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Abstract

A central challenge in learning probabilistic graphicaldats is dealing with domains that involve
hidden variables. The common approach for learning modelmpaters in such domains is the
expectation maximizatiofiEM) algorithm. This algorithm, however, can easily gepfprad in sub-
optimal local maxima. Learning the modsttuctureis even more challenging. Ttetructural EM
algorithm can adapt the structure in the presence of hiddaables, but usually performs poorly
without prior knowledge about the cardinality and locatidthe hidden variables. In this work, we
present a general approach for learning Bayesian netwadtkshidden variables that overcomes
these problems. The approach builds on itifermation bottleneckramework of Tishby et al.
(1999). We start by proving formal correspondence betwkernnformation bottleneck objective
and the standard parametric EM functional. We then use ¢infegpondence to construct a learning
algorithm that combines an information-theoretic smamjhierm with a continuation procedure.
Intuitively, the algorithm bypasses local maxima and agsesuperior solutions by following a
continuous path from a solution of, an easy and smooth, tthrgetion, to a solution of the desired
likelihood function. As we show, our algorithmic framewaaows learning of the parameters
as well as the structure of a network. In addition, it alsowad us to introduce new hidden vari-
ables during model selection and learn their cardinalitg d&monstrate the performance of our
procedure on several challenging real-life data sets.

Keywords: Bayesian networks, hidden variables, information bo#ttdn continuation, variational
methods
1. Introduction

Probabilistic graphical models have been widely used to model real wontdhids and are par-
ticularly appealing due to their natural interpretation. Despite extensieanesin learning these
models from data (Pearl, 1988; Heckerman, 1998), learning littien(or laten? variables has
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remained a central challenge in learning graphical models in general, @ayesiBn networks in
particular. Hidden entities play a central role in many real-life problems: &nawn regulating
mechanism can be the key to complex biological systems; correlating symptomntdimigit a hid-
den fundamental problem in a diagnostic system; an intentionally maskedreicopawer might
be the cause of related financial phenomena. Indeed, hidden vatghilesly serve as a summa-
rizing mechanism that “captures” information from some of the observeadblas and “passes”
this information to some other part the network. As such, hidden variabhesimlify the network
structure and consequently lead to better generalization.

When learning the parameters of a Bayesian network with missing valuesdamhi@riables,
the most common approach is to use some variant ofxpectation maximizatiofEM) algorithm
(Dempster et al., 1977; Lauritzen, 1995). This algorithm performs algreearch of the likelihood
surface and converges to a local stationary point (usually a local maximUmiortunately, in
challenging real-life learning problems, there are many local maxima that&arEM in a poor
solution. Attempts to address this problem use a variety of strategigs Glover and Laguna
(1993); Kirkpatrick et al. (1983); Rose (1998); Elidan et al. (2002Yhen learning structure, the
structural EM (SEM) algorithm (Friedman, 1997; Meila and Jordan, 1998; Thiessah,et998)
can adapt the network topology. In this approach, as in the classi@hparc EM algorithm, we
use the distribution induced by our current model, to probabilisticadiynpletethe data. Unlike
parametric EM, we then use the completed data to evaluate different canslideteires. This
allows us to perform structure improvement steps inNh&tepof a structural EM iteration. As
in the case of EM, while convergence is guaranteed, the algorithm typicailyecges to a local
maximum.

An even more challenging problem is thatrabdel selectiomvith hidden variables. This in-
volves choosing the number of hidden variables, their cardinalities anceffendencies between
them and the observed entities of the domain. These decisions are cruadliése good gen-
eralization. In particular, in hard real-life learning problems, structuMI&ll perform poorly
unless some prior knowledge of the interaction between the hidden anvedsariables exists or
if the cardinality of the hidden variables is not (at least approximately) knoktese challenging
problems have received surprisingly little attention.

In this paper, we introduce a new approach to learning Bayesian netwittkhidden variables.
We pose the learning problem as an the optimization of a target function thadésca tradeoff
between two information theoretic objectives. The first objective is to casspreormation about
the training data. Intuitively, this is required when we want to generaliza fifee training data
to new unseen instances. The second objective is to make the hiddernegnmdbrmative about
the observed attributes to ensure they preserveetegantinformation. This objective is directly
related to maximizing the likelihood of the training data. By exploring differelfattiree weightings
of these two objectives, we are able to bypass local maxima and learn bettelsmo

Our approach builds on theformation bottleneckramework of Tishby et al. (1999) and its
multivariate extension (Friedman et al., 2001). This framework providesadsttor constructing
a set of new variable§ that are stochastic functions of one set of variaMemnd at the same time
provide information on another set of variabksThe intuition is that the new variabldscapture
the relevant aspects f that are informative about. We show how to pose the learning problem
within the multivariate information bottleneck framework and derive a targgrdragian for the
hidden variables. We then show that this Lagrangian is an extension o&grargian formulation
of EM of Neal and Hinton (1998), with an additional regularization term. 8ytmlling the strength
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of this information theoretic regularization term usingcale parametemwe can explore a range of
target functions. On the one end of the spectrum there is a trivial tatggtewcompression of the
data is total and all relevant information is lost. On the other extreme is the targ#ion of EM.

This continuum of target functions allow us to learn using a procedure atethby thedeter-
ministic annealingapproach (Rose, 1998). We start with the optimum of the trivial targetium
and slowly change the scale parameter while tracking the local optimum solttéatka step on
the way. To do so, we present an alternative view of the optimization probléme jjoint space of
the model parameters and the scale parameter. This provides an appedliod foescanning the
range of solutions as inomotopy continuatiofMWatson, 2000).

We generalize oumformation bottleneck expectation maximizati@B-EM) framework for
multiple hidden variables and any Bayesian network structure. To makerigdeasible for large,
real-life problems we show how to introduce variational approximation asomsgnto the frame-
work. We further show that, similarly to the case of standard parametric Edvie is a formal
relation between the information bottleneck objective in this case andatiational EM func-
tional (Jordan et al., 1998).

We then extend the approach to deal with structure learning. As we shewaweasily in-
corporate our method into the structural EM framework to deal witdel selectionwith hidden
variables. In doing so, we perform continuation interleaved with modettahesteps that change
the structure and the scope of the model. On top of standard structure ntamhfisteps of adding
and removing edges, we introduce two model enrichment operators thatdalintage of emergent
information cues during the continuation process. The first operatoadapot the cardinality of a
hidden variable. Specifically, the cardinality of a hidden variable can asereluring the contin-
uation process, increasing the likelihood as long as it is beneficial to ddtsmsecond operator
introduces new hidden variables into the network structure. Intuitiveljdl@ehn variable is intro-
duced as a parent of a subset of nodes whose interactions are gxudined by the current model.

We demonstrate the effectiveness of our information bottleneck EM algoiitiseveral learn-
ing scenarios. First, we learn parameters in general Bayesian netfeorkeveral challenging
real-life data sets and show significant improvement in generalizationrpexfce on held-out test
data. Second, we demonstrate the importance of cardinality adaptatiorofbggoeralization. We
then show how our operator for enriching the network structure with nddehn variables leads to
significantly superior models, for several complex real-life problems. lligjn@e show that com-
bining both structure enrichment and cardinality adaptation results in furtiprovement of test
performance.

The paper is organized as follows. In Section 2, we give a short bagkd on learning
Bayesian networks and on tiMultivariate information bottleneckf Friedman et al. (2001). In
Section 3, we present the basic framework of our IB-EM algorithm. Irti@ee, we show how
to combine this algorithm with continuation to bypass local maxima. In Section 5 teadxhe
framework to multiple hidden variables. In Section 6, we demonstrate the mathpadufameter
learning in real-life scenarios. In Section 7, we show how our method eatoimbined with the
structural EM algorithm to learn the structure of a network with hidden viegabln Section 8,
we take advantage of emergent structure during the continuation praoelsgresent a method for
learning the cardinality of the hidden variables. We apply this method to realdttein Section 9.
In Section 10, we address the model selection challenge of learning neenhicriables. We
present experimental evaluation for several real-life problems in Settiom Section 12, we give
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a brief overview of relevant works, and in Section Section 13 we end wiiscussion and future
directions.

2. Background

In this section we briefly present the basics of learning Bayesian nedvirork data followed by the
essentials of thenultivariate information bottlenedkamework that forms the basis of our approach.

2.1 Bayesian Networks

Consider a finite sek = {Xi,...,Xy} of random variables, where each variaflemay take on
values from a finite set, denoted Wgl(X;). We use capital letter such XsY, Z for variable names
and lower case letters suchyay, zto denote specific values taken by those variables. We use bold
letters such a¥X,Y,Z when referring to sets of variables. Bayesian networkPearl, 1988) is

an annotated directed acyclic graph that encodes a joint probability digiribaver X. Formally,

a Bayesian network oveX is a pairB = (G,0). The first componentg, is a directed acyclic
graph whose vertices correspond to the random variablgs iffthe edges in the graph represent
direct dependencies between the variables. The gfa@presents independence properties that are
assumed to hold in the underlying distribution: E&¢ls independent of its non-descendants given
its parentdg denoted byX; L NonDescendant$Pg). The second componer®, represent the
set of parameters that quantify the network. Each node is annotated eotidéional probability
distribution RX; | Pg), representing the conditional probability of the noeiven its parents in

G, defined by the parametets, ,, for each value o andPa. A Bayesian network defines a
unique joint probability distribution ovek given by

P(Xq,.. |‘1P>Q|Pa.

In this distribution, a variabl&; is independent of the rest of the variables giveiMerkov blanket
variables. These include the variable’s parents, direct children anpattemits of those children
(spouses).

Given a network structurg, the problem of learning a Bayesian network can be stated as fol-
lows: Given a training seb = {x[1],...,x[M]} of instances oK C X, we want to learn parameters
for the network. In theMaximum Likelihoodsetting we want to find the parameter valiethat
maximize the log-likelihood function

logP(D | G,8) = ZIogP m | G,8).

This function can be equivalently (up to a multiplicative constant) writteEgifogP(X | G,0)]
whereP is the empirical distribution irD. When all instances i are complete, estimating the
maximum likelihoogbarameters can be done efficiently using a closed form solution. This @s/olv
empirical sufficient statistics in the form of joint counts

N(x,pa) = Zl{><| | =X, Pa[m| = paj}, 1

where 14 } is the indicator function. When learning multinomial conditional parameterizaiging
Dirichlet priors (DeGroot, 1970) amounts to augmenting the empirical couittispseudo-counts
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a(x;,pa ).t These can thought of as adding imaginary instances that are distribatediag to a
certain distribution€.g, uniform) to the training data (Heckerman, 1998). Consequently, from this
point on we view priors as modifying the empirical distributiBrwith additional instances, and
then apply the maximum likelihood principle.

When learning with hidden variables, the problem is more complex. Since sen@bonly
partial instances, learning also involves “guessing” the values of thehidariables. In thexpec-
tation maximizatio{EM) algorithm (Dempster et al., 1977; Lauritzen, 1995) and its variantsl(N
and Hinton, 1998), this issue is addressed by using an auxiliary distribQtibat provides a proxy
for the empirical distribution. In the M-step of EM we estimate parameters aghhibis was the
true empirical distribution. In the E-step, we use the data and the currerdl tmodptimize the
auxiliary distribution over the hidden values resulting icompletedcempirical distribution. Each of
these steps is simpler than the original problem and is guaranteed notéaskethe likelihood. Un-
fortunately, EM iterations are prone to getting trapped at local maxima, sautestep is biased by
the choices made by the previous ones. Attempts to address this problemansyaof strategies
(e.g, Glover and Laguna (1993); Kirkpatrick et al. (1983); Rose (19E83an et al. (2002)).

Learning the structure of a network poses additional challenges asriiteenof possible struc-
tures is super-exponential. In practice, structure learning is typicallg deing a local search
procedure, which examines local structure changes that are eadigteda(add, delete or reverse
an edge). This search is usually guided by a scoring function such agDheprinciple based
score (Lam and Bacchus, 1994) or B&yesian scoréBDe) (Heckerman et al., 1995). Both scores
penalize the likelihood of the data to limit the model complexity. An important charsiiteof
these scoring functions is that when the data instances are complete (dzatigraining instance
assigns values to all of the variables) the scomeisomposableMore precisely, the score can be
rewritten as the sum

Score(G: D) = Z FamScorg (Pa : D),
|

where FamScosgis thelocal contribution ofX; to the total network score. This term depends only
on values ofX; andPay; in the training instances. In particular, the BDe score is defined as

Scorgpe(G : D) = ZZ (Iog ( ( i +Z|Og N(x, pa&>)<.+p0;1()x)l pa,)))) @

whererl is the Gamma function that generalizes the factorial function for real nuenthes terms
a() are hyper-parameters of the prior distributions over the parameterizatidrtbe termsl() are
the corresponding empiricalfficient statistics

In the presence of incomplete data or hidden variables, the structurardivework (Fried-
man, 1997; Meila and Jordan, 1998; Thiesson et al., 1998) can adapettivork structure. In this
approach, as in classicprametricEM, we use the distribution induced by our current model to
probabilistically complete the data. Unlike parametric EM, we then use the compitiztb eval-
uate different candidate structures, and perform structure improvesteps in theM-stepof the
structural EM iteration. As in the case of EM, convergence is guaransdieeit to a local maxi-
mum. Scoring candidate structures in this scenario is more complex, and ctionpafahe score is
typically intractable. Thus, we need to resort to approximations such @&htheseman-Stu(€S)

IThe use of pseudo-counts is slightly different depending on whethdow#AP or Bayesian estimation and depends
on the representation used (see (Thiesson, 1997) for more details).
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score (Cheeseman et al., 1988; Chickering and Heckerman, 199 edmbines the likelihoods
of the parameters found by EM, with an estimate of the penalty term associatestuitture.

2.2 Multivariate Information Bottleneck

Theinformation bottlenecknethod (Tishby et al., 1999) is a general non-parametric information-
theoretic clustering framework. Given a joint distributi@qY, X) of two variables, it attempts to
extract the relevant information théicontains abouX. We can think of such information extraction
as partitioning the possible valuesYfinto coarser distinctions that are still informative abut
(The actual details are more complex, as we shall see shortly). For exarglmight want to
partition the wordsY) appearing in several documents in a way that is most relevant to the topics
(X) of these documents.

To achieve this goal, we first need a relevance measure between tvamraadables< andY
with respect to some probability distributi@(X,Y). The symmetrianutual informatiormeasure
(Cover and Thomas, 1991)

. Qx.y)
lo(X:Y) = 3 Qey)log oo

is a natural choice as it measures the average number of bits neededey tum informationX
contains abouY and vice versa. It is bounded from below by zero when the variabdemdepen-
dent, and attains its maximum when one variable is a deterministic function of ttre othe

The next step is to introduce a new varialle This variable provides thbottleneckrelation
betweenX andY. In our words and documents example, we Wartb maintain the distinctions
between wordsY) that provide information for determining the topic of a documexi. ( For
example, the wordanusic’ and 'lyrics’ typically occur together and are typical of the same topic,
and thus the distinction between them does not contribute to the prediction tufice At the
same time, we wari to distinguish betweemiusic’ and ’politics’ as they correlate with markedly
different topics. Formally, we definE using a stochastic functio@(T | Y). On the one hand we
wantT to compres¥, while on the other hand we want it to preserve information that is relevant
to X. Using the mutual information defined above, a balance between theserwpetiog goals is
achieved by minimization of the Lagrangian

LIQ] = 1o(Y;T) =Blo(T; X), 3)

where the paramet@rcontrols the tradeoff. Tishby et al. (1999) show that the optimal partition fo
a given value of3 satisfies

Qt)

Qlty) = 7y, exp{—BD(Q(X | Y)[Q(X 1))},
where P(x)
X
D(P(X)[Q(X)) = ZP(X) log@

is the Kulback Leibler divergence between the distributidasdQ over the set of random variables
X (Cover and Thomas, 1991). Repeated iterations of these equatioriktf@nay converge to a
(local) maximum where all equations are satisfied. Practical application @fhi®ach for various
clustering problems was demonstrated in several works (e.qg., (Slonimistria/T2000, 2001)).
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Figure 1: Definition ofGin and Gout for the multivariate information bottleneck frameworkin
encodes the distributio® that compresse¥. Gout encodes the distributioR that we
want to approximate usin@.

The multivariate extension of this framework (Friedman et al., 2001) allows osnsider the
interactions of multiple observed variables using several bottleneck iesialfor example, we
might want to compress word¥) in a way that preserves information both on the topic of the
document X;) and on the author of that documei). In addition, there probably is a strong
correlation between the author and the topics he writes about. Evidentlyuthieen of possible
interactions may be large, and so the framework allows us to specify thecitivesawe desire.
These interactions are represented via two Bayesian networks. Tthedited Gin, represents the
required compression, and the second, callgg represents the independencies that we are striving
for between the bottleneck variables and the target variables. In Figu}g 4pecifies thal is a
stochastic function of its parent in the graph Gou specifies that we want to makeY and the
variablesx;’s independent of each other.

Formally, the framework of Friedman et al. (2001), attempts to minimize the Lg@gan

L(l) [gina Gout] — Igin _ BIgOUt7

where

19 =5 1(%;Pg))

and the information is computed with respect to the probability distribution repexséy the net-
work G. This objective is a direct generalization of Eq. (3), and as beforetatrée self-consistent
equations characterize the optimal partitioning. Note that, as in the basic inimnnbattleneck

formulation, the two objective of the above Lagrangian are competing. Ganghband we want to
compress the information between all bottleneck variablesd their parents i;i,. On the other

hand we want to preserve, or maximize, the information between the varaidebeir parents in
Gout-

Friedman et al. (2001) also present an analogous variational prirtcgtakill be useful in our
framework. Briefly, the problem is reformulated as a tradeoff betweemoession of mutual in-
formation inGin so that the bottleneck variable(Bhelp us describe a joint distribution that follows
that form of a target Bayesian netwotf,. Formally, they attempt to minimize the following
objective function

L(Z) [Q7 P] = IQ(Y;T) +yD(Q(Y7T7X)HP(Y7T7X))7 (4)
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whereQ and P are joint probabilities that can be represented by the networkg,0dnd Gout,
respectively. The two principals are analogous under the transforn&ﬂ@qi—y and assuming

IGn — Io(Y;T). See Friedman et al. (2001) for more details of the relation between the tvad-prin
pals.

The minimization of the above Lagrangian is over possible parameterizatiédpdrdfy) (the
marginalQ(Y, X) is given and fixed) and over possible parameterizatior3¥fT, X) that can be
represented byjo,t. In other words, we want to compre¥sin such a way that the distribution
defined byGin is as close as possible to desired distributiozgf. The analogous principal gives
us a new view on why these two objectives are conflicting: Consider a dittnithat is consistent
with Gin so thatT is independent oK givenY. On the other hand, a distribution consistent with a
specific choice ofj,,t may require thak is independent of givenT. Constructing a distribution
where both of these requirements actually hold is not useful, may resditthiait is equal to either
X orY, making this bottleneck variable redundant.

The scale parametgibalances the above two factors. Whes zero we are only interested in
compressing the variab¥ and we resort to the trivial solution of a single cluster (or an equivalent
parameterization). Wheyis high we concentrate on choosiQgT | Y) that is close to a distribution
satisfying the independencies encodeddyy. Returning to our word-document example. We
might be willing to forgo the distinction betweefoodtball’ and 'baseball’ in which case we would
sety to a relatively low value. On the other hand, we might even want to make a miistitection
between Pentium’ and 'Celeron’ in which case we would satto a high value. Obviously, there is
no single correct value gfbut rather a range of possible tradeoffs. Accordingly, severabaghes
were devised to explore the spectrum of solutionguasies. These include Deterministic annealing
like approaches that start with small valuey@ind progressively increase it (Friedman et al., 2001),
as well as agglomerative approaches that start with a highly refined soduttbgradually compress
it (Slonim and Tishby, 2000, 2001; Slonim et al., 2002).

3. Information Bottleneck Expectation Maximization

The main focus of the multivariate information bottleneck (see is on distrib@ioh | Y) that

is a local maxima solution of the Lagrangian This distribution can be thought af soft clus-
tering of the original data. Our emphasis in this work is somewhat differeitenG data set
D = {x[1],...,x[M]} over the observed variablés we are interested in learning a better genera-
tive model describing the distribution of the observed attribdted hat is, we want to give high
probability to new data instances from the same source. In the learnedkgiveohidden variables
will serve to summarize some part of the data while retaining the relevant infiorman (some) of
the observed variables.

We start by extending the multivariate information bottleneck framework fotasle of gener-
alization where, in addition to the task of clustering, we are also interestediirigahe generative
modelP. We emphasize that this is a conceptually different task. In particular,ciimenon view
of the information bottleneck framework is as a non-parametric informaticore¢tie method for
clustering (the obvious exception is the work of Slonim and Weiss (2002) nmexatibelow). In
generative learning, on the other hand, we are interested in modeling thibutisn. That is, we
are ultimately interested iparameterizinga specific model so that our generalization prediction on
unseen future instances is improved. We start by considering this taslefoase of a single hidden
variableT and then, in Section 5, extend the framework to several hidden variables.
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3.1 The Information Bottleneck EM Lagrangian

If we were only interested in theaining data and the cardinality of the hidden variable allows
it, each state of the hidden variable would have been assigned to a difiestance. Consider,
for example, a variabl@ with |T| states that defines a soft clustering on the specific identity of
words {¥) appearing in documents while preserving the information relevant to the g&piof
these documents. Now suppose we are given a set of instdheegword|i],topicfi]} wherei
goes from 1 taVl, the number of instances. |I[f| = M then we could simply deterministically set
Q(T =i | word[i]) = 1 and then predidbpic]i] perfectly. While this model achieves perfect training
performance, it will clearly have no generalization abilities. Since we aodratisrested in unknown
future samples, we intuitively require that the learned model “forget” tleeifips of the training
examples. However, in doing so we will also deteriorate the (previouslyrdetistic) prediction of
the observed variables. Thus, there is a tradeoff between the coimprekthe identity of specific
instances and the preservation of the information relevant to the obsemedles.

We now formalize this idea for the task of learning a generative model ogesattiables< and
the hidden variabld@. We define an additional variab¥eto be the instance identity in the training
data?. Thatis,Y takes values iq1,...,M} andY[m] = m. We defineQ(Y, X) to be the empirical
distribution of the variableX in the data, augmented with the distribution of the new variable
For each instancg x[y] are the valueX take in the specific instance. We now apply the information
bottleneck framework with the grapii, of Figure 1. The choice of the gragh,: depends on the
network model that we want to learn. We take it to be the target Bayesiamret@mugmented by
the additional variabléy, where we seT asY’s parent. For simplicity, we consider as a running
example the simple clustering model 6§, whereT is the parent 0¥y, ..., X,. In practice, and
as we show in Section 6 any choice @f,: can be used. We now want to optimize the Bottleneck
objective as defined by these two networks. This will attempt to define atworal probability
Q(T |Y) sothatQ(T,Y,X) =Q(T | Y)Q(Y, X) can be approximated by a distribution that factorizes
according toGoyt. This construction will aim to find' that captures the relevant information the
instance identity has about the observed attributes. The following proposiiwretely defines the
objective function for the particular choice 6f, and Gyt We are dealing with.

Proposition 1
Let

1. Y be the instance identity as defined above;
2. Gin be a Bayesian network structure such that such that T is independ¥ngigén Y ; and
3. Gout be a Bayesian network structure such thatY is a leaf with T as its only parent.

Then, minimizing the information bottleneck objective function in Eq. (4) is elgaiv@ minimizing
the Lagrangian

Lew = 1o(T;Y) — Y(Eq[logP(X, T)] — Eq[logQ(T)]),
as a function of QT | Y) and R(X,T).

Note that once the above conditions are satisfied, we can still arbitraribsehtbe structure of
Gout,» Which encodes independencies of the distribuRome ultimately wish to learn.
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Proof: Using the chain rule and the fact thatand X are independent given in Gout), we can
write P(Y,X,T) =P(Y | T)P(X,T). Similarly, using the chain rule and the fact tha@andT are
independent givel in Gin, we can writeQ(Y, X, T) =Q(Y | T)Q(T)Q(X | Y). Thus,

QY | T)Q(T)Q(X[Y)
P(Y | T)P(X,T)
= DQ(Y[T)|P(Y[T))
+ Eq[logQ(X [ Y)]
+ EqllogQ(T)]
— Eg[logP(X,T)].

D(Q(Y, X, T)|P(Y,X,T)) = Eq|log

By settingP(Y | T) = Q(Y | T), the first term reaches zero, its minimal value. The second term is
a constant since we cannot change the input distrib@@iot | Y). Thus, we need to minimize the
last two terms and the result follows immediatdly.

An immediate question is how this target function relates to standard maximum like lésem-
ing. To explore the connection, we use a formulation of EM introduced & &ed Hinton (1998).
Although EM is usually thought of in terms of changing the parameters of tgettéunctionP,
Neal and Hinton show how to view it as a dual optimizatiorPadind an auxiliary distributio®.
This auxiliary distribution replaces the given empirical distribut@{X) with a completed empir-
ical distributionQ(X,T). Using our notation in the above discussion, we can write the functional
defined by Neal and Hinton as

¥ [Q,P] = Eq[logP(X,T)] 4+ Ho(T | Y), (5)

whereHqg(T | Y) = Eq[—10gQ(T | Y)], andQ(X,Y) is fixed to be the observed empirical distribu-
tion.

Theorem 2 (Neal and Hinton, 1998f (Q*,P*) is a stationary point off, then P is a stationary
point of the log-likelihood functiofg(logP(X)].

Moreover, Neal and Hinton show that an EM iteration corresponds to margniz [Q, P] with
respect toQ(T | Y) while holdingP fixed, and then maximizingF [Q, P] with respect tdP while
holdingQ(T | Y) fixed. The form of7 [Q,P] is quite similar to the IB-EM Lagrangian, and indeed
we can relate the two.

Theorem 3 Ly = (1—y)Io(T;Y) —y7F [Q,P].

Proof: Plugging the identityHo(T | Y) = —Eg[logQ(T)] — Io(T;Y) into the EM functional we
can write

¥ 1Q,P] = Eq[logP(X,T)] — Eq[logQ(T)] — Io(T;Y).
If we now multiply this byy, and re-arrange terms, we get the form of Propositidh 1.

As a consequenceajinimizingthe IB-EM Lagrangian is equivalent toaximizinghe EM func-
tional combined with an information theoretic regularization term. Wienl, the solutions of
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the Lagrangian and the EM functional coincide and finding a local minimurygfis equivalent

to finding a local maximum of the likelihood function. Slonim and Weiss (2008Yide a similar
result for the specific case where the generative model is a mixture micaleimvariateX. Their
formulation is different than ours in several subtle details that do not alldiweat relation between
the two methods. Nonetheless, both Slonim and Weiss (2002) and Theleow3hat for a par-
ticular value ofy, the information bottleneck Lagrangian coincides with the likelihood objecfive o
EM. The main difference between the two results is the choice of genematidels, in our case
general multi-variate Bayesian networks, and in the case of Slonim and {2662), univariate
mixture models.

3.2 The Information Bottleneck EM Algorithm

Using the above results, we can now describelttiermation Bottleneck EMigorithm given a
specific value ofy. The algorithm can be described similarly to the EM iterations of Neal and
Hinton (1998).

e E-step Maximize — Lgy by varyingQ(T | Y) while holdingP fixed.
e M-step: Maximize — Lgy by varyingP while holdingQ fixed.

Note that the algorithm is formulated in terms of maximizinge,, rather than minimizingg, to
enhance the relation between the Lagrangian and the EM objective.

The M-Step is essentially the standard maximum likelihood optimization of Bayesiaorks.
To see that, note that the only term that invol¥®is Eg[logP(X,T)]. This term has the form of a
log-likelihood function, wher&) plays the role of the empirical distribution. Since the distribution
is over all the variables, we can use sufficient statistid® foir efficient estimates, just as in the case
of complete data. Thus, thé step consists of computing expected sufficient statistics gyemd
then using a closed form formula for choosing the parametdps of

The E-step is a bit more involved. We need to maximize with respe@(Tq Y). To do this we
use the following two results that are variants of Theorem 7.1 and The®reof Friedman et al.
(2001) and proved using similar techniques (see Appendix A for the rfodifjp

Proposition 4 Let L¢\ be defined viaGi, and Gou as in Proposition 1. QT | Y) is a stationary
point of Lg,, with respect to a fixed choice of P if and only if for all valuest and y of T énd
respectively,

Q1Y) = 5 QU™ P(xlyL )Y, ©)

A"

where Zy,y) is a normalizing constant:

ZWW=ZQMPWMWWW
t

Note that, as can be expected from Theorem 3, wher the update equation reduces}( | y) O
P(x]y],t) which is equivalent to the standard EM update equation.

Proposition 5 A stationary point of_¢,, is achieved by iteratively applying the self-consistent equa-
tions of Proposition 4.
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Combining this result with the result of Neal and Hinton that show that optimizafi@hincreases
F(P,Q), we conclude that both the E-step and the M-step increasg until we reach a stationary
point. As in standard EM, in most cases the stationary convergence eaatted by applying these
self-consistent equations will be a local maximum-ofe,,, or a local minimum ofZg,,.

4. Bypassing Local Maxima using Continuation

As discussed in the previous section, the parametmlances between compression of the data
and the fit of parameters tGout. Wheny is close to 0, our only objective is compressing the
data and the effective dimensionality Bfwill be 1, leading to a trivial solution (or an equivalent
parameterization). At larger valuesyive pay more and more attention to the distributiorGgf:,

and we can expect additional statesTofo be utilized. Ultimately, we can expect each sample to
be assigned to a different cluster (if the dimensionalityf adllows it), in which case there is no
compression of and the information about thés is fully preserved. Theorem 3 also tells us that
at the limit of y = 1 our solution will actually converge to one of the standard EM solutions. In
this section we show how to utilize the inherent tradeoff determinegtbybypass local maxima
towards a better solution gt= 1.

Naively, we could allow a large cardinality for the hidden variableyseta high value and find
the solution of the bottleneck problem. There are several drawbacks tapitrisach. First, we will
typically converge to a sub-optimal solution for the given cardinalityyaradl the more so foy =1
where there are many such maxima. Second, we often do not know theatiéydhat should be
assigned to the hidden variable. If we use a cardinalitylféinat is too large, learning will be less
robust and might become intractable.Tithas too low a dimensionality, we will not fully utilize
the potential of the hidden variable. We would like to somehow identify the lalefiumber of
clusters without having to simply try many options.

To cope with this task, we adopt tlieterministic annealingtrategy (Rose, 1998). In this
strategy, we start witly = 0 where a single cluster solution is optimal and compression is total.
We then progress toward higher valuesyof his gradually introduces additional structure into the
learned model. Intuitively, the algorithm starts at a place where a singef@asmpute solution
exists, and tracks it through various stages of progressively complietiasis hopefully bypassing
local maxima by staying close to the optimal solution at each valye Dfiere are several ways of
executing this general strategy. The common approach is simply to ingréadixed steps, and
after each increment apply the iterative algorithm to re-attain a (local) maximalivathew value
of y. On the problems we examine in Section 6, this naive approach did not guouessful.

Instead, we use a more refined approach that utilipedinuation methodfor executing the
annealing strategy. This approach automatically tunes the magnitude ofesharitpe value of,
and also tracks the solution from one iteration to the next. To perform catitm, we view the
optimization problem in the joint space of the parametersyard this space we want to follow a
smooth path from the trivial solution gt= 0 to a solution ay = 1. Furthermore, we would like this
path to follow a local maximum afey. As was shown above, this is equivalent to requiring that the
fixed point equations hold at all points along the path. Continuation thecays@, 2000) guaran-
tees that, excluding degenerate cases, such a path, free of discorsjrindeed exists. Figure 2
shows a synthetic illustration of the setup. (a) shows the likelihood functitimeedivo extremes of
the easy solution at= 0 and the EM function at= 1 in the joint(y, Q)-space. (b) shows the range
of solutions between these extremes and marks the desired path we wouldikevto
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Figure 2: Synthetic illustration of the continuation process. (a) shows gyelikalihood function
aty= 0 and the complex EM function gt= 1. (b) spans the full range of functions and
marks the desired path for following the maximum. (c) demonstrates a single step in
continuation process. The gradiem G is computed and then the orthogonal direction
is taken.

We start by characterizing such paths. Note that once we fix the paraQéterY ), the M-step
maximization of the parametershis fully determined as a function . Thus, we tak&(T |Y)
andy as the only free parameters in our problem. As we have shown in Proposjtishen the
gradient of the Lagrangian is zero, Eg. (6) holds for each valt@wodly. Thus, we want to consider
paths where all of these equations hold. Rearranging terms and takingiHqg(6) we define

Gty(Q)Y) = —logQ(t | y) + (1 —-y)logQ(t) +ylogP(x[y],y) —logZ(y,y). (7)

Clearly, Gt y(Q,y) = 0 exactly when Eq. (6) holds for alandy. Our goal is then to follow an
equi-potential path where &8y ,(Q,y) functions are zero starting from some small valug op to
the desired EM solution gt= 1.

Suppose we are at a poif@o, o), whereG y(Qo, Yo) = O for allt andy. We want to move in a
directionA = (dQ,dy) so that(Qo +dQ, Yo + dy) also satisfies the fixed point equations. To do so,
we want to find a directiod, so that

\V/t,y, DQ,VGLY(QO’VO) A= O’ (8)

wherellg Gt y(Qo, Yo) is the gradient oGy y(Qo, Yo) with respect to the parametegsandy. Com-
puting these derivatives with respect to each of the parameters resuligiivative matrix

_ (%) | 26,Qy)
Hy(Qu) = (SR | 2 ). (9

Rows of the matrix correspond to each of the- |T| x |Y| functions of Eg. (7), corresponding to
joint combinations of théT | states of the bottleneck variableand thelY| = M number of possible
values of the instance identity variabfe The columns correspond to theparameters o as well
asy. The entries correspond to the partial derivative of the function agedoieith the row with
respect to the parameter associated with the column.
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To find a directiom that satisfies Eq. (8) we need to satisfy the matrix equation

Hty(Qo,Yo)A = 0. (10)

In other words, we are trying to find a vector in the null-spacegiQo, Yo) (Qo, Yo). The matrixH
is anL x (L + 1) matrix and its null-space is defined by the intersectioh tdngent planes, and is
of dimensionL +1— RankH; y(Q,y)). Numerically, excluding measure zero cases (Watson, 2000),
we expect Ranft: y(Qo,Yo)) to be full,i.e., L. Thus, a unique line that (up to scaling) defines the
null space, and we can choose any vector along it. To follow the path ttamet objective at
y = 1 we choose the direction that always increasése discuss the choice of the length of this
vector below). Returning to Figure 2, (c) illustrates this process. Shoyamis(y, Q)-space with
the grey-level denoting the value of the likelihood function. At each poirthénlearning process
the gradient ofs is evaluated and the orthogonal direction is taken to follow the desired path.
Finding this direction, however, can be costly. Notice tHa}(Q,y) is of sizeL(L +1). This
number is quadratic in the training set size, and full computation of the matrix iaotipal even
for small data sets. Instead, we resort to approximatipgQ,y) by a matrix that contains only

the diagonal entrieg%ﬁ)y) and the last columﬂw. While we cannot bound the extent of
this diagonal approximation, we note that the diagonal terms are also theigrotant ones and
many off diagonal terms are zero. Once we make the approximation, welsarEs). (10) in time
linear inL. (See Appendix B for a full development bf and the computation of the orthogonal
direction. )

Note that once we find a vectdrthat satisfies Eq. (10), we still need to decide on its length,
or the size of the step we want to take in that direction. There are varioudasthapproaches,
such as normalizing the direction vector to a predetermined size. Howewerr, problem, we have
a natural measure of progress that stems from the tradeoff define@ bgrgfet Lagrangiamy,, ,
wherel (T;Y) increases whef captures more and more information about the samples during the
annealing procedure. That is, the “interesting” steps in the learning sgaxur wher (T;Y)
grows. These are exactly the points where the balance between the twadndhmd agrangian
changes and the second term grows sufficiently to allow the first term teasek(T;Y). Using
I(T;Y) to gauge the progress of the annealing procedure is appealing sincenibisgarametric
measure that does not involve the form of the particular distribution of stt€reln addition, in
all runsI(T;Y) starts at 0, and is upper-bounded by the log of the cardinalify afid we are thus
given a scale of progress.

With this intuition at hand, we want to normalize the step size by the expectedediT;Y).

That is, we calibrate our progress with respect toatiialamount of regularization applied at the
current value ofy. At regions wherd (T;Y) is not sensitive to changes in the parameters, we can
proceed rapidly. On the other hand, if small changes in the parameteltsimnesignificant changes

of I(T;Y), then we want to carefully track the solution. Figure 3 illustrates the difteréetween
using a predetermined step pand partitioningl (T;Y) in order to determine the step size. Itis
evident the using(T;Y) causes the method to concentrate on the region of interest in terms of rapid
change of the Lagrangian.

Formally, we computélg /(T;Y) and rescale the direction vector so that

(Oyla(T3Y)) A=k, (11)
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Figure 3: lllustration of the step size calibration process. Both graphs steochange in informa-
tion betweenl andY as a function ofy. The circles denote values gto be evaluated.
(a) shows naive calibration when fixed steps are taken iy taage. (b) shows calibra-
tion that uses fixed steps in the information range. The grey circle showsdln of
dramatic change of the Lagrangian.

wheree is a predetermined step size that is a fraction of Tdg We also bound the minimal and
maximal change ity so that we do not get trapped in too many steps or alternatively overlook the
regions of change.

Finally, although the continuation method takes us in the correct directionpgiexamation as
well as inherent numerical instability can lead us to a suboptimal path. Towitip¢his situation,
we adopt a commonly used heuristic used in deterministic annealing. At daelhoig, we slightly
perturb the current solution and re-iterate the self-consistent equé&tiocnsverge on a solution. If
the perturbation leads to a better value of the Lagrangian, we take it asroentsolution.

To summarize, our procedure works as follows: we start with O for which only trivial
solutions exists. At each stage we compute the joint directionaoidQ(T | Y) that will leave the
fixed point equations intact. We then take a small step in this direction and apdivliBerations
to attain the fixed point equilibrium at the new valueyofVe repeat these iterations until we reach
y=1.

5. Multiple Hidden Variables

The framework we described in the previous sections can easily accorteariedming networks
with multiple hidden variables simply by treatifigas a vector of hidden variables. In this case, the
distributionQ(T | Y) describes th@int distribution of the hidden variables for each valué/oand
P(T,X) describes their joint distribution with the attributésn the desired network. Unfortunately,

if the number of variable¥ is large, the representation T | Y) grows exponentially, and this
approach becomes infeasible.

One strategy to alleviate this problem is to fo@€l | Y) to have a factorized form. This reduces
the cost of representing and also the cost of performing inference. As an example, we caneequir
that Q(T | Y) is factored as a produ¢q; Q(T; | Y). This assumption is similar to thmean field
variational approximatior(e.g, Jordan et al. (1998)).
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Figure 4: Definition of networks for the multivariate information bottlenecknfeavork with mul-
tiple hidden variables. Shown ag, with the mean fieldassumption, and a possible
choice forGout.

In the multivariate information bottleneck framework, different factorizagiohQ(T | Y) cor-
respond to different choices of networlgy,. For example, the mean field factorization is achieved
when Gi, is such that the only parent of eathis Y, as in Figure 4. In general, we can consider
other choices where we introduce edges between the diff&’enfor any such choice dfi,, we
get exactly the same Lagrangian as in the case of a single hidden variaelendin difference is
that sinceQ has a factorized form, we can decompdgéT;Y). For example, if we use the mean
field factorization, we get

Io(T:Y) = 3 Io(T::Y).

Similarly, we can decompodeg[logP(X, T)] into a sum of terms, one for each familyf These
two factorization can lead to tractable computation of the first two terms of theahg@n as written

in Proposition 1. Unfortunately, the last teg[logQ(T )] cannot be evaluated efficiently. Thus, we
approximate this term &g; Eq[logQ(T;)]. For the mean field factorization, the resulting Lagrangian
(with this lower bound approximation) has the form

Liw= 3 lo(TiY) -y (EQ[logP(XaT)} -y EQ[|09Q(Ti)]> - (12)

The form of £_,, is valid, if Proposition 1 still holds for the case of multiple hidden variables.
This is immediate if we make the following requirements, similar to those made for tbeotas
single hidden variable:

1. Y is the instance identity;

2. Gin is a Bayesian network structure such that all of the variablese independent of given
Y; and

3. Goutis a Bayesian network structure such tias a child of T and has no other parents. This
implies that inGoyt, Y is independent of alK givenT.
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The last requirement is needed so that we caP8ét T) = Q(Y | T) in the proof of Proposition 1.
As in the case of a single hidden variable, we can now characterize fpuetlgguations that hold
in stationary points of the Lagrangian.

Proposition 6 Let £, be defined viaGi, and Gout as in Eq. (12). Assumingmean fieldapproxi-
mation for QT | Y), a (local) maximum ong is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

QY = QU VeOER (LY}

where
EP(ti,y) = Eq(Tj.y) [l0gP(X[y], T)]
and Z(i,y,y) is a normalizing constant that equals to

Z(iyy) = 3 Q ! Yexp{yEP (t/,y) } .
i

See Appendix A for the proof.

The only difference from the case of a single hidden variables is in tme éfrthe expecta-
tion EP(t,y). It is easy to see that when a single hidden variable is consideredRfdy) =
logP(x[y],t), the two forms coincide. It is also easy to see that this term decomposes inoaf s
expectations, one for each factor in the factorizatioR.0fVe note that only terms that average over
factors that involveT; are of interest irEP (ti,y). All other terms do not depend on the valueTgf
and can be absorbed by the normalizing constant. THRSE;,y) can still be computed efficiently.

A more interesting consequence (see theorem below) of this discussioat iwhbny = 1,
maximizing LEM is equivalent to performingnean field EMJordan et al., 1998). Thus, by using
the modified Lagrangian we generalize this variational learning principtk aarwe show below
manage to reach better solutions.

The formulation is easily extensible to a general variational approximatio@ where Gin
allows, in addition to the dependence of edglonY, dependencies between the differgrg. In
this case, we get

Io(T;Y) = ¥ Io(T:;Paf™).

Similarly, Eq[logP(X,T)] decomposes according to tjuént families of T; in P and inQ. That is,

each term in the decomposition depend§iits parent®a’" in Gin, and its parent®a”™" in Gout.
As in the case of the mean field variational approximation, the last EsftogQ(T)] cannot be

evaluated efficiently. We approximate it using a decomposition that followsrnhetsre ofGi, as
EqllogQ(T)] ~ ¥ EqllogQ(Ti | TNPa™)|. (13)
|

We can now reformulate the results of Theorem 3 for this general case:

Theorem 7 Let Q(T | Y) decompose according to any structuyg where all Ts are descendents
of Y and replaceEg[logQ(T)] by a decomposition as defined in Eq. (13). Then for the resulting
Lagrangian

Liy=(1-Y) Y Io(Ti;Pa™) —yF 7 [Q,P],
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Figure 5: (a) A quadrant based hierarchy structure with 21 hiddaabtas for modeling 16 16
images in thdigit domain. (b) Test log-loss of tHB-EM algorithm for the model of (a)
compared to the cumulative performance of 50 random EM and mean fieldi& r

where " [Q, P] is defined as in Eq. (5), except that the above decomposition foHagtbg P(X, T)]
andHg(T |Y) is used.

Proof: This is a direct result of the fact that in the proof of Theorem 3, noraptions were made
of the form of Q. I

The above theorem extends the formal relation of the information bottlenek taagrangian
and the EM functional for any form of variational approximation encdaedi,. In particular, when
y =1, finding a local minimum ngM is equivalent to finding a local maximum of the likelihood
function when the same variational approximation is used in the EM algorithm. Synika can
derive the fixed point equations with each for different choiceg;gf The change to Proposition 6
is simply a different decomposition f&P (i, y)

To summarize, the IB-EM algorithm of Section 3.2 can be easily generalizexhttidimultiple
hidden variables by simply altering the form BP (t;,y) in the fixed point equations. All other
details, such as the continuation method, remain unchanged.

6. Experimental Validation: Parameter Learning

To evaluate the IB-EM method for the task of parameter learning, we examigentsalization
performance on several types of models on three real-life data seteHaechitecture, we consider
networks with hidden variables of different cardinality, where for noavuge the same cardinality
for all hidden variables in the same network. We now briefly describe tteessds and the model
architectures we use.

e The Stock data set records up/same/down daily changes of 20 major US technologg sto
over a period of several years (Boyen et al., 1999). The trainingdeties 1213 samples and
the test set includes 303 instances. We trained a Naive Bayes hiddableranodel where
the hidden variable is a parent of all the observations.
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e The Digits data set contains 7291 training instances and 2007 test instances frai/SR&
(US Postal Service) data set of handwritten digits (see http://www.kerndlinescorg/data.html).
An image is represented by 256 variables, each denoting the gray leeeleobixel in a
16 x 16 matrix. We discretized pixel values into 10 equal bins.

On this data set we tried several network architectures. The first isveé Bayes model with
a single hidden variable. In addition, we examined more complex hierarahiwaéls. In
these models we introduce a hidden parent to each quadrant of the incagevwely. The
3-level hierarchy has a hidden parent to each 8x8 quadrant, andriogimer hidden variable
that is the parent of these four hidden variables. The 4-level higrateints with 4x4 pixel
blocks each with a hidden parent. Every 4 of these are joined into an &MBant by another
level of hidden variables, totaling 21 hidden variables, as illustrated in &oyar).

e TheYeast data set contains measurements of the expression of the Baker’s grastig 173
experiments (Gasch et al., 2000). These experiments measure theegpasise to changes
in its environmental conditions. For each experiment the expression & ¢dles were
measured. We discretized the expression levels of genes into range/sdme/up by using a
threshold of one standard deviation from above and below the generserpeession across
all experiments. In this data set, we treat each gene as an instance thstribeatt by its
behavior in the different experiments. We randomly partitioned the data irt® #8ining
instances (genes) and 1230 test instances.

The model we use for this data set has an hierarchical structure with dérhidriables in
a 4-level hierarchy that was determined by the biological expert baseldeonature of the
different experiments, as illustrated schematically in Figure 6. In this steycddu24 similar
conditions (filled nodes) such as different hypo-osmotic shocks aldrei of a common
hidden parent (unfilled nodes). These hidden parents are in theirhildnen of further ab-
straction of conditions. For example, the heat shock and heat shock xwithtive stress
hidden nodes, are both children of a common more abstract heat nodmt Aidden vari-
able is the common parents of these high-level abstractions. Intuitivelyhédden variable
encodes how the specific instance (a gene) is altered in the relevapsgroconditions.

As a first sanity check, for each model (and each cardinality of hidddaahles) we performed
50 runs of EM with random starting points. The parameter sets learned endifsent runs have
a wide range of likelihoods both on the training set and the test set. Thests @ which we
elaborate below), indicate that these learning problems are challenging sertke that EM runs
can be trapped in markedly different local maxima.

Next, we considered the application of IB-EM on these problems. Werpeefba single IB-EM
run on each problem and compared it to the 50 random EM runs, and &6adamdom mean field
EM runs. For example, Figure 5 compares the test set performanchk@tbeod per instance) of
these runs on thBigit data set with a 4-level hierarchy of 21 hidden variables with 2 states each.
The solid line shows the performance of the IB-EM solutioly at 1. The two dotted lines show
the cumulative performance of the random runs. As we can see, théliBw&del is superior to
all the mean field EM runs, as well as all of the exact EM runs. Figure &slioe result for the
biological expert constructed hierarchy Yefast data set with binary variables. As can be seen, in
this harder domain, the superiority of the exact EM runs over mean fieldugllis more evident.
Yet, the IB-EM run which also use the mean field approximation, is still able fwasgrall of the
50 random exact EM runs.
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Figure 6: (@) A structure constructed by the biological expert foivtzat data set based on prop-
erties of different experiments. 5-24 similar conditions (filled nodes) goeegjated by
a common hidden parent (unfilled nodes). These hidden nodes are esnddldren
of further abstraction nodes of similar experiments, which in their turn aitdreh of
the single root node. (b) Comparison of test performance when leattmengarameters
of the structure of (a) with binary variables. Shown is test log-likelihoadmstance of
the IB-EM algorithm and the cumulative performance of 50 random EM as well as 50

random mean field EM runs.

It is important to note the time required by these runs, all on a Pentium IV 2.4 d¢hine.
For theDigit data set, a single mean field EM run requires approximately 2.5 hours, enkMa
run requires roughly 17 hours, and the single IB-EM run requiresojest 85 hours. As the IB-EM
run reaches a solution that is better than all of this runs, it offers araipgeoerformance to time
tradeoff. This is even more evident for theast data set where the structure is somewhat more
complex and the difference between exact learning and the mean fieltkapation is greater. For
this data set, the single IB-EM is still superior and takes significantly less timeatsamgle exact
EM.

Figure 7 compares the test log-likelihood per instance performance dBeEM algorithms
and 50 random EM runs for a range of models for #eck, Digit and Yeast data sets. In most
cases, IB-EM is better than 80% of the EM runs and is often as good or bedie the best of
them. The advantage of IB-EM is particularly pronounced for the more mpodels with
higher cardinalities. Table 1 provides more details of these runs includimgpeaformance and
comparison to 50 random mean field EM runs.

We also compared the IB-EM method to the perturbation method of Elidan eb@R)2Briefly,
their method alters the landscape of the likelihood by perturbing the relatigintrgs the samples
and progressively diminishing this perturbation as a factor of the temperptuameter. In the
Stockdata set, the perturbation method initialized with a starting temperature of 4 ainthdactor
of 0.95, had performance similar to that of IB-EM. However, the running time eforturbation
method was an order of magnitude longer. For the other data sets we cedsit®ve, running
the perturbation method with the same parameters proved to be impractical. Véhesed more
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Train Log-Likelihood Test Log-Likelihood

Model || IB-EM Random EM Mean Field EM IB-EM Random EM Mean Field EM

%< 100% 80% | %< 100% 80% %< 100% 80% | %< 100% 80%
Stock
Cc=3 -19.91 | 62% -19.90 -19.90 -19.90 76% -19.88  -19.89
Cc=4 -19.47 | 98% -19.46  -19.52 -19.52 96% -19.52  -19.62
C=5 -19.16 | 94% -19.15  -19.24 -19.31 98% -19.30 -19.39
Digit
C=5 -429.95| 36%  -428.67 -429.11 -439.91 | 56%  -439.03 -439.47
C=10 -411.44| 100% -411.72 -413.9¢ -425.33 | 100% -425.36 -427.0%
DigH3
Cc=2 -442.02| 100% -442.02 -442.29 100% -442.03 -442.2() -450.812| 92%  -450.76 -450.92 82%  -450.76 -450.84
C=3 -428.77| 100% -428.85 -429.02 100% -428.83 -429.02 -437.798| 98%  -437.74 -438.20 98%  -437.74 -438.04
DigH4
c=2 -425.43| 100% -425.54 -425.81 100% -425.61 -425.94 -433.279| 100% -433.30 -433.5% 100% -433.40 -433.71
Cc=3 -407.60| 100% -407.75 -408.56 100% -408.49 -408.83 -415.798| 100% -415.88 -416.48 100% -416.37 -416.77
Yeast
c=2 -148.13| 100% -148.32 -148.79 100% -148.89 -149.71 -147.48 | 100% -147.51 -147.87 100% -147.92 -148.78
Cc=3 -139.44| 100% -139.58 -140.0% 100% -140.09 -140.87 -138.38 | 100% -138.57 -139.00 100% -139.06 -139.92
C=4 -136.36| 100% -136.72 -136.97 100% -137.72 -138.28 -135.65 | 100% -135.96 -136.16 100% -136.92 -137.34

Table 1: Comparison of the IB-EM algorithm, 50 runs of EM with random stgntiaints, and 50 runs of mean field EM from the same
random starting points. Shown are train and test log-likelihood per instantkee best and 80th percentile of the random runs.
Also shown is the percentile of the runs that are worse than the IB-ENtseBata sets shown include a Naive Bayes model for the
Stock data set and theigit data set; a 3 and 4 level hierarchical model for gt data setBigH3 andDigH4); and an hierarchical
model for theYeast data set. For each model we show several cardinalities for the hiddablear shown in the first column.
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Figure 7: Comparison of log-likelihood per instance test performance eoiBREM algorithm
(black 'X") and 50 runs of EM with random starting points. The vertical Isteows
the range of the random runs and boxes mark the 20%-80% range. ddaghewn (x-
axis) include a Naive Bayes model for tBeck data set and thbigit data set; a 4 level
hierarchical model for th®igit data set Digit Hier); a hierarchical model for th&east
data set. For each model we show several cardinalities for the hiddablear shown in
the x-axis.

efficient parameter settings, the perturbation method’s performanceigvagcantly inferior to
that of IB-EM. These results do not contradict those of Elidan et al0Zp®ho showed some
improvement for the case of parameter learning but mainly focused onwseuearning, with and
without hidden variables.

To demonstrate the effectiveness of the continuation method we exdByBaB®! during the
progress ofy. Figure 8 illustrates the progression of the algorithm onQtoek data set. (a) shows
training log-likelihood per instance of parameters in intermediate points in tleegso This panel
also shows the values gkvaluated during the continuation process (circles). These were ma@lua
using the predicted change I(T;Y) shown in (b). As we can see, the continuation procedure fo-
cuses on the region where there are significant changé3 ity) approximately corresponding the
areas of significant changes in the likelihood. For both3teek andDigit data sets, we also tried
changingy naively from 0 to 1 as in standard annealing procedures, without perfgrcontinua-
tion. This procedure often “missed” the superior local maxima even whegatamber (1000) of
y values were used in the process. In fact, in most runs the results wéetteothan the average
random EM run emphasizing the importance of the continuation in the anneatiogss.

7. Learning Structure

Up until now, we were only interested in parameter learning. However,ahlife it is often not
the case that the structure is given. A structure that is too simple will notlbaa@faithfully cap-
ture the distribution, while an overly complex structure will deteriorate our atiditearn. In this
section we consider the case where the set of hidden variables is fidetiein cardinalities are
known, and we want to learn the network structure. Clearly, this probldmarder than simple
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Best of EM

Train likelihood
I(T)Y)

Figure 8: The continuation process for a Naive Bayes model ostiduk data set. (a) Shows the
progress of training likelihood as a functionywfompared to the best of 50 EM random
runs. Black circles illustrate the progress of the continuation procedudeioting the
value ofy at the end of each continuation step. Calibration is done using information
between the hidden variableand the instance identity shown in (b) as a function of

parameter learning, which is just one of the tasks we have to perform ircenisigo. The common
approach to this model selection task is to use@e-based approackhere we search for a struc-
ture that maximizes some score. Common scores such as the BDe scorer(htatlet al., 1995)
balance the likelihood achieved by the model and its complexity. Thus, mddetisa is achieved
independently of the search procedure used (see Section 2.1 for atails)d

We now aim to extend thiB-EM framework for the task of structure learning using a score-
based approach. Naively, we could simply consider different strestamd for each one apply the
IB-EM procedure to estimate parameters, and then evaluate its generaliitigrusing the score.
Such an approach is extremely inefficient, since it spends a non-trimi@liat of time to evaluate
each potential candidate structure. In this work we advocate a stratedgyaged on the structural
EM framework of Friedman (1997). In structural EM, we use the completismibutionQ that is
a result of the E-Step to computgpected sufficient statisticBhat is, instead of Eq. (1), we use

Eqtiv)[N(%, pay)] ZZQ =x,Pa =pa,t|Y=m).

These statistics are then used in Mestepwhen structure modification steps are evaluated. Thus,
instead of assuming that the target structggg: is fixed, we define the Lagrangian as a function of
the pair(Gout, ). Then, in the M-step, we can consider different choiceggf and evaluate how
each of them changes the score. Given the expected statistics, thenpisldentical in form to
learning from a fully observed data set and computation of the score is siffillar facilitates an
efficient greedy search procedure that uses local edge modificattbe teetwork structure. The
EM procedure of Section 3.2 is thus revised as follows:

e E-step: Maximize — Lgy by varyingQ(T | Y) while holdingP fixed.
e M-step: While holdingQ fixed:
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— Search for the structurgo,: of P that maximizes Scogge(G : D), using the sufficient
statistics ofQ.

— Maximize — Lgy, by varying the parameters Bfusing the structur&,,: selected.

In practice, since the BDe score is not a linear function of the suffictatistics, we approx-
imate it in theM-step using the Cheeseman-Stutz (Cheeseman et al., 1988) approximation. It is
important to note the distinction between the optimization of the Lagrangian andfttiegt score.
Specifically, optimizing the Lagrangian involves maximization of the likelihood aleittyan infor-
mation theoretic regularization term that does not depend. ddn the other hand, optimization of
the structure is performed using the BDe model selection score. This is mdittedpaalid since
each optimization step is ignorant of the inner mechanics of the other stepevidgwone might
wonder why the use of a score is needed at all if regularization is alfgadgnt in the form of the
information theoretic term in the Lagrangian. It is easy to understand teenrdar this if we look
at the final stage of learning whegr= 1. At this point, as we have shown, optimizing the Lagrangian
is equivalent to optimizing the EM objective. Using the same objective to attaptugre will result
in dense structures. In particular, it will be beneficial to add an edgedestwany two variables
that are not perfectly independent in the training data. Thus, while thangation encoded in the
Lagrangian is needed to smooth the parametric EM problem, a model selegtiderization via a
score is also needed to constrain the network structure.

Using the structural EM framework allows us to apply our framework to 8iredearning and
to use various search operators as simple plug-ins. For generali&apesvorks, for example, one
can consider the standard add, delete and reverse edge operhtoonlyf requirement in this case
is that a hidden variable is constrained to be non-leaf, in which case itMescredundant and can
be marginalized out. In addition, as in the case of learning parameters gvetilaguaranteed to
converge for a given value gf However, as in parametric EM, convergence is typically to a local
maximum. In fact, the problem now has two facets: First, local maxima that fesuitevaluation
of Q in the E-step. Second, local maxima in the discrete structure search spate ttie greedy
nature of the search algorithm.

Although the method described above applies for any Bayesian netwodtst, for concrete-
ness we focus on learnitgerarchiesof hidden variables in the following sections. In this sub-class
of networks each variable has at most one parent, and that parewotimas hidden variable. This
implies that the hierarchy of hidden variables captures the dependertiesen the observed at-
tributes. Since we are dealing with hierarchies we consider search sa¢psplace the parent of a
variable by one of the hidden variables. Such moves preserve thdldwerarchy structure, repo-
sitioning a single observed variable, or a sub-hierarchy. We apply #tepe in a greedy manner,
from the one that leads to the largest improvement, as long as the resultiaghieis acyclic.

8. Learning Cardinality

In real life, it is often the case that we do not know the cardinality of a hiddsgiable. In a
clustering application, for example, we typically do not know of a benefimimhber of clusters
and need to either use some arbitrary choice or spend time evaluating pegsibilities. Naively,
we might try to set a high cardinality so that we can capture all potential ctustéwwever, this
approach can lead to bad generalization performance due to oveseepation. The discussion in
Section 4 on the behavior of the model as a functiopmiovides insight on the effect of cardinality
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Figure 9: Effective cardinality as a function pfluring the learning process for tistock data set
using a Naive Bayes model. Cardinality is evaluated using local decomposititie
BDe score.

selection. When examining the models during the continuation process, eevelbisat for lower
values ofy the effectivecardinality of the hidden variable is smaller than its cardinality in the model
(we elaborate on how this is measured below). Figure 9 shows an exantpis pfhienomenon for
the Naive Bayes model of th&ock data set. Thus, limiting the cardinality of the hidden variable is
in effect similar to stopping the continuation process at sprmd.. This is, by definition, equivalent
to using a regularized version of the EM objective, which can avoid dtiadfi

The most straightforward approach to learning the cardinality of a hiddeabte is simply to
try a few values, and for each value apply IB-EM independently. Wetltaim compare the value
of the EM objective (ay = 1) corresponding to the different cardinalities. However, models with
higher cardinality will achieve a higher likelihood and will thus always beselmoas preferable by
the Lagrangian, at the risk of overfitting the training data. In the previeaian we discussed
the use of a model selection score as a measure for preferring onekstwzture over another.
The same score can also be readily applied for this scenario of cardireléstion. Whether the
complexity is a result of a dense structure or an increased number ohe@s due to a high
cardinality of a variable, all common scores balance the likelihood with the numfeplexity,
either explicitly as in the case of the MDL score (Lam and Bacchus, 199 micitly as in the
case of the Bayesian (BDe) score (Heckerman et al., 1995). Thus,ryrtolatructure learning, we
use the Lagrangian when estimating parameters and turn to the score witeming the black-
box model selection step. One problem with this simple approach is that it caxtieenely time
consuming. If we want to trik different cardinalities for each hidden variable, we have to carry out
|H|¥ independent IB-EM runs, whet#l | is the number of hidden variables.

The intuition that the “effective” cardinality of the hidden variable will incseas we consider
larger values of suggests that we increasing the model complexity during the continuatioegstoc
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A simple method is as follows. At each stage allow the model an extra, seemidglydant, state
for the hidden variable. As soon as this state is utilized, we increase thealdydby adding a
new “spare” state. The annealing process, by nature, automatically utiizasew state when it
is beneficial to do so. The task we face is to determine when all the statesiddentvariables
are being utilized and therefore a new redundant state is needed. blyid\state of a variable is
being used if it captures a distinct behavior that is not captured by dtttess That is, for any state
i, no other statg is similar.

To determine whether statds different than all other states, we start by evaluating the cost
that we incur due to the merging of stateith another statg. We denote bij a new state that
combines both and j and alterQ so that

QT=ij|Y=y)=QT=i|Y=y)+QT=j|Y=y). (14)

We then use this to reestimate the parameteBiofthe M-step, and examine the resulting change
to the Lagrangian. As shown in Slonim et al. (2002), the difference in ggdngian before and
after the merge is a sum of Jensen-Shannon divergence terms thatenbasdifference between
the conditional distribution of each child variable given the two states of tleehidariable. This is

in fact the change in likelihood of the model resulting from merging the statbsambe computed
efficiently.

Now that we have the change in the Lagrangian due to the merging of stétestatej, we
have to determine whether this change is significant. As already noted nugiegstates will always
improve the likelihood so that the difference in the Lagrangian is not suffiéée model selection.
Instead, we can use the BDe score to take into account both the improvientieatikelihood and
the change in the model complexity as in Elidan and Friedman (2001). Onaleygpproperty
of the BDe score is that it ibcally decomposableThat is, Eq. (2) decomposes according to the
different values of each variables. Thus, the difference betweeBDigescore after and before the
merge of statesand | is only in the terms wher€ appears:

ScorQ;De(giAj_: D) — Scorgpe(Gi,j : D) =

(T=i,j.pa)) N*(T=i.pa)) FN"(T—].pa))
2 pa lOQW log ra(T=i,pa)) ~log'f rar=i.pa) | T

T T

YeSpa |OQM€T|,JJ+ZC|09%
T M(N"(c,pa,T

~ 10 F ety — 2elo8 Tate pact=i)
T T

~ log Pl — 5 clog TR eEsT=l) |

where the first summation correspond to the family @ind its parents, and the second summation is
over allC that are children of and corresponds to the families of the childref @nd their parents.
N*(x) = N(x) +a(x) and correspond tmtal count statistics that include the imaginary prior counts
(see Section 2.1). As all the terms are functions of these simple sufficigistista the above
difference can be computed efficiently. Moreover, as in the case of #lélilod computation, the
sufficient statistics needed when merging two states are simply the sum ofttbcstaeeded for
scoring the individual states. Thus, we can easily evaluate all pairwigerstages to determine if
anytwo states ofl are similar.
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Figure 10: Evaluating adaptive cardinality selection for gheck and theYeast data sets with a
Naive Bayes model. The "X’ marks the performance of runs with adaptvdinality
selection. The line shows performance of individual runs with a fixedigality. The
top panel shows training set performance, and the bottom one testfggt@ce.

To summarize, the resulting procedure is as follows. We start with a binedinadity for the
hidden variables gt= 0. At each stage, befoxds increased, we determine for each hidden variable
if all its states are utilized: For each pair of states we evaluate the BDe sfferertte between
the model with the two states and the model with the states merged. If the difésgpasitive for
all pairs of states then all states are considered utilized and a new stateets dptimizing the
Lagrangian using IB-EM will utilize this new state automatically when it will be bierad to do so,
causing the introduction of a new “spare” state, and so on.

In an early work leading to the formulation of the Information Bottleneck fraor&yPereira
et al., 1993) used a similar idea to gauge the effective number of clusteeflyBor each cluster
a slightly perturbed cluster (twin state) was incorporated in the model allovaicly @uster to split
into two distinct ones. Similar procedures were used in deterministic anneRlosg(1998) and
later information bottleneck implementations (Tishby et al., 1999; Slonim et al)2T6e method
we presented in this section differs in two important aspects. First, we usdel sabection score to
determine when it is beneficial to declare that a redundant cluster is adieailyused. This allows
us to avoid using an arbitrary distance measure to determine if two clustergelivSecond, the
above allows us to use a single redundant cluster rather than a twin fostaée, which significantly
reduces the model complexity. While this may not be crucial in standard d¢hgssenario, it is of
great importance for the large models with many hidden variables that wigleoirsthis paper.

9. Experimental Validation: Learning Cardinality

We now want to evaluate the effectiveness of our method for adaptidmedity during the anneal-
ing process. For this, we would like to compare the cardinality and modehachi®y the method
to naive selection of the cardinality. To make this feasible, we look at thexdafta Naive Bayes
model with a single hidden variable for tistock and theYeast data set introduced in Section 6.
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We trained the models using the IB-EM algorithm where the hidden variablesggned a fixed
cardinality, and repeated this for different cardinalities. We then appliechdaptive cardinality
method to the same model. Figure 10 compares the adaptive cardinality seleati®OX’ rmark)
vs. the fixed cardinality runs for both data sets. As we can see, thesanti learns models that
generalize nearly as well as the best models learned with fixed cardinatigseTresults indicate
that our method manages to increase cardinality while tracking a high likelifmotios, and that
the decision when to add a new state manages to avoid adding spurious states.

A more complex scenario is where, for tieast data set, we learn the hierarchy supplied by
the biological expert for 62 of the experiments. In this hierarchy thexeédridden variables that
aggregate similar experimentsHegat node that aggregates 5 of these hidden variables and a root
node that is the parent of botteatand the additionallitrogen Depletiomode. Figure 11 shows the
structure along with the cardinalities of the hidden variables learned by alochand compares
the performance of our method to model learned with different fixed cditi#sa As can be seen
in (b), the performance of our final model is close to the optimal perforeuauiih fixed cardinality.

(c) shows that this is achieved with a similar complexity to the simpler of the supeddels (at a
fixed cardinality of 10).

10. Learning New Hidden Variables

The ideas presented in Section 7 are motivated by the fact that in real ligreviypically not
given the structure of the Bayesian network. The situation is often evea coonplex. Hidden
variables, as their name implies, are not only unobserved but can alstkbewn entities. In this
case, we do not even know which variables to include in our model. Thusjaneto determine
the number of hidden variables, their cardinality, their relation to the obdetasgables, and their
inter-dependencies. This situation is clearly much more complex than strigdnnéng and might
seem hopeless at first. However, as in the case of cardinality adaptesttmsgkd in Section 8, we
can use emergent cues of the continuation process to suggest @aneffesthod.

Recall the behavior of our target Lagrangian as a functiof. oFor small values of, the
emphasis of the Lagrangian is on compressing the instance identity, and des viariables are
(almost) independent of the observed attributes. Thus, at this stage, la siwgel would be able
to perform just as well as a complex one. In fact, to increase learningstrodiss, we will want
to favor the simpler model and avoid redundant representational complekétywe increassy,
the hidden variables start capturing properties of the data. In this soceharmeed for the more
complex structure becomes relevant as it will allow the learning procedimgtove performance.

The above intuition suggests that at small valuegwé start with a simple hierarchy (say, one
with only a single hidden variable). When the continuation reaches larlyers/afy, the Lagrangian
can tolerate more complex structures. Thus, we want to adapt the compleiity leierarchy as
we progress. To do so, we consider a search operator that enfichssucture of hierarchy with
a new hidden variable. (This operator is much in the spirit of the “top-dastraitegy explored by
Adachi and Hasegawa (1996) in learning evolutionary trees.)

Suppose that we want to consider the addition of a new hidden variablébéwetwork struc-
ture. For simplicity, consider the scenario shown in Figure 12, where wevgth a Naive Bayes
network with a hidden variabl&; as root and want to add a hidden varialbjeas a parent of a
subseiC of Ty’s children. Intuitively, we want to select a sub&ethat is not “explained well” by
T, and where we expect to gain a lot by the introductioi-ofFormally, we evaluate the change in
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Figure 11: Cardinality learning for theeast data set on the structure provided by the biological ex-
pert. (a) shows the structure along with the nodes annotated with the déydesned
by our adaptive approach. (b) shows the test set log-likelihood pesioce of models
learned with different fixed cardinalities (solid line). The horizontal @aslne marks
the performance of our adaptive cardinality method. (c) shows plot thdauof pa-
rameters for each of these models (solid line) with the dashed horizontal lirkingna
the number of parameters of the model learned by our method.

our target Lagrangian as the result of inserfiagnto the network structure

Ley — Lérvl =
—1o(T2;Y) +YEg[logP' (T2 | T1) —10gQ(T2) + Yicc [logP’ (X | T2) —logP(Xi | T1)]],

whereP andP’ are the models before and after the change to the network, respeciihelyerm
logP(X; | T1) can be readily evaluated from the current model for eaehC and the termgg(T2;Y)
andEqg[logQ(T)] can be easily bounded. However, to evaluatdXd@ | T1) or 3icc logP’ (X | T2)

we need to actually choose addT, to the current structure and optimi€&T, | Y). This can be
too costly as the number of possible subsgtsan be large even for a relatively small number of
variables. Thus, we want to somehow approximate the above terms efficisimtyonly the current
model. The following bound allows us to do so by bounding the contributiorhidden variable.
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Figure 12: Example of enrichment with new hidden variabless parent of a subsé of the
observed variableX; ... X,.

Proposition 8 Let P be a Bayesian network model with a hidden variahlaid denote byC an
observed subset 0f § children. Let P be the result of replacing;Tas a parent ofC by T,, making
T, a child of T, and optimizing the parameters of the model using the IB-EM algorithm fovalue
ofy. Then

EqllogQ(C | Ty)] > Eq|  logP (X | T2) +logP' (T2 | Ta)
ieC

Proof: Using the chain rule and positivity of entropy, we can write
EqllogQ(C|T1)] = —Hq(C|Ty)
= —[Ho(C.T2 | )~ Ho(T2 | €. Ty)|
> —Hq(C,T2|Ty)
= —[Ho(C | T2.Tu) + Ho(Tz | Ty

'Z:quq | X+ %1, T2, Ta) + Ho(Tz | Ta)|
“ie

> | HQ(Xi|T2)+HQ(T2|T1)}

Tie

Z: logP (X | T2) +logP’ (T2 | Tl)] :

Eq

The last inequality result from the fact that entropy conditioned on lesablas can only increase.
The final equivalence is a result of the construction of the M-Step &NMB-whereQ is used when
in the optimization of the parameters®f I

The above proposition provides a bound on the extent to which a hiddeibkainduces cor-
relations in the marginal distribution. The result is intuitive — the contribution séiition of a
new hidden variable cannot exceed the entropy of its children givendhe&nt hidden parent. If
we use the bound instead of the original term, we get an over-optimistic estifmite potential
profitability of adding a new hidden variable. However, the scenariosrev@terested in are those
in which the information between the hidden variable and its children is high andritropy of
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Figure 13: Synthetic example demonstrating the information signal for addwghidden vari-
ables. (a) shows the original structure that generated the sampléeso\s the structure
used in learning without the hidden variafle (c) shows the information as a function
of y between the hidden variables and the observed variables. As learoipiggses,
the total information rises and the distribution of the direct childre;0f captured
significantly better (dotted). The information with the original childrerTgp{dashed)
remains small.

the hidden variable is low (or there would be no need for it in the network$uth cases, we can
expect the bound to be tight in both inequalities.

The above bound provides us with an information signal for putative riddeh variables.
In practice, searching for the best sub&etan be impractical even for relatively small networks.
Instead, we use the following greedy approach: first, for each hidaléable, we limit our attention
to up toK (we use 20) of its children with the highest entropy individually. We thersicarall
three-node subsets of these children whose entropy level passesisestmld (see details in the
experiments below). Intuitively, such seeds will capture the core of timalsigeeded to attract other
nodes when structure change is allovfed.

Another complication in using the above signal is a consequence of thelemgnerocess itself.
For small values off we can expect, and indeed we wa@tto smooth out all statistical signals.
This will make most subsets appear equally appealing for adding a hiddablearsinceT; will
not be informative about them. In Section 4, we have shownl#@t; T) is a natural measure for
the progress of the continuation process. To demonstrate the phenoimé¢herstructure learning
scenario, Figure 13 shows a simple synthetic experiment where the sangrkegenerated from

2|n synthetic experiments for different structures where the netwoekssiltt made computations feasible, these three
node seeds always included two or three variables of the optimal largsets
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the structure shown in (a) and a Naive Bayes model witfipwtas used when learning. (c) shows
the information between the hidden variableand the observed children (solid), its direct children
in the generating distribution (dotted) and the childrenTgf{dashed). Up to some point in the
annealing process, the information content of the hidden variable is lowhandformation with
both subsets of variables is low. When the hidden variable starts to captudisthibution of
the observed variables, the two subsets diverge and Whitaptures its original direct children
significantly better, the children oF, still have high entropy givef;. Thus, we want to start
considering our information “cue” only when the hidden parent becomesmimgful, that is only
whenlg(Y; T;) passes some threshold.

Finally, we note that although the discussion so far assumed that we haeeaBhyes model
and considered the addition of a single new hidden variable, it is easilyajizeel for any forms of
P where inP’ we separate a hidden variablesArirom its observed children by introducing a new
hidden variable.

To summarize, our approach for learning a new hidden variblfter several such variables) is
as follows: At each value of, we first evaluatdg(Y;T) to determine if it is above the threshold,
signifying that the hidden variable is capturing some of the distribution oveesi®f the variables.
If this is the case, we greedily search for subsets of children of the midalgable that have high
entropy. These are subsets that are not predicted well by their hiddentpFor the subset with the
highest entropy, we suggest a putative new hidden variable that is riet jpé the variables in the
subset. The purpose of this new variable is to improve the prediction of bsetuariables, which
are not sufficiently explained by the current model. We then continue withatemeter estimation
and structure learning procedure as is. If, after structure seatgtidan variable has at most one
child, it is in fact redundant and can be removed from the structure. \Wdtehe entire procedure
until no more hidden variable are added and the structure learning preceahverges.

11. Full Learning — Experimental Validation

We want to evaluate the effectiveness of our method when learning stueiiln and without the
introduction of new hidden variables into the model. We examined two real-life skts: The
Stock data set and theeast data set (see Section 6). For tYeast data set we look at a subset of 62
experiments related to heat conditions and Nitrogen depletion.

In Figure 14 we consider average test set performance mtdhedata set. To create a baseline
for hierarchy performance, we traim\aive hierarchy with a single hidden variable and cardinality
of 3 totaling 122 parameters. We start by evaluating structure learning witteuintroduction of
new hidden variables. To do this, we generated 25 random hierarcitiies nary hidden variables
that are parents of the observed variables and a common root paréngt®faparameters. We then
use structural EM (Friedman, 1997) to adapt the structure by usigglace-parenbperator where
at each local step an observed node can replace its hidden parentan Ag seen in Figure 14,
standard structure learning applied to the IB-EM framework significantly ones the model’s
performance. In fact, many of the 25 random runs withSbarch operator surpass the performance
of theNaive model using fewer parameters.

Next, we evaluate the ability of the new hidden variable enrichment operatorpimve the
model. We denote binrich the IB-EM run with the automatic enrichment operator. We denote by
Enrich+Search the run with this operator augmented with structure search operators in theds-
As can be seen in Figure 14, the performancg&rafch by itself was not able to compete with the
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Figure 14: Comparison of performance on 8teck data set of Naive hierarchiiéive), 25 hierar-
chies with replace-parent sear@eérch) , hierarchy learned with enrichment operator
(Enrich) and hierarchy learned with enrichment and replace-parent s&amith).

Naive or theSearch method. This is not surprising as we cannot expect the information signal to
introduce “perfect” hidden variables into the hierarchy. Indeed, wdmmbining the enrichment
operator with structure adaptatioBnfich+Search), our method was able to exceed all other runs.
The learned hierarchy had only two hidden variables (requiring onlya8&rpeters). These results
show the enrichment operator effectively added useful hidden Vesiaind that the ability to adapt
the structure of the network is crucial for utilizing these hidden variablestbdist extent.

There are two thresholds used by our algorithm for learning new hiddeables. First, as
noted in Section 10, due to the nature of the annealing process we coaditieg new hidden
variable only when the informatiohy(Y; T) of a hidden variabld in the current structure passes
some threshold. In the results presented in this section we use a thresBOkb off the maximum
value the information can reach which is limited by the cardinality ofLowering this threshold
to as far as 10% or raising it to 40% had negligible effect on the results. yWeathesize that this
robustness is caused by the fact that, typically, the cardinalitywafl be much lower thary. Thus,
whenT undergoes the transition from being redundant to being informative, @emattion content
rises drastically, even if it captures only a small aspedt.of

The threshold used to limit the number of candidate subsets, however, isntesesting. Re-
call from Section 10 that the greedy procedure only considers sulbhete entropy passes some
threshold. More precisely, we consider only subsets whose entrgggpaome percentage of the
maximum entropy possible for this subset. Thus, using a lower thresholdtiadiieallows more
hidden variables. This is observed empirically in Figure 15(a) forvdeast data set. A possible
concern is that lowering the threshold too much will results in many hiddenblesideading to
overfitting. However, as is evident in Figure 15(b), even when the nupfifedden variables is 20,
these new variables are effective in that they improve the generalizatifammpance on unseen test
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Figure 15: Learning new hidden variables for tfeast data set. (a) shows the number of variables
learned as a function of the threshold on the percentage of entropyubisatsused in
the greedy procedure. (b) shows the corresponding test set Idipditid per instance
performance and the performance of the model supplied by the biologioatte

data. In fact, with just a few extra variables, our method successfulpassed the performance of
the structure supplied by the biological expert. Obviously, at some powihdtoo many variables
will lead to overfitting. We could not examine this scenario due to the running 8oéned to learn
such large networks.

To qualitatively assess the value of our method, we show in Figure 16 tlotustdearned for
the Stock data set with binary variables and the entropy threshold set at 95%t(ses@at 92.5%
and 97.5% were almost identical for this data set). The emergent structwidést with the “High-
tech giants” and “Internet” group dominating the model. The “Varied” graupta&ins “Canon” and
“Sony” that manufacture varied technology products such as elecsigotimtographic, computer
peripheral, etc. The “Japanese” relation of “Toyota” to these comparaesnterestingly stronger
than the relation to the “Car” group.

Finally, we applied runs that combine both automatic cardinality adaptation aicthment of
the structure with new hidden variables. Table 2 shows the train and téstrpance for theStock
data set. Shown are several runs with Emeich operator and fixed cardinality. For each run, the
number of hidden variables added during the learning process (excltidrigitial root node) is
noted. Also shown is the automatic cardinality method usin@thescore along with the different
cardinalities of the 6 hidden variables introduced into the network structineecombined method
was able to surpass the best of the fixed cardinality models in terms of temrémimance with
fewer than 70% of the parameters. In addition, the fact that the combined anietipooves test
performance but has worse training likelihood, demonstrates its ability to averditting.

12. Related Work

To define the IB-EM algorithm, we introduced a formal relation between tloerimdtion bottleneck
(IB) target Lagrangian and the EM functional. This allowed us to formulaiafarmation-theoretic
regularization for our learning problem. Given this objective, we useddsvdral ideas to make
learning feasible. First, following all annealing methods, we slowly diminish e tef “pertur-
bation” as a way to reach a solution of the hard objective. Second, weonsi@uation to define a
stable traversal from an easy problem to our goal problem.
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Varied
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Figure 16: Structure learned for tis¢ock data set using the enrichment operator augmented with
structure search that use the replace-parent operator. All the hiddi@ibles (circles)
are binary and the subset entropy threshold was set at 95%. Theechifieach leaf
are annotated with a plausible interpretation.

A multitude of regularization forms are used in machine learning, typically dépgron the
specific form of the target function (see Bishop (1995) and refeewithin). Information-theoretic
regularization has been used for classification with partially labeled datay8er and Jaakkola
(2002) and for general scenarios in deterministic annealing (Ros8).199

Of the annealing methods, the well knowimulated annealingKirkpatrick et al., 1983) is
least similar to ours. Rather than changing the form of the objective fun@iamulated annealing
allows the search procedure to make “downhill” moves with some diminishingapiiity. This
changes the way the procedure traverses the search space anditaltowstentially reach pre-
viously unattainable solutions. Several papers (Heckerman et al., C&@zkering, 1996; Elidan
et al., 2002) have shown that Simulated annealing is not effective whemirigd8ayesian networks.

Weight annealingElidan et al., 2002), on the other hand, skews the target function ditagctly
perturbing the weights of instances in diminishing magnitudes. Thus, like ouothdtbhanges
the form ofQ directly but does not use an information-theoretic regularization. Weighealing
can actually be applied to a wider variety of problems than our method, inclsttincture search
with complete data. However, like other annealing methods, it requires a gaaireme. For the
large problems with hidden variables we explored in this paper, Weightéinggroved inferior
with similar running times, and impractical with the settings of Elidan et al. (2002).

Finally, like our method, deterministic annealing (Rose, 1998) alters the pndipfeexplicitly
introducing an information-theoretic regularization term. Specifically, follgwhe widely recog-
nized maximum entropy principléJaynes, 1957), deterministic annealing penalizes the objective
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Log-likelihood | # of # of
Cardinality Train | Test | hiddens| parameters
2 -19.62| -19.62| 5 89
3 -19.32| -19.37| 5 146
5 -18.87| -19.04| 6 304
10 -18.53| -18.96| 5 769
20 -18.43| -18.98| 5 2340
BDe (9,6,7,7,7,7)|| -18.65| -18.94| 6 526

Table 2: Effect of cardinality when inserting new hidden variables into gteaork structure with
theEnrich operator for theStock data set. A 95% entropy threshold was used for the hidden
variable discovery algorithm. The table shows results for several fexatimalities as well
as the automatic cardinality method using the BDe score. Shown is the log-likelifgzo
instance for training as well as test data, the number of hidden varialdeth@mumber
of parameters in the model. For the automatic method, the cardinalities of ea@m hidd
variable is noted.

with a term that is the entropy of the model. A concrete application of deterministieading to
graphical models was suggested by Ueda and Nakano (1998). Howen learning graphical
models, the deterministic annealing was not found to be superior to stanliafel. &, (Smith and
Eisner, 2004)§. In particular, Whiley and Titterington (2002); Smith and Eisner (2004))\siby
applying deterministic annealing to standard unsupervised learning otBayeetworks with hid-
den variables is problematic. One possible explanation for why our methdd well for these
methods is the difference in motivation of the regularization term. Specificaifyteom was moti-
vated by the need for generalization where one want to compress the iddr#jtgcific instances.
Another important difference between the two methods is that, like Weighaéingedeterministic
annealing requires the specification of a cooling policy which makes it polgritigoractical for
large generative problems. This problem may be avoided using a method santilarone we used
in this work. We leave this prospect as well as the challenge of bettersiadding the relation
between the entropy and information regularization terms for future study.

Continuation methods are a well developed field in mathematics (Watson, 200l these
methods are used extensively and successfully to solve practical eriginehallenges such as
complex polynomial systems, they have not been frequently used in machméte Recently,
Corduneanu and Jaakkola (2002) used continuation to determine acter®flance between la-
beled and unlabeled data. To our knowledge this is the first work in leagnagghical models to
use continuation to traverse from an easy solution to the desired maximum loetinoblem.

A complementary aspect of our work is the introduction of modification opexdto hidden
variables. Our method both for learning the cardinality of a hidden variabie for introducing
new hidden variables into the network structure, relies on the annealinggzrand utilizes emer-
gent signals. The problem of evaluating the cardinality of a hidden varnataegraphical model

3Smith and Eisner (2004) also suggest a variant of the deterministic lannakgorithm that appears to work well
but is only applicable in the context of semi-supervised learning or whenitzal informed starting point for the EM
algorithm is at hand.
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was explored in several worke.), Chang and Fung (1990); Elidan and Friedman (2001)). The
work of Stolcke and Omohundro (1993) for HMMs was the first to uséuatimn of pairwise state
merges to determine adapt the cardinality. In Elidan and Friedman (200&xterd their method
for general Bayesian networks, and Slonim et al. (2002) used a simpeoach within the infor-
mation bottleneck framework. All of these methods start with a large humbeatefss and then
apply bottom-up agglomeration to merge overlaps in the state space and reducdancies. By
contrast, our method is able to take an “add-when-needed” approdcheda mergers are evaluated
not to collapse states but rather to determine if a new one is needed. |$mmEs also explored
methods for introducing new hidden variables into the network structurerddhspecific classes
of Bayesian networkse(g, Martin and VanLehn (1995); Spirtes et al. (1993); Zhang (2004)) o
for general models using a structural signature approach (Elidan 208l). Our contribution in
enriching the structure with new hidden variables is twofold. First, we stgde natural informa-
tion signature as a “cue” for the presence of a hidden variable. Unlikstthetural signature this
signature is flexible and is able to weight the influence of different chileso8econd, we use the
enrichment approach in conjunction with the continuation approach faadsypg local maxima.
As in cardinality learning, we are able to utilize emergent signals allowing thedunttion of new
hidden variables into simpler models rendering them more effective.

13. Discussion and Future Work

In this work we addressed the challenge of learning models with hidderbiesiia real-life scenar-
ios. We presented a general approach for learning the parametddslefntvariables in Bayesian
networks and introduced model selection operators that allow learnirgnohitden variables and
their cardinality. We showed that the method achieves significant improvemetallenging real-

life problems.

The contribution of this work is threefold. First, we made a formal connedigtween the
objective functionals of the information bottleneck framework (Tishby efl8B9; Friedman et al.,
2001) and maximum likelihood learning for graphical models. The informatattidmeck and
its extensions are originally viewed as methods to understand the structardigifibution. We
showed that in some sense the information bottleneck and maximum likelihood estizuaitwo
sides of the same coin. The information bottleneck focuses on the distribditianiables in each
instance, while maximum likelihood focuses on the projection of this distributich@®estimated
model. This understanding extends to general Bayesian networks #re results of Slonim and
Weiss (2002) that relate the original information bottleneck and maximum likaliestmation in
univariate mixture distributions.

Second, the introduction of the IB-EM principle allowed us to use an appriteat starts with
a solution aty = 0 and progresses toward a solution in the more complex landscape df This
general scheme is commondeterministic annealingpproaches (Rose, 1998; Ueda and Nakano,
1998). These approaches “flatten” the posterior landscape by r#isidiggelihood to the power of
y. The main technical difference of our approach is the introduction ofalagzation term that
is derived from the structure of the approximation of the probability of thentatariables in each
instance. This was combined with a continuation method for traversing the noathtlie trivial
solution aty = 0 to a solution aty = 1. Unlike standard approaches in deterministic annealing
and information bottleneck, our procedure can automatically detect impodgioins where the
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solution changes drastically and ensure that they are tracked closphgliminary experiment the
continuation method was clearly superior to standard annealing strategies.

Third, we introduced model enrichment operators for inserting new hidddables into the
network structure and adapting their cardinality. These operators ecoifisally geared toward
utilizing the emergent cues resulting from the annealing procedure. T¢u#ied in models that
generalize better and achieve equivalent or better results with a relainghje model.

The methods presented here can be extended in several directioiswEican improve the
introduction of new hidden variables into the structure by formulating betignéss” that can be
efficiently calculated for larger clusters. Second, we can use altegnatiiational approximations
as well as adaptive approximation during the learning process. Thirdianeto explore methods
for stopping aty < 1 as an alternative way for improving generalization performance.
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Appendix A. Fixed Point Equations

We now develop the fixed point equations use for solving the target hggna of our approach.
We start with the case of a single hidden variables and then address thgenaeral scenario of
multiple hidden variables.

A.1l Single Hidden Variable

Proposition 4: Let Lg be defined viagi, and Gout as in Proposition 1. QT |Y) is a stationary
point of £¢,, with respect to a fixed choice of P if and only if for all valuest and y of T and
respectively,

Qt|y) = Q) YP(x[yl, 1)),

Z(y,y)

where Zy,y) is a normalizing constant and equals to
Z(y,y) = Z Q") YP(x[y].t'])". (15)
t

To prove the proposition we use the following

Lemma 9 (El-Hay and Friedman, 2001) Let @) be a joint distribution over a set of random
variablesX, that decomposes according t@X) = [1; Q(X | U;). Then

af(x) ]
0Q(x;, ;) |

OEq[f(X)]

0Q(% | up) = Q(ui)EQ('IXi,ui)[f(X)] + EQ[
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The following is an immediate results of that fact tkt) = ¥, Q(y)Q(t|y')

~0Q(T) )
1{T =to}. 16
We use this and an instantiation of the above lemma to prove the following:
Lemma 10
0lQ(T;Y) Q(tolyo)
= lo .
aQltoyo) <79 Q1)
Proof: We definef (T,Y) = log orr () ()) log é(‘)> so that using Eq. (16), we can write
of(T,Y)  0dlogQ(T |Y) B 0logQ(T)
0Q(to | Yo) 0Q(to | Yo) ~ 9Q(to | Yo)
1 Q(Yo)
= ——1{T=ty,Y= 1{T =to}.
Qo yo) 1T =107 =¥~ ) HT =)

Plugging this into Lemma 9, we get

. dl Q(TY)
dlo(T;Y) = Q(Yo) Eo( ftoyo) [|og M} +Eo |:OgQ(T>]

9Q(to | yo) Q(T) 9Q(to, Yo)
— Quolog 20 Q) 2 ) - el Qo) 22
~ Quo)log g% + Q) [ ) Yoy to!y]
= Q(vo)log ((Q(’(’O))'O)+Q(yo) [1-1
= Q(yo)logQg(J0§'°).

Using Eq. (16) and Lemma 9 with(T,Y) = logQ(T), the following is immediate.
Lemmall

0Eq[logQ(T)]

1
dQ(to | Yo) Q(¥o) = Q(Yo) [logQ(to) +1].

= Q(Yo0)logQ(to) + Q(to) ~—— Qlto)

Proof of the proposition: We want to findQ(T | Y) that are stationary points of the Lagrangian
Ley and where the constrainfg Q(t | y) = 1 hold for anyy. Thus, using Lagrange multipliers, we
want to optimize

= 1o(T;Y) —Y(Eq[logP(X, T)] — Eq[log Q(T +z7\y<ZQ (t]y)— )
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SinceP is fixed, using Lemma 9 witti (Y, X, T) = logP(X, T), we can write
0Eqg[logP(X,T)]

0Q(to | Yo)
Combining this with Lemma 10 and Lemma 11, we get

6Q(?tLoE|Myo) = Q(Yo) [l0gQ(to | yo) — (1) 10gQ(to) +Y—YIogP(X[yo]to)] +Ay-

Dividing by Q(yo) and equating to 0, we get after rearranging of terms

Q(to]yo) = €0/ VI HYQ(to) - YP(x[yo] o). (17)
This must hold for any valuy andyg. Usingy; Q(t | yo) = 1 we get

= Q(Yo) logP(X[yo], to)-

Mvo/QY0)+Y — 1 )
31 Q) YP(X[yo], t)

We get the desired result by plugging this into Eq. (17).

A.2 Multiple Hidden Variables

Proposition 6: Let £;,, be defined viagin and Gout as in Eq. (12). Assumingraean fieldapproxi-
mation for QT | Y), a (local) maximum OL;M is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

Qlily) = Z(ilyy) Q(t;) Y expEPEY),

where
EP(ti,y) = Eq(Tjt.y) [l0gP(X[y], T)]
and Z(i,y,y) is a normalizing constant that equals to

Z{.yy) =2 Q(t/) L VexpEPHy)
t

Proof: Using themean fieldassumption, the information and entropy terms in the Lagrangian
decompose as follows

Lo, = S 1o(Ti;Y) -y (EQ[IogP(X,T)} -> EQ[IOQQ(Ti)]> :

When computing the derivative with respect to the parameters of a speaifabhesT;, the only
change from the case of single hidden variable, is in the derivatide,@dbgP(X, T)] given fixed
P. Again using Lemma 9 with (Y, X, T) = logP(X, T) we get
0Eqg[logP(X,T)]
0Q(tio | Yo)

from which we get the change from Proposition 4 to Proposition 6 for tee oamultiple hidden
variablesl

= EQ(T‘tiOvyO) [IOg P(X[VO] ; T)] )
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Appendix B. Computing the Continuation Direction

We now develop the precise computations needed to perform continuaties@tbed in Section 4.
We start with the case of a single hidden variafiles

B.1 Single Hidden Variable

Consider again Eg. (7), where we now write the normalization #fyry) explicitly:
Gry(Qy) = —logQ(t|y)+(1-Yy)logQ(t) +ylogP(x[y],t)

—log Z exp1-V)109Q(t)+ylogP(XY.t) (18)
t

Z(yy)

We want to compute the derivative Gf y(Q,y) with respect to the parameters apdind and then
use the orthogonal direction for continuation. The will follow a direction iriclitthe fix point
equations remain unchanged, and the local maximum is tracked. To do stanvby expressing
logP(x[y],t) as a function of the paramete@s

The maximum likelihood parameters of IBgX, T) for the conditional distribution of the chil-
drenX; of T in Goyut are

5 2y QY)QUY)1{xily] =x,paily] = pa} +a(x,pa,t) _ A(X,pa;,t)
HPa s, QWQY)1{pa] = pa} +a(pat) A(pay.t)
where 1} is the indicator functionq() are the hyper-parameters of the Dirichlet prior distribution

(see Section 2.1) an@ are used to denote the total counts (including prior) used for estimation.
Similarly the maximum likelihood parameters of the distributioTajiven its parents are

5 Yy () (tly)1{pa,[y] = pa} +a(pa,t) _ A(pa;t)
ha = TS Qy)L{palyl =pa) +a(pa)  N(pa) |

We now consider each term @& ,(Q,y) and compute its derivative with respect to these parameters

of Q.

(19)

(20)

0logP(x[y].t)
COMPUTATION OF 30(toyo)

The derivatives of the parameters expressed in Eq. (19) are
98y pa
aQ(o|yo) o)
= wtoact | 1Yol = pa;[yo] = pa }AL(pa;.t) — 1{pa[yo] = pa }A(x.pa,t) | (21
= Quoldpabarpal (1 fxfyo] = x }((Pa,1) — A((%, P&y, )

fort =tp and are zero otherwise. Similarly, the derivatives of the parameters. ¢2&gare

0pa  Q(yo) B o Qo) -
Qo | yo) _ N (pa)2 [1{pa[yo] = pa } N (pa;) — 0] = A (pay) 1{pa[yo] = pa} (22)

121



ELIDAN AND FRIEDMAN

fort =tg, and are zero otherwise. The log-probability of a specific instanceeanitien as
logP(x[y],t) =10g6ypa [yl + > 1096jpa iVl + 3 1096y pa Y], (23)
i i£tCh
whereCh denotes the children dfin Gout and6, [y] is the parameter corresponding to the values
appearing in instancg We note that the last summation does not depend on the paraQéteys,
and by plugging Eq. (21) and Eq. (22) into Eqg. (23), we get
dlogP(x[yl,t) 1  0Gpa[y] 1 Opaly]
0Q(to | yo) et\pq[ 19Q(to | Yo) i Oy |pa, [y] 0Q(to | yo)

= Q(yo) Upa [yol=pa [y}

A(Pay)Bjpay [Yo] (24)
+Sicon AL (1] = x{yel} (P — (X pa)|
EQ(yO) ( Y, )7

where in the last line we ugB(y,t) to denote the expression in the square brackets.

0logZ(yo,y)
COMPUTATION OF 30(y0)

Using Eq. (16) from Appendix A and the above, we can write
0 (1—y)logQ(t) +ylogP(x[y],t) _ [1; ]
3Q(t | 0) = Q(Yo) 0 TYD(y;t) | (25)

We can now use Eg. (25) to write the derivativeAyly,y) since it is a summation over similar
expressions

Y

S = Zey P I OIROL >Q<y>[ﬂ YDt
= 7557 QUY0) Q) YP(xly]:to)Y | & +vD<yo,to>} (26)
—QU0)Q(to] Yo) [ 5 +YP(¥o o)

where the last equality follows from Proposmon 4,

Gry(Qy)
COMPUTATION OF aQ(to|yo)

We combine Eg. (25) and Eq. (26) to write

0Gry(Q.Y) _ B 1-y
T @Y 1y yo) + Q- Qlio 30 [

+YD(Yo,to) | - (27)

COMPUTATION OF"'OQTZV(V’V)

The only term that is not immediate is the derivativeZgy, y) with respect toy

dl
ogazy(y’y) = Ze xpf 17¥108QE)+YI0gPLY) [ 1og Q(t') 4 log P(X[y], )]

- Z Sy QU PO [-10g Q) + 0gP((y. )
—ZQ Y) [logP(xy].t) ~ logQ(t)]
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from which follows

0Gy(Q,

P —logPixi 1) ~10gQ() — 3 Q) logP(xy] 1) ~logQ)]. (28
COMPUTATION OF THE CONTINUATION DIRECTION

We can now compute all the elements of the derivative matrix of Eg. (9)

Hy(Qy) = (253 e )

To compute the orthogonal direction to the derivative, we solve Eq. (10)

H(Q,y)A=0.

As noted in Section 4, this can be prohibitively expensive and we resbit@y) with a diagonal

approximation for elements % computed in Eq. (27). We denote hy; the diagonal entry

forY =yandT =t andh&t the corresponding derivative with respecytdVe then have to solve a
set of equations of the form

dt,yhy,t + dyhy,t =0,

whered; y, anddy are the elements @. Settingd, = 1 (an equivalent solution up to scaling) we get
the unique solution
hV

AY
Ghy=——2.
Y hy,t

NormalizingA using the derivative ofg(T;Y) as described in Eq. (11) can now be easily computed
given the Lemma 10 in Appendix A.

B.2 Multiple Hidden Variables

When computing the derivative with respect to the parameters associated gjitbcific hidden
variablet;, the only change i ,(Q,y) is that logP(x[y],t) is replaced byEq s y) [l0gP(X[y], T)].
In this case we simply compute the expectation of Eq. (24) oveiTthehat are in the Markov
blanket oft;. The rest of the details remain the same.
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