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EFFICIENT AUCTIONS*

PARTHA DASGUPTA AND ERIC MASKIN

We exhibit an efficient auction (an auction that maximizes surplus conditional
on all available information). For private values, the Vickrey auction (for one good)
or its Groves-Clarke extension (for multiple goods) is efficient. We show that the
Vickrey and Groves-Clarke auctions can be generalized to attain efficiency when
there are common values, if each buyer’s information can be represented as a
one-dimensional signal. When a buyer’s information is multidimensional, no
auction is generally efficient. Nevertheless, in a broad class of cases, our auction is
constrained-efficient in the sense of being efficient subject to incentive constraints.

I. INTRODUCTION

We study efficient auctions—auctions that put goods into the
hands of the buyers who value them the most.1 Our interest in
them is not purely theoretical but also practical: a leading
rationale for the widespread privatization of state-owned assets in
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1. In this respect, we depart from most of the theoretical literature on
auctions, which primarily concentrates on revenue-maximization (see for example,
Myerson [1981], Riley and Samuelson [1981], and Milgrom and Weber [1982]).
Ausubel and Cramton [1998b] draw a formal connection between the two
objectives.
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recent years is to enhance efficiency.2 Of course, if, when assets are
privatized, there are a sufficiently large number of potential
buyers, the question of which auction is most efficient may not
matter very much, since competition will render virtually any
kind of auction approximately efficient (see Swinkels [1997]). But,
in practice, the number of serious bidders is often severely
limited,3 and so the choice of auction form may well be important
for efficiency.

When the value that a given buyer attaches to the good (or
goods) being sold is independent of information that other buyers
may have (the case of private values), there is a well-known and
simple answer to the question of how to achieve efficiency: the
Vickrey (second-price) auction does so (this is the auction in which
the high bidder wins but pays only the second highest bid, see
Vickrey [1961]). Furthermore, one of the attractive features of the
Vickrey auction is that it extends—via the Groves [1973]-Clarke
[1971] mechanism—to the sale of any number of goods.4

Unfortunately, the Vickrey auction is no longer efficient once
we leave the private-values setting (see Example 3). Yet, for
practical applications, it is the case of common (or interdepen-
dent) values—where one buyer’s valuation can depend on the
private information of another buyer—that is usually pertinent.
Suppose, for example, that several wildcatters are bidding for the
right to drill for oil on a given tract of land. If the amount of oil
under the ground is unknown, then as long as at least one bidder
has some private information about this quantity (say, from
performing a geological test), we are already in the realm of
common values.5

2. For example, the U. S. Congress explicitly mandated the Federal Commu-
nications Commission to promote efficiency in its auctions of frequency bands for
telecommunications.

3. For many properties sold in the FCC spectrum auctions, the number of
bidders submitting realistic bids was as low as two or three.

4. Engelbrecht-Wiggans [1988] and Krishna and Perry [1997] show that the
Vickrey-Clarke-Groves auction is essentially the unique efficient auction, where
uniqueness means that any other efficient auction would induce each buyer to
make the same expected payments (see also Williams [1994]).

5. We shall use the term ‘‘common values’’ to refer to any situation of such
interdependency; that is, we shall invoke the broad denotation of the term. The
narrow denotation—or the expression ‘‘pure common values’’—applies to the case
where all buyers share the same valuation. Much of the literature on common
values, including seminal papers by Wilson [1977] and Milgrom [1979] and the
recent major contribution by Pesendorfer and Swinkels [1997], is limited to pure
common values. That is, these papers assume that all buyers have the same
valuation, in which case the issue of efficiency is trivial: allocating the good to any
buyer is equally efficient. Finally, those (relatively few) papers, such as Milgrom
and Weber [1982] and Ausubel [1997], that accommodate heterogeneous valua-
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The principal contribution of this paper is to show that, under
standard conditions, the Vickrey auction can be generalized so as
to attain efficiency even when there are common values (Proposi-
tions 1 and 2). It is also shown that our auction remains efficient
regardless of the number of goods being sold6 and of the nature of
those goods, e.g., whether they are substitutes or complements
(Proposition 5).

However, our generalized Vickrey auction will be fully (i.e.,
first best) efficient only if each buyer’s private information can be
summarized by a one-dimensional signal. We show (Proposition 3)
that, if buyers’ signals are multidimensional, full efficiency is, in
general, unattainable by any auction (Maskin [1992] establishes a
version of this proposition; an even more general impossibility
result is developed in Jehiel and Moldovanu [1998]). This impossi-
bility result suggests, however, that the relevant optimality
criterion in the multidimensional case is constrained efficiency
(i.e., efficiency subject to the buyers’ incentive constraints—what
Holmstrom and Myerson [1983] call ‘‘incentive efficiency’’). We
show that, in a broad class of cases, our generalized Vickrey
auction is efficient in this sense (Propositions 4–6).

We proceed as follows. In Section II we consider the sale of a
single good. Maskin [1992] shows that the English auction is often
efficient in this setting (provided that signals are one-dimen-
sional). However, there is no known general extension of the
English auction to more than one good.7 The Vickrey auction, by
contrast, does extend to any number of goods. Thus, in this paper
we concentrate on Vickrey. In subsection II.A we show that there
exists a generalization of the Vickrey auction that attains full
efficiency in the allocation of a single good, provided that buyers’
signals are one-dimensional. In subsection II.B we give conditions
under which this same auction achieves constrained efficiency
(efficiency subject to incentive compatibility constraints) in the
multidimensional case. Then in Section III we extend our efficient

tions in a common values setting almost invariably suppose that the distribution of
signals is symmetric across buyers. This implies, in standard mechanisms like the
high-bid or second-price auction, that the winner in equilibrium will be the buyer
with the highest valuation. That is, given symmetry, the standard auctions turn
out to be efficient, even though they fail to remain so once symmetry is relaxed.

6. In recent work, Perry and Reny [1998] have obtained a beautiful extension
of the Vickrey auction for the case in which all goods are identical.

7. Ausubel’s [1997] elegant extension requires that all goods be identical and
that marginal valuations be decreasing. Moreover, it does not generally attain
efficiency except in the case of private values.
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auction to multiple goods. We conclude, in Section IV, with our
view of the most important remaining issue.

II. SINGLE-GOOD AUCTIONS

II.A. One-Dimensional Signals
A.1. Formulation

Suppose that there is a single (indivisible) unit of a good
available for auction. There are n risk-neutral buyers. Buyer i
observes a private real-valued signal si [ Si ; [si,si]. From an ex
ante standpoint, the signals s1, . . . , sn can be thought of as
random variables. Let F(s1, . . . , sn) be their joint distribution.

Let vi(s1, . . . , sn) be buyer i’s expected valuation for the good,
conditional on all the signals (s1, . . ., sn).8 Because we permit vi (·)
to depend on sj, with j Þ i, we are allowing for the possibility of
common values (i.e., interdependence of valuations). If buyer i is
awarded the good and pays price p, his net payoff is

vi(s1, . . . , sn) 2 p

conditional on the vector of signals (s1, . . . , sn). Assume that, for
all i, vi(·) is continuously differentiable in its arguments and that a
higher signal value si corresponds to a higher valuation:

(1)
­vi

­si
. 0.

We shall assume that a buyer who is not awarded the good (and
pays nothing) has zero utility. For now, we will assume that,
although signals are private information, the functional forms
v1(·), . . . , vn(·) are common knowledge (this assumption can be
relaxed; see Remark 1 following Proposition 1).

We give two examples of this formulation.

Example 1. If

(2) vi(s1, . . . , sn) 5 si,

then we are in the realm of private values.

Example 2. Suppose that buyer i’s true valuation is given by
the random variable yi, which he does not observe. Assume,

8. In fact, if each buyer i has no residual uncertainty about his valuation
conditional on all the signal values, our analysis extends immediately to the case of
risk-averse buyers.

QUARTERLY JOURNAL OF ECONOMICS344

Page 344
@xyserv3/disk4/CLS_jrnlkz/GRP_qjec/JOB_qjec115-2/DIV_102a02 rich



moreover, that

(3) yi 5 z 1 zi 1 ai,

where z is a normal random variable common to all buyers, zi is a
normal random variable idiosyncratic to buyer i, and ai is a
constant (the constant is introduced to create some possible ex
ante asymmetry across buyers). Finally, suppose that buyer i
observes signal si, where

(4) si 5 yi 1 ei,

where ei is a normal random variable; z, all the zi’s, and all the ei’s
are jointly independent; all the zi’s are identically distributed, and
all the ei’s are identically distributed. In this case,

(5) vi(s1, . . . , sn) 5 E[ yi 0s1, . . . , sn].

We now turn to auctions, which are selling procedures in
which the good is awarded to (at most) one buyer, and transfers
are made between the buyers and the seller, all on the basis of the
buyers’ bidding behavior. Familiar examples include the high-bid
auction, in which buyers submit sealed bids, the winner is the
high bidder (ties may be broken by some stochastic device such as
flipping a coin), he pays his bid, and all losers pay nothing. The
second-price (or Vickrey) auction has the same rules as the
high-bid, except that the winner, instead of paying his own bid
pays only the second-highest bid. Finally, in the open or English
auction, buyers call out bids publicly, with the stipulation that
each successive bid should be higher than its immediate predeces-
sor. The winner is the last buyer to bid, and he pays his bid.

We seek auctions for which, in Bayesian equilibrium, the good
is allocated to the buyer who, conditional on all available informa-
tion, values it the most. We call an auction efficient if, for all signal
values (s1, . . . , sn), the winner in equilibrium is buyer i such that

vi(s1, . . . , sn) $ vj(s1, . . . , sn) for all j.

It is readily seen that, even with private values, the high-bid
auction is not, in general, efficient. Actually, if the distribution F is
affiliated (see Milgrom and Weber [1982]) and symmetric, then,
with private values, there exists a symmetric equilibrium in
which all buyers use the same bidding function b(si), which is
increasing in si. Hence, the winner is the buyer with the highest
signal, which, again under standard assumptions, implies that he
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is the buyer with the highest valuation. However, this conclusion
rests heavily on symmetry.9 To see this, consider a simple two-
buyer example with private values in which s1 is drawn from a
continuous distribution on [0,1] whereas s2 is drawn (indepen-
dently) from a continuous distribution on [0,10]. It is easy to see
that the equilibrium bid functions (b1(·),b2(·)) in the high-bid
auction satisfy b1 (1) 5 b2 (10), where b2(·) is strictly increasing at
s2 5 10.10 But these properties imply that buyer 2 with valuation
slightly less than 10 will bid strictly less than b1 (1) and so will lose
to buyer 1 with valuation 1. The equilibrium is thus inefficient.

The second-price auction is efficient in the case of private
values. This is because, in that case, it is a dominant strategy for a
buyer to bid his valuation, and so the winner will be the buyer
with the highest valuation. However, once we drop the private
values assumption, the efficiency of the second-price auction
breaks down. To see this, consider the following example.

Example 3. Suppose that there are three buyers, whose
valuations are

v1(s1,s2,s3) 5 s1 1 1⁄2s2 1 1⁄4s3

v2(s1,s2,s3) 5 s2 1 1⁄4s1 1 1⁄2s3

v3(s1,s2,s3) 5 s3.

Assume that s1 5 s2 5 1. Note that if s3 is slightly less than 1, then
v1 is the biggest valuation, but if s3 is slightly greater than 1, v2 is
biggest. Thus, in a neighborhood of (s1,s2,s3) 5 (1,1,1), efficient
allocation of the good between buyers 1 and 2 (it is not efficient for
buyer 3 to be allocated the good) depends on the value of s3. But in
the second-price auction, a buyer’s bid can depend only on his own
signal (the others’ signals are private information). Hence, when
s1 5 s2 5 1, which of buyers 1 and 2 wins cannot depend on

9. Back and Zender [1993] and Ausubel and Cramton [1998a], show that,
even with symmetry, the natural extension of the high-bid auction to the case of
multiple goods fails to be efficient.

10. To see that b1 (1) 5 b2 (10), note that if instead b2 (10) . b1 (1), buyer 2 with
valuation 10 could reduce his bid slightly from b2 (10) and still win with probability
1, contradicting the assumption that b2 (10) is an equilibrium bid. If b2(·) is not
strictly increasing at s2 5 10, then there is an interval of signal values for buyer 2
for all of which he bids b2 (10), that is, he bids b2 (10) with positive ex ante
probability. But then buyer 1 is strictly better off bidding slightly more than b1 (1)
than b1 (1) itself, since with positive probability he only ties as winner with b1 (1),
whereas he wins with probability 1 with a bid more than b1 (1) , 1.
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whether s3 is greater or less than 1, and so the second-price
auction is inefficient.

One straightforward way to construct an efficient auction for
a setting like that of Example 3 would be to invoke the methods
of the mechanism-design literature and consider ‘‘direct reve-
lation mechanisms’’ in which each buyer i reports a signal value ŝi,
the good is awarded to the buyer i for whom vi(ŝ1, . . . , ŝn) $
maxjÞi vj(ŝ1, . . . , ŝn), and in equilibrium, ŝi equals the true value
si. A serious objection to such an approach, however, is that it
would, in effect, require the mechanism designer (or auctioneer) to
know the physical signal spaces S1, S2, and S3 and the functional
forms of the valuation functions v1(·), v2(·), and v3(·), a strong
assumption (indeed, in our view it remains a strong assumption
even to suppose that the buyers themselves know all this informa-
tion; see Remark 2 following Proposition 1). Instead, we will seek
auction rules that are independent of the details—such as func-
tional forms or distributions of signals—of any particular applica-
tion and that work well (i.e., attain efficiency or constrained
efficiency) in a broad range of circumstances.11

We will show, in fact, that the Vickrey auction can be
extended (in a detail-free way) to ensure efficiency when, as in
Example 3, there are common values. To do this, we require, in
addition to (1), the following condition on valuations:12

(6)

for all i and jÞ i,
­vi

­si
(s1, . . . , sn) .

­vj

­si
(s1, . . . , sn)

at any point where vi(s1, . . . , sn) 5 vj(s1, . . . , sn)

5 max
k

vk(s1, . . . , sn).

Condition (6) says that (if buyers i and j have equal and maximal
valuations) buyer i’s signal must have a greater marginal effect on
his own valuation than on that of buyer j. Notice that this
condition is satisfied trivially in the case of private values (in
which buyers’ valuation functions satisfy (2)), since the right-hand

11. The insistence that an auction institution be ‘‘detail-free’’ has been called
the ‘‘Wilson Doctrine’’ after R. Wilson.

12. Formula (6) is a ‘‘single-crossing’’ condition in the sense of Mirrlees [1971]
or Spence [1973]. We are indebted to P. Milgrom, who urged us to adopt essentially
this condition in place of an earlier, more stringent requirement. Gresik [1993]
introduced a stronger version of this condition in his study of trading mechanisms
with common values.
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side of the inequality in (6) is then zero. Moreover, it holds for
Example 2. In that model, si is a more informative signal about yi

than about yj, j Þ i, since si conveys information about both the
idiosyncratic and common components (zi and z) of yi but only
about the common component z of yj. Hence, a small change in si

will affect the expected value of yi more than that of yj.
Condition (6) is in fact necessary if any auction, let alone our

generalized Vickrey auction, is to be efficient.13 To see this,
consider the following example.

Example 4. Consider two wildcatters who are competing for
the right to drill for oil on a given tract of land. The wildcatters’
costs of drilling differ. Wildcatter 1 has a fixed cost of 1 and a
marginal cost of 2 (per unit of oil extracted). Wildcatter 2’s fixed
cost is 2 and marginal cost is 1. Oil can be sold at a price of 4.
Wildcatter 1 performs a (private) test and discovers that the
expected size of the oil reserve is s1 units. Wildcatter 2’s private
information s2 does not affect either driller’s payoff. We have

v1(s1,s2) 5 (4 2 2)s1 2 1 5 2s1 2 1

and

v2(s1,s2) 5 (4 2 1)s1 2 2 5 3s1 2 2.

Notice that

­v1

­s1
,

­v2

­s1
,

and so (6) is violated. Moreover, we claim that there is no way to
induce wildcatter 1 to reveal his information while maintaining
efficiency (assuming that, even ex post, s1 cannot be measured
directly and that nobody but the winning wildcatter can monitor
how much oil there turns out to be). Efficiency dictates that
wildcatter 1 get the drilling rights if 1⁄2 , s1 , 1 and that
wildcatter 2 get the drilling rights if s1 . 1 (if s1 , 1⁄2, it is
inefficient to drill at all; and because of the fixed costs, it would
always be inefficient to give both wildcatters drilling rights).

13. More precisely, if (6) fails to hold, then we can find a joint distribution
F(s1, . . . , sn) with respect to which there is no auction that is efficient. Signals in
this joint distribution will be independent; otherwise we could use the methods of
Crémer and McLean [1988] to construct a fully efficient auction regardless of
whether (6) holds.
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Suppose that wildcatter 1 is given a reward R(ŝ1) if he claims that
there are ŝ1 units of oil. Then if s1 . 1 . s81 . 1⁄2, incentive
compatability and efficiency demand that

(7) R (s1) $ 2s1 2 1 1 R(s81)

and

(8) 2s81 2 1 1 R (s81) $ R(s1).

Subtracting (7) from (8), we obtain

2(s81 2 s1) $ 0,

a contradiction. Hence efficiency is impossible.
It is easy to see what is going wrong here. As s1 rises, the

drilling rights become more valuable to wildcatter 1. But, from the
standpoint of efficiency, they are increasingly likely to be awarded
to 2, thanks to the violation of (6). It is this conflict between 1’s
personal objective and overall efficiency that creates the incentive
problem.

Notice that the three buyers’ valuations in Example 3 satisfy
condition (6). We saw, however, that the Vickrey auction fails to be
efficient in that example because buyers 1 and 2 cannot embody
information about buyer 3’s valuation in their bids. This suggests
that generalizing the Vickrey auction to allow buyers to make
contingent bids—bids that depend on other buyers’ valuations—
may overcome this problem.

For simplicity of exposition, we first consider the case of two
buyers.

II.A.2. Auctions with Two Buyers

Instead of a single bid, we will have each buyer i report a bid
function,

b̂i : V̂j = R1,

where j Þ i and V̂j is an interval [0,vj] in R1. For each vj [ V̂j we
can interpret b̂i(vj) as buyer i’s bid if the other buyer’s valuation
turns out to be vj. Given the bid functions (b̂1(·),b̂2(·)), let us look for
a fixed point, i.e., a pair (v°1,v°2) such that

(9) (v°1,v°2) 5 (b̂1(v°2),b̂2(v°1)).
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(We shall deal with the issue of nonexistent or multiple fixed
points below.) Then we will suppose that

(10) buyer i is the winner ⇔ b̂i(v°j) . b̂j (v°i)

(break ties by flipping a coin).

To see that this allocation rule is the ‘‘right’’ one, consider
what happens when buyers bid ‘‘truthfully.’’ In the standard
Vickrey auction with private values, bidding truthfully means
bidding one’s true valuation. In our setting, a buyer does not
actually know his valuation because he does not know the other
buyer’s signal value. So, bidding truthfully means making a bid
contingent on the other buyer’s valuation so that, whatever that
other signal value (and hence other valuation) turns out to be, his
corresponding bid will equal his own valuation. That is, if buyer
1’s signal value is s1, the truthful bid function is b1(·) such that

(11a) b1(v2(s1,s82)) 5 v1(s1,s82) for all s82.

Similarly,

(11b) b2(v1(s81,s2)) 5 v2(s81,s2) for all s81

(note that b1(·) is well-defined, i.e., if v2(s1,s82) 5 v2, there cannot
exist s92 Þ s82 such that v2(s1,s92) 5 v2 because v2(·) satisfies (1);
similarly, b2(·) is well-defined). Observe that

(12) (v°1,v°2) 5 (v1(s1,s2),v2(s1,s2))

is a fixed point of the mapping

(13) (v1,v2) p (b1(v2),b2(v1)), for (v1,v2) [ V1 3 V2,

where

(14)

V1 5 5v1 0there exists s81 such that v1(s81,s2) $ v1 with

strict inequality only if s81 5 s16

and

V2 5 5v2 0there exists s82 such that v2(s1,s82) $ v2 with

strict inequality only if s82 5 s26

(note that V1 consists of all possible valuations v1 that buyer 1
could have that are consistent with some signal value s81; for
completeness, it also includes valuations that are smaller than
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those consistent with any signal value. V2 is defined symmetri-
cally). This means that, if buyers bid truthfully, our allocation rule
(9)–(10) ensures that buyer 1 wins if and only if v1(s1,s2) .
v2(s1,s2), which is precisely what is entailed by efficiency. We
conclude that, if buyers make truthful reports, the allocation rule
(9)–(10) is efficient. There is, however, one technical caveat to this
conclusion: conditions (1) and (6) are not strong enough to rule out
other fixed points of (13) besides (12).14 We shall confront the issue
of multiple fixed points in detail below (see Proposition 2). For
now, let us assume that the inequality in (6) holds at all points
(s1,s2) and that its right-hand side is nonnegative. Then (12) is
indeed the unique fixed point of (13). To see this, note from (11a)
and (11b) that

db2

dv1
(v1(s81,s82))

­v1

­s1
(s81,s82) 5

­v2

­s1
(s81,s82), for all (s81,s82),

and so, from (1) and the stronger version of (6), we obtain

(15)

0db2

dv1
(v1)0 , 1 for all v1

and

0db1

dv2
(v2)0 , 1 for all v2.

The ‘‘contraction mapping’’ property (15) ensures that any fixed
point is unique.

We have shown that the outcome is efficient if buyers bid
truthfully, but it remains to establish that there exists a payment
scheme that induces truthful bidding. The way that the Vickrey
auction induces truthfulness in the private-values case is to make
a winning buyer’s payment equal to the lowest bid that he could
have made for which he would still have won the auction. So, for
example, if buyer 1 bids 5 and buyer 2 bids 3, buyer 1 should win
but pay 3, since that is the lowest bid (ignoring ties) that would
have won him the good. Let us try to adhere to this principle as

14. Suppose, for example, that v1(s1,s2) 5 s1
2 1 s1s2 2 s2

2 1 s1 2 2s2 1 24 and
v2(s1,s2) 5 s2

2 1 s1s2 2 s1
2 2 9s1 1 13. Then if (s1,s2) 5 (2,3), one fixed point is the pair

of true valuations (v1(2,3),v2(2,3)) 5 (21,6). However, for these signal values,
(v1(2,4),v2(1,3)) 5 (14,15) also constitutes a fixed point, because vi(2,4) 5 vi(1,3), i 5
1,2, and so v2(1,3) 5 b2(v1(1,3)), and v1(2,4) 5 b1(v2(2,4)).
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closely as possible. In the two-buyer case this means that, if buyer
1 is the winner (i.e., b̂1(v°2) . b̂2(v°1), where (v°1,v°2) 5 (b̂1(v°2),
b̂2(v°1)), then he should pay

(16) b̂2(v*1)

where15

(17) v*1 5 b̂2(v*1).

This is because if buyer 1 were restricted to constant bids, v*1
would be the lowest such bid for which, under our allocation rule,
buyer 1 would still win the auction, given buyer 2’s reported bid
schedule b̂2(·). Note that if 1’s valuation actually were v*1, his net
payoff from winning would be zero.

To see that, provided that (1) and the stronger version of (6)
hold, buyer 1 has an incentive to bid truthfully in equilibrium
under payment rules (16) and (17), suppose that buyer 2 is
truthful, i.e., he sets b̂2(·) 5 b2(·), where b2(·) satisfies (11b). Then,
if buyer 1 wins, his payoff is

(18) v1(s1,s2) 2 b2(v*1),

where16

(19) v*1 5 b2(v*1).

It suffices to show that if buyer 1 sets b̂1(·) 5 b1(·) satisfying
(11), then he wins if and only if (18) is positive. (This is because
buyer 1’s payoff if he wins (i.e., (18)) is independent of how much
he bids, and so the best he can do is to ensure that he wins
precisely in those cases in which this payoff is positive.) Now from
(15), (18) is positive if and only if, for any v81,

(20) v1(s1,s2) 2 v*1 .
db2

dv1
(v81)(v1(s1,s2) 2 v*1).

From the intermediate value theorem, there exists a value of v81
such that

b2(v1(s1,s2)) 2 b2(v*1) 5
db2

dv1
(v81)(v1(s1,s2) 2 v*1).

15. Because V̂1 5 [0,v1] and v°1 . b̂2(v°1), there exists (at least) one point v*1
satisfying (16) and (17). We will deal with the issue of multiple solutions in
Proposition 2.

16. Because (15) holds and v°1 . b2(v°1), there exists a unique point v*1
satisfying (17).
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Hence, (20) holds if and only if17

(21) v1(s1,s2) 2 v*1 . b2(v1(s1,s2)) 2 b2(v*1).

Now, from (11b), b2(v1(s1,s2)) 5 v2(s1,s2); and from (19), v*1 5 b2(v*1).
Hence (21) holds if and only if

(22) v1(s1,s2) . v2(s1,s2).

But, when he is truthful, buyer 1 wins if and only if (22) holds.
Hence, if buyer 1 bids truthfully, (18) is indeed positive if and only
if buyer 1 wins.

To summarize, we have shown

PROPOSITION 1. Consider the two-buyer auction in which, for
i 5 1,2,
(i) buyer i reports V̂j 5 [0,vj] ( j Þ i) and a contingent bid

function b̂i : V̂j = R1, with the stipulation that

(23) 0db̂i

dvj
0 , 1;

(ii) a fixed point (v°1,v°2) is taken according to (9) (the
restriction (23) ensures that there can be at most one
fixed point; if there is no fixed point at all, the good is not
allocated);

(iii) the winner is determined according to (10);
(iv) if buyer 1 is the winner, he makes a payment according to

(16)–(17) (buyer 2’s payment when he is the winner is
symmetric).

If (1) holds, the inequality of (6) is satisfied at all points (s1,s2), and
the right-hand side of this inequality is nonnegative, then this
auction is efficient. That is, it is an equilibrium for each buyer i
to bid truthfully, i.e., to set V̂j 5 Vj and b̂i(·) 5 bi(·), where Vj

satisfies (14) and bi(·) satisfies (11a) or (11b). Moreover, if both
buyers do so, the auction results in an efficient outcome.18

17. If (21) holds, then, from the intermediate value theorem, (20) holds for
some value of v81. Hence, from (15), we must have v1(s1,s2) 2 v*1 . 0. But then (20)
holds for all values of v81.

18. Note that truthful bidding is not a dominant strategy in the auction of
Proposition 1 (except in the case of private values). However, it constitutes a
Bayesian equilibrium that is robust in the sense that, given v1(·) and v2(·), we can
change the distribution of signals F arbitrarily without affecting equilibrium
behavior. (Indeed, notice that none of our analysis has referred to F at all.) Thus,
equilibrium strategies are invariant to changes in the distribution of signals.

We have not ruled out the possibility of ‘‘untruthful’’ equilibria in Proposi-
tion 1. However, we are confident that, by using techniques from the Bayesian
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Remark 1. It may seem very demanding to insist that a buyer
make his bid a function of the other buyer’s valuation. In this
two-buyer case, however, there is only a single point of each buyer
i’s schedule b̂i(·) that has to be correct (i.e., truthful) in order to
ensure an efficient outcome,19 namely, the point where b̂i(·)
intersects the 45 degree line:

(24) v*j 5 b̂i(v*j ).

That is, when si is buyer i’s signal value, all that we require of
buyer i is that he report b̂i(·) so that, if (24) holds, then there exists
s8j such that

(25) v*j 5 vj(si,s8j) 5 vi(si,s8j).

It can readily be checked that, given that b̂2(·) satisfies (23)–(25),
buyer 1 will win if and only if his payoff from winning is positive,
provided that he chooses b̂1(·) so that it too satisfies (23)–(25).
Hence, this behavior constitutes an equilibrium.

Admittedly, even calculating the v*j that satisfies (25) re-
quires buyer i to know something about buyer j’s valuation
function vj(·), and, for an efficient equilibrium to occur, this
knowledge must be common to the two buyers. However, such
common knowledge is not necessary for the auction and buyers to
perform reasonably well.

Indeed, to take the opposite extreme, suppose that buyer 1
knew nothing about the nature of v2(·). He could, nevertheless,
make an uncontingent bid b1(·) ; b1, for some b1 [ R1. With such a
bid he would win if and only if b1 . b̂2(b1), in which case he would
pay b̂2(v*1) 5 v*1 , b1. In other words, by submitting a constant
function, he can induce an outcome and payment very much like
those in the ordinary second-price auction. And this places a lower
bound on how badly he can do in our auction. But if he has even a
vague idea of how his and buyer 2’s valuations are interdepen-
dent, buyer 1 should be able to do strictly better than this by
submitting a bid function with nonzero slope. In any case, because
the fixed point is continuous in his report, he cannot go too badly
wrong by doing so.

implementation literature (see Palfrey [1993] for a survey), one could modify the
auction to eliminate such equilibria (albeit at the cost of a more complex set of
rules).

19. Indeed, if n 5 2, the ordinary Vickrey auction is efficient (see Maskin
[1992]). However, as Example 3 shows, its efficiency fails for n $ 3; whereas our
generalized Vickrey auction remains efficient for that case.
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In this sense, having buyers report contingent bids should be
viewed as giving them an opportunity to express their interdepen-
dencies—an opportunity that they can exploit to any degree that
they wish or their knowledge permits—rather than as imposing
an onerous requirement on them.

Remark 2. As noted in the previous remark, some degree of
common knowledge about valuation functions is needed to ensure
that players can calculate equilibrium (this is true not only of our
auction, but of any other auction—high-bid, second-price, etc.—as
well). One may inquire, therefore, why we do not go ‘‘all the way’’
and have each buyer i report a pair of valuation functions (v̂1(·),
v̂2(·)) and then (i) use a ‘‘direct revelation’’ mechanism (in which
each buyer reports his signal value and these are then plugged
into the reported valuation functions) if the two buyers’ reports
agree, and (ii) punish buyers in some way if their reports disagree,
rather than resorting to the ‘‘indirect’’ device of having them make
contingent bids. There is a difficulty, however, with having buyer 1
report v̂2(·), namely, he may not even know what buyer 2’s physical
signal space is (we have modeled S2 as an interval of ‘‘numbers,’’
but, to buyer 2, the signal s2 presumably corresponds to something
physical). To complicate matters further, s2 may in fact be only a
sufficient statistic for a variety of information parameters that
buyer 2 receives. Notice that there is no contradiction in suppos-
ing that buyer 1 does not know v2(·) but does know v*2 satisfying
(25); the latter requires less knowledge.20 Indeed, that it is
common knowledge that, for i 5 1,2, buyer i can calculate v*j can be
thought of as the weakest hypothesis that ensures efficiency in
equilibrium. In that sense, the efficient auction we are proposing
is the ‘‘simplest’’ possible one.21

II.A.3. Auctions with More than Two Buyers

Our two-buyer auction can readily be extended to the case of
three or more buyers. There are two minor complications that
arise in this case. First, it may no longer suffice for buyers to
submit single-valued bid functions. In the two-buyer case, there is

20. Imagine, for example, that from previous experience with similar goods
buyer 1 has learned that, when buyer 2’s valuation is less than v*2 his own
valuation v1 is greater than v2, whereas when v2 . v*2, v1 # v2. Notice that this
information entails knowledge neither of the functional form v2(·) nor of buyer 2’s
signal space.

21. It also has the desirable property that equilibrium strategies remain in
equilibrium even ex post when buyers’ signal values have become common
knowledge.
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a unique truthful bid b1(v2) by buyer 1 for each possible buyer 2
valuation v2 (because, given s1, there is a unique s82 such that
v2(s1,s82) 5 v2). In the case of three buyers, however, there could
exist, for given s1, two different pairs (s82,s83) and (s92,s93) such that
v2(s1,s82,s83) 5 v2(s1,s92,s93) ; v2 and v3(s1,s82,s83) 5 v3(s1,s92,s93) ; v3.
Then, a unique truthful bid b1(v2,v3) would not be well-defined if
v1(s1,s82,s83) Þ v1(s1,s92,s93). Accordingly, we shall have buyers report
bid correspondences.

Second, for n $ 3, conditions to rule out the possibility of
multiple fixed points become too restrictive to be palatable. With
two buyers, the strong version of condition (6), which is still fairly
mild, suffices. But this condition is no longer sufficient with three
or more buyers, even if all buyers bid truthfully (with truthful
bidding one fixed point will be the true valuations, but there could
be others). To deal with this problem, we will introduce a potential
second stage of the auction in which buyers, in effect, choose
among the different fixed points that may have arisen in the first
stage.

To simplify matters, let us assume that, for all i, si 5 ` and
that22

(26) for all s2i [ S2i there exists s8i [ Si such that vi(s8i,s2i)

. max
jÞi

vj(s8i,s2i).

That is, regardless of the other buyers’ signal values, buyer i has a
signal value that gives him the highest valuation. (This assump-
tion is not required, but helps keep complications to a minimum.)

Consider the following auction defined in six steps (steps
(a)–(d) are the heart of the auction; steps (e) and (f) serve only to
deal with multiple fixed points and can be ignored by readers
uninterested in these technicalities):

(a) each buyer i (i 5 1, . . . , n) submits a bid correspondence
b̂i : V̂2i == R1, where V̂2i # R1

n21;
(b) a fixed point (v°1, . . . , v°n) is calculated so that

(27) v°i [ b̂i(v°2i) for all i

(if there is no fixed point, the good is not allocated, and no
buyer makes a payment; if there are multiple fixed points,
go to (e) below);

(c) if v°i $ maxjÞi v°j, the good is awarded to buyer i;

22. The notation ‘‘s2i’’ denotes a vector of signals for all buyers other than i.
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(d) if buyer i is the winner, he makes a payment

(28) max
jÞi

v*j,

where (v*1, . . . , v*n) is a vector such that

(29) v*i 5 max
jÞi

v*j

and

(30) v*k [ b̂k(v*2k) for all k Þ i

(if there is no vector (v*1, . . . , v*n) satisfying (29) and (30),
the good is not awarded, and no buyer makes a payment;
if there are multiple such vectors, go to (f ));

(e) if there are multiple vectors

(v°11, . . . , v°n1), . . . , (v°1 J, . . . , v°n J )

satisfying (27), then the submitted bid functions
(b̂1(·), . . . , b̂n(·)) are made public, and each buyer i chooses
v°i [ 5v°i 1, . . . , v°i J 6; if there exists j [ 51, . . . , J 6 such that

v°i 5 v°i j for all i,

then the auction returns to step (c) using (v°1 j, . . . , v°n j) to
determine the winner; otherwise the good is not awarded
and no buyer makes a payment;

( f ) if there are multiple vectors (v*11, . . . , v*n1), . . . ,
(v*1 K, . . . , v*n K) satisfying (29) and (30), then the sched-
ules (b̂1(·), . . . , b̂n(·)) are made public, and each buyer
j Þ i chooses v*j [ 5v*j 1, . . . , v*j K 6; if there exists k [
51, . . . , K 6 such that

v*j 5 v*j k for all j Þ i,

then the auction returns to step (d) using (v*1 k, . . . , v*n k) to
determine the winner’s payment; otherwise, the good is
not awarded, and no buyer makes a payment.

Steps (a)–(c) exactly mirror steps (i)–(iii) of Proposition 1 in
the case of two buyers. As for step (d), we are attempting, once
again, to have the winner pay the lowest bid for which he would
still have won the auction. For expositional purposes, let us
suppose that the bid schedules b̂j(·) are single-valued. If buyer i is
the winner, let us reduce vi (starting from vi 5 v°i ) until it is equal
to the second-highest bid. Note, however, that as we reduce vi, the
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other buyers’ bids change (because they are functions of vi). We
therefore seek a vector (v*1, . . . , v*n) for which

v*i 5 max
jÞi

b̂j(v*2j)

and that is consistent in the sense that

v*k 5 b̂k(v*2k) for all k Þ i.

(These conditions generalize to (29) and (30) when the bid
schedules need not be single-valued.)

Suppose that there are multiple fixed points (v°1, . . . , v°n) at
step (b). Step (e) is intended to resolve the indeterminacy (readers
uninterested in multiple fixed points may wish to skip directly to
the discussion of truthful bidding below). After the multiplicity
arises, a second stage is played in which buyers’ reported bid
correspondences are first made public, and then (simultaneously)
each buyer chooses from among the fixed points that have arisen.
If buyers have bid truthfully (we will make precise what this
means below), then, provided that a weak condition on valuation
functions (see (38)) is satisfied, they will have complete informa-
tion at this second stage about other buyers’ valuations and so, in
particular, will be able to identify the fixed point corresponding to
true valuations (as in the two-buyer case, the true valuations will
always constitute a fixed point, although as noted above there
could also be others). Thus, the auction will induce an equilibrium
in which each buyer chooses his true valuation in this second
stage if the rules stipulate that, should any buyer i choose a
component v°i that is not consistent with v°2i, the good is not
allocated at all.23

Finally, step (f) is meant to resolve the indeterminancy
created by multiple fixed points (v*1, . . . , v*n) at step (d). Again,
this is accomplished by having a second stage in which, after
learning one another’s bid schedules (and so, provided that
condition (38) holds, obtaining complete information about one
another’s valuations), buyers choose among the fixed points

23. Of course, this threat would provide only a neutral incentive to be truthful
to a buyer who (from the revelation of the others’ bid functions) knows that he is
not going to win (i.e., he would be indifferent between being truthful and
untruthful). But, as in the case of eliminating multiple equilibria (see footnote 18),
we could modify the auction somewhat to give all buyers a strict incentive to tell
truth (at the cost of making the auction more complex). See also the discussion of
dynamic auctions in Section IV.
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satisfying (29) and (30). In particular, they can identify the
‘‘truthful’’ fixed point (vi(s8i,s2i),v2i(s8i,s2i)), where s8i is sufficiently
less than the true value si so that

vi(s8i,s2i) 5 max
jÞi

vj(s8i,s2i).

What does it mean for buyer i to bid truthfully in this auction?
By analogy with the two-buyer case, we shall say that buyer
i’s schedule b̂i(·) is truthful for signal value si if he sets b̂i(·) 5 bi(·),
where

bi : V2i == R1

is such that

(31) V2i 5 5v2i 0there exists s82i [ S2i 5 3
jÞi

[sj,sj] such that,

for all j Þ i, vj(si,s8i) $ vj, with equality if s8j . sj6

and, for all v2i [ V2i,

(32) bi(v2i) 5 5vi 0there exists s82i [ S2i such that vi 5 vi (si,s82i)

and, for all jÞ i, vj(si,s82i) $ vj,

with equality if s8j . sj6.

In other words, buyer i sets the domain V2i to consist of all
possible valuation vectors v2i that the other buyers could have,
i.e., the valuation vectors that are consistent with some vector of
signal values for those buyers (for completeness, V2i also includes
valuation values that are smaller than those consistent with any
signal value). And bi(v2i) consists of those valuations for buyer i
that are consistent with the others having valuations v2i. It is
easy to see that, if buyers are truthful in this sense, the true
valuations (v1(s1, . . . , sn), . . . , vn(s1, . . . , sn)) constitute a fixed
point satisfying (27) and that, when buyer i is the winner, the
payment maxjÞi vj(s8i,s2i), where vi(s8i,s2i) 5 maxjÞi vj(s8i,s2i), satis-
fies (28) and (29). (Readers not interested in the issue of multiple
fixed points may wish to skip to the statement of Proposition 2 at
this point.)

If the auction moves to step (e), where buyers have to choose
among different fixed points satisfying (27), we shall say that
buyer i with signal si is truthful if, assuming that there exists a
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unique vector s82i such that, for all j Þ i and all v2j [ V̂2j,24

(33) b̂j(v2j) 5 5vj 0there exist s92j [ S2j, such that vj 5 vj(s8j,s92j)

and, for all kÞ j, vk(s8j,s92j) $ vk with equality if s9k $ sk6,

then he chooses25

(34) v°i 5 vi(si,s82i).

If there exist either no such vectors s82i or multiple such vectors,
then buyer i randomizes uniformly over all fixed points satisfy-
ing (27).

If the auction moves to step (f), where, given that buyer i is
the winner, each buyer j Þ i has to choose among different vectors
satisfying (29) and (30), we shall say that buyer j with signal sj is
truthful if, assuming that there exists a unique vector s82j such
that for all k Þ j,i and all v2k [ V̂2k

(35) b̂k(v2k) 5 5vk 0 there exists s92k such that vk 5 vk(s8k,s92k)

and, for all l Þ k, vl (s8k,s92k) $ vl with equality if s9l . s l 6

and

(36) vi(sj,s82j) $ max
l Þi

vl (sj,s8j),

where (36) holds with equality if s8i . si , he chooses v*j such that

(37) v*j 5 vj(sj,s82j).

If there exists either no such vector s82j or multiple such vectors,
then buyer j randomizes uniformly over all fixed points satisfying
(29) and (30).

Steps (e) and (f) rely on the property that if buyer i bids
truthfully, his bid function bi (·) will be consistent with a unique
signal value, namely, the true value si. In fact, this uniqueness
property need not always hold.26 Nevertheless, a fairly weak

24. Formula (33) implies that each buyer j Þ i has bid as though his true
signal were s8j.

25. Notice that if buyer i is truthful and, for all j Þ i, b̂j(·) satisfies (33), then
(v

1
(si,s82i ), . . . , vn(si,s82i )) is a fixed point satisfying (27).

26. For example, suppose that v1(s1,s2) 5 s1 2 2s2 1 5 and v2(s1,s2) 5 s2 2
1⁄2s1 1 5. Then b1(v2) 5 15 2 2v2 regardless of the value of s1.
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condition, namely,

(38) det 1
­v1

­s1
· · ·

­vm

­s1

···
···

­v1

­sm
· · ·

­vm

­sm

2 Þ 0, for all m 5 1, . . . , n,

ensures that it will obtain. Notice that (38) automatically holds in
the case of private values, since then only the main diagonal
entries are nonzero.27

PROPOSITION 2. Assume that, for all i 5 1, . . . , n, buyer i’s
valuation function satisfies (1), (6), and (26) and that buyers’
valuation functions collectively satisfy (38). Then, the n-buyer
generalization of the Vickrey auction given by steps (a)–(f)
above is efficient. Specifically, it is an equilibrium for each
buyer i to bid truthfully, i.e., to set b̂i(·) 5 bi(·) satisfying (31)
and (32) (and to choose, if need be, v°i and v*i according to (34)
and (37)). Moreover, if buyers are truthful, the auction results
in an efficient allocation.

Proof. See the Appendix.
In the Appendix it is shown how the auction of Proposition 2

applies to the model of Example 3.

II.B. Multidimensional Signals

There are some circumstances in which it is natural to think
of buyers’ signals as being one-dimensional. The case of private
values (Example 1) is one such instance.28 Our ‘‘noisy signal’’
model (Example 2) is another. However, there are many other
cases in which a buyer’s information cannot be reduced to one
dimension. Consider the following example.

Example 5. There are two wildcatters competing for the right
to drill for oil on a tract of land consisting of an eastern and

27. Note that the example in the preceding footnote violates (38).
28. Even with private values, a buyer may receive many signals. But as long

as his private signals are uncorrelated with those of other buyers, his valuation
(which is one-dimensional) will be a sufficient statistic for all his information.
Thus, the private-values case is inherently one-dimensional.
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western region. Wildcatter 1 has a (fixed) cost of drilling c1, which
is private information. She also performs a private test that tells
her that the expected quantity of oil in the eastern region is q1.
Similarly, wildcatter 2 has a private fixed cost c2 and observes the
expected quantity of oil, q2, in the western region. All four signals
c1,c2,q1,q2, are independently distributed. The price of oil is 1.
Hence, wildcatter i’s expected payoff conditional on all signals
(and gross of any payment she must make) is

(i) q1 1 q2 2 ci.

Note that this model combines elements of pure private values
(the signal ci) with those of pure common values (the signal qi).
Note too, from (i), that wildcatter 1’s information can be summa-
rized, from her own standpoint, by the one-dimensional signal t1 5

q1 2 c1. Indeed, for any D, her preferences are exactly the same
when her signal values are (q81,c81) as when they are
(q81 1 D,c81 1 D). However, t1 is not an adequate summary of 1’s
information from wildcatter 2’s standpoint: 2 cares about q1, but
not about c1 (so, in particular, he would bid more aggressively if he
knew that signal values were (q81 1 D,c81 1 D) rather than (q1,c1)
for D . 0). Hence, buyer 1’s information cannot be summarized by
a one-dimensional signal.

Furthermore, no auction can be fully efficient in this example.
To show this, let us focus henceforth on equilibria having the
property that if, regardless of other players’ behavior, player i’s
decision problem is the same for two different signal values s8i and
s9i, then his equilibrium behavior is the same for either value (call
such equilibria regular). Consider c1, c2 and D such that

(ii) c1 , c2 , c1 1 D.

For full efficiency, (ii) implies that drilling rights should be
awarded to wildcatter 1 if her costs are c1 but not if they are c1 1 D.
However, her decision problem is the same for signal values (q1,c1)
as for (q1 1 D,c1 1 D), and so in any regular equilibrium she will
behave the same way in either case. Thus, there is no way of
devising an auction in which the outcome differs between (q1,c1)
and (q1 1 D,c1 1 D). That is, there is no way to attain full
efficiency.

More generally, we can express the difficulty illustrated by
Example 3 as follows (Maskin [1992] establishes a version of the
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following Proposition 3; see Jehiel and Moldovanu [1998] for a
closely related impossibility result).

PROPOSITION 3. Suppose that the model of subsection II.A is
generalized so that for at least one buyer i, si is multidimen-
sional, i.e., si 5 (si

1, . . . , si
m) [ Rm for m . 1. Suppose that si is

distributed independently of s2i. If there exist signal values
s8i, s9i and s82i such that

(39) vi(s8i,·) 5 vi(s9i,·),

but

(40) arg max
j

vj(s8i,s82i) Þ arg max
j

vj(s9i,s82i),

then there is no efficient auction with regular equilibria.

Proof. In any regular equilibrium (39) and the fact that si is
independent of s2i imply that equilibrium play when the signal
values are (s8i,s82i ) remains as equilibrium play when the signal
values are (s9i,s92 i). But from (40) the winning buyer of an efficient
auction cannot be the same for (s8i,s82i ) as for (s9i,s 92i). Hence, there
is no efficient auction. QED

Notice that hypothesis (39) can readily be satisfied if, as in
Example 5, buyer i’s valuation is separable between his own signal
and those of others. That is, there exist functions ti : Rm = R and
ci(·) such that

(41) vi(si,s2i) 5 ci(ti(si),s2i) for all (si,s2i).

Proposition 3 tells us that full efficiency is too much to expect
in the multidimensional case.29 Thus, all we can reasonably hope
for is efficiency subject to the constraints of incentive-compatibil-
ity. It is straightforward to show, however, that our generalized
Vickrey auction is efficient in this constrained sense, under fairly
weak assumptions.

Let us assume that, for all i, si is multidimensional (i.e., si [
Si, where Si # Rm and m . 1) and that signals are independently
distributed across buyers (the independence assumption can be

29. Jehiel and Moldovanu [1998] show that full efficiency may not be
attainable even if, for each possible allocation of resources, only a one-dimensional
component of each buyer’s signal is pertinent to buyers’ payoffs from that
allocation. By contrast, in Example 5, both c1 and q1 are pertinent to wildcatter 1’s
payoff if she wins the drilling rights.
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relaxed considerably; see footnote).30 Also suppose that, for all i,
buyer i’s valuation function is separable in the sense of (41). For
each vector (t1, . . . , tn) in the range of (t1(·), . . . , tn(·)), define

(42) wi(t1, . . . , tn) 5 Es2i
[ci(ti,s2i) 0tj(sj) 5 tj, for all j Þ i].

Thus, wi(t1, . . . , tn) is buyer i’s expected valuation when his own
signal value si is such that ti(si) 5 ti (notice that, given ti, buyer i is
indifferent between all signal values si for which ti(si) 5 ti, and so
he will behave in the same way for any of them) and each other
buyer j’s signal value sj is such that tj(sj) 5 tj (independence
implies that the expectation does not depend on si).

Because, in any regular equilibrium, each buyer i will behave
the same way for all signal values leading to the same ti,
constrained efficiency means awarding the good to the buyer for
whom wi(t1, . . . , tn) is highest. But as long as the derived valua-
tion functions wi(·) satisfy conditions (1) and (6), all conclusions
from the one-dimensional case go through.30 We have

PROPOSITION 4. Suppose that, for all i, buyer i’s signal si is
multidimensional and that signals are independently distrib-
uted across buyers.31 Assume that each buyer i’s valuation
function is separable in the sense of (41), and define the
derived valuation function wi(ti, . . . , tn) as in (42). Then,
restricting to regular equilibria, the generalized Vickrey
auction of Proposition 2 will be constrained efficient if, for all
i, wi(·) satisfies (1), (6), (26), and (38).

In the Appendix we show how Proposition 4 applies to the
model of Example 5.

III. MULTIPLE GOODS

III.A. Formulation

The efficient auction of Propositions 2 and 4 can be extended
to multiple goods through an appropriate generalization of the

30. Jehiel, Moldovanu, and Stacchetti [1996] give conditions under which one
can reduce a multidimensional problem to one dimension for the purpose of
revenue maximization.

31. Actually, independence is much stronger than necessary. All that is
needed in that, for all ti and s8i,s9i [ Si such that ti(s8i) 5 ti(s9i ) 5 ti, the distribution
over s2i conditional on s8i is the same as that conditional on s9i. Notice that this
weaker condition is automatically satisfied when buyers’ signals are one-
dimensional.
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Clarke [1971]-Groves [1973] logic. Let us continue to assume that,
for all i 5 1, . . . , n, buyer i observes a multidimensional signal
si [ Si, where Si is a convex subset of Rm. Assume too that there
are l (indivisible) goods, indexed by j 5 1, . . . , l . For each H #
51, . . . , l 6, let vi,H (s1, . . . , sn) denote buyer i’s valuation for the set
of goods H, conditional on the signals (s1, . . . , sn). Denote by 5vi,H 6H
the collection of buyer i’s valuation functions for all possible sets of
goods H.

As in the case of a single good, we assume separability of
valuation functions and (conditional) independence of signals,
which allows us in effect to reduce signal spaces to one dimension.
Specifically, for all i and k Þ i, assume that there exist functions
ti : Si = R, rk : Si = R, 5ci,H 6H and 5Gk,H6H such that, for all H #
51, . . . l 6,

(43a) vi,H(si,s2i) 5 ci,H(ti(si), s2i) for all (si,s2i).

and

(43b) vk,H(si,s2i) 5 Gk,H(rk(si),s2i) for all (si,s2i).

Assume also that, for all ti and all s8i and s9i such that ti(s8i) 5

ti(s9i) 5 ti, the probability distribution over s2i conditional on s8i is
the same as that conditional on s9i (this is an assumption of
conditional independence). Then, for all H, ti and t2i,

(44) wi,H(ti,t2i) 5 Es2i
[ci,H(t,s2i) 0tj(sj) 5 tj, for all j Þ i]

represents buyer i’s expected valuation for set H when his signal si

is such that ti(si) 5 ti and other buyers’ signals s2i are such that
tj(sj) 5 tj for all j Þ i. Henceforth, we will work with the
‘‘summary’’ signals ti and the ‘‘derived’’ valuation functions
wi,H (t1, . . . , tn) (where, for all j, tj [ Tj 5 [t j,tj]), rather than with
the primitive functions vi,H (s1, . . . , sn).

Because the same function ti must satisfy (43a) for all
combinations of goods H, our assumptions on preferences are
considerably more restrictive in the multigood then in the one-
good case.32 Nevertheless, there are natural settings in which they
are satisfied.33

32. See Theorem 6.5 in Jehiel and Moldovanu [1998].
33. Even when the separability assumption fails, there is a broad range of

settings for which the generalized Vickrey auction is constrained efficient (see
Example 8 below).
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Example 6. Consider additive preferences (the case in
which a buyer’s utility for set of goods is the sum of his utilities
for the individual goods). In this case, provided that a buyer’s
utility for a given good depends only on the signals specific
to that good and that the signals for different goods are dis-
tributed independently, we can auction off each good separately,
and so the problem becomes one-dimensional under the
same assumptions as in the one-good case.

Example 7. Imagine that there are a number of electricity-
generating plants available for auction to electricity-producing
firms. Each firm i can produce qi units of electricity from a
given plant at fixed cost ci, where qi and ci might depend on
how many other plants the firm owns. Let us suppose that
the qi’s and ci’s are common knowledge but that each firm i
observes a private signal si that gives it information about the
expected price p of electricity. Hence firm i’s profit from a given
plant is

p(s1, . . . , sn)qi 2 ci.

If p is separable in the si’s, then, once again, our separability
assumption holds.

Let (H1 , . . . , Hn) be a partition of 51, . . . , l 6 (i.e.,
<i51

n Hi 5 51, . . . , l 6 and, for all i Þ j, Hi > Hj 5 B). We will call
such a partition an allocation of goods across buyers, where, for all
i, Hi corresponds to the set of goods allocated to buyer i. We will
call an allocation constrained efficient with respect to (t1, . . . , tn)
if it solves

max
(H1, . . . , Hn)

o
i51

n

wi,Hi
(t1, . . . , tn)

(efficiency is constrained since the maximization is conditional on
(t1, . . . , tn) rather than on the finer information (s1, . . . , sn)).
Finally, an auction is constrained efficient if, for all (t1, . . . , tn), the
corresponding equilibrium allocation is constrained efficient, and
a buyer’s allocation of goods does not depend on which best
response he chooses against the other buyers’ equilibrium
strategies.

The counterpart to condition (1) in our multigood frame-
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work is34

(45) 5
for all i and (t1, . . . , tn) if H and H 8

are two sets of goods such that

wi,H(t1, . . . , tn) 2 wi,H8(t1, . . . , tn ) . 0

then

­

­ti
(wi,H(t1, . . . , tn) 2 wi,H8(t1, . . . , tn)) . 0,

i.e., if buyer i prefers H to H 8, then an increase in ti makes his
preference even stronger. The generalization of (6) is

(46) 5
if, for buyer i, signal (t1, . . . , tn),

and allocations (H1, . . . , Hn), (H 81, . . . , H 8n),

wi,Hi
(t1, . . . , tn) . wi,H 8i

(t1, . . . , tn)

and

o
j51

n

wj,Hj
(t1, . . . , tn) 5 o

j51

n

wj,H 8j
(t1, . . . , tn)

5 max
5Ĥj6

o
j51

n

wj,Ĥj
(t1, . . . , tn)

then

­

­ti
o
j51

n

wj,Hj
(t1, . . . , tn) .

­

­ti
o
j51

n

wj,H 8j
(t1, . . . , tn).

Condition (46) says that, for any two allocations, buyer i’s
‘‘summary’’ signal ti has a greater marginal effect on the total
surplus of the allocation that he prefers (at any point where the
total surpluses are equal and maximal). Note that the last

34. For efficiency, we must compare buyer i’s valuation for H with that for H 8.
In the one-good case, this amounts to comparing vi(s1, . . . , sn) with 0, which is why
(1) and (6) (perhaps misleadingly) appear not to be expressed in terms of
differences of valuations.
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inequality in (46) can be rewritten as

(47)
­

­ti
(wi,Hi

(ti,t2i) 2 wi,H 8i
(ti,t2i))

.
­

­ti
o
jÞi

(wj,H8j
(ti,t2i) 2 wj,Hj

(ti,t2i)).

The counterpart of (26) is the requirement that

(48a) 5
for all i, (ti,t2i), (H1, . . . , Hn) and (H 81, . . . , H 8n),

if wi,Hi
(ti,t2i) 2 wi,H 8i

(ti,t2i) . 0

then there exists t8i . ti such that

wi,Hi
(t8i,t2i) 2 wi,H 8i

(t8i,t2i)

. o
jÞi

(wj,H8j
(t8i,t2i) 2 wj,Hj

(t8i,t2i)),

i.e., if buyer i prefers Hi to H 8i then, for a high enough value of ti,
(H1, . . . , Hn) is socially preferred to (H 81, . . . , H 8n).

Finally, for the case of three or more buyers, the counterpart
to (38) is the condition there exist H1, . . . , Hn such that

(48b) det 1
­w1,H1

­t1

· · ·
­wm,Hm

­t1

···
···

­w1,H1

­tm

· · ·
­wm,Hm

­tm

2 Þ 0, for all m 5 1, . . . , n.

We will exhibit a generalized Vickrey-Clarke-Groves auction
that is constrained efficient, as long as the derived valuation
functions satisfy (45), (46), (48a), and (48b). As in Section II we
first consider the case of two buyers (subsection III.B). The case of
more than two buyers then follows (subsection III.C).

III.B. Two Buyers

In this case buyer i’s (i 5 1,2) preferences can be represented
by the derived valuations functions for each H # 51, . . . , l 6 and an
allocation is a pair (H1,H2). To extend the auction of Proposition 2
to this setting, consider the auction in which
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(A) for each subset of goods H # 51, . . . , l 6, buyer 1 reports bid
function,

b̂1,H : Ŵ2 = R1,

where, for each 5w2,H 86H 8 (the set 5w2,H 86H 8 specifies buyer 2’s
valuation w2,H 8 for each possible subset of goods H 8), b̂1,H(5w2,H 86H 8)
is buyer 1’s corresponding bid for subset H, and Ŵ2 is a subset of
R2 l 21; similarly buyer 2 reports b̂2,H (·) for each H # 51, . . . , l 6;

(B) a fixed point (5w°1,H 86,5w°2,H 86H 8) is calculated: for all H,

w°1,H 5 b̂1,H(5w°2,H 86H 8)

and

w°2,H 5 b̂2,H(5w°1,H 86H 8)

(if no fixed point exists then no goods are allocated; if there are
multiple fixed points, then buyers choose among them as in stage
(e) of the auction of Proposition 2);

(C) consider the allocation (H°1,H°2) that solves

(49) max
(H1,H2)

(w°1,H1
1 w°2,H2

)

(thus, (H°1,H°2) is the allocation that maximizes apparent surplus—the
surplus that would result if 5(w°1,H 8,w°2,H 8)6H 8 were the true valua-
tions); let H°i be the set of goods assigned to buyer i;

(D) if buyer 1 is assigned H°1, consider a sequence [ 5w1,H 8
1 6H 8,

(H 1
1,H 2

1)], . . . , [5w1,H 8
R 6H 8,(H 1

R,H 2
R)], where 5w1,H 8

r 6H 8 [ Ŵ1, r 5
1, . . . , R, such that

(50) (H 1
r,H 2

r ) solves max
(H1,H2)

(w1,H1

r 1 b̂2,H2
(5w1,H 8

r 6Ĥ8), r 5 1, . . . , R

(51) w°1,H°1
. w1,H°1

1 and w1,H1
r21

r21 . w1,H1
r21

r , r 5 2, . . . , R,

(52) w 1
1,H°1

1 b̂2,H°2
(5w1,H 8

1 6H 8) 5 w1,H1
1

1 1 b̂2,H2
1(5w1,H 8

1 6H 8)

and, for all r 5 2, . . . , R,

w1,H1
r21

r 1 b̂2,H2
r21(5w1,H 8

r 6H 8) 5 w1,H1
r

r 1 b̂2,H2
r(5w1,H 8

r 6H8)

and either

(53) H 1
R 5 B
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or

(54) for all 5w1,H 86H 8 [ Ŵ1 and all H, w1,H $ w1,H
R and H 1

R 5 H1
R21;

then buyer 1 pays

(55) o
r51

R

(b̂2,H2
r(5w1,H 8

r 6H 8) 2 b̂2,H2
r21(5w1,H 8

r 6H8)

1 b̂2,51, . . . , l 6(5w1,H 8
R 6H 8) 2 b̂2,H2

R(5w1,H 8
R 6H8)

(in equilibrium there can be multiple sequences satisfying (50)–
(54); if so, then buyer 2 chooses among them as in stage (f ) of the
auction of Proposition 2); buyer 2’s payment is determined
symmetrically.

To informally understand the rationale for buyer 1’s payment,
think of starting at 5w1,H 86H 8 5 5w°1,H 86H 8 and reducing 5w1,H 86H 8

continuously so that it remains in Ŵ1 (in equilibrium there will be
a unique way that this can be done—see (58)—but if there are
multiple ways, choose one arbitrarily). Let 5w1,H 86H 8 5 5w1,H 8

1 6H 8 be
the first point at which the surplus-maximizing allocation switches
from (H°1,H°2) to some other allocation (H 1

1,H 2
1) (in the one-good

case this is the point v*1, where the good is reallocated from buyer
1 to buyer 2). Now, according to the Clarke [1971]-Groves [1973]
mechanism, buyer 1 should pay his marginal impact on buyer 2.
At 5w1,H 86H 8 5 5w1,H 8

1 6H 8, buyer 2 is just on the verge of being
allocated H 2

1 rather than H°2. Hence, the marginal impact on him
(as measured by his own bid function) of raising 5w1,H 86H 8 from just
below to just above 5w1,H 8

1 6H 8 is

(56) b̂2,H2
1(5w1,H 8

1 6H8) 2 b̂2,H°2
(5w1,H 8

1 6H 8)

(in the one-good case, (56) reduces to b̂2(v*1) 2 b̂2(B) 5 b̂2(v*1)). And
so, buyer 1 should pay (56) for this marginal impact. Continuing to
reduce the valuations 5w1,H 86H 8, we find that, for each r 5 2, . . . , R,
5w1,H 86H 8 5 5w1,H 8

r 6H 8 is the point at which the surplus-maximizing
allocation switches from (H 1

r21,H 2
r21) to (H 1

r,H 2
r ). The reductions

continue until ultimately buyer 1 is either allocated no goods (i.e.,
(53) holds), or we reach the lower end-point of Ŵ1 (i.e., (54) holds).
At 5w1,H 86H 8 5 5w1,H 8

r 6H 8, buyer 1’s marginal impact on buyer 2 is

(57) b̂2,H2
r(5w1,H 8

r 6H 8) 2 b̂2,H2
r21(5w1,H 8

r 6H 8).

Summing (57) (and adding one more term, b̂2,51, . . . , l 6(5w1,H 8
R 6H 8) 2
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b̂2,H2
R(5w1,H 8

R 6H 8), if (53) does not hold), we find that buyer 1’s total
marginal impact on buyer 2 is given by (55). Notice that in the
case of private values—where buyer 2’s bid function does not
depend on 5w1,H 86H 8—(55) collapses to

b̂2,51, . . . , l 6 2 b̂2,H°2
,

which is the standard Clarke-Groves payment.
We will show that, in the auction given by (A)–(D) (strictly

speaking, there should be extra steps to deal with multiple fixed
points in step (B) and multiple sequences in step (D), but we shall
skip over these), it is an equilibrium for buyers to bid truthfully
and that such behavior results in an efficient allocation. Truthful
bidding by buyer 1 with summary signal t1 entails setting

(58) Ŵ2 5 W2 5 55w2,H86H 8 0 there exists t82 such that w2,H 8

5 w2,H 8(t1,t82) for all H86

and

b̂1,H(·) 5 b1,H(·),

such that, for all H # 51, . . . , l 6 and 5w2,H 86H 8 [ W2,

(59) b1,H(5w2,H 86H 8) 5 w1,H(t1,t82),

where t82 is such that w2,H 8 5 w2,H 8(t1,t82) for all H 8. Formula (59)
says that, given 5w2,H 86H 8, buyer 1 bids his true valuation w1,H(t1,t82)
for the subset of goods H, where t82 is the signal value consistent
with the valuations 5w2,H 86H 8.

PROPOSITION 5. Assume that the derived valuation functions
satisfy (45)–(48b). The two-buyer auction defined by (A)–(D)
is constrained efficient. That is, truthful bidding (as defined
by (58) and (59)) constitutes an equilibrium and results in a
constrained efficient allocation. Moreover, unilateral devia-
tion by any buyer to a nontruthful best response does not
change his allocation.35

Proof. See Appendix.
In the Appendix we gave an explicit illustration of Proposi-

tion 5.

35. Remarks 1 and 2 from Proposition 1 carry over to Proposition 5. In
particular, buyer 2 need bid ‘‘correctly’’ only for the values 5w1,H 8

r 6H 8.
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III.C. Many Buyers

As we observed in Section II, the major difference between
this and the two-buyer case is that we must now allow buyers to
submit bid correspondences. Consider the following auction de-
fined in four steps:

(a) for each nonempty set H # 51, . . . , l 6, each buyer i
(i 5 1, . . . , n) submits a bid correspondence

b̂i,H : Ŵ2i == R1,

where 5w2i,H 86H 8 is a typical element of Ŵ2i(5w2i,H 86H 8 specifies the
other buyers’ valuations for each possible set of goods H 8)

(b) a fixed point 5(w°1,H 8, . . . , w°n,H 8)6H 8 is calculated so that

w°i,H [ b̂i,H (5w°2i,H 86H 8 6) for all i and H

(if there is no fixed point, the good is not allocated, and no buyer
makes a payment; if there are multiple fixed points, proceed as in
step (e) of the auction of Proposition 2);

(c) choose the allocation (H°1, . . . , H°n) that solves

max
(H1, ..., Hn)

o
i51

n

w°i,Hi
;

(d) to calculate the payment that buyer i makes for H°i, consider a
sequence

[5(w1,H 8
1 , . . . , wn,H 8

1 )6H 8,(H 1
1, . . . , Hn

1)], . . . ,

[5(w1,H 8
R , . . . , wn,H 8

R 6H 8,(H 1
R, . . . , Hn

R)],

where 5w2j,H 8
r 6H 8 [ Ŵ2j for all j and r 5 1, . . . , R,

such that

(60) wj,H
r [ b̂j,H(5w2j,H 8

r 6H 8) for all j Þ i, H, and r 5 1, . . . , R,

(61) (H 1
r, . . . , Hn

r ) solves max
(H1, ..., Hn)

o
j51

n

wj,Hj

r , r 5 1, . . . , R,

(62) wi,Hi
r21

r21 . wi,Hi
r21

r , r 5 2, . . . , R,

(63) o
k51

n

wk,Hk
r21

r 5 o
k51

n

wk,Hk
r

r , r 5 2, . . . , R,
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and either

(64) Hi
R 5 B,

or

(65) for all j Þ i, all 5w2 j,H 86H 8 [ Ŵ2 j and all H,

wi,H $ wi,H
R and Hi

R 5 Hi
R21;

then buyer i pays

(66) o
r51

R

o
jÞi

(wj,Hj
r

r 2 wj,Hj
r21

r ) 1 o
jÞi

(wj,Hj
R11

R 2 wj,Hj
R

R ),

where H 2i
R11 solves maxH2i

SjÞiwj,Hj

R (if there is no sequence
satisfying (60)–(65), then no goods are allocated, and no buyer
makes a payment; if there are multiple sequences, then we
proceed as in step (f ) of auction of Proposition 2).

We claim that, in the auction given by (a)–(d), it is an
equilibrium for buyers to bid truthfully and that such behavior
results in an efficient allocation, provided that (45)–(48b) hold.
Again, we must first make precise what constitutes truthful
bidding.

For all i and H, we shall say that buyer i’s bid correspondence

b̂i,H : Ŵ2i == R1

is truthful for summary signal ti if Ŵ2i 5 W2i, where

(67) W2i 5 55w2i,H 86H8 0 there exists t82i [ T2i 5 3
jÞi

[t j,tj] such that

for all j Þ i and H 8,wj,H 8(ti,t82i) 5 wj,H 86,

and b̂i,H(·) 5 bi,H (·), where, for all 5w2i,H 86H 8 [ W2i and H,

(68) bi,H(5w2i,H 86H 8) 5 5wi,H(ti,t82i) 0 there exists t82i such that,

for all j Þ i and H 8,wj,H 8(ti,t82i) 5 wj,H 86.

If there are multiple fixed points in step (b)36—so that the auction
moves to an additional stage as in step (e) of Proposition 2—buyer
i with signal value ti is truthful if, assuming that there exists a

36. Readers not interested in the issue of multiple fixed points can skip
directly to the statement of Proposition 6.
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unique vector t82i such that, for all j Þ i, all H, and all 5w2j,H 86H 8 [
Ŵ2j,

b̂j,H(5w2j,H 86H8) 5 5wj,H 0 there exists t92j such that wj,H 5 wj,H (t8j,t92j)

and, for all H 8, w2j,H 8(t8j,t92j) 5 w2j,H 86,

then he chooses

5w°i,H 86H 8 5 5wi,H 8(ti,t82i)6.

If there exists either no such vector t82i or multiple such vectors,
then buyer i randomizes uniformly over all fixed points in step (b).

If, in determining buyer i’s payment, there are multiple
sequences satisfying (60)–(65)—so that the auction moves to an
additional stage as in step (f ) of Proposition 2—buyer j with
signal tj is truthful if, assuming that there exists a unique vector
t82j such that for all k Þ j,i, all H, and all 5w2k,H 86 H 8 [ Ŵ2k

b̂k,H(5w2k,H 86H 8 5 5wk,H 0 there exists t92k such that wk,H 5 wk(t8k,t92k)

and, for all H 8, w2k,H 8 5 w2k,H 8(t8k,t9k)6,

he chooses the sequence [5(w1,H8
1 , . . . , wn,H8

1 )6H8,(H1
1, . . . , Hn

1)], . . . ,
[5(w1,H 8

R , . . . , wn,H 8
R )6H 8,(H 1

R, . . . , Hn
R)] satisfying (60)–(65) and

such that there exist tj
1 . tj

2 . ? ? ?. tj
R for which wj,H

r 5 wj,H(tj
r,t82j),

r 5 1, . . . , R. If either there exists no such vector t82j or there exist
multiple such vectors, then buyer j randomizes uniformly over all
sequences satisfying (60)–(65).

PROPOSITION 6. Assume that, for all i and H, the derived valuation
functions wi,H(·) satisfy (45)–(48b). The generalized Vickrey-
Clarke-Groves auction defined by (a)–(d) is constrained
efficient.

The proof of Proposition 6 is essentially the same as that of
Proposition 5, and so we omit it.

IV. AN OPEN QUESTION

We have provided conditions under which a generalized
Vickrey auction is constrained efficient. Vickrey auctions for
multiple goods are sometimes criticized as demanding too much
information of a buyer: he is asked to submit a bid for each
possible combination of goods, i.e., 2 l 2 1 bids in all. Further-
more, in our common-values setting, these bids must be made
contingent on all other buyers’ valuations.
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In our view, these criticisms are overblown. A buyer could be
permitted to submit bids only on those combinations of goods he is
potentially interested in (with default values of zero, say, being
assigned to all other combinations). Furthermore, he could choose
to make his bids contingent only on those other buyers’ valuations
that, he believes, share a significant common component with his
own valuation.

Nevertheless, there are at least two important advantages
that a (suitably formulated) English auction could have over a
generalized Vickrey auction. First, at any instant, a buyer in an
English auction need make only a binary decision: whether or not
to drop out. In this sense, it is markedly simpler than our
generalized Vickrey auction, in which the buyer must submit a
fully contingent bid in advance.

To appreciate the second advantage, recall Example 3, in
which for signal values (s1,s2,s3) in the neighborhood (1,1,1), it is
not efficient for buyer 3 to win and yet his signal value is pertinent
in determining which of buyer 1 or 2 should win. In the English
auction, buyer 3’s true signal value can be inferred even though he
does not win, because he will drop out when the price reaches s3.
In the generalized Vickrey auction, by contrast, buyer 3 must
truthfully bid b3(v1,v2) in order for s3 to be revealed. Although
truthful bidding is optimal, buyer 3 has only a neutral incentive to
do so if b3(v1,v2) is less than v1 and v2 (as in footnote 23, we could
provide a strict incentive but only at the cost of a more elaborate
set of rules).37

Thus, on both counts, we regard finding an appropriate
‘‘English’’ auction (i.e., a dynamic auction with binary decisions at
each instant) counterpart to our Vickrey auction with multiple
goods as a leading topic for further research.

APPENDIX

Proof of Proposition 2. Suppose that all buyers other than
buyer i are truthful. We must first show that buyer i finds it
optimal to be truthful as well. Suppose that buyers’ signals are
(s1, . . . , sn). If buyer i wins the auction, then his payment, from

37. By contrast, if buyer 3 receives a multidimensional signal, there will be no
way to give him a strict incentive to distinguish between two signal values for
which his preferences are identical; see Example 5. That is one reason why full
efficiency is, in general, impossible with multidimensional signals.
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(28)–(30), is

(A.1) max
jÞi

v*j,

where (v*1, . . . , v*n) is a vector such that

(A.2) v*i 5 max
jÞi

v*j

and

(A.3) v*k [ bk(v*2k) for all k Þ i,

and where bk(·) is given by (32). Now, from (1) and (26), there
exists a unique vector (v̂*1, . . . , v̂*n) and signal value s8i [ Si such
that

(A.4) v̂*i 5 max
jÞi

v̂*j,

(A.5) v̂*k 5 vk(s8i,s2i) for all k Þ i,

and

(A.6) v̂*i # vi(s8i,s2i), with equality if s8i . s i.

From (31), (32), (A.5), and (A.6), v̂*2j [ V2j for all j and

(A.7) v̂*k [ bk(v̂*2k) for all k Þ i.

Formulas (A.4) and (A.7) imply that the vector (v̂*1, . . . , v̂*n)
satisfies (A.2) and (A.3). Let us suppose for now that (v̂*1, . . . , v̂*n)
is the unique such vector (we shall consider the case of multiple
vectors satisfying (A.2) and (A.3) below). Then, from (A.1) and
(A.2), player i’s net payoff from winning is

(A.8) vi(si,s2i) 2 v̂*i.

It suffices, therefore, to show that, if buyer i is truthful, he
wins the auction if and only if (A.8) is positive.

Now, from (A.6), (A.8) is positive if and only if either

(A.9a) vi(si,s2i) . vi(s8i,s2i)

or

(A.9b) si 5 s8i and vi(s8i,s2i) . v̂*i.
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But, from (1), (A.9a) holds if and only if

(A.10) si . s8i.

Now from (A.4)–(A.6)

(A.11) vi(s8i,s2i) $ max
jÞi

vj(s8i,s2i).

Hence, from (6) and (A.11), (A.10) holds if and only if

(A.12) vi(si,s2i) . max
jÞi

vj(si,s2i).

But from (31) and (32)

vj(si,s2i) [ bj(v2j(si,s2i)) for all j.

That is, (v1(si,s2i), . . . , vn(si,s2i)) is a fixed point of the correspon-
dence

(A.13) (v1, . . . , vn) p (b1(v21), . . . , bn(v2n)).

Suppose for the moment that it is the unique fixed point. Then,
if buyer i is truthful, the rules of the auction ((A.9a) and
(A.9b)), (A.11), and (A.12) ensure that buyer i wins if and only
if (A.8) is positive, as required. Finally, observe that (A.12)
ensures that the allocation resulting from truthful bidding is
efficient.

If there are multiple fixed points of (A.13), then the auction
has an additional step (e) in which the players choose among
these. We claim that, from (38), the buyers can infer one an-
other’s signal values from the bid functions. To see this, sup-
pose for simplicity that n 5 3. Let us focus on buyer 3. If an-
other buyer cannot not infer the value of s3 from b3(·), then there
must exist a pair of argument values (v1,v2) for which the
corresponding truthful bid by buyer 3 is the same for two different
values of s3. That is, there must exist (s81,s82,s83) and (s91,s92,s93) such
that

(A.14)

v1 5 v1(s81,s82,s83) 5 v1(s91,s92,s93)

v2 5 v2(s81,s82,s83) 5 v2(s91, s92,s93)

v3(s81,s82,s83) 5 v3(s91,s92,s93).
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For each s3 [ [s83,s93] consider the pair of differential equations

(A.15)

­v1

­s1
(s1(s3),s2(s3),s3)

ds1

ds3
(s3) 1

­v1

­s2
(s1(s3),s2(s3),s3)

ds2

ds3
(s3)

1
­v1

­s3
(s1(s3),s2(s3),s3) 5 0,

­v2

­s1
(s1(s3),s2(s3),s3)

ds1

ds3
(s3) 1

­v2

­s2
(s1(s3),s2(s3),s3)

ds2

ds3
(s3)

1
­v2

­s3
(s1(s3),s2(s3),s3) 5 0,

with boundary conditions s1(s83) 5 s81 and s2(s83) 5 s82. From (38),
we can solve uniquely for ds1/ds3 and ds2/ds3. Hence, there exist
locally unique functions functions s1(·) and s2(·) such that, for all
s3 [ [s83,s93],

(A.16)

v1(s1(s3),s2(s3),s3) 5 v1(s81,s82,s83)

and

v2(s1(s3),s2(s3),s3) 5 v2(s81,s82,s83).

Suppose first that

(A.17) (s1(s93),s2(s93)) 5 (s91,s92).

Then from (A.14) and (A.17), we have

(A.18)

0 5 v3(s91,s92,s93) 2 v3(s81,s82,s83)

5 (s93 2 s83) 3­v3

­s1
(s1(ŝ3),s2(ŝ3),ŝ3)

ds1

ds3
(ŝ3)

1
­v3

­v2
(s1(ŝ3),s2(ŝ3),ŝ3)

ds2

ds3
(ŝ3)

1
­v3

­s3
(s1(ŝ3),s2(ŝ3),ŝ3)4 ,

for some ŝ3 [ [s83,s93]. From (38) and (A.15) we can rewrite the
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right-hand side of (A.18) as

(A.19)

(s93 2 s83) 3­v3

­s1
12 ­v1

­s3

­v2

­s2
1

­v1

­s2

­v2

­s3
2

1
­v3

­s2
12 ­v1

­s1

­v2

­s3
1

­v2

­s1

­v1

­s3
2

1
­v3

­s3
1­v1

­s1

­v2

­s2
2

­v1

­s2

­v2

­s1
24 9 1­v1

­s1

­v2

­s2
2

­v1

­s2

­v2

­s1
2 ,

where all derivatives are evaluated at s3 5 ŝ3. But the expression
in (A.19) in square brackets is

det 1
­v1

­s1

­v2

­s1

­v3

­s1

­v1

­s2

­v2

­s2

­v3

­s2

­v1

­s3

­v2

­s3

­v3

­s3

2 ,

whereas the denominator is

det 1
­v1

­s1

­v2

­s1

­v1

­s2

­v2

­s2

2 .

Hence, from (38), (A.19) is nonzero, which contradicts (A.18).
Suppose therefore that

(A.20) (s1(s93),s2(s93)) 5 (ŝ91,ŝ92) Þ (s91,s92).

For s2 [ [s92,ŝ92] consider the differential equation

(A.21)
­v1

­s1
(ŝ1(s2),s2,s93)

dŝ1

ds2
(s2) 1

­v1

­s2
(ŝ1(s2),s2,s93) 5 0

with boundary condition ŝ1(s92) 5 s91. From (1) there exists a
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unique local solution ŝ1(s2):

v1(ŝ1(s2),s2,s93) 5 v1(s91,s92,s93) for all s2 [ [s92,ŝ92].

In particular,

(A.22) v1(ŝ1(ŝ92),ŝ92,s93) 5 v1(s91,s92,s93).

From (1), (A.16), (A.20), and (A.22), we have

ŝ1(ŝ92) 5 ŝ91.

Hence,

(A.23)

0 5 v2(ŝ91,ŝ92,ŝ93) 2 v2(s91,s92,s93)

5 (ŝ92 2 s92) 3­v2

­s1
(ŝ1(s*2),s*2,s93)

dŝ1

ds2
(s*2) 1

­v2

­s2
(ŝ1(s*2),s*2,s93)4

for some s*2 [ [s92,ŝ92]. From (A.21) we can rewrite the right-hand
side of (A.23) as

(A.24) (ŝ 92 2 s 92) 32 ­v2

­s1

­v1

­s2
1

­v1

­s1

­v2

­s2
4 9 ­v1

­s1
,

where all derivatives are evaluated at s2 5 s*2. But from (38),
(A.24) is nonzero, which contradicts (A.23). We conclude that
(A.14) cannot hold after all, and so buyers can indeed infer one
another’s signal values from their bid functions. Hence if buyer
i bids truthfully, the definition of truthful behavior (34) in step
(e) ensures that buyers will choose the true valuations
(v1(si,s2i), . . . , vn(si,s2i)) in step (e), and so the previous analysis
implies that buyer i has the incentive to bid truthfully and that
doing so leads to an efficient outcome.

Finally, suppose that there are multiple solutions (v*1, . . . , v*n)
to (A.2) and (A.3). In that case, the auction moves to step (f ). But
(38) and the definition of truthful behavior (35)–(37) ensure that
buyers j Þ i will together choose v̂*2i such that there exists v̂*i
satisfying (A.4)–(A.7), and so the previous analysis implies again
that truthful behavior pays for buyer i.\

Application of Proposition 2

It may be helpful to see how Proposition 2 applies to
the three-buyer model from Example 3. Recall from that ex-
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ample that

(i) v1(s1,s2,s3) 5 s1 1 1⁄2s2 1 1⁄4s3

(ii) v2(s1,s2,s3) 5 s2 1 1⁄4s1 1 1⁄2s3

(iii) v3(s1,s2,s3) 5 s3.

Note, from (iii), that buyer 3’s valuation does not depend on s1 and
s2 and so, given s3, his truthful bid function (in this example, the
bid schedules are functions rather than correspondences) is a
constant:

(iv) b3(v1,v2) 5 s3.

As for buyer 1, note from (ii), that we can rewrite s2 as

s2 5 v2 2 1⁄4s1 2 1⁄2v3,

and so, given s1, buyer 1’s truthful bid function is

(v)

b1(v2,v3) 5 s1 1 1⁄2(v2 2 1⁄4s1 2 1⁄2v3) 1 1⁄4v3

5 7⁄8s1 1 1⁄2v2.

Similarly, given s2, buyer 2’s truthful bid function is

(vi)

b2(v1,v3) 5 s2 1 1⁄4(v1 2 1⁄2s2 2 1⁄4v3) 1 1⁄2v3

5 7⁄8s2 1 1⁄4v1 1 7⁄16v3.

From (iv)–(vi), we obtain the (unique) fixed point

v°1 5 7⁄8s1 1 1⁄2v°2

v°2 5 7⁄8s2 1 1⁄4v°1 1 7⁄16v°3

v°3 5 s3;

that is, the fixed point is just the vector of actual valuations
(i)–(iii).

Thus, we see that, if (a) buyers bid truthfully, (b) a fixed point
(v°1,v°2,v°3) is calculated, and—as our auction requires—(c) the good
is allocated to the buyer i for whom v°i is biggest, the good will be
allocated efficiently. Suppose, for example, that s1 5 s2 5 1 and
that s3 is either slightly less or slightly more than 1. If buyer 1 is

EFFICIENT AUCTIONS 381

Page 381
@xyserv2/disk4/CLS_jrnlkz/GRP_qjec/JOB_qjec115-2/DIV_102a02 swei



the winner, then from (28)–(30), he should pay

v*1 5 max 5v*2,v*36,

where (since v*2 . v*3)

v*1 5 b2(v*1,v*3)

5 7⁄8 1 1⁄4v*1 1 7⁄16v*3;

i.e.,

v*1 5 7⁄6 1 7⁄12v*3 5 7⁄6 1 7⁄12s3.

Hence, buyer 1’s net payoff is (1 1 1⁄2 1 1⁄4s3) 2 (7⁄6 1 7⁄12s3). But
buyer 1 wins if and only if s3 , 1. We conclude that buyer 1 wins
the auction precisely in those cases where his payoff from winning
is positive, namely, when s3 , 1.

Application of Proposition 4 to Example 5

Let us see how Proposition 4 applies to the model of Example
5. To complete the specification of that model, let us suppose that
c1 is uniformly distributed on [0,1], q1 is uniformly distributed on
[1,2], c2 is uniformly distributed on [0,2], and q2 is uniformly
distributed on [2,3]. Then

ti 5 qi 2 ci, i 5 1,2

w1(t1,t2) 5 Eq2,c2
[t1 1 q2 0q2 2 c2 5 t2]

5 5
t1 1 2 1

t2

2
, 0 # t2 # 1

t1 1
5

2
, 1 # t2 # 2

t1 1
3

2
1

t2

2
, 2 # t2 # 3

and

w2(t1,t2) 5 Eq1,c1
[t2 1 q1 0q1 2 c1 5 t1]

5 t2 1 1 1
t1

2
.
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Notice that

1 5
­wi

­ti
.

1

2
$

­wj

­ti
for all i and j Þ i.

Hence conditions (1) and (6) are satisfied, and so, from Proposition
1, our generalized Vickrey auction attains the constrained effi-
cient outcome, i.e., the winner in equilibrium will be the wildcat-
ter i for whom

wi(t1,t2) . wj(t1,t2).

Proof of Proposition 5. Suppose that buyer 2 is truthful.
Let buyers’ summary signals be (t1,t2). If buyer 1 also bids
truthfully, then, from (58)–(59), 5(w1,H(t1,t2),w2,H(t1,t2))6H is a fixed
point satisfying step (B) of the auction (if there are other fixed
points, the multiplicity can be resolved as in the auction of
Proposition 2). Hence, from step (C), buyer 1 is allocated goods H°1
where

(A.25) (H°1,H°2) solves max
(H1

,H2)
o
j51

2

wj,Hj
(t1,t2).

Thus, the outcome of the auction is efficient, and it remains to
show that buyer 1 will choose to bid truthfully.

We claim that if buyer i is truthful, then the sequence
[5w1,H 8

r 6H 8,(H 1
r,H 2

r )], r 5 1, . . . , R, determining buyer 1’s payment
satisfies

(A.26) w1,H8
r 5 w1,H8(t1

r,t2) for all H8,

where 5t1
1, . . . , t1

R6 are signal values such that

(A.27) t1 . t1
1 . · · · . t1

R.

Hence (55) can be rewritten as

o
r51

R

(b2,H2
r (5w1,H8(t1

r,t2)6H8) 2 b2,H2
r21(5w1,H8(t1

r,t2)6H8))

1 b2,{1, ..., l }({w1,H 8(t1
R,t2)}H 8) 2 b2,H 2

R({w1,H 8(t1
R,t2)}H 8) ,
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and thus, from (59), as

(A.28) o
r51

R

(w2,H 2
r (t1

r,t2) 2 w2,H 2
r21(t1

r,t2))

1 w2, 51, ..., l 6(t1
R,t2) 2 w2,H 2

R(t1
R,t2).

To see this, let t1
1 be the lowest signal value for buyer 1 such

that (H°1,H°2) remains the surplus-maximizing allocation for signal
values for (t1

1,t2) (if t1
1 does not exist—i.e., if (H°1,H°2) remains

optimal for all signal values less than t1—go to the next para-
graph). And for a signal value slightly less than t1

1 let (H1
1,H2

1) be
the corresponding surplus-maximizing allocation. Note from (45),
(59) and the definition of (H1

1,H2
1) that [5w1,H8(t1

1,t2)6H8,(H1
1,H2

1)]
satisfies (50)–(52), as claimed (if there are other solutions to
(50)–(52), proceed as in Proposition 2).

Continuing similarly with t1
2 . t1

3 . · · · (from (46), only
finitely many ‘‘switchpoints’’ t1

r are possible), we reach t1
R such

that either H1
R 5 B (i.e., (53) holds) or t1

R 5 t1 (in which case (54)
holds). Hence, the claim is established, and buyer 1’s net pay-
off is

(A.29) w1,H°1
(t1,t2) 2 o

r51

R

(w2,H2
r(t1

r,t2) 2 w2,H2
r21(t1

r,t2))

2 w2,51, ..., l 6(t1,t2) 2 w2,H 2
R(t1,t2).

Suppose instead that buyer 1 does not bid truthfully. If
5(w°°1,H,w°°2,H)6H is the resulting fixed point, then from (58) and (59)
there exists t81 such that

w°°1,H 5 w1,H(t81,t2) for all H.

That is, buyer 1 is, in effect, bidding as though his signal value
is t81. Assume for now that t81 , t1. Then if, for some P [ 51, . . . , R6,
t1

P $ t81 . t1
P11, H°°1 5 H1

P and buyer 1’s net payoff is

(A.30) w1,H1
P(t1,t2) 2 o

r5P11

R

(w2,H2
r(t1

r,t2) 2 w2,H2
r21(t1

r,t2))

2 (w2,51, ..., l 6(t1,t2) 2 w2,H 2
R(t1,t2)).
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Subtracting (A.30) from (A.29), we obtain

(A.31) w1,H°1
(t1,t2) 2 w1,H1

P(t1,t2)

2 o
r51

P

(w2,H2
r(t1

r,t2) 2 w2,H2
r21(t1

r,t2)).

We must show that (A.31) is positive. From (52) and (A.26),

(A.32) w1,H1
r21(t1

r,t2) 1 w2,H2
r21(t1

r,t2) 5 w1,H1
r(t1

r,t2) 1 w2,H2
r(t1

r,t2).

If, for some r 5 1, . . . , P, w1,H1
r21(t1

r,t2) , w1,H1
r(t1

r,t2) then, from (46)
and (A.32),

w1,H1
r21(t1

r21,t2) 1 w2,H2
r21,(t1

r21,t2) , w1,H1
r(t1

r21,t2) 1 w2,H2
r(t1

r21,t2),

a contradiction of (50). Hence

(A.33) w1,H1
r21(t1

r,t2) . w1,H1
r(t1

r,t2), r 5 1, . . . , P.

From (45) and (A.33) we have

(A.34) w1,H1
r21(t1,t2) 2 w1,H1

r(t1,t2)

2 (w1,H1
r21(t1

r,t2) 2 w1,H1
r(t1

r,t2)) . 0, r 5 1, . . . , P.

Using (A.32) and (A.34), we obtain

(A.35) w1,H1
r21(t1,t2) 2 w1,H1

r(t1,t2) 2 (w2,H2
r(t1

r,t2)

2 w2,H2
r21(t1

r,t2)) . 0.

But summing (A.35) over r 5 1, . . . , P, we find that (A.31) is
positive. This also shows that buyer 1’s allocation must still be H°1
if he deviates to a nontruthful best response. The argument is
symmetric if t1 , t81.\

Illustration of Proposition 5

There are two buyers, 1 and 2, and two goods, A and B. The
valuations are as follows:

w1,A(t1,t2) 5 3t1 1 t2

w1,B(t1,t2) 5 2t1

w1,AB(t1,t2) 5 5t1 1 2t2

w2,A(t1,t2) 5 2t2 1 1⁄2t1
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w2,B(t1,t2) 5 2t2 1 t1

w2,AB(t1,t2) 5 4t2 1 2t1.

It is readily shown that the surplus-maximizing allocation is

(H1,H2) 5 5
(5A,B6,B),

(A,B),

(B,5A,B6),

if t1 . t2

if t1 , t2 , 2t1

if t2 . 2t1.

From (58) and (59) truthful bidding for buyer 1 with signal value t1

consists of setting

W2 5 5(w2,A,w2,B,w2,AB) 0there exists t82 such that

(w2,A,w2,B,w2,AB) 5 (2t82 1 1⁄2t1,2t82 1 t1,4t82 1 2t1)6

and, for all (w2,A,w2,B,w2,AB) [ W2,

b1,A(w2,A,w2,B,w2,AB) 5 3t1 1 w2,A 2 1⁄2w2,B

b1,B(w2,A,w2,B,w2,AB) 5 2t1

and

b1,AB(w2,A,w2,B,w2,AB) 5 5t1 1 2w2,A 2 1⁄2w2,AB.

Similarly, truthful bidding for buyer 2 with signal value t2

amounts to taking W1 5 5(w1,A,w1,B,w1,AB) 0there exists t81 such that
(w1,A,w1,B,w1,AB) 5 (t2 1 3t81,2t81,2t2 1 5t81)6 and, for all (w1,A,w1,B,
w1,AB) [ W1,

b2,A(w1,A,w1,B,w1,AB) 5 2t2 1 w1,A 2 1⁄2w1,AB

b2,B(w1,A,w1,B,w1,AB) 5 2t2 1 1⁄2w1,B

b2,AB(w1,A,w1,B,w1,AB) 5 4t2 1 w1,B.

Suppose that (t1,t2) 5 (3,2). Then truthful bidding gives rise to the
(unique) fixed point:

(w°1,A,w°1,B,w°1,AB,w°2,A,w°2,B,w°2,AB) 5 (11,6,19,51⁄2,7,14).

Notice that (H°1,H°2) 5 (5A,B6,B) solves

max
(H1,H2)

w°1,H1
1 w°2,H2

,

which is the efficient allocation. Now, if we reduce buyer 1’s
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valuations from (11,6,19) to

(w1,A
1 ,w1,B

1 ,w1,AB
1 ) 5 (8,4,14),

then we are on the boundary between (H°1,H°2) 5 (5A,B6,B) and

(H 1
1,H 2

1) 5 (A,B)

being the surplus-maximizing allocations, i.e., both allocations
solve

max
(H1,H2)

w1,H1

1 1 b2,H2
(8,4,14).

If we reduce buyer 1’s valuations further to

(w1,A
2 ,w1,B

2 ,w1,AB
2 ) 5 (5,2,9),

then we are on the boundary between (H1
1,H2

1) 5 (A,B) and (H1
2,H2

2) 5
(B,5A,B6) being the surplus-maximizing allocations. That is, both
allocations solve

max
(H1,H2)

w1,H1

2 1 b2,H2
(5,2,9).

Hence, in the truthful equilibrium, buyer 1 pays

b2,H2
1(8,4,14) 2 b2,H°2

(8,4,14) 1 b2,H2
2 (5,2,9) 2 b2,H2

1(5,2,9)

5 6 2 0 1 10 2 5 5 11.

And so buyer 1’s equilibrium net payoff is

w1,AB(3,2) 2 11 5 8.

Because this is positive, buyer 1 is better off bidding truthfully
than bidding in a way such that he is allocated no goods. If instead
buyer 1 behaves in such a way that he is allocated only good A, his
net payoff is

w1,A(3,2) 2 5 5 6.

Thus, buyer 1 is indeed best off bidding truthfully.

UNIVERSITY OF CAMBRIDGE

HARVARD UNIVERSITY
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