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Abstract

Relational Markov Random Fields are a general
and flexible framework for reasoning about the
joint distribution over attributes of a large num-
ber of interacting entities. The main computa-
tional difficulty in learning such models is infer-
ence. Even when dealing with complete data,
where one can summarize a large domain by suf-
ficient statistics, learning requires one to com-
pute the expectation of the sufficient statistics
given different parameter choices. The typical
solution to this problem is to resort to approx-
imate inference procedures, such as loopy be-
lief propagation. Although these procedures are
quite efficient, they still require computation that
is on the order of the number of interactions (or
features) in the model. When learning a large re-
lational model over a complex domain, even such
approximations require unrealistic running time.

In this paper we show that for a particular class of
relational MRFs, which have inherent symmetry,
we can perform the inference needed for learning
procedures using template-level belief propa-
gation. This procedure’s running time is propor-
tional to the size of the relational model rather
than the size of the domain. Moreover, we show
that this computational procedure is equivalent to
sychronous loopy belief propagation. This en-
ables a dramatic speedup in inference and learn-
ing time. We use this procedure to learn rela-
tional MRFs for capturing the joint distribution
of large protein-protein interaction networks.

Introduction

values given some observations [11], classification [22],
and model selection [20]. All of these tasks require the
ability to perform inference in these models. Since in many
models exact inference is infeasible, most studies regort t
approximate inference such as variational approximations
[12] and sampling [8]. Unfortunately in many cases even
these approximations are computationally expensive. This
is especially problematic in settings where inference is pe
formed many times, such as parameter estimation.

In this paper we show that we can exploit symmetry
properties of relational models to perform efficient approx
imate inference. Our basic observation is that symmetry
in the relational model implies that many of the interme-
diate results of approximate inference procedures, such as
loopy belief propagation, are identical. Thus, instead of
recalculating the same terms over and over, we can per-
form inference at the template level. We define formally a
large class of relational models that have these symmetry
properties, show how we can use them to perform efficient
approximate inference and compare our results with other
methods. This is, to the best of our knowledge, the first ap-
proximate inference algorithm that works on the template
level of the model. However, this efficient inference proce-
dure is limited to cases were we have no evidence on the
model, since such evidence can break the symmetry prop-
erties. Nevertheless, we show that in many cases, inference
with no evidence is useful, especially in learning tasks. Fi
nally, we show a real life application by learning the prop-
erties of a model for protein-protein interactions.

2 Symmetric relational models

Relational probabilistic models [6, 9, 18, 21] provide alan
guage for defining how to construct models from reoccur-
ring sub-components. Depending on the speaifitantia-

tion, these sub-components are duplicated to create the ac-
tual probabilistic model. We are interested in models that

Relational probabilistic models are a rich framework for can be applied for reasoning about the relations between
reasoning about structured joint distributions [6, 9]. ISuc entities. Our motivating example will be reasoning about
models are used to model many types of domains like thé¢he structure of interaction networlesd., social interaction
web [22], gene expression measurements [20] and proteimetworks or protein-protein interaction networks). We now
protein interaction networks [11]. In these domains, theydefine a class of relational models that will be convenient
can be used for diverse tasks, such as prediction of missinigr reasoning about these domains. We define a language



that is similar to ones previously defined [19], but also a bit
different, to make our claims in the following section more
clear.

As with most relational models in the literature we dis-
tinguish thetemplate-level model that describe the types of
objects and components of the model and how they can be
applied, from theanstantiation-level that describes a par-
ticular model which is an instantiation of the template to a
specific set of entities.

To define a template-level model we first set up the dif-
ferent types of entities we reason about in the model. We ® fT =Tix---xT thenZ(T) = Z(Ty)x - X I(Th).
distinguishbasic entity types that describe atomic entities o If 7' = T} thenZ(T) = {[e1,...,ex] : €1,...€x €
from complex types that describe composite entities. I(T1),e1 < -+ < er} where< is some (arbitrary)
order overZ(T) .

Figure 1: An instantiation of the graph scheme over a domfin o
three vertices.

Definition 2.1: Given a setlysic = (11, - .., Ty) of basic

entity typeswe define two kinds ofomplex types Once we define a set of basic entities, we assume that all

e If Ty,..., T} are basic types, thefy, x --- x T}, de-  possible complex entities of the given type are defined (see
notes the type obrdered tuples of entities of these Figure 1 for an instantiation of the graph example).
types. Ifey,..., e are entities of typed?, ..., Ty, The basic and complex entities define the structure of
respectively, theke, . . ., ex) is of typeTy x - - - x T}, our domain of interest. Our goal, however, is to reason
e If T is a basic type, thefi’* denotes the type ain-  about the properties of these entities. We refer to these
ordered tuples of entities of typel'. If ey,...,e, are  Properties asitributes. Again, we start by the definition
entities of typeT’, then|ei,...,ex] is of typeT*.  atthe template level, and proceed to examine their applica-

When considering ordered tuples, permutations of thdion to a specific instantiation:
basic elements still refer to the same complex entity.
Thus, if e1,es are of typeT, then bothle;, e2] and
[e2, e1] refer to the same complex entity of ty@e.

Definition 2.3: A template attribute A(T") defines a prop-
erty of entities of typ&". The set of values the attribute can
take is denote¥al(A(T)). 1

i A template attribute denotes a specific property we ex-
For example, suppose we want to reason about undirectgebct each object of the given type to have. In general,
graphs. If we define a typ&, for vertices then an undi- we can consider attributes of basic objects or attributes of
rected edge is of typ€, = T since an edge is a compos- complex objects. In our example, we can reason about the
ite object that consists of two vertices. Note that we usecolor of a vertex, by having an attribuf®lor(T,,). We can
unordered tuples since the edge does not have a directioalso create an attributexist(7.) that denotes whether the
That is, both[vi, v2] and [ve, v1] refer to the same rela- edge between two vertices exists. We can consider other at-
tionship between the two vertices. If we want to modeltributes such as the weight of an edge and so on. All these
directed edges, we need to reason about ordered tuplésmplate attribute are defined at the level of the scheme and
T. =T, x T,. Now (vq, v2) and(va,v1) refer to two dis-  we will denote by.A the set of template attributes in our
tinct edges. We can also consider social networks, whereodel.

vertices correspond to people. Now we might also add &  Gijyen a concrete entity instangeve consider all the at-
typeT; of physical locations. In order to reason about rela-ripytes of each instantiated type. We view the attribufes o
tionships between vertices (people) and locations we neeghjects as random variables. Thus, each template attribute
to define pairs of typé}, = T;, x T;. Note that tuples that i, 4 defines a set of random variables:
relate between different types are by definition ordered.

Once we define the template-level set of tygesver Xz(A(T)) = {Xale) :e € Z(T)}
some set of basic typeg, .sic, we can consider particular

instantiations in terms of entities. We defineXzs = Ua(r)eadz(A(T)) to be the set of all

o o o random variables that are defined over the instantiation
Definition 2.2: An entity instantiation Z for (Zoasic,7) 7. For example, if we consider the attribut€lor

consists of a set dfasic entities€ and a mapping : £ —  over vertices andxist over unordered pairs of vertices,
Thasic that assigns a basic type to each basic erlity. -
. o . ) . For example, considering undirected edges again, we think
Based on an instantiation, we create all possible instantiaf [y, v,] and[v2, v1] as two different names of the same entity.
tions of each type ifT": Our definition ensures that only one of these two objects ihén
set of entities and we view the other as an alternative neéeréo
o if T € ThasicthenZ(T) ={ec & :0(e) =T} the same entity.



and suppose thaf = {v,v2,v3} are all of typeT,, Arguments Formal Attr. | Function
then we have three random variables Af(Color(T},)) entities
which are XColor U1 aXColor V2 aXColor U3 ), and H — —
four random varia(ble)s in X((Exi)st(Te)) (wh)ich are ¢ (%:%}) [ng’le Bist | fo(z) = Hz =1}
Kpxist ([v1, v2]), XExist ([v1, v3]), and so on.
Given a set of types, their attributes and an instantia- Fi | (61,62,83) El’g Exis: fi«%fhzi’ ﬁ)/\:
tion, we defined a universe of discourse, which is the set [é:{;] Eaiot (2 —1)A
X7 of random variables. Amttribute instantiation w (or (Ty, T, T | T.,T., T (3s=1) }
just instantiation) is an assignment of values to all random
variables intz. We use botlw(Xa(e)) andza(e) torefer  tapje 1: Example of two template-level features for a graph
to the assigned value to the attribdt®f the entitye. model. The first is a feature over single edges, and the second
We now turn to the final component of our relational IS ©ne over triplets of coincident edges (triangles).
model. To define a log-linear model over the random vari-

ablesxz, we need to introducteatures that capture pref- We view a template-level feature as a recipe for gen-
erences for specific combinations of values to small 9rouPgrating multiple instance-level features by applying dif-

of related random variables. In our graph example, we Cafarant bindings of objects to the arguments. For exam-
introduce a univariate feature for edges that describes thﬁe in our three vertices instantiation. we could create in

prior potential for the existence of an edge in the graph. Agiances of the featur®, such asfs(Xexist([v1, v2])) and
more complex feature can describe preferences over lsriple%(XEXist ([v1, v3])). We now formally define this process.
of interactions €.g., prefer triangles over open chains).

We start by defining template level features as a recipPef'n't'on_z'S: L_et. f be a template feature V\{lth.compo—
that will be assigned to a large number of specific sets oﬂer_]ts as in Dgflmtlon 24 and Iét be an entity m_s_tan-
random variables in the instantiated model. Intuitively, atiation. A binding of 7 is an ordeqred t“P'e _Ok _ent|t|es
template feature defines a function that can be applied to § = (¢1:- - -»¢x) such thae; € Z(T77). A binding islegal
set of attributes of related entities. To do so, we need to pro! €ach entity in the binding is unique. We define
vide a mechanism to capture sets of entity attributes with
particular relationships. For example, to put a feature ove _
triangle-like edges, we want a feature over the variables : fis legal for 7}
Xexist ([v1, v2]), Xexist ([v1,v3]), and Xgxist ([v2, v3]) for

every choice of three verticas, v, andvs. The actual  y go 0 o entity:; |5 to be the entity corresponding to
definition, thus involves entities that we quantify ovep(e. . . .
when we assigm; to the argumeng;. Finally, we define

V1, V2, anc_ivg), the complex entities over these argumentstheground feature 7 ; o be the function oves:
we examine (e.g.[v1,v2], [v1,vs], and [ve,vs]), the at-

tributes of these entities, and the actual feature. Flaw) = f (w(Xa, (1]8)), - - - w(Xa, (g5]5))

Bindings(F) = {8e€Z(T{) x --- x I(T})

Given a bindings = (e1,...,ex) € Bindings(F), we

Definition 2.4: Template FeatureA template feature F is I
defined by four components:
For example, consider the bindifig; , vo, vs) for F; of Ta-

e Atuple ofarguments (¢1, ..., &) with a correspond-  ble 1. This binding is legal since all three entities are ef th
ing list of type signature (T7, ..., T}!), such that; proper type and are different from each other. This binding
denotes an entity of basic tyfé. defines the ground feature

o A list of formal entitiesey, ..., e;, with correspond- Fitl s m 0y (@) =

ing typesTlf, cee ij such that each formal entityis
either one of the arguments, or a complex entity con-

structed from the arguments. (For technical reasonsrhat IS, (0, v,05) (w) = 1iff there is a triangle of edges

we require that formal entities refer to each argumenietween the vertices;, vs, andvs. Note that each bind-
at most once.) ing defines a ground feature. However, depending on the
o Alist of attributesA, (77),..., A; (). chpice of featgre function, some of these ground f(_aatt_Jres

_ ; ; might be equivalent. In our last example, the binding
o Afunction f : Val(Ai(T{)) x -+ x Val(A;(T})) — R.  (y; vy, 0,) creates the same feature. While this creates a
redundancy, it does not impact the usefulness of the lan-
i guage. We now have all the componentsin place.

f3(IExist([Ul, 112]), IExist([Ul, 03]), xExist([Uz, 03]))

For example, Table 1 shows such a formalization for aDefinition 2.6: A Relational MRF scheme S is defined by
graph model with two such template level features. a set of typesr, their attributes4 and a set of template



features# = {Fi,...,Fr}. A mode is a scheme com- each pair of verticep;, v;] a variable nod& gyist ([vs, v4])-
bined with a vector oparameters§ = (6;,...,0;) € R*.  We consider two template features - the triangle feature
Given an entity instantiatiod a scheme uniquely defines we described earlier, and a co-colorization feature that de
the universe of discours&z. Given all this together we scribes a preference of two vertices that are connected by
can define the joint distribution of a full assignmenas: an edge to have the same color. To instantiate the trian-
gle feature, we go over all directed tuples of three vertices

k . .
_ 1 . B = (v;,v;,vx) € Bindings(F;) and defineus with scope
Pw:8,1,6) = Z(6,7) eXPZ;GZ]:Z(w) @ Cs = {Xeast([viv)]), Xewist([vi, vk])s Xewist([v5, vk]) }-
= See Figure 2(a) to see such a factor graph for an instan-
where (with slight abuse of notation) tiation of4 vertices. This factor graph is faithful since each
ground feature is assigned to a dedicated feature node.
Filw) = Z Fils(w) Loopy belief propagation over a factor graph is defined
peBindings(F:) as repeatedly updating messages of the following form:
is the total weight of all grounding of the featufg, andZ
is the normalizing constarll. mx—w(r) = H Me—x ()

w1 XeC,/,w'#w
This definition of a joint distribution is similar to stan-
dard log-linear models, except that all groundings ofatem-muﬁx(x) - Z emwlew] H My (2
plate feature share the same parameter [4]. o Xymn X£XieC,
3 Compact Approximate Inference wherec,, (X) is the value ofX in the assignment of values

. ) c, to C,. When these messages converge, we can define
One broad class of approximate inference procedure argegjief about variables as

variational methods[12]. Roughly speaking, in such meth-

ods we approximate the joint distribution by introducing bo(cyw) o e 7] H Mx—w(Co(X'))
additionalvariational parameters. Depending on the par- X'eC

ticular method, these additional parameters can be thought

of as capturing approximation of marginal beliefs about seWhere the beliefs ove€,, are normalized to sum ta.
lected subsets of variables. Although the general idea wéhese beliefs are the approximation of the marginal proba-
present here can be applied to almost all variational methbility over the variables irC., [23].

ods, for concreteness and simplicity we focus hertoopy Unfortunately, trying to reason about a network over
belief propagation [16, 23] which is one of the most com- 1000 vertices with the features we described earlier, will
mon approaches in the field. produce('%) variable nodes (one for each edge),"%")

To describe loopy belief propagation we consider theedge feature nodes ardd- (*%°) triplet feature nodés

data structure of factor graph [14]. A factor graphis a bi- Building such a graph and performing loopy belief propa-
partite graph that consists of two layers. In the first layergation with it is a time consuming task. However, our main
we have for each random variable in the domaiarable  insight is that we can exploit some special properties &f thi
node X. In the second layer we havactor nodes. Each ~ model for much efficient representation and inference. The
factor nodew is associated with a s€,, of random vari- basic observation is that the factor graphs for the class of
ables and a feature,. If X € C,, then we connect the models we defined satisfy basic symmetry properties.

variable nodeX to the factor node.. Graphically we draw Specifically, consider the structure of the factor graph
vr_:mable nodes as circles and factor nodes as squares (sg@ described earlier. An instantiation of graph vertices de
Figure 2(a)). fines both the list of random variables and of features that

A factor graph isfaithful to a log-linear model if each will be created. Each feature node represents a ground fea-
feature is assigned to a node whose scope contains there that originates from a legal binding to a template fea-
scope of the feature. Adding these features multiplied byture. The groundings for an edge feature and for an edge
their parameters defines for each potential nodepoten-  random variable span two vertices, while the grounding of
tial functionn,[c,,] that assigns a real value for each valuetriplet feature covers three vertices. Since we are consid-
of C,. There is usually a lot of flexibility in defining the ering all legal bindingsi(e., all 2-mers and 3-mers of ver-
set of potential nodes. For simplicity, we focus now on fac-tices) while spanning the factor graph, each edge variable
tor graphs where we have a factor node for each groundode will be included in the scope dfedge feature nodes
feature. and(n — 2) - 3 triplet feature nodes. More importantly,

For example, le_t us consider a model _over a graph 2since we defined the template feature using ordered tuples
where we also depict the colors of the vertices. We creand our edges are defined using unordered tuples, we will have

ate for each vertex; a variable nodeXcqo(v;) and for  two features over each edge and three features over ealel. trip



since all the edge variables have the same “local neighbor-
hood”, they will also compute the same messages during

belief propagation over and over again. We now formalize Ei3.61.C3 V|- 1}e
this idea and show we can use it to enable efficient repre- / & ECJ
; i | &,
sentation and inference. Eis C1.C4 4
Definition 3.1: We say that two nodes in the factor graph Ez3.C2.Cs . Eji
have the samiype if they were instantiated from the same ‘ ] -
template (either template attribute or template featdie). Bus Lakn
Given this definition, we can present our main claim for- B34 Cs.Ce
: Y| ¢
ma”y' 1 BE12 Ez3.Ei13 G —3 ¢
Theorem 3.2:In every stage of synchronous belief prop- —
agation that is initiated with uniform messages;ifv,, are 1 Guz Bralia _ c
from trle same typetand alsg, v; are from the same type N Bus BaoBis E E':k
thenmviﬁvj (‘T) = mvkﬁvl (‘T) ~ —
. . - E23 E24.E34
We start by proving the local properties of symmetry of the ‘
model: (a) Full factor graph (b) Compact factor graph

Lemma 3.3: In a model created according to Defini- Fi ,

- . . igure 2: Shown are the full (a) and compact (b) factor graphs

tion 2.6, if two nodes in the factor graph have the sam&ygdeling a colored graph. We have basic types for colors and

type, then they have the sartueal neighborhood That  vertices, and a complex type for edges. We consider two teenpl

is, they have the same number of neighbors of each type. features - the triangle feature and a co-colorization featéor
clarity, Xe«ist ([vi,v;]) is shown asF; ; and Xcoior(v;) is shown

The proof of Theorem 3.2 is a direct consequence oksC;. Orange edges show the edges connected to edge variables

Lemma 3.3 by induction over the stage of the belief propaand green edges are connected to color variaiésshows the

gation. We now turn to prove Lemma 3.3: number of vertices in the graph.
Proof: If v; andv; are feature nodes, then since they are of

variables in its scope, this proves our claim. However; if
andv; are variable nodes, it suffices to show that they tak
partin the same kind of features, and in the same number Qf | ..« 1o re than one variable of the same type, the cor-

Iﬁa:ures of ea|<|:|h Sufg.k'dn.d' l;lote th‘::the:'mt'OE 2'6.Sh(|)wsresponding edge splits to the corresponding ports when ar-
that we use afl legal binding for €ach teaiure. For simp IC'riving to the factor node. In addition, each ground variable

ity, we will assume that; is mst_antlate(_j from the attribute node takes part in many features that were instantiated by
of some basic typg (the proof in case it is a complex type the same template feature with different bindings. Hence,

is similar). We need to compute how many ground feature%ach edge from a template feature node to a template at-

C(.?[.nta'gvé in their scopteh, a;mljl ?r? nlot C?Bt_ag} Frotr;? ??f"l d tribute node in the template factor graph is assigned with
nition .5 Wwe can see that all the lega’ bindings that Incilde, number indicating the number of repetitions it has in the
v; and do not include; are legal also if we replacg with

full factor graphll
’Uj. I

in the template factor graph we term an association to a
%ariable inside a template feature noptet . If a factor
0

_ ) Figure 2(b) shows such a template factor graph for our run-
After showing that many calculations are done over an%ing example.

over again, we now show how we can use a more efficient

representation to enable much faster inference. Running loopy belief propagation on this template fac-

tor graph is straightforward. The algorithm is similar te th
Definition 3.4: A template factor graph over a template standard belief propagation only that when an edge in the
log-linear model is a bi-partite graph, with one level cerre template-graph represents many edges in the instance-leve
sponding to attributes and the other corresponding to temfactor graph, we interpret this by multiplying the apprepri
plate features. Each template attribtit¢hat corresponds ate message the appropriate number of times. Since Theo-
to a formal entity in some template featufeés mappedtoa rem 3.2 shows that at all stages in the standard synchronous
template attribute node on one side of the graph. And each belief propagation the messages between nodes of the same
template feature is mapped taamplate feature node on  type are similar, running belief propagation on the termgplat
the other side of the graph. Each template attribute node igactor graph is equivalent to running synchronous belief



propagation on the full factor graph. However, we reduced
the cost of representation and inference from being propor-
tional to the size of the instantiated model, to be propor-
tional to the size of the domain. Specifically, this represen

tation does not depend on the size of the instantiations and
can deal with a huge number of variables.
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4.1 Inference

We start by evaluating our method in inference tasks. We N
build a model representing a graph using the univariate andm
triangle features described in the previous section and per
forminference with various parameter combinations. In the
first step we consider instantiations of small graphs where
we can also perform exact inference. We compared ex-n_
actinference, MCMC (Gibbs sampling) [8], standard asyn- 8
chronous belief propagation [23], and compact belief prop-
agation on the template-level model. A simple way to com- -
pare inference results is by examining the marginal be- 3 vertices
liefs. Such a comparison is possible since in all methods

the computed marginal probabilities for all edge variablesFigure 3: Comparison of inference methods via marginakfeli
were equal. Hence, Figure 3 shows a comparison of th&ach panel visualizes the the probability of an interactioren
marginal distributions over edge variables for differeatp W€ vVary two parameters: the univariate potential for irtgom

. . . (y-axis) and the the potential over closed tripletaxis). The
rameter settings and different inference methods. \We ObcoIor indicates probability where blue means probabilibser to

serve that in small graphs the marginal beliefs are very simg and red means probability closer to The first row of panels

ilar for all inference methods. To quantify the similaritew shows exact computation, the second MCMC, the third stahdar
calculate the relative deviation from the true marginal. Weasynchronous belief propagation, and the fourth our cotripac

find that on average MCMC deviates by118 from the lief propagation.

true marginal (stdev.0159), while both belief propaga-

tion methods deviate on average®y143 (stdev:0.0817) ) , , i

and are virtually indistinguishable. However, in the graphbe“ef pfopaga“o” are |r_1feaS|bIe, we compare.only the
over 7 vertices we notice that exact inference and MCMCCOmDaCt belief propaga_tlon and MCMC (_see F'Q“re 5)-
are slightly different from the two belief propagation meth While th_ere are some d|fferenc_es in marginal beliefs, we
ods in the case where the univariate parameter is small arf€ @9ain that in general there is good agreement between

the triplet parameter is large (lower right corner). the two inference procedures. As the graph becomes larger
the gain in run-time increases. Since the mixing time of

An alternative measurement of inference quality is theMCMC should depend on the size of the graph (if accuracy
estimate of the partition function. This is especially im- is to be conserved), running MCMC inference on a 100-
portant for learning applications, as this quantity setees node graph takes minutes. As expected, compact BP still
compute the likelihood function. When performing loopy runs for only0.07 seconds since it depends on the size of
belief propagation, we can approximate the log-partition,e scheme which remains the same. For protein-protein

function urs]lng the Bethfe r?pIprOX|ma_1t_|onf[23]._ Asbsegenl_ MNinteraction networks over hundreds of vertices (see below)
Figure 4, the elst|rr;ate Okt ehog partmoln unction by bRlie 5| inference methods become infeasible except for com-
propagation closely tracks the exact solution. Moreowr, a,a .+ palief propagation,

in the marginal belief test, the two variants of belief propa
gation are almost indistinguishable. It is important tessr 42 P i imati
that running times are substantially different between the™ arameter estimation

methods. For example, using exact inference with the Tonsider the task of learning the paramet@s =

vertices graphi(e., one pixel in the matrices shown in Fig- 9, . ¢,) for each template feature. To learn such param-
ure 3) takes30 seconds on a 2.4 GHz Dual Core AMD eters from real-life data we can use thileximum Likeli-
based machine. Approximating the marginal probabilitynood (ML) estimation [4]. In this method we look for the
using MCMC takes).3 seconds, standard BP taki€ssec-  parameters that best explain the data in the sense that they
onds, and compact BP take$)7 seconds. find argmax,.op(D|6). Since there is no closed form for

On larger graphs, where exact inference and standarfinding the maximum likelihood parameters of a log-linear
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S vertices 7 vertices interaction as a function of parameter settings. On therfistis
MCMC and the second row shows our compact belief propaga-
tion.

e

)

3 vertices

Figure 4: Comparison of inference methods for computing th
log-partition function. Each panel visualizes the logtjpian

function (or its approximation) for different parametetts®y (as 0s _ 0 os . 0
in Figure 3). In the belief propagation methods, the logipan 0 0
function is approximated using the Bethe free energy apprax -05 15 -os 15
tion. On the first row is the exact computation, the second row - . o .
shows standard asynchronous belief propagation and tiolerthav -15 20 15 -20
shows our compact belief propagation. o "

-2.5 | | -25 -2.5 -25

0

) -1 0 -2 -1
model, a common approach is to resort to greedy search @ (b)

methods such as gradient ascent. In such approaches an ef- ) .
ficient calculation of the derivative is needed. The partialFigure 6: Learning trace of the parameters using exact @) an

. Lo ‘ approximate (b) inference on a 7 vertex graph. In both panels
derivative of the log likelihood(D) for a parametef; that |~ - ofgy1, are shown on the-axis while values ofio; are

corresponds to a template featufecan be described as:  shown on they-axis. The dark line shows the advancement of
the conjugate gradient learning procedure, and the brigfietia
ol(D) in the middle shows the original parameters used for geingrat
00, the samples. Color scale shows the exact and approximate log
likelihood respectively

Where E [F;] is the number of times we actually see the
featurej in D, and

E[F;] = > E[F

B€Bindings(F;)

= E[F;] - Ey|F}] 2

of the exact search is much shorter, and retrieves better pa-
rameters.

We now proceed to learning a real-life model over inter-
actions between proteins. We build on a model described
is the sum of times we expect to see each grounding oih [11] for protein-protein interactions. This model is &na
the featurej according to© (see [4]). The first term is ogous to our running example, where the vertices of the
relatively easy to compute in cases where we learn frongraph are proteins and the edges are interactions. We de-
fully observed instances, since it is simply the count ofeac fine the basic typd), for proteins and the complex type
feature inD. And the second term can be approximatedT; = [T, T},] for interactions between proteins. As with
efficiently by our inference algorithm. edges, we consider the template attribit€T; ) that equals

To evaluate this learning procedure we start by generane if the two proteins interact and zero otherwise. We rea-
ing samples from a model using a Gibbs sampler [8]. WeSON about an instantiation for a set&if3 proteins related
then use these samples to estimate the original parametéfs DNA transcription and repair [2]. We collected statis-
using exact and approximate inference. In this synthetidicS over interactions between these proteins from various
context, we model a graph over seven vertices using onlgXPeriments [1, 7, 13, 15].
triplet (¥;) and open chainX.) features and try to recover We adopt an incremental approach considering only the
the parameter of these features. As can be seen in Figure §mplest template feature at the beginning and adding more
using both approximate and exact inference retrieved pacomplex features later on (this approach is somewhat sim-
rameter values that are close to these we used to generalar to Della Pietraet al. [4]). We start by learning a
the data. However, we can see that since the approximataodel with only univariate features over interactions. As
and exact likelihoods create a different scenery, the tracexpected, the parameters we learn reflect the probability



x 10" beliefs and likelihood is much larger. In such cases the in-
-1 teresting region - where likelihood is high - narrows to a
- small range of parameter values of the abundant feature.

5 Discussion

-5 We have shown how we exploit symmetry in relational

MRFs to perform approximate inference at the template-
level. This results in an extremely efficient approximate
inference procedure. We have shown that this proce-
Figure 7: Exploration of the approximate log-likelihoochta  dure is equivalent to synchronous belief propagation in the
scape. In this example, the univariate parameter is fixesl, thground model. We have also empirically shown that on

weights of two features over three interactions, trianghel a : : :
chains, are varied, Theaxis shows the triangle parametér i) small graphs our inference algorithm approximates the true

and they-axis shows the chain parametéi(). The dark lines marginal probability very well. Furthermore, other approx
show traces of conjugate gradient runs initiated from eabjt ~ imation methods, such as MCMC and asynchronous BP

starting points. The bright triangles mark the final parameal-  yield inference results that are similar to ours. Note that
ues returned by the algorithm. other works show that synchronous and asynchronous be-
lief propagation are not always equivalent [5].

Other works attempted to exploit relational structure for
of an interaction in the data. We can now consider moramore efficient inference. For example, Pfefétral. [17]
complex features to the model by fixing the univariate pa-used the relational structure to cache repeated computa-
rameter and adding various features. We start by addingons of intermediate terms that are identical in differient
two featuresF; andF. that describe the closed triangle of stances of the same template. Several recent works [3, 18]
interactions and open chain of interactions respectively. derive rules as to when variable elimination can be per-
Using our efficient inference approximation we can formed at the template level rather than the instance level,

reevaluate the likelihood and its derivative for many param Which saves duplicate computations at the instance levels.
eter values and thereby gain an unprecedented view of thENese methods focus on speeding exact inference, and are
likelihood landscape of the model. For example, Figure 7€levant in models where the intermediate calculations of
shows the log-likelihood calculated for a grid of parameter€Xact inference have tractable representations. These ap-
values and traces of a conjugate gradient learning procdroaches cannot be applied to models, such as the ones we
dure initialized from different starting points. We find tha Consider, where the tree-width is large, and thus intermedi
this view of the likelihood function is highly informative ate results of variable elimination are exponer_mal. In-con
as it shows the influence of different parameter values offast, our method focuses on template level inference for
the model behavior. Specifically, the results show that théPProximate inference in such intractable models.
likelihood sensitivity to each parameter is quite differen We stress that the main ideas developed here can be ap-
This can be seen as a horizontal ridge in the upper part dflied in other variational methods such as generalized be-
the region, meaning that changesin; have smaller ef- lief propagation or structured mean field. Furthermore, it
fect on likelihood value than changestf ;. This behav- s clear that the class of relational models we defined is not
ior might reflect the fact that there are 3-times more occurthe only one that has symmetry properties that can be ex-
rences of open chains than occurrences of closed trianglgdoited by our procedure. In fact, all the relational models
in the graph. Furthermore, our unique view of the likeli- that obey Lemma 3.3 can be run in template level. For ex-
hood landscape, and especially the horizontal ridge we seample, it can be shown that a square wrap-around grid also
illustrate that there is a strong relation between the paranobeys such symmetry.
eters. As each of the gradient ascent runs converge 0 @ The key limitation of our procedure is that it relies on
different local maxima, we can use the landscape to dethe Jack of evidence. Once we introduce evidence the sym-
termine whether this a consequence of rough landscape @fetry is disrupted and our method does not apply. While
the approximate likelihood or is due to redundancies in thens seems to be a serious limitation, we note that inference
parametrization that result in an equi-probable region.  yithout evidence is the main computational step in learn-
We repeated the same exploration technique for otheing such models from data. We showed how this proce-
features such as colocalization of proteins [11], star@ an dure enables us to deal with learning problems in large re-
star-3 [10], and quadruplets of interactions (results notational models that were otherwise infeasible. Though the
shown). We find that the overall gain in terms of likeli- search space proves to be very difficult [10], our method
hood is smaller than in the case of triplet features. Againallows us to perform many iterations of parameter estima-
we find that whenever one of the features is more abundarion in different settings and thereby get a good overview
in the network, its influence on the approximate marginalof the likelihood landscape. This brings us one step closer
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