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ABSTRACT

Clustering is commonly used for analyzing gene expres-
sion data. Despite their successes, clustering methods
suffer from a number of limitations. First, these methods
reveal similarities that exist over all of the measurements,
while obscuring relationships that exist over only a subset
of the data. Second, clustering methods cannot readily
incorporate additional types of information, such as clinical
data or known attributes of genes. To circumvent these
shortcomings, we propose the use of a single coherent
probabilistic model, that encompasses much of the rich
structure in the genomic expression data, while incor-
porating additional information such as experiment type,
putative binding sites, or functional information. We show
how this model can be learned from the data, allowing
us to discover patterns in the data and dependencies
between the gene expression patterns and additional
attributes. The learned model reveals context-specific
relationships, that exist only over a subset of the ex-
periments in the dataset. We demonstrate the power of
our approach on synthetic data and on two real-world
gene expression data sets for yeast. For example, we
demonstrate a novel functionality that falls naturally out
of our framework: predicting the “cluster” of the array
resulting from a gene mutation based only on the gene’s
expression pattern in the context of other mutations.
Contact: eran@cs.stanford.edu

INTRODUCTION

A centralgoal of molecularbiology is to understandhe
regulatory mechanismshat govern protein actity. One
of the main mechanism®f regulationcontrolsthe rate of
MRNA transcriptionof differentgenesDNA microarrays
provide atool for measuringhe alundanceof thousands
of mRNA transcripts simultaneously This technology
facilitatesthe characterizatiomf every genes expression
in responseto mary different types of experimental
conditions, generatingenormousamounts of comple
data,e.g., (Spellmanet al., 1998; Gaschet al., 2000). A
key challengeis the developmentof methodologieghat

areboth statisticallysoundand computationallytractable
for inferring biologicalinsightsfrom theselarge datasets.

The most commonly used computationalmethod for
analyzinggenomicexpressiordatais clusteringa process
whichidentifiesclustersof genesand/orarrayexperiments
that sharesimilar expressionpatterns(e.g., (Alon et al.,
1999;Ben-Doretal.,1999;Eisenetal., 1998)).Geneghat
aresimilarly expresseareoftencoreggulatedandinvolved
in the same cellular processes.Therefore, clustering
suggestsunctionalrelationshipdetweerclusteredyenes,
and helps in identifying promoter sequenceelements
that are sharedamong them (Spellmanet al., 1998).
Clustersof experimentscanimply relationshipsbetween
thoseexperimentakonditions,implying similaritiesin the
cellular responsesriggeredby thoseconditions(Hughes
etal., 2000).

Despitetheir successeslusteringmethodssuffer from
a number of limitations. First, these methods reveal
similaritiesthat exist over all of the measurementsyhile
obscuringrelationshipsthat exist over only a subsetof
the data.Secondalthoughclusteringidentifiesgeneshat
aresimilar in expressionthey cannotreadily incorporate
additionaltypes of information, suchas clinical dataor
experimentaldetails. (See(Barashand Friedman,2001;
Holmesand Bruno, 2000) for someinitial work on this
topic.) In this paper we proposethe use of a single
coherent probabilistic model, that encompassesnuch
of the rich structurein the genomic expressiondata,
while incorporatingadditionalinformation to aid in the
predictions.We shav how this model can be learned
from the data,allowing usto discover patternsn the data
andto elucidatethe interdependenciesetweenthe gene
expressiorpatternsandadditionalattributes.

Our approachs basedon the languageof probabilistic
relational models (PRMs) (Koller and Pfeffer, 1998;
Friedmaretal., 1999)thatextendBayesiametworksto a
relational setting,wherewe have multiple interdependent
objects(suchasgenesandarrays).PRMsovercomemary
of the limitations of clusteringmethodsThey allow usto
include multiple typesof informationto identify similar
objects. For example, identifying similarities between
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array experiments can be based on gene expression
patterns,experimentalor clinical data, the cell type or

strain used in the experiment, the cellular phenotype
triggeredby eachcondition,andmore.Whenidentifying

generelationshipspur approachcanusegeneexpression
data, sequenceelementspresentin the gene promoters,
functionalinformation,andmore.By incorporatingall the

availableinformationinto the analysismorerefinedgene
andexperimentclassificationg€anbeachieved.

A secondadwantageto our methodis that it presents
context-specificrelationshipsbetweenthe objects.Many
generelationshipsexist only over a subsetof the experi-
mentsin the datasetwhile similaritiesin the arrayexper
imentsmay be different over different subsetsf genes.
We describdearningproceduregrelatedo thatof (Barash
andFriedman2001))thatareableto determinewhich at-
tributesareinformative in which context. Our procedure
identifiesgroupingsof measurementhatcorrespondo a
subsetof both genesand experiments.Thus, unlike stan-
dard clusteringmethods,our approachdoesnot produce
indivisible clusterswhereall of theobjectsin aclusterare
assumedo behaethesamein all contexts.

To validate our method,we presenttwo casestudies
for the useof PRMs. In the first, we analyzethe Yeast
Stress dataof Gaschet al. (2000), which characterizes
the expressionpatternsof yeast genesunder different
experimentalconditions.Our modelidentifiesgroupings
basedon similaritiesin geneexpressionthe presenceof
known transcriptionfactor (TF) binding siteswithin the
genepromoters,andfunctionalannotationof genesOur
approachidentifies expectedgene clusters,that display
similargeneexpressiorpatternsandareknown to function
in the samemetabolicprocesse€ven moreinterestings
the discovery of new groupingsof genesbasedboth on
expressiorevel andon possibleTF bindingsites.

In the secondcasestudy we usethe Yeast Compendium
dataof Hughesetal. (2000),which obseredthegenomic
expressiomprogramdriggeredby specificgenemutations.
The goal of theseexperimentsis to assignhypothetical
functions to uncharacterizedyenes,by comparing the
genomicexpressionprogramtriggeredby their deletion
to known expressionprograms.This data allows us to
exhibit a very different capability of our approachWe
learna modelbasedon the genomicexpressiorprograms
triggeredby different genemutations.We then use our
modelto predictthe clusterthat would be assignedo a
mutationfor whichwe donothavethearraydata.Thistask
is a novel one, that falls naturally within our framewnork
but not within thatof otherapproaches.

PROBABILISTIC MODELS OF GENE
EXPRESSION DATA

Considera setof measurement®r a setGene of genes
acrossa setArray of microarraysreportingthe measured
expressior(or its logarithm)m, , for eachgeneg € Gene
and array a € Array. Regularities in the expression
dataoftencorrespondo importantbiologicalphenomena.
ClusteringmethodsareoneapproacHor discoveringsuch
regularities, providing biological insight by identifying
groupsof genesand/orarraysthat are similar in some
sense.A two-sided clustering (Lazzeroniand Owen,
1999; Hofmann et al., 1999) partitions the set Gene to
gene clustes G,...,G,, and the set Array to array
clustes A,,..., A;. This clustering“models” the data
by assumingthat all genesin the samecluster behae
similarly, and that all arraysin the sameclusterbehae
similarly. More precisely the modelassertghat, for gene
g € G, andarraya € A;, the expressionlevel m, , is
governedby a distribution specificto the combinationof
clusterG; andcluster A;. For example,this distribution
mightbeaGaussiamith meary; ; andvariances? ;. This
type of clusteringprovidesavery compactsummarization
of thedatain termsof ak x [ matrix of groupings where
eachgrouping containsthe measurementsorresponding
to a clusterof genesanda clusterof arrays.The model
explainsdifference®of expressiorbetweergroupingsand
treatsdifferencesetweenthe measurements the same
groupingas “noise’ A good clustering— one which is
predictve — would be one in which the varianceso?
aresmall, implying that mostof the dlfferencesbetween
expressiomeasurement@reexplainedby themodel,and
notattributedto noise.

Two-sidedclusteringis a promising model. However,
it is very limited in its ability to take adwantage of
additional available information. For genes,we might
have annotationsuchasfunctionalrole, cellularlocation
or the TF binding sites in a genes promoter region.
For arrays,we might have the treatmentappliedto the
sample,the growth conditions,the strain of yeastused,
etc. In the Compendium data set (Hugheset al., 2000),
eacharray correspondgo an experimentwith a mutated
yeaststrain,whereoneor moregeneswvereknocked out;
here,the attributesof the knocked out genecan provide
information about the array Theseattributes might be
very informative aboutthe expressionevel, andwe want
to allow modelswherethe expressionlevel dependson
their values.However, we do not simply want to define
a separatalistribution for eachcombinationof geneand
array attributes: the number of resulting distributions
would be enormousandwe would not have enoughdata
to estimatetheir parametersRather we wantto consider
modelswhereonly someattributeshave a directinfluence
on the expressionlevels. Moreover, we want to discover
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whicharethesignificantattributesby learninga predictive
modelfrom the data.

Probabilistic Relational Models. Probabilistic rela-
tional modelgPRMs)(Koller andPfeffer, 1998;Friedman
etal., 1999)provide a formal framework for representing
the type of dependenciesve describedabore. A PRM
providesa probabilisticmodel over a relational schema
A schemaspecifiesthe classesof objectsthat appear
in our data, and the attributes of eachclass.In gene
expressiondata, we typically have three classes:Gene,
Array, and Exp, which corresponddo the measurement
of the expressionof a specificgenein a particulararray
EachclassX is associatedvith a setof attributes.A(X).
Attribute A of class X is denotedX.A. For example,
if we have an annotationof genesaccordingto several
functional categyories, the classGene might have several
binary attributes such as AAM, representing“Amino
Acid Metabolism”. The Exp classhasthe attribute Level
that denoteshe measuredxpressionlevel. In clustering
models,we also introducelatent (hidden) variablesthat
representhe division into clusters.Thus,whenmodeling
two-sided clustering, the class Gene would also have
the attribute GCluster that denotesthe clusterthe gene
belongsto; if we have k gene clusters,the attribute
GCluster would take on the valuesl,..., k. The class
Array hasa correspondingttribute ACluster.

The schemadescribesthe type of objectswe might
encounter;the set of actual objects varies from one
situationto another For example,in one casewe might
have a particular set of 4,000 genes,100 arrays,and
400,000 measurementsn anothercase,we might have
16,000 genes,20 arrays, and 30,000 measurements
(somearrayswerepartial).In arny suchparticularcasewe
needto specifythe setof objectswe dealwith. A skeleton
o specifieghe setof objects.In our example the skeleton
specifiesthe set of genesO?(Gene), the set of arrays
O° (Array), andthe setof measurement®” (Exps).

Note that the objectsin our domain are related to
eachother A particularmeasuremer{e.g.,M1237) would
correspondo a particulargenethat was measurede.g.,
G12) andto a particulararray (e.g., A37) in which the
measuremenivas performed.We userefelenceslots to
refer to related objects. Thus, M1237.0f-Generefersto
G12 andM1237.In-Array refersto A37. A skeletonhasto
specify the valuesof thesereferencedor eachobject.In
our example,the skeletonspecifiesthe value of the slots
m.Of-Geneandm.In-Array (i.e., which geneis measured
andin which array).

The values of the attributes of the objects are not
specifiedn theskeleton Wetreattheseunknowvn valuesas
randomvariables Formally, a skeletono definesa setof
(random)variablespnevariablez. A for eachobjectz and
eachattribute A in the object’s class.For example,if G12

is anobjectin O°(Gene), thenwe have arandomvariable
G12.GClusterthatdenotegheclusterof thegeneG12. We

wantto specifyasinglejoint distribution overthevaluesof

all of thesevariablesHowever, we wantthis descriptiorto

applyto ary skeletonwe might obsene. Thus,we specify
a “template” probabilisticmodel over classef objects,
which can then be instantiatedfor all of the objectsin

theclass.A PRMII consistsof a qualitatve dependeng
structure,S, and the parametersassociatedvith it, 8s.

The dependeng structureis definedby associatingwvith

eachattribute X. A asetof parentsPa(X.A). Theparents
of X.A specify the attributes that influenceit directly,

i.e., the attributeswhosevaluesdeterminghe distribution

from which it is sampled.Each parenthasthe form of

either X.B or X.R.B whereR is areferencedo arelated
object. For example, in a simple two-sided clustering
model, the attribute Exp.Level might have the parents
Exp.Of-GeneGCluster and Exp.In-Array.ACluster This

modelindicatesthatthe distribution from which the value
of m.Level is selectedis different for different values
of ¢g.GCluster and a.ACluster where g and a are the
particular geneandarraythatarerelatedto theparticular

measuementmn.

The parameter®f the PRM specify the parametersof
eachof thesedistributions. Thus,for eachattribute X. A,
theparameterglescribea conditionalprobability distribu-
tion (CPD),which specifieghe probability of X.A, given
ary possibleinstantiationof valuesto its parentsln our
simple model above, we would have a distribution over
Exp.Level for eachof the £ x [ assignmentsf valuesto
Exp.Of-GeneGClusterandExp.In-Array.ACluster As we
discusshelow, we have freedomto determinethe form of
this parameterization.

For ary skeleton,a PRM inducesa Bayesiannetwork
over all of the variables defined by a skeleton. The
parentsof each variable in the network are specified
by the PRM dependeng structure S and the skele-
ton. Each variable is associatedwith a conditional
probability distribution, which is copiedfrom the class-
level CPD. Continuing our example, the parents of
M1237.Level would be G12.GCluster and A37.ACluster,
and its CPD would be a copy of P(Exp.Level |
Exp.Of-GeneGCluster Exp.In-Array.ACluster). The
semanticsof this network is defined as usual. Letting
Y1, ..., Yy bethesetof variablesthejoint distributionis

definedasP(Y3, ..., Yy) = [Ir, P(Y; | Pa(Y;)).

Context-Specific Models. The language of PRMs
allows us to introduce gene and array attributes into
the model, thereby allowing us to extend substantially
the simple two-sidedclusteringmodel discussedabore.
More specifically we can model the dependeng of
Exp.Level on the geneand array attributes. At the level
of the PRM structure,we can model a dependencef
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Fig. 1. (@) PRM modelfor Compendium dataset;(b) Part of thetreeCPDin themodel.

the expressionlevel on whether the associatedgene
has the function Amino Acid Metabolism, by adding

Exp.Of-GeneAAM as a parentof Exp.Level. In general,
we would expect the Exp.Level to dependon several

of these attributes, e.g., biochemical functions, cel-

lular locations, etc. If we have n of these attributes
Ay, ..., A,, andeachof themcaninfluencethe expres-
sionlevel, theresultingmodelwill requirethatwe specify

a CPD P(Exp.Level | Exp.Of-GeneGCluster Exp.In-

Array.ACluster, Exp.Of-GeneAy, . . ., Exp.Of-GeneA4,,).

A naive representatioof this CPDrequiresthatwe spec-
ify 2" - k - [ distributions, which is clearly unrealistic
even for small valuesof n. Beyond the computational
consequencedf this explosion, this naive representation
alsohidesimportantpatternsthat might be presenin the

data. For example, consideragain the AAM function.

We might expectthat genesof this function will behae

differently in arrayswherethis metabolismis very active

(e.g.,duringrapid growth), or depressede.g.,duringcell

arrest).In other conditions,this distinction s irrelevant.

Thus, although we consider the functional cateyory

Exp.Of-GeneAAM as informative about the expression
values, it is relevant only when Exp.In-Array.ACluster
has specificvalues.In other words, we want the distri-

bution over Exp.Level to be different for the different
values of Exp.Of-GeneAAM only for certain values of

Exp.In-Array.ACluster.

A naturalrepresentationf this type of interactionis us-
ing tree-structuredPDs,similar to decisiontrees(Fried-
manandGoldszmidt,1998).Formally, A CPD-treerepre-
sentationof a CPD for an attribute X.A is arootedtree;
eachnodein thetreeis eithera leaf or aninterior node
Eachinteriornodeis labeledwith atestof theformY.B =
v, whereY. B is aparentof X.A andv is oneof its values.
Eachof thesenodeshastwo outgoingarcsto its children,
correspondindo the outcomesof the test(true or false).
For example,we might representhe CPD of Exp.Level
usingthetreeshown in Figure1(b).

Each leaf node correspondsto a unique path from
the root. The nodeson the path correspondo tests,and

the arcsto their outcomes.This sequencehus defines
the event induced by the leaf — the conjunction (i.e.,
intersection)of the events defined by the arcsin the
sequencelor example.the left-mostleaf of Figure 1(b)
correspondso the event“m.Of-GeneGCluster= 0 and
m.Of-Array.Mutant GCluster# 3 andm.Of-GeneHSF <
2”. We denoteby Leave$X.A) the setof leavesin the
CPD-treefor X.A. If £ is the index of a leaf, we use
the notation Lx 4 = £ as a shorthandfor the event
that correspondo the leaf £. Eachleaf is labeledwith a
distribution over the valuesof X.A, representingart of
its CPD— thedistribution P(X.A | Lx 4 = £).

Eachleafin the CPD-treeof Exp.Level correspondso a
groupingof expressiormeasurementhatareconsidered
to be sampledfrom the same distribution. Note that
each such grouping is a “rectangle” in the expression
matrix: a cross-produciof a set of genesand a set of
arrays. However, unlike the groupingsdefinedin two-
sidedclustering,thesegroupingsdo not typically define
auniform grid overthe expressiormatrix.

LEARNING THE MODELS

Ourgoalis to learnaPRM modelfrom data.Theinputto

the learningalgorithmis a skeletono, anda (potentially
partial) assignmenbf valuesto the randomvariablesit

definesIn our example,the datasetwill consistof: a set
of expressiorievel measurementgporrespondingo some
setof genesandsomesetof arrays,andtypically a setof

attributesfor the genesand for the arrays.Note that the
clustervariablesfor genesand arraysare not part of the
data.Thelearningtaskcanbe decomposethto two parts:
parameterestimation— estimatingthe parametergor a
model whosestructureis given, and modelselection—

choosingamongthe setof possiblestructures.

Parameter Estimation. Considerthe taskof estimating
parametergor a model wherewe have fixed the depen-
deny structureS that specifiesthe parentsof eachat-
tribute,andthetreestructurefor eachCPD.Ourgoalis to
estimatehemodelparameter§ s: thedistributionateach
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leaf. Most simply, we can estimateparameterdy using
maximumiikelihood estimate We definethelikelihood of

a particularsetof parameter#s asthe probability of the
trainingdataZ giventhe model(S, @s). This probability
is definedaccordingto the PRM semanticsasthe proba-
bility of theattribute valuesin Z in the Bayesiametwork

definedby its skeleton.Themaximumlik elihoodparame-
tersarethe @ s thatmaximizethelik elihood!

When the valuesof all attributes are fully obsened,
the maximum likelihood parameterestimationreduces
a maximum likelihood estimationof eachthe separate
P(X.A | Lx 4o = ¢) attheleavesof the differentCPD-
trees.The natureof this estimationtask dependson the
type of attribute. If the attribute is discretevalued, we
estimatea multinomial distribution. If it is a continuous
valued attribute, we estimatea Gaussiandistribution.
Both estimationtasksare standardandrely on suficient
statisticsthat summarizethe data. For example,in the
caseof multinomialdistributions,thesearejustthe counts
Cx.a[v, 4], specifyingthe numberof objectsz € O%(X)
for which we obsenre the combinationz.A = v and
L, o = /. In the caseof Gaussiandistributions, these
sufficient statistics are the mean and variance of the
objectsin whichtheleaf! is relevant.

Structure Learning. We now consider the task of
selectingamongthe mary possiblemodels,where each
of the possiblemodels specifiesthe set of parentsfor
eachattribute, and the structureof the CPD-treesThere
are two issuesthat needto be addressedn this setting:
the scoring function usedto evaluatethe “goodness”of
differentcandidatestructuregelative to the data,andthe
seach algorithmfor finding a structurewith a high score.
We discusseachof thesein turn.

We follow Friedmanet al. (1999) and use Bayesian
model selectionmethodsto score candidatestructures.
The Bayesianscore of a structureS is definedas the
posterior probability of the structuregiventhe dataZ —
P(S | Z,0). Using Bayesrule, and making a standard
assumptiorthatthe differentstructuresare equallylik ely
a priori, the scorereducesto P(Z | S, o). This term
evaluateghefit of the modelto the databy averagingthe
likelihood of the dataover all possibleparameterizations
of the model. This averagingregularizesthe scoreand
avoids overfitting the datawith complex models.When
thetrainingdatais fully obsened,the Bayesiarscorehas
a simpleanalyticform (Friedmanet al., 1999; Friedman
and Goldszmidt,1998; Heckerman,1998), as a function
of the sufficient statisticsof thatmodel.

Having definedametricfor evaluatingdifferentmodels,
we needto searchthe spaceof possiblemodelsfor one

tIn practice the maximumlikelihoodcanbenoisyin leavesthatcorrespond
to rareevents.To reduceparameterariance we usea Bayesianmethodto
smooththeestimate.

that has high score. As is standardin both Bayesian
network andPRM learning(Heckerman,1998; Friedman
etal., 1999),we usea greedylocal searchprocedurehat
maintainsa “current” candidatestructureand iteratively
modifiesit to increasethe score.At eachiteration, we
considera set of simple local transformationsto the
currentstructure scoreall of them,andpick the onewith
highestscore.Our operatorsfollowing Chickering et al.
(1997), consideronly transformationgo the CPD-trees.
The tree structureinducesthe dependeng structure,as
the parentsof X.A aresimply thoseattributesthatappear
in its CPD-tree.The two operatorswe useare: split —
replacesa leaf in a CPT tree by an internal node with
two leafs;andtrim — replaceghe subtreeat an internal
nodeby a singleleaf. To avoid local maximaassociated
with the greedysearchprocedure,we use a variant of
simulatecannealingRatherthanalwaystakingthehighest
scoringmave in eachsearchstep,we take a randomstep
with someprobability, which decaysexponentiallyasthe
searctprogresses.

Incomplete Data. So far, we have assumedthat the
training dataZ specifiesthe valuesof all the attributes.
In mary situations, this assumptionis not warranted,;
in particular it is clearly false when we are learning
modelswith latentvariables suchasGene.GCluster that
are never obsened in the training data. Learning from
partially obseneddatais substantiallymoredifficult than
the fully obsenable case:the likelihood function has
multiple local maxima,and no generalmethodexists for
finding the global maximum.

The ExpectationMaximization (EM) algorithm is an
approachor parameteestimationwith incompletedata.
It is guaranteedo find alocal maximumof thelik elihood
function. The EM algorithm is an iteratve method.
Starting from an initial guessfor the parameters,it
repeatedlyperformstwo steps.n the E-step,it computes
the distribution over the unobsered variablesgiven the
obseneddataandthecurrentestimateof the parameterdt
useghisdistributionto “fill in” eachmissingattribute z.a
with a soft completionthat takesinto consideratiorhow
likely its differentvaluesare.In clusteringmodels,this
completioncorrespondso a soft assignmenbf objectsto
clustersln the M-step,it useshis completionasif it were
real, and reestimateshe parameteraising the standard
maximum likelihood estimationprocedure.The process
thenrepeatsusingthenew parametersyntil cornvergence.

To fill in the missingdatain the E-step,we needto run
inferenceovertheentireBayesiametwork inducedby the
PRM overtheobjectsin . In mary casesthesenetworks
are comple, and exact inferenceis intractable.Instead,
we usebelief propagation (Murphy andWeiss,1999),an
approximatdanferencealgorithmwhich hasrecentlybeen
showvn to be effective on awide rangeof models.




c.ocyal et al.

Table 1. Reconstructiomesultsfor syntheticdata

% parents Clusterrecaorery

recovered  Naive Bayes PRMs
SimulatedData 84.5+2.5 90.8+0.42 98.4+1.07
Noisy SimulatedData 56 + 2.5 76.7+1.42 88.14+1.52

For learning structurewith incomplete data, we use
a hard-assignmenvariant of structural EM (Friedman,
1998). We fill in missing attributes with their most
probablevalue, given the current model, and then run
structurelearningon the completeddata.Whenstructure
learning corverges,we remove the hypothesizedvalues
for theunobseredattributes,run EM to fit theparameters
of the learned structure, and then selecta new hard
assignmentfor the missing attributes. This processis
iterateduntil corvergence.

CASE STUDIES

We evaluatedour methodson threegeneexpressiondata
sets,one syntheticandtwo real. The resultson synthetic
datademonstrat¢hatour approachrecoversstructurethat
we know to bepresenin the data. Themodelsfor thereal
datasetsillustratethe wide applicability of our approach.

Synthetic data. We generateda synthetic data set by
samplingfrom a PRM model. To make the datarealistic,
we usedPRM modelslearnedfrom the Stress dataset.
These models are similar to the two-sided clustering
modelsdescribedabore. The main differenceis that we
take Array.AClusterto be the obsenedexperimenttype (1
of 12). The Gene.GClusterattributeis hidden,andtakes9
values We generatedlatafor 1000(imaginary)genesand
90 arrays,for atotal of 90,000measurement&achgene
wasaugmentedvith 15 functionannotationand30 TFs.
We evaluatedthe ability of our learning algorithm to
recoverthemodelusingtwo metrics.To robustly estimate
these,eachwas evaluatedusing 10-fold crossvalidation,
training on 90% of the data and (where applicable)
testing on the remaining 10%. The results are showvn
in Table 1. We first measuredhe extent to which the
structurelearnedis similar to the “true” structurein the
data.More specifically we sav how mary of theparentof
Exp.Level arerecoveredin the learnedmodel.Our results
indicate that our algorithm recovers the “true” structure
with very highaccurag. In asecondest,we measuredhe
extentto which we canrecover the original geneclusters
g.GCluster which were hiddenin the data.We learned
the model on the training data,and thentried to predict
the (nine-valued) cluster attribute in the test data. Our
reconstructionability for the clustersis extremely high,
and much higher than we could obtain by a standard

clusteringalgorithmusinga Naive Bayesmodelovergene
expressioralone.

To testtherobustnes®f our methodsye alsogenerated
anoisyversionof the samedataset: within eachcategory
of data — function annotations,TFs, and expression
levels — 20% of the entries were permuted among
themseles.We canseethat our ability to reconstructhe
structureis lower, but still quite good given the number
of possibleparentsOur ability to reconstructhe clusters
is still impressvely high, whereaghe simplenaive Bayes
clusteringdegradedmore substantially Thus our method
is robustevento alargeamountof noisein the data.

YeastStressdata. We now consideithedatasetof Gasch
et al. (2000), who characterizedhe genomicexpression
patterns of yeast genesin 12 different experimental
conditions. We selected954 genesthat had significant
changesn geneexpression(eliminating the ESR genes
for which clusteringis trivial), and the full set of 92
arrays.We supplementedhe raw geneexpressiondata
with additionalattributesfrom two otheryeastdatabases.
For every gene,we selected22 functional classesfrom
the MIPS databaséMeweset al., 1999),and usedthem
as binary attributesof genes.In addition, we introduced
attributes representinghe presenceof binding sites for
known TFs. We introducedone attribute for eachof 44
TFs,andgeneratedts valuefor eachgene— 0, 1, or > 2
— by scanningthe 1000bpupstreamof the genes ORF
usingthe Matlnspectoprogram(Quandtetal., 1995)and
countingthe numberof putatve sitesfor the TF.

We usedthe model discussedabove, with the classes
Gene, Array, and Exp. The Gene classincludeda latent
cluster variable, as well as the 66 attributes described
above. The Array classincludedan attribute Typewith 12
values,representinghe “type” of experimentperformed.
We usedthis attribute as an obsenred substitutefor the
AClusterattribute.

Our algorithmlearnedmary dependenciebetweerthe
expressiommeasurementshetype of the experiment.the
latentclustervariable thefunctionattributes,andthe TFs.
Before analyzingthe model, the first questionof interest
is whetherthe structurelearnedis indeedpresentin the
dataor perhapsour algorithmswould learndependencies
even when no structureis present.To testthat, we took
the real datasetand permutedall of it: annotationswith
annotations,TFs with TFs, and expressionlevels with
expressionevels(evenacrossexperimentypes).Wethen
testedthree models:model 1 — a PRM trained on the
original dataset;model2 — a PRM trainedon the noisy
data;model3 — a PRM with no dependenciesainedon
the noisy data.We thenevaluatedthe ability of the model
to generalizefrom the training data by evaluating the
log-likelihood of testdata.Over 10-fold crossvalidation,
we obtainedsubstantiadifferencesbetweenthe models:
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Fig. 2. (a) Summaryof representate genegroupingsin the Stress data.Eachgroupingcorrespondso a clusterof genesin the context
of a particularexperiment.The right panelshavs the averageexpressionprofile of the genesin the groupingin the contet of all of the
experimentsthe experimenttype is indicatedby the coloredtrianglesat the top of the figure. The particularexperimenttype in which the
groupingarisesis shavn on the left. The left panelshaws the functionalattributesassociateavith eachof the displayedgroupings.Each
box indicatesthe percentag®f eachgroupingthatdisplayedthatattribute. (Seehttp://cs.stanford.edwferans/ismb0lfor additionalcluster
data.)(b) Theexpressiorof genesn Grouping666in responseo stationaryphaseAll genedn this clustercontainedwo or morepotential

Miglp bindingsiteswithin their promoters.

—11729 £ 272 for model1, —14680 + 721 for model
2, and —14923 + 160 for model 3, indicating that our
model indeed explains the data significantly better We
alsoexaminedthe extentto whichthedependencieadded
in the learning algorithm are informative, in that they
causea substantiaimprovementto the Bayesianscore.
Indeed, the learning algorithm discovered 7 annotation
and15 TF parentswvhosescorein the modellearnedfrom
real datawas aroundtwice as high asthe bestscoreof
the dependenciekearnedfrom the perturbeddata.As our
modelsaremuchbetteratexplainingthedata thisstrongly
indicatesthat theseparentscorrespondo dependencies
thatareindeedimplied by the data.

Our secondexperimenttestswhetherour learningalgo-
rithm resultsin coherentclusters.To testthat, we com-
puteda weightedaverageof the variancesn eachof the
groupingsOverthethreestructure-modificatioiterations
of ouralgorithm,the averagegroupingvariancedecreased
substantiallyfrom 0.692 in theinitial modelto 0.614 in
the final model. We also experimentedwith a novel ap-
proachto incorporatingthe functionalannotationgecov-
eredfrom yeastdatabasego avoid restrictingtheaggreya-
tion basedn previousinterpretatiorof experimentabata,
we usethe functionalannotationsasa guidein theinitial
trainingof themodel;we thenremaove the obsenedvalues
of theseannotationsandretrainthe modelbasedonly on
thegeneexpressiorand TF bindingsitedata.This process
allows unannotatedjenesto be aggreyatedwith charac-
terizedgenessothatwe caninfer hypotheticalfunctions
for thoseuncharacterizedenes Overall, around20% of
the functional annotationswvere changedn this process,
mostly going from caseswherethe function waslabeled
as absentto caseswhereit was labeledas present.This
changds quitereasonableasthe MIPS databaseloesnot

distinguishbetweer‘'unknown” and“known to be false”.
Thesechangesalso led to a substantiaimprovementin
the averagegroupingvariance:from 0.692 to 0.565. Al-
thoughit is not clearwhetherthe new annotationsorre-
spondto the original meaningof the functions,it appears
thatthey do represena biologically predictive property

Figure2(a) shavs a summarydiagramof a representa-
tive setof groupingsconstructedy our model.For exam-
ple, Grouping652 consistsof 73 genesthataresimilarly
inducedduring the diauxic shift. A significantpercentage
of genesin this groupingare annotatedasfunctioningin
respiratioror transporandlocalizingto the mitochondria,
cytoplasmandendoplasmiceticulum(ER). Inspectiorof
the genesin this grouping confirmsthat mary of these
genesareinvolvedin the TCA metaboliccycle, oxidative
phosphorylationand ATP synthesis(respiration),trans-
port of sugarsand amino acids, and other relatedfunc-
tions. Thus, the attributes associatedvith this grouping
paint a picture of the physiologicalresponseduring sta-
tionary phasewhenthe glucosein the cells mediumbe-
comeslimiting, transportersre secretedhroughthe ER
to the plasmamembranewherethey import sugarsand
aminoacidsto supplythe TCA cycle,which promoteges-
piration in the mitochondria.The algorithm also assigns
15uncharacterizedenedo this grouping,suggestindghat
thesegenesarelikely to play asimilarrolein thecell.

The algorithm also identified groupingsof genesthat
wererelatedby the presenceof known transcriptionfac-
tor binding sitesin the their promoters. Most interesting
is Grouping 666 identified in iteration 1, shavn in Fig-
ure 2(b). This groupingis over a setof 17 genesnvolved
in sugarmetabolisnthat eachcontaintwo or more bind-
ing sitesfor theMig1 repressamMiglp repressegenesn-
volvedin alternatve sugamrmetabolismwhenexternalglu-
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Fig. 3. Predictingthe array (mutation)clusterwithout observingits
expressiordatain the Compendium data.

coselevelsarehigh, but therepressobecomesleactvated
whenglucosebecomedimiting during the diauxic shift,
leadingto the increasedexpressionof its tamgets. All of
the genesn the groupingare substantiallyinducedat the
diauxicshift. Includedin this groupingis the SUC2gene,
awell known targetof Miglp, aswell asgenesnvolvedin
glucoseandmaltosemetabolism(e.g.,MAL31), cell wall
proteins(e.g.,ECM13),andanumberof genesnvolvedin
otheraspectof carbonmetabolismTheseproteinswere
not previously known to be regulatedby Mig1p, however
the presenceof the Miglp binding site in their promot-
ers,alongwith the similaritiesin their biochemicalfunc-
tions andgeneexpressiorpatternssuggestshatthey are
alsoregulatedby Miglp derepressionWe note that the
contet-sensitie natureof our groupingsplayedanimpor-
tantrole in identifying this cluster Many of the genesin
this groupingwerealsopresenin themuchlarger Group-
ing 652,whichrepresentedeneghatwererelatedin gene
expressionand functional annotationbut not necessarily
sharingthe Miglp promoterelement.A traditional clus-
teringalgorithmthatdoesnotallow genedo participatein
multiple groupingsmaynothave beenableto isolatethese
two clustersandwould not have revealedthis new cluster
of Miglp-regulatedgenes.

Yeast Compendium Data. The Compendium data
set(Hugheset al., 2000)is very differentin naturethan
the Stress data. The goal of the experimentswas to
assigrhypotheticafunctionsto uncharacterizegeneshy
comparingthe expressiorpatterntriggeredby deletionof
thesecharacterizedenesWe selectecb28genesand207
arrays,focusingon genesand mutationsthat had some
functionalannotationsn the MIPS database.

Herewe canexploit muchmoreof the expressve power
of PRMs.In this model,the Gene classhasthe sameset
of attributesasin the Stress data set above. The Array
classhasan attribute ACluster, representinga cluster of
the array (mutation).Most interestingly we introduceda
referenceslot— Array.Mutation (indicatedin Figure1(a)
by thethick dashedine connectinghe geneobjectto the

arrayobject)— which refersto the objectfor the mutated
geneusedto generatéhe array

The explicit relationshipbetweenthe array objectand
the associatednutatedgene,andthe dependenciethat it
permits,allow usto performa taskwhich is outsidethe
scopeof otherapproacheredictingthearray(mutation)
cluster of an array without performing the experiment!
The basicinsight is that mutationsthat clustertogether
tendto inducesimilar effectson the genomicexpression
patternwhenthey are mutatedbecausehey areinvolved
in similar functional processesThis insight suggestghe
following type of inference:For a given gene,we can
infer the gene cluster to which it belongs, and then
predict which mutation cluster if would fall into if it
wereto be mutated,basedon teh obsened correlations
betweenthe gene clustersand mutationsclusters. We
tried out this hypothesidy hiding 20 of themutantarrays
in the data, and training the model on the remaining
ones.We thentried to predictthe mutationclusterof the
20 hidden arrays, basedonly on our knowledge about
the gene that was mutated. We comparedthis to the
clusterwe would have placedthe array in after seeing
its expressionpattern. We repeatedhis experimentten
times, for differentchoicesof the 20 held-outarrays.A
graphof the resultsis displayedin Figure 3. For each
prediction, the algorithm outputsa confidencemeasure
— the probability that the unobsered array is assigned
to the most probablecluster For eachsuch confidence
level, we graphthe percenbf thearraysatthatconfidence
level (or higher), and the accuray of the prediction if
we consideronly thosearraysat this confidencelevel.
We can seethat approximately22% of the arrays(or 44
arrays)are predictedwith 95% accuray. Thus, thereis
a significantnumberof genesfor which we canpredict,
with high accurag, the mutation clusterto which they
belong, without conductingthe experimentof mutating
them. This allows us to predict hypotheticalfunctional
informationfor thesegenesMoreover, our approachells
us which are the arraysfor which we canmake a high-
confidenceprediction.We note that the relationalnature
of our approachis critical to our ability to perform
this prediction;a model where we disalloved the direct
dependengof thearrayclusteronthecorrespondingene
clusterdid not exhibit significantpredictive power.

DISCUSSION

We have provideda methodfor analyzinggeneexpression
databasedon probabilisticgraphicalmodels.Our models
areveryrichly structuredallowing usto integratemultiple
typesof data.In a sensethey provide a midpointon the
spectrumbetweentwo extremes:fine-grainedBayesian
network modelsof geneexpressionpathways (Friedman
etal.,2000;Harteminketal.,2001;Pe’eretal.,2001),and
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themorestandardcoarse-grainedlusteringapproaches.
Unlike standardclustering,our approachcan identify
genesthat are similar over multiple types of data, in-
cluding functional attributes and transcription factors,
providing more refined groupings than those derived
from geneexpressionalone. However, our algorithmis
flexible in its useof functionalannotationsallowing the
functional annotationsto be modified to better predict
the data. This flexibility allows uncharacterizedyenes
that lack annotationsto be associatedwith genes of
known function, thereby suggestingdetails about their
biochemicalfunction and cellular role. Finally, as our
algorithmpresentgroupingsin termsthatdirectly relate
to function attributes, it provides a summary of the
physiological responseof the cell, and suggestshow
genesof different biochemicalfunction or localization
can act togetherto sene the samecellular role. Unlike
traditional clustering methods,our approachgenerates
contet-specificgroupingsjn which genescanbe present
in more than one grouping, thereby revealing multiple
generelationships As we have seen,this capability can
identify groupingsamonggeneghatplay multiple roles.
The expressve power of our framework opensthe door
to mary exciting directions.For example,we caninclude
potential promotersequencess objects,and not merely
asfully obsened attributes. This will allow us not only
to identify genesthat sharea given promotersequence,

but also perhapsto identify new regulatory sequences.

Our approactalsoallows usto incorporatevery rich data
into the model,including phenotypicainformation (e.g.,
aboutthe clinical attributesof patients)tissuetype, and
more.We planto explorethecapabilitiesof ourframework
on richer data setsinvolving this type of information,
with the goalof automaticallycorrelatingphenotypelata,
sequencelata,andgeneexpressiordata.
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