
Learning Belief Networks in the Presence of Missing Values and Hidden Variables

Nir Friedman
Computer Science Division, 387 Soda Hall

University of California, Berkeley, CA 94720
nir@cs.berkeley.edu

Abstract

In recent years there has been a flurry of works
on learning probabilistic belief networks. Cur-
rent state of the art methods have been shown to
be successful for two learning scenarios: learn-
ing both network structure and parameters from
complete data, and learning parameters for a fixed
network from incomplete data—that is, in the
presence of missing values or hidden variables.
However, no method has yet been demonstrated
to effectively learn network structure from incom-
plete data.
In this paper, we propose a new method for
learning network structure from incomplete data.
This method is based on an extension of the
Expectation-Maximization (EM) algorithm for
model selection problems that performs search
for the best structure inside the EM procedure.
We prove the convergence of this algorithm, and
adapt it for learning belief networks. We then
describe how to learn networks in two scenarios:
when the data contains missing values, and in the
presence of hidden variables. We provide exper-
imental results that show the effectiveness of our
procedure in both scenarios.

1 INTRODUCTION

Belief networks (BN) (also known as Bayesian networks
and directed probabilistic networks) are a graphical repre-
sentation for probability distributions. They are arguably
the representation of choice for uncertainty in artificial in-
telligence. These networks provide a compact and natural
representation, effective inference, and efficient learning.
They have been successfully applied in expert systems,
diagnostic engines, and optimal decision making systems
(e.g., [Heckerman et al. 1995]).

A Belief network consists of two components. The first
is a directed acyclic graph in which each vertex corre-

sponds to a random variable. This graph represents a set
of conditional independence properties of the represented
distribution. This component captures the structure of the
probability distribution, and is exploited for efficient infer-
ence and decision making. Thus, while belief networks can
represent arbitrary probability distributions, they provide
computational advantage for those distributions that can be
represented with a simple structure. The second component
is a collection of local interaction models that describe the
conditional probability of each variable given its parents
in the graph. Together, these two components represent a
unique probability distribution [Pearl 1988].

Eliciting belief networks from experts can be a laborious
and expensive process in large applications. Thus, in recent
years there has been a growing interest in learning belief
networks from data [Cooper and Herskovits 1992; Lam and
Bacchus 1994; Heckerman et al. 1995].1 Current methods
are successful at learning both the structure and parame-
ters from complete data—that is, when each data record
describes the values of all variables in the network. Unfor-
tunately, things are different when the data is incomplete.
Current learning methods are essentially limited to learning
the parameters for a fixed network structure.

This is a significant problem for several reasons. First,
most real-life data contains missing values (e.g., most of the
non-synthetic datasets in the UC Irvine repository [Murphy
and Aha 1995]). One of the cited advantages of belief
networks (e.g., [Heckerman 1995, p. 1]) is that they allow
for principled methods for reasoning with incomplete data.
However, it is unreasonable at the same time to require
complete data for training them.

Second, learning a concise structure is crucial both for
avoiding overfitting and for efficient inference in the learned
model. By introducing hidden variables that do not appear
explicitly in the model we can often learn simpler models.
A simple example, originally given by Binder et al. [1997],
is shown in Figure 1. Current methods for learning hidden

1We refer the interested reader to the tutorial by Hecker-
man [1995] that overviews the current state of this field.

H

(a) (b)

Figure 1: (a) An example of a network with a hidden vari-
able. (b) The simplest network that can capture the same
distribution without using the hidden variable.

variables require that human experts choose a fixed network
structure or a small set of possible structures. While this
is reasonable in some domains, it is clearly infeasible in
general. Moreover, the motivation for learning models in
the first place is to avoid such strong dependence on the
expert.

In this paper, we propose a new method for learning
structure from incomplete data that uses a variant of the
Expectation-Maximization (EM) [Dempster et al. 1977]
algorithm to facilitate efficient search over large number
of candidate structures. Roughly speaking, we reduce the
search problem to one in the complete data case, which
can be solved efficiently. As we experimentally show, our
method is capable of learning structure from non-trivial
datasets. For example, our procedure is able to learn struc-
tures in a domain with several dozen variables and 30%
missing values, and to learn the structure in the presence
of several hidden variables. (We note that in both of these
experiments, we did not rely on prior knowledge to reduce
the number of candidate structures.) We believe that this
is a crucial step toward making belief network induction
applicable to real-life problems.

To convey the main idea of our approach, we must first re-
view the source of the difficulties in learning belief networks
from incomplete data. The common approach to learning
belief networks is to introduce a scoring metric that evalu-
ates each network with respect to the training data, and then
to search for the best network (according to this metric).
The current metrics are all based, to some extent, on the
likelihood function, that is, the probability of the data given
a candidate network.

When the data is complete, by using the independencies
encoded in the network structure, we can decompose the
likelihood function (and the score metric) into a product of
terms, where each term depends only on the choice of par-
ents for a particular variable and the relevant statistics in the
data—that is, counts of the number of common occurrences
for each possible assignment of values to the variable and
its parents. This allows for a modular evaluation of a candi-
date network and of all local changes to it. Additionally, the
evaluation of a particular change (e.g., adding an arc from�

1 to
�

2) remains the same after changing a different part

of the network (e.g., removing an arc from
�

1 to
�

3). Thus,
after making one change, we do not need to reevaluate the
score of most of the possible neighbors in the search space.
These properties allow for efficient learning procedures.

When the data is incomplete, we can no longer decom-
pose the likelihood function, and must perform inference
to evaluate it. Moreover, to evaluate the optimal choice of
parameters for a candidate network structure, we must per-
form non-linear optimization using either EM [Lauritzen
1995] or gradient descent [Binder et al. 1997]. In par-
ticular, the EM procedure iteratively improves its current
choice of parameters � using the following two steps. In
the first step, the current parameters are used for computing
the expected value of all the statistics needed to evaluate
the current structure. In the second step, we replace � by
the parameters that maximize the complete data score with
these expected statistics. This second step is essentially
equivalent to learning from complete data, and thus, can be
done efficiently. However, the first step requires us to com-
pute the probabilities of several events for each instance in
the training data. Thus, learning parameters with the EM
procedure is significantly slower than learning parameters
from complete data.

Finally, in the incomplete data case, a local change in one
part of the network, can affect the evaluation of a change
in another part of the network. Thus, the current proposed
methods evaluate all the neighbors (e.g., networks that dif-
ferent by one or few local changes) of each candidate they
visit. This requires many calls to the EM procedure before
making a single change to the current candidate. To the best
of our knowledge, such methods have been successfully ap-
plied only to problems where there are few choices to be
made: Clustering methods (e.g., [Cheeseman et al. 1988;
Chickering and Heckerman 1996]) select the number of
values for a single hidden variable in networks with a fixed
structure, and Heckerman [1995] describes an experiment
with a single missing value and five observable variables.

The novel idea of our approach is to perform search for
the best structure inside the EM procedure. Our procedure
maintains a current network candidate, and at each iteration
it attempts to find a better network structure by computing
the expected statistics needed to evaluate alternative struc-
tures. Since this search is done in a complete data setting,
we can exploit the properties of scoring metric for effective
search. (In fact, we use exactly the same search procedures
as in the complete data case.) In contrast to current practice,
this procedure allows us to make a significant progress in
the search in each EM iteration. As we show in our ex-
perimental validation, our procedure requires relatively few
EM iterations to learn non-trivial networks.

The rest of the paper is organized as follows. We start in
Section 2 with a review of learning belief networks. In
Section 3, we describe a new variant of EM, the model se-
lection EM (MS-EM) algorithm, and show that by choosing
a model (e.g., network structure) that maximizes the com-

plete data score in each MS-EM step we indeed improve
the objective score. In Section 4, we discuss the details
of applying the MS-EM algorithm for learning belief net-
works using the minimal description length scoring metric.
In Section 5, we present experimental evaluation of this
procedure both for handling missing values and learning
structure with hidden nodes. Finally, in Section 6 we
discuss the implications of our results and possible future
extensions.

2 REVIEW OF LEARNING BELIEF
NETWORKS

Consider a finite set U ��� � 1 �������	� ��

� of discrete ran-
dom variables where each variable

���
may take on values

from a finite set. We use capital letters, such as
� ������� ,

for variable names and lowercase letters � ������� to denote
specific values taken by those variables. Sets of variables
are denoted by boldface capital letters X � Y � Z, and assign-
ments of values to the variables in these sets are denoted by
boldface lowercase letters x � y � z.

A belief network is an annotated directed acyclic graph that
encodes a joint probability distribution over U. Formally,
a belief network for U is a pair ������� � � � . The first
component, namely � , is a directed acyclic graph whose
vertices correspond to the random variables

�
1 ��������� ��

that encodes the following set of conditional independence
assumptions: each variable

� �
is independent of its non-

descendants given its parents in � . The second component
of the pair, namely � , represents the set of parameters that
quantifies the network. It contains a parameter !#"%$'& (*) $ �+-, � ��. / " $10 for eachpossible value � � of

� �
, and

/ " $ of
/32 $,

where
/ 2 $ denotes the set of parents of

���
in � . A belief

network � defines a unique joint probability distribution
over U given by:

+546,'�
1 ��������� �7
 0 �

8�:9
1

+;43,<�7� . / 2 $10
The problem of learning a belief network can be stated as
follows. Given a training set =>�?� x1 ��������� x @ � of in-
stances of U, find a network � that best matches = . The
common approach to this problem is to introduce a scor-
ing function that evaluates each network with respect to
the training data, and then to search for the best network
(according to this metric). The two main scoring func-
tions commonly used to learn belief networks are the belief
scoring function [Cooper and Herskovits 1992; Heckerman
et al. 1995], and the one based on the principle of minimal
description length (MDL) [Lam and Bacchus 1994] which
is equivalent to Schwarz’ Bayesian information criterion
(BIC) [Schwarz 1978]. In this extended abstract we con-
centrate on the MDL/BIC metric. We defer treatment of the
Bayesian metric to the full version of this paper.

Let �A�A��� � � � be a belief network, and let = �

� x1 ��������� x@ � be a training set where each x
�

assigns a value
to some (or all) variables in U. The MDL score of a net-
work � given a training data set = , written Score

, � : = 0 ,
is given by the following equation:

Score
, � : = 0 �CB , � : = 05D log E

2
#
, � 0 (1)

where #
, � 0 is the number of parameters in the network.2

The first term is the of the log-likelihood of � given = :B , � : = 0 �GF @�<9 1 log
,1+54H,

x
� 0	0 � The log-likelihood has a

statistical interpretation: the higher the log-likelihood is,
the closer � is to modeling the probability distribution in
the data = . The second term is a penalty term that biases
the score metric to prefer simpler networks. (We refer the
interested reader to [Heckerman 1995; Lam and Bacchus
1994] for detailed description of this score.)

When the all instances x
�

in = are complete—that is,
they assign values to all the variables in U—the log-
likelihood term decomposes. Let E X

,
x 0 be statistics of

x in = —that is, the number of instances in = where
X � x. (Note that E X

,	I 0 is well-defined only for com-
plete datasets.) We omit the subscript of E X when-
ever it is clear from the context. Applying the defini-
tion of

+54
to the log-likelihood and changing the order

of summation yields the following well-known decompo-
sition of the log-likelihood according to the structure of� : B , � : = 0 �JF � F "%$<K (*) $ E , � � � / " $:0 log

, !#"%$L& (*) $ 0 � It
is easy to show that this expression is maximized when!#" $ & () $ � @3M "%$'K (*) $1N@3M () $ N � Thus, given a network structure, there
is a closed form solution for the parameters that maximize
the log-likelihood score. Moreover, since the second term
of (1) does not depend on the choice of parameters, this
solution maximizes the MDL score.

Using this decomposition, we have that for each network
structure � the score decomposes as well: Score

, � : = 0 �F � Score
� , /62 $ � � � : = 0 � where

Score
��, / 2 $ � � � : = 0 � O" $ K () $ E

, � � � / "P$10 log
, !Q" $ & () $ 0

D log E
2

#
,'��� � / 2 $10 (2)

and #
,'��� � / 2 $10 is the number of parameters need to repre-

sent
+-,'� ��.�/62 $�0 . As explained in the introduction, this

decomposition is crucial for learning structure. A local
search procedure that changes one arc at each move can
efficiently evaluate the gains made by adding or removing
an arc. Such a procedure can also reuse computations made
in previous stages to evaluate changes to the parents of all
variables that have not been changed in the last move. One
particular search procedure that exploits this decomposi-
tion is a greedy hill-climbing procedure that at each step

2The MDL scoring metric is often defined as the negative
inverse of (1), where learning attempts to minimize the score
rather than maximize it.

performs the local change that results in the maximal gain,
until it reaches a local maxima. Although this procedure
does not necessarily find a global maxima, it does perform
well in practice; e.g., see [Heckerman et al. 1995].

When the training data is incomplete, that is, some x
�
s do not

assign values to all the variables in U, the situation is quite
different. In this case the log-likelihood, and consequently
the MDL score, do not decompose. Moreover, we cannot
choose parameters in each local interaction model indepen-
dently of the others. These issues have a drastic effect on
the learning procedure. To evaluate the score of a structure,
we must find the optimal parameter setting (see [Chicker-
ing and Heckerman 1996]). This usually involves some
form of parametric search (e.g., gradient descent [Binder
et al. 1997] or EM [Lauritzen 1995]). Moreover, for each
candidate structure we consider, we must reevaluate the
choice of parameters, since, in general, we cannot adopt the
parameters computed for previous candidates.

3 THEORETICAL FOUNDATIONS

The standard EM algorithm is a method for parametric
estimation for problems with missing data [Dempster et al.
1977; McLachlan and Krishnan 1997; Tanner 1993]. Here
we present an extension of EM, which we call the model
selection EM (MS-EM) algorithm, that deals with model
selection as well as parameter estimation.

We start with some notation. Assume we have an input
dataset with E records. We define random variables U @ �� �-R� : 1 SUTVSUW � 1 SYX-SUE � such that

�-R� describes the
assignment to

� �
in the X ’th input record. Let O Z U @

be the set of observed variables, that is, those whose values
are specified in = , and let H � U @ D O be the hidden
variables. We assume that we have a class of models [
such that each model \^]_[is parameterized by a vector�3` such that each (legal) choice of values �6` defines a
probability distribution

+-,�I
: \ � � ` 0 over U @ . From now

on we use � as a shorthand for �3` when the model \ is
clear from the context.

We also assume that we want to find the choice of
, \ � � 0

that maximizes a scoring metric of the form:a*b , \ � � 0 � log
+-,

O : \ � � 05D Pen
, \ � � ��c 0 �

The term log
+-,

O : \ � � 0 is the log-likelihood of data
given the choice of model, and term Pen

, \ � � ��c 0 is some
penalty function that might depend on the values of the
observable variables in the training data. We assume that
had we observed the complete data, we would have been
able to maximize this score. Unfortunately, we do not
have these values. However, we can examine expected
score by taking expectation over all possible values H might
take. To do so, we need to estimate the probability of these
assignments. Given a particular estimate

, \ed � � d 0 , the
expected score is:

f , \ � � : \ed � �Hd 0 �hg-i log
+-,

O � h : \ � � 05D Pen
, \ � � ��c 0kj �

where the expectation is over the value of h according to+-,
h
.
O : \ed � �Hd 0 .

The MS-EM algorithm can be now stated concisely:

Procedure MS-EM:
Choose l 0 and m 0 randomly.
Loop for n�o 0 p 1 p�q�q�q until convergence

Find a model lsr�t 1 that maximizes u3v�w : lsrxp�myrPz
Let myr�t 1 o arg max {Hu3v1l|r�t 1 p	m : l|r}p~myrPz

That is, at each stage we choose a model and parameters
that have the highest expected score given our previous
assessment. For any particular instantiation of this algo-
rithm, we have to show that we can indeed find a pair, \ � � 0 that maximizes the expected score. In fact, it is
not necessary to maximize the expected score: it suffices
that at each iteration we choose \
x� 1 and �
�� 1 so thatf , \
�� 1 � �
�� 1 : \
 � �
 0�� f , \
 � �
 : \
 � �
 0 .
This process converges when there is no further im-
provement in the objective score. That is, whena b , \
�� 1 � �
x� 1 0 � a b , \
 � �
 0 . In practice, we stop
the procedure when the change in the objective score is
negligible (i.e., smaller than 0.5 percent.)

To show that this algorithm is useful, we need to show that
it indeed improves the objective score in each iteration.

Theorem 3.1: If
f , \ � � : \ed � �Hd 0�� f , \ed � �Hd :\ed � �Hd 0 , then

a b , \ � � 0�� a b , \ed � �Hd 0
Thus, if at each iteration we choose

, \
x� 1 � �
�� 1 0 that has
a higher expected score than the previous candidate, we are
bound to improve the objective score. The proof of this the-
orem is a relatively simple extension of the corresponding
proof for parametric EM [McLachlan and Krishnan 1997].

This theorem shows that the MS-EM makes progress at
each step until it converges. What do we know about the
point of convergence this algorithm? Using results for
standard EM, we have that if

f , \ed � �Hd : \ed � � d 0 �
arg max � f , \ed � � : \ed � � d 0 , then �Hd is a stationary
point of

a*b K `_� , � 0 � a*b , \ed � � 0 ; that is, the gradient
at that point is zero [McLachlan and Krishnan 1997]. This
means that the choice of parameters at the point of conver-
gence is either a local maxima, local minima, or a saddle
point of

a b K ` � .
What can we say about the choice of model at the con-
vergence point? The formal notion of stationarity does not
apply to the discrete space [of possible models. However,
we can define the class of “stationary points” of this algo-
rithm as all the points to which the algorithm can converge.
Note that this set of points is a subset of the set of station-
ary points in spaces of parameterization of all the candidate
models in [. Thus, had we run standard (e.g., parametric)
EM for each of these, we would have potentially encoun-

tered at least the same number of stationary points.

This discussion suggests another modification in the learn-
ing algorithm. As we shall see below, maximizing the
choice of parameters � for a fixed model is computation-
ally cheaper than searching for a better model. Thus, we
can modify our algorithm so that it alternates between it-
erations that optimize the parameters for the current model
candidate, and iterations that search for a different model.
We call this procedure the alternating MS-EM (AMS-EM):

procedure AMS-EM:
Choose l 0 and m 0 � 0 randomly.
Loop for n�o 0 p 1 p�q�q�q until convergence

Loop for ��o 0 p 1 p�q�q�q until convergence or ��o�� max

Let m r � � t 1 o arg max { u3v1l r p~m : l r p	m r � � z
Find a model l r�t 1 that maximizes u3v�w : l r p�m r � � z
Let myr�t 1 � 0 o arg max {Hu3v1l|r�t 1 p	m : l|rxp	myr � � z

This variant attempts to make progress using parametric
EM steps, for some specified number of steps, or until con-
vergence. Then it considers making additional progress by
changing the choice of model. This can lead to computa-
tional advantages, and moreover, as we shall see in Sec-
tion 5.2, in some situations it can avoid early convergence
to undesirable local maxima.

4 MS-EM FOR LEARNING BELIEF
NETWORKS

To apply the MS-EM algorithm to learning belief networks
with the MDL score, we need to show how to choose
a model

, � � � 0 that increases the expected score. As
usual for models in the exponential family, we get that
the expected score has the same form as the complete data
score. Using the definition of the MDL score, and the
linearity of expectation, we get that

f , � � � : ��d � �Hd 0 �F � f �	, / 2 $ � � � : ��d 0 � where ��d3� , ��d � �Hd 0 andf � , /32 $ � �3� : � d 0 � O"P$<K (*) $ g-i�E
, � � � / " $10 . O j log

, !#"%$L& (*) $ 0
D log E

2
#
,'� � � /62 $10 �

where we take expectation according to
+54 � Thus, we get

an analogue to the decomposition of the MDL score for the
complete data case. The only difference is that we use the
expected statistics based on the model ��d instead of actual
statistics. As in the complete data case, we maximize the
expected score, for a particular network structure � , by

setting !#" $ & () $ ����� @6M "P$<K (*) $1N & O ���� @6M (*) $kN & O � . As a consequence, we
can use the same search strategies that exist for the complete
data case.

The MS-EM algorithm for belief networks is implemented
using the architecture described in Figure 2. The Search
Engine module is responsible for choosing candidate net-
works to evaluate. For each candidate, it calls the Score

Data

Training Current

Model

(Expected)

Statistics Score

Search

Engine

Candidate

Networks

Figure 2: Architecture of the implementation of the MS-EM
algorithm.

module, which implements the particulars of the scoring
metric (e.g., MDL or Bayesian scoring). To evaluate the
score, the Score module requires the corresponding statis-
tics, which are supplied by the Statistics module. In the
complete data case, the Statistics module answer queries
by counting instances in the training data. In MS-EM, this
module computes expected statistics, using a the network
found in the previous iteration. Indeed, our implementation
is based on a previous implementation of a complete-data
learning software. The implemention of MS-EM involved
minor changes to the Statistics module and an implementa-
tion of an inference algorithm.

Most of the running time during the execution our pro-
cedure is spent in the computations of expected statistics.
This is where our procedure differs from parametric EM. In
parametric EM, we know in advance which expected statis-
tics are required. Namely, these are all statistics of events
of the form

� � � /32 $ where
/62 $ are the parents of

� �
in

the fixed network structure we are considering. Since these
variables are also the parents of

� �
in our current candidate,

we can employ efficient inference algorithms that compute
all the required statistics in one pass over the training data
(e.g., the clique-tree algorithm of Lauritzen and Spiegelhal-
ter [1988]).

In our procedure, we cannot determine in advance which
statistics will be required. Thus, we have to handle each
query separately. Moreover, when we consider different
structures, we are bound to evaluate a larger number of
queries than parametric EM . Thus, a “structural” iteration,
where we search for a better network structures, is more ex-
pensive than a “parametric” iteration, where we only update
the parameters. Since we usually need several iterations to
converge on the best parameters, this suggests that by us-
ing the AMS-EM algorithm, we can save computational
resources.

Additionally, we implemented two straightforward mecha-
nisms to reduce the overhead in computing statistics. First,
at the beginning of each iteration, we use the clique-tree al-
gorithm to compute the statistics for the current candidate.
This is the only computation needed during the parametric
optimization steps in AMS-EM, and these statistics are also
used in initial phases of the search in MS-EM. Second, the

-32

-30

-28

-26

-24

-22

-20

0 10 20 30 40

L
og

 L
os

s

Percent Missing Values

insurance

MS-EM 1000 samples
AMS-EM 1000 samples

MS-EM 500 samples
AMS-EM 500 samples

MS-EM 250 samples
AMS-EM 250 samples -21.5

-21

-20.5

-20

-19.5

-19

-18.5

-18

-17.5

-17

-16.5

0 10 20 30

L
og

 L
os

s

Percent Missing Values

alarm

MS-EM 1000 samples
AMS-EM 1000 samples

MS-EM 500 samples
AMS-EM 500 samples

Figure 3: Plots showing the degradation in learning performance as a function of the percentage of missing values. The
horizontal axis shows the percentage of missing values, and the vertical show the log-loss (higher is better).

Statistics module caches queries computed using the cur-
rent network. This allow us to avoid computing a query (or
marginals of it) more than once at each iteration.

Another crucial point is the choice of the initial model for
MS-EM. Clearly. this choice determines the convergence
point of the algorithm (since the algorithm itself is deter-
ministic). In general, we do not want to choose too sim-
ple initial structure, since such a structure embodies many
independencies, and thus biases the expected statistics to
indicate that variables are independent of each other. On
the other hand, we do not want to choose too complex ini-
tial structure, since such a structure might be too hard to
perform inference on. In the following sections, we discuss
particular choices of initial structure in the scenarios we
consider. As usual in EM procedures, we choose the initial
parameters for the chosen structure randomly. Moreover,
in order to avoid unfortunate early convergence, we usually
run the procedure several times, starting with different ini-
tial points. We then choose the network with the highest
score from those found by these runs.

5 EXPERIMENTAL RESULTS

In this section we report initial experimental results for two
scenarios of incomplete data: missing values and hidden
variables. We discuss aspects of the procedure that are
relevant to each type of problem, and how we address them.
In both settings, we evaluate our procedure as a density
estimator, that is, how well it learns the distribution in the
training data. Another interesting aspect we measure for
belief networks is how well they model the structure of the
domain (e.g., number of correct arcs found). We defer this
analysis to the full version of this paper.

5.1 Missing Values

Many real life data sets contain missing values. In order
to evaluate our procedure, we performed the following ex-
periment that examines the degradation in performance of
our learning procedure as a function of the percentage of
missing values.

In this experiment we generated artificial training data from
two networks: Insurance—a network for classifying car
insurance applications [Binder et al. 1997] that has 26
variables; and alarm—a network for intensive care patient
monitoring [Beinlich et al. 1989] that has 37 variables.
From each network we randomly sampled training sets of
different sizes. We then randomly removed values from
each of these training sets to get training sets with vary-
ing percentage of missing values. For each data point we
generated five independent training sets.

For each training set, we started the procedure from five
random initial points. We choose the initial structure to
be a random chain-like network that connected all the vari-
ables. We suspect that for most missing value problems
with relatively low number of missing values (e.g., less
than 10 D 15%), the topology of the initial network is not
crucial. We hope to verify this experimentally in the future.
In both experiments, we tried both the MS-EM procedure
and the AMS-EM procedure.

We evaluated the performance of the learned networks by
measuring how well they model the target distribution. To
do so, we sampled a test set of 10,000 instances and evalu-
ated the average log-loss of each learned network on this test
set, that is, 1@ F @�:9 1 log

+546,
x
� 0 .3 (We used the same test

set for evaluating all the learned networks.) The results are
summarized in Figure 3. As expected, there is a degrada-
tion in performance when there are large number of missing

3This is a standard method for evaluating density estimates.

(a) (b)

Figure 4: (a) The network 3x2x4 used in the experiments. The shaded nodes correspond to hidden variables. (b) One of
networks learned from 1000 samples using one hidden variable.

variables. However, for reasonable percentage of missing
values, the degradation is moderate or non-existent.4 These
results are encouraging, since they show that even with
30% of the values missing, our procedure usually performs
better than one that receives half the number of complete
instances. (Note that with 30% missing values, virtually all
the instances in the dataset are incomplete). These results
also show that the AMS-EM algorithm roughly performs as
well as the MS-EM algorithm.

We note that in this experiment, values where missing at
random. In many real-life domains, this is not the case. In
these domains, the pattern of missing values can provide
additional information (e.g., the patient was too ill to take
a certain test). Such information can be easily modeled by
introducing for each

�7�
a new variable labeled “Seen-

���
”

that denotes whether
�7�

was observed or not. Datasets
annotated with this information can then be handled by
our procedure. This allows the learning procedure to learn
correlations between the observations of various variables
and value of other variables. This approaches utilizes the
belief network to describe both the underlaying domain and
the process of observation in the domain. We hope to return
to this issue in future work.

5.2 Hidden Variables

In most domains, the observable variables describe only
some of the relevant aspects of the world. This can have
adverse effect on our learning procedure. Consider, for
example, a medical domain in which the training data con-
sists of observed symptoms (e.g., fever, headache, blood
pressure etc.), and the medication prescribed by the doctor.
One hidden quantity that we not observe is which disease(s)
the patient has. Knowledge of the patient’s disease makes

4We suspect that the slight improvement in the score for 10%
is due to the randomness of our procedure. This apparently allows
the search to escape some of the local maxima found when there
are no missing values.

the treatment independent of most of the symptoms. On
the other hand, when we do not observe the disease, all
observables seem related to each other. Thus, we hope that
by introducing hidden variables, we will be able to learn
simpler models that are less prone for overfitting and more
efficient for inference.

Thus, there is growing interest in learning networks that in-
clude one or more hidden variables. Unfortunately, the
only methods that learn with hidden variables must re-
strict themselves to small number of structure candidates
(as done by Cheeseman et al. [1988] and Chickering and
Heckerman [1996]) since the cost of running EM to find the
parameter setting for each candidate structure is high. Our
procedure allows us to learn network structures with hidden
variables. The following experiments attempt to show the
effectiveness of the procedure.

Before we describe the experiments, we explain how we
choose the initial network our procedure. We start with two
simple observations. First, if a hidden variable � is isolated
in the network we use for computing expected statistics,
then the expected statistics would show that it is independent
of all other variables. Thus, the MS-EM algorithm would
not add arcs to or from � . Second, suppose that we learn
a network where � is a leaf (e.g., there are no arcs leading
out of �) or � is a root with only one child. In this
case, marginalizing � from the learned distribution does
not effect the distribution over the observable variables.
Thus, � does not contribute to the representation of the
domain.

These observations suggest that a hidden variable is benefi-
cial only if it is connected to other variables in the networks.
Moreover, once we lose that property, we are effectively ig-
noring the hidden variable from there on. Thus, we want to
ensure that our choice of initial structure connects hidden
variables to several observable variables. One structure that
ensures that this is the case is a bipartite graph in which all
of the hidden variables are parents of each observable vari-

-5.5

-5.48

-5.46

-5.44

-5.42

-5.4

-5.38

-5.36

-5.34

-5.32

0 1 2 3

L
og

 L
os

s

Hidden

3x1x3 network

2000 inst.
1000 inst.
 500 inst.
 250 inst.

-8.5

-8.45

-8.4

-8.35

-8.3

-8.25

-8.2

-8.15

-8.1

-8.05

-8

0 1 2 3

L
og

 L
os

s

Hidden

3x2x4 network

2000 inst.
1000 inst.
 500 inst.
 250 inst.

Figure 5: Plots showing learning performance when learning models with hidden variables as a function of the number of
hidden variables. The results shown are average loss from 5 different experiments in each sample size.

able. Of course, when there are many hidden variables, this
network might require many parameters. In these cases, we
randomly choose edges from the bipartite graph ensuring
that each observable variable does not have more then a
certain fixed number of parents.

As usual, we randomly choose parameters for this network.
These random choices create weak dependencies between
the observable variables and the hidden variables. However,
if we immediately apply MS-EM with such an initial guess,
we end up choosing a structure where most of the hidden
variables are independent of the rest of the networks. To
avoid this problem, we run several iterations of the standard
EM procedure on initial network. These iterations change
the parameters so that there are stronger dependencies be-
tween the hidden variables and the observables. After this
preprocessing stage, we continue on as before (i.e., either
MS-EM or AMS-EM). In our experiments there was no
significant difference between MS-EM and AMS-EM, and
thus, we focus on the latter in the reminder of this section.

In our experiment, we created a two networks: 3x1x3 with
the topology shown in Figure 1a (where all the variables
are binary); and 3x2x4 with the topology shown in Fig-
ure 4a Like the first network, this second network also has
hidden variables “meditating” between two groups of ob-
served variables. It includes, however, other variables that
make the problem harder. We quantified both networks us-
ing randomly chosen parameters. We then sampled, from
each network, five training sets of sizes 250, 500, 1000,
and 2000 instances of the observable variables, and learned
networks in the presence of 0, 1, 2, or 3 hidden binary vari-
ables using the AMS-EM algorithm. We tested the average
log-loss of our procedure on a separate test set. The results
are summarized in Figure 5. Experiments with the MS-EM
algorithm led to similar results, which we omit here because
of space limitations.

These results show that introducing hidden variables re-

sults in improved density estimation. However, when the
number of instances grows larger, we are able to “afford”
to learn more complex structures, and then the impact of
adding hidden variables diminishes. Also note that for
small samples additional hidden variables can lead to worst
performance. We suspect that this is due to overfitting, and
we are currently exploring this phenomena.

6 DISCUSSION

In this paper, we introduced a new method for learning
belief networks from incomplete data. As the preliminary
experimental results show, this method allows us to learn in
non-trivial domains. We believe that these results will have
impact in several domains. In particular, we are planning
to explore application of this method for learning temporal
models that involve hidden entities. Such models are cru-
cial for applications in speech recognition, computational
biology and reinforcement learning. Additionally, we are
exploring the use of this method for classification tasks.

The main computational efforts in our procedure is com-
putation of expected statistics during “structural” iterations,
where the procedure performs search. Our current inference
procedure is unoptimized and this has restricted the scope
of the reported experiments. We are currently replacing this
module by an optimized inference engine. Additionally, we
are examining a stochastic variant of MS-EM (analogous
to stochastic EM [McLachlan and Krishnan 1997; Tanner
1993]). In this variant, we use sampling procedures to com-
plete that training data. That is, from each partial instance,
we sample several complete instances (using our current
estimate of the model). We then learn from the completed
data using the complete data methods. This approach is
appealing since unlike exact inference methods, the run-
ning time of sampling is not sensitive to the complexity of
the network. Finally, we are examining alternative search

procedures that attempt to escape local maxima by using
various local perturbations.

An additional topic that deserves more attention is learning
models with hidden variables. Our current procedure starts
with a given set of hidden variables and attempts to find a
model that includes them. A more sophisticated approach
would create hidden variables on as-needed basis during
the learning process. This requires making a decision as to
when to add a new variable, and how to insert it into the
current model. We are currently exploring several methods
for recognizing where to insert a hidden variable.

Finally, in the current presentation we focused on the MDL
learning score. An analogous development can be carried
for the Bayesian learning score [Cooper and Herskovits
1992; Heckermanet al. 1995] in a relatively straightforward
manner. Due to space restrictions, we defer the presentation
of these issues to the full version of this paper.

Acknowledgments

I am grateful to Kevin Murphy, Stuart Russell, Geoff Zweig,
and particularly Moises Goldszmidt and Daphne Koller for
comments on earlier version of this paper and useful dis-
cussions relating to this topic. This research was supported
by ARO under the MURI program “Integrated Approach to
Intelligent Systems”, grant number DAAH04-96-1-0341.

References

Beinlich, I., G. Suermondt, R. Chavez, and G. Cooper
(1989). The ALARM monitoring system: A case
study with two probabilistic inference techniques for
belief networks. In Proc. 2’nd European Conf. on AI
and Medicine. Berlin: Springer-Verlag.

Binder, J., D. Koller, S. Russell, and K. Kanazawa
(1997). Adaptive probabilistic networks with hidden
variables. Machine Learning this volume.

Cheeseman, P., J. Kelly, M. Self, J. Stutz, W. Taylor, and
D. Freeman (1988). Autoclass: a Bayesian classifi-
cation system. In ML ’88.

Chickering, D. M. and D. Heckerman (1996). Efficient
approximations for the marginal likelihood of incom-
plete data given a Bayesian network. In Proc. Twelfth
Conference on Uncertainty in Artificial Intelligence
(UAI ’96), pp. 158–168.

Cooper, G. F. and E. Herskovits (1992). A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning 9, 309–347.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977).
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Soci-
ety B 39, 1–39.

Heckerman, D. (1995). A tutorial on learning Bayesian
networks. Technical Report MSR-TR-95-06, Mi-
crosoft Research.

Heckerman, D., D. Geiger, and D. M. Chickering (1995).
Learning Bayesian networks: The combination of
knowledge and statistical data.Machine Learning 20,
197–243.

Heckerman, D., A. Mamdani, and M. P. Wellman (1995).
Real-world applications of Bayesian networks. Com-
munications of the ACM 38.

Lam, W. and F. Bacchus (1994). Learning Bayesian be-
lief networks. An approach based on the MDL prin-
ciple. Computational Intelligence 10, 269–293.

Lauritzen, S. L. (1995). The EM algorithm for graphi-
cal association models with missing data. Computa-
tional Statistics and Data Analysis 19, 191–201.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local
computations with probabilities on graphical struc-
tures and their application to expert systems. Journal
of the Royal Statistical Society B 50(2), 157–224.

McLachlan, G. J. and T. Krishnan (1997). The EM Algo-
rithm and Extensions. Wiley Interscience.

Murphy, P. M. and D. W. Aha (1995). UCI repository of
machine learning databases. http://www.ics.
uci.edu/˜mlearn/MLRepository.html.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems. San Francisco, Calif.: Morgan Kaufmann.

Schwarz, G. (1978). Estimating the dimension of a
model. Annals of Statistics 6, 461–464.

Tanner, M. A. (1993). Tools for Statistical Inference.
New York: Springer-Verlag.

