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Abstract

In recent years, considerable effort has gone
into understanding default reasoning. Most of
this effort concentrated on the question of en-
tailment, i.e., what conclusions are warranted
by a knowledge-base of defaults. Surprisingly,
few works formally examine the general role
of defaults. We argue that an examination of
this role is necessary in order to understand de-
faults, and suggest a concrete role for defaults:
Defaults simplify our decision-making process,
allowing us to make fast, approximately op-
timal decisions by ignoring certain possible
states. In order to formalize this approach, we
examine decision making in the framework of
decision theory. We use probability and utility
to measure the impact of possible states on the
decision-making process. We accept a default
if it ignores states with small impact accord-
ing to our measure. We motivate our choice of
measures and show that the resulting formal-
ization of defaults satisfies desired properties
of defaults, namely cumulative reasoning. Fi-
nally, we compare our approach with Poole’s
decision-theoretic defaults, and show how both
can be combined to form an attractive frame-
work for reasoning about decisions.

We make numerous assumptions each day: the car
will start, the road will not be blocked, there will be
heavy traffic at 5pm, etc. Many of these assumptions
are defeasible; we are willing to retract them given suf-
ficient evidence. Humans naturally state defaults and
draw conclusions from default information. Hence, de-
faults seem to play an important part in common-sense
reasoning. To use such statements, however, we need
a formal understanding of what defaults represent and
what conclusions they admit.

The problem of default entailment—roughly, what
conclusions we should draw from a knowledge-base of
defaults—has attracted a great deal of attention. Many
researchers attempt to find “context-free” patterns of
default reasoning (e.g., [Kraus et al., 1990]). As this re-
search shows, much can be done in this approach. We
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claim, however, that the utility of this approach is lim-
ited; to gain a better understanding of defaults, we need
to understand in what situations we should be willing to
state a default.

Our main thesis is that an investigation of defaults
should elaborate their role in the behavior of the reason-
ing agent. This role should allow us to examine when a
default is appropriate in terms of its implications on the
agent’s overall performance. In this paper, we suggest a
particular role for defaults and show how this role allows
us to provide a semantics for defaults. Of course, we do
not claim that this is the only role defaults can play.

In many applications, the end result of reasoning is a
choice of actions. Usually, this choice is not optimal,
there is too much uncertainty about the state of the
world and the effects of actions to allow for an exam-
ination of all possibilities. We suggest that one role of
defaults lies in simplifying our decision-making process
by stating assumptions that reduce the space of exam-
ined possibilities. More precisely, we suggest that a de-
fault ¢ — ¥ is a license to ignore — situations when
our knowledge amounts to .

One particular suggestion that can be understood in
this light is e-semantics [Pearl, 1989). In e-semantics, we
accept a default ¢ — ¥ if given the knowledge ¢, the
probability of =1 is very small. This small probability of
the = states gives us a license to ignore them. Although
probability plays an important part in our decisions, we
claim that we should also examine the utility of our ac-
tions. For example, while most people think that it is
highly unlikely that they will die next year, they also
believe that they should not accept this as a default as-
sumption in the context of a decision as to whether or
not to buy life insurance. In this context, the stakes
are too high to ignore this outcome, even though it is
unlikely. We suggest that the license to ignore a set
should be given based on its impact on our decision. To
paraphrase this view, we should accept Bird — Fly if
assuming that the bird flies cannot get us into too much
trouble.

To formalize our intuitions we examine decision-
making in the framework of decision theory [Luce and
Raiffa, 1957]. Decision theory represents a decision prob-
lem using several components: a set of possible states, a
probability measure over these sets, and a utility function
that assigns to each action and state a numerical value.



Classical decision theory then uses the expected utility of
an action as a measure of its “goodness”.

In order to define defaults we need to understand when
can we “safely ignore” a set of situations. When we ig-
nore a set of situations consistent with our knowledge
@, our expected utility calculations will only approxi-
mate the expected utility of actions given ¢. Such an
approximation can lead to erroneous perception of the
quality of actions, and consequently, to bad decisions.
We suggest that a set of states can be safely ignored if a
reasonably good action is chosen even when these states
are ignored. Consequently, we consider a default ¢ — ¥
to be “safe” if the action we choose when we consider
only (¢ A v)-states is a good approximation (in terms
of expected utility) of the action we would choose had
we considered all p-states. To implement this idea we
propose a measure on sets of states that captures their
impact on the outcome of the decision-making process.
We accept the default ¢ — 1 when the measure of p A=t
is very small relative to that of ¢. We will show that the
proposed measure satisfies our stated desideratum.

Our measure takes into account two factors: the prob-
ability of the set and the utilities of actions on this set.
If the probability of a set is small, then it seems that we
can ignore it. However, if the utilities of actions on this
set are extreme, as in the insurance example above, then
we might not want to ignore it. On the other hand, if
the utilities of all actions on the set are very close, then
all actions look similar on this set, so we should focus on
the differences among actions elsewhere.

The contribution of this paper is twofold: First, it ad-
vocates a more concrete approach to the study of defaults
in which a specific role for defaults is required; with such
a role we can gain a better understanding of the se-
mantics, formal properties, and applications of defaults.
Second, it proposes a particular role for defaults in our
decision-making process and examines suitable formal
semantics that fulfill this role. Thus, we can understand
the implication of various properties of defaults in a con-
crete setting: we can examine how such properties affect
the agent’s decision-making process. Moreover, our se-
mantics grounds defaults in a well-established theory—
decision theory. Thus, we can use the tools provided by
this theory when formalizing our intuitions about deci-
sion making. It also provides common ground with other
work that shares these tools. In particular, we examine
the relation between our defaults and statements such “if
©, than a is an optimal action” that have been studied by
Poole [Poole, 1992]. We combine the two types of state-
ments in one framework, leading to a rich knowledge
representation language. Because Poole’s work shares
the fundamental notions of decision theory, we can inte-
grate his approach into our framework in a semantically
clean way. Finally, decision-theoretic defaults supply us
with a method for compiling decision-theoretic informa-
tion into a compact form. This compact form may allow
for faster, albeit approximate, on-line decision making.

We are certainly not the first to note the importance
of utility considerations in default reasoning. Similar in-

tuitions were mentioned in many of the early works on
default and defeasible reasoning (e.g., [McCarthy, 1980]).
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In particular, several works use expected utility consid-
eration in evaluation of heuristic rules (e.g., [Langlotz
et al., 1986]). More recently, decision-theoretic founda-
tions for defaults were advocated by Shoham (1987) and
Doyle (1989). Doyle provides a formal analysis of “Pas-
cal’s wager” and shows how an assumption (the existence
of God) can be justified in terms of utility. Finally, Poole
(1992) examined a concrete notion of defaults that are
grounded in terms of decision theory. Unlike previous
works (with the exception of [Poole, 1992], see Section 3)
we make decision theory the basis of a formal definition
of defaults.

This paper is organized as follows. In Section 1, we re-
view the basic framework of decision theory and relevant
results in default reasoning. In Section 2, we formalize
our notion of defaults. We start with a simple defini-
tion and show that while it captures our intuitions to
some extent, it has some deficiencies. In particular, it
fails to satisfy several basic desired properties of default
reasoning. We then develop a stronger notion of defaults
that does satisfy these desirable properties. In Section 3,
we relate our suggestion to Poole’s decision-theoretic de-
faults [Poole, 1992]. We show that while these two no-
tions are quite different, they can be combined to create
a framework for reasoning about decisions. We conclude
with a discussion in Section 4.

1 Preliminaries
1.1

We start by reviewing the basic setting of decision the-
ory. (For more details, see [Luce and Raiffa, 1957].)
Decision theory deals with decisions in the face of
uncertainty. A decision-theoretic context is a tuple
(8,0, A,Pr,U), where S is a set of possible states of
the world before the decision is made; O is a set of pos-
sible outcomes of actions, i.e., states of the world after
the decision is made and carried out; A is a set of pos-
sible actions, each one is a function from § to O; Pr is
a probability measure over S that captures (subjective)
likelihood of each state; and U is a utility function that
maps outcomes in O to real numbers, that quantify the
desirability of outcomes. In the following discussion, we
usually assume that &, O and A are fixed, and do not
mention them explicitly.

In a fixed decision-theoretic context the expected utility
of an action a given evidence £ C § is defined as

EUpevy(alE) = > Pr(s|E) - U(a(s)),

Decision Theory

where Pr(s|E) is the conditional probability of s given
the evidence E. Classical decision theory prescribes
that given our assessment of a probability and utility
measures and given evidence E, we should choose an
action that maximizes expected utility, 1.e., an action
a such that EUp: p)(all) = maxees EUprv)(d|E).
We denote by MEUp, y)(E) the expected utility of the
best action given £, i.e., maxsrea EUipr vy(a’|£), and by
mEUrpy v)(E) the expected utility of the worst action,
i.e., mingea EUprpy(a’| ). (From here on we omit the
subscript (Pr, U) whenever it is clear from the context.)



We note that decision theory is only interested in the
relative ordering of actions, given E, i.e., the relations
between EU(a|E) and EU(a'|E). Since using a utility
measure U'(:) = ¢ - U(*) + ¢q, for some ¢; > 0 and
2, leads to the exact same conclusions, decision theory
treats U and U’ as equivalent.

Decision theory usually does not deal explicitly with
how we describe events or actions. However, in our dis-
cussion of defaults we describe events using a logical lan-
guage. We assume that there is a language £ that is
closed under the usual propositional connectives and a
truth-assignment m that assigns to each state s € S a
subset of £. Intuitively, w(s) is the set of sentences that
are true at s. We require that the following conditions

hold:
o ¢ € m(s) if and only if —p & 7(s).
e o Ay € m(s) if and only if ¢ € w(s) and ¢ € 7(s).

From now on we will use Pr(yp) as an abbreviation of

Pr({sly € (s)}).

1.2 Defaults

The study of default statements has a long tradition
in artificial intelligence (see [Ginsberg, 1987; Gabbay
et al., 1993] for overviews). We denote by ¢ — ¢
the statement “if ¢ then by default ¥”. A typical ex-
ample is the following statements: Bird — Flies and
Bird A Penguin — —Flies. These two defaults state that
birds typically fly, but penguins are exceptional and typ-
ically do not fly: default statements differ from material
implication in that they allow for exceptions. Defaults
are intuitively appealing and seem to provide a natural
language for specifying common-sense knowledge. For-
mal understanding of defaults turns out to be quite elu-
sive; there has been a great deal of discussion in the lit-
erature as to what the appropriate semantics of defaults
should be. While there is little consensus on the seman-
tics of defaults, there has been some consensus on reason-
able “core” properties defaults. This core was suggested
by Kraus, Lehmann and Magidor (1990) and consists of
the following properties:
REF. ¢ — ¢ (Reflexivity).
LLE. If ¢ = ¢/, then from ¢ — ¢ infer ¢’ — ¢ (Left
Logical Equivalence).
RW. If ¥ = ¢/, then from ¢ — 9 infer ¢ — ¢’ (Right
Weakening).
CUT. From ¢ — 1 and ¢ A ¢1 — s infer ¢ — 5.
CM. From ¢ — 91 and ¢ — ¢y infer p A Y1 — ¥y
(Cautious Monotonicity).
OR. From @1 — ¥ and ¢y — 9 infer 1 V gy — 3.
REF states that ¢ is always a default conclusion of ¢.
LLE states that the syntactic form of the antecedent
is irrelevant: logically equivalent antecedents have the
same consequences. RW describes a similar property of
the consequent: If ¢ (logically) entails ¢/, then we can
deduce ¢ — ¢’ from ¢ — 1. This allows us to combine
default and logical reasoning. CM and CUT state that
if 41 is a default conclusion of ¢, then s is a default
conclusion of ¢ if and only if it is a default conclusion of
@A1: Discovering that ¢ holds (as would be expected,
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given the default) should not cause us to retract or add
other default conclusions. OR states that we are allowed
to reason by cases: If the same default conclusion follows
from each of two antecedents, then it also follows from
their disjunction.

Kraus, Lehmann and Magidor focus on consequence
relations. A consequence relation captures a particular
way we make assumptions. Given a pair of formulas ¢
and ¢, this relation determines whether we are willing to
assume ¥ given the knowledge ¢. Formally, they define
a consequence relation Cn to be the set of defaults, such
that ¢ — ¢ € Cn if ¥ is among the consequences of .
Kraus, Lehmann and Magidor characterize cumulative
reasoning by system C, composed of REF, LLE, RW,
CM, and CUT, and preferential reasoning by system P
that contains system C and OR. A consequence rela-
tion is cumulative (resp. preferential) if it satisfies sys-
tem C (resp. system P), i.e., the set of defaults is closed
under applications of these rules. They suggest that a
“reasonable” consequence relation should be preferen-
tial. Furthermore they provide representation theorems
for cumulative and preferential consequence relations us-
ing order relations over worlds. While we do not go into
the motivation for these rules, they are accepted as rea-
sonable “core” properties that nonmonotonic reasoning
should satisfy.

Surprisingly, Pear] (1989) describes a probabilistic no-
tion of defaults, e-semantics, that leads to preferential
consequence relations. Intuitively, e-semantics accepts
a default ¢ — ¢ if Pr(—¢|p) is very small. Formally,
to model “very small”, e-semantics examines behavior
in the limit. A parameterized probability distribution’
PPD is a family = {Pr, | n > 0}. Given a PPD, PP,
the induced consequence relation is

Cn(PP)={p — 1| lim Pr(=y|p) = 0}.%

Then it can be shown that:

Lemma 1.1: [Goldszmidt et al., 1993] Cn is a prefer-
ential consequence relation if and only if there is a PPD

PP such that Cn= Cn.(PP).

2 Decision-Theoretic Defaults

Our approach is based on the following idea: Given an
appropriate measure of a set of states importance in the
decision-making process, we can ignore those states of
negligible importance. Thus, we will accept the default
¢ — ¥ if the “importance” of ¢ A =1 is very small in
comparison to the importance of ¢. In what follows, we
investigate two definitions that try to capture this idea.

2.1 Basic Definition

One natural candidate is the maximal expected utility of
a set. Suppose we know that we are in the set ¢. Then
we can write

EU(alg) = Pr(]e)- EU(alpA)+Pr(=¢|p)- EU(alpA—b).

Our presentation follows the formulation of [Goldszmidt
et al., 1993].

2To handle cases where Pr,(¢) =0, we define Pr,,(—9|p)
to be 0 when Pr,(¢) = 0.



Thus, Pr(—¢|e) MEU(p A1) is an upper bound on the
contribution of =% to the value of actions in ¢. However,
this may be misleading. For example, the expected util-
ity of all actions on @ A= might be the same high value.
Intuitively, in this case =% plays no role in determining
what action is best on ¢, yet MEU(p A —¢) is large.
Moreover, as we noted above, any positive linear trans-
formation of utilities (i.e., define U'(:) = ¢1 - U(:) + ¢2
for some constants ¢; and ¢g, s.t., e > 0) should not
change our conclusions. Yet, we can use such a trans-
formation to blow up the maximum expected utility on
sets. Therefore, instead of using MEU as the estimate,
we use the following “normalized” measure:

G(pryU)(A) =def MEU(A) — mEU(A)
= max (EU(a|A) - BU(@|4)) (1)

(Again, we omit (Pr,U) when it is clear from the con-
text.) We call G(A) the gain of A, since it measures
how much can be gained if we choose a good action
instead of a bad one on A. It is easy to check that
Pr(—=%¢|p) - G(p A =) bounds the potential loss incurred
by ignoring —% in the computation of expected utilities
of actions:

|EU(ale)—Pr(]p)- EUlalpAY)| < Pr(=9|p)-G(eA—).

However, we should remember that this error is relative
to G(g), since we cannot do worse than mEU(yp) nor
better than MEU(yp). This suggests that when we are
willing to tolerate an error ratio of € we can ignore —
when we know ¢ if

Pr(=¢[p) - Glp A )
G(y)
That is, Pr(¢|e) - EU(ale A ¢) is € close to the actual
expected utility on @ when we know ¢.

However, we usually do not want to fix an arbitrary e.
We overcome this problem by examining what happens
in the limit when our threshold approaches 0. A param-
eterized decision-theoretic context (PDC) is a sequence
{(Pr,,Uy,)|n > 0} of decision-theoretic contexts. Such a
sequence describes our assessment of the decision prob-
lem when we successively lower the size of “ignorable”
quantity. We define our first notion of defaults, which we
will call “weak” for reasons that will become apparent
below.

Definition 2.1: A PDC P = {(Pr,,U,)|n >0}
(weakly) satisfies the default ¢ — ¢, denoted P =,
¢ — v, if

<e

Pro(=¢)p)  Ga(=¢ A p)
Gn(@)

where (G, is an abbreviation for G(prmUn).?’ |

lim
n—oo

=0, (2)

We define the consequence relation Cny, (P) = {¢ — ¢ |
Py =1}

3In order to handle defaults in situations where Gn(A) =0
in a reasonable manner, we use throughout the paper the
following definition: % = 0 whenever z = y = 0, and % is

infinitely large, i.e., unbounded, when z > y = 0.
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Note that, according to this definition, we ignore = if
the product of Pr(—¢|p) and the gain of ¢ A =% is small.
In line with our intuitions, this definition weighs both
the probability of the set, and the utility of actions on
states in the set. It is also easy to see that this definition
generalizes e-semantics. If we choose utilities such that
Gp(A) = ¢, for some constant ¢, for all non-empty sets
A, then (2) becomes lim, .o Pr,(—t|p) = 0, which is
equivalent to the definition of defaults in e-semantics.?
Thus, under certain choices of the utility function our
definition becomes equivalent to e-semantics.

Proposition 2.2: There is a utility function U,, such
that for each PPD PP = {Pr,, | n > 0}, the PDC Ppp =
{(Pr,,U.) |> 0} is such that Cn(PP) = Cny(Ppp).

Above we stated the desideratum that defaults should
not affect the quality of our decisions. Intuitively, an ac-
tion is approximately optimal if, in the limit, its expected
utility over E is almost as good as MEU, (E). Formally,
we say that an action a is approzimately optimal on a
set £ with respect to a PDC P, if

MEUL(E) — EUp(a|E)

Again, we must normalize by G,(E) to avoid being sen-
sitive to positive linear transformations. We say that a
default ¢ — ¢ is approzimation safe (with respect to P)
if every approximately optimal action on ¢ A ¥ is also
approximately optimal on . This implies that choosing
a good action on ¢ A ¢ leads to a good action on ¢.

Theorem 2.3: If P =, ¢ — ¥, then ¢ — ¢ is approa-
imation safe w.r.t. P.

lim =0

Definition 2.1 satisfies our stated criteria of approxi-
mation. However, the induced consequence relations, in
general, are not cumulative. In particular, RW does not
hold. Consider the following example, where we have
two propositions p and ¢, and four equiprobable states.
Utilities (for any n) of two actions a; and a, are defined
according to this table:

| pAg | pA—q | -pAg | —pA—q |
10 0 5 5
10 10 10

It is easy to check that true — —p is satisfied according
to Definition 2.1, simply because G(p) = 0. However,
true — (—pV—gq) is not satisfied since G(pAg) = 10. RW
is violated because the gain of a set might be small, while
the gain of (some of) its subsets might be very high. This
phenomena occurs because of “canceling out”, i.e., ac-
tions that are good on one subset are bad on another,
and vice versa. In our example, a; and as “cancel out”
on p. When we examine the whole set, this phenomenon
is undetectable, since we only examine the expected util-
ities of actions. It is easy to construct similar counterex-
amples to CUT, CM and OR.

This example shows that Definition 2.1 is quite weak.
Before we discuss this issue, we examine what properties

a
as 0

*In fact, it suffices to require that U, is such that for all
non-empty sets A, 0 < ¢ < Gn(A) < d for some constants c,
d. This implies that P |=4 ¢ — ¥ if and only if {Pr,} |=c

/,

Y=y



are satisfied by this definition. We define the following
weak variant of RW:

RW,,. If ¢y = 4, then from ¢ — ¢; and ¢ — (¢3 =
1) infer ¢ — .

To understand the nature of this rule, we need to ex-
amine properties of G. As we noted above, if B C A,
then G(A) does not necessarily provide an upper bound
on G(B). This is an artifact of “canceling out”, i.e., a
big difference in the expected utility of actions on B is
canceled out by their expected utility on G(A\ B). But
this implies that if G(B) is much bigger than G(A), then
G(A\ B) must also be big. In fact we can show that if
G(A) is “small”, then G(B) and G(A\ B) must be of the
same magnitude. Using this insight we can understand
RW,: From ¢ — ¢ we infer that G(¢ A —¢1) is small.
The formulae ¢ A =901 A =1p3 and ¢ A =1 A Y2 form a
disjoint partition of ¢ A—=t1; if one of them is small, then
the other is also. From ¢ — (2 = ¢1) we conclude that
G( A1 Ahg) is small, hence G(@A—11 A—y) is small.
But, this is exactly the desired conclusion.

Similar reasoning leads to the following weak versions
of CUT and CM:

CUT,. From ¢ — ¢1, ¢ — 1 Vs and ¢ A Y1 — 3,
infer ¢ — 5.

CM,. From ¢ — ¢1, ¢ — ¥1 V ¢y and ¢ — 1o, infer
p A1 — .

Let system C, be the system containing REF, LLE,
RW,, CUT, and CM,,. We can then show:

Theorem 2.4: If P is a PDC, then Cny(P) satisfies
system C,,.

It is unclear to us at this stage whether system C,, is
complete, or whether there are other rules that hold for
this definition. Notice that From CUT, and RW we
can derive CUT, and from CM,, and RW we can derive
CM. Thus, the main difference between system C,, and
system C is the weaker version of right weakening.

These results show that the most natural definition of
defaults that satisfies our decision-theoretic desiderata
(i.e., being approximation safe) has very weak proper-
ties. We consider the failure to satisfy properties of cu-
mulative reasoning to be a serious one. Two properties
of cumulative reasoning are especially important. The
first is the AND property:

AND. From ¢ — ¢ and ¢ — 15 infer ¢ — 1 A 5.

This property is derived from system C (see [Kraus et
al., 1990]). This property deals with modularity of as-
sumptions. It states that if we can safely assume ; and
also safely assume 15, then we should be able to assume
both. This property, however, is not guaranteed by Defi-
nition 2.1. The other property is CM. It states that if we
happen to learn that some of our assumptions are true,
we do not retract our previous assumptions. Suppose,
for example, that I assume by default that my car will
start, and that it is a sunny day. If, I then learn that
the day is sunny, it seems intuitive that I should not
need to retract my conclusions about the car. Again,
this property is not guaranteed by Definition 2.1.
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In general, we believe that properties of cumulative
reasoning are indeed basic properties of any notion of de-
faults; if we do not satisfy cumulative reasoning, we must
reexamine our assumptions whenever we have additional
information, even if this information is consistent with
our previous default conclusions. Such behavior seems
undesirable. Thus, we would like to add the additional
desideratum that accepted defaults are cumulative. This
leads us to ask: is there a natural definition of decision-
theoretic defaults that satisfy both desiderata?

2.2 Strong Definition

We have seen that our definition of defaults is “almost”
cumulative, except that it does not satisfy RW. The
problem was that even if G(A) is small, it might be that
G(B), for some subset B of A, is very large. In other
words, the measure G(A) is not informative about the
behavior of actions on subsets of A. To overcome this
problem we introduce a more cautious measure of sets.
We define

Acpr,v)(A) =der max Pr(B|A) - Gproy(B)  (4)
for non-empty A, and define A¢p, ) (0) = 0. (Again, we
omit the subscript when it is clear from the context.) It
is easy to check that if B C A, then Pr(B|A4) - A(B) <
A(A). Thus, A(A) is more informative about the be-
havior of subsets of A than G(A4). In particular, if for
some €,

Pr(—le) - A(-¢ A p)
G() =
then we can conclude that
Pr(—'|p) - G(=¢' A )
G(e)

for all ¥’ such that ¢ = ¥’. This suggests that the
following definition satisfies our desiderata.

<e

Definition 2.5: A PDC P = {(Pr,,U,)|n >0}
(strongly) satisfies the default ¢ — ¢, denoted P =
e —y,if
Pr,(=v|e) - Ap (=9 Ay
lim (=¢lp) (¢ Ap) =0, (5)

n—oo

Gn(p)

where A, is an abbreviation for Ap,, v,). 11

We define the (strong) consequence relation of P as

Cns(P) =aet {¢ — ¥|P |Es ¢ — ¢}. It is easy to verify
that this definition of defaults is indeed more restrictive
than Definition 2.1.

Proposition 2.6: Let P be a PDC. If P =5 ¢ — 1,
then P =y ¢ — .

An immediate corollary is that if ¢ — 1 is strongly
satisfied by P then it is approximation safe with respect
to P. Moreover, we can show that this notion of defaults
satisfies cumulative reasoning.

Theorem 2.7: If P is a PDC, then Cns(P) satisfies
system C.



We conjecture that system C is complete with respect
to the class of all PDCs, i.e., a consequence relation Cn
is cumulative if and only if there exists a PDC P, such
that Cn = Cn,(P).

This result shows that Definition 2.5 satisfies our
desiderata using a natural decision-theoretic construc-
tion. It might seem that our definition of A is somewhat
arbitrary. Indeed, as we show in the full version of this
paper, similar properties are satisfied by other measures
as well. Roughly, we show that A’ satisfies Proposi-
tion 2.6 if and only if A/,(A) provides an upper bound,
in a certain precise sense, on G, (A), and A’ satisfies The-
orem 2.7 if and only if A(A) provides an upper-bound
on Pr(B|A) - A(B) for B C A. We claim that A is the

most natural member of this family.

2.3 The OR Rule

The last section showed how to obtain cumulative rea-
soning in our framework. Recall that preferential reason-
ing is defined to be cumulative reasoning combined with
the OR rule. Most accepted semantics of defaults, in
particular preferential structures and e-semantics, lead
to preferential consequence relations. Is OR satisfied in
the two approaches we described? As the following ex-
ample shows, this is not necessarily the case.

Example 2.8: Consider the following scenario. The
agent is contemplating two possible investments. He can
either buy the stocks of company A, an oil producer, or
those of company B, a plastic manufacturer. The success
of either investment is greatly dependent on changes in
the price of oil. If oil prices rise, company A’s profits will
increase. However, since plastic is an oil by-product,
the cost of raw material for company B will rise, and
its profits will decline. On the other hand, if oil prices
decline, company A’s profits will decline, and company
B’s profits will increase. This situation is complicated by
news of a technological break-through in oil refinement.
This technology is expected to decrease the cost of oil
refinement, reducing the costs for both companies. But
it will have a more dramatic effect on company B by
improving the quality of its raw material. However, this
technology is still in early stages of development, and is
not likely to have any effect on the market in the next
few years.

These considerations are captured by the following
(parameterized) decision theoretic setting.

OtA-T | OVAT | OOAT | OO AT
Pr, || 1/2—1/n 1/n 1/n 1/2—1/n
A 1 6 4 -1
B -1 9 11 1

Suppose the agent knows that oil prices will rise. Then,
he can ignore the possible emergence of new technologies.
To see this, G(OT) = 2+ 1/n, and G(O* A T) = 3/n,
thus we would accept OF — —=T'. Similar consideration
show that if the agent knows that oil prices will fall,
he can also ignore the new technology, i.e., 07 — —=T.
What happens when the agent does not know whether oil
price will rise or fall? In that case, he cannot ignore the
possibility of new technology. Without knowledge about
the direction of oil prices, investing in A or in B is more
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or less the same, except when the new technology arrives.
In that situation the plastic industry is clearly a better
choice. This type of consideration, which is secondary
when the agent has more knowledge, becomes a ma-
jor consideration in the decision without that knowledge.
Technically, we have that G(O* v 07) = G(T) = 10/n,
thus we cannot accept the default Ot v O~ — —=T. And
if the agent accepts this default, he is likely to make the
wrong choice, i.e., buy into the oil company. I

In retrospect, it is not too surprising that OR is not
satisfied in our system. The essence of OR is reasoning
by cases: If when ¢; holds we can assume 1, and when
9 holds we can assume %, then we should also assume ¥
when we know that one of these cases is true. However,
as noticed by Kraus, Lehmann and Magidor, this rule
might be inappropriate when we read the antecedent of
the default as “I only know ¢” (which is basically how we
interpret this default): “I only know ¢” is not equivalent
to “I only know ¢ A ¢” or “I only know ¢ A —=p.”

3 Poole’s decision-theoretic defaults

Poole (1992) introduces a semantics for defaults that is
also based on decision theory. His motivation is similar
to our own, yet his proposal is very different. We now
briefly review his semantics. A default in Poole’s system
has the form ¢ ~ a, and reads “Given evidence ¢, do
action a”. This default caches information about the
best action to perform when we get evidence ¢. Such a
default is accepted in a decision-theoretic context (Pr, U)
if @ maximizes the expected utility over ¢, that is

EU(alp) = MEU(p). (6)

Poole argues that this definition naturally captures
many real-life defaults. He gives examples of default
statements that conclude what action to perform, such
as “if you are in Vancouver in November, carry an um-
brella”. He shows that his semantics satisfies several
desirable criteria, such as non-monotonicity, specificity,
and ignoring irrelevant information.

Poole would ultimately want his semantics to capture
regular defaults, such as “birds typically fly.” However,
these defaults have formulas as their conclusions, not
actions. Poole attempts to overcome this problem using
the following idea: With each proposition p, he asso-
ciates three actions: p!, pf, p*. These actions stand
for: assume that p is true, assume that p is false, and
do not make assumptions on p, respectively. Poole
then represents defaults such as “birds typically fly”
as Bird ~» Fly'. He shows that under certain (rather
strong) assumptions on the utility of these actions, he
can give accepting conditions for defaults in terms of Pr
and U. Poole’s solution forces us to examine utilities of
actions of a specific form — making assumptions. It seems
to us that unless we have a good model of how making
assumptions affects the choice of “real” actions (i.e., ac-
tions in the world), it is quite difficult to assess their
utility. Moreover, it is unclear whether such a model will
satisfy requirements of Poole’s analysis. Our approach
to defaults circumvents these problems by examining the
utility of the actual actions available to us when we face



the decision. We believe this approach is more natural.
In any particular context we are facing a choice between
several concrete decisions. The context describes the
possible outcomes these decisions can lead to and their
resulting utilities.

In spite of this criticism, we believe that defaults of the
form ¢ ~+ a are useful, and suggest that Poole’s defaults
can be combined with our notion of defaults. This leads
to a system where we can state defaults about actions
to perform, as well as assumptions that can be made.
We now outline the synthesis of Poole’s defaults and our
system into a joint framework.

Recall that Poole’s original semantics for ¢ ~ a is
that EU(a|p) = MEU(p). We want to define an similar
definition in terms of PDCs. Instead of stating that a
is the best action, given ¢, we state that a is a safe
approximation. Formally, a PDC P satisfies ¢ ~ a if
(3) holds. This definition is very much in the spirit of
Poole’s original one, and we can show that the same
properties are satisfied. Moreover, there are interesting
interactions between Poole’s defaults and ours.

Theorem 3.1: The following rules of inference are valid
for — and ~:

If p = ¢', then from o ~ a infer ' ~ a.
From ¢ A~ a and ¢ A = ~ a infer ¢ ~ a.
From ¢ — ¢ and ¢ A ~ a infer ¢ ~ a.
From ¢ — ¢ and ¢ ~ a infer p AY ~ a.
From ¢ — false infer ¢ ~ a.

This theorem shows that our definition of Poole’s default
satisfies the sure thing principle [Savage, 1954]): if a is a
good action when I know ¢ A, and a good action when
I know ¢ A=), then it is a good action when I just know
@. Moreover, the third and fourth properties show the
direct relation between our defaults and approximately
good actions: if ¢ — 9, then a good action when I know
@ is also good when I know ¢ A v, and vice versa. We
believe that the combination of both types of default is
useful. In future work we intend to apply this logical
framework in applications to reasoning about decisions
and knowledge compilation.

4 Discussion

Our starting point was the thesis that knowledge repre-
sentation and reasoning methodologies are better under-
stood in terms of their role in determining the behavior
of agents. Once we have establish this role, we can gain
a better understanding of the methodology in question.
We examined one particular role of default reasoning.
Focusing on this role helped us to determine desider-
ata that defaults should satisfy and to derive decision-
theoretic semantics for defaults that meet these desider-
ata. Given this role, we can motivate what conclusions
are entailed from a knowledge-base of defaults. But more
importantly, providing a role for defaults is the first step
toward understanding what defaults the knowledge-base
should contain in the first place. As our approach sug-
gests, the content of the knowledge-base depends on the
specific context of the agent: his beliefs (i.e., probabil-
ity) his goals (i.e., utility), and the actions available to
him.
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Our semantics grounds defaults in decision-theoretic
contexts.  Intuitively, this is because we use well-
understood notions (i.e., probability and utility) instead
of abstract ones (e.g., preferential structures). This
choice allows us to relate defaults to other forms of
knowledge. In this paper we examined one candidate,
Poole’s default actions. We believe that knowledge is
not, in general, homogeneous. It is composed of various
types of statements, and clearly there are interactions be-
tween these statements. Grounding these different types
of statements in a common basis allows us to understand
these interactions. In our case, the interactions between
Poole’s defaults and ours described in Theorem 3.1 are
not arbitrary; they are a consequence of the semantics
of both defaults in terms of decision-theoretic contexts.

Our definitions rely on PDCs — sequences of decision-
theoretic contexts. These structures, which may not ap-
pear intuitive at first sight, should be understood as a
mathematical idealization. This idealization allows us to
talk about very small quantities or very big quantities,
and in particular, the quotient €, without committing to
a particular value. This point highlights an important
problem in nonmonotonic reasoning as well as probabilis-
tic reasoning: what is a an acceptable notion of approx-
imation? It is clear that setting a fixed threshold value
is a crude way of defining approximation. Similarly, the
use of limits is also quite crude. For example, we do
not examine the rate of convergence nor do we provide
a methodology for obtaining these sequences.

Of course, in real applications, we can often set a
threshold value, below which things are considered small
enough to be ignored. Once we fix this threshold we
accept a default when the expression in (2) (or (5)) is
smaller than this threshold. This definition approxi-
mates the notions we examined here. In particular, it
does not satisfy the inference rules we describe. However,
we can reason using these inference rules and get conclu-
sions that might violate the fixed error margin. This pro-
vides a way of getting “fast and dirty” conclusions. Such
an approach has been applied in the in e-semantics liter-
ature, and recent work [Darwiche and Goldszmidt, 1994]
indicate that such approximations might be quite useful.
A possible avenue of future research is to use this method
in knowledge-compilation of decision-theoretic informa-
tion [Henrion et al., 1991]. Roughly, in this method,
off-line computation will generate a set of defaults us-
ing some parameter €. These defaults (and their logical
consequences) will be used at run-time to ignore various
possibilities, hence reducing the amount of time spent
in evaluating possible actions. As with any type of ap-
proximation, there is a tradeoff between the quality of
the inference made (decision in this case) and the time
spent on making this inference. Decision-theoretic de-
faults can be viewed as summarizing the information en-
coded in the underlying decision-theoretic context and
may allow for faster on-line computations.

Our analysis is based on static or “one-shot” decision
theory. Recently, there has been much work on decision
making in dynamic environments (e.g., Markov Decision
Processes [Puterman, 1994]). The notion of expected
utility in these models is somewhat more complicated.



However, similar considerations of probability and util-
ity apply when attempt to ignore various possibilities,
i.e., we would like to ignore a possibility if it has small
impact on the quality of actions we later choose. We in-
tend to examine notions similar to default assumptions
in the framework of Markov Decision Processes and to
use these result to provide fast and approximately opti-
mal planning in this setting.

Finally, we note that the approach we examine in this
paper is not the only one for justifying defaults. In
particular, several recent works [Pearl, 1993; Boutilier,
1994] examine approaches to qualitative decision theory.
Roughly, these are analogues to decision theory where
defaults play the role of probabilities, and analogues of
utility, and expected utility (i.e., a combination rule) are
suggested. All of these approaches are descriptive in that
they espouse a particular procedure for decision-making.
We believe that it is important to understand the nor-
mative foundations of such qualitative decision theory.
This involves finding reasonable “rationality postulates”
(in the sense of Savage’s (1954) normative foundation for
decision theory) that characterize these qualitative deci-
sion procedures. Initial results in this spirit appear in
[Brafman and Tennenholtz, 1994], although in a some-
what different context. Such results should help us un-
derstand the consequences of adopting a specific repre-
sentation for decision making under uncertainty. This
type of investigation, which we are currently undertak-
ing, should elucidate the tradeoffs between qualitative
representations and quantitative representations.
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