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Abstract 
 

Transcription regulation plays a central role in the activity of living cells and in their 

response to internal or external stimuli. This complex regulatory process is mediated by 

multiple interacting mechanisms. These mechanisms include both sequence specific binding 

proteins called transcription factors, and epigenetic mechanisms, including DNA 

methylations and chromatin modifications, as well as non-coding regulatory RNAs. Changes 

in gene regulation have been postulated to play a key role in generating the wide phenotypic 

diversity observed across species. Yet the evolutionary driving forces and the dynamics of 

this evolutionary process are largely unknown. I studied this process from two different 

perspectives. 

 

Cis-regulatory evolution  

Regulation of gene expression can evolve through mutations in the DNA sequence 

leading to altered activity of trans acting factors such as transcription factors, or to changes in 

cis-regulatory sequences at promoter and enhancer regions, which affect the binding of 

regulatory proteins. While trans acting factors are largely conserved, large-scale changes in 

cis-elements were observed for specific factors in organisms as diverse as yeasts, flies, and 

mammals. Rigorously studying regulatory evolution has been hampered by the lack of large-

scale and systematic experimental studies, and by the noisy nature of computational 

predictions.  

 

We developed an unbiased computational scheme to study the evolution of 

transcription regulation across large phylogenies, and used it to trace the regulatory history of 

more than 90 transcription factors across 23 yeast species. Our analysis revealed general 

principles in the evolution of transcription regulation both in yeasts and mammals. We 

found that: (1) The regulatory network of transcription factors and their target genes is highly 

plastic  (i.e. transcription factors gain and lose target genes at a fast rate). (2) Transcription 

factors tend to conserve their functions. (3) A functional selection turnover model can 

reconcile these two trends, suggesting that the global functional roles associated with a 

transcription factor are under stronger selection than the individual target genes. In our 

model, selective pressures act differentially to conserve target genes within the same 

biological process (compared to outside of the process), but not particular target genes within 

that process. The model is sufficient to explain the observed number of highly conserved 

targets (across all species), and fits the variation in measured transcription factor binding 

profiles across species, both in yeasts and mammals. Our findings suggest that selection 



forces are more permissive than has been previously assumed. We show that selective 

pressures on regulatory networks tolerate massive local rewiring, facilitating adaptation of 

gene-expression while controlling against dramatic changes in phenotype. 

 

Epigenetic inheritance 

Epigenetic regulatory mechanisms provide an additional potential driving force in the 

evolution of transcription regulation, which can lead to transgenerational reprograming of 

gene-expression. Epigenetic inheritance implies that information about the environment 

experienced by parents could be transferred to offspring by non-Mendelian inheritance. 

Whether or not organisms can inherit characters induced by ancestral environments in 

mammals is unclear and has far-reaching implications. To test whether such transgenerational 

inheritance occurs, we carried out an expression-profiling screen for genes in mice that 

responded to paternal diet. We focused on paternal diet to rule out simple plastic responses of 

offspring to the in-utero environment, as fathers often contribute little more than sperm to 

offspring.  

 

Relative to the offspring of males fed a control diet, the offspring of males fed a low-

protein diet increased the expression of many genes involved in lipid and cholesterol 

biosynthesis, and had increased levels of cholesterol esters, triglycerides, and free fatty acids, 

lipids. Extensive epigenetic profiling and computational analysis of offspring livers, as well 

as whole genome characterization of cytosine methylation patterns and RNA content in 

sperm, revealed numerous modest (20%) changes in cytosine methylation of offspring liver 

depending on paternal diet, including reproducible changes in methylation over a likely 

enhancer for the key lipid regulator Ppara. Our work is one of the first to provide a systematic 

evidence that: (1) Paternal diet affects metabolic gene expression in the offspring of mice. 

(2) Epigenetic information carriers in sperm respond to environmental conditions. These 

results, in conjunction with recent human epidemiological data, indicate that parental diet can 

affect cholesterol and lipid metabolism in offspring and define a model system to study 

environmental reprogramming of the heritable epigenome. Moreover, these results suggest 

rethinking basic practices in epidemiological studies of complex diseases such as 

diabetes, heart disease, or alcoholism. 

 

Taken together, our results shed light on two different selection forces driving 

evolution of transcription regulation, and emphasize the need for an extended evolutionary 

theory, integrating both genetic and non-genetic inheritance.  
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Chapter 1 - Introduction 
 

 
1.1 From DNA to RNA 

 

The genome of a living organism contains the hereditary instructions for its 

development and function. This information is encoded in DNA molecules that are found 

inside each cell, and are built of nucleotides (A,C,G,T). Segments of the DNA sequence 

(genes) are transcribed to RNA molecules, and can then be translated to proteins (gene 

expression). Proteins perform a variety of functions in the cell. The collection of RNAs 

and proteins expressed in a cell determine its morphology and how it functions. The 

DNA sequence does not change in different stages throughout the life of a cell and is 

identical in different cell types of multicellular organisms. However, the function and 

structure of cells are not constant, but change in response to internal or external stimuli 

(e.g. while cells differentiate; in single cellular organisms in response to changes in the 

environment). Generating diverse outputs from a single set of instructions (DNA 

sequence), requires a tight and highly specific regulation on the content of RNA 

molecules and active proteins in the cell.  

 

Transcription regulation is the first layer of this regulation, which plays a critical 

role in the activity of living cells and in their response to internal or external stimuli. 

Complex regulation is required to determine which genes would be expressed at any 

given time and to what extent. This regulation responds to changes in the environment, as 

well as to the internal state of the cell, and is mediated by multiple interacting 

mechanisms (Figure 1). These mechanisms include regulatory proteins that bind to 

specific DNA sequences, as well as diverse epigenetic regulatory mechanisms, including 

the chromatin state, DNA modification and regulation by non-coding RNAs. I review 

each of these mechanisms in more detail. 
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1.2 Transcription factors and regulatory networks 

 

 The information regarding which genes will be expressed at any given time is 

encoded in the DNA sequence. This information is mostly separate from the sequence 

encoding the protein - and appears in regulatory regions of the DNA (Figure 1),  

primarily located upstream to genes in promoter regions. Such regulatory sequences are 

recognized by proteins, called transcription factors, that bind to specific DNA sequences 

(Figure 1). This sequence specificity is important for the expression of specific genes 

under every condition. Once a factor binds to the DNA it modulates the RNA level of 

specific (typically nearby) genes, by activating or repressing their transcription.  

 

There are multiple transcription factors in every organism (estimated at several 

hundreds in yeasts (Wapinski et al., 2007) and at least two thousand in mammals (Babu 

et al., 2004; Messina et al., 2004; Vaquerizas et al., 2009)). Each factor is activated by 

different stimuli, and mediates the expression of genes relevant to specific conditions. 

The genes that are regulated by a specific factor are considered its target genes. A 

transcription regulation network is a map of all transcription factors and their target genes, 

and provides a general view of transcription regulation, enabling us to infer which genes 

Figure 1. Transcription regulation machinery 
Transcribing genes at the right time and level involves multiple regulatory mechanisms, including: 
trans acting regulatory proteins, such as transcription factors, that bind to specific cis-regulatory 
sequence elements on the DNA; Nucleosomes position and histone modifications; DNA methylations 
and regulatory non-coding RNAs (ncRNA). 
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will be expressed under diverse conditions. Previous studies, focusing on specific 

systems across different organisms (Amit et al., 2009; Benfey and Chua, 1990; Capaldi et 

al., 2008; Davidson, 2001; Novershtern et al., 2011; Parker et al., 2011) showed that a 

gene is often controlled by several transcription factors and each factor regulates multiple 

genes, implying a complex transcription regulation network. 

 

An example of a combinatorial regulatory system is the response to osmotic stress in 

yeast. In this system, five different transcription factors were found to coordinately 

activate and repress hundreds of genes (Capaldi et al., 2008). Induced genes can be 

divided to eight sets, each regulated by a different combination of these factors (Capaldi 

et al., 2008). Interestingly, among these factors Capaldi et al found that the Sko1 factor 

both represses and activates the same genes before and after the stress, respectively 

(Capaldi et al., 2008). This complex network allows a sensitive activation of specific 

combination of genes in responses to different stresses, such as osmotic stress by salt 

versus sugar. 

 

 

1.3 Epigenetic factors - DNA and chromatin modification 

 

The traditional view of transcription regulation was based on the 

acknowledgement that all the regulatory information is encoded in the DNA sequence, 

and this information is "read" by sequence specific transcription factors. More recently, 

other layers of information beyond the DNA sequence have been recognized as central 

players in transcription regulation. These layers include chemical modifications of the 

DNA or chromatin (Figure 1). These include: 

(1) DNA Methylation - Addition of methyl groups to the DNA, usually occurs at a 

cytosine nucleotide immediately followed by a guanine (CpG dinucleotide). This is a 

stable modification that can be inherited through cell divisions (Wigler et al., 1981). In 

animals, methylation near gene promoters varies considerably depending on cell type. 

The degree of methylation in the promoter correlates with low transcription of the 

downstream gene (Colot and Rossignol, 1999; Jones and Taylor, 1980; Suzuki and Bird, 
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2008). In addition, the DNA methylation pattern is primarily determined early during 

development of the organism, and is required for maintaining the specific transcriptional 

program in different cell types.  

(2) Chromatin modification - In eukaryotic cells, the DNA is condensed within the 

nucleus, packed around proteins to form chromatin (Kornberg, 1999). The basic 

packaging units are nucleosomes, complexes of histone proteins wrapped with DNA. 

This packing serves not only to condense DNA within the nucleus, but also plays an 

important role in transcription regulation. First, changes in position of the nucleosomes 

on the DNA can inhibit or enable access to specific DNA regions and as a result 

modulate gene expression (Almer et al., 1986; Bergman and Kramer, 1983; Tirosh and 

Barkai, 2008). Second, the histone proteins are subjected to modifications, such as 

addition of methyl and acetyl groups, which are associated with repression and activation 

of genes (Koch et al., 2007; Kooistra and Helin, 2012; Liu et al., 2005). 

 

Importantly, several of these modifications were shown to cause heritable changes 

in gene expression, since they may remain through cell divisions for the remainder of the 

cell's life and may also last for multiple generations (Bird, 2002; Colot and Rossignol, 

1999; Groth et al., 2007; van der Heijden et al., 2006). 

 

 

1.4 Regulatory non-coding RNAs 

 

Some RNA molecules are not translated to proteins, but rather have important 

functions in the cell. Among these non-coding RNAs (ncRNA)s are several classes of 

regulatory RNAs that affect the levels of other RNA molecules, by either regulating gene 

expression, or post-transcriptionally regulating the degradation or translation of RNAs 

(Figure 1). For example, there are short RNA sequences of ~21 nucleotides called 

microRNAs, that bind to complementary sequences on target mRNA transcripts, resulting 

in inhibition of translation and/or destabilization of the target mRNA. Another example is 

of the Piwi-interacting RNAs (piRNAs), which silence specific genes by mediating DNA 

methylation (Aravin et al., 2008; Rajasethupathy et al., 2012) and also cause the 
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degradation of target RNA molecules (O'Donnell and Boeke, 2007). Overall, regulatory 

RNAs preform a wide range of important function in the cell (Costa, 2007; Eddy, 2001; 

Mattick and Makunin, 2006; Storz, 2002). Moreover, recent evidence suggest that they 

can trans-generationally reprogram gene-expression, since not only that they are 

transferred through cell divisions, but they can also be inherited to offspring through the 

germ cells (Ashe et al., 2012; Burton et al., 2011; Cuzin and Rassoulzadegan, 2010; 

Rechavi et al., 2011). 

 

 

1.5 Evolution of Transcription Regulation 

 

Changes in gene regulation have been postulated to play a key role in generating 

the wide phenotypic diversity observed across species (King and Wilson, 1975; 

Prud'homme et al., 2007; Wittkopp et al., 2004). For example, comparison of humans to 

our closest living primate relatives shows that despite the vast phenotypic differences 

between humans and other primates, we all share a remarkable amount of DNA sequence 

(King and Wilson, 1975). These apparent phenotypic differences are mostly explained by 

significant changes in gene expression patterns among primate species (Caceres et al., 

2003; Enard et al., 2002; Gilad et al., 2006). Moreover, it was recently shown that these 

transcriptional differences are caused mainly by changes in non-coding regions of the 

DNA, and specifically in transcription factor binding sites (McLean et al., 2011; Shibata 

et al., 2012), indicating that changes in transcription regulation are driving the phenotypic 

changes. 

 

Transcription regulation evolves through two types of changes. The first type 

follows the classical evolutionary theory, where random mutations in the DNA sequence 

can lead to rewiring of the transcription regulation network. These changes are inherited, 

exposed to selection pressures and eventually might fixate within the population. The 

mutations cause rewiring of the network when they lead to changes in cis or trans: 

Changes in trans-acting transcription factors can alter their DNA binding specificity, 

which might lead to recognition of different sets of target genes (Doniger and Fay, 2007; 
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Konopka et al., 2009; Ravasi et al., 2010; Yvert et al., 2003), as shown for the AP-1 

transcription factor in yeasts (Kuo et al., 2010). Changes in cis-regulatory sequences at 

promoter and enhancer regions affect the binding affinities of proteins at a specific 

genomic position, and can lead to binding of different sets of transcription factors, 

chromatin remodelers or even change the chromatin structure (Borneman et al., 2007; 

Bradley et al., 2010; Gasch et al., 2004; Schmidt et al., 2010; Tanay et al., 2005; Tuch et 

al., 2008). The current view is that changes in cis are more common, although this is still 

a subject of much debate (Tirosh et al., 2009; Wang et al., 2007). It is possible that, 

compared to changes in trans, rewiring of the regulatory network through changes in cis-

elements allows for subtler fine-tuning by local changes in the network. While regulatory 

proteins and their DNA binding domains are often highly conserved (Schmidt et al., 

2010; Tuch et al., 2008; Wapinski et al., 2007), many rewiring events in regulatory 

networks occur through changes in cis-regulatory elements (Khaitovich et al., 2006; 

Tirosh et al., 2009; Wilson et al., 2008; Wittkopp et al., 2008). Such large scale changes 

in cis-elements were observed for specific factors in organisms as diverse as yeasts 

(Borneman et al., 2007; Doniger and Fay, 2007; Tuch et al., 2008), flies (Bradley et al., 

2010; Moses et al., 2006), and mammals (Odom et al., 2007; Schmidt et al., 2010).  

 

Epigenetic regulatory mechanisms, such as DNA methylation, chromatin 

modifications and non-coding RNAs, provide an additional potential driving force in the 

evolution of transcription regulation, which can lead to transgenerational reprograming of 

gene-expression. Unlike the transcription factors-mediated regulation described above, 

such reprogramming does not require changes in the DNA sequence. This evolutionary 

scheme requires variation and stable inheritance of epigenetic traits, however, it differs 

from the classical evolutionary view that is based on random mutations in the DNA 

sequence as the carrier of information. In the past few decades there has been an 

important expansion of our understanding of inheritance, as a wide variety of 

epigenetically inherited traits have been described. Interestingly, since the environment 

has a direct effect on epigenetic factors, epigenetic inheritance implies that information 

about the environment experienced by parents could be transferred to their offspring by 

non-Mendelian mechanisms (Jablonka and Lamb, 2007; Jablonka et al., 1995). Thus, this 
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provides a highly effective mechanism to modulate gene-expression in the short term of 

just one or two generations. 

 

 

1.6 Overview 

 

In this work I studied the evolution of transcription regulation from these two 

different perspectives. In the first chapter I discuss cis-regulatory evolution, and describe 

a cross species comparative study in yeasts that addresses central questions regarding the 

evolution of cis-regulatory networks. This work was part of a collaborative effort, in 

which Dr. Ilan Wapinski (while doing his PhD in The Broad Institute of MIT/Harvard) 

and I developed a novel computational scheme and applied it to yeasts. I then conducted 

extensive data analysis and derived models (Habib et al., 2012). In addition, I discuss the 

analysis I have done within a collaborative effort lead by Prof. Nicholas Rhind 

(University of Massachusetts) to study fission yeasts (Rhind et al., 2011b). Throughout 

these works I received guidance from my two advisors, Prof. Hanah Margalit and Prof. 

Nir Friedman, and from Prof. Aviv Regev (The Broad Institute of MIT/Harvard). In 

addition, I took part in other collaborative works, not detailed in this dissertation, where 

my focus was on developing computational methods for analysis of regulatory networks 

and dynamic gene expression data both in yeasts and in mammals (Capaldi et al., 2008; 

Habib et al., 2008; Novershtern et al., 2011; Sivriver et al., 2011).  

 

In the second chapter I discuss epigenetic inheritance, and describe an experiment 

in mice aimed to test the existence of transgenerational environmental reprogramming of 

gene-expression and a search for the epigenetic ‘carrier’ of the environmental 

information. This work was done in collaboration with Prof. Oliver Rando (University of 

Massachusetts) and his experimental lab. Oliver designed the experiment and conducted, 

with several students in his lab, large-scale and extensive experiments. My contribution 

to this work was in the computational analysis and interpretation of the results, under the 

guidance of my advisor Prof. Nir Friedman (Carone et al., 2010). 
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Chapter 2 –  

A Functional Selection Model Explains Robustness Despite 

Plasticity in cis-Regulatory Networks 

 

2.1 Introduction 
 

The first part of this dissertation focuses on evolution of transcription regulation, 

driven by mutations in the DNA sequence. Specifically it regards cis-regulatory evolution, 

which refers to changes in cis-regulatory elements in the DNA that affect binding of 

transcription factors and can lead to rewiring of the regulatory network. 

 

2.1.1 Rewiring of regulatory networks through changes of cis regulatory elements 

 

Changes in cis-regulatory elements in genes’ promoters can have diverse effects 

on the regulatory network. On the one hand, such changes can lead to fine-grained 

regulatory ‘tinkering’ of the regulation of individual genes (Borneman et al., 2007; 

Lavoie et al., 2010). For example, the individual target genes of the yeast regulatory 

factor Mcm1 have diverged significantly between three related yeasts species (Tuch et al., 

2008). However, the factor still regulates the cell cycle and mating processes in all three 

species. On the other hand, there are cases where changes in cis-regulatory elements lead 

to dramatic rewiring of the regulation of entire sets of gene (Hogues et al., 2008; Tuch et 

al., 2008). For example, the transcription of ribosomal protein encoding genes in yeasts is 

regulated by distinct transcription factors in Candida albicans (Tbf1 and Cbf1) and 

Saccharomyces cerevisiae (Rap1), primarily through changes in cis-regulatory elements 

in promoter regions (Hogues et al., 2008; Tanay et al., 2005).  

 

The connection between rewiring of regulatory networks and changes in gene 

expression is unclear. Previous studies on gene modules in bacteria (Isalan et al., 2008) 

and yeasts (Hogues et al., 2008; Tanay et al., 2005; Tsong et al., 2006; Tuch et al., 2008; 

Weirauch and Hughes, 2010c; Wohlbach et al., 2009) showed that while some regulatory 
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changes (e.g., in the control of mitochondrial ribosomal protein encoding genes (Tsong et 

al., 2006)) can be coupled to a transcriptional and phenotypic change, many other 

dramatic re-wiring events (e.g., in ribosomal proteins (Hogues et al., 2008; Tanay et al., 

2005) or mating genes (Tuch et al., 2008)) have little or no apparent impact (reviewed in 

(Wohlbach et al., 2009; Weirauch and Hughes, 2010)). For example, over 40% of the 

binding events of four orthologous liver-specific transcription factors in mouse and 

human are species-specific (Odom et al., 2007), but the liver-associated function of the 

factors and the liver-specific expression of their target genes are highly conserved (Odom 

et al., 2007). This demonstrates the complexity of the regulatory system and raises 

important questions regarding the implications of the plasticity in regulatory networks, 

and specifically the implications on the functions of transcription factors (i.e. which 

cellular processes do they control). 

 

  The mechanism leading to a coordinated loss or gain of a transcription factor’s 

binding sites in many functionally related genes is unclear, especially when the gene 

expression does not change. Analysis of specific regulatory programs led to different 

suggested mechanisms for this dynamic evolutionary process (Dermitzakis et al., 2003; 

Gasch et al., 2004; Ihmels et al., 2005; Tanay et al., 2005), calling for a comprehensive 

study of this question. While individual examples of cis-regulatory evolution are 

instructive, they represent only anecdotal evidence of the role that cis-regulatory 

divergence plays across evolution. It is thus of great interest to quantitatively and 

qualitatively assess the extent of cis-regulatory plasticity of different regulatory DNA 

motifs and their associated target genes, its functional implications and the underlying 

selection forces. A large-scale unbiased study of the evolutionary history of regulatory 

networks, by a cross-species comparative analysis of regulatory networks in extant 

species, will advance us toward this goal. 

 

2.1.2 Experimental methods to study cis-regulatory evolution 

 

Rigorously studying cis-regulatory evolution has been hampered by the lack of 

large-scale and systematic experimental studies (Wohlbach et al., 2009). One major 
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obstacle is the limited data on transcription factor-target interactions in non-model 

organisms. Genome-wide experimental determination of factor-target interactions can be 

conducted by a couple of approaches. One approach is location analysis (chromatin 

immunoprecipitation followed by micro-arrays assay or DNA sequencing) (Ren et al., 

2000), measuring directly where a transcription factor binds to the DNA. Another 

approach regards genetic perturbations, finding direct and indirect targets by measuring 

changes in expression levels of genes in response to a knockout or over-expression of a 

transcription factor (Amit et al., 2009; Capaldi et al., 2008; Chua et al., 2006; Horton et 

al., 2003). The main caveat of the first approach is that it may lead to false targets due to 

spurious and non-functional binding to the DNA. The major limitation in the second 

approach is that direct and indirect target genes are indistinguishable. Overall, in all 

experimental methods, measuring targets of dozens of factors across dozens of species is 

prohibitively expensive and labor intensive. In addition, since the regulation of a gene by 

a transcription factor is specific to the cell’s state, a complete characterization of target 

genes requires many experiments under different environmental conditions.  

 

There are few studies that measured the binding of one or a few transcription 

factors across two or three yeast species (Borneman et al., 2007; Hogues et al., 2008; 

Tuch et al., 2008), flies (Bradley et al., 2010; Moses et al., 2006), or mammals (Konopka 

et al., 2009; Odom et al., 2007; Schmidt et al., 2010), showing in all cases extensive 

rewiring of the regulatory networks, even within closely related species. These intriguing 

anecdotal examples on the role that cis-regulatory divergence plays across evolution, call 

for extending such studies to the entire repertoire of transcription factors across dozens of 

species.  

 

2.1.3 Computational methods to study cis-regulatory evolution 

 

A possible alternative is to computationally predict regulatory interactions of 

transcription factors and their target genes from widely available genome sequences of 

many species. Such predictions require a DNA motif model of the sequence binding 

preferences of each transcription factor. This model can then predict the factor’s potential 
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binding sites across the genome. This initial mapping indicates which factors can bind to 

the DNA at a given location and consequently are potential regulators of proximal genes. 

The association between DNA motifs and target genes is the basic computational scheme 

for constructing a full regulatory network from DNA sequence data and a catalogue of 

DNA motif models. Thus, DNA motifs can be viewed as a compact and informative 

representation of the building blocks of the regulatory network. 

 

Modeling the sequence preferences of DNA-binding proteins with DNA motif 

models, can be done in several different ways, most of which rely on a set of known 

binding sites (Benos et al., 2002; Bulyk et al., 2001; Day and McMorris, 1992; Osada et 

al., 2004; Stormo, 2000). A common representation, which benefits from being relatively 

simple yet flexible, is a matrix of positions in the binding site versus nucleotides. In the 

matrix each row represents one residue (A, C, G or T), and each column represents a 

position in a set of aligned binding sites. All matrix representations assume that the 

choice of nucleotides in each position of the motif is independent of all other positions. 

Such a matrix representation that is widely used is a Position Weight Matrix (PWM), 

which contains nucleotide frequencies in each position of the motif.  

 

To learn DNA motif model of a specific transcription factor requires an aligned 

set of its known binding site. Due to the lack of known sites for many factors, different 

algorithms were developed for the identification of transcription factor DNA motifs (e.g. 

(Bailey and Elkan, 1995; Hughes et al., 2000a; Liu et al., 2002; Siddharthan et al., 2005)). 

Most algorithms identify statistically significant overrepresented sequence patterns in the 

promoters of co-regulated genes, which are presumably binding sites of a specific 

transcription factor, and require as input only promoter DNA sequences. Several analysis 

pipelines were developed for such tasks, which output a non-redundant set of statistically 

significant motifs (Gordon et al., 2005; Habib et al., 2008; Mahony et al., 2007). An 

alternative approach is to use protein binding microarray technology to characterize in 

vitro the transcription factor sequence specificities in a high-throughput manner 

(Mukherjee et al., 2004). This method might suffer from artifacts since it is done in-vitro, 

usually using only the DNA-binding domain of the factor.	
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To associate between motifs and target genes in the construction of a regulatory 

network, we computationally infer each transcription factor putative binding sites across 

a genome by scanning the genome for the corresponding binding motifs. The genes 

containing a motif instance in their promoters are termed here motif targets. Different 

scoring schemes have been used for such scans (Barash et al., 2005; Hughes et al., 2000a; 

Tanay, 2006). After inferring motif targets, we can determine the functional role of a 

transcription factor (or equivalently its DNA motif) according to the known functional 

annotation of its target genes. This requires functional annotations of genes, and improves 

our understanding of the regulatory network.  

 

2.1.4 Current studies of cis-regulatory evolution 

 

Computational methods can be used to conduct a large-scale study of cis-

regulatory evolution. However, there are several drawbacks in the computational scheme 

described above: (1) Motif discovery algorithms have limited success rate and are not 

entirely robust to noisy inputs (Li and Tompa, 2006; MacIsaac and Fraenkel, 2006). 

Moreover, the co-regulated gene sets used as input are both noisy and incomplete. (2) 

Networks derived by computational methods are notoriously noisy, with both spurious 

and missing connections between transcription factors and their target genes. This is 

primarily because not all instances of the motifs in the genome are bound by the relevant 

factor and the bound instances are not necessarily functional (Capaldi et al., 2008). (3) 

Inferring the function of a transcription factor or a motif is affected by the noisy targets 

and is limited due to missing gene annotations.  (4) This approach is limited to model 

organisms, due to the lack of known DNA regulatory motifs in non-model organisms. 

 

The common approach to address these problems is to leverage evolutionary 

conservation to filter out spurious predictions of motifs, target genes and functions 

(Gasch et al., 2004; Kellis et al., 2003; Tanay et al., 2005). Evolutionary conservation is 

also used to find regulatory motifs in non model organisms with missing annotations 

(Gasch et al., 2004; Tanay et al., 2005). However, the conservation assumption is 

especially problematic when attempting to study divergence across species. Previous 
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studies (Cliften et al., 2003; Gasch et al., 2004; Ihmels et al., 2005; Kellis et al., 2003; 

Lavoie et al., 2010; Marino-Ramirez et al., 2006; Tan et al., 2007; Tanay et al., 2005) 

overcame these obstacles by focusing on at least one conserved feature, and tested 

divergence in the others. These conserved features include studying transcription factors 

with strongly conserved functions and target genes (Gasch et al., 2004), modules of 

orthologous genes with conserved expression patterns (Tanay et al., 2005), or binding 

sites whose relative positioning is conserved in individual promoters (Cliften et al., 2003; 

Gasch et al., 2004; Kellis et al., 2003) or classes of genes (Lavoie et al., 2010).  

 

These studies (Cliften et al., 2003; Gasch et al., 2004; Ihmels et al., 2005; Kellis et al., 

2003; Lavoie et al., 2010; Marino-Ramirez et al., 2006; Tan et al., 2007; Tanay et al., 

2005) have found both conserved and diverged motifs associated with specific functions. 

Overall, they uncovered substantial plasticity in regulatory networks, with extensive 

turnover of motif targets and diverged location of binding sites within promoters of target 

genes. This is consistent with the experimental studies described above (Borneman et al., 

2007; Hogues et al., 2008; Tuch et al., 2008) (Bradley et al., 2010; Moses et al., 2006) 

(Konopka et al., 2009; Odom et al., 2007; Schmidt et al., 2010). However, each 

computational work has made strong conservation assumptions to overcome noisy 

predictions, resulting in crude snapshots of a complex evolutionary process and biasing 

the results by the underlying assumptions of the computational method. Thus, an 

unbiased computational approach to reconstruct cis-regulatory evolution across large 

phylogenies for dozens of transcription factors is needed. 

 

2.1.5 Yeast as a model for cis-regulatory evolution 

 

The comparative studies described above were done in the Ascomycota fungi 

phylogeny (yeasts), which includes the known model organism Saccharomyces 

cerevisiae, the human pathogen Candida albicans and the remote Schizosaccharomyces 

pombe. Yeasts have proven to be an ideal model for studying transcription regulation and 

regulatory evolution. On the one hand, these are simple single cells eukaryotic organisms, 

easy to grow in the lab and manipulate genetically. They have a condensed genome with 



	
   14	
  

4,000-7,000 genes and relatively short intergenic regions, simplifying computational 

analysis and models. Several yeasts species, mainly S. cerevisiae, have been extensively 

studied, and thus a lot of information is available, including fully sequenced and well-

annotated genomes. On the other hand, yeasts share the same complex internal cell 

structure as higher eukaryotes, including similar transcriptional machinery and 

transcription regulation mechanisms. An extreme example is the Hsf1 transcription factor, 

which is highly conserved, including its DNA binding domain, from yeasts to mammals 

(Liu et al., 1997).  Thus, yeasts are suitable for developing and testing new 

methodologies, and many of the principles discovered in them are potentially relevant to 

higher organisms as well. For a comparative study across species this phylogeny provides 

an optimal setting, since it includes dozens of fully sequenced genomes of highly diverse 

organisms, both in sequence and phenotype, spanning more than 800 million years of 

evolution. 

 

 In mammalian systems, transcription regulation is much more complex compared 

to yeasts. First, the intergenic regions are much longer, and transcription factors can bind 

to remote regulatory sequences, enhancers, which can be more than 100kb away from the 

genes they are modulating (Bejerano et al., 2006). Second, the number of transcription 

factors regulating a single response or biological process is large (Amit et al., 2009; 

Novershtern et al., 2011). An example for a complex regulatory system in mammals is 

the transcriptional response to inflammation in immune system cells in mice, which is 

regulated by at least a dozen transcription factors, operating through different modes of 

activation, including fast responding factors (e.g. NFkB) and secondary response factors 

synthesized de-novo during the response (e.g. Irf8), resulting in a wide range of 

dynamical transcriptional responses (Amit et al., 2009; Hoffmann et al., 2006; Medzhitov 

and Horng, 2009; Sivriver et al., 2011).  

 

Thus, model organisms can be used to develop methodologies relevant to higher 

eukaryotes, but these require adjustments to account for the increased complexity of the 

system. Specifically when considering DNA motifs, the long intergenic regions can 

introduce an enormous amount of noise that will be difficult to overcome. A possible 
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alternative approach is to derive models based on observations in yeasts, and then directly 

test these models in higher eukaryotes, to deduce general principles of transcription 

regulation and regulatory evolution. 

 

 

Here, we conduct a large-scale study of cis-regulatory evolution for dozens of 

transcription factors across large phylogenies of yeast species. To this end we developed 

an unbiased computational method and used it to address several questions: (1) What is 

the extent of plasticity in regulatory networks? (2) What is the impact of the network’s 

plasticity on the function of transcription factors? (3) What are the underlying selection 

pressures driving this evolutionary process? (4) Can we find a general model relevant to 

yeasts and mammalian species? 
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2.2 Results 

 
2.2.1 CladeoScope:	
  a	
  framework	
  for	
  reconstructing	
  cis-­‐regulatory	
  evolution	
  

	
  

We developed CladeoScope (Figure 2), a computational framework for an 

unbiased reconstruction of cis-regulatory networks and their evolution across a 

phylogeny of species. CladeoScope relies on two assumptions.  First, we assume that the 

binding specificities of transcription factors, represented as DNA motifs, are largely 

conserved, even when their specific target genes and functional roles may have 

substantially diverged (Schmidt et al., 2010; Tuch et al., 2008; Wapinski et al., 2007). We 

therefore initiate our reconstruction with DNA motifs of known transcription factors that 

have been experimentally determined, but without any further assumptions about 

conservation of their individual targets or their global functional roles. We do allow for 

relatively small changes in binding affinities across evolution, and thus refine those 

motifs in a species-specific manner (see below).  Second, although predicting the target 

genes for a motif (motif targets) across the genome is prone to errors (Hannenhalli, 2008), 

we assume that targets that are conserved across several related species within a 

monophyletic clade provide a reliable and conservative estimate for the targets in the 

ancestor of the clade. Thus, for each motif associated with a known transcription factor in 

S. cerevisiae (e.g., Gcn4), CladeoScope finds its ancestral target genes in various 

ancestors in the phylogeny. A gene is considered to be targeted by a motif in the ancestor 

of a clade of species only if evolutionary analysis of the orthologous targets across the 

species in the clade indicated that the ancestral gene of that clade was a target of the 

motif (Wapinski et al., 2007) (Methods). CladeoScope then compares between the 

ancestral targets of different clades, allowing us to reliably track evolutionary changes 

across the phylum by considering the evolutionary changes between clades while filtering 

out spurious targets within a clade. 

 

An overview of the CladeoScope method 

CladeoScope consists of four steps (Figure 2b): In Step 1- Initialization-

CladeoScope is initialized with known DNA motifs (Position Weight Matrices) from one 
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or more model organisms in the phylogeny. It uses these initial motifs to find a set of 

provisional target genes for each initial motif in each species, according to the motif’s 

occurrences in a gene’s promoter. We do not require these provisional target sets to be 

evolutionarily conserved. In Step 2-Species-Specific Motifs- CladeoScope takes each 

Figure 2. The CladeoScope method. 
(a) Analysis overview. We use the CladeoScope algorithm that takes as input DNA motifs, promoter 
sequences and the species phylogeny (top box) to reconstruct regulatory networks (i.e. ancestral motif 
target genes) at each ancestral position (clade) of the phylogeny (middle box). A gene is considered as a 
putative target of the motif if its promoter contains an occurrence of the DNA motif (a binding site), and 
the ancestral motif targets are inferred by phylogenetic reconstruction.  We use these networks to study 
both the turnover (gain and loss) of target genes associated with the motif across the phylogeny (bottom 
right box), and the evolution of functions associated with the motif (bottom left box) in each ancestral 
position of the phylogeny, where the function is determined by the functional annotation of its motif 
targets. We then build an evolutionary model that explains both trends. (b) The CladeoScope method. 
Shown is a flowchart of the input to CladeoScope (top) and its three consecutive steps: Step 1: 
Initialization - using known DNA motifs from a model organism and promoter sequences of other 
species. For each motif we find putative sets of motif-containing target genes in the other genomes.  
Step 2 - Learning species-specific motifs and targets; and Step 3 - Network refinement, definition of 
detectable motifs and sets of ancestral targets per clade. Step 4 – Filtration of motif and target genes 
based on their phylogenetic conservation.	
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initial motif and its provisional target sets, and learns species-specific motifs and targets 

in an iterative manner. In Step 3- Network Refinement- CladeoScope uses a parsimony-

based algorithm to reconstruct the set of each motif’s ancestral targets for the last 

common ancestor of each clade in the phylogeny (Figure 3). These inferred ancestral 

targets within a clade are considered reliable (Figure 3). In Step 4-Filtration- 

CladeoScope filters motifs and target genes based on their phylogenetic conservation. In 

particular, we define a motif as detectable in an ancestor and in each of its descendant 

extant species if the number of the targets in the ancestor and in each extant species is 

statistically significant (see details below). The algorithm iterates between steps 3 and 4 

until it converges. CladeoScope’s output includes for each motif, its weight matrix in 

each species, the ancestors and extant species in which it is detectable, and the targets in 

each ancestor. 

 

Parsimonious phylogenetic filtering of motifs and targets 

To infer the ancestral motif targets in Step 3, CladeoScope traces motif-target 

relations across orthologous loci. This is done separately for each ancestral gene at each 

ancestral position in the tree (Figure 3). To determine if an ancestral gene is a motif 

target, CladeoScope uses a parsimonious phylogenetic reconstruction approach to 

minimize the number of target gain and loss events (Fitch, 1971). This reconstruction 

explicitly considers each gene paralog derived from the same ancestor by duplication, 

and distinguishes a lost gene from a present gene that is not a target (Methods).  

 

Phylogenetic filtering addresses both noisy predictions of target genes as well as 

DNA motifs that are ‘non–functional’ in a species or a clade (i.e. no longer act as a 

functional regulatory element bound by a cognate transcription factor). CladeoScope tests 

each motif in each species independently, based on the overlap between the motif’s 

putative target genes in that species and the motif’s ancestral targets in any relevant 

ancestor. Only motifs where the overlap is statistically significant (Hypergeometric p-

value<0.001, Methods) are termed ‘detectable’ in the species. Since filtering the motifs 

and the reconstruction of ancestral targets are dependent, our algorithm iterates between 

both steps. If any insignificant motifs are found in the clade (Step 4), the most 
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insignificant one is removed, and CladeoScope returns to Step 3. After convergence, 

CladeoScope filters the motifs at the clade level, requiring that the number of inferred 

targets for a motif in the clade’s ancestor is statistically significant (empirical p-value 

computed by 1,000 reconstructions of ancestral targets for random sets of motif targets of 

the same size for each species, Methods).  

 

 

 

Figure 3. Principles of phylogenetic 
reconstruction of regulatory history. 
(a) Phylogenetic reconstruction of 
motif target genes. Given a set of DNA 
motifs (blue oval, bottom) in different 
species, and their motif targets, we 
reconstruct the parsimonious ancestral 
regulatory state in each internal node 
(A, B, C). In this cartoon example, the 
gene has orthologs in species 1-6, but 
there is no binding site associated with 
the motif in species 5, and we 
reconstruct an ancestral target in species 
A, B and C. (b) Deriving sets of 
ancestral targets per clade. Given all 
motif target genes (rows in left matrix) 
for the motif  in each species (columns), 
we reconstruct all the ancestral targets 
for each gene as in (a). The resulting set 
of ancestral targets for each clade (right 
matrix). (c) Illustrative examples of 
sets of ancestral targets and 
detectable motifs. Shown are several 
possible evolutionary scenarios. In all 
cases: clades (A, B, C) in columns; 
target genes in rows. In ‘conserved 
ancestral sets’ (left), a motif has 
statistically significant sets of ancestral 
targets (i.e., is detectable) in all three 
clades, and the targets are highly 
conserved. In ‘changing ancestral sets’ 
(center), a motif has statistically 
significant sets of ancestral targets in 
clades A and B, but these are not 
conserved between the two clades, and 
are hence missing in the ancestral clade 
C. In ‘missing ancestral sets’ (right), a 
motif has a significant set of ancestral 
targets (i.e. is detectable) only in clade 
A, and not in the other clades. 	
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2.2.2 Systematic reconstruction of the regulatory history of 23 Ascomycota species 

 

We applied CladeoScope to 88 DNA motifs associated with known transcription 

factors or groups of paralogous factors from S. cerevisiae (MacIsaac et al., 2006; Matys 

et al., 2006; Zhu et al., 2009) across 23 Ascomycota species, defining motif target genes 

in 12 clades (A-L, Figure 4a, Supplementary website). As points for reconstruction of 

ancestral targets we chose clades with a large evolutionary distance between them and 

relatively small distances within each (Figure 4a). These clades include: the sensu stricto 

Saccharomyces (four species, clade A), the Kluyveromyces (four species, clade C), the 

Candida clades and Yarrowia lipolytica, 18 species, clade I), and the full Ascomycota 

clade (23 species, clade L). The resulting ancestral network contains 190,689 reliable 

motif-target connections (conserved in at least one clade), compared to 996,476 

connections prior to phylogenetic filtering. For example, of the 307 predicted Gcn4 

targets in S. cerevisiae, 195 pass our phylogenetic filter.  

 

 

Regulatory motifs are detectable across large evolutionary distances 

For most regulatory DNA motifs we could detect ancestral target genes within 

clades across the phylogeny (Figure 4b). This is consistent with our assumptions that 

transcription factors retain their binding specificities and that many of their target genes 

are conserved in closely related species. For example, ~83% of the motifs were detectable 

in clade D (Kluyveromyces and post-WGD clades) and ~68% were detectable in clade H, 

including in species as remote from each other as S. cerevisiae and C. albicans. The latter 

include motifs involved in central metabolic and cellular processes (Figure 4b, red 

highlights), such as Gcn4 (amino acid biosynthesis), Rpn4 (proteasome), and Mig1 

(glucose repression). 39% of motifs were detectable up to the last common ancestor 

(LCA) of the entire Ascomycota phylum (clade L), including those involved in cell cycle 

regulation (Fkh1, Swi6-MBP1, Figure 4b) and stress response factors (Hsf1, STRE, 

Figure 4b, red highlights). The number of motifs detectable across the phylogeny is 

particularly remarkable given the substantial evolutionary distances, the large intra-

species divergence within the Schizosaccharomyces (Rhind et al., 2011b), and the fact 
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that as many as 25% (102 of 392) of the transcription factors in S. cerevisiae do not have 

a clearly identifiable ortholog in S. pombe (Wapinski et al., 2007).  

 

The phylogenetic profiles of transcription factors largely correspond to the 

detectability of their cognate motifs, supporting our reconstruction. In most cases (73%), 

detectable motifs and factors are co-conserved: when a motif is detectable in a species, 

Figure 4. Motif detectability corresponds to the phylogenetic profile of the cognate transcription 
factor. (a) The phylogenetic tree for species in this study. Shown is the phylogenetic tree of the 23 
Ascomycota species in this study (Methods). A-L: clades in which ancestral target sets are defined; 
clade names are denoted next to their letter in dark blue. (b) Motif detection and transcription factor 
presence across the species. Shown are 88 motifs (rows) across 23 species (columns) along with a 
phylogenetic tree (as in a, but not shown to scale). The fraction of the motifs inferred to be detectable 
up to clades D, H, and L is marked on top of the respective clades. Red line denotes the most ancestral 
clade in the species tree where a motif is detectable. Motif names in red denote motifs that are further 
discussed in the text.	
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the ortholog of its known cognate factor is present in the same species, and vice versa 

(Figure 4b). In a minority of cases (15%), a factor is present in a species, but its cognate 

motif is not detectable, possibly due to lack of conserved targets within this species, or to 

substantial changes in the factor’s sequence specificity (Baker et al., 2011). For example, 

the Zap1 motif is detectable only up to clade D, despite the presence of its ortholog up to 

clade J, suggesting a possible change of its DNA binding specificity or a lack of any 

significant target conservation within the relevant clades. These cases demonstrate the 

limitations of our approach in tracing regulatory evolution when the factor’s binding 

specificity has diverged substantially, or when target turnover rate within a clade is very 

high. This can be alleviated if more binding profiles are measured in non-model 

organisms. In a few cases (12%), a motif is detectable in a species lacking a clear 

orthologous cognate factor. This may indicate a relic ‘pseudomotif’ that is present in a 

genome but no longer functional. However, in our case this is not very likely, since we 

require the conservation of the motif and its targets across a clade of species in which the 

promoter sequences diverged significantly. More likely, we detect a DNA motif without 

its factor due to faulty orthology resolution (e.g. the Sko1 motif in Schizosaccharomyces) 

or to multiple members of a transcription factor family with similar binding specificities 

(e.g. factors binding the CACGTG motif).  

 

Evaluation of the CladeoScope algorithm  

 Using simulated data we confirmed that CladeoScope is highly robust to noise 

in target prediction for individual species and to other input variations. To assess 

robustness, we used hundreds of simulated evolved motif target sets, where each 

simulation varied the extent and type of noise in target prediction, the size of the ancestral 

target set, the degree of target turnover and the topology of the species tree (960 different 

combinations of parameters, Methods, Appendix Note 1). For example, when 30% of 

the true targets were removed from the set of target genes provided to CladeoScope, 

CladeoScope has greater >85% sensitivity (percent predicted targets among true targets), 

and when 80% false targets were added in each species, CladeoScope has >80% 

specificity (percent true targets among predicted targets) (Figure 5, Appendix Note 1).  
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 CladeoScope’s predictions are also highly robust to variation in its various 

parameters  (Appendix Note 1). For example, varying the threshold for the significance 

of a motif in a species between 10-5 to 5x10-2 had little or no effect on the number of 

ancestral targets reconstructed per clade. Similarly, varying the threshold for conservation 

Figure 5: Validation on synthetic data. (a) Sensitivity of ancestral target inference. Shown is the error on 
reconstructed ancestral motif targets from simulated species target sets (We evolved a set of true ancestral targets 
with a given rate of targets turnover, and then introduced different levels of noise to the targets in the extant species 
by adding false targets and removing true targets, Methods). The reconstructed ancestral targets are compared to 
the original true set of ancestral targets, showing the sensitivity of our reconstruction (y-axis) for increasing 
amounts of noise in the percent of true targets removed (x-axis), percent of false targets added (blue to green scale); 
(b) Specificity of ancestral target inference. As in (a), but showing the specificity of our reconstruction (y-axis) 
for increasing amounts of noise in the percent of false targets added (x-axis), percent of true targets removed (blue 
to green scale); (c-d) Reconstruction error for different turnover rates.  As above, but for different turnover 
rates, and showing the degree of success using a color-scale: Sensitivity averaged over percent of false targets 
added (c), specificity averaged over percent of true targets removed (d). (e-f) Reconstruction error for different 
size of ancestral sets.  As in (c-d) above, but for different sizes of the original set of ancestral genes. (g-h) 
Reconstruction error for different tree topologies.  As in (c-d), but for different tree topologies with fast or slow 
turnover rates: Sensitivity averaged over percent of false targets added (g), specificity averaged over percent of true 
targets removed (h).` 
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of a motif in a clade between 0.05 to 0.001 had little impact on the number of significant 

motifs per clade (Figure 6). Thus, evolutionary conservation within a clade – rather than 

parameter fine-tuning – is the main determinant of CladeoScope’s results and 

performance. 

  

 To examine the possibility that our relatively strict motif target detection 

threshold excludes weak, yet functional, binding sites, we compared the score distribution 

of functional but weak binding sites to non-functional sites. We identify potential 

candidates for weak functional sites as ones with a conserved target genes in the sister 

species within the same clade, which are classified as non-target (‘lost’) in the reference 

species. Indeed, in 85% of the cases we tested, such ‘lost’ targets have a distribution of  

scores similar to genes that are not targets throughout the clade. Hence, lowering the 

threshold would not have increased our sensitivity to such weak sites (Appendix Note 2). 

Nonetheless, as an additional validation, we tested the main findings using a lower 

Figure 6. Robustness of p-value 
threshold for significance of 
ancestral target sets in a clade. (a) 
The fraction of significant ancestral 
motif target sets across all clades, per 
threshold of the empirical p-value 
estimates ranging from 0.05 to 0.001, 
as computed by applying CladeoScope 
to 1,000 simulations of random target 
sets of the motif (cases where no 
ancestral targets were reconstructed in 
the simulations are marked as 0). (b) 
The absolute number of significant 
ancestral motif target sets, separately 
per clade and per threshold (as in (a)). 
	
  

a

b

>0.001

>0.001
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threshold for motif targets detection and found our results to be robust (Appendix Note 1 

& 3). 

  

 As a negative control, we provided CladeoScope an input set of randomly 

generated motifs. Although in each species we do find targets for such motifs, 

CladeoScope’s phylogenetic filtering found that these motifs are not conserved 

(Appendix Note 1). The only exception is in the closely related sensu stricto 

Saccharomyces, where intergenic sequences have not yet had enough time to acquire 

sufficient mutations. We therefore do not report  motifs found to be conserved only in 

this clade. We tested the contribution of the species-specific motif refinement process to 

the quality of CladeoScope. This refinement step generates a species-specific motif based 

on an input motif in the model organism S. cerevisiae (see Methods). While the distances 

between the motifs are small (measured by BLiC (Habib et al., 2008)), they increase with 

the distance between species (Methods, Correlation = -0.58, p-value=0.005, for the mean 

distance of all motifs in each species). Since the distances are small, we next compared 

motif targets predicted for the S. cerevisiae motif to prediction for the species-specific 

Figure 7. Comparison of motif targets predicted with the known S.cervisiae motif and the refined 
motif. A plot of the fraction of the shared predicted motif targets (blue), targets predicted by S. 
cerevisiae motif only (red), and targets predicted by the species-specific refined motif only (green), for 
different motifs and species (from left to right): Fkh1 motif in S.bayanus, K.lactis, C.albicans and 
S.pombe; Hsf1 motif in S.bayanus, K.lactis, C.albicans and S.pombe; Rpn4 motif in S.bayanus, K.lactis 
and C.albicans; Gcn4 motif in S.bayanus, K.lactis and C.albicans; Mbp1 motif in S.bayanus, K.lactis, 
C.albicans and S.pombe; Mig1 motif in S.bayanus, K.lactis and C.albicans. 
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motif. We find that even in species within the sensu-stricto clade that refinement of 

motifs does change the predicted targets by adding and removing targets (Figure 7).  

 

Finally, to assess CladeoScope’s performance in this phylogeny, we compared its 

predicted targets to those measured in-vivo by Chromatin immunoprecipitation (ChIP) in 

S. cerevisiae (MacIsaac et al., 2006) and four other species (Borneman et al., 2007; Tuch 

et al., 2008) (Appendix Note 1). In most cases, using CladeoScope’s in-clade 

conservation increases the precision of the predicted motif targets. For instance, for the 

Cbf1 motif, CladeoScope reaches 80% precision rate and 50% sensitivity using the 

ancestral motif targets in clade A, compared to 55% and 10%, respectively in the 

a b
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Figure 8. Ancestral targets improve ChIP predictions. (a-b) The sensitivity (left) and precision (right) 
rates of conserved motif targets (i.e. ancestral in the direct clade, blue) versus non-conserved motif targets 
(i.e. motif targets in S.cer that are not ancestral in the direct clade, green), compared to bound target genes 
measured by ChIP in S.cerevisiae.  The results are presented for three different motif detection thresholds 
(70%, 75%, 80% of the best score for the relevant motif in the species).  Results are shown for tow 
transcription factors: (a) Swi6, (b) Rpn4. (c-d) Shown are the sensitivity (left) and specificity (right) of 
conserved (blue) versus non-conserved (green) motif targets, compared to bound target genes measured by 
ChIP for the Tec1 transcription factors in (a) S.bayanus, (b) S.mikate. The results are presented for two 
different motif detection thresholds (75%, 80% out of the best score for the relevant motif in the species).  
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predicted motif targets in S. cerevisiae that are not conserved (Figure 8). These improved 

predictions are consistent for different thresholds for motif targets detection in each 

species (Figure 8). 

 

 

2.2.3 Plasticity of regulatory networks in Ascomycota fungi 

	
  

The vast majority of cis-regulatory elements in genes’ promoters are rapidly gained 

and lost across species. As a result, even at relatively short evolutionary distances, 

transcription factors both gain and lose a substantial portion of their targets. 

 

Widespread target turnover for conserved motifs during evolution 

To assess changes during the evolution of regulatory networks, we first calculated 

the amount of turnover events for each of the 88 regulatory motifs as the number of target 

genes gained or lost at each clade since its direct ancestral clade. Overall, there is an 

extensive and rapid turnover of motif target genes. This high turnover of targets is 

apparent even for broadly conserved motifs with ancient ancestral targets, such as Gcn4 

and Fkh1 (Figure 9a,b). For example, less than half of the targets of Gcn4 in clade D (the 

LCA of pre- and post-whole genome duplication (WGD) species) remained as Gcn4 

targets in its two daughter clades B (post-WGD species) and C (pre-WGD, 

Kluyveromyces species). This plasticity at the clade level is consistent with our initial 

analysis of Gcn4’s target turnover at the species level. 

 

For many of the regulatory motifs (72%) the targets are substantially changed at a 

specific point in the phylogeny. For example, the Mig1 motif, involved in glucose 

repression in S. cerevisiae (Nehlin and Ronne, 1990), is detectable in species across the 

phylum (up to the LCA, clade L), including a set of ancestral targets in clade D 

(Kluyveromyces & post-WGD, spanning S. cerevisiae and K. lactis) and in clade G 

(Candida), but with no statistically significant set of shared ancestral targets between 

these two clades (Figure 9c). Thus, although the motif likely existed in the shared 

ancestor (clade H), its targets have diverged significantly between the two descendant 
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clades, precluding reconstruction of the ancestral state. This suggests substantial 

plasticity in the targets associated with many regulatory DNA motifs.  

 

Fast turnover rates of motif targets 

 To	
  quantify	
  the	
  extent	
  of	
  plasticity	
  of	
  motif	
  targets,	
  we	
  developed	
  a	
  model	
  of	
  

motif	
   targets	
   turnover,	
   which	
   handles	
   the	
   gains	
   and	
   losses	
   of	
   a	
   target	
   gene	
   as	
   a	
  

stochastic	
   continuous-­‐time	
   Markov	
   process	
   (Methods).	
   This	
   model	
   is	
   akin	
   to	
  

standard	
  models	
  of	
  sequence	
  character	
  evolution	
  (Felsenstein,	
  1981).	
  The	
  rates	
  are	
  

expressed	
  in	
  terms	
  of	
  expected	
  number	
  of	
  events	
  per	
  time	
  unit	
  (tU),	
  where	
  a	
  time	
  

unit	
   corresponds	
   to	
   the	
   time	
   in	
   which	
   one	
   amino-­‐acid	
   substitution	
   per	
   protein	
  

coding	
   sequence	
   is	
   expected	
   on	
   average.	
  We	
   found	
   that	
  motif	
   targets	
   are	
   globally	
  

gained	
  and	
   lost	
  at	
   fast	
   rates	
   (Figure	
  10),	
  with	
  a	
  median	
   loss	
   rate	
  per	
   target	
  of	
  5.2	
  

losses/tU	
  (time	
  unit)	
  and	
  a	
  median	
  gain	
  rate	
  per	
  target	
  of	
  0.24	
  gains/tU	
  (Figure	
  10,	
  

Methods).	
  This	
  discrepancy	
   in	
   the	
  rates	
   is	
  due	
  to	
  differences	
   in	
   the	
  pool	
  of	
   targets	
  

Figure 9. Turnover of motif targets across clades  
(a-c) Comparison between the sets of ancestral targets of a clade and its immediate ancestral clade. 
Examples are shown for the targets of the Gcn4 motif (a, conservation across all clades despite 
turnover), the Fkh1 motif (b, motif is detectable in all species and clades, with no ancestral sets in the 
LCA), and the Mig1 motif (c, complete turnover between clades D and G). Pie charts at internal nodes 
reflect fractions of conserved (green), gained (red), and lost (blue) targets compared to the immediate 
ancestral clade; circle area is scaled to the number of target genes in the ancestral set (only clades with 
ancestral sets have charts, transparent chart indicates a borderline statistical significance of the ancestral 
set.  
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(~100)	
  versus	
  non-­‐targets	
  (~4,000)	
   in	
   the	
  genome.	
  The	
  typical	
  gain rate is ‘lower’ 

than the loss rate since it is calculated as a fraction of a larger number of non-target genes 

(~4,100), whereas the loss rate is calculated out of ~100 ancestral target genes. 

 

 An instructive measure for the target turnover rates is the number of targets we 

expect to be retained at different branch lengths, computed by averaging simulations over 

the expected gain and loss rates of all regulatory motifs (Figure 11a, Methods). As an 

illustrative example, consider a motif with 150 targets in clade B. We expect, on average 

over all motifs, that in the descendant clade A this motif will have 210 targets, but only 

38% of those targets will be ancestral ones (conserved from B). Turnover rates vary 

substantially among individual motifs. For example, the Hsf1 (heat shock factor) motif 

exhibits low rates of target gain and loss (Figure 11b), while variants of the CACGTG 

motif (bound by Pho4, Tye7, and Met28) have very high turnover rates (Figure 11c). On 

average we found that only 7% of a given motif’s targets in the sensu-stricto clade (clade 

A, Figure 4a) are expected to be conserved in the LCA of the phylogeny (clade L, 

Figure 4a), and only 16% of the targets were conserved since the LCA with the Candida 

clade (clade H, Figure 4a).  

 

Figure 10. Distribution of gain and loss rates per motif. 
Shown is the distribution of gain (a) and loss (b) rates per motif, estimated using our model of motif 
targets turnover, which treats the gains and losses of a motif’s targets as a stochastic continuous-time 
Markov process. The Hsf1 and Pho4 motifs (Figure 11) are marked with red arrows.  
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2.2.4 Functional evolution of transcription factors in Ascomycota fungi	
  

 

Associating DNA motifs with regulatory functions  

To assess the functional implications of target turnover, we next associated each 

motif in each clade with a regulatory function, based on the functional categories to 

which its targets in the clade belong. Due to the large redundancy between functional 

annotations, such simple enrichment testing leads to numerous overlapping “functions”, 

which are hard to interpret and even more challenging to compare across clades. For 

example, examining Rpn4, a known regulator of the proteasomal genes in S. cerevisiae, 

we find more than 45 gene-sets enriched in the motif targets across clades, with different 

sets having different degrees of enrichment with motif targets across clades 

(conservation). These sets include categories such as: Proteasome complex, Stress and  

Figure 11. Gain and loss rates of motif targets 
(a) Average expected fraction of conserved targets at different evolutionary distances, across all 
regulatory motifs, based on the targets turnover rates computed for each motif separately.  The number 
shown is the fraction of extant targets expected to be derived from an ancestral target, assuming 150 
ancestral targets at different phylogenetic distances. (b-c) Turnover rates for motifs with high turnover 
rates (Hsf1, b) and low turnover rates (Pho4, CACGTG, c). For each motif, shown are the turnover 
rates for gain and loss of a target (table), the fractions of conserved (green), gained (red), and lost (blue) 
targets (pie charts, as in Figure 4), and the expected number of conserved targets computed by the rates 
(%). 
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Cytoskeleton, each found to be enriched with Rpn4 targets in different clades (Figure 12). 

A closer examination of the motif targets within these categories shows many overlaps 

(e.g., 76% of the targets annotated as Proteasome are also annotated as Stress genes).  

	
  
 

Figure 12. From gene sets to functional modules. (a) Shown are all functional gene sets (rows) that 
are enriched (red) or not enriched (black), in each clade (columns) with Rpn4 motif targets. (b) The 
resulting functional modules and their enrichment with Rpn4 motif targets across clades.  
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To obtain a non-redundant description of motif functions, we developed an 

algorithm that clusters functional gene-sets by the fraction of associated motif targets 

shared between them. This procedure defines functional modules, each containing genes 

that share functional annotations and are ancestral targets of the same regulatory motif in 

at least one clade (Methods). Revisiting the Rpn4 example, we see that we have two 

functional modules: stress response and proteasome module conserved across species, 

and cytoskeleton module conserved mainly in clade C (Figure 12).  

 
An additional example, Gcn4 targets in each clade are associated only with the 

amino acid metabolism module (Figure 13a). This module includes several overlapping 

gene sets, such as amino acid biosynthetic process (Ashburner et al., 2000), amino acid 

metabolism (Segal et al., 2003), amino acid nitrogen metabolism (Segal et al., 2003), or 

pyridoxal phosphate binding (Ashburner et al., 2000). Notably, each motif can be 

associated with one or more such modules in each clade, and possibly with different 

modules in different clades.  

 

Compared to direct enrichment of individual gene sets, functional modules are a 

more concise, non-redundant and robust representation that can be easily compared 

across the phylogeny. We extensively evaluated the robustness and correctness of the 

functional module assignments. We show that the method is robust to different 

parameters in the algorithm, including the choices of motif detection threshold, the 

threshold over enrichment of functional categories with motif targets, and to the threshold 

for merging functional categories (Appendix Note 3). Furthermore, in support of our 

procedure and CladeoScope’s predictions, our functional assignments are consistent with 

known functions of the associated transcription factors in S.cerevisaie, C.albicans and S.	
   

pombe, for most motifs with a known function (75%) (with another 12% of the motifs 

with a partial match; Appendix Note 3). 

 

Innovations through expansion and switch of functions 

In some cases turnover of target genes contributes to evolutionary innovation, by 

either expanding or switching the scope of functions ascribed to a regulatory DNA motif 
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(Figure 13). For 36% of the motifs, we observed clade-specific expansion: a motif gains 

a new function in a specific clade in addition to maintaining its ancestral function. In such 

cases, the motif is identified in genes from the same functional module(s) in all clades 

where it was detected, and is also associated with an additional module unique to a 

specific clade.  

Figure 13. Patterns of Functional Evolution of DNA motifs across clades. 
 (a) Examples of functional conservation and innovation patterns. In each case, the enrichment of 
motif target genes with different functional modules is shown across the clades (Blue: targets enriched 
in module; Black: not enriched; Grey: no ancestral targets in clade), demonstrating functional 
conservation of the Gcn4 motif (top), clade-specific innovation of the Rpn4 motif (middle), and 
functional switch of the Mig1 motif (bottom). Additional examples are shown in Figures 14-16. (b) 
Distribution of functional conservation patterns for cis-regulatory motifs. Pie chart of the fractions 
of motifs associated with complete functional conservation (dark grey), clade-specific innovation (light 
grey), or a functional switch (white).  
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Figure 14. Examples for functional innovations of DNA motifs across clades. 
 (a) Examples of functional conservation patterns for different motifs (as in Figure 13, the enrichment 
of target genes with different functional modules is shown across clades. Blue: clade targets enriched in 
module; Black: not enriched; Grey: no ancestral targets in clade). The motif in a representation of a 
sequence logo is shown next to the motif’s name. Demonstrating clade specific innovation in various 
clades (from top to bottom): the Hap4 motif with extracellular matrix and GTP binding; the Gln3 motif 
with nitrogen metabolism; the Skn7 motif with ribosome; the Fkh1 motif with the meiotic and 
ascospore formation modules; and functional switch in the uncharacterized Ynr063w motif, between 
peroxisome/aerobic metabolism, TCA cycle/aerobic respiration and glycolysis. (b) Example of turnover 
in the motif regulating a functional gene-set between clades. In each case, the enrichment of motif 
target genes with the relevant gene-set is shown across clades (Blue: clade targets enriched in module; 
Black: not enriched; Grey: no ancestral targets in clade). The name of the motif associated with the 
gene-set is indicated on the left. Demonstrated is a regulatory switch in the GTP-binding genes from 
Sfp1 motif in most clades, to Hap4 motif in clade K. 
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We find various innovations in different clades (Figure 13a, Figure 14-15). For 

example, the Rpn4 motif is associated with the proteasomal module in all clades 

(Mannhaupt and Feldmann, 2007), while in clade C (the Kluyvermyces species) it is also 

identified in genes of a cytoskeletal module (Figure 13a). There are several cases of 

highly conserved motifs exhibiting innovations in the remote Schizosaccharomyces clade 

(K). For example, the cell-cycle motif Fkh1 regulates genes involved in meiosis 

specifically in this clade, and the Hap4 motif associated with oxidative phosphorylation 

in all clades also regulates extracellular matrix and GTP binding genes in the 

Schizosaccharomyces species (Figure 14). This latter example involves a regulatory 

switch, as the regulation of GTP binding genes in all other clades is regulated by the Sfp1 

motif (Figure 14b).  

 

 Another interesting innovation is of motifs expanding to new functions associated 

with clade specific genes. Such an example is the motif bound by Rtg3 in S. cerevisiae, 

associated with amino acid metabolism genes across the phylum. In fission yeast 

however, it is also enriched in genes responsive to various stresses (Figure 15a). Of the 

stress genes that have Rtg3 motifs in S. pombe, 36% are found only in the 

Schizosaccharomyces clade, and many are also associated with the Atf1 motif, a 

conserved regulator of the stress response (Figure 15b). Rtg3 does not have a detectable 

ortholog in the Schizosaccharomyces clade (Wapinski et al., 2007), but the motif 

recognized by Rtg3 in S. cerevisiae is clearly identifiable in fission yeast, suggesting that 

these regulatory motifs are more conserved than their binding proteins. We also found a 

similar acquisition of Schizosaccharomyces-specific genes by the Fkh1- and MBF-

associated motifs, which regulate meiotic transcription in S. pombe (Abe and Shimoda, 

2000; Lowndes et al., 1992). In particular, these two motifs were enriched with genes 

with antisense transcripts (Figure 15c).  Antisense transcripts are RNAs transcribed from 

the antisense strand compared to a known coding gene and are thus complementarity to it. 

They have been identified in multiple eukaryotes, and there is evidence suggesting they 

have a regulatory role (Brunskill and Steven Potter, 2012; Guttman et al., 2010; Rhind et 

al., 2011a; Yassour et al., 2010). Most of the Fkh1/Mei4 target genes with antisense 
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transcripts (80%, 47 genes) are meiotic genes (Rhind et al., 2011a), the majority of which 

are specific to the Schizosaccharomyces clade (Figure 15c). 

 

For 20% of the regulatory motifs we observed a functional switch between clades: the 

same motif has target genes from distinct functional modules in different clades, thus 

losing one function while gaining another. For example, the Mig1 motif is associated in 

Figure 15. Conserved regulatory motifs with clade specific target genes 
A) The enrichment of gene functional modules regulated by the Rtg3-biding motif in 23 Ascomycota. 
This motif is enriched upstream of amino acid metabolism genes in all Ascomycota. However, in 
fission yeast, it is specifically enriched upstream of stress-response genes. S. cerevisiae (Scer), S. 
paradoxus (Spar), S. mikatae (Smik), S. bayanus (Sbay), C. glabrata (Cgla), S. castellii (Scas), K. waltii 
(Kwal), A. gossypii (Agos), K. lactis (Klac), S. kluyveri (Sklu), D. hansenii (Dhan), C. guilliermondii 
(Cgui), C. lusitaniae (Clus), C. albicans (Calb), C. tropicalis (Ctro), C. parapsilosis (Cpar), C. 
elongosporus (Celo), Y. lipolytica (Ylip), N. crassa (Ncra), A. nidulans (Anid), S. japonicus (Sjap), S. 
octosporus (Soct), S. pombe (Spom). B) Enrichment of Rtg3- and Aft1-binding sites in the promoters of 
stress response genes. Each row represents a gene. The strength of the strongest regulatory site 
upstream of the gene is indicated in the blue heat map. The expression of the gene in glucose depletion 
(gd) and early-stationery phase (es) relative to log phase is indicated in the blue-yellow heat map. Genes 
specific to the fission yeast clade are indicated in orange. C) Enrichment of Fkh2/Mei4- and MBF-
binding sites in front of antisense-transcribed genes. As in B, but each row represents a gene with 
greater antisense than sense transcription. Gene associated with meiosis (Mata et al., 2002) are indicated 
in magenta.	
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the Candida (G) clade with modules such as peroxisome and fatty acid metabolism, 

whereas in the Kluyveromyces (C), the ‘post-WGD’ (B) and the Schizosaccharomyces 

(K) clades it is associated with other carbon metabolism modules (Figure 13a). An 

additional example is the motif bound by the factor Ynr063w (Zhu et al., 2009). This 

motif is associated with general metabolic processes in all clades where it is detected, but 

switches its specific function: it is associated with the TCA cycle in the Candida clades 

(E-G), glycolysis in Schizosaccharomyces clade (K), but with the peroxisome and aerobic 

metabolism in the ‘post-WGD’ clade (A-B) (Figure 14a). 

 

Extensive functional conservation of regulatory DNA motifs 

We observed functional conservation for a large fraction of the regulatory DNA motifs. 

44% of motifs are associated only with the same functions in all clades in which the motif 

is detectable, even across large phylogenetic distances.  Examples include the Gcn4 motif 

with Amino-Acid biosynthesis module (described above, Figure 13a), the Hsf1 motif 

with a heat shock module across the entire phylogeny (Figure 16), and the Mbp1 motif 

with cell-cycle and DNA replication modules across the entire phylogeny (Figure 16).  

Furthermore, although in other cases the motif might gain or lose an association to 

functional modules during evolution, 80% of all the motifs have at least one conserved 

function across all clades (Figure 13b). 

 

A resource for studying regulatory evolution in Ascomycota 

The regulatory history of the 88 transcription factors across the Ascomycota phylum, 

including their specific target genes in each clade, their turnover rates and their functions, 

constitutes a valuable resource for future studies of regulatory evolution and of individual 

species, including human and plant pathogens. We provide this resource as a website 

(http://www.compbio.cs.huji.ac.il/OrthoMotifs), where a user can query individual motifs, 

or genes, and trace their evolutionary relationship at the species and clade level.  
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2.2.5 Functional Selection Turnover Model – A general Principle of Regulatory 

Evolution 

 

Conservation of regulatory function despite high turnover rate of targets 

The observations of substantial target turnover and extensive functional 

conservation are seemingly contradictory. One possible way to reconcile this 

contradiction would be if the rapid turnover of motif targets is mainly restricted to motifs 

that exhibit functional changes, but not to those with conserved functions. However, we 

find rapid target turnover for most regulatory DNA motifs, including those associated 

with conserved functional modules, such as Gcn4.  

 

Moreover, we observed extensive turnover of motif targets within the functional 

modules themselves. Specifically, in 80% of modules associated with the same motif in 

Figure 16. Examples for functional conservation of DNA motifs across clades. 
Additional examples of functional conservation patterns for different motifs. In each case, the 
enrichment of target genes with different functional modules is shown across clades (Blue: clade targets 
enriched in module; Black: not enriched; Grey: no ancestral targets in clade), demonstrating functional 
conservation of the Hsf1 motif with a heat-shock module (top panel) and functional conservation of the 
Mbp1-Swi6 motif with a cell-cycle module (bottom panel). The motif in sequence logo representation is 
shown next to its name. 
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more than one clade, we observed substantial turnover of the motif targets between those 

clades (Figure 17a). On average, 62% of a module’s genes are associated with the 

regulatory motif in only a minority of the relevant clades. For example, the Fkh1 motif is 

consistently associated with a cell-cycle regulation module across the entire phylum (12 

clades), but its individual targets substantially turnover, with ~90% of genes detected as 

Fkh1 targets in only one or two clades (Figure 17b).  
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A functional selection turnover model 

The observed conservation of regulatory function despite high target turnover suggests 

that the global functional roles associated with a regulatory motif are under stronger 

selection than the individual regulatory interactions. To formalize this notion we propose 

the Functional Selection Turnover Model, where selective pressure acts differentially to 

conserve motif-target relations within the same biological process (compared to outside 

of the process), but not particular target genes within that process (Figure 17c).  

 

To test this hypothesis, we used a likelihood ratio test to compare two alternative 

evolutionary models (Methods): (1) a ‘neutral’ turnover model, where targets are gained 

and lost at the same rates regardless of the functional module to which they belong; and 

(2) a ‘module-specific’ turnover model (described above), where turnover rates – both 

gain and loss – are different for targets in the functional module compared to those 

Figure 17. Target turnover and the functional selection turnover model 
(a) Extent of target turnover within functional modules. The distribution of the percent of conserved 
targets (x-axis, defined as targets of a motif in the majority of the clades associated with the functional 
module), for all functional modules with targets in at least two clades. The bin pertaining to the Fkh1 
cell-cycle module is marked with a red arrow. (b) Fkh1 target turnover within the cell cycle module. 
Target genes (rows) for the Fkh1 motif within the cell cycle module across the clades (columns). Blue: 
target in a clade; black: non ancestral target in the clade.  (c) Functional Selection Turnover Model. 
Cartoon illustration of the model (White: gene in functional module; Grey: gene not in module; Blue 
border: target gene of motif; Blue node: motif/transcription factor) with two alternative scenarios for 
target genes turnover from the ancestral Network 1 (top). Both scenarios (bottom) show extensive 
turnover of target genes. The functional selection scenario (Network 2, bottom right) has selection on 
the genes’ function, as reflected by the module to which they belong, but not on individual targets, and 
leads to enrichment of targets within the module along with turnover of individual targets. The module-
neutral scenario (Network 3, bottom left) has random turnover of targets and thus leads to loss of target 
enrichment within the module genes. (d) Testing the functional selection model for cis-regulatory 
site turnover. The distribution of the log p-value of the Likelihood-Ratio Test between the two models 
for target turnover, a module-neutral turnover model (H0, Figure 3c, bottom left) and a functional 
selection turnover model (H1, Figure 3c, bottom right), for 745 functional modules and each of their 
associated clades. Red line - Threshold of p-value 0.05 after the Bonferoni multiple hypothesis 
correction for rejecting the H0 model. (e) The number of highly conserved Gcn4 target genes is as 
expected given the functional selection turnover model. The distribution of the number of expected 
highly conserved Gcn4 targets from 1,000 simulations, according to the functional selection turnover 
model. The observed number of Gcn4 targets conserved up to clade H is 35 (red line), with an empirical 
p-value>=0.5. Thus, we cannot reject the null hypothesis that the number of highly conserved genes is 
as expected by the functional selection turnover model. 
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outside. We applied this test to all functional modules in all associated clades (a total of 

745 tests).  

 

In nearly all cases (96%, 715 tests), target turnover is significantly constrained by the 

genes’ function (p-value <0.05 after Bonferroni correction, Figure 17d). Most notably, 

the probability to gain an additional target gene within the same functional module is 

typically at least two orders of magnitude higher than the probability to gain a new target 

from genes outside of the module. Thus, gain and loss of target genes are highly 

constrained by their function, resulting in conservation of the motif’s functional role 

despite turnover at individual sites. These results are not sensitive to the choice of 

parameters used in the process of target prediction or in defining functional modules, and 

hence are not an artifact of specific threshold choices made in our computational analysis 

(Appendix Note 3). 

 

The fit of our model is good in all thresholds and parameters. More specifically, we 

find a fit to the model (p-value<0.01 after Bonferoni correction for multiple hypothesis) 

for at least 91% of the functional modules when changing the different thresholds in the 

algorithm and input (as described in section 2). More specifically, ranging between 91% 

- 95% when changing the enrichment threshold, ranging between 94% - 96% when 

changing the merge threshold, and between 92% - 96% when changing the motif 

detection threshold. 

 

The functional selection turnover model explains the number of highly conserved 

targets 

Against the backdrop of rapid turnover, some motif targets remain highly conserved. 

For example, 25 of the Gcn4 targets have Gcn4 binding motifs in their promoters in every 

clade (out of an average of 130 Gcn4 targets per clade). Such conservation may reflect an 

important specific function of these particular genes; alternatively, a few conserved genes 

may be expected by chance, given the functionally constrained turnover rate of the motif 

and the size of the functional module. To distinguish between these possibilities, we 

performed simulations to estimate the probability of the observed number of highly 
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conserved targets under our functional selection model (Methods), assuming a 

differential turnover rate for the targets, based on their function but not based on their 

individual identity. We examined 20 regulatory DNA motifs that have ancestral targets 

broadly conserved across clades, such as Gcn4 (Figure 17e), Mbp1 and Rpn4. 

  

For all motifs tested, we could not reject the null hypothesis that the observed number 

of highly conserved targets is consistent with the overall turnover rates according to the 

Functional Selection Turnover Model (p ≥ 0.5). Thus, even the number of highly 

conserved targets is consistent with selection at the module level rather than selection 

towards the individual function of each gene within the module.   

 

The functional selection turnover model is consistent with transcription factor 

binding data measured across yeast and mammalian species  

To examine the generality of our results we tested whether they hold at the level 

of individual species as well as clades, when targets are determined experimentally rather 

than computationally. We thus examined published in vivo transcription factor binding 

data (from ChIP-chip or ChIP-seq experiments (Borneman et al., 2007; Schmidt et al., 

2010; Tuch et al., 2008)). Recent functional studies of transcription factor binding to 

DNA reported substantial divergence in the bound targets of conserved transcription 

factors in Ascomycota yeast species (Borneman et al., 2007; Tuch et al., 2008) and 

between mammalian species (Schmidt et al., 2010). These include Mcm1 binding 

measured across three relatively distant species (S. cerevisiae, K. lactis and C. albicans) 

(Tuch et al., 2008), Ste12 and Tec1 binding in three closely-related Saccharomyces 

species (S. cerevisiae, S. mikatae and S. bayanus) (Borneman et al., 2007), and HNF4α 

measured across three mammalian species (human, mouse and dog) (Schmidt et al., 

2010).  

 

Consistent with our cis-regulatory analysis, the binding profiles of all four factors 

demonstrate high turnover of targets within conserved functional modules (Methods, 

Figure 18), in addition to some species-specific innovations. Applying the two tests 

described above, we find that the Functional Selection Turnover Model fits the binding 
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data of these four factors in all species (p  < 10-12), and that the number of highly 

conserved targets of these factors is as expected by the model (p > 0.2). Notably, in 

mammals the results are not sensitive to the specific threshold for associating an 

upstream binding site with a target gene (Methods). Overall, this analysis demonstrates 

the generality of our findings at different evolutionary distances, measurement methods 

(sequence analysis and ChIP assays), phylogenetic resolution (species and clades), and 

group (yeast and mammals).  

Figure 18. Turnover of target genes within functional modules from experimentally measured 
binding profiles in yeasts and mammals. 
The target genes (rows) for each species (columns), associated with a conserved functional module of 
different transcription factors: (a) Ste12 (Borneman et al., 2007) in yeasts, (b) Tec1 (Borneman et al., 
2007) in yeasts, and (c) Mcm1 (Tuch et al., 2008) in yeasts (d) HNF4α (Schmidt et al., 2010) in 
mammals. Blue: target in a species; black: non-target in the species. 
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2.2 Methods  
 

 

2.3.1 CladeoScope algorithm: Phylogenetic reconstruction of Cis-regulatory 

networks 

 

General	
  Overview	
  	
  
The CladeoScope algorithm reconstructs Cis-regulatory networks across species: 

It learns species-specific DNA motifs (including in species lacking any functional 

annotations and known motifs), using prior knowledge about known position weight 

matrices (PWMs) in a model organism, and computationally adapting them to each 

species (see Species-specific motifs). For each motif it then assigns a set of ancestral 

target genes in the last common ancestor (LCA) of each clade of species across the 

phylogeny (Figure 2), inferred using a maximal parsimonious phylogenetic 

reconstruction (see  Phylogenetic reconstruction of ancestral targets). Initially a gene 

is predicted to be targeted by a regulatory DNA motif in a species if it contains a binding-

site of the motif in its promoter (see Motif scanning for putative targets). These 

predicted targets are used in the reconstruction to find the ancestral set of target genes. In 

addition, after the reconstruction of ancestral targets, we use them as an input to the motif 

refinement per species, and choose the optimal motif (see Species-Specific motifs). The 

DNA motifs in each species and the ancestral targets in each clade are filtered based on 

evolutionary conservation within clades of species by their statistical significance (see 

Phylogenetic filter for noisy motifs and statistical significance). The resulting resource 

of species-specific motifs, ancestral target sets and functional modules per clade of 

species are available for download at our supplementary website:  

http://www.compbio.cs.huji.ac.il/OrthoMotifs. 
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Pseudocode: 

Caldesosope(PWM, promoter sequences, gene-trees): 

1. Find provisional motif targets in each species by scanning promoters 

2. Learn species-specific motifs: 

a. Apply motif discovery algorithm on the provisional target set initialized 

by the PWM 

b. Rescan for putative targets using new motif 

c. Repeat steps a-b using the provisional targets defined in b 

3. Reconstruct ancestral motif targets for each clade in the phylogeny from the 

provisional species sets using maximum parsimonious dynamic programming 

algorithm 

4. Repeat step 2 starting with the ancestral targets in each clade, and choose the 

motif conforming to the higher enrichment threshold. 

5. Filter motifs: 

a. Filter motifs in each species by enrichment of motif targets with ancestral 

targets. 

b. If any motifs are removed go back to step (3). 

c. Filter motifs in the clade level based on statistical significance of the 

number of ancestral targets.  

 

We now describe the procedure involved in each step of this psuedocode. 

 

Motif scanning for putative targets (Steps 1 and 2b) 

To identify the putative targets of a motif in the genome, we score each gene’s 

promoter by summing over all possible positions of the promoter on both strands (as in 

(Tanay, 2006)), taking into account the nucleotide background distribution in the 

promoters of the relevant genome: 

 

Where, N is the length of the promoter; M is the length of the motif; ni is the nucleotide 

at the i’th position of the promoter;  PBG is the background distribution of nucleotides in 
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all promoters of the genome; PPWM
j is the probability vector for nucleotides in position j 

of the motif and similarly Pr-PWM
j  for the reverse motif (equivalent to searching the 

reverse strand of the DNA). We considered the 600 base region upstream of each gene’s 

ATG as its promoter, truncating this region whenever it overlapped a neighboring gene. 

We define the target set of the motif as those genes whose promoters have a score above 

a threshold T = 0.8*(mean of 20 highest scoring promoters in the genome). The threshold 

and scanning method where determined by optimizing the precision rate and sensitivity 

of predictions of in-vivo transcription factor target genes from ChIP-chip (Harbison et al., 

2004) assays in S. cerevisiae of two different transcription factors: Hsf1 and Rpn4 

(Appendix Note 4). Arguably, this might bias our choices to levels of binding that are 

significantly detectable by these assays. However, perturbation analysis of this threshold 

shows that our result are mostly robust to this choice (Appendix Notes 1-3). Since this 

score is relative to each genome and to each motif, we exclude motifs that do not have 

any occurrences in the genome by filtering out motifs whose highest score in the genome 

is less than 50% of the maximum possible score of this motif in a single location.  

Additionally, we removed motifs from the collection if the number of inferred targets was 

greater than 1,500 (the upper bound was chosen to exceed the maximal number of 

promoters bound by any transcription factor in S. cerevisiae, as measured by ChIP-chip 

(Harbison et al., 2004)).  

 

Optimization of the scanning method and threshold 

To find the optimal scanning method and threshold we compared two different 

methods for scoring putative instances of a DNA motif (binding sites): 

1. Max – maximum log-likelihood scores over all possible positions along the 

promoter, where the log likelihood ratio score is the ratio between the probability 

of an individual K-mer within the promoter given the motif model and its 

probability in the background distribution of nucleotides across all promoters 

(Stormo, 2000).  

2. Sum - Summing the likelihood scores over all possible positions on the promoter 

(Tanay, 2006): 
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Where N is the length of the promoter, M is the length of the motif, ni is the 

nucleotide at the ith position in the promoter, PBG is the background distribution of 

nucleotides in all promoters in the genome, PPWM
j is the probability vector for 

nucleotides in position j of the motif and similarly Pr-PWM
j  for the reverse motif 

(equivalent to searching the reverse strand of the DNA). 

 

We compared different thresholds for target prediction: 

1. Threshold on the p-value of the score (when using the Max score): the probability 

of finding a score as high as this in random K-mers sampled from the background 

distribution (using compound importance sampling (Barash et al., 2005)). We 

tested p-values ranging between 0.01-0.001 

2. Using a relative threshold per motif as the percent of the highest possible score for 

the specific motif in a specific genome. Here we use thresholds ranging between 

70%-90% identity. The estimate of the highest achievable score for the motif is 

specific per genome, and defined as the mean of 20 highest scoring instances (or 

promoters) in the genome (this is important since we want to scan new genomes 

with a motif originating from a different species).  

 

To optimize the choice of threshold, we compared the predicted targets to ChIP-chip 

assays in S. cerevisiae (MacIsaac et al., 2006). We note that the two scoring methods 

(Max and Sum) are highly correlated in their assessment of individual promoters (R>0.95 

for all motifs tested), and the resulting predicted target sets are similar as well. However, 

the choice of threshold does behave differently. For example, both for the Rpn4 and the 

Hsf1 motif we get an identical set of targets predicted based on 100% of the best Max 

score or 75% of the Sum score.  

 

Since there is substantial evidence for transcription factors binding several weak 

binding sites in the promoter (e.g. (Parker et al., 2011)), we preferred the Sum method 

that takes such cases into account. We chose the threshold to be 80% of the best possible 
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Sum score (equivalent to ~70% of the Max score, which is similar to the threshold used in 

Harbison, et. al.(Harbison et al., 2004)). This is the lowest threshold that still had a high 

precision in the predictions. We see that for 75% threshold there is already a big decrease 

in accuracy. Additional tests for the effects of lowering this threshold on our predictions 

of ancestral targets and assignments of motifs to functional modules are included in 

Appendix Notes 1&3. 

 

Species-specific motifs (Step 2) 

Our underlying assumption in this step is that the binding specificities of 

transcription factors, represented as DNA motifs, are largely conserved, even when their 

specific target genes and functional roles may have substantially diverged (Schmidt et al., 

2010; Tuch et al., 2008; Wapinski et al., 2007). We therefore initiate our reconstruction 

with DNA motifs for known transcription factors that have been experimentally 

determined in model organisms. CladeoScope uses the MEME motif discovery algorithm 

(Bailey and Elkan, 1994) on the promoters of the putative targets of each initial motif in 

each species, with the initial motif’s consensus sequence as the initialization point to the 

algorithm. MEME is parameterized to identify motifs on either strand, of length within 

two bases from the input consensus, and it is given the species-specific nucleotide 

distributions as background models for learning. Of the top two motifs reported by 

MEME, the highest scoring motif in this species is then used to re-scan the species’ 

genome and to identify a revised set of targets. CladeoScope repeats this process of motif 

discovery and rescanning to refine the motif and its target set once; typically the motif is 

not altered after the first iteration. To allow more variation in the motifs, we repeat the 

process, initializing the refinement with the conserved ancestral targets. This allows us to 

find motifs in species where the first iteration did not succeed. CladeoScope chooses the 

motif with the highest enrichment score between these iterations. 

 

Phylogenetic reconstruction of ancestral targets (Step 3) 

 To infer the ancestral motif targets we trace regulatory events across orthologous 

loci. CladeoScope handles genes derived from a common ancestor gene in the root of the 

phylogeny as related (“orthogroup” in the terminology of (Wapinski et al., 2007)), and 
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defines an orthogroup as a target of a motif if it is predicted as a target in at least one of 

the ancestors in the phylogeny. The reconstruction is done using maximum parsimony 

(Fitch, 1971) to minimize the number of target gain and loss events along the branches of 

the tree. This is done separately for any potential ancestral target gene by a dynamic 

programming algorithm. The inputs to the algorithm are (1) the phylogenetic gene trees 

for each set of orthologous genes (Wapinski et al., 2007), and (2) a binary classification 

denoting whether each gene in the tree is a predicted target of the motif in each species. 

This reconstruction accounts for gene duplications and losses, distinguishing a lost gene 

from a present gene that is not a target, and operates independently on each paralogous 

lineage following gene duplication events, by utilizing gene trees when reconstructing 

ancestral targets. Given that most of these species have diverged sufficiently to lose 

sequence similarity at the promoters, paralogs will not necessarily be co-targets of a motif 

due to spurious conservation of their promoters. Thus, paralogs can be in different motif 

target sets in the CladeoScope output. 

 

Phylogenetic filter for noisy motifs and statistical significance (Step 4) 

We use phylogenetic conservation within a clade of species as a filter for noisy 

predictions of target genes (described above) as well as the DNA motifs themselves. 

CladeoScope filters the motifs for each species independently by enrichment of their 

putative target genes in that species with ancestral targets in any relevant clade 

(Hypergeometric p-value<0.001). Since filtering the motifs (step 4) and the 

reconstruction of ancestral targets (step 3) are dependent, we solve this problem by 

iterating between the two steps. If any insignificant motifs are found in the clade, the 

most insignificant one is removed, and CladeoScope returns to step 3 of reconstructing 

the ancestral targets. This filtration per species allows for a motif to be detected in a clade 

of species, although it is not functional in a single species but is functional in all other 

species in the clade. We then filter the motifs at each clade, requiring that the number of 

inferred targets for a motif in the clade’s ancestor be statistically significant (p-

value≤0.005) against the null hypothesis that the targets predicted in the individual 

species are independent. We compute an empirical p-value by simulating target sets of 

the relevant size for each species in the clade, and reconstructing ancestral targets from 
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these random sets. This process is repeated 1,000 times to estimate the probability of 

getting a set of ancestral targets of a certain size or larger by chance. A motif is detectable 

in a clade if it has a statistically significant (p-value<0.005) set of ancestral targets in the 

clade. Finally, we exclude motifs that are found to be significant only in clade A (sensu-

stricto), since in this clade promoter sequences have not evolved enough for random 

occurrences of a motif have a non-trivial chance to be conserved. 

 

 

2.3.2	
   Resources	
  for	
  phylogenetic	
  reconstruction	
  in	
  Ascomycota	
  fungi	
  
	
  
	
  

Gene, promoter annotations and DNA motifs 

We acquired the genome sequences and annotations of the 23 Ascomycota species 

from the online Fungal Orthogroups (Butler et al., 2009; Cherry et al., 1997; Cliften et al., 

2003; Dietrich et al., 2004; Dujon et al., 2004; Kellis et al., 2004; Kellis et al., 2003) 

(Arnaud et al., 2007; Galagan et al., 2005; Rhind et al., 2011b; Wood et al., 2002). 

Promoters were defined as the 600 bases upstream from the first codon, truncated at the 

neighboring coding sequence. To avoid bias in the motif discovery stage, we filter out 

stretches of poly-A or poly-T sequences of 5 bases or longer and poly-A/T sequences 

longer than 9 bases and replaced them with poly-N of the same length. 

Motifs were assembled from TRANSFAC (Matys et al., 2006), protein 

microarrays (Zhu et al., 2009), and previous analysis of ChIP-chip data (MacIsaac et al., 

2006). All motifs were transformed to a Position Weight Matrix (PWM) format (a n×4 

matrix, where each i,j cell contains the count of nucleotide j in position i of the motif), 

and clustered (using BLiC (Habib et al., 2008)) to unite highly identical motifs. 

 

Species phylogeny 

The CladeoScope algorithm, as well as in the Maximum-Likelihood estimators 

described above, assume the species phylogeny is known. Thus, to reconstruct the 

phylogenetic relationship between the species, we first identified all the orthologous 

genes with exactly one copy in each of the species (Wapinski et al., 2007) and aligned 
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their orthologous protein sequences. We concatenated all of these alignments to produce 

a meta-alignment of over 300,000 positions. We sampled 10,000 residues from this 

alignment, giving us an artificial protein from which we reconstructed the phylogeny 

using the PhyML (Guindon et al., 2010) software package with its default parameter 

settings. We repeated this process 10 times, rendering the same phylogeny at all branches 

except for the post-WGD clade of species, in which C. glabrata and S. castellii were 

found to be inverted in some cases. Recent work (Scannell et al., 2006) has shown that it 

requires fewer genomic rearrangements to place S. castellii as the outgroup of this clade 

and that the longer branch length leading to C. glabrata may be due to increased selective 

pressure as it became a pathogenic species. Thus, we fixed the branches at this location of 

the tree. In order to re-estimate the branch lengths with this fixed tree topology, we 

repeated the same process to construct an artificial protein and ran the SEMPHY software 

package (Friedman et al., 2002) to optimize branch lengths with default parameters. We 

repeated this process 10 times and found branch length correlations of over 0.99 between 

replicates. We then averaged the branch lengths among the 10 replicates to obtain branch 

length estimates for the given species phylogeny. 

	
  
	
  

2.3.3 Evaluations of CladeoScope in Ascomycota fungi  

	
  
Validating CladeoScope’s performance using synthetic data 

We generated simulated target sets in extant species for evaluating 

CladeoScope’s robustness by evolving targets from an ancestral set of targets using 

turnover (gain and loss) rates of target genes, with several variations. First, we used two 

types of noise factors: (1) The proportion of erroneous target genes relative to the 

species true motif targets (false positives, ranging between 0% and 200% of erroneous 

targets within each species set); and (2) The proportion of missing (true) targets not 

included in the species motif target set (false negatives, ranging between 0% and 60% of 

removed targets from each original species set). Second, we varied the size of the 

ancestral target set. Using ancestral motif targets in clade A (Figure 4a): 22 targets of 

Hsf1, 198 targets of Mbp1, 297 targets of Fkh1. Third, we varied the degree of targets 
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turnover (the fast turnover is the average frequency measured in clade E (Figure 4a) 

over all motifs: Fast Fgain=0.002 Floss=0.3, Medium Fgain=0.0002 Floss=0.03, Slow 

Fgain=0.00002 Floss=0.003). Forth, we estimated the gain and loss frequencies for each of 

the three motifs in each relevant species directly from the data (as in the Likelihood 

Ratio Test described below) (Appendix Note 1). Fifth, we used two topologies of the 

species tree: the topology in the sensu-stricto clade (clade A, Figure 4a), and the 

asymmetrical topology in the Candida clade (clade E, Figure 4a). Overall, we 

considered 960 combinations of these parameters. For each set of parameters, we 

executed CladeoScope and calculated sensitivity and specificity measures averaged over 

100 independent simulations.  

Assessing performance on random motifs 

We created random motifs by concatenating randomly sampled positions from all 

known motifs from the literature (using all motifs from S. cerevisiae, as described below). 

We confirmed that the random motifs we constructed were not similar to any known 

motifs, comparing the random motifs to all known motifs using BLiC (Habib et al., 2008). 

For each random motif, we scanned for targets in each species (as described above), and 

ran CladeoScope to reconstruct the ancestral sets. We then computed an empirical p-

value for each motif in all clades using random targets (as described above). 

 

Assessing CladeoScope’s robustness to parameters and comparison to the literature 

We tested CladeoScope’s robustness to variations in different parameters 

including (as described in Appendix Note 1): (1) The p-value threshold for detection of a 

motif in a species - We ran the algorithm on nine different motifs across all clades, using 

seven different thresholds, ranging between 5e-2 and 1e-5, and compared the number of 

ancestral targets reconstructed per clade. (2) The p-value threshold for conservation of a 

motif in a clade - We tested different p-value thresholds ranging between 0.05 and 0.001, 

and compared the number of statistically significant ancestral motifs predicted per clade. 

(3) The motif targets detection threshold - We tested three different thresholds (80%, 

75% or 70% out of the best score per motif and species). In each case, we compared the 

ancestral and species targets determined by CladeoScope to those from in-vivo ChIP-chip 

data in S. cerevisiae and four other species (Appendix Note 1). 
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2.3.4 Targets turnover rates and expected number of changes in target genes 

 

For each motif we computed the turnover rate of its target genes based on the 

following model. The model treats each pair (motif, gene) as a binary character denoting 

whether the gene is a target of the motif or not. We model changes in this character (gain 

or loss events) as a stochastic continuous-time Markov process parameterized by motif-

specific rates, one for gain, and another for loss. This model is akin to standard models of 

character evolution (Felsenstein, 1981). The rates are expressed in terms of expected 

number of events per time unit (tU), where a time unit corresponds to the time in which 1 

amino-acid substitution per site is expected on average. The model assumes a constant 

turnover rate of targets along the phylogeny, which is reflected by two parameters for 

each motif: its gain rate (a) and its loss rate (b), given by the following rate matrix R: 

 

Given this rate matrix we can compute the probabilities for target gain and loss for a 

given evolutionary distance t using the following equations: 

   

 
We use a maximum likelihood estimator to infer the parameters in R for each motif. The 

likelihood is computed based on sufficient statistics for each clade relative to its 

immediate ancestral clade, including the branch length (t), the observed number of gained 

(Ngain), lost (Nloss) and conserved (Ncons) target genes, and the probabilities described 

above, as: 

 
The maximum likelihood estimator is found by a gradient descent algorithm using 

Matlab’s fminunc function. We assume the tree topology and branch length are known 

(see Species phylogeny). 
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2.3.5 Annotating motifs with functional modules and their evaluation 

 

The functional modules algorithm 

To associate motifs with regulatory functions, we cluster functional gene-sets 

together by the fraction of associated motif targets shared between them, creating sets of 

functional modules containing genes that share functional annotations and are all 

ancestral targets of the same regulatory motif in at least one clade.  

 

The method is applied to each motif separately. As input we provide the ancestral 

target genes of the motif in each clade, and gene sets of functional annotations from 

various sources. In Step 1 (Initialization), we identify all functional annotations enriched 

in each set of ancestral targets in each clade using Fisher’s exact test (p  < 0.01 after 

correction, however the results presented here are robust to various thresholds), and 

define a functional module as genes from each enriched category that are ancestral targets 

in any clade. In Step 2 (Merge functional modules), we merge modules according to the 

fraction of associated motif targets shared between them. In this greedy procedure, we 

start from the most enriched module, choose another one that is most highly overlapping 

with it (at least 60% gene membership overlap, however the results presented here are 

robust to various thresholds) and unite them into a new functional module, eliminating 

the two daughter modules from the collection. In Step 3 (Recalculate enrichments), we 

recalculate the enrichment of the ancestral targets in each clade with this new functional 

module. We repeat Steps 2 and 3 until no further functional modules are merged. 

Following the automatic assignment of modules, we manually annotated each functional 

module with a biologically meaningful label based on its underlying annotations.  

 

Note that the assignment to functional modules is based on phylogenetic 

projection from S. cerevisiae, C. albicans and S. pombe annotations. As a consequence, 

the function assignment often cannot distinguish between paralogs. Moreover, in a 

previous study of functional evolution (Wapinski, et al, Nature 2007), it was shown that 

when it is possible to evaluate such divergence, most paralogs maintain the same 

functional category. Thus, we expect some functional modules to be enriched for 
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paralogs (e.g. the Ribosome, due to the massive duplications of genes encoding 

ribosomal proteins). This, however, reflects a real phenomenon. 

 

Functional annotation resources   

We used functional annotations from several sources. GO annotations (Ashburner 

et al., 2000) were assembled from the genome databases of S. cerevisiae (SGD), C. 

albicans (CGD), and S. pombe (GeneDB). Other S. cerevisiae-based annotations include 

transcription-modules (Segal et al., 2003), MIPS (Mewes et al., 2010), KEGG (Kanehisa 

and Goto, 2000; Kanehisa et al., 2006), and mutant phenotypes (Hughes et al., 2000b). 

Other S. pombe-based annotations include expression clusters (Chen et al., 2003). We 

projected each set of annotations from genes to their orthologs (Wapinski et al., 2007) to 

test gene set enrichments across all clade core-sets, as previously described (Wapinski et 

al., 2007).  

 

Assessing Robustness of functional modules and their comparison to the literature 

To test the robustness of the functional modules, we applied the algorithm with 

different parameters and inputs, including (See Appendix Note 3): (1) Enrichment 

thresholds for functional modules with motif targets (HyperGeometric p-value threshold 

ranging between: 1e-3 and 1e-6). (2) Threshold for merging gene-sets (overlap threshold 

ranging between 40% and 75%). (3) Threshold for initial predictions of target genes 

(80% or 75% out of the bests score per motif and species).  

 

For each set of parameters we tested several characteristics: (1) The number of 

modules; (2) The fit of our Functional Selection Turnover model; (3) The classification 

of motifs to functional classes (Functional conservation, Clade specific innovation or 

Functional switch), where we examined in detail 18 motifs including those discussed in 

this chapter; and (4) Robustness of the functional annotations of motifs by the functional 

modules, where we examined in detail 18 motifs including those discussed in this chapter. 

In addition, we compared the resulting functional modules to known motif and 

transcription factor annotations from the literature in S.cerevisiae (SGD), C.albicans 

(CGD) and S.pombe (GeneDB). 
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2.3.6 The functional selection turnover model  

 

 

Likelihood Ratio Test 

We used a Likelihood Ratio Test (LRT) to determine if the observed functional 

conservation with widespread turnover occurs by chance or according to our functional 

selection model. We defined two alternative hypotheses: 

H0: Module-Neutral turnover: Targets turnover at the same (‘neutral’) rate regardless of 

the functional module to which they belong (implying that the functional conservation 

may be a byproduct of the insufficient evolutionary distance between species). 

H1: Functional selection: There is selective pressure on the targets to be gained or lost 

within modules of genes sharing the same function. Turnover rates – both gain and loss – 

are different for targets in the functional module compared to those outside. 

We applied the LRT to each functional module testing separately each associated clade 

(total of 745 tests), by computing the likelihood of the observations under each 

hypothesis and calculating a p-value (χ2 distribution with one degree of freedom). The 

likelihood computations were based on maximum likelihood estimates of gain and loss 

probabilities in the clade relative to its immediate ancestral clade. The required sufficient 

statistics are the observed number of gained (Ngain), lost (Nloss) and conserved (Ncons) 

target genes. In the functional selection model (H1 hypothesis) we computed the gain and 

loss probabilities separately for genes within the module and genes outside of the module.  

Description of the equations: 
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The maximum likelihood estimation for the probability of gain and loss of each motif’s 

target genes in the current clade C1, compared to the immediate ancestral clade Cp:  

 

 

 

 

Where, 

Ntotal = Total number of genes in the genome 

TCp= Total number of targets in clade Cp 

IN = Genes belonging to the functional module 

OUT = Genes not belonging to the functional module 

NIN
total = Total number of genes in the functional module 

TIN
Cp= Total number of genes in the functional module that are targets in clade Cp 

 

 

Simulating the number of highly conserved targets 

To test whether the number of highly conserved targets is explained by the 

functional selection model, we computed the probability of observing the inferred 

number of these targets under the functional selection model (the H1 hypothesis defined 

in the LRT, above). We then simulated targets in the two sub-clades that share the same 

direct ancestral clade, and computed the overlaps between these simulated target sets. 

The simulations were initialized with the target set of the ancestral clade, and we 

simulated the targets in each sub-clade according to its probability of gain or loss of 

target genes, within and outside of the functional module (computed as described above 

for the Likelihood Ratio Test, using a maximum likelihood estimator). We repeated this 
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process 1,000 times, counting the number of times in which the number of simulated 

ancestral targets was equal to or greater than the number observed in our data. We ran the 

test on motifs conserved at least up to clade H (29 motifs), and computed these empirical 

probabilities of the intersection between the target sets at clade D and clade G. In general, 

for two target sets C1 and C2 of clades that share an immediate ancestral clade, we 

computed the empirical probability for the number of genes in the intersection between 

the two target sets, denoted as Ip:  

 

 

Where: is the number of simulations where and  #simulations 

is the total number of simulations (1,000). 

 

 

Experimental transcription factor binding data 

We used Ste12 and Tec1 binding in three closely-related Saccharomyces species 

by ChIP-chip (Borneman et al., 2007); Mcm1 binding measured across three more distant 

yeast species by ChIP-chip (Tuch et al., 2008); and HNF4α binding measured across 

three mammalian species (human, mouse and dog) by ChIP-seq (Schmidt et al., 2010). 

For the yeast studies, we used target genes defined in the original manuscripts. For the 

mammals, where regulatory elements can reside far from their target genes, we had to 

assign each bound regulatory element with the gene(s) it controls. We focused on binding 

events in the proximity of the gene, and used five alternative definitions of promoters, 

ranging between 1kp to 5kp upstream of the transcription start site (sequences taken from 

UCSC genome Browser versions hg19 (Lander et al., 2001), canFam2 (Lindblad-Toh et 

al., 2011), mm10 (Waterston et al., 2002)). The specific list of target genes changes when 

we modify this parameter, but the fit to the functional turnover model does not. 

 

To find functional modules we conducted the same analysis as described above, 

using the target gene enrichments from the individual species instead of the targets at the 

clades. For the LRT and simulation tests, we conducted the same analysis as described 
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above, but comparing targets of each individual species to the ancestral target set of all 

three species, defining the highly conserved targets as targets conserved in all three 

species. For mammals, we used gene functional annotations from MsigDB (Liberzon et 

al., 2011) (Release 3.0). 
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Chapter 3 -  

Paternally Induced Transgenerational Environmental 

Reprogramming of Metabolic Gene Expression in Mammals 
 

3.1 Introduction 

 
My second focus in this work is on evolution of transcription regulation driven by 

epigenetic changes. Specifically, on transgenerational reprogramming of gene expression 

by epigenetic inheritance, and the interplay between the environment and such 

reprogramming. 

 

 

3.1.1 Epigenetic Inherence and the Environment 

 

Inheritance of epigenetic regulatory factors, such as DNA methylations, 

chromatin modifications and non-coding RNAs can lead to transgenerational 

reprograming of gene-expression. Epigenetic inheritance mechanisms are potential 

carriers of information about the environment experienced by parents to their offspring 

(Jablonka and Lamb, 2007; Jablonka et al., 1995). Theoretical studies imply that 

environmental regimes exist for which “carryover” epigenetic memory would be adaptive 

(Jablonka and Lamb, 2007; Jablonka et al., 1995). In other words, mechanisms exist that 

could allow organisms to “inform” their progeny about prevailing environmental 

conditions. Under certain historical circumstances – for example, repeated exposure over 

evolutionary time to a moderately toxic environment that persists for tens of generations 

– such non-Mendelian information transfer would be adaptive (Jablonka et al., 1995; 

Rando and Verstrepen, 2007). Whether or not organisms can inherit characters induced 

by ancestral environments has far-reaching implications, and this type of inheritance has 

come to be called “Lamarckian” inheritance after the early evolutionary theorist J. 

Lamarck. However, there is scant evidence for trans-generational effects of the 

environment in mammals. 
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3.1.2 Evidence for Trans-Generational Effects of the Environment 

 

A small number of cases have been described in which phenotype of an organism 

differs depending of the environment experienced by the parents. This is most commonly 

seen as a maternal effect. In a variety of rodents, information about photoperiod can be 

passed on to offspring by mothers, and cross-fostering experiments show that this 

information is transmitted in utero (Horton, 2005). In worms, osmotic stress applied in 

one generation results in offspring with increased resistance to osmotic stress, but 

decreased resistance to anoxia(Frazier and Roth, 2009). In this case, the maternal effect 

appears to function via altered sugar metabolism – offspring of osmotically-stressed 

worms have less glycogen, but more glycerol, than offspring of unstressed worms. In 

human populations, epidemiological data, particularly from the Dutch “Hunger Winter” 

of World War II, suggests that children whose mothers went hungry during pregnancy 

have significantly increased rates of diabetes, obesity, and cardiovascular disease (Hales 

and Barker, 2001; Lumey et al., 2007). 

 

The existence of effects of the maternal environment on phenotype is not 

particularly surprising, as the womb is a baby’s first environment – for example, fetal 

alcohol syndrome is a phenotypic consequence of excessive maternal alcohol intake, and 

conceptually does not require epigenetic information to mediate the phenotype. Thus,  

demonstration of multi-generational changes is important in maternal effects to rule out 

simple plastic responses of offspring to the in utero environment. 

 

 

3.1.3 Evidence for Heritable Epigenetic Effects of Environmental Perturbations 

 

Some studies have demonstrated heritable epigenetic effects of environmental 

perturbations on offspring. For example, treatment of gestating rat mothers with the 

endocrine disruptor vinclozolin results in decreased fertility and behavioral changes in 

several generations of offspring (Anway et al., 2005; Crews et al., 2007; Skinner et al., 

2008). The authors suggested that the mechanism for inheritance was induction of 
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changes in cytosine methylation patterns, although genetic alterations to the Y 

chromosome were not ruled out. In another study, withholding methyl donors (such as 

folate) from pregnant female mice resulted in decreased cytosine methylation across a 

transposable element inserted in the agouti gene (Waterland and Jirtle, 2003). While an 

effect in the first generation might simply reflect a direct environmental influence, the 

altered cytosine methylation profile persisted well beyond the first generation (Cropley et 

al., 2006) and was even transmissible through the male germ line. In neither of these 

cases is the detailed mechanism of transgenerational heritability understood. 

 

While in principle these effects may be passed through the maternal or paternal 

germline, in practice it is quite difficult in females to separate epigenetically heritable 

effects from plastic responses of the progeny to its environment. Fathers, on the other 

hand, often have very little direct influence on their offspring’s environment, especially 

in mice. If the paternal environment affects the progeny, such effects are likely to act 

through the germ line. A handful of paternal effects have been documented in the 

literature – preconception fasting of male mice has been reported to affect serum glucose 

in offspring (Anderson et al., 2006), and epidemiological data from human populations 

links hunger in paternal grandfathers to obesity and cardiovascular disease two 

generations later (Kaati et al., 2002; Pembrey et al., 2006).  

 

It is therefore of great interest to determine what environmental conditions have 

transgenerational effects in mammals, and to characterize the mechanisms that mediate 

these effects. To test whether such transgenerational inheritance occurs in mammals, we 

carried out a screen for genes and epigenetic modifications in mice that responded to 

paternal diet. Relative to the offspring of males fed a control diet, the offspring of males 

fed a low-protein diet increased the expression of many genes involved in lipid and 

cholesterol biosynthesis, and had increased levels of cholesterol esters, triglycerides, and 

free fatty acids, lipids. 
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3.2 Results 

 
3.2.1 Experimental paradigm 

 

Male mice were fed control or low protein diet (11% rather than 20% protein, 

with the remaining mass made up with sucrose.  While the relevant dietary change in this 

experiment could be protein content, sucrose content, fat/protein ratio, etc., for simplicity 

we refer to the diet as low protein throughout the text) from weaning until sexual 

maturity.  They were then mated to females reared on control diet (Figure 19A, 20A). 

Fathers were removed after one or two days of mating, limiting their influence on their 

progeny to the mating itself. All mothers were maintained on control diet throughout the 

course of the experiment. After birth, the offspring were reared with their mothers until 

three weeks old, at which point their livers were harvested for RNA isolation. DNA 

microarrays were used to profile global gene expression differences in the livers of the 

offspring from the two types of crosses.  

 

Testing for differences between 26 matched pairs of mice from the two F1 groups, 

we found a significant overabundance of differentially-expressed genes, relative to the 

null hypothesis that the parental treatment does not affect offspring (1,595 genes at false 

discovery rate – FDR – of 0.001, Figure 20B-C). We also identified a more robust (t-test 

with null hypothesis of mean change 0.2, FDR of 0.01) group of 445 genes whose 

expression strongly depended on the diet consumed by their fathers (Figure 19B). In our 

analysis we focus on this more robust group of genes, however, all the phenomena 

described below are true for the larger group as well. These gene expression changes 

were observed in 13 (7 low protein, 6 control) litters in experiments spanning several 

years, carried out in three different animal facilities. In principle, random factors should 

be distributed equally between our two groups given the numbers of offspring examined, 

but we directly address a number of potential artifacts nonetheless, including changes in 

cell populations, circadian cycle, litter size, order of sacrifice, and cage location. 
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Figure 19. A screen for genes regulated by paternal diet 
(A) Experimental design. Male mice were fed control or low (11%) protein diet from weaning until 
sexual maturity, then were mated to females that were raised on control diet. Males were removed after 
1 or 2 days of mating. Livers were harvested from offspring at 3 weeks, and RNA was prepared, 
labeled, and hybridized to oligonucleotide microarrays. (B) Overview of microarray data, comparing 
offspring of sibling males fed different diets—red boxes indicate higher RNA levels in low-protein than 
control offspring, green indicates higher expression in controls. Boxes at the top indicate comparisons 
between two male (purple) or two female (yellow) offspring. Each column shows results from a 
comparison of a pair of offspring. Only genes passing the stringent threshold for significant change are 
shown.  Data are clustered by experiment (columns) and by genes (rows). (C) Validation of microarray 
data. Quantitative RT-PCR was used to determine levels of Squalene epoxidase (Sqle) relative to the 
control gene Vitronectin (Vtn), which showed no change in the microarray dataset. Animals are 
grouped by paternal diet and by sex, and data are expressed as DCT between Sqle and Vtn, normalized 
relative to the average of control females. p values were calculated using t test. 
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We confirmed our results by q-RT-PCR (Figures 19C, 20A). Squalene epoxidase 

(Sqle), which catalyzes the first oxygenation step in sterol biosynthesis, exhibited a ~3-

fold increase in the low protein cohort in our microarray data, and q-RT-PCR showed a 

similar average expression difference across over 25 animals, gathered in crosses carried 

out several years apart (Figure 19C). The differences we observe occur in both male and 

female progeny (Figures 19C), though these dietary history-dependent differences are 

superimposed on a baseline of differential expression between the sexes. 

 

 

 

Figure 20. Validation and identification of differentially expressed genes 
(A) Microarray data and q-RT-PCR results are shown for the indicated genes, for two offspring 
comparisons. (B and C) Evaluating the statistical significance of the number of genes that are 
differentially expressed between offspring of low-protein diet fathers and control diet fathers. Blue line, 
the number of differentially expressed genes that separate the two sets of offspring (y axis) that were 
scored a given p value (x axis) in a t test; black line, the number of genes expected by chance with that 
p value from 1000 simulations with random reshuffling of subject labels; light gray or red line, the 
range of numbers of differentially expressed genes in the 95th percentile of 1000 random simulations. 
Overabundance of differentially expressed genes is observed when using both tests: (B) combination of 
two one-tailed t tests; (C) combination of two one-tailed t tests using a null hypothesis with mean 
change of 0.2. In this case the random reshuffling of the data corresponds to a null hypothesis with 
mean 0 rather than 0.2 and thus is an upper bound on the number expectance by chance. 
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3.2.2 Upregulation of proliferation and lipid biosynthesis genes in low protein 

offspring 

 

To help define the physiological differences between our cohorts, we calculated 

enrichments of various Gene Ontology (GO) processes in the differentially expressed 

genes. Genes upregulated in our treatment group’s offspring were enriched for a number 

of categories of genes involved in fat and cholesterol biosynthesis, including lipid 

biosynthesis (p < 9 x 10-26), steroid biosynthesis (p < 3x10-19), cholesterol biosynthesis 

(p < 2x10-12), and oxidation-reduction (p < 4x10-10). Another major group of upregulated 

genes are annotated to be involved in S phase, such as DNA replication (p < 2x10-9) and 

related annotations. Downregulated genes were enriched for GO annotations such as 

sequence specific DNA binding (p < 6x10-6) and ligand-dependent nuclear receptor 

activity (p < 6x10-5), although the number of genes matching these annotations was small 

(14 and 5, respectively). 

 

The increase in S phase genes likely indicates a hyperproliferative state, while the 

metabolic expression differences suggest that lipid metabolism is altered in these animals. 

To explore the mechanisms responsible for these altered gene expression programs, we 

asked whether the observed gene expression differences might reflect altered regulation 

of a small number of pathways. We checked for significant overlaps of the gene 

expression profile observed in our low protein offspring with a compendium of 120 

publicly-available murine liver gene expression datasets (Experimental Procedures). Our 

low protein offspring gene expression profile significantly (p < .05 after Bonferroni 

correction) overlapped gene expression changes from 28 published profiles (Figure 21), 

including gene expression profiles associated with perturbation of transcription factors 

that regulate cholesterol and lipid metabolism (SREBP (Horton et al., 2003), KLF15 

(Gray et al., 2007), PPARa (Rakhshandehroo et al., 2007), and ZFP90 (Yang et al., 

2009)). Our gene expression dataset also significantly matched hepatic gene expression in 

a variety of mice with mutations affecting growth hormone (GH) and insulin-like growth 

factor 1 (IGF-1) levels (Boylston et al., 2004; Madsen et al., 2004; Tsuchiya et al., 2004). 

Hierarchical clustering according to the enriched public profiles revealed two types of 
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prominent gene functions in our data: DNA replication (p < 6x10-14) and lipid or 

cholesterol biosynthesis (p < 2x10-27) (Figure 21). The partial overlap observed with 

each of many different transcription factor and growth factor profiles suggests that the 

altered gene expression profile observed in low protein offspring is likely related to 

reprogramming of multiple distinct pathways 

 

To assess whether the reprogrammed state in offspring reproduces the paternal 

response to low protein diet, we measured global gene expression changes in the livers of 

pairs of animals weaned to control or low protein diet as in Figure 19A. Genes that 

change in offspring are not the same as the genes induced in the parental generation by 

these protocols (Figure 22). Instead, males fed the low protein diet upregulate immune 

response and apoptosis-related genes, and downregulate genes involved in carboxylic 

acid metabolism (analysis not shown).  

Figure 21. Multiple Pathways Are Affected by Paternal Diet 
Comparison of upregulated gene expression profile with a compendium of public datasets of hepatic gene 
expression. A clustering of our upregulated genes according to their notation in the 28 significant (p < 
0.00025) overlapping signatures from an assembled compendium of 120 publicly available murine liver 
signatures under various conditions and genetic perturbations (GEO; Horton et al., 2003; Yang et al., 2009). 
For each significant profile, the majority of overlapping genes areshown as yellow, whereas genes with 
opposite regulation (i.e., down rather than up in the dataset in question) are blue. The genes divide into two 
distinct clusters, one enriched in DNA replication and the other in various categories of fat and cholesterol 
biosynthesis.  
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3.2.3 Transgenerational effects on lipid metabolism 

 

We further focused on cholesterol biosynthesis genes. Coherent upregulation of 

genes involved in cholesterol metabolism is observed in the offspring of low protein 

fathers (Figure 23A).  Figure 23B shows a more detailed comparison between our 

upregulated dataset and published data (Schneider et al., 2003) for genes activated by a 

major transcriptional regulator of cholesterol metabolism, SREBP. Many of the genes 

upregulated in low protein offspring have previously been shown to be upregulated by 

overexpression of SREBP-1a or SREBP-2 or downregulated by loss of the SREBP-

activating gene, Scap. 

Figure 22. Analysis of Paternal 
Response to Low-Protein Diet. (A) 
Males were fed control or low-
protein diet from weaning until 
sexual maturity, and then were 
sacrificed and livers were harvested 
for gene expression profiling as in 
Figure 19. Here, genes on both 
panels have the same order, showing 
gene expression differences as low-
protein/control in fathers and 
offspring. Gene expression 
differences in offspring do not 
reflect the paternal response to the 
dietary regimes (note that these 
males were not fathers of the 
offspring analyzed in Figure 19, but 
were treated equivalently). (B) 
Scatterplot of average gene 
expression in offspring (x axis) 
versus in males treated with LP or C 
diet (y axis). Only genes were 
chosen with fewer than 30% missing 
spots in each experiment (26 arrays 
each). R = -0.129. 
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Figure 23. Altered Cholesterol Metabolism in the Low-Protein Cohort 
(A) Cholesterol biosynthesis. Genes annotated as cholesterol biosynthesis genes are shown, with colors 
indicating average difference in expression in low-protein versus control comparisons. (B) Many genes 
upregulated in the low-protein cohort are SREBP targets. Upregulated cluster from Figure 19 is shown, 
along with data from Horton et al. (2003). Genes scored as up in both replicates from Horton et al. (2003) 
are shown as yellow, genes scored as down are blue. Columns show data from transgenic mice 
overexpressing SREBP-1a or SREBP-2 or from Scap knockout mice. (C) Cholesterol levels are decreased 
in livers of low-protein offspring. Data from lipidomic profiling of liver tissue from three control and three 
lowprotein animals are shown as mean ± standard deviation. Red line indicates no change. p values were 
calculated using a paired t test on log-transformed lipid abundance data. Cholesterol esters, CE; 
phosphatidylethanolamine, PE; free cholesterol, FC; triacylglycerol, TAG; phopshatidylcholine, PC; 
cardiolipin, CL; phosphatidylserine, PS ; free fatty acid, FA; lysophosphatidylcholine, LYPC; and 
diacylglycerol, DAG.	
  



	
  
	
  

70	
  

 To explore the correspondence between hepatic gene expression and physiology, 

we measured lipid levels in three pairs of control and treatment livers to determine 

whether increased levels of lipid biosynthesis genes resulted from changes in lipid levels 

(Figure 23C). Livers in the cohort with low protein diet fathers were depleted of 

 cholesterol and cholesterol esters (whose levels were reduced more than two-fold). 

Additional differences were found in specific lipid classes, such as substantial increases 

in relative levels of saturated cardiolipins, saturated free fatty acids, and saturated and 

mono-unsaturated triacylglycerides in low protein offspring. Together, these results 

demonstrate that paternal diet affects metabolites of key biomedical importance in 

offspring. 

 

 

3.2.4 MicroRNAs in offspring  

 

Small (19-35) RNAs such as microRNAs (miRNAs) have recently been 

implicated in epigenetic inheritance in mice (Wagner et al., 2008). To determine whether 

altered small RNA populations might drive our reprogramming effect, we characterized 

the small (19–35 bp) RNA population from control and low protein offspring livers by 

high throughput sequencing (Ghildiyal et al., 2008), and mapped reads to known 

microRNAs. A number of miRNAs changed expression in the offspring from low protein 

diet fathers (Figure 24). Changes were often subtle in magnitude (~50%), but were 

reproduced in four control vs. low protein comparisons (paired t-test), and given the 

number of sequencing reads obtained for these RNAs this magnitude of difference is well 

outside of counting error. Offspring of low protein cohort upregulated miR-21, let-7, 

miR-199, and miR-98, and downregulated miR-210. Many of these upregulated miRNAs 

are associated with proliferation in liver, with miR-21 and miR-199 both associated with 

hepatocellular carcinoma (Jiang et al., 2008), while let-7 is well-known as a tumor 

suppressor (Jerome et al., 2007). The increase in growth-associated miRNAs is consistent 

with the hyperproliferative gene expression profile observed in the offspring of low 

protein diet fathers. 
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We found no statistically-significant overlap (p > 0.05) between the predicted 

targets of the miRNAs here and the gene expression changes we observe, though the 

subtle (~50%) changes in miRNA abundance we observe might be expected to have little 

effect on mRNA – even when specific miRNAs are artificially introduced in cells, 

downregulation of target mRNAs is less than 2-fold for the majority of predicted targets 

(Hendrickson et al., 2008). Our results therefore suggest that miRNAs are likely to be 

additional targets of the reprogramming pathway, yet are likely not the direct upstream 

regulators of the entire response (but see (Yotova et al., 2008)). 

 

 

 

3.2.5 Cytosine methylation in offspring 

 

How are offspring reprogrammed by paternal diet? Cytosine methylation is a 

widespread DNA modification that is environmentally-responsive, and carries at least 

some heritable information between generations  (Bartolomei et al., 1993; Cropley et al., 

2006; Holliday, 1987; Rakyan et al., 2003; Waterland, 2003). We performed reduced 

Figure 24. Proliferation-Related MicroRNAs Respond to Paternal Diet. 
Small (<35 nt) RNAs from the livers of eight offspring (four control, four lowprotein) were isolated and 
subjected to high-throughput sequencing. MicroRNAs that exhibited consistent changes in all four pairs 
of animals are shown, with average change shown as a bar and individual comparisons shown as points.  
	
  



	
  
	
  

72	
  

representation bisulfite sequencing (RRBS, (Meissner et al., 2008)) to characterize 

cytosine methylation at single nucleotide resolution across ~1% of the mouse genome. 

RRBS was performed for livers from a pair of control and low protein offspring, and 

fraction of methylated CpGs was calculated for a variety of features such as promoters, 

enhancers, and other nongenic CpG islands. In general, we found that cytosine 

methylation was well-correlated between control and low protein offspring. However, we 

did observe widespread modest (~10-20%) changes in CpG methylation between the two 

samples, consistent with many observations indicating that environmental changes tend 

to have small quantitative effects on cytosine methylation (Blewitt et al., 2006; Heijmans 

et al., 2008; Ng et al., 2010; Weaver et al., 2004). Importantly, changes in promoter 

methylation did not globally correlate with changes in gene expression in offspring, 

indicating that the gene expression program in offspring is unlikely to be epigenetically 

specified at each individual gene. Of course, widespread gene expression differences can 

be caused by changes to a small number of upstream regulators, and a number of 

differentially-methylated regions are associated with cholesterol or lipid-related genes. 

 

Most interestingly, we found a substantial (~30%) increase in methylation at an 

intergenic CpG island ~50 kb upstream of Ppara. This locus is likely an enhancer for 

Ppara, as it is associated with the enhancer chromatin mark H3K4me1 (Heintzman et al., 

2007) in murine liver (F. Yue and B. Ren, personal communication). Ppara is 

downregulated in the majority (but not all) of offspring livers, and the overall gene 

expression profile in our offspring livers significantly matches the gene expression 

changes observed in ppara knockout mice (Figure 21), suggesting that epigenetic 

regulation of this single locus could drive a substantial fraction of the observed gene 

expression changes in offspring. Indeed, variance of Ppara mRNA levels alone can be 

used to explain ~13.7% of the variance in the entire gene expression dataset (although 

this of course does not determine causality). 

 

We therefore assayed the methylation status of this locus by bisulfite sequencing 

in an additional 17 offspring livers (8 control and 9 low protein), finding average 

differences of up to 8% methylation between low protein and control livers at several 
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CpGs in this locus. Importantly, these pooled data underestimate the potential role of this 

locus in reprogramming as they include animals exhibiting a range of changes in Ppara 

gene expression – individual animals exhibit differences of up to 30% at various 

cytosines across this locus. Taken together, these results identify a differentially-

methylated locus that is a strong candidate to be one of the upstream controllers of the 

hepatic gene expression response. 

 

 

3.2.6 Cytosine methylation, RNA, and chromatin in sperm 

 

To globally investigate effects of paternal diet on sperm cytosine methylation, we 

isolated sperm from four males– two consuming control diet, one consuming low protein 

diet, and one subjected to a caloric restriction regimen. We then surveyed cytosine 

methylation patterns across the entire genome via MeDIP-Seq (immunoprecipitation 

using antibodies against 5me-C followed by deep sequencing (Jacinto et al., 2008; Weber 

et al., 2005)). Notably, global cytosine methylation profiles were highly correlated 

between any pair of samples, indicating that the sperm “epigenome” is largely 

unresponsive to these differences in diet. This lead us to consider alternative epigenetic 

information carriers including RNA (Rassoulzadegan et al., 2006; Wagner et al., 2008) 

and chromatin  (Arpanahi et al., 2009; Brykczynska et al., 2010; Hammoud et al., 2009; 

Ooi and Wood, 2007). 

 

We analyzed RNA levels for three pairs of males and for two matched epididymis 

samples by Affymetrix microarray (Figures 25A). Curiously, low protein and caloric 

restriction samples consistently exhibited more “sperm-like” RNA populations (as 

opposed to epididymis RNA) than did control samples (Figure 25B). Whether this 

reflects systematic contamination issues or biological differences in sperm maturity or 

quality is presently unknown, although we note that we confirmed consistently-higher 

levels of the sperm-specific Dnahc3 by q-RT-PCR in an additional 7/8 low protein sperm 

samples (Figure 25E). We note that control sperm samples were routinely >99.5% sperm 

as assayed by microscopy, but nonetheless we cannot completely rule out systematic 
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contamination issues. With this possibility in mind, we identified genes were 

differentially-packaged in control vs. low protein sperm by correcting for potential 

Figure 25. Effects of Diet on Sperm RNA Content and Chromatin, 
(A) Sperm RNA populations exhibit expected enrichments. Histogram of average Affymetrix 
microarray probe intensities for all six sperm samples is shown, with abundant RNAs in sperm 
exhibiting expected GO enrichments. (B) Sperm from animals consuming low-protein or caloric 
restriction diets exhibit relative depletion of epididymis-enriched genes, relative to sperm from animals 
on control diet. Data from 8 Affymetrix microarray analyses are shown. Log-transformed abundance 
data for each gene was row-normalized (i.e., the average value of each row is zero), and genes with fold 
change > 1.8 in at least two samples are shown. Thus, the upper half of the cluster shows genes that are 
relatively abundant in epididymis (red), relatively depleted in low-protein and caloric restriction sperm 
(green), and of intermediate abundance in control sperm (black/light green). (C) Low-protein sperm are 
more ‘‘sperm-like’’ than are control sperm. Scatterplot of difference in RNA signal between sperm and 
epididymis (x axis) versus difference between sperm from one of the pairs of low-protein versus control 
animals (y axis). Red line shows LOWESS fit between sperm/epididymis and low-protein/control, and 
red and green dots show genes exhibiting a ‘‘corrected’’ low-protein/control enrichment above or below 
1.8-fold. (D) Cluster of corrected sperm RNA changes between two low-protein/control pairs and one 
caloric restriction/control pair. Genes more abundant in low-protein or caloric restriction sperm exhibit 
relatively nonspecific GO enrichments, whereas genes depleted in low-protein sperm are enriched for 
GO annotations including lipid metabolism, regulation of transcription, and organ development. (E) 
Validation of microarray results. q-RT-PCR was performed for the indicated genes, 
normalized against Gapdhs, and low-protein/control ratios are shown (±SEM). Microarray 
values shown are LOWESS-corrected for possible epididymis contamination as in (C). (F) 
Individual low-protein/control ratios for nine animal pairs used for (E).  
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epididymal contamination (Figures 25B-F). Interestingly, we  observed downregulation 

of a number of transcription factors and chromatin regulators such as Smarcd3 and Ppard, 

although q-RT-PCR validation was not statistically significant due to high inter-animal 

variability (Figure 25F). 

 

Although the downregulation of Smarcd3 was not significantly confirmed by q-

RT-PCR, this could reflect the variable penetrance described above. Given that 

heterozygous mutants in chromatin remodelers can affect offspring phenotype even when 

the mutant allele segregates away (Chong et al., 2007), we used an initial genome-wide 

mapping (not shown) of overall histone retention (pan-H3 ChIP) abundance and the key 

epigenetic histone modification H3K27me3 in sperm to identify targets for single locus 

analysis. We observed a consistent decrease in H3K27me3 in low protein sperm at the 

promoter of Maoa (Monoamine oxidase) in 5/5 pairs of sperm samples, and a decrease in 

H3K27me3 at Eftud1 in 4/5 paired samples. These results demonstrate proof of principle 

that the sperm epigenome is regulated by dietary conditions, although the biological 

implications of these observations are not yet clear.  
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3.3 Methods 

 

3.3.1 Experimental procedure for the epigenetic inheritance experiment in mice 

 

The experimental work was led by Prof. Oliver Rando, and were carried out by 

various people all acknowledged in Carone et el., 2010. The extended experimental 

procedures can be found in the supplementary section of Carone et el.  

 

Mouse husbandry and diets 

All experiments were performed with mice which had been raised for at least two 

generations on control diet. Male mice were weaned from mothers at 21 days of age, and 

sibling males were put into cages with low protein or control diet (moistened with water 

to allow mice to break the hard pellets). Females were weaned to control diet. Males were 

raised on diet until 9-12 weeks of age, at which point they were placed with females for 

one or two days. At three weeks of age offspring were sacrificed, and median lobe of 

liver was rapidly dissected out and flash-frozen in liquid N2. Diets were obtained from 

Bio-serv, and sterilized per standard protocol.  

RNA extraction and Microarray hybridization   

 

Liver samples were ground with a liquid N2-cooled mortar and pestle. Total RNA 

for microarray analysis was extracted from liver powder using Trizol. For the microarray 

hybridization, 30 mg of total RNA was labeled for 2 hours at 42 C with Superscript II 

reverse transcriptase using 4 mg of random hexamer and 4 mg of oligo dT. Cy3 and Cy5-

labeled samples were hybridized to home-printed “MEEBO” microarrays. Microarrays 

were hybridized at 65 C for 16 hours, washed as previously described (Diehn et al., 2002), 

and scanned using Axon Genepix 4000B microarray scanner. 

 

Lipid measurements, Small RNA cloning and sequencing 

For lipid measurements ~50-100 mg of ground liver tissue from six animals (three 

paired sets) was sent to Lipomics for “Truemass” mass spectrometry characterization of 

450 lipid levels. Total RNA was isolated from ground liver tissue using mirVana 
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(Ambion). 18–35 nt small RNA was purified from 100 µg of total RNA, ligated to 

adaptors, amplified, gel-purified, and sequenced using a Solexa Genome Analyzer 

(Illumina) (Ghildiyal et al., 2008). 

 

Sperm isolation 

Caudal epididymis was dissected from sacrificed animals, punctured, and 

incubated for 30 minutes in M2 media at 37 C. Supernatant was removed, pelleted 

(10,000g for 10 minutes), and washed 2X with PBS, then 1X in water. Sperm 

preparations were only used that were >99.5% pure as assessed by microscopy, and q-

RT-PCR was also used to reject any sperm samples with detectable epididymis-specific 

genes Actb or Myh11 compared to sperm-specific genes Smcp or Odf1. 

 

RRBS and MeDIP 

Reduced representation bisulfite sequencing (RRBS) was carried out as 

previously described (Meissner et al., 2008). Methyl-DNA immunoprecipitation (MeDIP) 

was carried out essentially as described (Weber et al., 2005; Weber et al., 2007). 4 mg of 

purified genomic DNA was fragmented to a mean size of 300bp using a Covaris machine, 

denatured, and immunoprecipitated with 5mC antibody (Eurogentec). ChIP material was 

Solexa sequenced, with ~21 million uniquely mappable reads per library. 

 

 

3.3.2 Micro-Arrays data processing and differentially expressed genes in the liver 

 

Array features were filtered using the autoflagging feature. The remaining 

features for each array were then block normalized by calculating the average net signal 

intensity for each channel in a given block, and then taking the product of this average 

and the net signal intensity for each filtered array feature in the block.  Afterwards, all 

block-normalized array features were normalized using a global average net signal 

intensity as the normalization factor (Liu et al., 2005).  

Differential genes were determined based on a t-test, at FDR correction of 0.001 (Figure 

20B).  The second more stringent set of differential genes was determined using a 
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combination of two one-tailed t-test, testing for genes with mean fold change 

significantly higher than 0.2 or lower than -0.2, at FDR correction of 0.01 (Figure 20C). 

Enrichment of differential genes observed in our low protein offspring and of the two 

distinct cluster of up regulated genes (described above) with GO categories was 

computed using the Hyper-Geometric p-value ≤ 0.05 after Bonferoni correction for 

multiple hypothesis testing. 

 

 

3.3.3 MicroRNA identification from deep sequencing data and analysis 

 

Deep sequencing reads where mapped to the mouse genome (July 2007 assembly 

of the mouse genome - mm9, NCBI Build 37, (Waterston et al., 2002)), where at least the 

first 18 bases of the read matches to the genome and the remainder matches to the 3ʹ′ 

adaptor sequence. In this mapping we allow up to 2 mismatched positions. Reads that had 

six or more matching locations in the genome were discarded. We retained reads with 

five or less matches to allow situations of micro-RNA families with highly similar 

sequence. We then cluster the mapped locations from all lanes to find “islands” of close 

location with a gap of less than 100 bases. Each island is a putative small RNA gene. We 

filter out islands that contain less than 10 mapped reads or are represented by less than 3 

different unique read sequences. Determining the differentially expressed small RNAs 

(islands) was done using a paired t-test comparing pairs of lanes corresponding to age and 

sex-matched low protein and control offspring. We tested for islands with mean log2 fold 

change significantly higher than the null hypothesis of 0.2 or lower than -0.2.  

   

 MicroRNAs were identified using the known locations of microRNAs in the 

genome. Novel microRNAs were predicted using a modified version of the MirDeep 

package (Friedlander et al., 2008). The first stage of the prediction in which we 

identifying the candidate precursors was based on the mapping to the genome and 

clustering to islands described above. The rest of the prediction stages where done as in 

(Friedlander et al., 2008) using the MirDeep package. Briefly, this procedure selects 

islands that the position and frequency of the sequenced reads are compatible with the 
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secondary structure of the miRNA precursor. We predict an island is a microRNA if it 

has a prediction score above 0. Prediction of miRNA targets were taken from the 

TargetScan (Friedman et al., 2009) database (Release 4.2), and were then checked for 

enrichment in differentially expressed genes using the Hyper-Geometric p-value. 

 

 

3.3.4 Comparison to public murine liver microarray data 

 

We built a compendium of public microarray data consisting of 120 gene-

expression profiles in the murine liver under various conditions and genetic perturbations. 

To build this compendium we retrieved 113 datasets from GEO 

(http://www.ncbi.nlm.nih.gov/projects/geo/), manually chose the relevant labels for 

comparison, and created signatures of differentially expressed genes. The signatures 

where determined using a combination of two one-tailed t-test, with FDR correction of 

0.1. In addition, we added further published sets of differentially-expressed genes 

(Horton et al., 2003; Yang et al., 2009) to the compendium. Expression-profiles 

significantly enriched with up or down regulated genes in our low protein offspring, were 

defined by a Hyper-Geometric p-value <= 0.05 after bonferoni correction for multiple 

hypotheses (p<0.00025). In this enrichment test we included only genes which were 

measured both in our expression arrays and in at least one other public murine liver 

profile. Our up regulated set of genes was clustered according to their overlap with the 

significantly enriched signatures, using a hierarchical clustering algorithm (with default 

parameters, (de Hoon et al., 2004; Eisen et al., 1998)). 

 

While most of the overlaps described in Figure 21 are with gene expression 

measured upon perturbation of transcription factor activity, for HNF-4a  not only do our 

differential genes significantly overlap those genes affected by a deletion of this factor (p 

< 4 x 10-6), but our differentially-expressed genes were also significantly enriched for 

genes previously shown to be directly bound by HNF-4a (Odom et al., 2007) (p < 0.01, 

data not shown). 
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3.3.5 Percent variance explained by Ppara RNA levels  

 

We performed PVE (percent variance explained) analysis to determine how much 

of the overall gene expression profile is explained by Ppara. In this analysis we learn for 

each gene a linear prediction based on the Ppara expression values (standard linear-

regression in Matlab), and then compare the gene's variance in expression across samples 

(Vtotal), to the variance after we remove the prediction (Vpred). The PVE is the percent 

of the total variance (without prediction) explained by the prediction, or in formula 

100*(1 - Vpred/Vtotal). Note that this does not determine whether Ppara is causal for the 

genes that it “explains”, as Ppara could be part of a regulon with the genes it correlates 

with. 

 

 

3.3.6 Analysis of sperm RNA data 

 

We first normalized the eight Affymetrix arrays using rmasummary method in 

Matlab (RMA normalization for the probe intensity and quantile normalization between 

arrays). We computed log-ratio values per gene in the six sperm RNA arrays, using 

matched pairs of low-protein diet compared to control diet arrays (2 pairs), and caloric-

restriction diet compared to control diet (1 pair). To correct the sperm data for possible 

contamination by epididymis RNA, we used the two additional epididymal RNA data, 

and applied two different methods. In the first method we correct each sperm sample 

separately, by learning the maximal possible fraction of epididymal RNA within each 

sperm RNA sample (maximization is done by requiring all genes except 2% should have 

a non negative expression value after subtracting the epididymal fraction). The resulting 

fractions vary between 10%-30%.  In the second method we correct each log-ratio value 

compared to the log-ratio of sperm RNA and Epididymis RNA (mean values across all 

sperm or epididymal samples), by using a standard lowess normalization (malowess 

function in Matlab). 
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Chapter 4 - Discussion 
 

The evolution of transcription regulation is a major driving force generating the 

wide phenotypic diversity observed across species. Overall in this work I unraveled basic 

selection forces underlying this evolutionary process. First, we focused on evolution 

driven by random mutations in the DNA sequence, focusing on changes in DNA binding 

sites of transcription factors (cis), showing that: (1) The regulatory network of 

transcription factors and their target genes is highly plastic. (2) The transcription factors 

tend to conserve their functions. (3) A functional selection turnover model can reconcile 

these two trends, unlike traditional gene-centered models. Second, we focused on 

epigenetic inheritance mechanism, directly affected by previous parental environmental 

exposures. The evidence we present indicates that: (1) Paternal diet affects gene 

expression in the offspring of mice. (2) Epigenetic information carriers in sperm respond 

to environmental conditions. Each of these studies raises numerous mechanistic questions 

(discussed below).  

 

 

4.1 Robustness in the face of plasticity – cis-regulatory evolution 

 

 To study regulatory evolution we applied to 23 Ascomycota species a novel 

approach for reconstructing regulatory networks based on cis-elements. Using this 

approach, we systematically built regulatory networks from 88 known regulatory DNA 

motifs across the 23 species, their conserved target genes in each clade and their 

functional annotations. We exploited this resource to study the regulatory history of 

specific transcription factors and to reach general principles of regulatory evolution, 

relevant to yeasts and mammals. In addition, we established a rich public resource 

(http://www.compbio.cs.huji.ac.il/OrthoMotifs/) that will facilitate studies of regulatory 

evolution of individual clades or species, including human and plant pathogens. 

 

 Our computational pipeline, CladeoScope, provides a major advance toward the 

computational reconstruction of cis-regulatory networks across many transcription factors 
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and species - a notoriously challenging problem (Weirauch and Hughes, 2010). 

CladeoScope relies on two assumptions. First, it assumes that transcription factor 

binding specificities, as reflected in DNA motifs, are largely conserved, even when their 

specific targets and functional roles have diverged. Thus, unlike previous approaches 

(Gasch et al., 2004; Kellis et al., 2003), CladeoScope does not assume any conservation 

of the known motif function or target genes. However, CladeoScope cannot track 

transcription factors whose binding specificity has significantly changed (as previously 

reported for some transcription factors (Baker et al., 2011; Kuo et al., 2010; Ravasi et al., 

2010; Yvert et al., 2003)). This can be alleviated if more binding profiles are measured in 

non-model organisms. Second, we use conservation within a clade to focus on a reliable 

set of ancestral targets, improving the quality of the motif-target prediction for each clade. 

This minimizes many of the spurious interactions present in inferred cis-regulatory 

networks in a single species, while allowing us to trace regulatory divergence between 

clades, albeit at the cost of studying species-specific innovations.  

 

 While the conservation profiles of most DNA motifs match those of their cognate 

transcription factors, 27% of pairs show some discrepancy, more typically in the species 

most distant from S. cerevisiae. In some cases, a motif is not detectable despite the 

conservation of the related transcription factor (e.g. Zap1). This demonstrates the 

limitations of our approach in tracing regulatory evolution when the factor’s binding 

specificity has diverged substantially, or when target turnover rate within a clade is very 

high. These problems can be partially alleviated by using additional binding profiles from 

non-model organisms. In other cases, a motif is detectable but the related transcription 

factor is not identified as conserved, due to faulty target predictions, faulty orthology 

resolution (e.g. Sko1), or the presence of a family of related transcription factors with 

very similar binding specificities (e.g. the CBF1 family). 

 

We find and quantify a pervasive gain and loss of motif targets at high 

evolutionary rates. The high turnover rates that we estimate from data for all motifs 

(average ~7% expected conserved targets from the LCA of the phylum, Figure 11a) are 

reflected by the small number of highly conserved targets, and by the complete switch of 
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targets for 72% of motifs in at least one point in the phylogeny. These high turnover rates 

generalize previous binding studies of few individual transcription factors across three 

yeast species (Borneman et al., 2007; Tuch et al., 2008), four flies (Bradley et al., 2010; 

Moses et al., 2006) and five mammals (Schmidt et al., 2010).  

 

 The seemingly contradictory trends of a broad conservation of the functions 

associated with a motif, and the pervasive gain and loss of the motif in individual targets 

within the module are reconciled by our proposed Functional Selection Turnover Model, 

implying that it is a general principle of regulatory evolution.  Such conservation of a 

transcription factor’s cellular function but high turnover of its individual targets was 

previously indirectly implicated in the comparison of cell cycle genes between two yeast 

species (S. cerevisiae and S. pombe) (de Lichtenberg et al., 2007) and for liver-specific 

transcription factors across five vertebrates (Schmidt et al., 2010). Our analysis suggests 

that it is a broad and general phenomenon and our model shows that it can be explained 

by a strong selection to conserve the function of the motif, but a weaker selection over 

the specific target genes within this function. This evolutionary model accounts for 

patterns of turnover from direct measurements of transcription factors across individual 

species in yeast and mammals, suggesting that the same principle applies at different 

evolutionary distances, measurement methods, phylogenetic resolution (clades and 

species), and remote phyla. 

 

 There are several alternative potential explanations for the observed conservation 

of regulatory function despite high target turnover. First, determination of transcription 

factor targets based on cis-regulatory elements (rather than on limited experimental ChIP 

data) is challenging and noisy (Gasch et al., 2004; Tanay et al., 2005; Wohlbach et al., 

2009), resulting in many false positives and false negatives, which may lead to low 

overlap in target genes between species. To exclude this option we compared 

evolutionarily conserved target genes at the clade level instead of target genes for 

individual species.  Second, the transcription factor may target additional genes in some 

species, thus expanding the scope of functions it regulates, as has been previously shown 

in yeasts for various factors, such as Mcm1 (Tuch et al., 2008). Although we detect such 
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expansions in several cases (Figure 13-15), we detect high turnover within the large 

majority of functional modules (Figure 17), including highly conserved modules.  

 

Finally, the high degree of target turnover within a module may be facilitated by the 

fact that many target genes are co-regulated within Dense Overlapping Regulons (Alon, 

2007), where multiple factors have overlapping roles. In  ‘Single Input Modules’ (Alon, 

2007) (e.g. the galactose utilization pathway in yeast), all the genes in a module are co-

regulated by one factor, and we expect strong target conservation. Conversely, in a Dense 

Overlapping Regulon (e.g. Ribosomal Protein genes), multiple transcription factors 

regulate the module’s genes, and are partly redundant, such that loss of one regulator 

might be compensated for by another. For example, amino acid metabolism genes are 

commonly regulated by Gcn4 and Leu3, with loss of the regulation by one transcription 

factor compensated for through gain of regulation by the other (Hogues et al., 2008; 

Tanay et al., 2005; Tsong et al., 2006; Tuch et al., 2008; Weirauch and Hughes, 2010; 

Wohlbach et al., 2009) (e.g., Figure 26). This would be consistent with the conserved co-

expression of many functional modules in yeast (Hogues et al., 2008; Tanay et al., 2005) 

and mammals (Odom et al., 2007). More broadly, transcriptional regulation is only one of 

many regulatory layers, thus loss of the regulation of some genes might not have a 

functional effect, since other members of a complex or pathway may determine the 

activity level of the whole complex (de Lichtenberg et al., 2007). Thus, a transcription 

factor may influence the activity of a cellular process by targeting a few genes, and loss 

of regulation of one target can be compensated by gain of regulation by another 

transcription factor.  

 

Overall, the function-centered model of targets turnover provides an important insight 

into the use of conservation as a filter for determining functional elements in comparative 

genomics studies (such as ChIP experiments that rely on evolutionary conservation to 

filter out noise in transcription factor target genes (Harbison et al., 2004)). Moreover, by 

taking a function-rather than a gene-centered view of cis-regulatory evolution, our 

findings suggest that selection forces are more permissive than has been previously 

assumed. At the module and transcription factor levels, although turnover within a 
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module may not affect the overall regulatory role of a factor, it may allow for more subtle 

fine-tuning of gene regulation, facilitating adaptation while controlling against dramatic 

changes in phenotype. 

 

Figure 26. Target turnover and compensatory regulation within a functional module 
 (a) Compensatory regulation by Leu3 and Gcn4 at leucine & isoleucine biosynthesis genes. 
Shown are selected target genes (rows) and their connection to Leu3 and Gcn4 motifs across the 
different clades (columns). (b) The position of the target genes in the Leucine-Isoleucine 
biosynthesis pathway. 
	
  

Habib  et  al.

Figure  S5

A

B

C

D

E F

G

H

I

J

K

L

a

Gcn4  ancestral  target  only

Leu3  ancestral  target  only

Leu3  and  Gcn4  regulation  of  leucine

and  isoleucine  biosynthesis  genes

Non-­target

Leu3/Gcn4  ancestral  target

Leu1

Leu2

Ilv3

Ilv5

Ilv1

Ilv6

Leu4,9

Leu3

Ilv2

b Leucine  and  isoleucine  biosynthesis  pathway

Isoleucine Leucine

Ilv1
Ilv2,

Ilv6
Ilv5 Ilv3 Bat1 Leu1 Leu2 Bat2



	
  
	
  

86	
  

4.2 Epigenetic inheritance  - Transgenerational environmental reprogramming 

of gene expression  

 

To test the existence of transgenerational environmental reprogramming we 

developed an experimental system in which we can directly test the effects of paternal 

exposures on their offspring, and on the germline.  Our results demonstrate that paternal 

diet in mice reprograms gene-expression in the offspring and pertrube epigenetic 

information carriers in sperm. These results have numerous implications for human 

health.  

 

We clearly identify a set of physiological pathways whose expression is sensitive 

to paternal diet. Specifically, we find that hepatic expression of genes involved in 

proliferation and cholesterol biosynthesis can be regulated by paternal diet, and these 

changes are reflected in levels of several lipid metabolites. Combined with data showing 

that offspring glucose levels are affected by paternal fasting in mice (Anderson et al., 

2006), these results demonstrate that paternal diet has wide-ranging effects on the 

metabolism of offspring in rodents. Interestingly, a very recent study from Ng et al (Ng et 

al., 2010) reported that chronic exposure of male rats to high fat diet was associated with 

pancreatic beta cell dysfunction in female offspring. It will naturally be of great interest 

in the near future to compare the transgenerational effects of high fat and low protein 

diets, although one clear difference is that in our system a transgenerational effect is 

observed in both sex offspring. Whether the effects we observe on cholesterol 

metabolism prove advantageous in low protein conditions remains to be tested, but it will 

be important to investigate ecologically-relevant diets in order to speculate more firmly 

about adaptive significance of any observed transgenerational effects. For example, at 

present we cannot say with certainty what aspect of the low protein regimen is sensed by 

males – it is possible that offspring metabolism is affected by overall protein 

consumption, or high sucrose, or fat/protein ratio, or even levels of micronutrients, as our 

males consumed diets ad libitum and thus might have over consumed the low protein diet. 
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What is the mechanistic basis for the reprogrammed gene expression state? 

Genome-scale analyses of cytosine methylation in offspring livers identified several 

lipid-related genes that were differentially-methylated depending on paternal diet. Most 

notably, a putative enhancer for a major lipid regulator, PPARa, exhibited generally 

higher methylation in low protein offspring than in control offspring. Methylation at this 

locus was variable between animals, consistent with the partial penetrance of Ppara 

down-regulation in our data. The overall gene expression profile observed in low protein 

offspring significantly overlaps gene expression changes observed in ppara-/- mice 

(Rakhshandehroo et al., 2007), leading to the hypothesis that epigenetic Ppara 

downregulation via enhancer methylation is an upstream event that affects an entire 

downstream regulon in reprogrammed animals. Note that while the hepatic 

downregulation of Ppara suggests a liver-autonomous epigenetic change, we cannot rule 

out that hepatic gene expression changes result from global physiological changes 

resulting from downregulation of Ppara in some other tissue. Interestingly, Ppara 

expression in liver is also regulated by maternal diet – offspring of female mice 

consuming a high fat diet exhibit altered hepatic Ppara expression, with increased 

expression at birth but decreased expression at weaning (Yamaguchi et al., 2010). 

Together with our data, these results suggest that Ppara is a key nexus that integrates 

ancestral dietary information to control offspring metabolism. 

 

Paternal diet could potentially affect offspring phenotype via a number of 

different mechanisms. While we focus here on epigenetic inheritance systems, it is 

important to note that parental information can also be passed to offspring via social or 

cultural inheritance systems (Champagne and Meaney, 2001; Jablonka et al., 1995; 

Meaney et al., 2007; Weaver et al., 2004). While such maternally-provided social 

inheritance is unlikely in our paternal effect system – males were typically only in 

females’ cages for one day – it is known that in some animals females can judge mate 

quality and allocate resources accordingly (Pryke and Griffith, 2009), and that seminal 

fluid can influence female postcopulatory behavior in Drosophila (Fricke et al., 2008; 

Wolfner, 2002). These and other plausible transgenerational information carriers cannot 

be excluded at present – ongoing artificial insemination and in vitro fertilization 



	
  
	
  

88	
  

experiments will determine whether sperm carry the relevant metabolic information in 

our system. 

 

We focused on the hypothesis that paternal dietary information does indeed reside 

in sperm epigenetic information carriers. First, a subset of cytosine methylation patterns 

in sperm are known to be heritable (Chong et al., 2007; Cropley et al., 2006; Rakyan et 

al., 2003; Waterland and Jirtle, 2003). Second, several reports suggest that RNA 

molecules packaged in sperm can affect offspring phenotype (Rassoulzadegan et al., 

2006; Wagner et al., 2008). Third, chromatin structure has been proposed to carry 

epigenetic information, as sperm are largely devoid of histone proteins but retain them at 

a subset of developmentally-important loci (Arpanahi et al., 2009; Brykczynska et al., 

2010; Chong et al., 2007; Hammoud et al., 2009). Finally, it is conceivable that additional 

or novel epigenetic regulators (such as prions) are packaged into sperm, or that sperm 

quality is affected by diet, or that genetic changes are directed by the environment 

(although it is important to emphasize that inbred mouse strains were used in this study). 

 

 Here, we report whole genome characterization of cytosine methylation patterns 

and RNA content in sperm obtained from mice maintained on control, low protein, and 

caloric restriction diets. Globally, cytosine methylation patterns are similar in all three 

conditions, indicating that the sperm epigenome is largely unaffected by these diets. 

Nonetheless, changes in relatively few loci can have profound effect in the developing 

animal, and our data do not rule out the possibility of inheritance through sperm cytosine 

methylation, especially given that MeDIP is unlikely to identify ~10-20% differences in 

methylation at a small number of cytosines. Importantly, the putative enhancer of Ppara 

was not differentially-methylated in sperm. It will therefore be of great interest in the 

future to determine when during development the differential methylation observed in 

liver is established, and to identify the upstream events leading to differential methylation 

(Blewitt et al., 2006). 

 

Interestingly, we did identify effects of diet on RNA content and chromatin 

packaging of sperm. For example, sperm from control animals were consistently depleted 
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of the highly sperm-specific Dnahc3 gene relative to sperm from low protein animals. 

We cannot presently determine whether this represents reproducible differences in 

contamination, differences in sperm maturity, or something else. Finally, based on our 

observation that low protein sperm tended to be depleted of genes encoding a number of 

chromatin regulators, we have begun to search for dietary effects on sperm chromatin 

structure. Interestingly we found that the Maoa promoter was consistently depleted of the 

key Polycomb-related chromatin mark H3K27me3, demonstrating as a proof of concept 

that chromatin packaging of the sperm genome is responsive to the environment, and 

motivating genome-wide investigation into dietary effects on sperm chromatin. Given the 

common behavorial changes observed in other transgenerational inheritance paradigms, 

the possibility that H3K27me3 at Maoa affects offspring behavior will be of great future 

interest. 

 

These results are likely to be relevant for human disease, because not only is 

maternal starvation in humans correlated with obesity and diabetes in children (Lumey et 

al., 2007), but, remarkably, limited food in fathers and grandfathers has also been 

associated with changed risk of diabetes and cardiovascular disease in grandchildren 

(Kaati et al., 2002; Pembrey et al., 2006). Interestingly, in these studies paternal access to 

food and disease risk was not associated with disease risk in the next generation, but was 

only associated with F2 disease risk. However, it is important to note that the 

transgenerational effects of food availability for paternal grandfathers depend on the 

exact period during childhood of exposure to rich or poor diets (Pembrey et al., 2006), 

whereas our experimental protocol involved continuous low protein diet from weaning 

until mating. Thus, future studies are required to define when and how paternal exposure 

to a low protein diet affects epigenetic programming of offspring metabolism. 

 

Together, these results suggest rethinking basic practices in epidemiological 

studies of complex diseases such as diabetes, heart disease, or alcoholism. We believe 

that future environmental exposure histories will need to include parental exposure 

histories as well as the exposure histories of the patient, to disentangle induced epigenetic 

effects from the currently-sought genetic and environmental factors underlying complex 
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diseases. Our observations provide an inbred mammalian model for transgenerational 

reprogramming of metabolic phenotype that will enable dissection of the exposure 

history necessary for reprogramming, genetic analysis of the machinery involved in 

reprogramming, and suggest a number of specific pathways likely to be the direct targets 

of epigenetic reprogramming. 

 

 

4.3 An extended evolutionary theory  

 

Taken together, our results shed light on two different selection forces driving 

evolution of transcription regulation, and emphasize the need for an extended 

evolutionary theory, integrating both genetic and non-genetic inheritance (Danchin et al., 

2011; Jablonka et al., 1998; Jablonka and Raz, 2009; Shea et al., 2011).  

 

To understand evolutionary processes inclusively, it is necessary to account for all 

forms of inheritance and selection pressures. Specifically, adaptation to the environment 

involves changes in the expression pattern of genes, which can be caused by both genetic 

and non-genetic inheritance, yet on different time scales. Genetic inheritance involves the 

slow process of natural selection and fixation of random mutations, and non-genetic 

inheritance involves the direct inheritance of acquired characteristics immediately 

effecting the variation in the population (Jablonka et al., 1998). Notably, the evolutionary 

implications of epigenetic inheritance mechanisms might be different for unicellular and 

multicellular organisms (Shea et al., 2011), and should be accounted for. In the integrated 

evolutionary theory (Danchin et al., 2011; Day and Bonduriansky, 2011), variation in 

both genetic and non-genetic factors drive evolution, with a strong interplay between 

them. In which, the DNA sequence encodes potential epigenetic carriers of information, 

such as non-coding RNAs or positions of CpG dinucleotide potentially subjected to DNA 

methylations. Moreover, the DNA sequence directs environmental reprograming of these 

information carriers, for example, through cis-regulatory elements controlling the 

expression of non-coding RNAs in the germline. At the same time, these non-genetic 
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factors can potentially shape the selection landscape on the DNA sequence, affecting for 

example the rewiring of regulatory networks.  

 

An example demonstrating such a causal relationship between non-genetic 

inheritance and the evolution of the DNA sequence is of nucleosome occupancy in 

human sperm.  Recent evidence suggests that transmission of paternal nucleosomes and 

their modifications influences gene expression in the early embryo (Vavouri and Lehner, 

2011). Vavouri and Lehner show that nucleosome retention in human sperm is related to 

base composition variation, indicating that chromatin organization in the male germline 

may be an important selective pressure on GC-content evolution in mammalian genomes. 

Taken more broadly, this example strengthens the hypothesis that a requirement to 

propagate paternal epigenetic information to the embryo may be an important selective 

pressure on sequence evolution in mammalian genomes. Another example for interaction 

between different inheritance mechanisms is of maternal care in rodents (Champagne, 

2008). The level of maternal care affects the level of DNA methylation of genes in 

offspring’s brain, which is maintained throughout their life, and lowers the level of 

maternal care they provide (Champagne, 2008). The extended evolutionary theory, 

combining both genetic and non-genetic inheritance and the interplay between them, has 

implications for diverse areas, from the question of missing heritability in human 

complex-trait genetics (Maher, 2008) to the basis of major evolutionary transitions. 
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Appendix Note 1 – Validations of the CladeoScope Method 
 

1.1 Evaluations with synthetic data 

 
We evaluated CladeoScope on synthetic data, where the ground truth is known. We 

defined a set of true ancestral targets (‘original set’) and evolved them into extant targets 

with a given turnover rate. We then introduced different levels of noise to the “predicted” 

targets in the extant species (false positives and false negatives) and applied CladeoScope to 

this noisy input. Finally, we compared the reconstructed ancestral set to the original (true) 

set, to test CladeoScope’s sensitivity and specificity. We conducted these tests multiple 

times, varying the extent of noise, the size of the ancestral target set, the degree of target 

turnover and the topology of the species tree. For each set of parameters (a total of 720 

different sets), our results are averaged over 100 independent simulations.   

CladeoScope is highly robust to noisy target predictions and other variations in the 

input (the percent of false positives we tested ranges between 0%-200%, and the percent of 
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false negatives ranges between 0%-60%, Figure 5 in main text). For example, on average, 

when 30% true targets were removed in each species set, CladeoScope has 86% sensitivity 

(Figure 5b in main text), and when 80% false targets were added in each species, 

CladeoScope has 81% specificity (Figure 5b in main text). Moreover, the percent of noisy 

targets added hardly influences the sensitivity (Figure 5b in main text), and the percent of 

true targets removed hardly influences the specificity (Figure 5a in main text).   

CladeoScope error rate increases proportionally to the increase in the rate of target 

turnover (Figure 5 in main text). While for slow turnover (probability for target gain and 

and loss of 0.00002 and 0.003, respectively) and medium turnover (gain, and loss 0.0002 

and 0.03, respectively) the errors are almost identical, we get a decreased sensitivity and 

specificity when the turnover is very fast (gain and loss of 0.002 and 0.3, respectively). In 

this case, when 30% true targets are removed we reach an average of 53% sensitivity 

(Figure 5c in main text), which is equivalent to removing almost 60% true targets for the 

slowest turnover rate. The specificity is less sensitive to the turnover rate (Figure 5d in 

main text). For the fast turnover, for 80% noisy targets added in each species we get on 

average 69% specificity as opposed to 81% and 82%, for the medium and slow turnover 

rates, respectively. 

As a more realistic simulation, we estimated the gain and loss frequencies (Methods 

in main text) per species in all species in clades A (Sensu-stricto) and F (Candidas), for 

three different motifs, Hsf1, Fkh2 and Mbp1. We then ran the simulations with these 

parameters, as described above. Here again the percent of noisy targets added hardly 

influenced the sensitivity, and the percent of true targets removed hardly influences the 

specificity.  Overall we observe that CladeoScope is very robust. For example, for the slow 

turnover motif Hsf1, when 30% true targets were removed in each set of motif targets per 

species, CladeoScope has 87% sensitivity in clade A and 97% sensitivity in clade F, and 

when 80% false targets were added in each species, CladeoScope has more than 90% 

specificity in both clades. The Fkh1 motif, with a fast turnover, demonstrated a similar 

sensitivity. However, the specificity of this motif was not as good, with only 43% 

specificity in the clades when 80% false targets were added in each species (in addition to 

the estimated fast gain and loss rates). 
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Other parameters we tested had a smaller effect on the reconstruction error. The 

number of genes in the original ancestral set does not affect the sensitivity of the prediction 

(Figure 5e in main text), but the specificity increases when the ancestral set size is 

substantially smaller (Figure 5f in main text). The topology of the species tree, which is a 

parameter of the CladeoScope algorithm, also has a minor effect on the reconstruction error. 

We compared two topologies, the topology in the sensu-stricto clade (clade A), and a 

symmetrical topology as in the Candida clade (clade E). In the symmetrical topology, the 

sensitivity is slightly higher and the specificity is slightly lower (Figure 5g,f in main text), 

since according to the parsimony rule there are assignments that will be inferred as ancestral 

targets in this topology and not in the asymmetrical one. 

Overall we see that our method is highly robust to noise in the target predictions. Thus, 

we consider the ancestral target sets per clade as a reliable prediction of motif targets that 

can be used in future analyses. 

 

1.2 Robustness  

 
Different thresholds for significance of motifs in a species 

We tested the robustness of the CladeoScope method to different significance thresholds 

for a motif in a species. The significance is computed by the HyperGeometric p-value over 

the overlap between the motif targets in the species and the ancestral targets in the relevant 

clade. This is an iterative process, where for each clade the CladeoScope algorithm first 

reconstructs the ancestral sets for all genes in the clade, and then computes the significance 

of each species based on this set. After filtering out insignificant species, it reconstructs again 

the ancestral motif targets in the clade, and uses the new set to re-evaluate the species 

significance. This is repeated until the ancestral set does not change (Methods in the main 

text).  

 

We ran the algorithm on nine different motifs across all clades, using seven different 

thresholds, ranging between 5e-2 – 1e-3. For all motifs, the choice of threshold had little 

effect (if at all) on the number of ancestral targets reconstructed per clade. In clades where 
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the motif is not statistically significant there was a larger variation in the number of targets, 

but it was found to be insignificant in all cases, indicating that the algorithm is robust to the 

threshold.  

 

P-values for significance of a motif in a clade (significance of ancestral target sets) 
To test the significance of an ancestral set of motif targets in a clade, we compute an 

empirical p-value by simulating target sets of respective sizes for each species in the clade, 

and reconstruct ancestral targets from these random sets. This process is repeated 1,000 times 

to estimate the probability of getting a set of ancestral targets of a certain size or larger by 

chance. A motif is detectable in a clade if it has a statistically significant (p-value<0.005) set 

of ancestral targets in the clade.  

 

To test the robustness of our results to this p-value threshold, we examined the number 

of statistically significant ancestral motif target sets across all clades and motifs for different 

p-value thresholds (Figure 7 in main text), ranging from 0.05 to 0.0005. We show that 

changing the threshold has a small effect on the number of significant motifs per clade. There 

are clades where the threshold hardly makes a difference, as in clade A & B (Figure 6 in 

main text), and most clades have a mild effect only. The most significant effect is seen in 

clade K for the highest p-value threshold of 0.05 (Figure 6 in main text). 

 

 

1.3 Evaluation of the phylogenetic filtering of non-functional motifs (random targets & 

random motifs) 

 

The CladeoScope procedure controls for non-functional motifs by requiring the motif 

in each clade to have a set of ancestral motif targets. Since it might be possible to reconstruct 

ancestral targets from random sets of target genes in each species, we validate the statistical 

significance of each ancestral set by computing an empirical p-value over the number of 

ancestral targets when using randomized targets (see Section 2 in this note).  

 

To further test that our phylogenetic filter controls for non-functional motifs, we tested the 
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algorithm on random motifs. We created random motifs by concatenating randomly sampled 

positions from all known motifs from the literature (using all motifs from S.cerevisiae, as 

described in the Methods in the main text). We then ensured that the random motif we 

constructed is not similar to any known motif. For each such random motif, we scanned for 

targets in each species, and ran the CladeoScope algorithm to reconstruct the ancestral sets. 

In most clades the random motifs are insignificant, thus showing that the phylogenetic filter 

is good for filtering functional motifs. The only exception is clade A, where all random 

motifs were found to be statistically significant. Most of those (7 out of 10) were significant 

in clade B as well, but excluded due to insufficient coverage of the clade since they all were 

conserved outside of clade A only in the S. glabrata species. This reflects the promoter 

sequence conservation between species in clade A and S. glabrata. Therefore, in our results 

we do not include motifs found to be conserved only in clade A (and in clade B when 

including only the S. glabrata species). 

  

 

1.4 Comparing motif targets to bound target genes measured by ChIP 

 
To evaluate whether CladeoScope filtering improves target prediction, we computed the 

Sensitivity (fraction of true positive predictions out of the experimentally determined targets) 

and Precision Rate (fraction of true positive predictions out of the total predicted motif 

targets), using ChIP-chip data in S. cerevisiae (MacIsaac et al., 2006) as a source of 

experimentally determined targets. We compare the ancestral targets in the immediate clade 

(A) to motif targets that are not ancestral. This comparison shows a consistent high precision 

among ancestral targets without affecting the Sensitivity for three different thresholds for 

motif targets detection in a species (Figure 8a,b in main text). We then tested the 

contribution of ancestral targets to ChIP-chip data measures in other Yeast species 

(Borneman et al., 2007; Tuch et al., 2008), and show that in most cases the use of ancestral 

targets improves the predictions (Figure 8c,d in main text). 
 
We conducted this test for three different thresholds over motif targets detection.  

Overall, we see that the precision rate is optimized when using the high threshold for motif 
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targets detection (80% of the best score for the motif in the species). Nonetheless, to further 

test the effects of lowering the threshold we ran CladeScope with a lower threshold for motif 

targets (75% of the best score for the motif in the species). We then assigned functional 

modules to the resulting ancestral set, and show that our Functional selection turnover model 

as well as the functional classification are robust to this threshold, (see details in Appendix 

Note 3). 

 
 
Appendix Note 2 – Characteristics of Motifs and Target Genes 
 

2.1 Distance between species-specific motifs 

 

We tested the contribution of the species-specific motif refinement process to 

the quality of CladeoScope. This refinement step generates a species-specific motif 

based on an input motif in the model organism S. cerevisiae (see Methods in main 

text). We first tested the distance between each refined motif to the original motif in S. 

cerevisiae, and their correlation with the distances between species. We see that the 

distances between motifs are small as expected (as measured by BLiC (Habib et al., 

2008)). However, the distance is anti-correlated with the distance between species 

(branch length are computed based on amino acid substitutions, see Methods in main 

text): Correlation=-0.58, p-value=0.005, for the mean distance of all motifs in each 

species.  

 

A measure for the contribution of the species-specific motif refinement process 

to CladeoScope output is their effect on motif targets. We compared a genomic scan for 

motif targets with the S. cerevisiae motif to a scan for targets with the species-specific 

motif, and observed that the refinement of motifs both adds additional targets and 

removes other targets (Figure 7 in main text). In most motifs there are more targets 

added than removed (Figure 7 in main text). We note that the target genes change even 

in species close to the sensu-stricto clade (Figure 7 in main text). 
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2.2 Motif score distribution of lost targets vs. non-targets 

 

 When predicting motif targets, genes with weak binding sites in their 

promoters are not considered as targets, however in some cases these sites might be 

functional. Thus to explore the detectability of such weak targets we wished to 

compare the scores of non-target genes to those of functional but weak targets. To do 

so we reasoned that likely candidates for weak and functional sites would be genes 

that were predicted as ancestral targets, but lost in the reference species (i.e. strong 

targets in sister species within the same clade). Thus, we compared the distribution 

of motif scores of such lost targets (lost in a species compared to the clade) to non-

target genes. The results show that in 85% of cases tested, the lost targets have the 

same score distributions as the ancestral targets (p-value<0.001, Kolmogorov-

Smirnov test), in the remaining cases the “lost targets” genes are an intermediate 

between “conserved targets” and “non-targets”. Since we show here that functional 

but weak binding sites have similar score distributions to non-functional sites, then 

lowering the threshold of significance would not improve the sensitivity of our 

results. 

 

To rule out the possible concern that our procedure suffers from a 

detectability problem in remote clades that biases our results, we conducted a similar 

analysis, but this time comparing between neighboring clades. We reason that if we 

have a detectability problem, we might find in a specific clade the same targets as in 

a different clade only with weaker binding sites. Here again we divided all genes to 

sets of “missing targets” (not targets in a species and in its direct ancestor but targets 

in the neighboring clade) and “non targets” (not targets in both clades). In this case 

we see that the “missing” and “non” targets are identical to each other. Indicating 

that between neighbor clades we do not suffer from a detectability problem. 
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Appendix Note 3 – Validations of the Functional Modules 
 
3.1 Robustness of the functional modules 

 

 To test the robustness of the functional modules, we applied the algorithm with 

different parameters and inputs, including: 

 

Enrichment thresholds for functional modules with motif targets 

When creating functional modules our procedure selects for the relevant functional 

annotations by selecting only categories that are enriched with motif targets. We tested the 

robustness of our method to the HyperGeometric p-value threshold ranging between: 1e-3-

1e-6. 

 

Threshold for merging gene-sets  

The procedure for building functional modules merges gene-sets (in the context of a given 

motif across all clades) by comparing the set of motif targets in each gene set and checking 

that the fraction of motif targets in the intersection is above the threshold. We tested the 

robustness of our method to this threshold by comparing results with thresholds ranging 

between: 40% – 75%. 

 

Thresholds for initial predictions of target genes 

We tested the robustness of our method to different motif target detection thresholds. Testing 

two alternative thresholds (80% and 75% out of the best possible score for each motif in each 

species). The change in threshold results in different number of ancestral targets per clade 

(see Appendix Note 1). 

 

For each set of parameters we tested several characteristics: 

a) The number of modules 

b) The fit of our Functional Selection Turnover model 

c) The classification of motifs to functional classes (Functional conservation, Clade specific 

innovation or Functional switch) – we examined in detail 18 motifs including those 
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discussed explicitly in the main text. 

d) Robustness of the functional annotations of motifs by the functional modules - we 

examined in detail 18 motifs including those discussed in the main text. 

 

Results of the robustness tests of the functional modules 

a) Number of functional modules 

Most parameters tested do not affect significantly the number of functional modules.  

Specifically, the number does not change significantly when changing the motif detection 

threshold. For example, when comparing the lower threshold to the higher one, the number 

of modules changes from 197 modules to 155 modules (with enrichment threshold of 2e-5). 

When changing the enrichment and merge thresholds, the number of functional modules 

increases as the enrichment threshold becomes more permissive (Appendix Figure 1), and 

as the merge threshold increases (Appendix Figure 2). This is most noticeable for the most 

extreme thresholds, while for all other thresholds we see minor differences. In addition, the 

effect is mainly a result of adding small modules, consisting of one gene-set, which have less 

than 10 motif targets within them. 

 

 
Appendix Figure 1. Number of modules per enrichment threshold. Shown are the numbers of functional 

modules for all motifs at different enrichment thresholds (-log p-value, Fisher’s exact test), plotted with 

different colors from yellow to blue. (a) The number of modules in three categories: all functional modules 

(>0), modules with more than one gene-set (>1), and modules with more than two gene-sets (>2). (b) The 

number of modules in three categories: all functional modules (>0), modules with at least 10 motif targets 

(>10), and modules with at least 15 motif targets (>15). 

 

Figure  S13
a b
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Appendix Figure 2. Number of modules per merging threshold. Shown are the number of functional 

modules for all motifs at different thresholds for merging modules (percent overlap in motif targets), plotted 

with different colors from yellow to blue representing the percent overlap. (a) The number of modules in three 

categories: all functional modules (>0), modules with more than one gene-set (>1), and modules with more than 

two gene-sets (>2). (b) The number of modules in three categories: all functional modules (>0), modules with at 

least 10 motif targets (>10), and modules with at least 15 motif targets (>15). 

 

b) Fit of the functional selection turnover model 

The fit of our model is good in all thresholds and parameters. More specifically, we find a fit 

to the model (p-value<0.01 after Bonferoni correction for multiple hypothesis) for at least 

91% of the functional modules across all thresholds (ranging between 91% - 95% when 

changing the enrichment threshold, ranging between 94% - 96% when changing the merge 

threshold, and between 92% - 96% when changing the motif detection threshold). 

 

c) The classification of motifs to functional classes  

In this work we classified motif to three functional classes: Functional conservation, Clade 

specific innovation or Functional switch. We now repeated this process for different 

thresholds of motif enrichment (0.001 and 2e-6), merge threshold (45%,55%,65%) and motif 

targets detection threshold (80%, 75%), for 18 motifs. In most cases the classification of the 

motifs did not change as a result of changing the threshold. This implies that our conclusion 

regarding the distribution of the motifs to classes is robust to this parameter in the algorithm. 

The enrichment threshold changed the classification in two cases (Cat8 and Stb5 motifs). The 

merge threshold and motif detection threshold, each effected the classification of one motif 

(Swi6/Mbp1 motif and YNR063W respectively). 

a bOverlap 

fraction:

Overlap 

fraction:
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d) Robustness of the functional annotations of motifs 

The functional annotations of motifs are largely robust to the choice of threshold, although 

many gene-sets are not found to be enriched when lowering the threshold. The robustness of 

the modules is due to compensation by overlapping gene-sets. Thus, by creating modules we 

overcome sporadic non-enrichment of specific gene sets. However, we do find that small 

modules (usually with a small number of motif targets and only one gene-set) enriched in a 

single clade are sensitive to the choice of threshold and tend to be excluded as the threshold 

is stricter.  

 

 

3.2 Comparison of functional modules to the literature 

 

The CladeoScope algorithm itself does not take functional annotation into consideration. 

Moreover, we do not require the motif targets in S. cerevisiae to be conserved in remote 

clades and species. Thus, we can use the known functional annotations as an indication for 

the functionality of the DNA motifs. For each motif we compared the functional annotations 

to the known function of the motif  (when available) in S.cerevisiae, C. albicans and S. 

pombe. Overall we find a very good fit between the functional modules and the known 

function. From all motifs with known annotations we find 75% that have an exact match, 

12% that have a partial match and 13% with no match. 

 

 
References 
 
Borneman,	
   A.	
   R.,	
   Gianoulis,	
   T.	
   A.,	
   Zhang,	
   Z.	
   D.,	
   Yu,	
   H.,	
   Rozowsky,	
   J.,	
   Seringhaus,	
  M.	
   R.,	
  
Wang,	
   L.	
   Y.,	
   Gerstein,	
   M.,	
   and	
   Snyder,	
   M.	
   (2007).	
   Divergence	
   of	
   transcription	
   factor	
  
binding	
  sites	
  across	
  related	
  yeast	
  species.	
  Science	
  317,	
  815-­‐819.	
  
Habib,	
  N.,	
  Kaplan,	
  T.,	
  Margalit,	
  H.,	
  and	
  Friedman,	
  N.	
  (2008).	
  A	
  novel	
  Bayesian	
  DNA	
  motif	
  
comparison	
  method	
  for	
  clustering	
  and	
  retrieval.	
  PLoS	
  Comput	
  Biol	
  4,	
  e1000010.	
  
MacIsaac,	
   K.	
   D.,	
  Wang,	
   T.,	
   Gordon,	
  D.	
   B.,	
   Gifford,	
   D.	
   K.,	
   Stormo,	
   G.	
   D.,	
   and	
   Fraenkel,	
   E.	
  
(2006).	
  An	
  improved	
  map	
  of	
  conserved	
  regulatory	
  sites	
  for	
  Saccharomyces	
  cerevisiae.	
  
BMC	
  Bioinformatics	
  7,	
  113.	
  
Tuch,	
  B.	
  B.,	
  Galgoczy,	
  D.	
  J.,	
  Hernday,	
  A.	
  D.,	
  Li,	
  H.,	
  and	
  Johnson,	
  A.	
  D.	
  (2008).	
  The	
  evolution	
  
of	
  combinatorial	
  gene	
  regulation	
  in	
  fungi.	
  PLoS	
  Biol	
  6,	
  e38.	
  
	
  



ת הראשונות המספקות ראיות חותכות העבודו העבודה שלנו היא האחת. Ppara ,של ליפידים

גורמים   (2)בצאצאים של עכברים מטבוליים םתזונה אבהית משפיעה על ביטוי גני( 1: )לכך ש

, אלו תוצאו .סביבההלתנאי משתנים בתגובה , דורי-היכולים להעביר מידע בין, אפיגנטיים בזרע

ההורים יכולה של  תזונהעל כך שה יםמצביע, אדםבאפידמיולוגיים ממחקרים בשילוב עם נתונים 

מודל כמו כן בעבודה זו הגדרנו . בצאצאים של כולסטרול ושומניםמטבוליזם להשפיע על 

 יתר. גורמים אפיגנטייםהורית על ידי הורשה של סביבה שינוי תלוי  המאפשרת לחקורלמערכת 

דמיולוגיים של אפי יםמחקרמצביעות על הצורך בחשיבה מחודשת לגבי תוצאות אלו , על כן

  .                  או אלכוהוליזם, מחלות לב, סוכרת גוןכבאדם מחלות מורכבות 

 

מנגנוני הורשה שונים אור על שני שתי העבודות המובאות כאן שופכות  התוצאות של, לסיכום

מדגישות את הצורך עבודות אלו . שעתוק בקרת אבולוציה שלסלקציה הפועלים בכוחות ו

 .יםגנטי-לאו יםגנטיהמשלבת מנגנוני הורשה , בולוציה מורחבתא בתיאורית

                                                                                          

 



 .שלהם בתאים ם הרגולטורייםתפקידישמור על ההשעתוק נוטים לפקטורי   (2) .(מטרה קיימים

הפועל על החלפת גני  סלקציה על פי פונקציהסותרות אלו מיושבות על ידי מודל שתי מגמות  (3)

ק נמצאים שעתורגולטוריים של פקטורי הה התפקידים, על פי המודל. מטרה של פקטורי שעתוק

הסלקציה לחצי , שלנו במודל. מטרה בודדיםמאשר הבקרה של גני  תחת סלקציה חזקה יותר

אבל לא , ביולוגיתהליך  אותוהמשתייכים לגני מטרה באופו כללי כדי לשמר פועלים באופן שונה 

מספר הנצפה ל הסבר נאותמספק  המודל .התהליך ז בתוך מסוימיםגני מטרה פועלים לשימור 

כן מסביר את ו, (שמורים במספר רב של מינים)באבולוציה מאוד  שמוריםהמטרה ה גנישל 

הן בשמרים ון ה, מספר מינים ךלאורמסוימים שעתוק טורי קלפנמדדו השינויים בגני המטרה ש

 אנו .בעבר וממה שהניח םהם יותר מתירניהסלקציה הממצאים שלנו מראים כי כוחות . םביונקי

חיווט ים המוביל לבקרה מאפשר הרבה שינויים מקומיעל רשתות כי לחץ הסלקציה  מראים

 התנגדותתוך כדי , ותורם לאדפטציה של ביטוי הגנים לתנאי סביבה משתנים, של הרשת מחדש

 .עלולים להיות קטלנייםה שינויים דרמטיים בפנוטיפל

 

 הורשה אפיגנטית

מכיוון  ,של בקרת שעתוק נוסף באבולוציהאפשרי בקרה אפיגנטיים הם כוח מניע  מנגנוני

הורשה . של פרופיל ביטוי הגניםדורי -ביןתכנות הוביל לל היכולשהורשה של גורמים אפיגנטיים 

יכול להיות ( כגון תזונה או טמפרטורה)הורים השחוו  מרמזת כי מידע על הסביבהאפיגנטית 

ביונקים קיימת  האםהיה ברור לא לפני מחקרנו . מנדלית-מנגנון הורשה לאמועבר לצאצאים ב

דורית -הורשה ביןאם הכדי לבדוק . הוריםה קודמות שלסביבות מ תהמושפעהורשה אפיגנטית 

צאצאים בעקבות שינוי ה במשתנביטיים אשר גנים בעכברים ביצענו חיפוש של , כזו מתרחשת

מכיוון שאצל העכברים האבות תורמים מעט אבהית תזונה הבהתמקדנו אנו . של תזונת האבות

 ובפרט, שיניים בסביבהצאצאים להשל ישירות לשלול תגובות וכך יכולנו , ים למעט זרעלצאצא

                          .רחםהראשונה שהיא הלסביבתם 

 

לצאצאים של  בהשוואה, חלבוניםאבות שאכלו תזונה דלת הצאצאים של מצאנו כי אצל 

יצירה של ליפידים מעורבים בהביטוי של גנים רבים עלתה רמת ה, אבות שהוזנו בתזונה רגילה

 וחומצות שומן ליפידים, טריגליצרידים, אסטר-רמות גבוהות של כולסטרולכן נמדדו ו, וכולסטרול

, של גורמים אפיגנטיים בכבד של הצאצאים נרחב ואנליזה רחבת היקףמיפוי , בנוסף. חופשיות

הוביל , א על פני הגנום כולו בזרע של האבות"ת דנא ומתילצי"פרופיל ביטוי הרנכמו גם שינוי של 

בכבד של  א במקומות רבים בגנום"דנ תתזונה הורית במתילצי ישינוי תלו 02%-לגילוי של כ

באזור בקרה מרוחק המקושר לגן המקודד לבקר מרכזי  שינויבין שינוים אלו נמצא גם . הצאצאים



 תקציר

 

בקרת שעתוק ממלא תפקיד מרכזי בפעילות של תאים חיים ובתגובתם לאותות פנימיים 

עם אינטראקציה זה בהנמצאים .ביםר םעל ידי מנגנוני כתמתוו ,וז תמורכב בקרה .או חיצוניים

 א המזהים רצפים ספציפיים"חלבונים קושרי דני "בקרת שעתוק עאלה כוללים  מנגנונים .זה

כמו , א"ילציה של הדנמודיפיקציות של הכרומטין ומת תהכולל תבקרה אפיגנטי ,(קשעתו פקטורי)

הנחה  (.שאינן מקודדות לחלבונים)א רגולטוריות "מולקולות רני "בקרה לאחר שעתוק עגם 

מרכזי ביצירת הגיוון הפנוטיפי הרחב הנצפה  ם גורםנהשעתוק הרווחת היא ששינויים בבקרת 

 .אינם ידועיםלרוב של התהליך  והדינאמיקההאבולוציוניים הפועלים ת הכוחו, עם זאת .בין מינים

הורשה גנטית של , ת מבט שונותוהזה משתי נקודהאבולוציוני את התהליך חקרתי  ,בעבודתי

  .גנטית-ולא

 

 בקרת שעתוק דרך הורשה גנטית ה שלאבולוצי

א אשר "דנבאמצעות מוטציות ברצף הלהתפתח באבולוציה בקרת ביטוי גנים יכולה 

רשת בשינוי ועל ידי כך ל, גורמות לשינוי הקשר בין חלבוני הבקרה לגנים אותם הם מבקרים

מוטציות באזורים . על ידי שני תרחישים שוניםיכולים להתרחש שינויים אלו . בקרת השעתוק

(. כגון פקטורי שעתוק)חלבוני בקרה  להשפיע ישירות על פעילותם שליכולות א "מקודדים בדנ

על קישור של חלבוני ולהשפיע , א"רצפי בקרה בדנ המוטציות עלולות לגרום לשינוי,  ופיןלחל

חלבוני  בעוד .באזור גניםשל  ביטויה תבקרלשנות את הבקרה באזורים אלה וכתוצאה מכך 

מגוון ברצפי בקרה נצפו ב שינויים בקנה מידה גדול, הבקרה הם ברובם מאוד שמורים בין המינים

ר יסודי ומקיף של תהליך אבולוציוני זה הוגבל חק, אולם .זבובים ויונקים, מו שמריםכ ,אורגניזמים

 של פקטורי שעתוק וגני המטרה שלהם בקנה מידה גדולושיטתיות במדידות על ידי החוסר 

של  הפוגם בדיוק הקביעה תחזיות חישוביותבעש הרעל ידי כן הוגבל ו, הרבה מינים שוניםב

 . רשת בקרת השעתוק

 

, שיטה חישובית לחקר האבולוציה של בקרת שעתוק על פני מינים רבים נופיתחאנו 

פקטורי  תשעיםשל יותר מבקרת השעתוק  של כדי לעקוב אחר ההיסטוריה והשתמשתי בה

כללי באבולוציה של  ןעקרולגילוי  הובילהניתוח שלנו  .שמרים מיני עשרים ושלושהפני על שעתוק 

המקשרת בין  ,רשת הרגולציה( 1: )מצאנו כיאנו  .יונקיםהן לשמרים ונכון הן לשעתוק ה בקרת

משנים את גני שעתוק פקטורי ה, כלומר)מאוד גמישה שלהם היא המטרה גני לשעתוק פקטורי ה

איבוד גני והן שים השגת גני מטרה חדהן שינויים אלה כוללים . בקצב מהיר המטרה שלהם
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