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ABSTRACT

We present a probabilistic framework that models the process by
which transcriptional binding explains the mRNA expression of
different genes. Our joint probabilistic model unifies the two key
components of this process: the prediction of gene regulation events
from sequence motifs in the gene’s promoter region, and the pre-
diction of mRNA expression from combinations of gene regulation
events in different settings. Our approach has several advantages.
By learning promoter sequence motifs that are directly predictive
of expression data, it can improve the identification of binding site
patterns. It is also able to identify combinatorial regulation via
interactions of different transcription factors. Finally, the general
framework allows us to integrate additional data sources, including
data from the recent binding localization assays. We demonstrate
our approach on the cell cycle data of Spellman et al., combined
with the binding localization information of Simon et al. We show
that the learned model predicts expression from sequence, and that
it identifies coherent co-regulated groups with significant transcrip-
tion factor motifs. It also provides valuable biological insight into
the domain via these co-regulated “modules” and the combinatorial
regulation effects that govern their behavior.

1. Introduction

A central goal of molecular biology is the discovery of the reg-
ulatory mechanisms governing the expression of genes in the cell.
The expression of a gene is controlled by many mechanisms. A key
junction in these mechanisms is mRNA transcription regulation by
various proteins, known as transcription factors (TFs), that bind to
specific sites in the promoter region of a gene and activate or in-
hibit transcription. Loosely speaking, we can view the promoter
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region as an encoding of a “program,” whose “execution” leads to
the expression of different genes at different points in time and in
different situations. To a first-order approximation, this “program”
is encoded by the presence or absence of TF binding sites within
the promoter. In this paper, we attempt to construct a unified model
that relates the promoter sequence to the expression of genes, as
measured by DNA microarrays.

There have been several attempts to relate promoter sequence
data and expression data. Broadly, these can be classified as being
of one of two types. Approaches of the first and more common type
use gene expression measurements to define groups of genes that
are potentially co-regulated. They then attempt to identify regula-
tory elements by searching for commonality (e.g., a commonly oc-
curring motif) in the promoter regions of the genes in the group (see
for example [5, 21, 26, 29, 31]). Approaches of the second type
work in the opposite direction. These approaches first reduce the
sequence data into some predefined features of the gene, e.g., the
presence or absence of various potential TF binding sites (using ei-
ther an exhaustive approach, say, all DNA-words of length 6-7, or a
knowledge-based approach, say, all TRANSFAC [32] sites). They
then try and exploit these features as well as the expression dataina
combined way. Some build models that characterize the expression
profiles of groups or clusters of genes (e.g., [3, 27, 7]). Others at-
tempt to identify combinatorial interactions of transcription factors
by scoring expression profiles of groups of genes having a combi-
nation of the identified motifs [24].

Unlike the approaches described above, our aim is to build a
unified model that spans the entire process, from the raw promoter
sequence to the observed genomic expression data. We provide a
unified probabilistic framework, that models both parts of the pro-
cess in a single framework. Our model is oriented around a set
of variables that define, for each gene g and transcription factor ¢,
whether ¢ regulates g by binding to g’s promoter sequence. These
variables are hidden, and a key part of our learning algorithm is
to induce their values from the data. The model then contains two
components. The first is a model that predicts, based on g’s pro-
moter sequence, whether ¢ regulates g (or more precisely, when ¢
is active, whether it can regulate g). The second predicts, based on
the regulation events for a particular gene g, its expression profile
in different settings.

A key property of our approach is that these two components
are part of a single model, and are trained together, to achieve max-
imum predictiveness. Our algorithm thereby simultaneously dis-



covers motifs that are predictive of gene expression, and discovers
clusters of genes whose behavior is well-explained by putative reg-
ulation events.

Both components of our model have significant advantages over
other comparable approaches. The component that predicts regu-
lation from the promoter sequence uses a novel discriminative ap-
proach, that avoids many of the problems associated with model-
ing of the background sequence distribution. More importantly, the
component that predicts mRNA expression from regulation learns a

model that identifies combinatorial interactions of regulation events.

In yeast cell-cycle data, for example, we might learn that, in the G1
phase of the cell cycle, genes that are regulated by Swi6 and Swi4
but not by Mcm1 are over-expressed.

Finally, our use of a general-purpose probabilistic framework
allows us to integrate other sources of information into the same
unified model. Of particular interest are the recent experimental
assays for localizing binding sites of transcription factors [25, 28].
These attempt to detect directly to which promoter regions a par-
ticular TF protein binds in vivo. We show how the data from these
assays can be integrated seamlessly and coherently into our model,
allowing us to tie a specific transcription factor with a common mo-
tif in the promoter regions to which it binds.

We demonstrate our results in analysis of yeast cell cycle. We
combine the known genomic yeast sequence [8], microarray ex-
pression data of Spellman et al. [30], and the TF binding local-
ization data for 9 transcription factors that are involved in cell-
cycle regulation of Simon et al. [28]. We show that our framework
discovers overlapping sets of genes that strongly appear to be co-
regulated, both their manifestation in the gene expression data and
in the existence of highly significant motifs in their promoter re-
gion. We also show that this unified model can predict expression
directly from promoter sequence. Finally, we present how our al-
gorithm also provides valuable biological insight into the domain,
including cyclic behavior of the different regulatory elements, and
some interesting combinatorial interactions between them.

2. Model Overview

In this section, we give a high-level description of our unified
probabilistic model. In the subsequent sections, we elaborate on
the details of its different components, and discuss how the model
can be trained as a single unified whole to maximize its ability to
predict expression as a function of promoter sequence.

Our model is based on the language of probabilistic relational
models (PRMs) [20, 12]. For lack of space, we do not review the
general PRM framework, but focus on the details of the model,
which follows the application of PRMs to gene expression by Se-
gal et al. [27]. A simplified version of our model is presented in
Fig. 1(a). We now describe each element of the model.

The PRM framework represents the domain in terms of the dif-
ferent interacting biological entities. In particular, we have an ob-
ject for every gene g. Each gene object is associated with several
attributes that characterize it. Most simply, each gene has attributes
g.S1,...,9.Sn that represent the base pairs in its hypothesized
promoter sequence. For example, we might have g.S1 = A. More
interestingly, for every transcription factor (TF) ¢, a gene has a reg-
ulation variable R(t), whose value is true if ¢ binds somewhere
within g’s promoter region, indicating regulation (of some type) of
g by t. The regulation variables depend directly on the gene’s pro-
moter sequence, with each TF having its own model, as described
in Section 3.1. Note that the regulation variables are hidden in the
data; in fact, an important part of our task is to infer their values.

In addition, as we mentioned, our approach allows the incorpo-
ration of data from binding localization assays, which attempt to

measure the extent to which a particular transcription factor pro-
tein binds to a gene’s promoter region. This measurement, how-
ever, is quite noisy, and it provides, at best, an indication as to
whether binding has taken place. One can ascribe regulation only
to those measurements where a statistical significance test indicates
a very strong likelihood that binding actually took place [28], but
it is then misleading to infer that binding did not take place else-
where. Our framework provides a natural solution to this problem,
where we take the actual regulation variables to be hidden, but use
localization measurements as a noisy indicator of the actual regu-
lation event. More precisely, each gene g also has a localization
variable L(t) for each TF ¢, which indicates the value of the statis-
tical test for the binding assay for ¢ and g. Our model for the values
of this variable clearly depends on whether ¢ actually regulates g;
for example, values associated with high-confidence binding are
much more likely if g.R(t) takes the value rrue. We describe the
model in detail in Section 3.2.

The second main component of our model is the description of
expression data. Thus, in addition to gene objects, we also have an
object a for every array, and an object e for every expression mea-
surement. Each expression e is associated with a gene e.Gene = g,
an array e.Array = a, and a real-valued attribute e.Level, denoting
the mRNA expression level of the gene g in the array a. Arrays also
have attributes; for example, each array a might be annotated with
the cell-cycle phase at the point the experiment was performed, de-
noted by a.Phase. As the array attributes are not usually sufficient
to explain the variability in the expression measurements, we often
also introduce an additional hidden variable a.ACluster for each
array, which can capture other aspects of the array, allowing the
algorithm both to explain the expression data better, and to gener-
ate more coherent and biologically relevant clusters of genes and
experimental conditions.

Our model defines a probability distribution over each gene g’s
expression level in each array a as a (stochastic) function of both
the different TFs that regulate g and of the properties of the specific
experiment used to produce the array a. Thus, we have a model
that predicts e.Level as a (stochastic) function of the values of its
parents g.R(t) and a.Phase (where g = e.Gene and a = e.Array).
As we discuss in Section 3.3, our model for expression level allows
for combinatorial interactions between regulation events, as well
as regulation that varies according to context, e.g., the cell-cycle
phase.

The model that we learn has a very compact description. As
we discuss below, we learn one position specific scoring matrix
(PSSM) for each TF ¢, which is then used to predict g. R(t) from the
promoter sequence of g for all genes g. Similarly, we learn a single
model for e.Level as a function of its parents, which is then applied
to all expression measurements in our data set. However, the instan-
tiation of the model to a data set is quite large. In a specific instan-
tiation of the PRM model we might have 1000 gene objects, each
with 1000 base pairs in its promoter region. We might be interested
in modeling 9 TFs, and each gene would have a regulation variable
for each of them. Thus, this specific instantiation would contain
9000 regulation variables. Our gene expression dataset might have
100 arrays, so that we have as many as 1000 x 100 expression ob-
jects (if no expressions are missing). Thus, an instantiation of our
model to a particular dataset can contain a large number of objects
and variables that interact probabilistically with each other. The re-
sulting probabilistic model is a Bayesian network [22], where the
local probability models governing the behavior of nodes of the
same type (e.g., all nodes g.R(t1) for different genes g) are shared.
Fig. 1(b) contains a small instantiation of such as network, for two
genes with promoter sequence of length 3, two TFs, and two arrays.
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Figure 1: (a) PRM for the unified model. (b) An instantiation of the PRM to a particular dataset with 2 genes each with a promoter
sequence of length 3, 2 TFs, and 2 arrays. (c) An example tree-CPD for the e.Level attribute in terms of attributes of e.Gene and

e.Array.

3. A Unified Probabilistic Model

In this section, we provide a more detailed description of our
unified probabilistic model, as outlined above. Specifically, we de-
scribe the probabilistic models governing: the regulation variables
g.R(t); the localization variables g.L(t); and the expression level
variables e.Level. In the next section, we discuss how the model as
a whole can be learned from raw data.

3.1 Model for Sequence Motifs

The first part of our model relates the promoter region sequence
data to the Regulates variables. Experimental biology has shown
that transcription factors bind to relatively short sequences, and
that there can be some variability in the binding site sequences.
Thus, most standard approaches to uncovering transcription factor
binding sites, e.g., [1, 26, 29], search for relatively short sequence
motifs in the bound promoter sequences.

A common way of representing the variability within the bind-
ing site is by using a position specific scoring matrix (PSSM). Sup-
pose we are searching for motifs of length k (or less). A PSSM w
is a k x 4 matrix, assigning for each positionz =1, ...,k and let-
terl € {A,C,G, T} a weight w;[l]. We can then score a putative
k-mer binding site S = s1, ..., sx by computing PSSM (S, W) =
22 wilsi].

The question is how to learn these PSSM weights. We start by
defining the model more carefully. Recall that, our model asso-
ciates, with each gene g, a binary variable g.R(t) € {true, false}
which denotes whether the TF ¢ regulates the gene or not. To sim-
plify notation in this subsection, we focus attention on the regula-
tion for a particular TF ¢, and drop the explicit reference to ¢ from
our notation. Furthermore, recall that each gene g has a promoter
sequence ¢.S1, . ..,9.Sn, where each S; € {A,C, G, T}.

The standard approaches to learning PSSM is by training a prob-
abilistic model of binding sites that maximizes the likelihood of se-
quences (given the assignment of the regulates variables) [1, 26].
These approaches rely on a clear probabilistic semantics of PSSM
scores. We denote by 6 the probability distribution over nucleotides
according to the background model. For simplicity, we use a Markov
process of order 0 for the background distribution. (As we will see,
the choice of background model is not crucial in the discriminative
model we develop.) We use ¢); to denote the distribution of charac-
ters in the jth position of the binding site. The model then assumes
that if ¢ regulates g, then g’s promoter sequence has the background
distribution for every position in the promoter sequence, except for

a specific k-mer, ¢ + 1,...,% + k, where ¢ binds to it. If ¢ does not
regulate g, we have the background distribution for all positions in
the sequence. Then,

P(S,,. ..
P(S,,. ..

,Sn | g.R = false) = TJ,00[S]
,Sn | g.R=true) = )
T1, 60[Se] Y, o5 TTE., o]
Jj n—k =1 0p[Si4;]
where we assume a uniform prior over the binding position in case
of regulation.!

The probabilistic approaches train the parameters ;[l] to max-
imize the probability of the training sequence. Once these param-
eters are found, they set the PSSM weights to w;[l] = log Z;[[f]]
Such approaches are generative, in the sense that they try to build
a model of the promoter region sequence, and training succeeds
when the model gives the given sequences high probability. How-
ever, these approaches can often be confused by repetitive motifs
that occur in many promoter sequences. These motifs have to be
filtered out by using an appropriate background distribution [31].

We approach this problem from a different perspective. Recall
that our aim is to model the dependence of the gene’s genomic ex-
pression profile on its promoter sequence. For this task, we do not
need to model the sequence; we need only estimate the probability
that the transcription factor regulates the gene given the promoter
region. Thus, it suffices to find motifs that discriminate between
promoter regions where the transcription factor binds and those
where it does not. As we show, this more directed goal allows us to
avoid the problem of learning background distribution of promoters
and to focus on the classification task at hand.

More formally, we are only interested in the conditional proba-
bility of g.R given the sequence Si, ..., S,. If we have a model of
the form of (1), and apply Bayes rule, we obtain:

P(g.R = true | Si,...,Sn) = logit(z)

where logit(z) = 7 +;,m is the logistic function. and
P(S1,...,85n,9.R = true)
— l ) ) )
¢ 8 P(S1,...,Sn,9.R = false)

_ P(g.R=true) 1 t i[Sin]
= log (P(g.R = false) n — k ; 1;[1 90[Si+j]>

Where P(R = true) is the prior on binding occurrence.

! Some methods, such as MEME [1], relax the assumption of a sin-
gle binding site. For lack of space, we omit this extension here.



For the goal of predicting the probability of g.R given the se-
quence, the background probabilities are irrelevant as separate pa-
rameters. Instead, we can parameterize the model (2) simply using
k position-specific weights w; [I] and a threshold v = log o Z-R=rme)
Thus, we write

P(g.R=true| Si,...,S.) = 5
togit (log (72 3, exp{ T, wilsiel})) @

As we discuss in Section 4.1, we can train these parameters directly,
so as to best predict g.R.

3.2 Localization Model

Localization measurements, when available, provide strong evi-
dence about regulation relationships. To integrate this data into our
model, we need to understand the nature of the localization assay.
Roughly speaking, these experiments measure the ratio of “hits”
for each DNA fragment between a control set of DNA extracted
from cells, and DNA that was filtered for binding to the TF of in-
terest. This assay is noisy, and thus we cannot simply “read off”
binding. Instead, the experimental protocol [25] uses a statistical
model to assign a p-value to various ratios. A ratio with a small
p-value suggests significant evidence for binding by the TF. Larger
p-values can indicate a weaker binding or experimental noise.

A naive approach would be to assert simply that binding takes
place if the p-value is below some threshold, and does not occur
otherwise. This approach, however, is naive, first because even
small p-values do not guarantee binding, but most importantly, be-
cause somewhat larger p-values that are above our threshold, al-
though not definitive, might still be suggestive of binding.

Thus, a more appropriate model is to treat the localization ex-
periment as a noisy sensor of the Regulates variables g.R(t). More
precisely, for each TF ¢ for which we have localization measure-
ments, we introduce a new variable L(t), such that g.L(t) repre-
sents the localization evidence regarding the binding of ¢ to g. The
value of g.L(t) is the p-value computed in the experimental assay.

It remains to determine how to model the connection between
the “sensor” g.L(t) and the actual event g.R(¢). In our proba-
bilistic framework, we can simply introduce a probabilistic depen-
dency of g.L(t) on g.R(t), using P(g.L(t) | g-R(t)) to specify
our model of this interaction. There are two cases. If g.R(t) =
false, we expect g.L(t) to be determined by the noise in the assay.
By design, the statistical procedure used is such that P(g.L(t) |
g.R(t) = false) has a uniform distribution on [0, 1] (this is exactly
the definition of the p-value here). If g.R(t) = true, then we ex-
pect g.L(t) to be small. We choose to model this using a density
p(g-L(t) = p | g-R(t) = true) = cexp(—wp), the exponential
distribution with weight w, where ¢ = w/(1 — exp(—w)) is a nor-
malization constant ensuring that the density function integrates to
1. Based on examination of p-values in the experiments of Simon et
al., we choose w = 20 in our experiments. Now, once we observe
g.L(t), the probability of this observation propagates to g.R(t). If
g.L(t) is very small, then it is more likely that it was generated
from g.R(t) = true. If it is larger, then it is more probable that it
was generated from g.R(t) = false. This model allows us to use
the location-specific binding data as guidance for inferring regula-
tion relationships, without making overly strong assumptions about
their accuracy.

3.3 Model for Gene Expression

We now consider the second major component of our unified
model: the dependence of the gene’s expression profile on the tran-
scriptional regulation mechanisms. More precisely, our model spec-

P(g.R=false) *

ifies how, in different experimental conditions, various TFs com-
bine to cause up-regulation or down-regulation of a gene. From
a technical perspective, we need to represent a predictive model
for e.Level based on the attributes of the corresponding gene g and
array a. There are many possible choices of predictive models.
One obvious choice is linear regression, where we hypothesize that
the expression level is normally distributed around a value, whose
mean is a linear function of the presence or absence of the dif-
ferent attributes (similar to Bussemaker et al. [7]). However, this
approach is limited in two ways. First, one has to provide spe-
cial treatment for attributes whose value space is nominal but not
binary, e.g., the cell cycle phase. A far more fundamental limita-
tion is that a linear regression model captures only linear interac-
tions between the attributes, while it is well-known that the inter-
actions between TF that lead to activation or inhibition are much
more complex, and combinatorial in nature.

Following our earlier work [27], we choose to use the frame-
work of tree-structured conditional distributions [4, 13], a formal-
ism closely related to decision trees. This representation is attrac-
tive in this setting since it can capture multiple types of combinato-
rial interactions and context specific effects.

Formally, a tree-structured CPD T for a variable X given some
set of attributes Vi, ..., V), is a rooted tree; each node in the tree
is either a leaf or an interior node. Each interior node is labeled
with a test of the form V' = v, for V- € {V1,...,V,,} and v one
of its values. Each of these interior nodes has two outgoing arcs
to its children, corresponding to the outcomes of the test (true or
false). Each of the leaves is associated with a distribution over the
possible values of X. In our case, X is the expression level, and
therefore takes real values. We therefore associate with each leaf
¢ a univariate Gaussian distribution, parameterized by a mean
and variance o7. Fig. 1(c) shows an example of a partial tree-CPD.
We use St to denote the qualitative structure of the tree, and 67 to
denote the parameters at the leaves.

In our domain, the tests in the tree-CPD are about attributes of
the gene, (e.g., g.R(Swi6) = true) or attributes of the array (e.g.,
a.Phase = §). Each leaf corresponds to a grouping of measure-
ments. This is a “rectangle” in the expression data that contains the
expression levels of a subset of genes (defined by the tests on the
gene attributes) in a subset of the arrays (defined by the tests on
array attributes).

It is important to realize that the tree-CPD representation can
encode combinatorial interactions between different TFs. For ex-
ample, as shown in the figure, in arrays in cluster 3, except for those
in phase S of the cell cycle, genes that are regulated by Swi6 and
not Fkh2 are highly overexpressed, whereas those that are also reg-
ulated by Fkh2 are only very slightly overexpressed. In addition,
the tree can model context specific interactions, where different at-
tributes predict the expression level in different branches of the tree.
In our domain, this can capture variation of regulation mechanisms
across different experimental conditions. For example, in phase S
of the cell cycle, the set of relevant TFs is completely different.

4. Learning the model

In the previous section, we described the different components
of our unified probabilistic model. In this section, we consider how
we learn this model from data: promoter sequence data, genomic
expression data, and (if available) localization data. A critical part
of our approach is that our algorithm does not learn each part of
the model in isolation. Rather, our model is trained as a unified
whole, allowing information and (probabilistic) conclusions from
one type of data to propagate and influence our conclusions about
another type. The key to this joint training of the model are the



regulation variables, that are common to the different components.
It is important to remember that these variables are hidden, and part
of the task of the learning algorithm is to hypothesize their values.

There are several nontrivial subtasks that our learning algorithm
must deal with. First, as we discussed, we need to learn the parame-
ters of the discriminative motif models, as described in Section 3.1.
Second, we need to learn both the qualitative tree structure and the
parameters for our tree CPD. Finally, we need to deal with the fact
that our model contains several hidden variables: the different Reg-
ulates variables, and the array cluster variables. We discuss each of
these subtasks in turn.

4.1 Learning the Sequence Model

Our goal in this section is to learn a model for the binding sites
of a TF ¢ that predicts well whether ¢ regulates a gene g by binding
somewhere in its promoter region. We defer the treatment of hidden
variables to Section 4.3; hence, we assume, for the moment, that
we are given, as training data, a set of genes g[1],...,g[M] and
their promoter sequences, and that we are told, for each gene g[m],
whether ¢ regulates g[m] or not.

Given M genes g[1],...,g[M], and the values of their regu-
lation variable g[m].R(t), we try to maximize the conditional log
probability

Z log P(g[m].R(t) | g[m].S1, ..., g[m].Sy»).

Our task therefore is to find the values of the parameters w; [c] and
v for the PSSM of ¢ that maximize this scoring function. It is easy
to see that this optimization problem has no closed form solution,
and that there are many local maxima. We therefore use a conjugate
gradient ascent, to find a local optimum in the parameter space.

Conjugate gradient starts from an initial guess of the weights
@@, As for all local hill climbing methods, the quality of the
starting point has a huge impact on the quality of the local opti-
mum found by the algorithm. In principle, we can use any motif
learning algorithm to initialize the model. We use the method of
Barash and Friedman [2], which efficiently scores many motif “sig-
natures” for significant over-abundance in the promoter sequences
which the TF supposedly regulates as compared to those it does not.
It uses the random projection approach of Buhler and Tompa [6] to
generate motif seeds of length 6-15, and then scores them using
the hypergeometric significance test. As described by Barash and
Friedman, this approach can efficiently detect potential initializa-
tion points that are discriminative in nature. Each seed produced
by this method is then expanded to produce a PSSM of the desired
length, whose weights serve as an initialization point for the conju-
gate gradient procedure.

4.2 Learning the Expression Model

A second subtask is to learn the model associated with the ex-
pression data, i.e., the model of e.Level as a function of gene and
array attributes: the regulation variables, the array cluster variables,
and any other attributes we might have (e.g., the array cell-cycle
phase). Again, we temporarily assume that these attributes are all
observed, deferring the treatment of hidden variables to Section 4.3.

As we discussed, we use a tree-structured probabilistic model
for e.Level, with a Gaussian distribution at each leaf; hence, our
task is to learn both the qualitative structure of the tree and the pa-
rameters for the Gaussians. Our approach is based on the methods
used by Segal et al. [27]; we briefly review the high-level details.
There are two issues that need to be addressed: a scoring function,
used to evaluate the “goodness” of different candidate structures

relative to the data, and a search algorithm that finds a structure
with a high score among the superexponentially many structures.

We use Bayesian model selection techniques to score candidate
structures [16, 12] . The Bayesian score of a structure is defined as
the posterior probability of the structure S given a data set D:

P(S| D) P(S)/P(D | S,0)P(0]S)d6

where P(S) is the prior over structures, and P(# | S) is the prior
over parameter values for each structure. This expression evalu-
ates the fit of the model to the data by averaging the likelihood of
the data over all possible parameterizations of the model. This av-
eraging regularizes the score and avoids overfitting the data with
complex models. When the training data is fully observed, and the
likelihood function and parameter prior come from certain families,
Bayesian score often has a simple analytic form [16], as a function
of the sufficient statistics of that model.

In our case, the set of possible structures are the tree structures
S7. Each parameterization 67 for the leaves of the tree defines a
conditional distribution over X given V1, ..., V,. Given a data set
D = {Vi[m],...,Va[m], X[m]}2_,, we want to find the struc-
ture S7 that maximizes

/HP(X[m] | Vi[m),..., Vulm],S7,607)P(07 | ST)db.

If we choose an independent normal-gamma prior over the Gaus-
sian parameters at each leaf in the tree, this integral has a simple
closed form solution; see [11, 17] for details.

Having defined a metric for evaluating different models, we
need to search the space of possible models for one that has a high
score. As is standard in both CPD-tree and Bayesian network learn-
ing [9, 13, 16], we use a greedy local search procedure that main-
tains a “current” candidate structure and iteratively modifies it to
increase the score. At each iteration, we consider a set of simple
local transformations to the current structure, score all of them, and
pick the one with the highest score. The two operators we use are:
split — replaces a leaf in a CPD-tree by an internal node, and la-
bels it with some binary test V' = v; and trim — replaces the entire
subtree at an internal node by a single leaf. To avoid local max-
ima, we use a variant of simulated annealing: Rather than always
taking the highest scoring move in each search step, we take a ran-
dom step with some probability, which decays exponentially as the
search progresses.

4.3 Dealing with Hidden Variables

In this section, we present our overall learning algorithm, which
learns a single model that predicts expression from promoter se-
quence. In a sense, our algorithm “puts together” the two learning
algorithms described earlier in this section. Indeed, if the regulation
(and cluster) variables were actually observed in the data, then that
is all we would need to do: simply run both algorithms separately.
Of course, these variables are not observed; indeed, inferring their
values is an important part of our goal. Thus, we now have to learn
a model in the presence of a large number of hidden variables —
g.R(t) for every g, t, as well as a.ACluster for every a.

The main technique we use to address this issue is the expecta-
tion maximization (EM) algorithm [16]. However, in applying EM
in this setting, we have to deal with the large scale of our model.
As we discussed, although our PRM model of Fig. 1(a) is compact,
it induces a complex set of interactions. In the experiments we de-
scribe below, we have 795 genes, 9 TFs, and 77 arrays, resulting
in a Bayesian network model with 7242 hidden variables. More-
over, the nature of the data is such that we cannot treat genes (or



arrays) as independent samples. Instead, any two hidden variables
are dependent on each other given the observations (see Friedman
et al. [12] for an elaboration of this point). A key simplification is
based on the observation that the two parts of the model — the TF
model and the expression model — decouple nicely, allowing us
to deal with each separately, with only limited interaction via the
Regulates variables.

We begin by learning the expression submodel. A good ini-
tialization is critical to avoid local maxima. Hence, we initialize
the Regulates variables with some reasonable starting point. Possi-
bilities include: direct inference from localization data; a verified
source of TFs such as the TRANSFAC [32] repository; or the re-
sults of applying a motif-discovery algorithm to the results of an
expression clustering algorithm (as in [5, 26, 29, 31]). We also
initialize the ACluster attributes using the output of some standard
clustering program. Treating these initial values as fixed, we then
proceed with the first iteration of learning the expression model.

Using this hard assignment to all of the variables, we begin by
learning a tree-CPD, as described in Section 4.2. We then fix the
tree structure, and run EM on the model to adapt the parameters.
As usual, EM consists of: an E-step, where we run inference on the
model to obtain a distribution over the values of the hidden vari-
ables; and an M-step, where we take the distribution obtained in the
E-step and use the resulting soft assignment to each of the hidden
variables to re-estimate the parameters using standard maximum
likelihood estimation. However, computational reasons prevent us
from executing this process simultaneously for all of the hidden
variables — g.R(t) and a.ACluster. We therefore perform an in-
cremental EM update, treating the variables a group at a time. We
leave most of the variables with a hard assignment of values; we
“soften” the assignment to a subset of the variables, and adapt the
model associated with them; we then compute a new hard assign-
ment to this subset, and continue.

More precisely, we iterate over TFs ¢, for each one performing
the following process:

e We “hide” the hard assignment to the values of the variables
g.R(t) for all g, leaving the other variables (g.R(t") for t' #
t, and a.ACluster) with their current hard assignment values.

e We perform an E-step, running inference on this model to
obtain a posterior distribution for each variable g.R(t). Note
that, since g.R(t) is hidden and is part of both the PSSM
model and the expression model, inference is done jointly
on both, and the posterior of g.R(t) is determined by their
combined probabilistic influence on g.R(t) as propagated
through the network. We also note that, with fixed assign-
ments to all the other variables, the different g. R(t) variables
are all conditionally independent, so that this inference can
be done exactly and very efficiently.

e We perform an M-step, adapting the parameters in the model
appropriately. Specifically, the M-step may change the Gaus-
sian parameters at the leaves in the tree-CPD, because genes
now “end up” at different leaves in the tree, based on their
new distribution for g.R(t). Moreover, the M-step involves
updating the parameters of the PSSM model. As discussed
in Section 4.1, there is no closed form solution for perform-
ing this update and we thus use conjugate gradient ascent, re-
placing the hard classification for g.R(t) which we assumed
exists in Section 4.1, with a soft classification for g.R(t),
equal to the posterior probability of g.R(t) as computed in
the E-step.

e We pick a new hard assignment for g.R(t) for every g, by
choosing its most likely value from the distribution.

This process is executed in a round robin for every TE. A simi-
lar process is executed for the variables a.ACluster. Once we fin-
ish these EM updates, we either terminate, or repeat the whole se-
quence using the updated assignment to the hidden variables: learn-
ing the expression model, followed by EM updates. This process
repeats until convergence.

From an intuitive perspective, our approach is executing a very
natural process. As we mentioned, had the g.R(t) variables been
observed, we could have trained each part of the model separately.
In our setting, we allow the expression data and the sequence data to
simultaneously influence each other and together determine better
estimates for the values of R(t).

5. Experimental results

We evaluated our algorithm on a combined data set relating to
yeast cell cycle. The data set involved all 795 genes in the cell
cycle data set of Spellman et al. [30]. For each gene, we had the
sequence of the gene’s promoter region (1000bp upstream of the
ORF), the gene’s expression profile on the 77 arrays of [30], and the
localization data of Simon et al. [28] for nine transcription factors:
Fkh1, Fkh2, Swi4, Swi5, Swi6, Mbpl, Ace2, Ndd1, Mcml1. To
simplify the following discussion, we use Reg; (t) to refer to the
set of genes where the statistical analysis of Simon et al. indicated
binding by the TF ¢ with p-value 0.001 or lower. We use Reg(t) to
refer to the set of genes g where our algorithm assigned a posterior
probability to g.R(t) which is greater than 0.5.

5.1 Prediction Tests

We began by experimenting with several different models, in-
volving various amounts of learning. To objectively test how each
model generalizes to unobserved data, we used 5-fold cross valida-
tion. In each run, we trained using 596 genes, and then tested on the
expression levels of the remaining 199 held back genes. The parti-
tion into training and test set done randomly, and all models used
exactly the same partitions. We report the average log-likelihood
per gene. Differences in this measure correspond to multiplicative
differences in the prediction probability for the test data. For exam-
ple, an improvement of +1 in the average log-likelihood represents
that the expression level predictions have twice the probability in
the new model relative to the old one.

The models and results are as follows:

e M.y, where we tried to predict the expression data using only
the cell-cycle phase attribute for arrays and a corresponding
G-phase attribute for genes, which represents the phase at
which the gene is most active (see [30, Supp. data]); average
log-likelihood: —112.24 + 11.42 (standard deviation).

o M., where we tried to predict the expression data using
the cell-cycle phase attribute for arrays and Regulates vari-
ables for genes, whose values were simply set according to
Reg (t); average log-likelihood: —134.87 £ 15.29.

e Mg, which is the same as M,;, except that the localization
data is treated as a noisy sensor g.L(t) of a hidden Regulates
variable g.R(t); average log-likelihood: —121.48 4+ 11.96.

e M., which introduces the hidden a.ACluster attributes (with
5 possible values) into M., and trains the model using EM;
average log-likelihood: —103.76 £ 5.72.

e M5, which introduces the sequence data into the model
of M, giving us our full model; average log-likelihood:
—94.59 +4.13.
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Figure 2: (a) Changes in classification of Regulates variables from the initial to the final iteration. (b) Table showing the PSSMs
found in the analysis and summarizing their specificity values. The table reports percent “hits” in 3 groups: A — genes in Reg, (1);
B — genes in Reg(t); C — not in Reg(t). The table also reports specificity p-value for the regulated genes. (c) Figure of putative
combinatorial interactions based on the /., model. (d), (¢) & (f) Plots of the average expression for subsets of genes regulated
by different combinations of TFs. The x-axis denotes arrays along the four time courses of Spellman ef al., and the y-axis denotes
average expression level of the genes in each group. The cell cycle phase is shown by by the thin gray line that with peaks in the G1

phase and troughs in the G2 phase.

We see that our baseline model M., does fairly well, which is
not surprising: The G-phase attributes were chosen specifically to
be an accurate description of the expression profile of the genes.
More interesting is the comparison between the other four mod-
els. We can see that the localization data alone can explain only a
small part of the data, and achieves a fairly poor predictive perfor-
mance. This is mainly due to the conservative approach of Simon et
al. [28], who selected the threshold defining Reg (t) to minimize
the number of false positives; thus, most of the genes in our data
set had all the Regulates attributes set to false.

Treating the localization data as a noisy sensor only and running
EM improves the accuracy of the predictions. An examination of
the data shows that the EM process substantially changes the val-
ues of the Regulates variables from their initial values according
to Reg, , primarily by adding new genes for which regulation is
hypothesized, i.e., where the most likely value of g.R(t) is true.
(We discuss this issue further below.) The new R(t) variables are
trained to be much more predictive of the expression data, so it is
not surprising that the resulting model achieves a higher score. The
addition of the ACluster attributes also improves the score substan-
tially, as the five-valued cell cycle phase attribute is not enough to
distinguish between qualitatively very different arrays. For exam-
ple, some of the clusters captures distinctions such as “early” vs.
“late” in the time series. These distinctions are important, as later
measurements lost synchronization to a certain degree and thus are
less “sharp”. Finally, most interesting is the fact that, by intro-
ducing the sequence, we get a very substantial additional boost in

predictive accuracy.

We attempted to isolate the source of this last improvement in
accuracy. We tested the full model M,;s on the test data, but giv-
ing it only the sequence information, rather than both the local-
ization and sequence information, as in our previous experiment.
In other words, although the model was learned using localization
data, in the test data we are predicting the expression level using
only the sequence data. In this case, the average log-likelihood is
—95.36 + 3.90, which is almost indistinguishable from the result
given the localization data as well. This result is quite important,
because it suggests that our model has, indeed, learned to predict
the expression data directly from sequence data!

5.2 Inferring Regulation

One of the main factors that contribute to the success of the
learning algorithm is its ability to change the classification of the
R(t) variables from their original values as determined by local-
ization alone. The algorithm changes these variables to provide a
better explanation of the training data. The only constraints on this
transformation are those imposed by our choice of the probabilistic
model for localization, which makes it very likely that if the bind-
ing of t to g was associated with a low p-value, the value of g. R(t)
will remain true. Indeed, if we examine the genes for which g. R(t)
changed its value, we see that the value changed from true to false
for at most 1 or 2 genes per TE. Thus, the procedure mainly in-
troduced new genes into Reg(t). Fig. 2(a) compares the original
and final number of genes in Reg(t). We see that the procedure



increased the number of regulated genes for all the TFs. For some
TFs (e.g., Ndd1, Swi4), the change was fairly minor; others (e.g.,
Fkh1, Fkh2, Swi6) increased by close to 5-fold.

There are several explanations for these changes. In some cases,
the genes that we added are also truly regulated by the TF, but the
signal was not visible in the localization data. For example, our
model predicts that Clbl and Cdc5 are regulated by Ndd1. There
is evidence that these genes are regulated by Mcm1 which works
together in G2/M with Ndd1. The analysis of Simon et al. failed
to find binding. Additionally, our model suggests that Fkhl and
Fkh2 are regulated by Fkhl and not Mcml. This conclusion fits
the recent results of Hollenhorst et al. [18].

A second explanation for this phenomenon is the fact that we
gave the model only the nine Regulates variables in order to try and
explain a complex expression matrix. As such, the model some-
times had to “stretch” the boundaries of these variables in order
to improve the quality of its predictions. Thus, it is possible that
the semantics of R(t) may have changed in order to capture inter-
actions for which no explanation was present in the data. Never-
theless, we believe that the sets Reg(t) are meaningful, and almost
certainly co-regulated by some combination of mechanisms.

One strong indicator in favor of this hypothesis is the demon-
strated ability of the algorithm to predict expression directly from
sequence data, suggesting that there are common features in the
promoter region of the genes that our algorithm asserts are co-
regulated. We tested this conjecture by looking at the motifs that
were discovered by the algorithm. Fig. 2(b) lists, for each TF
t, the percentage of genes for which the PSSM learned by our
algorithm determined the existence of a motif, i.e., those where
P(g.R(t) = true | g.S1,-..,9-Sn) > 0.5. We compute the per-
centage in three groups: the genes in Reg; (t), the genes in Reg(t),
and in the remaining genes (those where g.R(t) = false). In addi-
tion, the table lists the p-value (using a hypergeometric model [2])
of the motif and a pictorial representation of the learned PSSM.

This table shows several trends. We see that some motifs (e.g.,
Mbpl) appear in a majority of the genes in Reg(t). Moreover, in
some cases (e.g., Ace2, Mcml, Swi5) the motif is very rare in the
group of genes for which g.R(t) = false. Thus, these motifs are
quite specific for the genes they were trained on, as we can see by
the p-values. The significance of the p-values suggests that this is
not an artifact. In addition, we see that the motifs have a similar
concentration in the genes in Reg (¢). Thus, although these genes
are often less than 25% of the training genes, the learned motif
is quite common among them. This last result suggests that there
is no difference, from the perspective of finding common motifs,
between the co-regulated set of genes discovered by Simon et al.
and those that were introduced into this set by our algorithm.

This conclusion is further validated by comparing the learned
PSSMs to the known binding sites in the literature. The PSSMs
for Mbpl and Swi4 are similar to the ones found by Tavazoie et
al. [31]. The PSSM for Mcml is also similar to the one found by
Tavazoie et al., except that they discovered a homodimer site that
consists of two roughly palindromic parts. Our PSSM for Mcm1
captures only one of these parts. (We note that since our model
scans both strands, it suffices for the discriminative model to learn
only half of the site.) Our PSSM for Fkh1 matches the model sug-
gested by Zhu et al. [33]. On the other hand, our PSSM for Swi5
and Ace2 are quite different from the known ones in the literature.

Finally, it is interesting to examine the PSSMs learned from
Ndd1 and Swi6. The current hypothesis for Ndd1 is that it can-
not bind to the promoter directly. Rather, it is recruited by either
Fkh1/2 or by Mcm1. The PSSM we learned for Ndd1 is somewhat
similar to PSSM learned by Simon et al for Fkhl. Similarly, Swi6
is recruited by either Swi4 or Mbpl; and, indeed, the PSSM we

learn for Swi6 is similar (but not identical) to the published Mbp1
motif.

5.3 Biological analysis

We end the discussion of our results by examining their bio-
logical plausibility. First, we tested the extent to which our set of
potentially co-regulated genes were actually co-expressed. To do
so, we computed, for each array a, the average of the expression
levels for the genes in Reg(t). Fig. 2(c) shows the expression of
Swi5 and the average expression of SwiS-regulated genes. We see
that the expression of Swi5 regulated genes follows a pronounced
cyclic behavior that peaks in the M cell cycle phase. We also can
see that the Swi5 gene is transcribed before its protein product is
being used. This is consistent with knowledge that Swi$ itself is
transcriptionally regulated [28, 30]. In addition, the fact that Swi5
is transcribed before the genes it activates fits nicely with biolog-
ical understanding, where the delay corresponds to the time need
for translation of the Swi5 transcript and then the time required for
it to bind to its target sites and initiate transcription.

As described above, we expect our model to capture effects of
combinatorial regulation. These can be seen when we examine the
expression of groups of genes that are regulated by two or more
TFs. figreffigiresults(e) shows that genes that are regulated by both
Fkh2 and Swi4 peak in G1 and late G1, whereas genes regulated by
Fkh2 and Ndd1 peak in M or M/G1. This behavior is exactly com-
patible with our current understanding of the role of these two tran-
scription factors complexes that involve Fkh2. Fig. 2(f) shows the
behavior of three complexes involving Mcm1: with Ndd1, Ace2,
and Swi5. We can see that genes also co-regulated with Ndd1 peak
earlier than the other two. Once again, this behavior is compatible
with current biological understanding; see [28].

We then tried to see if we can recover biological insights from
our M, model. Recall that the tree structure learned by our model
defines a set of groupings, each one defined by one of the leaves
of the tree. Each grouping is associated with a list of tests (e.g.,
g.R(Swi4) = true) on attributes of the genes and attributes of the
arrays that occur on the path to the leaf. It therefore also corre-
sponds to a “rectangle” in the expression matrix (defined by the
genes and the arrays that satisfy the tests), which has a similar ex-
pression value. The tests performed along the path indicate which
aspects of genes and arrays are important for defining a uniform set
of expressions. Thus, they can provide biological understanding of
the processes.

However, before imputing biological significance to these tests,
it is important to realize that not all of them are truly relevant.
While some of these tests are crucial to defining a coherent set
of genes and conditions, others might simply be an artifact of our
learning algorithm. We therefore performed significance analysis
on each of the tests used to produce this grouping, using a ¢-test to
compare the expression measurements in the rectangle with the ex-
pression measurements satisfying all other tests defining the group-
ing except the one in question. We then eliminated tests that ap-
peared irrelevant, remaining with a set of overlapping rectangles,
such that all of the tests used to define the rectangle were neces-
sary, with a p-value of less than Se-4.

We selected groups that were over-expressed, in that their aver-
age expression level was greater than 0.5. (Recall that the expres-
sion levels of Spellman et al. are measured in units of log (base
2) of the ratio to a control.) We note that, in this data, coherent
groups are always specific to a particular cell-cycle phase, as deter-
mined by the tests in the definition of the group. We then looked
for indications of combinatorial regulation: groups which required
regulation by two TFs. The resulting “interaction map” is shown in



Fig. 2(c), with an arc between two TFs indicating joint regulation
in at least one group. The different arcs indicate joint regulation in
different cell-cycle phases.

Many interactions in this map correspond very well with known
biology. For example, the interactions between Mbpl and Swib6,
between Swi4 and Swi6, between Ace2 and Mcml1, between Swi5S

and Mcml1, between Ndd1 and Mcm1, and between Fkh2 and Mcm1.

Other interactions that we would have expected are missing, such as
the interaction between Ace2 and Swi5, between Fkhl and Fkh2,
and between Fkhl and Nddl. The latter two can perhaps be ex-
plained by the fact that Fkh1 and Fkh2 regulate very similar sets of
genes, and are therefore somewhat interchangeable. As our learn-
ing algorithm looks for compact models that explain the data, it
may choose not to introduce one test on a path if if the data is
already explained well using some other test. Hence, somewhat re-
dundant tests, such as those on Fkh1 and Fkh2, might never appear
together on a path.

Other interactions in the map may suggest potentially interest-
ing hypotheses. For example, finding Ndd1 in interaction with
Mbpl on G1 genes suggests that the Ndd1 protein may participate
together with the Forkhead proteins in modulating the expression
of Mbpl1 targets in G1, as suggested also by the results of Pilpel et
al. [24]. Other interactions also seem compatible with the results
of Pilpel et al., including the interaction between Fkh2 and Swi4,
Swi6, and Mpbl.

Finally, we compare the genes in these coherent groups to known
annotations of genes from the YPD server [10]. Many of these
groups contain a significant portion of genes annotated with a par-
ticular functional or cellular role. For example, there is a group of
43 genes that are regulated by Swi6 and Mbpl but not by Swi4,
which contain 8 DNA repair genes (out of 37 such genes in the
data). Such a concentration has p-value of 2e — 4. The same group
of genes also contain 14/72 chromatin/chromosome structure genes
(p-value = e3 — 6), 5/8 DNA polymerase or subunit (p-value =
7e — 6), and 10/36 DNA synthesis genes (p-value = 3e — 6). These
results are compatible with our biological understanding about the
processes that occur in phase G1 of the cell cycle, when these TFs
are active. Another group of 73 genes is defined as being regu-
lated by Swi6, Mbpl, and Fkh2. It contains 17/77 DNA-binding
protein genes (p-value = 9e-5) and 20/72 chromatin/chromosome
structure genes (p-value = 4e-7). A final example is a set of 72
genes regulated by Ace2 and not by Swi4, containing 11/37 amino-
acid metabolism genes (p-value = 8e-5).

6. Discussion

In this paper, we describe a unified probabilistic framework that
defines a (simplified) model of the “end-to-end” process of ge-
nomic expression: from transcriptional regulation, based on the
binding of transcription factors to the gene’s promoter region, to
the expression data itself. We show how to learn a coherent model
based on heterogeneous data: sequence data, expression data, and
binding localization data. We demonstrate our algorithm on the
yeast cell cycle process, showing that our framework does learn to
predict expression from sequence. Our algorithm also finds highly
significant motifs in clusters that it asserts are co-regulated, provid-
ing a strong biological basis for this claim. We also show that the
learned model provides valuable biological insight into the domain,
including information about combinatorial regulation by complexes
of transcription factors.

Our paper is not the first to try and provide a unified proba-
bilistic framework for these multiple sources of data. Holmes and
Bruno [19] describe a simple Naive Bayes model for promoter se-
quence and expression, where the genes are partitioned into dis-

joint clusters using a hidden Cluster variable, whose value proba-
bilistically determines both the sequence (and presence of motifs)
of the promoter region and the expression profile. This model is
much simpler than ours, and fails to capture important aspects such
as combinatorial effects between transcription factors, or the ef-
fect of array properties on the expression data. The recent work
of Hartemink et al. [15] tries to provide a unified framework for
localization and expression data. Their approach is based on the
Bayesian network based framework for pathway discovery [14, 23].
They use the localization data to guide the discovery by limiting the
set of models they consider. Their approach, however, only makes
use of the small set of regulation predictions that received very low
p-values in the analysis of the localization data. As our results
show, it is possible as well as beneficial to make use of all of the lo-
calization results. Finally, we note that neither of these approaches,
nor any of the others discussed in the introduction, is capable of
making use of all three types of data — expression, localization,
and sequence — within the context of a single framework.

There are many obvious extensions to this work, which we plan
to pursue. It seems fairly clear that the regulation events of a small
subset of transcription factors are not sufficient to explain the vari-
ability in the expression measurements. For example, it might be
that ¢ plays a role both as an activator of some genes, and repressor
of others. Thus, learning that g.R(t) holds is not sufficient for pre-
dicting the expression of g. It is possible to extend the algorithm
by introducing new hidden attributes of the genes. These variables,
might allow us to make important distinctions among genes regu-
lated by the same TF, and consequently make better prediction of
the expression of these genes. If learned in a guided way, these
hidden variables might even correspond to regulation by new regu-
latory elements or complexes, with associated sequence motifs on
the one hand and predictive ability for expressions on the other.
In addition, our current PSSM models of binding sites are quite
simplistic. As we show, discriminative training allow us to recog-
nize binding sites using such simple models in a specific manner.
Nonetheless, these binding sites do not explain all the regulation at-
tributes. To get a better model may require learning more elaborate
binding sites models, or explicitly modeling additional attributes of
binding sites (their location in the promoter, their relative affinity,
etc.) that clearly play a role in the biological system.

Finally, this paper is a step (following [27]) in a long-term project
that aims at integrating many different types of data and providing
a mechanism for learning a unified probabilistic framework for key
genomic processes.
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