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Abstract 

 

Motivation: We developed an algorithm to reconstruct ancestral sequences, taking into 

account the rate variation among sites of the protein sequences. Our algorithm maximizes 

the joint probability of the ancestral sequences, assuming that the rate is gamma 

distributed among sites. Our algorithm provably finds the global maximum. The use of 

joint reconstruction is motivated by studies that use the sequences at all the internal nodes 

in a phylogenetic tree, such as, for instance, the inference of patterns of amino-acid 

replacements, or tracing the biochemical changes that occurred during the evolution of a 

protein along a predefined lineage. 

Results: We give an algorithm that guarantees finding the global maximum. Our method 

is applicable for large number of sequences, because of the efficient search method. We 

analyze ancestral sequences of five homologous genes, exploring the effect of the amount 

of among-site-rate-variation and the degree of sequence divergence on the inferred 

ancestral states. 

Availability and supplementary information: http://evolu3.ism.ac.jp/~tal/  

Contact: tal@ism.ac.jp 
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1. Introduction 

 

By using extant sequences and the phylogenetic relationship among them, it is possible to 

infer the most plausible ancestral sequences from which they have been derived. 

Maximum likelihood (ML) is a general estimation paradigm, which has been widely 

utilized in evolutionary studies (Felsenstein 1981, review in Whelan et al. 2001). 

Maximum likelihood algorithms for ancestral sequence reconstruction were developed by 

Yang et al. (1995), Koshi and Goldstein (1996), and Pupko et al. (2000), and have been 

shown to be more accurate than maximum parsimony reconstructions (Zhang and Nei 

1997). Yang (1999) distinguished between two variants of ancestral ML reconstruction: 

“joint” and “marginal.” In “joint” reconstruction, one finds the set of all the HTU 

(hypothetical taxonomic unit; internal node) sequences. In the “marginal” case, one infers 

the most likely sequence in a specific HTU. The results of these two estimation methods 

are not necessarily the same (Pupko et al. 2000). The use of “joint” reconstruction is 

motivated by studies that use the sequences at all the internal nodes in a phylogenetic 

tree, such as, for instance, for inferring patterns of amino-acid replacement or the number 

of homoplasies in a tree. 

 

The rate of evolution is not constant among amino-acid sites (Uzzell and Corbin 1971; 

Yang 1993). Yang and Wang (1995) stated that “the most worrying assumption made in 

the model of Felsenstein (1981) is that substitution rates are constant across sites, which 

is unrealistic at least for sequences with biological functions”. The gamma distribution 

was used by Nei and Gojobori (1986) and Jin and Nei (1990) to model among-site-rate 

variation for nucleotides (see also, Ota and Nei 1994; Rzhetsky and Nei 1994; Yang 
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1994). Using gamma distribution to model among site rate variation was found to be an 

important factor in the fitting of models to data (Yang 1996).  

 

Yang (1999) devised an algorithm for “marginal” reconstruction that takes into account 

the rate variation among sites. To date, however, there are no “joint” reconstruction 

algorithms that take rate variation into account. In this study, we present a branch-and-

bound algorithm to reconstruct ancestral amino-acid sequences for gamma-distributed 

rates of amino-acid replacement.  

 

Using this new algorithm, we analyze five groups of homologous genes that had been 

previously used in ML-ancestral-sequence-reconstruction studies. We compare the results 

obtained from gamma-based ancestral-sequence reconstruction to those obtained without 

the assumption of rate variation among sites. 

 

2. Data and Methods  

 

Suppose that the distance between two sequences is d. i.e., on average, we expect d 

replacements per site. What is the distribution of this rate among sites? Models that do 

not take this variation into account assume that the variance among sites is zero, i.e., that 

all sites have the same replacement probability. Models that take this variation into 

account assume that at each position, the average number of replacements is d × r, where 

the parameter r is sampled from some predefined probability distribution. Since the mean 

rate over all sites is d, the mean of r is equal to 1. Yang (1993) suggested the gamma 

distribution with parameters α and β as the distribution of r: 
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The mean of the gamma distribution is α/β, and since this mean must equal 1, α = β 

(Yang 1993). The α parameter is estimated from the data (see below). In this study the 

discrete gamma model with k categories is used to approximate the continuous gamma 

distribution is used (Yang 1994). 

 

 

We assume that different sites evolve independently. Thus, we reconstruct ancestral 

sequences one site at a time. Hereafter, we address the reconstruction of a single site (for 

all HTUs). Let AV (ancestral vector) be the vector of character assignments to all the 

HTUs. For example, we consider the tree in Fig. 1, and use notation of that figure. For 

this tree, the AV is {D, H}. The probability of this AV given a rate parameter r is: 

 

 (2) 
{ }( ) ( ) ( )

( ) ( ) ( )355

41D

,H,H,P,H,H,D                      

,D,D,T,DH,D

trPtrPtrP

trPtrPPrP

⋅×⋅×⋅

×⋅×⋅×=
  

 

where PD is the frequency of aspartic acid (D) in the data, and ( )121 ,, trAAAAP ⋅  is the 

probability that amino acid AA1 will be replaced by amino acid AA2 along a branch of 

length  t1. Since r at each position is unknown, to calculate the probability of {D, H}, we 

average P({D, H}) over different r categories: 
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Thus, we have a method to evaluate the likelihood of each AV, and the most likely AV 

can be identified. Yang et al. (1995) first introduced this approach for the reconstruction 
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of ancestral sequences in the simple case of a homogenous rate among sites, and here we 

extend it to the more general heterogeneous case. 

 

In this study, models based on amino acid sequences were used. The replacement 

probabilities among amino acids were calculated with the JTT matrix (Jones et al. 1992) 

for nuclear genes and the REV model (Adachi and Hasegawa 1996) for mitochondrial 

genes. However, the approach presented here is also valid for nucleotide sequences and 

for any substitution model. 

 

For a phylogenetic tree with m HTUs there are 20m different AVs to be evaluated in order 

to find the most likely AV. This number can be reduced to cm, where c is the number of 

amino acids that are actually found at a position. For example, if only leucine and 

isoleucine are observed at a specific position, one can assume that no other amino acids 

except these two would be present in the most likely AV. Hence, in this example there 

are only two possible characters for each HTU, and the total number of possible AVs is 

2m. Nevertheless, if c is larger then 1, cm increases exponentially with m. The 

consequence of this exponent is that for trees with many OTUs and, hence, many HTUs, 

it is impractical to evaluate all the possible reconstructions. Pupko et al. (2000) devised a 

dynamic programming algorithm for the homogenous case. This algorithm reduces the 

number of computations to a linear function of m, and it was integrated into the PAML 

software (Yang, 1999). This algorithm guarantees the identification of the most likely set 

of ancestral sequences. However, this algorithm is inapplicable when r is gamma 

distributed because of the different expressions that have to be maximized (see below). 

Hence, a branch-and-bound algorithm for ancestral sequence reconstruction assuming 

ASRV (among-site-rate variation) is developed in this study. This is an exact algorithm 

that guarantees finding the global maximum likelihood. Although this algorithm is not 
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polynomial in the number of OTU’s, our method is applicable for large numbers of OTUs 

because of the efficient search algorithm. 

 

3. Algorithm 

 

Recall, that we assume independence of the stochastic process among sites and, hence, 

restrict the subsequent description to a single site. We also describe our algorithm in 

terms of amino acids, though the algorithm is general and can be applied to nucleotide or 

codon-based models as well.  

 

The input to our problem consists of the phylogenetic tree (with branch lengths), a prior 

distribution over possible rates, and a vector o of observations of characters at the leaves 

(which correspond to the observed amino-acids at this site in current-day taxa).  Our aim 

is to find a joint assignment of characters to the internal nodes, whose likelihood is 

maximal given the observations. 

 

We start by describing why dynamic programming is inapplicable to this problem. Such 

solutions are based on a ``divide and conquer'' property of standard phylogenetic trees; 

once we assign a character to an internal node, we break the problem into two 

independent sub-problems. When we introduce rate variation, this ``divide and conquer'' 

property fails - in order to separate the tree into two parts, we need to assign a value to an 

internal node and also fix the rate. Indeed, a dynamic programming algorithm for 

computing the likelihood of observation in ASRV models uses exactly these joint 

assignments (to an internal node and to the rate) in order to decompose recursively the 

likelihood computation. However, if we want to perform joint reconstruction we cannot 
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use this decomposition. The joint reconstruction requires finding the assignment to the 

internal nodes that will be most likely for all the rates. This reconstruction can differ from 

the maximal reconstruction given any particular rate. 

 

Our approach is to search the space of potential reconstructions. Given a putative 

reconstruction or partial reconstruction (that assigns values only to some of the internal 

nodes), we can compute its likelihood using the dynamic programming procedure 

discussed above. Thus, we can define a search space that consists of partial 

reconstructions. We can navigate in this space from one partial reconstruction to another 

by assigning values to an additional internal node. Our aim is to systematically traverse 

this space and find the full reconstruction with maximum likelihood. 

 

Of course, since there is an exponential number of reconstructions, we cannot hope to 

traverse all of the space. Instead, we use branch-and-bound search. The key idea of such a 

procedure is to prune regions of the search space by computing an upper bound on the 

quality of all solutions within the region. Thus, if the upper bound of a region is lower 

than a solution that was encountered earlier in the search, then the region can be pruned 

from the search. This process is repeated until all possible reconstructions were either 

evaluated or pruned.  

To carry out this idea we need to upper bound the likelihood of all possible extensions of 

a partial reconstruction σ.  Thus, we compute a function b(σ) such that 

(4) ( ) ( ) ( )oPb C σσ σσ ′≥ ∈′max  

 

where C(σ) is the set of all extensions of σ. (An extension to a partial reconstruction is an 

assignment of characters to the internal nodes that are not reconstructed in the partial 
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reconstruction.) We use the bound as follows: if we already found a reconstruction σ* 

whose likelihood is higher than b(σ), then we do not need to consider any extension of σ 

(since they are provably worse than the best reconstruction). The details of the procedure 

involve two key components: (a) methods for computing bounds, and (b) strategy for 

determining the order in which to traverse the space of reconstructions that are still 

“viable'' given the current bounds. 

 

In this work, we examine two types of upper bounds. The first is based on the observation 

that the probability of a partial reconstruction is the sum of the probabilities of the 

complete reconstructions that are consistent with it. More precisely, 

 

(5) ( ) ( ) ( )
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The second bound, is based on the following inequality: 
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Observe, that ( )orP ,max σσ  is the maximum likelihood of an ancestral reconstruction 

with a constant rate of evolution r. This can be calculated efficiently using dynamic 

programming as in Pupko et al. (2000). In practice, we compute both bounds and use the 

smaller value of the two as the bound. 

 

The second issue is the strategy for expanding the search. We need to traverse all possible 

reconstructions. We do so by a depth-first search (DFS) that starts with the empty partial 
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reconstruction, and recursively extends it. In each extension step our procedure selects an 

HTU that was not assigned in the current reconstruction and considers the possible 

assignments to this HTU and recursively expands each one in turn. When the procedure 

reaches a complete reconstruction it compares it to the best one found so far, and if it has 

higher likelihood, then it records the new solution as the best one. Such a procedure 

systematically searches all possible solutions and is thus impractical. By using the idea of 

“branch and bound” we prune parts of the search space by using upper bound. The 

modified DFS procedure is this:  

procedure Reconstruct 
begin 

σ* ← {} // empty set. 
 BestScore ← -∞. 

DFS( {} ) 
return σ* 

end 
 
procedure DFS ( σ ) 
begin 
 if σ is a full reconstruction then 
 begin 
  if P(σ|o) > BestScore then 
  begin 
   σ* ← σ 
   BestScore = P(σ|o) 
  end 
 end 
 else // sigma is a partial reconstruction 
 begin 
  if B(σ) ≤ BestScore then 
   return // Pruned σ and all its extensions 
  else 
  begin 
   // σ is not pruned, try to extend it 
   let H be an HTU not assigned in σ 
   for each a ∈ ∑ 
   begin 
    σ’ ← σ ∪ { H = a }  // Extend σ  
    DFS( σ’ ) 
   end 
  end 
 end 
end 
 

This abstract description of the procedure leaves open certain issues, to be decided by the 

implementer. It allows choice of the order in which we instantiate HTUs during DFS, and 
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the order in which try to extend them. The intuition is that we first want to search those 

assignments that are more likely to be correct. This will yield high scores during early 

parts of the search and facilitate more aggressive pruning. To guide the search towards 

promising candidates, we compute marginal probabilities for each amino acid for each 

node. At each point during the search where we need to choose the next node to be 

assigned an amino acid, or the amino acid to be assigned, we choose the assignment with 

the highest marginal probability. Thus, we first assign value to the node for which we are 

most certain about its value in the reconstruction. After assigning the amino acid to this 

node, we turn to the node with the second highest marginal probability. This way the first 

complete assignment is always the best marginal reconstruction. Thus, the first candidate 

reconstructions would have a high probability. This increases the chance that the bounds 

in subsequent moves would be lower than the best reconstruction found so far, i.e., high 

chances of pruning the search tree. Furthermore, using such strategy, it is more likely that 

the search tree is pruned at the nodes near the root, which helps prune out larger regions 

in subsequent moves. This strategy focuses the search on promising directions. 

 

Using our method we find the most likely reconstruction in each position. The likelihood 

of this reconstruction can be easily expressed as posterior probabilities, following Yang et 

al. (1995). Furthermore, to estimate the reliability of the reconstruction at each specific 

node, we followed Yang et al. (1995), and used the marginal probabilities. Thus, our 

program output for each position both its probability and the marginal probabilities of 

each of the character in each node. 

 

Our algorithm assumes as input a pre-chosen phylogenetic tree. However, in many 

practical cases, the tree is uncertain. In order to take into account the uncertainty of the 



 12 

phylogenetic tree, we analyze the ancestral sequence reconstruction based on several 

candidate trees, and evaluate the differences. 

 

4. Numerical examples 

 

To demonstrate our algorithm, we choose to analyze five genes that were previously 

analyzed using ML-ancestral sequence reconstruction. The datasets are: (1) Lysozyme c. 

69 representative sequences were chosen. ML based analysis of a limited number of 

sequences of the lysozyme c was done e.g., by Yang, et al. (1995). (2) Mitochondrial 

cytochrome oxidase subunit I, and  (3) Mitochondrial cytochrome oxidase subunit II. In 

each of these genes, 34 sequences are analyzed. ML-based ancestral sequences of 

cytochrome oxidase subunits I and II were reconstructed by Andrews and Easteal (2000). 

(4) Forty-nine opsin sequences. ML ancestral opsin sequences based on a smaller dataset 

were previously analyzed to study the evolution of red and green color vision in 

vertebrates (Yokohama and Radlwimmer, 2001; Yokohama and Radlwimmer, 1999; Nei 

et al. 1997). (5) ML-based ancestral sequences were also inferred from 73 steroid 

receptor sequences. Recently, Thornton (2001) analyzed a subset of 45 out of these 73 

sequences for “computational efficiency.” The advantage of using several datasets is to 

study the effect of different sequences, different tree topologies and different gamma 

parameters on our algorithm. Sequences were aligned using ClustalX (Thompson et al. 

1997). Positions with gaps were excluded from the analysis. Alignments and trees are 

shown at http://evolu3.ism.ac.jp/~tal/.  

 

The ML tree topologies for the lysozyme c and opsin datasets were obtained using the 

MOLPHY software (Adachi and Hasegawa 1996). For cytochrome oxidase subunit II, 
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and I tree topologies was taken from Murphy et al. (2001). The tree topology for the 

steroid receptor was taken from Thornton (2001). We note that in many cases, the 

likelihood of alternative trees for each gene are not significantly different from one 

another. While alternative topologies can be of great importance in phylogenetic studies, 

these alternative topologies have small influence on the performance of our algorithm. 

Hence a single topology was assumed for each dataset. Amino-acid replacements were 

assumed to follow the JTT model for the nuclear genes, and the REV model for the 

mitochondrial genes. Branch lengths for each tree were optimized twice – with and 

without assuming among-site rate variation.  

 

The alpha parameter of the gamma distribution was estimated with the ML method. To 

infer the ancestral sequences, the discrete gamma distribution with 4 categories was used 

(Yang 1994). The most likely α parameters found for each dataset are shown in Table 1. 

Some genes exhibit very high levels of among-site-rate variation (e.g., mitochondrial 

cytochrome oxidase subunit I), while other that show more homogenous distribution of 

rates (e.g., steroid receptor sequences). 

 

The log-likelihoods of the 5 gene trees used in this study (with and without the ASRV 

assumption) are given in Table 2. The substantial differences between the likelihood with 

and without assuming ASRV suggest the existence of high rate variation among sites. 

 

To compare between the different models, the Akaike Information Criterion (AIC) 

defined as AIC = -2 × log likelihood +2 × number of free parameters was used 

(Sakamoto et al. 1986). A model with a lower AIC is considered a more appropriate 

model (Sakamoto et al. 1986). In the gamma model, an additional free parameter is 

assumed, i.e., the shape parameter α of the gamma distribution. The AIC differences 
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between the two models (Table 2) are considered highly significant (Sakamoto et al. 

1986). 

 

We further compared the log-likelihoods of the reconstructions with and without gamma 

(Table 2). The AIC differences again favor the ASRV model for all five trees. Thus, the 

assumption of rate variation among sites yielded a significantly more likely tree-branch 

lengths and more likely ancestral-sequence reconstructions.  

 

The differences between the ancestral amino-acid reconstructions under the two models 

for the 5 genes are summarized in Table 3. One hundred and forty eight differences were 

found. Most differences were found in the steroid receptor gene. This is apparently due to 

the high rate of evolution of this gene relative to the other genes.  

 

For each internal node, and for each position there are 20 possible amino-acid 

assignments. Denote by h the number of internal nodes, and by l the length of the 

sequence. Thus, the complete “search-tree” has the size of l·20h
.  In other words, there are 

l·20h nodes in the search-tree. The minimum number of nodes that must be visited is 

l·h·20. Consequently, we define the efficiency as: 

 

(7) Efficiency  =  minimum number of nodes / the number of nodes visited 

 

The efficiency of the algorithm for the five genes together with the running time in 

seconds is summarized in Table 4. 

 

5. Discussion 
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Ancestral sequence reconstruction is widely used in evolutionary studies (e.g., Zhang et 

al. 1998). In this study, joint reconstruction method of ancestral sequences is 

implemented (Yang et al. 1995). This method assigns a set of characters to all interior 

nodes simultaneously (Yang 1999). In the PAML software (Yang 1999), the gamma 

model is implemented only for the marginal reconstruction (Yang et al. 1995, Yang 

1999). Using our branch-and-bound algorithm, we were able to find the global most 

likely ancestral-sequence reconstruction for trees with a large number of sequences. 

 

Differences in the AIC values between the homogeneous rate model and the gamma 

model indicate that the latter is more appropriate. This was true for all the genes. The 

largest AIC differences were found for genes with high levels of among-site-rate-

variation (opsin and co1). Interestingly, the difference in AIC was bigger for the steroid 

receptors than for lysozyme c which have lower alpha. This indicates that there is no 

direct relationship between the increase in the fit of the model to the data and the alpha 

parameter. Nevertheless, all AIC differences were above 250. These values suggest a 

very significant difference between the two models.  

 

It was expected that the number of differences between the ancestral amino-acid 

sequences with and without the assumption of among-site-rate-variation would be 

correlated to the alpha parameter. This pattern was not found: most differences were 

found in the steroid receptor gene, while the alpha parameter for this gene indicates low 

level of among-site-rate-variation. Our results suggest that the degree of evolutionary 

divergence is more important than the alpha parameter. The total branch length of the 

steroid receptor is more than three times the total branch length of lysozyme c and more 

than six times the total branch length of the other genes (Table 1). Thus, when the 
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evolutionary divergence is high, the uncertainty in the ancestral sequences increase. In 

such cases the underlying model assumed becomes more important.  

 

The very high efficiency values (Table 4) are the result of two components: the tight 

bounds, and the procedure based on the marginal probabilities to determine the order of 

nodes in the search tree. The steroid receptor gene was the least efficient (97.7%, Table 

4). This is possible due to the high rate of evolution in this gene. The average efficiency 

of the algorithm for all five genes was above 99% (Table 4). This result is heartening. 

Our goal was to develop an efficient algorithm to find the global most likely set of 

ancestral sequences assuming among-site-rate-variation. Not only this was achieved for 

all five genes, the efficiency values and the running times indicate that even bigger trees 

and longer sequences can be analyzed. 

 

The maximum likelihood framework in this paper makes some very explicit assumptions. 

For example in some specific positions, where positive Darwinian selection is suspected, 

selection forces might be responsible for deviation from the assumed replacement matrix. 

Another limitation of our method (and of all other methods currently available) is the 

assumption that different sequence positions evolve independently. This is most probably 

an unrealistic assumption. A better approach would be to assume that amino-acid 

positions, which are close to one another in the 3D structure of the protein, affect one 

another. Modeling such spatial correlations is an exiting topic for future studies. 
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Table 1: Datasets used in this study. For each dataset only one gene tree was used. 

Alignments and trees are available at http://evolu3.ism.ac.jp/~tal/. 

Alpha parameter is an ML estimate. Numbers of positions refer to the gapless alignment. 

Total tree length is the sum over all branch lengths. Co I and Co II stand for Cytochrome 

oxidase subunit I and Cytochrome oxidase subunit II, respectively. 

 

 
Dataset Number of 

positions 
Alpha parameter Total tree length 

Lysozyme c 120 0.92 5.77 
Co I 513 0.26 0.91 
Co II 227 0.48 1.77 
Opsin 272 0.33 2.16 

Steroid receptor 174 1.29 18.86 
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Table 2: Log-likelihoods of the trees and the ancestral amino-acid reconstruction of the 

five datasets.  ∆AIC is defined as in Sakamoto et al. (1986). Trees and ancestral-sequence 

reconstructions were evaluated either under the assumption of homogenous rate variation 

among sites (“Without Γ”), or assuming a gamma distribution of rates among sites 

(“With Γ”). Positive ∆AIC values indicate that the ASRV model is better than the 

homogenous model. Co I and Co II stand for Cytochrome oxidase subunit I and 

Cytochrome oxidase subunit II respectively. 

 

 

 
Dataset Log likelihood of tree Log likelihood of reconstruction 

 Without ΓΓ  With ΓΓ  ∆AIC Without ΓΓ  With ΓΓ  ∆AIC 

Lysozyme c -3809.02 -3669.51 277.02 -3886.7 -3759.64 252.12 

Co I -4268.65 -4014.57 506.16 -4421.5 -4133.72 573.56 

Co II -2720.59 -2594.06 251.06 -2833.71 -2665.41 334.6 

Opsin -4216.49 -3920.64 589.7 -4257.64 -3967.03 579.22 

Steroid 
receptor 

-9417.04 -9169.25 493.58 -9744.79 -9584.19 319.2 

Total -25144.3 -24110.0 2125.52 -24955.5 -23879.5 2066.7 
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Table 3: Differences between ancestral amino-acid reconstructions inferred with and 

without the assumption of rate variation among sites. The numbers in the second column 

refer to the position in the gapless alignment. In some positions more than one difference 

was found. The total number of differences is summarized in the third column. In all 

other nodes and positions, the two models yielded identical ancestral amino-acid 

reconstructions.  

 

Dataset Positions in which 
difference was found 

Total number of differences 

Lysozyme c 23, 37, 43, 117 10 
Cytochrome oxidase subunit I 3, 488, 489 5 
Cytochrome oxidase subunit II 22, 74, 224 9 

Opsin 8, 9, 50, 119 9 
Steroid receptor 1, 12, 13, 14, 15, 17, 18, 

19, 21, 22, 23, 28, 30, 
56, 65, 71, 73, 74, 79, 

80, 83, 92, 99, 102, 111, 
112, 117, 130, 132, 137, 
138, 140, 148, 150, 152, 
153, 157, 165, 168, 171 

133 
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Table 4: Efficiency and running times in seconds for the five genes in this study. 

Running times were computed on a 600 MHZ Pentium machine with 256 MB RAM. 

 

 
Dataset Efficiency (%) Running time (sec) 

Lysozyme c 99.62 4668 
Cytochrome oxidase subunit I 99.98 4373 
Cytochrome oxidase subunit II 99.93 1905 

Opsin 99.95 5199 
Steroid receptor 95.51 8609 

Sum 99.95 24756 
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Figure. 1: Unrooted phylogenetic tree with 4 taxa. All nodes are labeled: OTUs (1-4) and 

HTUs (5-6). ti are the branch lengths. Capital letters in parentheses are one letter 

abbreviations for amino acids. The AV for this tree is {D,H}. The ancestral vector (AV) 

is ordered such that the first amino acid (D) corresponds to the internal node (HTU) with 

the smallest label. 
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