
BIOINFORMATICS Vol. 1 no. 1 2001
Pages 1–9

Inferring Subnetworks from Perturbed
Expression Profiles

Dana Pe’er 1, Aviv Regev 2, 3, Gal Elidan 1 and Nir Friedman 1

1School of Computer Science & Engineering, Hebrew University, Jerusalem, 91904,
Israel, 2Department of Cell Research and Immunology, Life Sciences Faculty, Tel Aviv
University, Tel Aviv, 69978, Israel and 3Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel

ABSTRACT
Genome-wide expression profiles of genetic mutants

provide a wide variety of measurements of cellular re-
sponses to perturbations. Typical analysis of such data
identifies genes affected by perturbation and uses clus-
tering to group genes of similar function. In this paper we
discover a finer structure of interactions between genes,
such as causality, mediation, activation, and inhibition
by using a Bayesian network framework. We extend
this framework to correctly handle perturbations, and to
identify significant substructures of interacting genes.
We apply this method to expression data of S. cerevisiae
mutants and uncover a variety of structured metabolic,
signaling and regulatory pathways.
Contact: danab@cs.huji.ac.il

INTRODUCTION
Integrated molecular pathways consisting of interacting
proteins, genes, and small molecules underlie the major
functions of living cells. These include signal transduc-
tion and processing, regulation of gene expression and
metabolism. Genome wide expression profiles allow us to
gain insight into these processes. In order to obtain a wide
variety of profiles, reflecting different active pathways,
various perturbations and treatments are employed.
Perturbation by mutation of specific genes serves a dual
purpose, providing a rich variety of different profiles,
while allowing us to compare a wild type profile with
a mutant one and to determine the molecular effect or
function of the mutated gene.

Two recent studies use such an experimental design, em-
ploying different types of analysis. Holstege et al. (1998)
compare mutant and wild type profiles to identify sets of
“downstream” genes whose expression is affected by a
specific mutation. Hughes et al. (2000) use clustering to
group either genes with correlated expression in different
mutant strains or entire mutant profiles. Valuable biologi-
cal insight can be gained by both approaches.

In this paper, we strive to answer questions that deal
with finer structure. For example, is the effect of a mutated

gene on a target gene direct, or is it mediated by other
genes? Which genes mediate the interactions within a
cluster of genes or between clusters? What is the nature
of the interaction between genes (e.g does gene A inhibit
gene B)?

To infer such finer relations from perturbed gene
expression profiles� we use the framework of Friedman
et al. (2000). In this framework, we treat the measured
expression level of each gene as a random variable and
regulatory interactions as probabilistic dependencies
between random variables. Friedman et al. use nonpara-
metric bootstrap to estimate the confidence of features
of Bayesian networks learned from expression profiles.
This allows them to identify pairwise relations of high
confidence such as: “Genes � and � closely interact”.

We extend this framework in four ways. First, we
adapt and extend recent results on learning with in-
terventions (Cooper and Yoo, 1999) to handle genetic
mutations. Second, we devise new, better suited, methods
for discretizing the data prior to analysis. Third, we define
and learn new features: mediator, activator and inhibitor.
Finally, we describe how to use features to construct
substructures of strong statistical significance.

The resulting method comprises the following steps. We
start by discretizing the data. Then, we apply bootstrap
analysis to learn an ensemble of networks which represent
potential models of the interactions between genes. We
use this ensemble to extract features involving relation-
ships between pairs and triplets of genes with high statis-
tical confidence. We then identify statistically significant
subnetworks which contain several high-confidence fea-
tures. These subnetworks capture a strong statistical sig-
nal in the expression profile that often reflects a coherent
cellular process.

As a case study, we apply our framework for the analysis
of the Rosetta Compendium of expression profiles from
Saccharomyces cerevisiae (Hughes et al., 2000).

�We stress that any attempt to perform this task is limited to learning
relations that are represented in mRNA expression data. For example, post-
translational regulation may often be missed.

c� Oxford University Press 2001 1
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BAYESIAN NETWORK ANALYSIS OF
EXPRESSION DATA
Probabilistic Modeling of Gene Expression
Measurements of gene expression involve noise arising
from the measurement technology, the experimental
procedures, and the underlying stochastic biological pro-
cesses. Thus, we treat gene expression as a probabilistic
process, and represent the expression level of each gene
as a random variable. The joint distribution over the set
of all genes reflects the distribution of cell “states” and
how these affect transcript levels. Our ultimate goal is to
estimate and understand the structure of this distribution.�

Most standard methods for analyzing gene expression
focus on pairwise relations between genes, such as corre-
lation. However, biological interaction is seldom this sim-
ple, and often includes chains of mediators between two
genes. By going beyond pairwise relations and exploring
multi-variable interactions, we can infer more about the
structure of the relationship between genes. In particular,
we focus on conditional independence. For example, if �
and � are co-regulated by � then, while � correlates with
� , it might be that given the value of � , � becomes in-
dependent of � . In this case, we say that � separates be-
tween � and � . In general, such a separator can be a set
of variables.

Bayesian Networks
A Bayesian network over a set � � ���� � � � ���� is
a representation of a joint probability distribution over
�. This representation consists of a directed acyclic
graph (DAG) � whose vertices correspond to the random
variables ��� � � � ���, and a parameterization which
describes a conditional distribution for each variable given
its immediate parents in �.

The graph � represents conditional independence
properties of the distribution. These are the Markov
Independencies: Each variable �� is independent of its
non-descendants, given its parents in �. A distribution
that satisfies these independencies can be decomposed
into the product form

	 ���� � � � ���� �
��
���

	 ����Pa�� �� (1)

where Pa�� is the set of parents of �� in �. The
parameterization component of the network describes the
conditional distributions 	 ����Pa�� �. Thus, the network
represents the unique distribution.

The Markov independencies represented by � often
imply other conditional independencies. We can determine

�We use the following notation in the remainder of the paper. We use capital
letters, such as ���� � , for variable names. Sets of variables are denoted by
boldface capital letters �����.

whether � implies that � and � are independent given�
by using d-separation (Pearl, 1988). This is a simple graph
theoretic criteria on the structure of the graph �.

Two DAGs may imply exactly the same set of inde-
pendencies. For example, consider graphs � � � and
� � � over two variables � and � . Both graphs imply
that � and � are not independent. In such a situation, we
say that the two graphs are equivalent.

The notion of equivalence is crucial, since when we
examine observations from a distribution, we cannot
distinguish between equivalent graphs. Thus, we want
to find the common properties of equivalence classes
of DAGs. Pearl and Verma (1991) show that equivalent
graphs have the same underlying undirected graph but
might disagree on the direction of some of the arcs.
Moreover, they show that an equivalence class of network
structures can be uniquely represented by a partially
directed graph (PDAG), where a directed edge � � �
denotes that all members of the equivalence class contain
the arc � � � ; an undirected edge �—� denotes that
some members of the class contain the arc � � � , while
others contain the arc � � � .

Learning Bayesian Networks
Given a training set 
 � ������ � � � ���� �� of indepen-
dent samples from an unknown distribution 	 ���, we
want to estimate this distribution by a network �. The
common approach to this problem is to introduce a sta-
tistically motivated scoring function that evaluates each
network with respect to the training data, and to search
for the optimal network according to this score (Hecker-
man, 1998). A popular score based on Bayesian reason-
ing, scores candidate graphs � by their posterior proba-
bility given the data (see (Heckerman et al., 1995) for a
complete description). We define the score ��� � 
� to
be proportional to 	 �� � 
�. An important characteristic
of this score is that when the data is complete (no missing
values) the score is decomposable:

S�� � 
� �
�
�

�local����Pa�� � 
� (2)

The contribution of each variable �� to the total score
depends only on the values of �� and Pa�� in the training
instances.

�local����� � 
� � �	
	 �Pa� � ���

�	


� �
�

	 ����
� � ��
�� ���	 ����

The first term is the prior probability assigned to the
choice of the set � as the parents of ��. The second
term measures the probability of the data, when we
integrate over the possible parameterizations (�) of the
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conditional distribution. These local contributions for each
variable can be computed using a closed form equation
(see (Heckerman, 1998) for details).

MODELING PERTURBATIONS INTO BAYESIAN
NETWORKS
Ideal Interventions
Above we assumed that each training instance was sam-
pled from the underlying distribution. This does not apply
in genetic mutation experiments. For instance, by knock-
ing out gene � , we replace the original molecular control
on �’s expression (its parents) by an external one. Thus,
any consequent measurement (in which �’s value is con-
stantly set to 0) will not teach us anything about �’s con-
ditional distribution on its parents. Modeling such inter-
ventions for learning Bayesian networks involves two is-
sues: the score function and the definition of equivalence.

Recall that the score of a DAG �, given a data set

, decomposes into a product of entities that depend
on the conditional distributions 	 ���Pa���. Suppose that
in a certain sample, we intervene by fixing the value
of ���
�. In this sample, it is clear that we should not
take into account 	 ����
� � Pa��
��, as the value of
�� in the sample does not depend on this distribution.
However, if our intervention only modified the value of
��, all others variables were sampled from their respective
conditional distributions. We call such manipulations ideal
interventions (Pearl, 2000) and treat their score as follows:
If we let Int�
� denote the set of variables that were
intervened in the 
’th sample, then the modified local
score is

�local����� � 
� � �	
	 �Pa� � ���

�	


� �
���� ��Int���

	 ����
� � ��
�� ���	 ����

See (Cooper and Yoo, 1999) for more details on this score.
This score is no longer structure equivalent, i.e., the

score of two equivalent graphs, � and � � is no longer
guaranteed to be the same. This should be expected, as
interventions help us determine the direction of causality.
We say that � and �� are intervention equivalent given
interventions � � ���� � � � � ���, if they receive the same
score given a data set
 where Int�
� � � , for all
. This
notion of equivalence is more restrictive, and thus more
edges in the PDAG will be directed. These include, but are
not limited to, all edges entering or leaving an intervened
variable � . We modified the procedure for constructing a
PDAG representation from a DAG (Chickering, 1995) to
fit our new equivalence relation. Due to space restrictions,
we omit the technical details.

Modeling Perturbations
We distinguish between two types of perturbations in gene
expression data. The first type includes gene deletion and
over-expression. Both imply a direct change to the ex-
pression level of the mutated gene. Formally, the random
variable corresponding to this level is deterministically as-
signed a specific value. We model such mutations as ideal
interventions, as described above.

The second class of perturbations includes temper-
ature sensitive and kinetic mutations (Holstege et al.,
1998)) as well as external treatments (e.g. environmental
stress (Gasch et al., 2000)). These perturbations do not
directly determine an expression level of a specific gene,
and thus cannot be modeled as ideal interventions. How-
ever, since they have an important effect on the expression
level of many genes, their occurrence in a given sample
should be indicated. We add indicator variables to our
domain, one for each treatment type. We constrain such
variables to be roots i.e. no other variables can be their
parents in the network.

ZOOMING IN: IDENTIFYING FEATURES
Potential Features
We now focus on the following question: Can we elucidate
the nature of interaction between two genes? We learn
from the perturbed gene expression profiles a Bayesian
network � and construct its corresponding PDAG ��

(taking into account the patterns of interventions) As-
suming that � correctly captures the dependencies in
the domain, we consider several types of “queries” or
“features” that can be identified from � and ��.

Markov and Edge Relations To find if there is a direct in-
teraction between � and � we can query our network
whether � and � are Markov neighbors. Markov neigh-
bors are variables that are not separated by any other mea-
sured variable in the domain. They include parent-child
relations (one gene regulating another), or spouse rela-
tions (two genes that co-regulate a third). Since our do-
main consists of many variables which are not modeled
into our network (e.g. protein activation), many of the re-
sulting Markov neighbors represent sibling relations i.e.
two genes which are regulated by a third variable, not
modeled by the network (Elidan et al., 2001). When nei-
ther of these situations occur, the network implies that the
interaction between � and � is indirect.

We can query whether the edge � � � appears in
��. Recall that this implies that � and � are Markov
neighbors (parent-child type) and that the edge between
them is directed in all networks in the equivalence class of
�. The existence of such a directed edge suggests that �
is a direct cause of � .�

�To reach causal conclusions from a Bayesian Network few assumptions
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Separators When � and � are indirectly dependent,
we can ask what factors mediate this dependence. In the
simple case, a single variable � , separates � and � . For
example, the edges � � � � � or the undirected edges
�—�—� appear in ��. In the former case,� affects� ,
which in turn affects � ; while in the latter, � might be a
common cause of both � and � .

In more complex cases, � and � may be more distant
in the graph structure (e.g � is a common grandparent
of both � and � ) and there might be more than one
variable that mediates their interaction (e.g � is parent
of �� and ��, who in turn are both parents of � ). In these
cases we must employ a global approach, searching for
variables �, such that � is independent of � given � in
the network. In such a situation, we say that � explains all
the dependencies between the two variables.

We can test such dependencies using d-separation. More
precisely, to check that two variables � and � are
independent given � , we need to check that no path
between � and � can “pass” information when the
value of � is known (See Pearl (1988) for the precise
definition). Testing for d-separation between two variables
requires ���� time, where � is the number of variables.
Computing d-separation for every pair of variables in the
network is thus in the order of ����� with a relatively
large coefficient. For a large domain, this calculation is
time and memory consuming. We note, however, that
when two variables are far from each other in the network,
the dependence between them is significantly diminished.
Thus, in practice we check for d-separation between
variables along paths of limited length.

Activation and Inhibition When � is a parent of � , we
can gain understanding of �’s effect on � . Here we
are interested only in the conditional distribution 	 �� �
Pa� �. Let � � Pa� � ���. Intuitively, if 	 �� � � �
���� increases when� transitions from�� to � and then
to � and � is held fixed, we say that � activates � . Since
all other direct influences on � have been kept at the same
state, the change in � is the explanation to the change
in � . Similarly, if 	 �� � �� � ���� increases, then
� inhibits � . Our current strict criterion requires that �
activates/inhibits � for every set of values � of �. Less
naive approaches that soften this requirement are under
study.

Feature Confidence
Above we assumed that the network � correctly repre-
sents the interactions in the underlying domain. How rea-
sonable is this assumption? If we have a sufficiently large
number of samples, we can be (almost) certain that the

must be made. See (Pearl, 2000; Cooper and Glymour, 1999) regarding the
connection between Bayesian networks and causality, and (Friedman et al.,
2000) for a discussion of these connections in the context of gene expression.

network we learn is a good model of the data. However,
given only a small number of training instances, there may
be many models that explain the data almost equally well.
Such models can have qualitatively very different struc-
tures. We do not have confidence that one network is an
accurate description of the biological domain.

Therefore, instead of querying a single structure, we can
examine the posterior probability of the feature given the
data. Formally, we consider the distribution of features. A
feature of a network is a property such as “� � � is in
the network” or “� d-separates� from � in the network”.
We define the feature using an indicator function ����
that has the value 1 when � satisfies the feature and value
� otherwise. The posterior probability of a feature is

	 ����� � 
� �
�
�

����	 �� � 
�� (3)

This probability reflects our confidence in the feature � .
A naive way of calculating Eq. 3, is by enumerating all

high scoring networks. Unfortunately, the number of such
networks can be exponential in the number of variables, so
exact computation of the posterior probability is imprac-
tical. Instead, we can estimate this posterior by sampling
representative networks, and then estimating the fraction
that contain the feature of interest. We can generate such
networks using non-parametric bootstrap (Friedman et al.,
1999) or using more exact but costly MCMC simulations
(Friedman and Koller, 2001). Friedman et al. (2000) evalu-
ate the bootstrap approach in simulated data that matches
the distributions observed in gene expression data. They
note that the rate of false negatives is high. Thus, the fact
that we do not detect high confidence for a feature, does
not mean it does not exist, but rather that the data does not
strongly support this feature.

RECONSTRUCTING SIGNIFICANT
SUBNETWORKS
Using the methods of previous section we assign con-
fidence to features (e.g., all Markov edges). We then
estimate which confidence levels to consider significant�

(��
� in the experiments below), and focus on these
significant features. As we show below, important insights
can be gained from such features. Nonetheless, this
approach suffers from two drawbacks. First, it is limited
to examining the relations between two or three genes.
Second, it can be overly cautious discarding correct
features whose confidence is below our threshold. We
suggest to overcome these drawbacks by identifying
subnetworks of high confidence. This allows us to both

�This can be done by simulation studies, where we generate training sets
from a known network, and by randomization studies, where we permute
the expression of genes across experiments to create a data set where all
genes are independent of each other Friedman et al. (1999, 2000).
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broaden our viewpoint and gain confidence about features
that when isolated are not significant.

For now, we focus on Markov pairs, as these can be
more reliably reconstructed using our methods (Friedman
et al., 1999). Our hypothesis is that if we can find a
subnetwork that contains a concentration of Markov pairs
with relatively high confidence, then our estimate of
edges and other features in this region is more reliable.
Indeed, such subnetworks often correspond to biologically
meaningful relations between genes. While our a full-scale
network is currently of insufficient quality, statistically
significant sub-networks can reconstructed.

Naive Approach
A naive approach for finding subnetworks is as follows.
We start by selecting a threshold �� of significant confi-
dence. We can then construct a graph over variables, with
an edge between � and � if this Markov pair is signifi-
cant (beyond ��). In this graph we find maximal connected
components. Each non-trivial component (one that con-
tains more than three variables) is considered a seed of a
subnetwork. We expand each seed by adding variables that
are related to some variable(s) in the seed by a Markov pair
with confidence above ��, where �� � �� is an additional
parameter. In the experiments below, we use �� � ��
�
and �� � ���.

While the results found by the naive procedure make
biological sense, there are two drawbacks to this approach.
First, there is no measure of quality for the resulting
networks. Second, the seed is symmetrically expanded by
inclusion of all directly related variables. This overlooks
variables which are quite significantly, though indirectly,
related to the seed.

Score-based Approach
We propose to evaluate the significance of a subnetwork
in terms of the concentration of it features. We start by
estimating the probability of observing Markov pairs at
different confidence levels. Let � ��� be the probability
that random Markov pair ���� � has confidence����� �
of at least �. We estimate this probability by computing the
observed fraction of Markov pairs with confidence � and
higher among the

�
�

�

�
possible pairs in our domain.

Consider a subnetwork that contains the variables �
with Markov pairs ��� � � � � �	 that have confidences �� �
�� � 	 	 	 � �	 � ��, respectively, where �� is a threshold
we choose in advance. (In our experiments, we set �� �
���.) We want to evaluate the significance of the existence
of these edges among the variables in �. We do so, by
bounding the expected number of similar subnetworks we
expect to find under a null-hypothesis model. This model
assumes each edge confidence is sampled independently
from the same distribution � we observed in our data.

The probability of sampling the observed confidence
levels or higher for the particular edges ��� � � � � �	 is�

�
� ����. Thus, under the null hypothesis, the probability

of a subnetwork over � having confidence levels better
than ��� � � � � �	 is at most

�



	

��
�
� ���� where � � ���

and � �
�
�

�

�
. Since we search for a similar substructure

over all possible subsets of size � of ���� � � � ����, the
expected number of occurrences of such a subnetwork
overall is at most �

�

�

��
�

�

��
�

� ����

Thus, we evaluate potential subnetworks by a score
that bounds their E-value from above under the null
hypothesis.

To find subnetworks with optimal scores, we employ
a greedy hill-climbing search. This search starts with
candidate seeds, which are triplets of variables connected
by at least two high scoring edges. At each step of the
search we consider adding or removing a single variable
to the “current” subnetwork. We then select the operation
that leads to the best score. Once we reach a local
optimum, we add it to a pool of subnetworks. We repeat
this search from all potential seeds, and then return the
subnetworks that have E-value better (smaller) than a pre-
specified threshold (we use ���).

As a sanity check, we tried the procedure on randomized
data. We reshuffled the original data-set, thus eliminating
genuine dependencies between variables. We constructed
subnetworks from the randomized data and validated that
none of resulting subnetworks scored above our threshold.

DISCRETIZING GENE EXPRESSION DATA
Due to noisy experimental procedures and measurement
techniques, gene expression data must be handled with
care to ensure successful application of analysis methods.
Friedman et al. (2000) consider two strategies for treating
gene expression measurements. In the first strategy, they
discretize the expression levels to several discrete states
(e.g., “under-expressed”, “baseline”, and “over-expressed)
using a fixed discretization policy (e.g., 2-fold change
from control). In the second approach, they use the actual
measurements, and model dependencies with a linear
regression model. As they show, the first strategy is
sensitive to the discretization procedure, and the second
one is heavily biased toward linear dependencies.

In this paper, we introduce a new, adaptive, discretiza-
tion procedure that learns for each gene the distribution
of expression values in each state. In particular, this
procedure takes into account the gene-specific variation,
and uses it to differentiate which expression levels sig-
nificantly deviate from the baseline expression of the
gene.
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Our basic assumption is that each gene can be in few
discrete functional expression states, which relate to its
activity. Thus, it is convenient to model the expression
level of the gene in different experiments as samples from
a mixture of normal distributions, where each normal
component corresponds to a specific state. Once we
estimate such a mixture model, we can classify each
expression level to the most likely mixture component and
get a discretization. We use standard �-means clustering
to estimate such a mixture.

We face two issues. First, how many states of the gene
actually appear in the data? For some genes, only two
states (say, “baseline” and “over-expressed”) are actually
present in the data. Second, what initial start classification
should we use for �-means? Both choices are crucial to
get a sensible discretization.

To deal with both issues, we adopt the following
strategy. We use measurements of expression levels
in repeated wild-type experiments (i.e., measurements
of expression without perturbations) to estimate the
distribution of the gene’s expression level in its baseline
state. We then consider each measurement of the gene
in the perturbed samples, and determine whether it is
significantly over-expressed or under-expressed with re-
spect to its distribution in the control experiments. Based
on the outcome of this test, we place the measurement
in the appropriate classification for the initialization of
�-means. The number of mixtures we learn with �-means
is then the number of classes in this initial assignment that
contain some measurements. We then run �-means from
the initial point, and use the classification it determines as
the discretization for the gene.

The only question that remains is how to identify
significant changes in expression levels. We employ a
Bayesian procedure to estimate the posterior probability
over the mean and variance for a given gene (DeGroot,
1989) in the control experiments, and then test the
probability that the treated sample came from the same
distribution. For lack of space we omit the technical
details.

RESULTS
The Rosetta Inpharmatics Compendium (Hughes et al.,
2000) is a reference dataset compiled of 300 full-genome
expression profiles obtained from 276 deletion mutants, 11
tetracyclin regulatable alleles of essential genes, and 13
chemically treated S. cerevisiae cultures, each compared
to a baseline wild type or mock-treated culture. We
chose a subset of 565 genes which included the mutated
genes and genes which showed significant change in at
least 4 profiles. We used their 63 wild-type verses wild-
type measurements to estimate the baseline distribution
provided to our discretization procedure. The feature

confidences were computed using a 100-fold bootstrap
learning procedure. Each network requires approximately
1 hour CPU using an Intel III 600mhz processor with a 1
gigabytes RAM.

We have developed Pathway Explorer a visualiza-
tion tool for the resulting subnetworks. The network
is displayed as graph in which extensive local infor-
mation is associated with the undirected and directed
edges. We stress that no prior biological knowledge
was used by our learning procedure when recon-
structing the networks. The full annotated results can
be viewed using Pathway Explorer at our web site:
http://www.cs.huji.ac.il/labs/compbio/ismb01. Here we
focus on several examples that highlight the validity and
power of our approach.

Pairwise Relations
Biological analysis of individual Markov pair relations
indicates that many are supported by previous findings,
and represent either a known biochemical or regulatory
interaction, a shared common regulator, or a functional
link. Strikingly, the Pearson correlation coefficient be-
tween approximately a third of these “proof-of-principle”
gene pairs was lower than 0.7. Our method is capable of
discovering such relations because of the context specific
nature in which it handles the data. There are many biolog-
ical processes that occur only under specific conditions.
Correlation “misses” such interactions, which are only
apparent in part of the samples. (Scores for features are
presented in the following format: (Confidence, Pearson
correlation) for each such pair.) Two such “proof of prin-
ciple” Markov pairs are, Phosphoribosylaminoimidazole
carboxylase (ADE2) and Phosphoribosylamidoimidazole-
succinocarboxamide synthase (ADE1) (0.797, 0.518),
which catalyze the sixth and seventh steps in the de novo
purine biosynthesis pathway, respectively; and SST2,
a (negative) regulator of the mating signaling pathway
and STE6, the membrane transporter responsible for the
export of the “a” mating factor (0.914, 0.677).

Even pair-wise relations alone succeed in providing
new biological insight. For example, we studied an edge
relation (0.914, 0.162) from ESC4, a protein involved
in chromatin silencing to KU70, a key component of
the DNA non-homologous double strand break DNA
repair mechanism. This is a previously unknown link,
yet we supply strong supporting evidence from the
literature. First, other chromatin silencing genes (SIR2,
3, and 4) are necessary together with KU70 and KU80
for DNA end joining [W1].� Second, ESC4 contains 6
BRCT domains, that are known to occur predominantly
in proteins involved in cell cycle checkpoint functions
responsive to DNA damage [W2]. Together, these facts

�The notations [Wn] relate to additional citations appearing at our web site.
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clearly support both a functional association between the
two proteins and a regulatory directed interaction (from
ESC4 to KU70) assigning a new (putative) regulatory
function to ESC4 in double strand break repair. Note,
that a ku70 mutant strain is included in the compendium
data, while ESC4 had not been mutated. This illustrates
how our treatment of mutations aids in inferring causal
relations in a counter intuitive direction. While typical
analysis can only find the effect of a mutation, we find a
causal source (in wild-type strains) of a mutated gene.

Separator Relations
In this section we provide an illustration of the capability
of separator triplets to explain away dependencies, pro-
viding an enhanced insight into the underlying molecular
architecture of pathways. First, we consider three genes
each appearing in several undirected separator triplet rela-
tions. All three genes are well known mediators of tran-
scriptional responses, and the genes they separate share
functional roles and regulation patterns, consistent with
the separator serving as a common regulator.

The first gene, KAR4, is a mating transcriptional
regulator of karyogamy (nuclear fusion) genes, which is
known to pair with the mating transcription factor Ste12p
to activate genes required for nuclear fusion [W3]. KAR4
separates several pairs of cell fusion genes (e.g. AGA1
and FUS1). The second gene, SLT2, encodes the MAP
kinase of the cell wall integrity (low osmolarity) pathway,
which post-translationally activates (by phosphorylation)
the transcription factors Rlm1p and Swi4/6 which in
turn activate low osmolarity response genes [W4]. SLT2
separates several pairs of cell membrane and cell wall
proteins (e.g. YSP1) as well as previously uncharacterized
one (e.g. SRL3). In addition, an activation relation was
detected between SLT2 and YSP1 which is consistent with
SLT2’s known regulatory effect. The third gene, SST2, is
a post-translational negative regulator of the G-protein
in the mating signaling pathway [W5]. SST2 separates
the mating response genes TEC1 and STE6. Moreover,
a directed inhibition edge was discovered from SST2 to
STE6, consistent with SST2’s known inhibitory role in the
mating pathway.

We conclude that in all three cases, our inference has
reconstructed the regulatory role in the correct molecular
and functional context, revealing both transcriptional
and post-translational regulators. Furthermore, since
previously uncharacterized genes participated in some
of these interactions (e.g. SRL3 in SLT2, YNL276W in
KAR4) we could assign them putative functions, prob-
ably as effectors, in cell wall integrity and cell fusion,
respectively.

The power of separator relations at identifying indirect
dependencies can be appreciated to the fullest when ex-
amining d-separator relations (�–�–� ). The main dif-

ference between Markov-triplet and d-separator relations,
is that the mediating gene is itself not necessarily in a
direct Markov relation with the two genes it separates.
For computational efficiency we computed only singleton
separators appearing in paths of length at most 6. Strik-
ingly, in 35 of the resulting 120 interactions, the mediat-
ing (�) gene was either a transcriptional regulator or sig-
naling molecule.�� Such molecules were considerably less
frequent in the � and � positions (only 18 and 11 inter-
actions respectively). These results are consistent with a
co-regulatory role to the mediating gene.

The co-regulatory role of mediators is further empha-
sized by numerous examples. Each of the general tran-
scriptional regulator SIN3 and the GTP-binding signaling
protein RHO1 occupy the mediator position in several d-
separator relations (5 and 6, respectively). In each case,
a combination of statistical and biological evidence indi-
cates a co-regulatory role for these proteins. For example,
RHO1 mediates interactions between effector proteins that
affect the level of free glucose in the cell (glycogen phos-
phorylase GPH1, hexokinase 1 HXK1, the hexose trans-
porter HXT6 and � 1,4 glucan branching enzyme GLC3).
In some cases, the Markov relation between the two “ex-
treme” is high (0.97, 0.89), providing further support for
a co-regulatory role for RHO1. This novel finding identi-
fies a new regulatory spectrum for RHO1 and is consistent
with its activation of � 1,3 glucan synthase (which utilizes
UDP-glucose as a substrate). It also allows us to assign a
putative role to a protein of unknown function, YJL161W,
which appeared in one of the d-separator relations.

In some cases, d-separator relations provide support for
the regulatory role of putative transcription factors and
signaling molecules. For example, YPR015C, which has
two zinc finger motifs, appears as a mediator between
two uncharacterized genes with a high Markov score (X-
Y 0.92). In other cases, such relations identify functional
links that were not directly identified by pair or triplet
relations. For instance, no Markov relation was identified
between the two signaling proteins from the mating
pathway STE5 and STE11. They were identified, however,
within a significantly scored (0.5) d-separated triplet,
consistent with their shared functional role and physical
interaction (STE5 is a scaffold protein which complexes
with STE11 and other signaling proteins). These results
indicate the importance of d-separator relations in the
identification of indirect relations, in particular those
involving common regulatory and signaling molecules.

��The 8 transcriptional regulators at position � include general repres-
sors (ISW1(2 relations), TOP1(1), SIN3(5)), specific transcription fac-
tors (MTH1(1), RGT1(1), IMP2(1)), and putative transcriptional regula-
tors (YFL052W(1), YPR015C(1)). The 7 signaling molecules are KSS1(1),
MFA2(3), RAS1(6), RHO1(6), STE11(1), TFS1(3), YKL161C(2).
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(a) (b)

Fig. 1. Two subnetworks that visualize features discovered. (a) Iron
homeostasis (b) Mating response. The width of the arc corresponds
to the confidence of the feature. The edges are directed only when
there is high confidence in its orientation. Nodes circled with a
dashed line correspond to genes which have been mutated in some
of the samples. Arcs marked by a � sign are activators, size
corresponds to confidence of feature. Due to space limitations, the
iron homeostasis pathway is not discussed here.

Subnetwork analysis
The full power of our approach becomes apparent when
exploring subnetworks. We applied our naive approach
to constructing subnetworks (see above). In order to
obtain subnetworks that represent a coherent biological
processes, we then merged subnetworks whose genes
are known to be related to the same biological pro-
cess. This resulted in 6 well-structured subnetworks,
interleaved with additional higher and lower confidence
relations. Each of the subnetworks represents a coherent
molecular response: mating response, low osmolarity
cell wall integrity pathway, stationary phase response,
iron homeostasis, amino acid metabolism along with
mitochondrial function, and citrate metabolism (two are
depicted in Figure 1, all available at our website). Of
87 top scoring Markov pairs, 61 were appeared�� within
these subnetworks.

Our score based approach to constructing subnetworks
produced 5 highly significant networks, capturing 4 of the
6 partially hand-crafted networks. The subnetworks result-
ing from this method are usually larger and structured in
an almost modular fashion. They typically are composed
of tighter subnetworks (usually around a high degree
mediating gene) connected through high confidence edges
to other such tight subnetworks. Interestingly, most of
the high degree variables in these networks correspond to
known regulatory genes.

While Hughes et al. (2000) identify some of these
responses (amino acid metabolism, iron homeostasis and
mating) using clustering, our reconstructed networks

��An additional 16 relations could be explained as individual interacting
gene pairs or triplets, and only 10 relations currently remain unassociated
or unexplained.

provide a much richer context for both regulatory and
functional analysis. For example, they describe a large
cluster of genes associated with amino acid metabolism.
In our network, we can discern at least three finer struc-
tures with high confidence. The first involves the genes
ARG1, ARG3 and ARG5, all part of the urea cycle (and its
close periphery), which are known to be transcriptionally
co-regulated [W6,7]. The second, for sulfate metabolism
which further decomposes into two branches: one of sul-
fate transporters (SUL1 and SUL2) and the other of sulfate
assimilation (MET3, MET14, and MET22). The common
separator for these branches is the MET10 gene. The third
and major part of the network interleaves various enzymes
for amino acid metabolism (e.g. HIS4, HIS5, LEU4, ILV2
and ARG4) with mitochondrial proteins, most prominently
transporters and carriers (e.g. BAT1, OAC1, and YHM1).
A regulatory link has been found between the general
amino acid response and mitochondrial function [W8].
Thus, a large group of genes, which by correlation alone
would be simply clustered together, can be organized in
clear functional networks.

We use the mating response subnetwork, shown in Fig-
ure 1(b), to illustrate the power of our method to recon-
struct a coherent biological tale and raise novel biolog-
ical hypotheses. We discern two distinct branches , one
for cell fusion and the other for outgoing mating signal-
ing. According to our network, the cell fusion response
branch is mediated by the KAR4 gene (see above), and in-
cludes several known cell membrane fusion genes (FUS1,
AGA1, AGA2, PRM1 and FIG1) [W9,10,11,12] as well
as two genes previously unassociated with this process
(TOM6 and YEL059W). The multitude of high confidence
relations strongly suggests a putative role to KAR4 not
only regulation of nuclear fusion but also regulation of cell
membrane fusion.

Another branch in this network is directed from the
mating signaling pathway regulator SST2 (above). Since
an SST2 mutant has been incorporated in the compendium
we could determine edge direction, and identify SST2 as
a prime regulator of several other genes (TEC1, STE6,
MFA1) previously shown to be transcriptionally regulated
by the mating pathway [W13,14,15]. The regulatory
link from SST2 to KSS1 is intriguing as the two share
an interaction with MPT5, a multicopy suppressor of
transcript specific regulators of mRNA degradation in
yeast [W16,17], but KSS1 was not previously associated
with the mating pathway, but rather with the (related)
filamentous invasive growth response.

Some puzzling discrepancies exist in our network. The
first is the absence of the main transcription factor of
the pathway, STE12. This may be due either to loss of
information by our discretization procedure or to our bias
to reduce the number of false positive interactions. The
second, is the marginal position of the pathway’s MAP
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kinase, FUS3. This may be due to positive feedback,
rendering FUS3 both an activator and an activation target.
However, despite the knockout mutation in FUS3 we
have failed to identify directed regulation. We believe
that larger number of repetitions for each mutation will
enhance our framework’s capabilities to discover such
regulatory relations.

DISCUSSION AND FUTURE WORK
In this paper we extend the framework of Friedman
et al. (2000). We integrated into this framework a new
discretization procedure and a principled way for learning
with a mixture of observational and interventional data.
We examined new types of features that can be uncovered
using our analysis method. Last but not least, we presented
automated methods of integrating these features into
structures representing biological processes. We applied
these tools to analyze the Compendium data of S. cerevisiae
mutations (Hughes et al., 2000).

This analysis illustrates the differences between our
techniques and clustering methods. On the one hand, we
are able to discover inter-cluster interactions between
weakly correlated genes. On the other hand, we can
uncover finer intra-cluster structure among correlated
genes. This assists us in understanding the roles of genes
within a richer context and in assigning them putative
novel functions. The use of the Pathway Explorer greatly
facilitates such biological exploration. Both regulatory,
metabolic and signaling components are identified,
showing the potential of our approach to uncover the
three major types of molecular networks. We stress that
our approach cannot recover all interactions. Instead, we
attempt to provide the biologist with a number of highly
promising hypotheses.

The primary contribution of this paper is an automated
methodology for finding significant subnetworks of inter-
acting genes. These are shown to related to known bio-
logical pathways. Still, the issue of uncovering biological
pathways from gene expression data remains major chal-
lenge. A crucial issue is how to use prior biological knowl-
edge to improve the quality of analysis and increase the
number of novel interactions detected.

Additional directions for exploration include better
reconstruction of causal structure. Our analysis mostly
found mediators that were common ancestors. Yet, we
seldom found intermediate steps in causal chains. This is
partially due to the lack of repeated measurements of each
genetic mutant. Nevertheless, it poses a serious challenge
for methods of analysis. A related problem is identifying
latent factors (e.g., co-regulators) that interact with several
observed genes (Elidan et al., 2001).
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