6= i, if such a
variable moves independently of (ŝik0i)k0 . 2) There are only two alternatives.
If the alternatives are k and k0 , then qik(·) = 1− qik0(·) , and the integrabil-
ity conditions expressed in equation 4.3 can be written in terms of a unique
function. In Example ?? we have exhibited the lines along which conditional
expected probability assignments in an incentive compatible mechanism must
be constant (and hence we have exhibited the appropriate reduction to one
dimension21).
If at least one agent perceives more than two payoff relevant alternatives22,

the constraints expressed by conditions ?? simultaneously affect several func-
tions, and further dimension reductions become endogenous and impossible
to perform a-priori.
The above analysis sheds some light on the outcome of a multi-object

auction where the objects and the agents are heterogenous in a non-trivial
way. If there are informational externalities, and if signals are independent,
whatever sale mechanism is considered (including mechanisms that allow for
”combinatorial” bidding), efficiency cannot be achieved.

21Similar reductions can be performed in models where there are possibly more than two
alternatives, but each agent perceives only two outcomes as payoff relevant. For example,
in an auction for one unit of an indivisible good without allocative externalities, an agent
cares only about ”winning” or ”losing”.

22This is the general case in auctions for several heterogenous objects or in auctions for
one object with allocative externalities.
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5 One-Dimensional Signals

We now assume that agents have one-dimensional signals. Agent i’s payoff
in alternative k is given by

V ik (s
i, s−i) =

NX
j=1

ajkis
j

where sj ∈ [sj, sj] denotes the one-dimensional signal of agent j. Signals need
not be independently distributed, and the result below does not depend on
the signals’ distribution functions.
In order to avoid a tedious case differentiation, we assume that, for each

agent i, there are no alternatives k , k0, k0 6= k, such that aiki = aik0i. Our
result will rely on the following assumption:

∀i, ∀k, k0, aiki > aik0i ⇒
nX
j=1

aikj >
nX
j=1

aik0j (15)

Condition ?? (referred below as the weak congruence condition) requires that
the sequence of alternatives obtained by ordering (in terms of magnitude)
the impacts of i’s signal on i’s payoff is the same as the sequence obtained
by ordering the impacts of i0s signal on total welfare. Note the analogy
with condition ??, but note also the gained slack in the one-dimensional
framework. This slack (i.e., required inequalities instead of equalities) allows
the condition to be satisfied for an open set of parameters’ values.
Assume that the weak congruence condition ?? is satisfied. Then there

exists an efficient, Bayesian incentive compatible mechanism. Moreover, the
associated transfers do not depend on the distribution of signals23.
See Appendix.

6 Conclusions

We have shown that efficient, incentive compatible mechanisms can exist only
if a congruence condition relating private and social rates of information

23A similar result appears in Dasgupta and Maskin (1998), who were the first to exhibit
the basic intuition behind the construction. Technically, our result is not a special case
of theirs because Dasgupta and Maskin’s framework is, specifically, one of multi-object
auctions (without allocative externalities), while we study a general social choice problem.
Dasgupta and Maskin’s mechanism is more complex since it also elicits reports about
valuation functions.
The general condition allowing implementation (condition ??) was first identified in an

earlier version of this paper.
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substitution is satisfied. If signals are multi-dimensional, the congruence
condition is determined by an integrability constraint, and it can be satisfied
only in non-generic cases such as the private value case or the symmetric
case. If signals are one-dimensional, the congruence condition reduces to a
monotonicity constraint and it can be generically satisfied.
Our impossibility theorems can be extended to more general specifications

of quasi-linear valuation functions - the integrability constraints expressed by
the equality of cross-derivatives will not generally agree with the requirements
imposed by efficiency. We have chosen the linear formulation for ease of ex-
position, and because it yields nice properties of equilibrium utility functions
without further assumptions on the used mechanisms (see Section 3).
The impossibility results in the multi-dimensional case suggest a quest for

the second-best (or constrained efficient) mechanisms. It is straightforward
to construct second-best mechanisms if the inefficiency is purely due to the
fact that some informational variables must have a zero marginal effect on
the expected probability assignment in incentive compatible mechanisms. It
is then possible to reduce the dimensionality of the model (without loss of
efficiency) by eliminating such variables. If, after performing these reduc-
tions, it is still the case that the payoff-relevant information depends in a
non-trivial way on the chosen alternative (as it is the case, say, in a general
multi-object auction), we are left in a framework covered by Theorem ??
and further dimension reductions become endogenous. The construction of
a second-best mechanism is then equivalent to the difficult problem of find-
ing a monotone and conservative vector field that maximizes the (expected)
welfare functional24. This will be the subject of future work.
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a) Assume first that a DRM (p, x) satisfies the conditions in the Theorem.
Choose any agent i. We must show that ∀si, ti, Ui(si, si)− Ui(ti, si) ≥ 0. We
obtain the following chain of equalities:

Ui(s
i, si)− Ui(ti, si) = Vi(s

i)− Vi(ti)−Qi(ti) · (si − ti)
=

Z si

ti
Qi(τ i) · dτ i −Qi(ti) · (si − ti)

=
Z 1

0
[Qi((1− α)ti + αsi))−Qi(ti)] · (si − ti)dα

The first equality follows by equation ?? and by the definition of Vi(·).
The second equality follows by assumption. The last equality follows by
choosing to perform the integration on the straight line connecting ti and si.
The condition ∀si, ti, Ui(si, si) − Ui(ti, si) ≥ 0 is therefore equivalent to

the condition

∀si, ti,
Z 1

0
[Qi((1− α)ti + αsi))−Qi(ti)] · (si − ti)dα ≥ 0.

It is enough to show that the integrand is non-negative for any α, 0 ≤ α ≤ 1.
For α = 0, the claim is obvious. Assume that α > 0. We can write:

(si − ti) = 1

α
((1− α)ti + αsi − ti).

We now obtain:

[Qi((1− α)ti + αsi))−Qi(ti)] · (si − ti) =
1

α
[Qi((1− α)ti + αsi))−Qi(ti)] · ((1− α)ti + αsi − ti) ≥ 0

The last inequality follows from the monotonicity of Qi(·).
b) For the converse, assume that the DRM (p, x) is incentive compatible.

This implies that Vi(s
i) = Ui(s

i, si) = maxti Ui(t
i, si). The function Vi(·) is

the supremum of a collection of affine functions and it must be convex. Con-
vex functions are twice differentiable almost everywhere25. The convexity of
Vi(·) implies the monotonicity of the subdifferential map ∂Vi(si). At all points
where Vi(·) is differentiable (i.e., a.e.) the subdifferential ∂Vi(·) consists of a
unique point, the gradient ∇Vi(·). Hence, the function ∇Vi(·) is well-defined,

25This and all following properties of convex functions are listed in the classical text of
Rockafellar, 1997.
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monotone and differentiable a.e. Assuming that Vi(·) is differentiable at si
we obtain by expression 3.1 and by the Envelope Theorem that:

∀k, ∂Vi
∂siki

(si) =
∂Ui
∂siki

(ti, si) |ti=si= aikiq
i
k(s

i) (16)

∀k, ∀j 6= i, ∂Vi
∂sikj

(si) =
∂Ui
∂sikj

(ti, si) |ti=si= 0 (17)

Hence, we obtain ∇Vi(si) = Qi(si) whenever the gradient is well-defined
(a.e.). The integral representation is immediately obtained from the funda-
mental theorem of calculus if Vi(·) is everywhere differentiable. Otherwise,
the result follows by noting that a convex function is (up to a constant)
uniquely determined by its subdifferential (see Rockafellar 1997, Theorem
24.9), and that it can be recovered (up to a constant) by integrating any
measurable selection from its subdifferential map (see Krishna and Maenner,
1999).

Proof of Theorem ??: Let (p, x) be an efficient, incentive compatible
DRM, and let (qik(·))Kk=1 be the associated vector field of interim expected
probabilities for agent i. Consider a type ti and two alternatives k and k0

such that qik(s
i) 6= 0 and qik0(s

i) 6= 0 for all si in a neighborhood of ti. We
consider below signals si in that neighborhood.
Since (p, x) is incentive compatible, the associated indirect utility func-

tion Vi(·) is twice-differentiable a.e. Since (p, x) is efficient, the associated
functions (qik(·))Kk=1 are continuously differentiable.
By equation ?? we obtain for almost all si:

∀k, k0 , aiki
∂qik(s

i)

∂si
k0

= aik0 i
∂qi
k0 (s

i)

∂sik
(18)

Since p is efficient, we obtain:

qik(s
i) = Prob{

NX
j=1

NX
g=1

ajkgs
j
k = max

k∗

NX
j=1

NX
g=1

ajk∗gs
j
k} =Z

∆k(si)
f−i(s−i)ds−i (19)

where

∆k(s
i) = {s−i |

NX
j=1

NX
g=1

ajkgs
j
k = max

k∗

NX
j=1

NX
g=1

ajk∗gs
j
k} (20)
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An analogous expression holds for qi
k0 (s

i). Define now the set

Ωk,k0 (s
i) = {s−i |

NX
j=1

NX
g=1

ajkgs
j
k =

NX
j=1

NX
g=1

aj
k
0
g
sj
k
0 = max

k∗

NX
j=1

NX
g=1

ajk∗gs
j
k} (21)

We will show that the derivative
∂qi

k(s
i)

∂si

k
0
involves only an integral over

Ωk,k0 (s
i) multiplied by the ”rate of change” of this set with respect to si

k0 ,

which is given by −(PN
g=1 a

i
k
0
g
).

To see this, consider an affine, bijective change of variable in the space S−i,
where x0 =

P
j 6=i

PN
g=1 a

j
kgs

j
k −

P
j 6=i

PN
g=1 a

j

k0gs
j

k0 is one of the new variables,

and s−i,x0 denotes the set of the other variables. Such a change of variables
exists because x0 is not identically equal to zero (since q

i
k(t

i) 6= 0 and qik0(ti) 6=
0). The explicit change of variable may depend on the coefficients.
To fix ideas, suppose that the coefficients are such that for all alternatives

k00 there exists an agent j(k00) 6= i, such that a
j(k00)
k00j(k00) 6= 0. Consider then

the mapping {sjk00}j 6=i,k00 → {xjk00}j 6=i,k00 where: 1) For k00 6= k, j = j(k00),
x
j(k00)
k00 =

P
j 6=i

PN
g=1 a

j
kgs

j
k −

P
j 6=i

PN
g=1 a

j
k00gs

j

k00 (observe that x
j(k0)
k0 = x0) ; 2)

For all (j, k00) such that k00 = k or j 6= j(k00), xjk00 = sjk00 .
Denote by J(s−i) the Jacobian induced by this change of variable. Re-

calling expression ??, observe that

∆k(s
i) = {s−i | x0 ≥ −(

NX
g=1

aikg)s
i
k + (

NX
g=1

aik0g)s
i
k0 ∧

NX
j=1

NX
g=1

ajkgs
j
k ≥

NX
j=1

NX
g=1

aj
k00gs

j

k00 fork
00 6= k0} (22)

Note that variables x0 and s
i
k0 appear only in the first inequality defining

∆k(s
i). Moreover, the area in ∆k(s

i) where marginal variations of si
k0 are rel-

evant (i.e., where x0 = −(PN
g=1 a

i
kg)s

i
k+(

PN
g=1 a

i
k0g)s

i
k0 ) is precisely Ωk,k0 (s

i).
Hence, recalling expression ??, we obtain:

∂qik(s
i)

∂si
k0

= −(
NX
g=1

aik0g)
Z
Ω

k,k
0 (si)

f−i(s−i)J(s−i)ds−i,x0 . (23)

The term
∂qi

k
0 (si)

∂si
k

is analogously computed (since the area in ∆k0 (s
i) where

marginal variations of sik are relevant is also Ωk,k0 (s
i)) :

∂qi
k0 (s

i)

∂sik
= −(

NX
g=1

aikg)
Z
Ω

k,k
0 (si)

f−i(s−i)J(s−i)ds−i,x0 . (24)
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Combining equations ?? and ?? , we obtain that:

∂qik(s
i)

∂si
k0
(
NX
g=1

aikg) =
∂qi

k
0 (si)

∂sik
(
NX
g=1

aik0g) (25)

Equations ?? and ?? yield together the wished result.
There are N agents and three alternatives denoted A1, A2 and B. The

only additional assumption (compared to those in Theorem ??) is that the
signal of one agent, say agent i, is always the same in alternatives A1 and
A2, i.e. s

i
A1
= siA2

.We denote by siA this common signal. Let s
i = (siA, s

i
B)

denote the two-dimensional signal of agent i. For an, incentive compatible
DRM (p, x) define Vi(s

i) and qik(·), k = A1, A2, B, in the usual way. At a
type si where V i(·) is twice differentiable, we have:

∂Vi
∂siA

(si) = aiA1i
qiA1
(si) + aiA2i

qiA2
(si) (26)

∂Vi
∂siB

(si) = aiBiq
i
B(s

i) (27)

By Schwarz’s Theorem we obtain:

aiA1i

∂qiA1
(si)

∂siB
+ aiA2i

∂qiA2
(si)

∂siB
= aiBi

∂qiB(s
i)

∂siA
. (28)

We now turn to the consequences of efficiency. Define the sets ∆k(s
i),

Ωk,k0 (s
i) as in the proof of Theorem ??. The derivative

∂qi
Ar
(si)

∂si
B

, r = 1, 2, is

computed as before, i.e.,

∂qiAr
(si)

∂siB
= (−

NX
g=1

aiBg)
Z
ΩB,Ar (s

i)
f−i(s−i)Jr(s−i)ds−i,xr

where xr ≡ P
j 6=i

PN
g=1 a

j
Args

j
Ar
−P

j 6=i
PN
g=1 a

j
Bgs

j
B and Jr(s

−i) stands for the
Jacobian of the change of variable in the S−i space where xr is one of the
new variables and s−i,xr the other ones. The derivative

∂qi
B(s

i)

∂si
A

is different,

since it is now composed of two parts:

∂qiB(s
i)

∂siA
=

X
r=1,2

[(−
NX
g=1

aiArg)
Z
ΩB,Ar (s

i)
f−i(s−i)Jr(s−i)ds−i,xr ]

To see this observe that∆B(s
i) = {s−i | xr ≤ −(PN

g=1 a
i
Arg)s

i
A+(

PN
g=1 a

i
Bg)s

i
B

, r = 1, 2}. The formula follows because, when siA varies, the two relevant
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boundaries of ∆B(s
i) are those where xr = −(PN

g=1 a
i
Arg)s

i
A + (

PN
g=1 a

i
Bg)s

i
B

, r = 1, 2 (they corresponds to ΩAr ,B(s
i), r = 1, 2, respectively) Combining

the above expressions, we conclude that efficiency implies:

NX
g=1

aiA1g

∂qiA1
(si)

∂siB
+

NX
g=1

aiA2g

∂qiA2
(si)

∂siB
=

NX
g=1

aiBg
∂qiB(s

i)

∂siA
. (29)

Finally, note that conditions ??and ?? are, in general, inconsistent.

Proof of Theorem ??: Since all aiki are assumed to be different, we can
re-order the alternatives so that the sequence (aiki)k is strictly increasing, i.e.
ai(k+1)i > a

i
ki for k = 1, .., K−1. Condition ?? implies then that the sequence

(
Pn
j=1 a

i
kj)k is also strictly increasing.

We construct an efficient, incentive compatible, DRM. For any reported
signals the mechanism chooses an efficient alternative given those reports. To
specify transfers, we proceed as follows. For fixed reports s−i and i’s report
ti,denote by k∗(ti) the efficient alternative chosen as a function of ti, i.e.

k∗(ti) ∈ kargmax
nX
j=1

V jk (t
i, s−i).

Because the sequence (
Pn
j=1 a

i
kj)k is also strictly increasing , we can define for

every vector s−i, a non-decreasing sequence of agent i’s signals (si,k(s−i))k
with the property that, for any ti ∈ (si,k(s−i), si,k+1(s−i)), the efficient alter-
native is k∗(ti) = k.
For each vector s−i we inductively define a sequence of transfers, {xki (s−i)}k

, as follows: x1i (s
−i) ∈ < is an arbitrary constant, and for all k, 1 < k ≤ K−1,

xk+1i (s−i)− xki (s−i) =
X
j,j 6=i

[V jk+1(s
i,k+1(s−i), s−i)− V jk (si,k+1(s−i), s−i)] (30)

If the vector of reports is (ti, s−i), then i’s transfer is defined to be
x∗i (t

i, s−i) = xk
∗(ti)
i (s−i)26.

The logic underlying the specification of the transfers is as follows. Fix a
vector of reports s−i. Suppose that both intervals (si,k(s−i), si,k+1(s−i)) and
(si,k+1(s−i), si,k+2(s−i)) are non-empty. For si slightly above si,k+1(s−i) the

26To avoid a cumbersome case differentiation, we have assumed that, given s−i, the
set {k∗(ti)}ti∈Si includes the entire set of alternatives. If this is not the case, then some
of the intervals (si,k(s−i), si,k+1(s−i)) may be empty. Transfers are then defined up to
the arbitrary value of the transfer in the first non-empty interval. Furthermore, if a signal
si,k+1(s−i) hits the upper bound of agent i’s signal interval, then the transfer for all reports
ti > si,k(s−i) is set to be equal to xk

i (s
−i).
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only efficient alternative is k + 1. For si slightly below si,k+1(s−i) the only
efficient alternative is k. At si = si,k+1(s−i) both alternatives are efficient.
The transfers are adjusted so that, given s−i, agent i with type si,k+1(s−i) is
made indifferent between alternative k with transfer xki (s

−i) and alternative
k + 1 with transfer xk+1i (s−i).
We now show that it is optimal for agent i to report truthfully if all other

agents report truthfully.
Fix s−i the (truthfully) reported signal of all agents other than i. In order

to have a more transparent notation, we omit below the dependence of si,k(·)
and xki (·) on the fixed s−i.
Suppose without loss of generality that agent i’s true type si lies inh

si,k, si,k+1
´
. If agent i reports truthfully ti = si, his payoff is

Ui(s
i, s−i) = V ik (s

i, s−i) + xki .

For any report ti ∈
h
si,k, si,k+1

´
, agent i gets the same payoff. Suppose that

agent i makes a report ti ∈
h
si,k+r, si,k+r+1

´
with r > 0. This non-truthful

report yields for agent i a payoff of

Ui(t
i, s−i) = V ik+r(s

i, s−i) + xk+ri .

Noting that xk+ri =
rP
l=1
(xk+li −xk+l−1i )+xki and using expression ??, we obtain:

Ui(s
i, s−i)− Ui(ti, s−i) = V ik (s

i, s−i)− V ik+r(si, s−i)

−
rX
l=1

X
j,j 6=i

[V jk+l(s
i,k+l, s−i)− V jk+l−1(si,k+l, s−i)]

 .
By the definition of si,k+l (at which both alternatives k + l− 1 and k + l are
efficient), we obtain:X
j,j 6=i

[V jk+l(s
i,k+l, s−i)−V jk+l−1(si,k+l, s−i)] = −[V ik+l(si,k+l, s−i)−V ik+l−1(si,k+l, s−i)]

Finally, we obtain that:

Ui(s
i, s−i)− Ui(ti, s−i) = V ik (si, s−i)− V ik (si,k+1, s−i)

+
r−1X
l=1

[V ik+l(s
i,k+l, s−i)− V ik+l(si,k+l+1, s−i)] + V ik+r(si,k+r, s−i)− V ik+r(si, s−i) =

aiki
³
si − si,k+1

´
+
r−1X
l=1

[ai(k+l)i
³
si,k+l − si,k+l+1

´
] + ai(k+r)i

³
si,k+r − si

´
=

rX
l=1

³
ai(k+l−1)i − ai(k+l)i

´ ³
si − si,k+l

´
≥ 0
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The last inequality follows because each of the terms in the sum is non-
negative: by the assumption on the sequence (aiki)k, we have a

i
(k+l−1)i −

ai(k+l)i < 0; because si lies in
h
si,k, si,k+1

´
, and because the sequence si,k is

non-decreasing, we have si − si,k+l ≤ 0.
The proof for a report ti ∈

h
si,k+r, si,k+r+1

´
with r < 0 is completely

analogous.
Note that the transfers defined above do not depend on the distribution

of signals, and our mechanism implements the efficient social choice rule no
matter how the signals of the various agents are distributed27

27In other words, truth-telling constitutes an ex-post equilibrium.
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