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Abstract

Many real-life-tasks deal with dynamic systems that evolve in continuous-time. In
many cases such systems are composed of many interacting components which evolve
at various time scales. Thus, recent research on such multi-component systems is
aimed at reasoning their dynamics directly in continuous-time.

A common approach to studying such systems is to construct a probabilistic model
based on empirical observations. This approach requires three fundamental ingredi-
ents: a mathematical modeling language that captures the essential characteristics of a
process in a compact manner; a learning procedure, allowing to estimate the structure
and parameterization of a specific model from observations; and an inference proce-

dure allowing to perform predictions given a model and observations as well as to
compute the likelihood of the observations. A recent example are Continuous-time

Bayesian networks (CTBNs) which are a compact representation of multi-component
Markov processes with a sparse pattern of interactions. As research on such models is
still in its early stages, there is a large gap between the wealth of modeling languages,
learning procedures and inference algorithms available for more traditional domains
and those available for continuous-time domain.

In this dissertation we enhance the range of applications amenable for continuous-
time analysis by addressing these three issues. We begin by introducing a novel mod-
eling language, continuous-time Markov networks, which allows learning a compact
representation of the stationary distribution of a process. This modeling language is
particularly suitable for learning biological sequence evolution, whose dynamics are
dictated by an interplay between random mutations of individual components (nu-
cleotides in DNA and RNA or amino-acids in proteins) and the global fitness of the
resulting sequence. We derive an iterative procedure for learning this model from data,
where each iteration requires solving the inference problem, which we show how to
cast as a CTBN inference problem.

As the inference problem in CTBNs is crucial for learning both CTBNs and CTMNs
from data, it is the focus of the rest of this dissertation, where we derive three differ-
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ent approximate algorithms that are complementary to each other. These algorithms
adopt insights from existing state of the art methods for inference in finite dimensional
domains while exploiting the continuous time representation to obtain efficient and
relatively simple computations that naturally adapt to the dynamics of the process.

Our first inference algorithm is based on a Gibbs sampling strategy. This algo-
rithm samples trajectories from the posterior distribution given the evidence and uses
these samples to answer queries. We show how to perform this sampling step in an
efficient manner with a complexity that naturally adapts to the rate of the posterior
process. While it is hard to bound the required run-time in advance, tune the stopping
criteria, or estimate the error of the approximation, this algorithm is the first to provide
asymptotically unbiased samples for CTBNs.

A modern approach for developing state of the art inference algorithms for complex
finite dimensional models that are faster than sampling is to use variational principles,
where the posterior is approximated by a simpler and easier to manipulate distribu-
tion. To adopt this approach we show that candidate distributions can be parameterized
by a set of continuous time-dependent functions. This representation allows us to de-
velop a novel mean-field method, which approximates the posterior distribution using
a product of independent inhomogeneous Markov processes. While this assumption
introduces some bias, it results in a fast procedure. Moreover, it provides a lower
bound on the likelihood of observations, which is important for learning procedures
where we try to maximize the likelihood. This formulation results in an elegant al-
gorithm that involves passing information about the posterior distribution in terms of
continuous functions and processing these functions using sets of ordinary differential
equations, which in turn are solved using highly optimized standard solvers. As such
solvers can use an adaptive step size numerical integration, inference complexity is
low for components which have uniform dynamics in some time segments.

The novel representation of posterior distributions presented here allows to con-
sider variational approximations that are richer than mean-field thereby reducing the
bias introduced by this algorithm. Specifically, we introduce a belief propagation algo-
rithm that allows efficient inference while maintaining dependencies among different
components by representing joint marginal distributions of sub-processes defined over
overlapping clusters of components. Similarly to mean-field this results in a relatively
simple algorithm which incorporates numerical integration of continuous functions.
Empirical tests show that it leads to a significant improvement over mean-field provid-
ing highly accurate results on a range models.

iv



Contents

Abstract iii

1 Introduction 1
1.1 Modeling Stochastic Systems in Continuous-Time . . . . . . . . . . . 2

1.1.1 Continuous-Time Markov Processes . . . . . . . . . . . . . . 3
1.1.2 Continuous-Time Bayesian Networks . . . . . . . . . . . . . 4
1.1.3 Discretization Versus Continuous-Time Modeling . . . . . . . 5

1.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Sampling Based Approximations . . . . . . . . . . . . . . . 9
1.3.2 Variational Algorithms . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Challenges in the Continuous-Time Domain . . . . . . . . . . 10

1.4 Stationary Distributions of Structured Dynamic Processes . . . . . . . 11
1.5 Related Models and Applications . . . . . . . . . . . . . . . . . . . . 12
1.6 Research Goals and Thesis Outline . . . . . . . . . . . . . . . . . . . 13

2 Paper: Continuous-Time Markov Networks 15

3 Paper: Gibbs sampling in factorized continuous-time Markov processes 26

4 Paper: Mean field variational approximation for continuous-time Bayesian
networks 37

5 Paper: Continuous-Time Belief Propagation 77

6 Discussion 86
6.1 Modeling and Learning the Stationary Distribution . . . . . . . . . . 86
6.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Variational Approximations . . . . . . . . . . . . . . . . . . . . . . . 89

v



6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



Chapter 1

Introduction

Many real-life-tasks deal with complex dynamic systems that evolve in continuous-
time. For example, robots evaluate their state using measurements form a continuously
changing environment; Sensor networks evaluate fire hazard by measuring temperature
and pressure in different rooms; Genomes of evolving species experience mutations
that affect their structure and behavior. Such systems involve multiple components that
affect each others’ state through a network of interactions. Thus, a central challenge
in these domains is to reason about continuous-time multi-component systems.

The goals of studying such systems are to understand what are the rules that govern
the dynamics of the system as well as to predict the outcome of different scenarios. For
example, a robotic-car is driving on a rocky terrain. We want to infer the probability
that it will get stuck at different time points. The answer to this question depends both
on the readings in different sensors as well as on the characteristics of the connections
between its internal components.

A widely used approach to studying real world phenomena from measurements
is to construct a suitable class of probabilistic models, and to search for a specific
model that best fits the data [Koller and Friedman, 2009]. Applying this approach re-
quires three fundamental ingredients: a mathematical modeling language that captures
the essential characteristics of a process in a compact manner; a learning procedure,
allowing to estimate the structure and parametrization of a specific model from ob-
servations; and an inference procedure allowing to perform predictions given a model
and observations as well as to compute the likelihood of the observations. In this the-
sis, we deal with these three issues in the context of continuous-time multi-component
dynamic systems.
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Figure 1.1: A trajectory of the rover monitoring system

1.1 Modeling Stochastic Systems in Continuous-Time

Probabilistic models of dynamic systems are called stochastic processes. Formally, a
stochastic process is a collection of random variable {X(t)

} where t is a time index
and each X(t) assumes values from a set S termed the state space of the process. In
other words, X(t) describes the state of the system at time t. In a continuous-time
process t belongs to a continuous segment of the real numbers. In this thesis we
deal with multi-component processes where the random variables are vector valued
X(t) = (X(t)

1 , X(t)
2 , . . . , X(t)

D ) with a D-dimensional state-space S = S1×S2×. . .×SD

where each Si is finite.
For example, consider a simplified system for monitoring a robotic rover (adapted

from Ng et al. [2005]). One of the system’s role is to evaluate if one of the wheels
gets stuck according to some sensor inputs. The system has four binary components
whose state is one of {true,false} and indicating whether it is rainy, ground rockiness,
ground muddiness and the state of the wheel. The system also monitors the speed of
the robot (for simplicity let’s assume is zero, low or high). A trajectory of a dynamic
system describes the state of every component of the system at any time point. An
example for such trajectory is shown in Figure 1.1. In this example the system starts
in a non-rainy, non-muddy, non-rocky condition, the speed is zero and the wheel is not
stuck. At t = 0.92 speed becomes low; at t = 1.87 speed becomes high; at t = 4.9

the terrain gets rocky; and so on. A stochastic process defines a distribution over such
trajectories.
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1.1.1 Continuous-Time Markov Processes

A common assumption taken in stochastic modeling is that when a system is described
with sufficient detail its dynamics is Markovian; meaning that the future state is inde-
pendent of the past given full knowledge of the present state. Therefore, Markov pro-
cesses are ubiquitous in physics, chemistry, biology and technology [Gardiner, 2004].

A continuous-time Markov process (CTMP) is a stochastic process satisfying

Pr(X(tk+1) = xk+1|X
(tk) = xk, . . . ,X

(t1) = x1) = Pr(X(tk+1) = xk+1|X
(tk) = xk)

for every t1 < . . . < tk < tk+1 and states x1, . . . ,xk,xk+1. A CTMP is time-

homogeneous if the conditional probability Pr(X(t) = y|X(s) = x) depends on the
time difference t− s between the events regardless of the absolute time in which they
took place.

When modeling a stochastic system, we want to capture its dynamics using a com-
pact and intuitive parameterization. Such characterization should allow us to compute
the probability of any finite number of point observations. The Markov assumption
implies that a set of time-dependent conditional distributions is sufficient. Addition-
ally, homogeneity allows to write these conditional distributions as time dependent
transition matrices

px,y(t) ≡ Pr(X(s+t) = y|X(s) = x),

giving

Pr(X(tk) = xk, . . . ,X
(t1) = x1) = Pr(X(t1) = x1)

k−1�

j=1

pxj ,xj+1(tj+1 − tj) .

Therefore, the state distribution in a finite number of time points is characterized by an
initial distribution and a time dependent matrix whose entries are px,y(t).

Under mild assumptions, the transition matrix have a simple parameterization.
First, px,y(0) = 11x=y, where 11 is the indicator function. Next, assuming px,y(t) is
continuous at t = 0 for every x and y, these functions are also differentiable at t = 0.
Their derivatives,

qx,y = lim
h→0

px,y(h)− 11x=y

h
,

are the entries of the rate matrix Q. This equation implies that for small enough h

and for x �= y, the transition function satisfies px,y(h) ≈ qx,yh. Intuitively, higher
transition rate from x to y implies higher probability of making this transition in a
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given time interval. By using this rate matrix it is possible to obtain the transition
functions for any time interval with length t by computing

px,y(t) = [exp(Qt)]x,y, (1.1)

where exp(A) is the matrix exponential, defined by the Tailor series,

exp(A) = I+
∞�

k=1

Ak

k!
.

Thus, the rate matrix Q characterizes the dynamics of the process (see Chapter 4 Sec-
tion 2.1 for more details).

Continuous-time Markov processes have been thoroughly studied in the past cen-
tury, giving rich and elegant mathematical foundations [Chung, 1960, Gardiner, 2004].
However, the problem of modeling such processes in large systems having many com-
ponents is still in its early stages. The first challenge in that direction is constructing an
appropriate modeling language. As the number of states is exponential in the number
of components, a naive parameterization of a multi-component process requires a huge
rate matrix.

1.1.2 Continuous-Time Bayesian Networks

To cope with the parameterization challenge we can make a reasonable assumption
stating that in many applications interactions are sparse. In other words, the dynamics
of every component is influenced by a small number of other components. Continuous-

time Bayesian networks (CTBN) is an elegant modeling language suitable for such
systems proposed by Nodelman et al. [2002]. A CTBN is composed of a directed graph
where each node represents a component in the system and the edges represent direct
influences between components. In this model it is assumed that only one component
can change at a time, and transitions rates of a specific component depend only on its
current state and on the state of its parents in the graph.

Formally, CTBNs are a subclass of multi-component CTMPs in which the rate
matrix has a structure that corresponds to the graph structure. This CTMP is param-
eterized by conditional rates qi|Pai

xi,yi|ui
, denoting the change rate of component i given

the state ui of its parents Pai. The entries of the rate matrix of the multi-component
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Figure 1.2: A CTBN describing a simplified robotic rover monitoring system

process are

qx,y =






qi|Pai

xi,yi|ui
δ(x,y) = {i}

�
i q

i|Pai

xi,xi|ui
x = y

0 otherwise,

where δ(x,y) = {i|xi �= yi} is the number of components that differ between x

and y. Figure 1.2 presents a CTBN of the rover monitoring system. In this example,
ground muddiness is only directly influenced by the rain condition. Note the cyclic
dependency between the wheel-stuck and the speed. In this rover CTBN, the entry
that corresponds to changing the state of X2 from x2 to y2 while the rest of the system
remains in state Xi = xi for every i �= 2 is written as

q{x1,x2,x3,x4,x5},{x1,y2,x3,x4,x5} = q1|2x2,y2|x1
,

where q1|2x2,y2|x1
is a conditional rate parameter of X2 given the state x1 of X1.

This representation is both compact as well as providing a meaningful map of
the interplay between different components. For example, as the rover system has
2 × 2 × 2 × 2 × 3 = 48 states, a CTMP describing this system requires a full rate
matrix with 482 = 2304 parameters. On the other hand, the rover CTBN involves
22 + 2 × 22 + 22 + 8 × 32 + 6 × 22 = 112 parameters. A thorough introduction to
CTBNs is provided in Chapter 4 Section 2.2.

1.1.3 Discretization Versus Continuous-Time Modeling

Before we begin addressing issues of continuous-time modeling, we should examine
the alternative approach for using discrete-time models. A common approach to prob-
abilistic modeling of dynamic systems is using dynamic Bayesian networks (DBNs),
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which are a compact representation for discrete-time Markov processes. To apply such
models we discretize time into regular intervals of length h. A dynamic Bayesian net-
work on the sampled time points tk = kh is composed of random variable set {X(tk)

i }

describing the state of component i at time tk. The conditional distribution of X(tk+1)

given a specific state of X(tk) is modeled using a directed acyclic graph whose nodes
represent random variable and edges represent direct probabilistic dependencies of
nodes on their parents. The joint distribution of the process is parameterized by a set
of local conditional probability tables for every variable X(tk+1)

i given the state of its
parents in the graph. Therefore, the size of this representation depends on the sparse-
ness of the graph. Although the inference and learning problems are intractable even
for DBNs with sparse graphs, there are numerous works aiming at providing approxi-
mate solutions to these problems.

Using a discretized model for a continuous-time process have several limitations
[Nodelman et al., 2003]. First, using a too small sampling interval h induces com-
putational overhead while a coarse discretization looses information. Moreover, often
different components evolve at different time scales and even the typical evolution rate
of a single component can change across time. Therefore, there is no natural time scale
suitable for discretizing the process.

Another important limitation is that while learning the topology of the graph of a
DBN the resulting structure is dependent on the length of the time scale h. For a large
enough time interval the state of a specific component depends not only on the subset
that directly influence its dynamics, but also on additional components that influence
this subset. The bigger h is, the larger the number of components that affect its state
through such indirect interactions, resulting in a denser graph. This phenomenon is
known as entanglement. Denser DBNs in turn require a larger number of parameters
leading to less accurate statistical estimates. Additionally, they obscure the true struc-
ture of the process making it hard to distinguish between direct and indirect influences.

Reasoning on structured process directly in continuous-time can potentially lead
to more accurate and succinct models (as demonstrated by Nodelman et al. [2003]
in numerical experiments). Additionally, algorithms for continuous-time models can
be more efficient, spending computational efforts in an adaptive manner. However,
further research is required to bring this potential into practice.
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1.2 Learning

Learning CTBNs is the process of constructing a specific model that describes empir-
ical observations of the state of the system taken at different time points. This process
involves both parameter estimation to evaluate the intensities of direct influences ob-
served in the data, as well as structure learning performed by searching a graph that
describes the structure of these influences. In this thesis, we assume the structure of
the model is given and focus on the first problem.

The maximum likelihood approach to parameter estimation searches for a set of
parameters that maximize the probability of the observed data. Applying this approach
to CTMPs is straightforward given fully observed data . Such a data set is composed
of trajectories of the process, which describe the state of the system at any time point
(Figure 1.1). Each trajectory can be characterized by a finite sequence of states and
transition times between them. In that case, the maximum likelihood estimator q̂x,y
is a function of the observed residence time in state x denoted by Tx; and the number
of transitions from x to y denoted by Mx,y. It is given by q̂x,y = Mx,y

Tx
. This equation

has an appealing intuition: the best estimator for transition rates is the number of
observed transitions divided by the residence time in the source state. Consequently,
Tx and Mx,y are sufficient statistics for CTMPs, meaning that they summarize the data
needed to compute the likelihood of the model.

Generalizing this property, the maximum likelihood estimator of a CTBN is also a
function of sufficient statistics:

q̂i|Pai

xi,yi|ui
=

M i|Pai

xi,yi|Pai

T i|Pai

xi|ui

,

where T i|Pai

xi|ui
is the residence time of Xi in state xi while his parents are in state ui,

and M i|Pai

xi,yi|Pai
is the number of transition of that Xi underwent from xi to yi while his

parents were in state ui [Nodelman et al., 2003]. Thus, in the case of fully observed
trajectories parameter estimation of CTBN involves simple operations with sufficient
statistics.

However, in typical applications only partial observations are available, report-
ing on the state of the system at specific time points or across short sub-intervals and
possibly of only a subset of components. In that case, the sufficient statistics are unob-
served. To handle this case, Nodelman et al. [2005a] proposed an iterative expectation

maximization procedure for finding a local maximum of the likelihood function. This
procedure starts by choosing some initial parameters. Then, on each iteration an ex-
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pectation step computes the expected values of the required sufficient statistics given
the partially observed data and the current model; a maximization step then maximize
the estimators using the expected sufficient statistics as done in the fully observed case.
The computationally challenging step is this procedure is the expectation step which
requires to infer expected statistics in a CTBN.

1.3 Inference

Once we have a probabilistic model and partial evidence we can use it to reason about
unseen events. Evidence may include complete point observations such as X(0) = e0,
partial point observations such as X(20)

1 = true and X(20)
2 = false and interval obser-

vations such as X([3.2,7])
1 = true, meaning that X1 is true throughout the time interval

[3.2, 7]. Inference is the task of answering queries about the posterior distribution given
a series of such evidence. Possible queries include:

1. Posterior marginal distributions of some components X(t)
i in specific time points.

2. Expectations of statistics given the evidence, such as expected residence time or
number of transitions of some components

3. The likelihood of the evidence

As showed in the previous section, in addition to its role in performing predictions,
inference is a an important element of learning. Expectations are used for searching
optimal parameters and the likelihood allows monitoring the progress of the learning
process.

Since CTBNs are a subclass of CTMPs, exact inference can be performed in small
models. For example, posterior probabilities are computed using time dependent tran-
sition probabilities px,y(t), which in turn can be computed by exponentiation of the
rate matrix as described in Equation 1.1. However, the complexity of these operations
scales with the size of the state-space which in turn is exponential in the number of
components. Therefore, beyond a modest number of components we have to resort to
approximations, which are the subject of chapters 3-5.

Approximate inference in multivariate models is a computationally challenging
task. It is an active field of research rooted in physics (e.g. Metropolis et al. [1953])
and statistics [Gelman et al., 2003] and is still a hot research area in machine learning.
Different algorithms provide different trade-off and are suited for different purposes.
The inference problem is considered particularly hard in dynamic models, leading to

8



specialized research and algorithms for discrete-time models [Murphy, 2002, Koller
and Friedman, 2009] and recently for continuous-time models. Generally, the wealth
of approximate inference algorithms falls into two main categories: sampling based
[Gilks et al., 1996] and variational approximations [Wainwright and Jordan, 2008].
Here, we briefly describe these two approaches in the context of continuous-time mod-
els.

1.3.1 Sampling Based Approximations

Sampling-based inference is a randomized approach to estimating expectations of ran-
dom variables. In the context of continuous-time processes sampling algorithms at-
tempt to generate independent samples from the posterior distribution over trajectories
such as those depicted in Figure 1.1. Such methods estimate the expectation of a ran-
dom variable f by taking m samples σ[1], . . . , σ[m] from the posterior distribution and
calculating the mean of these samples

Êσ1:m [f ] =
1

m

m�

i=1

f(σ[i]) .

For example, f can be a number of transitions, expected residence time or any other
property of a given trajectory. Whenever σ[i] are generated exactly from the posterior,
this estimator is unbiassed, meaning that its expectation equals the estimated quan-
tity. Moreover, if the samples are independent then the variance of this estimator is
diminishes with 1

m . In that case, as the number of sample increases the expected error
decreases at a rate of 1√

m .
While the tasks of sampling trajectories given evidence at t = 0 and of calculating

the likelihood of a given sample are straightforward, sampling is more challenging
for a general type of evidence. Recent works attempt to address this problem using
a strategy called importance sampling in which samples are taken from a distribution
different than the posterior and the contribution of each on of them is weighted accord-
ing to their true posterior likelihood [Ng et al., 2005, Fan and Shelton, 2008, Fan et al.,
2010]. These algorithms have an anytime property meaning that the error decreases
as more samples are taken. However, in the case of low-probability point evidence
the bias of the estimator decreases at a low rate and the procedure requires many sam-
ples. In Chapter 3 we present a sampling algorithm that works well regardless of the
likelihood of the evidence.
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1.3.2 Variational Algorithms

A modern approach for developing state of the art inference algorithms for complex fi-
nite dimensional models, which are generally faster than sampling, is to use variational
principles. Variational algorithms approximate the posterior by simpler distributions.
The specific approximation is chosen by searching the set of candidate distributions
for the one that is closest to the posterior. A crucial point in applying this approach to
continuous-time models is to define an appropriate representation of candidate distri-
butions.

Nodelman et al. [2005b] applied this approach to CTBNs using a piecewise ho-
mogeneous representation over clusters of subsets of components. For each cluster
Ci ⊆ {1, . . . , D} the algorithm maintains a series of demarcation points ti,1, . . . , ti,ni

and a set of rate matrices one for each segment. Thus, the algorithm represents the
posterior over each cluster as Markov process whose rates are constant within seg-
ments (ti,k, ti,k+1) but may change between these segments. The parameters of the
rate matrices are updated using a message passing scheme which involves both update
form a cluster Ci to Cj about the distribution over Ci ∩Cj as well as messages between
consecutive segments within a cluster. This scheme is designed to search for rate pa-
rameters such that distributions over cluster are as close as possible to the posterior
and such that pairs of clusters agree on the distribution over their intersection. Saria
et al. [2007] improved this method by proposing an automatic procedure for choosing
the boundaries of the homogeneous segments. This algorithm involves an elaborate
message passing scheme which involves both updates of the parameterization as well
as maintenance of the partition into segments. In Chapters 4 and 5 we present two
variational algorithms that use an alternative representation of the posterior, which is
both richer and simpler to handle.

1.3.3 Challenges in the Continuous-Time Domain

Approximate inference algorithms in discrete multivariate probabilistic have different
tradeoffs. For example, some sampling algorithms are asymptotically unbiased while
in many cases variational are very efficient. The dynamic nature of CTBNs and specif-
ically the continuous-time domain impose additional specific issues: How should we
sample continuous-time trajectories? How should we represent an approximation of
the posterior in a manner that facilitates efficient computations while maintaining rich
expressiveness? How do we handle processes whose components evolve in differ-
ent time granularities that are unknown a-priory? On the other hand, as discussed in
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Section 1.1.3, continuous-time modeling should have crucial advantages over poten-
tial disadvantages. Therefore, a major goal of this thesis is to address these issues in
order to provide relatively simple and efficient algorithms by adopting principles from
discrete models while exploiting the benefits of continuous-time modeling (Chapters
3-5).

1.4 Stationary Distributions of Structured Dynamic Pro-
cesses

While CTBNs provide an intuitive modeling language for a wide range of domains, in
some cases a model with different semantics is needed. An important example is evo-
lution of living organisms which is driven by two opposing forces: random mutations

in genomes of species and by natural selection . At the molecular level, these forces
result in continuous change in DNA, RNA and protein sequences. The wealth genome
sequences of different species, as well as structural and functional characterization of
some molecules, enable an intensive study in the field of molecular evolution. Re-
search on that direction requires dynamic models which enable us to learn the process
in a manner that untwines selection constraints from random mutations.

To illustrate this type of dynamics let us examine the constraints acting on RNA
molecules. An RNA molecule is a long chain of small molecules called nucleotides,
each is one of four types denoted by A, C, G and U. The sequence of such a molecule
determines the three dimensional structure to which it folds, which in turn determines
its function. An essential factor that determines the structure on an RNA molecule is
base-pairing, an interaction which involves either {A,U} pairs or {C,G} pairs. For
example, in the RNA molecule depicted in Figure 1.3 the nucleotides in positions 30
and 37 are spatially adjacent as a result of such interactions. The stability of an RNA
molecule depends also on stacking interactions between adjacent pairs such as between
the pair in positions 30 and 37 and the pair positions 29 and 38. The network of such
interactions and others induce constraints on the identity of nucleotides which should
be maintained in an evolving molecule. The probability that a random mutation gets
fixed in a population depends on the global fitness of the resulting molecule. To study
evolution given a set of RNA sequences, we should be able to discern the effect of
random mutations from the effect of the forces and interactions that determine fitness.

One approach to learning selection constraints is to attempt inferring the stationary

11



Figure 1.3: Secondary structure of a subsequence of an RNA molecule.

distribution of the process

πx = lim
t→∞

Pr(X(t) = x|X(0) = y) ,

which under reasonable assumptions is unique, meaning that it does not depend on the
initial state y. The premise of this approach is that sequences x satisfying the selection
constraints are likely to survive within populations in the long term. Therefore, the
stationary distribution assigns high probability to such sequences.

As the number of possible sequences is exponential, a naive representation of the
stationary distribution is impractical and not informative. Hence, a useful represen-
tation of this distribution should have a more compact form. Importantly, such rep-
resentation should be learnable from temporal data, where samples are taken across
different time points and are not independent. In Chapter 2 we address this problem
by introducing a novel continuous-time modeling language, in which there is a direct
relation between the representation of transient dynamics and the stationary distribu-
tion.

1.5 Related Models and Applications

Several continuous-time learnable models were applied in several domains since the
introduction of CTBNs . Different models can be classified according to the structure
of the state-space, the nature of influences between components and the observation
model.

One category of models include processes with discrete state spaces. Fan and
Shelton [2009] presented an application of CTBNs to modeling the dynamics of social
networks. Gopalratnam et al. [2005] introduced an extended CTBN model in which
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the distribution of a component’s transition time given its parents is richer than the one
of CTBN. Rajaram et al. [2005] introduced Poisson-network where each component
is a Poisson process whose rate depends on its parents in the graph. In this model each
component is a counting process, meaning that it can take any non-negative integer
value. Another model with conditional Poisson processes yet with a different depen-
dency structure was introduced by Simma et al. [2008] and was applied to modeling
information traffic in computer networks.

A continuous-time Markov model with discrete state space but with noisy obser-
vations was presented by Opper and Sanguinetti [2007]. In this model the hidden
components are counting processes representing the number of species an ecological
application and number of molecules in a molecular-biology application.

Another category of models includes both discrete and continuous valued compo-
nents. Ng et al. [2005] introduced a state estimation model of an experimental NASA
Mars rover. The discrete components dynamics is modeled by a CTBN, whereas
continuous-time components follow nonlinear noisy dynamics that depends on the
state of the discrete ones. Continuous time components are observed with some mea-
surement noise. Hybrid models were also used to analyze gene expression dynamics
in cells using a simple system involving one or two stochastic elements [Sanguinetti
et al., 2009, Opper and Sanguinetti, 2010].

Purely continuous-state models with intra-component interactions can be repre-
sented as stochastic differential equations. Archambeau et al. [2007] presented an
approximate inference method for such models.

Additional models include spatio-temporal processes, which describe the dynamics
of system of particles that diffuse through space, and can participate in chemical reac-
tions. A potential application demonstrated for this model is analyzing the dynamics
of substances affecting the development of a fruit fly embryo [Ruttor and Opper, 2010,
Dewar et al., 2010]. Finally, continuous-time topic models represent the evolution of
distributions of words given each topic [Wang et al., 2008].

The above works handle the inference and learning problems using approxima-
tions that are suitable for these specific models. In this thesis we focus on structured
discrete-state processes with noiseless evidence.

1.6 Research Goals and Thesis Outline

This thesis deals with the three elements required to reason about the continuous-time
dynamic of structured systems: representation, learning and inference. We begin by

13



addressing the first two elements (Chapter 2). Then we shall devote a major part of this
thesis to deal with the computationally intensive inference problem. We develop three
different approximations, each one with different tradeoffs, aiming to provide a set of
tools suitable for different stages in the study of dynamic systems (Chpaters 3-5).

Chapter 2 presents a new modeling language providing an explicit representation
of the stationary distribution which is compact and learnable from temporal data [El-
Hay et al., 2006]. Our motivating application is modeling co-evolution of interacting
elements in bio-sequences, an intensively studied problem in the field of molecular
evolution. However, the proposed model is general, as it is equivalent to a large sub-
class of processes that can be modeled by CTBNs.

The goal of our efforts on the inference problem is to achieve high accuracy, effi-
ciency and simplicity. Our strategy is to use solid theoretical foundations of inference
in discrete models, combined with well studied algorithms for handling continuous
time-dependent functions, such as adaptive numerical integration.

In Chapter 3 we present an inference algorithm based on a Gibbs sampling strategy
[El-Hay et al., 2008]. This procedure - rather than sampling a fixed number of random
variables at a time - samples complete trajectories. Similarly to its discrete counterpart,
the resulting estimates converge to the true ones, but convergence rates may be slow
and hard to monitor.

Chapter 4 introduces an intuitive representation of posterior distributions in terms
of continuous functions, and use a simplified version of this representation to develop
a mean-field algorithm [Cohn et al., 2010]. This algorithm is not only fast but also is
the only one that computes a lower bound on the probability of evidence. Although it
is biased, it provides good results in the context of molecular-evolution.

Finally, in Chapter 5 we introduce a belief propagation algorithm that is based on
similar principles developed for the mean-field algorithm, yet uses a richer representa-
tion for the posterior [El-Hay et al., 2010]. Whereas the mean field algorithm is faster
and has convergence guaranties, this algorithm gives highly accurate results in a broad
set of regimes.
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Abstract

A central task in many applications is reason-
ing about processes that change over continu-
ous time. Recently, Nodelman et al. introduced
continuous time Bayesian networks (CTBNs), a
structured representation for representing Con-

tinuous Time Markov Processes over a structured
state space. In this paper, we introduce contin-

uous time Markov networks (CTMNs), an alter-
native representation language that represents a
different type of continuous-time dynamics, par-
ticularly appropriate for modeling biological and
chemical systems. In this language, the dynam-
ics of the process is described as an interplay
between two forces: the tendency of each en-
tity to change its state, which we model using a
continuous-time proposal process that suggests
possible local changes to the state of the system
at different rates; and a global fitness or energy

function of the entire system, governing the prob-
ability that a proposed change is accepted, which
we capture by a Markov network that encodes
the fitness of different states. We show that the
fitness distribution is also the stationary distribu-
tion of the Markov process, so that this represen-
tation provides a characterization of a temporal
process whose stationary distribution has a com-
pact graphical representation. We describe the
semantics of the representation, its basic proper-
ties, and how it compares to CTBNs. We also
provide an algorithm for learning such models
from data, and demonstrate its potential benefit
over other learning approaches.

1 Introduction
In many applications, we reason about processes that
evolve over time. Such processes can involve short time
scales (e.g., the dynamics of molecules) or very long ones
(e.g., evolution). In both examples, there is no obvious dis-
crete “time unit” by which the process evolves. Rather, it is
more natural to view the process as changing in a continu-
ous time: the system is in some state for a certain duration,

and then transitions to another state. The language of con-

tinuous time Markov processes (CTMPs) provides an ele-
gant mathematical framework to reason about the probabil-
ity of trajectories of such systems. Unfortunately, when we
consider a system with multiple components, this represen-
tation grows exponentially in the number of components.
Thus, we aim to construct a representation language for
CTMPs that can compactly encode natural processes over
high-dimensional state spaces. Importantly, the representa-
tion should also facilitate effective inference and learning.

Recently, Nodelman et al. [8, 9, 10, 11] introduced the
representation language of continuous time Bayesian net-

works (CTBNs), which provides a factorized, component-
based representation of CTMP: each component is charac-
terized by a conditional CTMP dynamics, which describes
its local evolution as a function of the current state of its
parents in the network. This representation is natural for
describing systems with a sparse structure of local influ-
ences between components. Nodelman et al. provide algo-
rithms for efficient approximate inference in CTBNs, and
for learning them from both complete and incomplete data.

In this paper, we introduce continuous time Markov net-

works, which have a different representational bias. Our
motivating example is modeling the evolution of biological
sequences such as proteins. In this example, the state of the
system at any given time is the sequence of amino acids en-
coded by the gene of interest. As evolution progresses, the
sequence is continually modified by local mutations that
change individual amino acids. The mutations for different
amino acids occur independently, but the probability that
these local mutations survive depends on global aspects of
the new sequence. For example, a mutation may be ac-
cepted only if the new sequence of amino acids folds prop-
erly into a functional protein, which occurs only if pairs of
amino acids that are in contact with each other in the folded
protein have complementary charges. Thus, although the
modifications are local, global constraints on the protein
structure and function introduce dependencies.

To capture such situations, we introduce a representa-
tion where we specify the dynamics of the process using
two components. The first is a proposal process that at-
tempts to change individual components of the system. In
our example, this process will determine the rate of random



mutations in protein sequences. The second is an equilib-
rium distribution, which encodes preferences over global
configurations of the system. In our example, an approx-
imation of the fitness of the folded protein. The equilib-
rium distribution is a static quantity that encodes prefer-
ences among states of the system, rather than dynamics of
changes. The actual dynamics of the system are determined
by the interplay between these two forces: local mutations
and global fitness. We represent the equilibrium distribu-
tion compactly using a Markov network, or, more gener-
ally, a feature-based log-linear model.

Importantly, as we shall see, the equilibrium distri-
bution parameter is indeed the equilibrium distribution of
the process. Thus, our representation provides an explicit
representation of both the dynamics of the system and its
asymptotic limit. Moreover, this representation ensures
that the equilibrium distribution has a pre-specified sim-
ple structure. Thus, we can view our framework as a
continuous-time Markov network (CTMN) — a Markov
network that evolves over continuous time. From a differ-
ent perspective, our representation allows us to capture a
family of temporal processes whose stationary distribution
has a certain locality structure. Such processes occur often
in biological and physical systems. For example, recent re-
sults of Socolich et al. [13] suggest that pairwise Markov
networks can fairly accurately capture the fitness of protein
sequences.

We provide a reduction from CTMNs to CTBNs, allow-
ing us to use CTBN algorithms [7, 11] to perform effective
approximate inference in CTMNs. More importantly, we
also provide a procedure for learning CTMN parameters
from data. This procedure allows us to estimate the station-
ary distribution from observations of the system’s dynam-
ics. This is important in applications where the stationary
distribution provides insight about the domain of applica-
tion. In the protein evolution example, the stationary dis-
tribution provides a description of the evolutionary forces
that shape the protein and thus gives important clues about
protein structure and function.

2 Reversible Continuous Time Markov
Processes

We now briefly summarize the relevant properties of con-
tinuous time Markov processes that will be needed below.
We refer the interested reader to Taylor and Karlin [14] and
Chung [2] for more thorough expositions. Suppose we have
a family of random variables {X(t) : t ≥ 0} where the
continuous index t denotes time. A joint distribution over
these random variables is a homogeneous continuous time

Markov process (CTMP) if it satisfies the Markov property

Pr(X(tk+1)|X(tk), . . . ,X(t0)) = Pr(X(tk+1)|X(tk))

for all tk+1 > tk > . . . > t0, and time-homogeneity,

Pr(X(s+ t) = y|X(s) = x) =

Pr(X(s� + t) = y|X(s�) = x)

for all s, s� and t > 0.
The dynamics of a CTMP are fully determined by the

Markov transition function,

px,y(t) = Pr(X(s+ t) = y|X(s) = x),

where time-homogeneity implies that the right hand side
does not depend on s. Provided that the transition function
satisfies certain analytical properties (see [2]) the dynamics
are fully captured by a constant matrix Q — the rate, or
intensity matrix — whose entries qx,y are defined by

qx,y = lim
h↓0

px,y(h)− 11{x = y}

h
, (1)

where 11{} is the indicator function which takes the value 1
when the condition in the argument holds and 0 otherwise.
The Markov process can also be viewed as a generative pro-
cess: The process starts in some state x. After spending a
finite amount of time at x, it transitions, at a random time,
to a random state y �= x. The transition times to the var-
ious states are exponentially distributed, with rate parame-
ters qx,y . The diagonal elements of Q are set to ensure the
constraint that each row sums up to zero.

If the process satisfies certain conditions (reachability)
then the limit

πx = lim
t→∞

py,x(t)

exists and is independent of the initial state y. That is, in
the long time limit, the probability of visiting state x is in-
dependent of the initial state at time 0. The distribution
πx is called the stationary distribution of the process. A
CTMP is called stationary if P (X(0) = x) = πx, that
is, if the initial state is sampled from the stationary distri-
bution. A stationary CTMP is called reversible if for every
x,y, and t > 0

Pr(X(t) = y|X(0) = x) = Pr(X(0) = y|X(t) = x).

This condition implies that the process is statistically
equivalent to itself running backward in time. Reversibil-
ity is intrinsic to many physical systems where the micro-
scopic dynamics are time-reversible. Reversibility can be
formulated as a property on the Markov transition function,
where for every x,y, and t > 0

πxpx,y(t) = πypy,x(t).

This identity is known as the detailed balance condition.
To better understand the constraint, we can examine the
implications of reversibility on the rate matrix Q.



Proposition 2.1: A CTMP is reversible if and only if its rate

matrix can be expressed as

qx,y = πysx,y,

where sx,y are the entries of a symmetric matrix (that is,

sx,y = sy,x).

In other words, in a reversible CTMP, the asymmetry in
transition rates can be interpreted as resulting entirely from
preferences of the stationary distribution.

3 Continuous Time Metropolis Processes
We start by considering a reformulation of reversible
CTMPs as a continuous time version of the Metropolis
sampling process. We view the process as an interplay be-
tween two factors. The first is an unbiased random pro-
cess that attempts to transition between states of the system,
and the second is the tendency of the system to remain in
more probable states. This latter probability is taken to be
the stationary distribution of the process. The structure of
the process can be thought of as going through iterations
of proposed transitions that are either accepted or rejected,
similar to the Metropolis sampler [6].

To formally describe such a process, we need to de-
scribe these two components. The first is the unbiased pro-
posal of transitions. These proposals occur at fixed rates.
We denote by rx,y the rate at which proposals to transition
x → y occur. This in effect defines a CTMP process with
rate matrix R. To ensure an unbiased proposal, we require
R to be symmetric. (The stationary distribution of a sym-
metric rate matrix is the uniform distribution.)

The second component is a decision whether to accept
or reject the proposed transition. The decision whether to
accept the transition x → y depends on the probability
ratio of these states at equilibrium. We assume that we are
given a target distribution, which should coincide with the
equilibrium distribution π. As we shall see, to reach the
target equilibrium distribution, the acceptance probability
should satisfy a simple condition. To make this precise, we
assume we have an acceptance function f that takes as an
argument the ratio πy/πx and returns the probability of
accepting transition x → y. This function should return a
value between 0 and 1, and satisfy the functional relation

f(z) = zf

�
1

z

�
. (2)

Two functions that satisfy these conditions are

fMetropolis(z) = min(1, z)

flogistic(z) =
1

1 + 1
z

.

The function fMetropolis is the standard one used in Metropo-
lis sampling. The function flogistic is closely linked to logis-
tic regression. It is continuously differentiable, which, as
we shall see, facilitates the subsequent analysis.

Formally, a continuous time Metropolis process is de-
fined by a symmetric matrix R, a distribution π, and a
real-valued function f . The semantics of the process are
defined in a generative manner. Starting at an initial state
x, the system remains in the state until receiving a proposed
transition x → y with rate rx,y . This proposal is then ac-
cepted with probability f(πy/πx). If it is accepted, the
system transitions to state y; otherwise it remains in state
x. This process is repeated indefinitely.

To formulate the statistical dynamics of the system,
consider a short time interval h. In this case, the probability
of a proposal of the transition x → y is roughly h · rx,y .
Since the proposed transition is accepted with probability
f(πy/πx), we have:

px,y(h) ≈ h · rx,y · f

�
πy

πx

�
.

Plugging this into Eq. (1) we conclude that the off-diagonal
elements of Q are

qx,y = rx,y · f

�
πy

πx

�
. (3)

Proposition 3.1: Consider a continuous time Metropolis

process defined as in Eq. (3). Then, this CTMP is re-

versible, and its stationary distribution is π.

Proof: The condition on f implies that

1

πy
f

�
πy

πx

�
=

1

πx
f

�
πx

πy

�
,

Thus, it follows that qx,y is of the form sx,yπy , i.e., that
the process is reversible. Moreover, it implies that the sta-
tionary distribution of the process is π.

The inverse result is also easy to obtain.

Proposition 3.2: Any reversible CTMP can be represented

as a continuous time Metropolis process.

Proof: According to Proposition 2.1 we can write qx,y =
πysx,y for a symmetric matrix sx,y . Define

rx,y = sx,y
πy

f
�

πy

πx

� ,

so that qx,y = rx,y · f
�

πy

πx

�
. Together, sx,y = sy,x and

Eq. (2) imply that rx,y = ry,x. Thus, R is symmetric and
together with π defines a continuous time Metropolis pro-
cess which is equivalent to the original reversible CTMP.

We conclude that continuous time Metropolis processes
are a general reparameterization of reversible CTMPs.

4 Continuous Time Markov Networks
We are interested in dealing with structured, multi-
component systems, whose state description can be viewed



as an assignment to some set of state variables X =
�X1, X2, . . . , Xn�, where each Xi assumes a finite set of
values. The main challenge is dealing with the large state
space (exponential in n). We aim to find succinct repre-
sentations of the system’s dynamics within the framework
of continuous time Metropolis processes. We do so in two
stages, first dealing with the proposal rate matrix R, and
then with the equilibrium distribution π.

Our first assumption is that proposed transitions are lo-
cal. Specifically, we require that, for x �= y

rx,y =

�
rixi,yi

(xj = yj) ∀j �= i
0 otherwise (4)

where Ri = {rixi,yi
} are symmetric local transition rates

for Xi. Thus, we allow only one component to change at
a time and the proposal rates do not depend on the global
state of the system.

The second assumption concerns the structure of the
stationary distribution π. Log-linear models or Markov

networks provide a general framework to describe struc-
tured distributions. A log-linear model is described by a set
of features, each one encoding a local property of the sys-
tem that involves few variables. For example, the function
11{X1 = X2} is a feature that only involves two variables.

A feature-based Markov network is defined by a vec-
tor of features, s = �s1, . . . , sK�, where each feature sk
assigns a real number to the state of the system. We fur-
ther assume that each feature sk is a function of a (usually
small) subset Dk ⊆ X of variables. We use the nota-
tion x|Dk to denote the projection of x on the subset of
variables Dk. Thus, sk is a function of x|Dk ; however,
for notational convenience, we sometimes use sk(x) as a
shorthand for sk(x|Dk).

Based on a set of features, we define a distribution by
assigning different weights to each feature. These weights
represent the relative importance of each feature. We use
the notation θ = �θ1, . . . , θK� ∈ IRK to denote the vec-
tor of weights or parameters. The equilibrium distribution
represented by s and θ takes the log-linear form

πx =
1

Z(θ)
exp

�
�

k

θk · sk(x|Dk)

�
, (5)

where the partition function Z(θ) is the normalizing factor.
The structure of the equilibrium distribution can be rep-

resented as an undirected graph G — the nodes of G rep-
resent the variables {X1, . . . , Xn}. If Xi, Xj ∈ Dk for
some k, then there is an edge between the corresponding
nodes. Thus, for every feature sk, the nodes that represent
the variables in Dk form a clique in the graph G. We define
the Markov Blanket, NG(i), of the variable Xi as the set of
neighbors of Xi in the graph G [12].

Example 4.1 : Consider a four-variable process
{X1, X2, X3, X4}, where each variable takes binary

(a)

X2X4

X3

X1

(b)

X2X4

X3

X1

Figure 1: (a) The Markov network structure for Exam-
ple 4.1. (b) The corresponding CTBN structure.

values, with the following set of features:

s1(X1) = 11{X1 = 1} s5(X1, X2) = 11{X1 = X2}

s2(X2) = 11{X2 = 1} s6(X2, X3) = 11{X2 = X3}

s3(X3) = 11{X3 = 1} s7(X3, X4) = 11{X3 = X4}

s4(X4) = 11{X4 = 1} s8(X1, X4) = 11{X1 = X4}

Note that all these features involve at most two variables.
The corresponding graph structure is shown in Figure 1(a).
In this example N(1) = {X2, X4}, N(2) = {X1, X3},
N(3) = {X2, X4}, and N(4) = {X1, X3}.

We now take advantage of the structured representation
of both R and π to get a more succinct representation of
the rate matrix Q of the process. We exploit the facts that
π appears explicitly in the rate only as a ratio πy/πx, and
moreover that the proposal process includes only transi-
tions that modify a single variable. Thus, we only examine
ratios where y and x agree on all variables but one. It is
straightforward to show that if x and y are two states that
are identical except for the value of Xi and ui = x|N(i),
then

πy/πx = gi(xi → yi|ui),

where

gi(xi → yi|ui) =

exp

�
�

k:Xi∈Dk

θk[sk(yi,ui)− sk(xi,ui)]

�
.

Note that, if Xi ∈ Dk, then Dk ⊆ N(i)∪ {Xi}. Thus, the
function gi is well defined.

Thus, the acceptance probability of a change in Xi de-
pends only on the state of variables in its Markov blanket.
This property is heavily used for Gibbs sampling in Markov
networks. Depending on the choice of features, these de-
pendencies can be very sparse, or involve all the variables
in the process.

To summarize, assuming a local form for R and a log-
linear form for π, we can further simplify the definition of
the rate matrix Q. If x and y are two states that differ only
in the i’th variable, then

qx,y = rixi,yi
f(gi(xi → yi|ui)), (6)

where ui = x|N(i). All other off-diagonal entries are 0,
and the diagonal entries are set to ensure that the sum of



each row is 0. We call a process with a Q matrix of the
form Eq. (6) a Continuous time Markov Network (CTMN).

One consequence of the form of the CTMN rate matrix
Eq. (6) is that the dynamics of the i’th variable depend di-
rectly only on the dynamics of its neighbors. As we can
expect, we can use this property to discuss independencies
among variables in the network. However, since we are
examining a continuous process, we need to consider inde-
pendencies between full trajectories (see also [8]).
Theorem 4.2: Consider a CTMN with a stationary distri-
bution represented by a graph G. If A,B,C are subsets
of X such that C separates A from B in G, then the tra-
jectories of A and B are conditionally independent, given
observation of the full trajectory of C.
Proof: (sketch) Using the global independence properties
of a Markov network (see for example, [12]), we have that
π can be written as a product of two function each with its
own domain X1 and X2 such that X1 ∩ X2 = C and
A ⊆ X1 and B ⊆ X2. Once the trajectories of vari-
ables in C are given, the dynamics of variables in X1 −C
and X2 − C are two independent CTMNs, each with its
own stationary distribution. As a consequence we get the
desired independence.

That is, the usual conditional separation criterion in
Markov networks [12] applies in a trajectory-wise fashion
to CTMNs.

It is important to note that although we can represent
any reversible CTMP as a continuous time Metropolis pro-
cess, once we move to CTMNs this is no longer the case.
The main restriction is that, in CTMNs as we have de-
fined them, each transition involves a change in the state
of exactly one component. Thus, although the language
of Markov networks allow to describe arbitrary equilib-
rium distributions (potentially with an exponential number
of features), the restrictions on R limit the range of pro-
cesses we can describe as CTMNs. As an example of a
domain where CTMNs are not suitable, consider reasoning
about biochemical systems, where each component of the
state is the number of molecules of a particular species and
transitions correspond to chemical reactions. For example,
a reaction might be one that takes an OH molecule and
an H molecule and replace them by an H2O molecule. If
reactions are reversible (i.e., H2O can break into OH and
H molecules), then this process might be described by a
reversible CTMP. However, since reactions change several
components at once, we cannot describe such system as a
CTMN.

5 Connection to CTBNs
The factored form of Eq. (6) allows us to relate CTMNs
with CTBNs. A CTBN is defined by a directed (often
cyclic) graph whose nodes correspond to variables of the
process, and whose edges represent direct influences of
one variable on the evolution of another. More precisely,

a CTBN is defined by a collection of conditional rate ma-

trices (also called conditional intensity matrices). For each
Xi, and for each possible value ui of its direct parents in
the CTBN graph, the matrix QXi|ui is a rate matrix over
the state space of Xi. These conditional rate matrices are
combined into a global rate matrix by a process Nodelman
et al. [9] call amalgamation. Briefly, if x and y are identical
except for the value of Xi, then

qx,y = qXi|ui
xi,yi

(7)

where ui = x|Pai is the assignment to Xi’s parents in
the state x. That is, the rate of transition from x to y is
the conditional rate of Xi changing from xi to yi given the
state of its parents. Again, all other off-diagonal elements,
where more than one variable changes, are set to 0.

This form is similar to the rate matrix of CTMNs shown
in Eq. (6). Thus, given a CTMN, we can build an equivalent
CTBN by setting the parents of each Xi to be N(i), and
using the conditional rates:

qXi|ui
xi,yi

= rixi,yi
gi(xi → yi | x|N(i)) (8)

Figure 1(b) shows the CTBN structures corresponding to
the CTMN of Example 4.1. In general, the CTBN graph
corresponding to a given CTMN is built by replacing each
undirected arc by a pair of directed ones. This matches the
intuition that if Xi and Xj appear in the context of some
feature, then they mutually influence each other.

As this transformation shows, the class of processes
that can be encoded using CTMNs is a subclass of CTBNs.
In a sense, this is not surprising, as a CTBN can encode any
Markov process where at most one variable can transition
at a time. However, the CTMN representation imposes a
particular parametrization of the system dynamics in terms
of the local proposal process and the global equilibrium
distribution. This parametrization violates both local and
global parameter independence [5] in the resulting CTBN.
In particular, a transition between xi and yi is proposed at
the same rate, regardless of whether it is globally advanta-
geous (in terms of equilibrium preferences). As we shall
see, this property is important for our ability to effectively
estimate these rate parameters.

Moreover, as we have seen, this parametrization guar-
antees that the stationary distribution of the process fac-
torizes as a particular Markov network. In general, even
a fairly sparse CTBN gives rise to a fully entangled sta-
tionary distribution that cannot be factorized. Indeed, even
computing the stationary distribution of a given CTBN is a
hard computational problem. By contrast, we have defined
a model of temporal dynamics that gives rise to a natural
and interpretable form for the stationary distribution. This
property is critical in applications where the stationary dis-
tribution is the key element in understanding the system.

Yet, the ability to transform a CTMN into a CTBN al-
lows us to harness the recently developed approximate in-



ference methods for CTBNs [11, 7], including for the E-
step used when learning CTMNs for partially observable
data.

6 Parameter Learning

We now consider the problem of learning the parametriza-
tion of CTMNs from data. Thus, we assume we are given
the form of π, that is, the set of features s, and need to
learn the parameters θ governing π and the local rate ma-
trices Ri that govern the proposal rates for each variable.
We start by considering this problem in the context of com-

plete data, where our observations consist of full trajecto-
ries of the system. As we show, we define a gradient ascent
procedure for learning the parameters from such data.

This result also enables us to learn from incomplete
data using the standard EM procedure. Namely, we can use
existing CTBNs inference algorithms to perform the E-step
effectively when learning from partially observable data to
compute expected sufficient statistics. The M-step is then
an application of the learning procedure for complete data
with these expected sufficient statistics. This combination
is quite standard and follows the lines of similar procedure
for CTBNs [10], and therefore we do not expand on it here.

6.1 The Likelihood Function

A key concept in addressing the learning problem is the
likelihood function, which determines how the probability
of the observations depends on the parameters.

We assume that the data is complete, and thus our ob-
servations consist of a trajectory of the system that can be
described as a sequence of intervals, where in each interval
the system is in one state. Using the relationship to CTBNs,
we can use the results of Nodelman et al. [9] to write the
probability of the data as a function of sufficient statistics
and entries in the conditional rate matrices of Eq. (8). A
problem with this approach is that the entries in the con-
ditional rate matrix involve both parameters from Ri and
parameters from θ. Thus, the resulting likelihood function
couples the estimation of these two sets of parameters.

However, if we had additional information, we could
decouple these two sets of parameters. Suppose we observe
not only the actual trajectories, but also the rejected propos-
als; see Figure 2. With this additional information, we can
estimate the rate of different proposals, independently of
whether they were accepted or not. Similarly, we can es-
timate the equilibrium distribution from the accepted and
rejected proposals. Thus, we are going to view our learn-
ing problem as a partial data problem where the annotation
of rejected proposals is the missing data.

To formalize these ideas, assume that our evidence is a
trajectory annotated with proposal attempts. We describe
such a trajectory using three vectors; see Figure 2. The first
vector, τ = �τ [1], . . . , τ [M + 1]�, represents the time in-
tervals between consecutive proposals. Thus, the first pro-

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 1413 15

τ[8]

y[8]

x[8]

Figure 2: An illustration of training data. (a) A complete
trajectory. The x-axis denotes time and the y-axis denotes
the state at each time. Filled circles denote transitions. (b)
A trajectory annotated with accepted and rejected propos-
als (closed and open circles, respectively). (Remember that
accepted proposals lead to a transition.) The marks on the
x-axis denote the index of the proposal. We illustrate the
notation we use in the text, where τ [i] denotes the time in-
terval before the i’th proposal, x[i] denote the actual state
after the i’th proposal, and y[i] denote the proposed state
in the i’th proposal.

posal took place at time τ [1], the second at time τ [1]+τ [2],
and so on. The last entry in this vector is the time be-
tween the last proposal and the end of the observed time
interval. The second vector, Ξ = �x[0],x[1], . . . ,x[M ]�,
denotes the actual state of the system after each proposal
was made. Thus, x[0] is the initial state of the system,
x[1] is the state after the first proposal, and so on. Fi-
nally, Υ = �y[1], . . . ,y[M ]� denotes the sequence of pro-
posed states. Clearly, the m’th proposal was accepted if
y[m] = x[m] and rejected otherwise. We denote these
event using the indicators S[m] = 11{x[m] = y[m]}.

The likelihood of these observations is the product of
the probability density of the duration between proposals,
and the probability of accepting or rejecting each proposal.
Plugging in the factored form of R and π we can write this
likelihood in a compact form.

Proposition 6.1: Given an augmented data set, τ , Ξ, and

Υ, the log-likelihood can be decomposed as

�(θ, {Ri
} : τ ,Ξ,Υ) =

n�

i=1

�r,i(R
i : τ ) + �s(θ : Ξ,Υ),

such that

�r,i(R
i : τ ) =

�

xi �=yi

�
M [xi, yi] ln r

i
xi,yi

− rixi,yi
T [xi]

�



and

�s(θ : Ξ,Υ) =
n�

i=1

�

ui

�

xi �=yi

Ma [xi, yi|ui] ln f(gi(xi → yi|ui)) +

n�

i=1

�

ui

�

xi �=yi

Mr [xi, yi|ui] ln(1− f(gi(xi → yi|ui)))

where Ma [xi, yi|ui] is the number of accepted transitions

of Xi from xi to yi when N(i) = ui, Mr [xi, yi|ui] is the

count of rejected proposals to make the same transition,

M [xi, yi|ui] = Ma [xi, yi|ui]+Mr [xi, yi|ui], and T [xi]
is the time spent in states where Xi = xi.

Note that if we use flogistic, then, as ln((1 + e−x)−1)
is concave, the likelihood function �s(θ : Ξ,Υ) is concave
and has a unique maximum.

6.2 Maximizing the Likelihood Function
Under the Maximum Likelihood Principle, our estimated
parameters are the ones that maximize the likelihood func-
tion given the observations. We now examine how to max-
imize the likelihood. The decoupling of the likelihood into
several terms allows us to estimate each set of parameters
separately.

The estimation of Ri is straightforward: imposing the
symmetry condition, the maximum likelihood estimate is

rixi,yi
=

M [xi, yi] +M [yi, xi]

T [xi] + T [yi]
.

Finding the maximum likelihood parameters of π is
somewhat more involved. Note that the likelihood �s(θ :
Ξ,Υ) is quite different from the likelihood of a log-linear
distribution given i.i.d. data [3]. The probability of accep-
tance or rejection involves ratios of probabilities. There-
fore, the partition function Z(θ) cancels out, and does not
appear in the likelihood.

In a sense, our likelihood is closely related to the
pseudo-likelihood for log-linear models [1]. Recall that
pseudo-likelihood is a technique for estimating the param-
eters of a Markov network (or log-linear model) that uses
a different objective function. Rather than optimizing the
joint likelihood, one optimizes a sum of log conditional
likelihood terms, one for each variable given its neighbors.
By considering the conditional probability of a variable
given its neighbors, the partition function cancels out, al-
lowing the parameters to be estimated without the use of in-
ference. At the large sample limit, optimizing the pseudo-
likelihood criterion is equivalent to optimizing the joint
likelihood, but the results for finite sample sizes tend to
be worse. In our setting, the generative model is defined in
terms of ratios only. Thus, in this case the exact likelihood
turns out to take a form similar to the pseudo-likelihood
criterion. As for pseudo-likelihood, this form allows us to

perform parameter estimation without requiring inference
in the underlying Markov network.

In the absence of an analytical solution for this equa-
tion we learn the parameters using a gradient-based opti-
mization procedure to find a (local) maximum of the likeli-
hood. The derivation of the gradient is a standard exercise;
for completeness, we provide the details in the appendix.
When using flogistic we are guaranteed that such a proce-
dure finds the unique global maximum.

6.3 Completing the Data
Our derivation of the likelihood and the associated opti-
mization procedure relies on the assumption that rejected
transition attempts are also observed in the data. As we can
see from the form of the likelihood, these failures play an
important role in estimating the parameters. The question
is how to adapt the procedure to the case where rejected
proposals are not observed. Our solution to this problem is
to use Expectation Maximization, where we view the pro-
posal attempts as the unobserved variables.

In this approach, we start with an initial guess of the
model parameters. We use these to estimate the expected
number of rejected proposals; we then treat these expected
counts as though they were real, and maximize the likeli-
hood using the procedure described in the previous section.
We repeat these iterations until convergence.

The question is how to compute the expected number
of rejected attempts. It turns out that this computation can
be done analytically.
Proposition 6.2: Given a CTMN, and an observed trajec-

tory τ ,Ξ. Then,

IE[Mr [xi, yi|ui] |D] (9)
= T [xi|ui] r

i
xi,yi

(1− f(g(xi, yi|ui)))

where T [xi|ui] is the total amount of time the system was

in states where Xi = xi and N(i) = ui.

We see that, in this case, the E-step of EM is fairly
straightforward. The harder step is the M-step which re-
quires an iterative gradient-based optimization procedure.

To summarize the procedure, to learn from complete
data we perform the following steps: We first collect suf-
ficient statistics T [xi|ui] and Ma [xi, yi|ui]. We then ini-
tialize the model with some set of parameters (randomly,
or using prior knowledge). We then iterate over the two
steps of EM until convergence: in the E-step, we com-
plete the sufficient statistics with the expected number of
rejected attempts, as per Eq. (9); in the M-step, we perform
maximum likelihood estimation using the expected suffi-
cient statistics, using gradient descent with the gradient of
Eq. (10).

7 A Numerical Example
To illustrate the properties of our CTMN learning proce-
dure, we evaluated it on a small synthetic data set. We
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Figure 3: Comparison of estimates of the equilibrium distribution by the CTMN learning procedure (solid lines), the CTBN
learning procedure (dashed lines) and a Markov Network parameter learning procedure applied to the frequency of time
spent in each state (dotted lines). The x-axis denotes the total length of training trajectories (measured in units of expected
number of observed transitions). The y-axis denotes the KL-divergence between the equilibrium distribution of the true
model and the estimated model. The curves report the median performance among 50 data sets, and the error bars report
25%−75% percentiles. (a-c) report performance when learning with the true structure from which the data was generated,
and (d-f) report results when learning the parameters of a structure without the edges between X1 and X4. In (a) and (d)
p(X(0)) is the equilibrium distribution. In (b) and (e) p(X(0)) is uniform and each trajectory is of length 25 time units.
In (c) and (f) p(X(0)) is uniform and each trajectory is of length 10 time units.

generated data from the CTMN model of Example 4.1
with θ = �−0.2,−2.3, 0.7, 0.7,−1.2,−1.2,−1.2,−1.2�
and proposal rates r10,1 = 1, r20,1 = 2, r30,1 = 3, and
r40,1 = 4.

The goal of our experiments is to test the ability of the
CTMN learning procedure to estimate stationary distribu-
tions from data in various conditions. As a benchmark, we
compared our procedure to two alternative methods:

• A procedure that estimates the stationary distribution
directly from the frequency of visiting each state. This
procedure is essentially the standard parameter learn-
ing method for Markov networks, where the weight of
each state (instance) is proportional to the duration in
which the process spends in that state. This procedure
uses gradient ascent to maximize the likelihood [3].
When the process is sampling from the stationary dis-
tribution, the relative time in each state is proportional
to its stationary probability, and in such situations we
expect this procedure to perform well.

• A procedure that estimates the Q-matrix of the asso-
ciated CTBN shown in Figure. 1. Here we used the
methods designed for parameter learning of CTBNs
in [9]. Once that the Q-matrix has been estimated, the

estimated stationary distribution is the only normal-
ized vector in its null space.

We examined these three procedures in three sets of
synthetic trajectories. The first set was generated by sam-
pling the initial state X(0) of each trajectory from the sta-
tionary distribution and then sampling further states and
durations from the target model. In this data set the sys-
tem is in equilibrium throughout the trajectory. The second
data set was generated by sampling the initial state from a
uniform distribution, and so the system starts in a distribu-
tion that is far from equilibrium. However, the trajectory is
long enough to let the system equilibrate. The third data set
is similar to the second, except that trajectories are shorter
and thus do not have sufficient time to equilibrate. To eval-
uate the effect of training set size, we repeated the learning
experiments with different numbers of trajectories. We re-
port the size of the training set in terms of the total length of
training trajectories. Time is reported in units of expected

transition number. That is, one time unit is equal to the av-
erage time between transitions when the process is in equi-
librium. The short and long trajectories in our experiments
are of length 10 and 25 expected transitions, respectively.

To evaluate the quality of the learned distribution, we



measured the Kullback-Leibler divergences from the true
stationary distribution to the estimated ones. Figures 3(a-
c) show the results of these experiments. When sampling
from the stationary distribution, the three procedures tend,
as the data size increases, toward the correct distribution.
For small data size, the performance of the CTMN learn-
ing procedure is consistently superior, although the error
bars partially overlap. We start seeing a difference between
the estimation procedures when we modify the initial dis-
tribution. As expected, the Markov network learning pro-
cedure suffers since it is learning from a biased sample. On
the other hand, the performance of the CTMN and CTBN
learning procedures is virtually unchanged, even when we
modify the length of the trajectories. These results illustrate
the ability of the CTMN and CTBN learning procedures to
robustly estimate the equilibrium distribution from the dy-
namics even when the sampled process is not at equilib-
rium.

To test the robustness to the network structure, we also
tested the performance of these procedures when estimat-
ing using a wrong structure. As we can see in Figures 3(d-
f), while the three procedures converge to the wrong distri-
bution, their relative behavior remains similar to the previ-
ous experiment, and the performance of the CTMN learn-
ing procedure is still not affected by the nature of the data.

8 Discussion and Future Work
In this paper, we define the framework of continuous time
Markov networks, where we model a dynamical system as
being governed by two factors: a local transition model,
and a global acceptance/rejection model (based on an equi-
librium distribution). By using a Markov network (or
feature-based log-linear model) to encode the equilibrium
distribution, we naturally define a temporal process guar-
anteed to have an equilibrium distribution of a particu-
lar, factored form. We showed a reduction from CTMNs
to CTBNs that illustrates the differences in the expressive
powers of the two formalisms. Moreover, this reduction
allows us to reason in CTMNs by exploiting the efficient
approximate inference algorithms for CTBNs. Finally, we
provided learning algorithms for CTMNs, which allow us
to learn the equilibrium distribution in a way that exploits
our understanding about the system dynamics. We demon-
strated on that this learning procedure is able to robustly es-
timate the equilibrium distribution even when the sampled
process is not at equilibrium. These results can be com-
bined for learning from partial observations, by plugging
in the learning procedure as the M-step in the EM proce-
dure for CTBNs [10].

This work opens many interesting questions. A key
goal in learning these models is to estimate the stationary
distribution. It is interesting to analyze, both theoretically
and empirically, the benefit gained in this task by account-
ing for the process dynamics, as compared to learning the
stationary distribution directly from a set of snapshots of

the system (e.g., a set of instances of a protein sequence
in different species). Moreover, so far, we have tackled
only the problem of parameter estimation in these mod-
els. In many applications, the model structure is unknown,
and of great interest. For example, in models of protein
evolution, we want to know which pair of positions in the
protein are directly correlated, and therefore likely to be
structurally interacting. Of course, tackling this problem
involves learning the structure of a Markov network, a no-
toriously difficult task. From the perspective of inference,
our reduction to CTBNs can lose much of the structure of
the model. For example, if the stationary distribution is
a pairwise Markov network, the fact that the interaction
model decomposes over pairs of variables is lost in the in-
duced CTBN. It is interesting to see whether one can con-
struct inference algorithms that better exploit this structure.
Finally, one important limitation of the CTMN framework
is the restriction to an exponential distribution on the du-
ration between proposed state changes. Although such a
model is a reasonable one in many systems (e.g., biologi-
cal sequence evolution), there are other settings where it is
too restrictive. In recent work, Nodelman et al. [10] show
how one can expand the framework of CTBNs to allow a
richer set of duration distributions. Essentially, their solu-
tion introduces a “hidden state” internal to a variable, so
that the overall transition model of the variable is actually
the aggregate of multiple transitions of its internal state. A
similar solution can be applied in our setting, but the result-
ing model would not generally encode a reversible CTMP.

One major potential field of application for this class of
models is sequence evolution. The current state of the art in
phylogenetic inference is based on continuous time proba-
bilistic models of evolution [4]. Virtually all of these mod-
els assume that sequence positions evolve independently of
each other (although in some models, there are global pa-
rameters that induce weak dependencies). Our models pro-
vide a natural language for modeling such dependencies. In
this domain, the proposal process corresponds to mutation
rates within the sequence, and the equilibrium distribution
is proportional to the relative fitness of different sequences.
The latter function is of course very complex, but there is
empirical evidence that modeling pairwise interactions can
provide a good approximation [13]. Thus, in these systems,
both the local mutation process and a factored equilibrium
distribution are very appropriate, making CTMNs a poten-
tially valuable tool for modeling and analysis. We hope to
incorporate this formalism within phylogenetic inference
tools, and to develop a methodology to leverage these mod-
els to provide new insights about the structure and function
of proteins.
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A Gradient for Learning CTMNs
We now compute the derivative of the gradient of the log-
likelihood, as specified in Proposition 6.1. The parameters
θ appear within the scope of the gi functions. Thus, to find
the derivatives we differentiate these functions with respect
to the parameters, and then apply the chain rule for deriva-
tives:

∂

∂θk
�s(θ : Ξ,Υ) = (10)
�

i:Xi∈Dk

�

ui

�

xi �=yi

∆k(xi, yi|ui)(ψa(xi, yi|ui)M
a [xi, yi|ui] −

ψr(xi, yi|ui)M
r [xi, yi|ui])

where

∆k(xi, yi|ui) = sk(ui, yi)− sk(ui, xi)

ψa(xi, yi|ui) =
zf �(z)

f(z)

����
z=gi(xi→yi|ui)

ψr(xi, yi|ui) =
zf �(z)

1− f(z)

����
z=gi(xi→yi|ui)

This shows that the update of θk is a weighted combina-
tion of the contribution of each proposed transition. The
weight of the transition depends on how sensitive the ratio
of probabilities is to the feature, denoted by ∆k(xi, yi|ui)
and the number of times this transition was accepted or re-
jected, captured by the empirical counts. In addition, each
proposal is weighted by ψa(xi, yi|ui), which captures the
improbability of the acceptance (respectively rejection for
ψr(xi, yi|ui)). The less probable they are, the larger the
change in θk.

We can get better understanding of these terms if we
consider their value for specific choices of f . For example,
if we use flogistic, then

ψa(xi, yi|ui) = 1− flogistic(gi(xi → yi|ui))

ψr(xi, yi|ui) = flogistic(gi(xi → yi|ui)),

that is, the rejection and acceptance probabilities, respec-
tively. The smaller these values, the more probable was the
acceptance (resp. rejection) and so it results in a smaller
gradient of the likelihood in the direction of this parameter.
When using fMetropolis the two functions are not symmetric:

ψa(xi, yi|ui) = 11{gi(xi → yi|ui) < 1}

ψr(xi, yi|ui) =

11{gi(xi → yi|ui) > 1}flogistic(gi(xi → yi|ui))

with a discontinuity when gi(xi → yi|ui) = 1. We see
that, in this case, the updates are asymmetric, with maximal
weight to updates of accepted transitions.
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Abstract

A central task in many applications is reason-
ing about processes that change over continu-
ous time. Continuous-Time Bayesian Networks
is a general compact representation language
for multi-component continuous-time processes.
However, exact inference in such processes is ex-
ponential in the number of components, and thus
infeasible for most models of interest. Here we
develop a novel Gibbs sampling procedure for
multi-component processes. This procedure iter-
atively samples a trajectory for one of the compo-
nents given the remaining ones. We show how to
perform exact sampling that adapts to the natural
time scale of the sampled process. Moreover, we
show that this sampling procedure naturally ex-
ploits the structure of the network to reduce the
computational cost of each step. This procedure
is the first that can provide asymptotically unbi-
ased approximation in such processes.

1 Introduction
In many applications, we reason about processes that
evolve over time. Such processes can involve short time
scales (e.g., the dynamics of molecules) or very long ones
(e.g., evolution). In both examples, there is no obvious dis-
crete “time unit” by which the process evolves. Rather, it
is more natural to view the process as changing in a con-
tinuous time: the system is in some state for a certain dura-
tion, and then transitions to another state. The language of
continuous-time Markov processes (CTMPs) provides an
elegant mathematical framework to reason about the prob-
ability of trajectories of such systems (Gardiner, 2004). We
consider Markov processes that are homogeneous in time
and have a finite state space. Such systems are fully deter-
mined by the state space S, the distribution of the process
at the initial time, and a description of the dynamics of the
process. These dynamics are specified by a rate matrix Q,
whose off-diagonal entries qa,b are exponential rate inten-
sities for transitioning from state a to b. Intuitively, we can
think of the entry qa,b as the rate parameter of an exponen-

tial distribution whose value is the duration of time spent in
state a before transitioning to b.

In many applications, the state space is of the form of a
product space S = S1 × S1 × · · · × SM , whereM is the
number of components (such processes are called multi-
component). Even if each of the Si is of low dimension,
the dimension of the state space is exponential in the num-
ber of components, which poses representational and com-
putational difficulties. Recently, Nodelman et al. (2002)
introduced the representation language of continuous-time
Bayesian networks (CTBNs), which provides a factorized,
component-based representation of CTMPs: each compo-
nent is characterized by a conditional CTMP dynamics,
which describes its local evolution as a function of the cur-
rent state of its parents in the network. This representation
is natural for describing systems with a sparse structure of
local influences between components.

For most applications of such CTMP models, we need
to perform inference to evaluate the posterior probability
of various queries given evidence. Exact inference requires
exponentiation of the rate matrix Q. As the rate matrix is
exponential in the number of components, exact computa-
tions are infeasible for more than a few components. Thus,
applications of factored CTMPs require the use of approx-
imate inference.

In two recent works Nodelman et al. (2005) and Saria
et al. (2007) describe approximate inference procedures
based on Expectation Propagation, a variational approxi-
mation method (Minka, 2001; Heskes and Zoeter, 2002).
These approximation procedures perform local propaga-
tion of messages between components (or sub-trajectories
of components) until convergence. Such procedures can be
quite efficient, however they can also introduce a system-
atic error in the approximation (Fan and Shelton, 2008).

More recently, Fan and Shelton (2008) introduced a
procedure that employs importance sampling and particle
filtering to sample trajectories from the network. Such a
stochastic sampling procedure has anytime properties as
collecting more samples leads to more accurate approxi-
mation. However, since this is an importance sampler, it
has limited capabilities to propagate evidence “back” to in-
fluence the sampling of earlier time steps. As a result, when
the evidence is mostly at the end of the relevant time inter-



val, and is of low probability, the procedure requires many
samples. A related importance sampler was proposed by
Ng et al. (2005) for monitoring a continuous time process.

In this paper we introduce a new stochastic sampling
procedure for factored CTMPs. The goal is to sample
random system trajectories from the posterior distribution.
Once we have multiple independent samples from this dis-
tribution we can approximate the answer to queries about
the posterior using the empirical distribution of the sam-
ples. The challenge is to sample from the posterior. While
generative sampling of a CTMP is straightforward, sam-
pling given evidence is far from trivial, as evidence modi-
fies the posterior probability of earlier time points.

Markov Chain Monte Carlo (MCMC) procedures cir-
cumvent this problem by sampling a stochastic sequence
of system states (trajectories in our models) that will even-
tually be governed by the desired posterior distribution.
Here we develop a Gibbs sampling procedure for factored
CTMPs. This procedure is initialized by setting an arbi-
trary trajectory which is consistent with the evidence. It
then alternates between randomly picking a componentXi

and sampling a trajectory from the distribution of Xi con-
ditioned on the trajectories of the other components and
the evidence. This procedure is reminiscent of block Gibbs
sampling (Gilks et al., 1996) as we sample an entire trajec-
tory rather than a single random variable in each iteration.
However, in our approach we need to sample a continuous
trajectory.

The crux of our approach is in the way we sample a tra-
jectory for a single component from a process that is con-
ditioned on trajectories of the other components. While
such a process is Markovian, it is not homogeneous as its
dynamics depends on trajectories of its Markov Blanket as
well as on past and present evidence. We show that we can
perform exact sampling by utilizing this Markovian prop-
erty, and that the cost of this procedure is determined by the
complexity of the current trajectories and the sampled one,
and not by a pre-defined resolution parameter. This implies
that the computational time adapts to the complexity of the
sampled object.

2 Continuous-Time Bayesian Networks
In this section we briefly review the CTBN model (Nodel-
man et al., 2002). Consider anM -component Markov pro-
cess

X(t) = (X(t)
1 , X(t)

2 , . . . X(t)
M )

with state space S = S1 × S2 × · · ·× SM .
A notational convention: vectors are denoted by bold-

face symbols, e.g., X,a, and matrices are denoted by
blackboard style characters, e.g., Q. The states in S are
denoted by vectors of indexes, a = (a1, . . . , aM ). The in-
dexes 1 ≤ i, j ≤ M are used to enumerate the components.
We use the notationX(t) andX(t)

i to denote a random vari-
able at time t. We will useX [s,t],X(s,t],X [s,t), to denote

the state ofX in the closed and semi-open intervals from s
to t.

The dynamics of a time-homogeneous continuous-time
Markov process are fully determined by the Markov tran-
sition function,

pa,b(t) = Pr(X(t+s) = b|X(s) = a),

where time-homogeneity implies that the right-hand side
does not depend on s. Provided that the transition func-
tion satisfies certain analytical properties (continuity, and
regularity; see Chung (1960)) the dynamics are fully cap-
tured by a constant matrix Q—the rate, or intensity ma-
trix—whose entries qa,b are defined by

qa,b = lim
h↓0

pa,b(h)− δa,b
h

,

where δa,b is a multivariate Kronecker delta.
A Markov process can also be viewed as a generative

process: The process starts in some state a. After spend-
ing a finite amount of time at a, it transitions, at a random
time, to a random state b �= a. The transition times to the
various states are exponentially distributed, with rate pa-
rameters qa,b. The diagonal elements ofQ are set such that
each row sums up to zero.

The time-dependent probability distribution, p(t),
whose entries are defined by

pa(t) = Pr(X(t) = a), a ∈ S,

satisfies the so-called forward, or master, equation,

dp

dt
= QTp. (1)

Thus, using the Q matrix, we can write the Markov transi-
tion function as

pa,b(t) = [exp(tQ)]a,b ,

that is, as the a, b entry in the matrix resulting from expo-
nentiating Q (using matrix exponentiation).

It is important to note that the master Eq. (1) encom-
passes all the statistical properties of the Markov process.
There is a one-to-one correspondence between the descrip-
tion of a Markov process by means of a master equa-
tion, and by means of a “pathwise” characterization (up to
stochastic equivalence of the latter; see Gikhman and Sko-
rokhod (1975)).

Continuous-time Bayesian Networks provide a com-
pact representation of multi-component Markov processes
by incorporating two assumptions: (1) every transition in-
volves a single component; (2) each component undergoes
transitions at a rate which depends only on the state of a
subsystem of components.

Formally, the structure of a CTBN is defined by as-
signing to each component i a set of indices Par(i) ⊆



{1, . . . ,M} \ {i}. With each component i, we associate
a conditional rate matrix Qi|Par(i) with entries qi|Par(i)ai,bi|ui

where ai and bi are states ofXi and ui is a state of Par(i).
This matrix defines the rate of Xi as a function of the state
of its parents. Thus, when the parents of Xi change state,
the rates governing its transition can change.

The formal semantics of CTBNs is in terms of a joint
rate matrix for the whole process. This rate matrix is de-
fined by combining the conditional rate matrices

qa,b =
M�

i=1



qi|Par(i)ai,bi|Pi(a)

�

j �=i

δaj ,bj



 . (2)

where Pi(a) is a projection operator that project a com-
plete assignment a to an assignment to the Par(i) compo-
nents. Eq. (2) is, using the terminology of Nodelman et al.
(2002), the “amalgamation” of theM conditional rate ma-
trices. Note the compact representation, which is valid for
both diagonal and off-diagonal entries. It is also notewor-
thy that amalgamation is a summation, rather than a prod-
uct; indeed, independent exponential rates are additive. If,
for example, every component has d possible values and k
parents, the rate matrix requires only Mdk+1(d − 1) pa-
rameters, rather than dM (dM − 1).

The dependency relations between components can be
represented graphically as a directed graph, G, in which
each node corresponds to a component, and each directed
edge defines a parent-child relation. A CTBN consists of
such a graph, supplemented with a set of M conditional
rate matrices Qi|Par(i). The graph structure has two main
roles: (i) it provides a data structure to which parameters
are associated; (ii) it provides a qualitative description of
dependencies among the various components of the sys-
tem. The graph structure also reveals conditional inde-
pendencies between sets of components (Nodelman et al.,
2002).

Notational conventions: Full trajectories and observed
pointwise values of components are denoted by lower case
letters indexed by the relevant time intervals, e.g., x(t)

i ,
x[s,t]
i . We will use Pr(x(t)

i ) and Pr(x[s,t]
i ) as shorthands

for Pr(X(t)
i = x(t)

i ) and Pr(X [s,t]
i = x[s,t]

i ).
It should be emphasized that even though CTBNs pro-

vide a succinct representation of multi-component pro-
cesses, any inference query still requires the exponentia-
tion of the full dM × dM dimensional rate matrix Q. For
example, given the state of the system at times 0 and T , the
Markov bridge formula is

Pr(X(t) = a|x(0),x(T )) =

[exp(tQ)]x(0),a[exp((T − t)Q)]a,x(T )

[exp(TQ)]x(0),x(T )

.

It is the premise of this work that such expressions cannot
be computed directly, thus requiring approximation algo-
rithms.

3 Sampling in a Two Component Process
3.1 Introduction
We will start by addressing the task of sampling from
a two components process. The generalization to multi-
component processes will follow in the next section.

Consider a two-component CTBN, X = (X,Y ),
whose dynamics is defined by conditional rates QX|Y and
QY |X (that is, X is a parent of Y and Y is a parent of X).
Suppose that we are given partial evidence about the state
of the system. This evidence might contain point observa-
tions, as well as continuous observations in some intervals,
of the states of one or two components. Our goal is to sam-
ple a trajectory of (X,Y ) from the joint posterior distribu-
tion.

The approach we take here is to use a Gibbs sampler
(Gilks et al., 1996) over trajectories. In such a sampler, we
initializeX and Y with trajectories that are consistent with
the evidence. Then, we randomly either sample a trajectory
of X given the entire trajectory of Y and the evidence on
X , or sample a trajectory of Y given the entire trajectory of
X and the evidence on Y . This procedure defines a random
walk in the space of (X,Y ) trajectories. The basic theory
of Gibbs sampling suggests that this random walk will con-
verge to the distribution of X,Y given the evidence.

To implement such a sampler, we need to be able to
sample the trajectory of one component given the entire
trajectory of the other component and the evidence. Sup-
pose, we have a fully observed trajectory on Y . In this case,
observations on X at the extremities of some time interval
statistically separate this interval from the rest of trajectory.
Thus, we can restrict our analysis to the following situation:
the process is restricted to a time interval [0, T ] and we are
given observations X(0) = x(0) and X(T ) = x(T ), along
with the entire trajectory of Y in [0, T ]. The latter consists
of a sequence of states (y0, . . . , yK) and transition times
(τ0 = 0, τ1, . . . , τK , τK+1 = T ). An example of such sce-
nario is shown in Figure 1(a). The entire problem is now
reduced to the following question: how can we sample a
trajectory of X in the interval (0, T ) from its posterior dis-
tribution?

To approach this problem we exploit the fact that the
sub-processX given that Y [0,T ] = y[0,T ] is Markovian (al-
though non-homogeneous in time):

Proposition 3.1: The following Markov property holds for
all t > s,

Pr(X(t)
| x[0,s], x(T ), y[0,T ]) = Pr(X(t)

| x(s), x(T ), y[s,T ]).

3.2 Time Granularized Process
Analysis of such process requires reasoning about a contin-
uum of random variables. A natural way of doing so is to
perform the analysis in discrete time with a finite time gran-
ularity h, and examine the behavior of the system when we
take h ↓ 0.



To do so, we introduce some definitions. Suppose Pr
is the probability function associated with a continuous-
time Markov process with rate matrix Q. We define the
h-coarsening of Pr to be Prh, a distribution over the ran-
dom variables X(0),X(h),X(2h), . . . which is defined by
the dynamics

Prh(X
(t+h) = b | X(t) = a) = δa,b + h · qa,b,

which is the Taylor expansion of [exp(tQ)]a,b, truncated
at the linear term. When h < mina(−1/qa,a), Prh is a
well-defined distribution.

We would like to show that the measure Prh(A) of an
event A converges to Pr(A) when h ↓ 0. To do so, how-
ever, we need to define the h-coarsening of an event. Given
a time point t, define �t�h and �t�h to be the rounding down
and up of t to the nearest multiple of h. For point events
we define [[X(t) = a]]h to be the event X(�t�h) = a, and
[[X(t+) = a]]h to the event X(�t�h) = a. For an inter-
val event, we define [[X(s,t] = a(s,t]]]h to be the event
X(�s�h) = a�s�h ,X

(�s�h+h) = a�s�h+h, . . . ,X
(�t�h) =

a�t�h . Similarly, we can define the coarsening of events
over only one component and composite events.

Note that the probability of any given trajectory tends
to zero as h → 0. The difficulty in working directly in the
continuous-time formulation is that we condition on events
that have zero probability. The introduction of a granular-
ized process allows us to manipulate well-defined condi-
tional probabilities, which remain finite as h → 0.

Theorem 3.2: Let A and B be point, interval, or a finite
combination of such events. Then

lim
h↓0

Prh([[A]]h | [[B]]h) = Pr(A | B)

From now on, we will drop the [[A]]h notation, and assume
it implicitly in the scope of Prh().

A simple minded approach to solve our problem is to
work with a given finite h and use discrete sampling to
sample trajectories in the coarsened model (thus, working
with a dynamical Bayesian network). If h is sufficiently
small this might be a reasonable approximation to the de-
sired distribution. However, this approach suffers from
sub-optimality due to this fixed time granularity — a too
coarse granularity leads to inaccuracies, while a too fine
granularity leads to computational overhead. Moreover,
when different components evolve at different rates, this
trade-off is governed by the fastest component.

3.3 Sampling a Continuous-Time Trajectory
To avoid the trade-offs of fixed time granularity we exploit
the fact that while a single trajectory is defined over infinite
time points, it involves only a finite number of transitions
in a finite interval. Therefore, instead of sampling states
at different time points, we only sample a finite sequence

of transitions. The Markovian property of the conditional
process X enables doing so using a sequential procedure.

Our procedure starts by sampling the first transition
time. It then samples the new state the transition leads to.
As this new sample point statistically separates the remain-
ing interval from the past, we are back with the initial prob-
lem yet with a shorter interval. We repeat these steps until
the entire trajectory is sampled; it terminates once the next
transition time is past the end of the interval.

Our task is to sample the first transition time and the
next state, conditioned on X(0) = x(0), X(T ) = x(T ) as
well as the entire trajectory of Y in [0, T ]. To sample this
transition time, we first define the conditional cumulative
distribution function F (t) that X stays in the initial state
for a time less than t:

F (t) = 1− Pr
�
X(0,t] = x(0)

|x(0), x(T ), y[0,T ]
�

(3)

If we can evaluate this function, then we can sample the
first transition time τ by inverse transform sampling — we
draw ξ from a uniform distribution in the interval [0, 1], and
set τ = F−1(ξ); see Figure 1a,b.

The Markov property of the conditional process allows
us to decompose the probability thatX remains in its initial
state until time t. Denoting the probability of Y ’s trajectory
and of X remaining in its initial state until time t by

ppast(t) = Pr(X(0,t] = x(0), y(0,t]|x(0), y(0)),

and the probability of future observations given the state of
(Xt, Yt) by

pfuturex (t) = Pr(x(T ), y(t,T ]
|X(t) = x, y(t)).

We can then write the probability that X is in state x(0)

until t as

Pr
�
X(0,t] = x(0)

|x(0), x(T ), y[0,T ]
�
=

ppast(t) · pfuture
x(0) (t)

pfuture
x(0) (0)

.

(4)
Lamentably, while the reasoning we just described is

seemingly correct, all the terms in Eq. (4) are equal to
0, since they account for the probability of Y ’s trajectory.
However, as we shall see, if we evaluate this equation care-
fully we will be able to define it with terms that decompose
the problem in a similar manner.

To efficiently compute these terms we exploit the fact
that although the process is not homogeneous, the dynam-
ics of the joint process within an interval [τk, τk+1) , in
which Y has a fixed value yk, is characterized by a sin-
gle unnormalized rate matrix whose entries depend on yk.
This allows us to adopt a forward-backward propagation
scheme. We now develop the details of these propagations.

3.4 Computing ppast(t)
We begin with expressing ppast(t) as a product of local
terms. Recall that ppast(t) is the probability that X is con-
stant until time t. We denote by ppasth (t) the h-coarsened
version of ppast(t).



(a) Sampling first transition (b) Sampling second transition

(c) Initial propagators (d) Propagators in second step

Figure 1: Illustration of sampling of a single component with three states. (a) Top panel: sampling scenario, with a
complete trajectory for Y , that has four transitions at τ1, . . . , τ4, and point evidence onX at times 0 and T . Bottom panel:
the cumulative distribution F (t), that X changes states before time t given this evidence. We sample the next transition
time by drawing ξ from a uniform distribution and setting τ = F−1(ξ). Note that as x(0) �= x(T ), F (T ) = 1. The bar
graph represents the conditional distribution of the next state, given a transition at time τ . (b) Same sampling procedure
for the second transition. Here F (T ) < 1 since it is not necessary forX to change its state. (c and d) The two components
used in computing 1−F (t): p̃past(t) the probability thatX stays with a constant value until time t and Y has the observed
trajectory until this time; and p̃futuret (x) the probability that X transition’s from state x at t to its observed state at time T
and Y follows its trajectory from t to T .

To characterize the dynamics within intervals
(τk, τk+1) we define constant propagator functions

φy
h,x(∆t) =

Prh(X
(t,t+∆t] = x, Y (t,t+∆t] = y|X(t) = x, Y (t) = y)

These functions determine the probability that X = x and
Y = y throughout an interval of length∆t if they start with
these values.

At time τk+1 the Y component changes it value from
yk to yk+1. The transition probability at this point is h ·

qY |X
yk,yk+1|x(0) . Thus, from the Markov property of the joint
process it follows that for t ∈ (τk, τk+1)

ppasth (t) =

�
k−1�

l=0

φyl

h,x(0)(∆l) · q
Y |X
yl,yl+1|x(0) · h

�
φyk

h,x(0)(t−τk)

where∆l = τl+1 − τl.
To compute the constant propagator functions, we real-

ize that in each step within the interval (s, t] the state does
not change. Thus,

φy
h,x(∆t) = [1 + h · (qX|Y

x,x|y + qY |X
y,y|x)]

�∆t�h
h

We define

φy
x(∆t) = lim

h↓0
φy
h,x(∆t) = e(∆t)(qX|Y

x,x|y+qY |X
y,y|x)



We conclude that if

p̃past(t) =

�
k−1�

l=0

φyl

x(0)(∆l) · q
Y |X
yl,yl+1|x(0)

�
φyk

x(0)(t− τk),

then for t ∈ (τk, τk+1)

lim
h↓0

ppasth (t)

hk
= p̃past(t)

3.5 Computing pfuturex (t)

We now turn to computing pfuturex (t). Unlike the previous
case, here we need to compute this term for every possible
value of x. We do so by backward dynamic programing
(reminiscent of backward messages in HMMs).

We denote by pfutureh (t) a vector with entries pfutureh,x (t).
Note that, pfutureh (T ) = ex(T ) where ex is the unit vector
with 1 in position x. Next, we define a propagator matrix
Syh(∆t) with entries

syh,a,b(∆t) =

Prh(X
(t+∆t) = b, Y (t,t+∆t] = y|X(t) = a, Y (t) = y)

This matrix provides the dynamics of X in an interval
where Y is constant. We can use it to compute the prob-
ability of transitions between states of X in the intervals
(τk, τk+1], for every τk < s < t < τk+1

pfutureh (s) = Syk

h (t− s)pfutureh (t)

At transition points τk we need to take into account the
probability of a change. To account for such transitions, we
define a diagonal matrix Ty,y� whose (a, a) entry is qY |X

y,y�|a.
Using this notation and the Markov property of the joint
process the conditional probability of future observations
for τk ≤ t ≤ τk+1 is

pfutureh (t) =

Syk−1

h (τk+1 − t)

�
K�

l=k+1

hTyl,yl+1Syh(∆l)

�
ex(T )

It remains to determine the form of the propagator ma-
trix. At time granularity h, we can write the probability of
transitions between states of X while Y = y as a product
of transition matrices. Thus,

Syh(∆t) = (I + h · RX|y)
�∆t�h

h

where RX|y is the matrix with entries

rX|y
a,b =






qX|Y
a,b|y a �= b

qX|Y
a,a|y + qY |X

y,y|a a = b

We now can define

Sy(∆t) = lim
h↓0

Syh(∆t) = e(∆t)RX|y

This terms is similar to transition matrix of a Markov pro-
cess. Note, however that R is not a stochastic rate matrix,
as the rows do not sum up to 0. In fact, the sum of the
rows in negative, which implies that the entries in Syh(∆t)
tend to get smaller with∆t. This matches the intuition that
this term should capture the probability of the evidence that
Y = y for the whole interval.

To summarize, if we define for t ∈ (τk, τk+1)

p̃future(t) = Syk−1(τk+1−t)

�
K�

l=k+1

Tyl,yl+1Sy(∆l)

�
ex(T ) ,

then

lim
h↓0

pfutureh (t)

hK−k
= p̃future(t)

3.6 Putting it All Together
Based on the above arguments.

Prh
�
X(0,t] = x(0)

|x(0), x(T ), y[0,T ]
�
=

ppasth (t)pfuture
h,x(0)(t)

pfuture
h,x(0)(0)

Now, if t ∈ (τk, τk+1), then

Pr
�
X(0,t] = x(0)

|x(0), x(T ), y[0,T ]
�

= lim
h↓0

ppasth (t)pfuture
h,x(0)(t)

pfuture
h,x(0)(0)

= lim
h↓0

[h−kppasth (t)][h−(K−k)pfuture
h,x(0)(t)]

h−Kpfuture
h,x(0)(0)

=
p̃past(t)p̃future

x(0) (t)

p̃future
x(0) (0)

Thus, in both numerator and denominator we must account
for the observation ofK transitions of Y , which have prob-
ability of o(hK). Since these term cancels out, we remain
with the conditional probability over the event of interest.

3.7 Forward Sampling
To sample an entire trajectory we first compute p̃future(t)
only at transition times from the final transition to the start.

We sample the first transition time by drawing a ran-
dom value ξ from a uniform distribution in [0, 1]. Now
we find τ such that F (τ) = ξ in two steps: First, we
sequentially search for the interval [τk, τk+1] such that
F (τk) ≤ F (τ) ≤ F (τk+1) by propagating p̃past(t) for-
ward through transition points. Second, we search the ex-
act time point within [τk, τk+1] using binary search with L
steps to obtain accuracy of 2−L∆k. This step requires com-
putation of Syk(2−L∆k) and its exponents Syk(2−l∆k),
l = 1, . . . , L− 1.

Once we sample the transition time t, we need to com-
pute the probability of the new state of X . Using similar



arguments as the ones we discussed above, we find that

Pr
�
X(t+) = x|X [0,t) = x(0), X(t+)

�= x(0), y[0,T ]
�
=

qX|Y
x(0),x

· p̃futurex (t)
�

x� �=x(0) q
X|Y
x(0),x� · p̃

future
x� (t)

.

Thus, we can sample the next state by using the pre-
computed value of p̃futurex (t) at t.

Once we sample a transition (time and state), we can
sample the next transition in the interval [τ, T ]. The pro-
cedure proceeds while exploiting propagators which have
already been computed. It stops when F (T ) < ξ, i.e., the
next sampled transition time is greater than T . Figure 1
illustrates the conditional distributions of the first two tran-
sitions.

4 Sampling in a Multi-Component Process
The generalization from a two-component process to a gen-
eral one is relatively straightforward. At each step, we need
to sample a single component Xi conditioned on trajec-
tories in Y = (X1, . . . , Xi−1, Xi+1, . . . , XM ). To save
computations we exploit the fact that given complete tra-
jectories over the Markov blanket ofXi, which is the com-
ponent set of Xi’s parents, children and its children’s par-
ents, the dynamics inXi is independent of the dynamics of
all other components (Nodelman et al., 2002).

Indeed, the structured representation of a CTBN allows
computations using only terms involving the Markov blan-
ket. To see that, we first notice that within an interval whose
state isY t = y the propagator matrix involves terms which
depend only on the parents of Xi q

Xi|Y
a,b|y = qXi|Par(i)

a,b|ui
and

terms which depend on the other members of the Markov
blanket,

qY |Xi

y,y|xi
=

�

j∈Child(i)

q
Xj |Par(j)
xj ,xj |uj

+ cy

where cy does not depend on the state of Xi. Therefore,
we define the reduced rate matrix RXi|v:

rXi|MB(i)
a,b|v =






qXi|Par(i)
a,b|ui

a �= b

qXi|Par(i)
a,a|ui

+
�

j∈Child(i) q
Xj |Par(j)
xj ,xj |uj

a = b

where, v is the projection of y to the Markov blanket. Con-
sequently the local propagator matrix becomes

Sv(t) = exp(t · RXi|v) (5)

Importantly, this matrix differs from Sy(t) by a scalar fac-
tor of exp(t · cy). The same factor arise when replacing the
term in the exponent of the constant propagator. Therefore,
these terms cancel out upon normalization.

This development also shows that when sampling Xi

we only care about transition points of one of the tra-
jectories in MB(i). Thus, the intervals computed in the

Figure 2: Relative error versus burn-in and number of sam-
ples.

initial backward propagation are defined by these transi-
tions. Therefore, the complexity of the backward procedure
scales with the rate of Xi and its Markov blanket.

5 Experimental Evaluation
We evaluate convergence properties of our procedure on a
chain network presented in Fan and Shelton (2008), as well
as on related networks of various sizes and parametriza-
tions. The basic network contains 5 components, X0,→
X1 → . . . X4, with 5 states each. The transition rates
of X0 suggest a tendency to cycle in 2 possible loops:
s0 → s1 → s2 → s0 and s0 → s3 → s4 → s0; whereas
for i > 0, Xi attempts to follow the state of Xi−1 — the
transition qXi|Xi−1

a,b|c has higher intensity when c = b. The
intensities ofX0 in the original network are symmetric rel-
ative to the two loops. We slightly perturbed parameters to
break symmetry since the symmetry between the two loops
tends to yield untypically fast convergence.

To obtain a reliable convergence assessment, we should
generate samples from multiple independent chains which
are initialized from an over-dispersed distribution. Aim-
ing to construct such samples, our initialization procedure
draws for each component a rate matrix by choosing an as-
signment to its parents from a uniform distribution and tak-
ing the corresponding conditional rate matrix. Using these
matrices it samples a trajectory that is consistent with evi-
dence independently for every component using the back-
ward propagation-forward sampling strategy we described
above.

A crucial issue in MCMC sampling is the time it takes
the chain to mix— that is, sample from a distribution that
is close to the target distribution rather than the initial dis-
tribution. It is not easy to show empirically that a chain has
mixed. We examine this issue from a pragmatic perspective
by asking what is the quality of the estimates based on sam-



Figure 3: Error versus burn-in for different evidence sets.
For each set we specify the average log-likelihood of the
samples after convergence.

ples taken at different number of “burn-in” iterations after
the initialization, where a single iteration involves sampling
each of the components once. We examine the estimates of
expected sufficient statistics that are required for learning
CTBN’s — residence time of components in states and the
number of transitions given the state of the component’s
parent (Nodelman et al., 2003). We measure estimation
quality by the average relative error

�
j

|θ̂j−θj |
θj

where θj
is exact value of the j’th sufficient statistics calculated us-
ing numerical integration and θ̂j is the approximation.

To make the task harder, we chose an extreme case
by setting evidence X(0) = �s0 (the vector of s0), and
X(3) = (s0, s1, s3, s0, s1). We then sampled the process
using multiple random starting points, computed estimated
expected statistics, and compared them the exact expected
statistics. Figure 2 shows the behavior of the average rela-
tive error taken over all θ > 0.05 versus the sample size for
different number of burn-in iterations. Note that when us-
ing longer burn-in, the error decreases at a rate of O(

√
n),

where n is the number of samples, which is what we would
expect from theory, if the samples where totally indepen-
dent. This implies that at this long burn-in the error due to
the sampling process is smaller than the error contributed
by the number of samples.

To study further the effect of evidence’s likelihood,
we measured error versus burn-in using 10,000 samples in
our original evidence set, and four additional ones. The
first additional evidence, denoted by e2 is generated by
setting X(0) = �s0, forward sampling a random trajectory
and taking the complete trajectory of X4 as evidence.
Additional sets are: e3 = {X(0) = �s0,X

(3) = �s0};
e4 = {X(0) = �s0} and an extremely unlikely case
e5 = {X(0) = �s0, X

(0,3)
0 = s0,X

(3) = (s0, s1, s3, s0, s1)}.
Figure 3 illustrates that burn-in period may vary by an

Figure 4: Effect of conditional transition probability sharp-
ness on mixing time.

order of magnitude, however it is not correlated with the
log-likelihood. Note that in this specific experiment slower
convergence occurs when continuous evidence is absent.
The reason for this may be the existence of multiple possi-
ble paths that cycle through state zero. That is, the posterior
distribution is , in a sense, multi-modal.

To further explore the effect of the posterior’s land-
scape, we tested networks with similar total rate of tran-
sitions, but with varying level of coupling between compo-
nents. Stronger coupling of components leads to a sharper
joint distribution. To achieve variations in the coupling
we consider variants of the chain CTBN where we set
π̂a,b|y =

(qa,b|y)
α

P
c �=a(qa,c|y)α

and q̂a,b|y = qa,a|y · π̂a,b|y where
α is a non-negative sharpness parameter As α → 0 the net-
work becomes smoother, which reduces coupling between
components. However, the stationary distribution is not
tending to a uniform one because we do not alter the di-
agonal elements. Figure 4 shows convergence behavior for
different values of αwhere estimated statistics are averaged
over 1,000 samplers. As we might expect, convergence is
faster as the network becomes smoother.

Next we evaluated the scalability of the algorithm
by generating networks containing additional components
with an architecture similar to the basic chain network.
As exact inference is infeasible in such networks we mea-
sured relative error versus estimations taken from long
runs. Specifically, for each N , we generated 1000 sam-
ples by running 100 independent chains and taking sam-
ples after 10,000 rounds as well as additional 9 samples
from each chain every 1,000 rounds. Using these samples
we estimated the target sufficient statistics. To avoid aver-
aging different numbers of components, we compared the
relative error in the estimate of 5 components for networks
of different sizes. Figure 5 shows the results of this exper-
iment. As we can see, convergence rates decay moderately



Figure 5: Convergence of relative error in statistics of first
five components in networks of various sizes. Errors are
computed with respect to statistics that are generated with
N = 10, 000 rounds.

Figure 6: Relative error versus run-time in seconds for var-
ious network sizes.

with the size of the network.
While for experimental purposes we generate many

samples independently. A practical strategy is to run a
small number of chains in parallel and then collect take a
large number of samples from each. We tested this strategy
by generating 10 independent chain for various networks
and estimating statistics from all samples except the first
20%. Using these, we measured how the behavior of error
versus CPU run-time scales with network size. Average re-
sults of 9 independent tests are shown in Figure 6. Roughly,
the run-time required for a certain level of accuracy scales
linearly with network size.

Our sampling procedure is such that the cost of sam-
pling a component depends on the time scales of its Markov
neighbors and its own rate matrix. To demonstrate that, we

Figure 7: The effect of different time scales on the sam-
pling. In this networkXi’s rate is twice as fast thanXi+1’s
rate. (top) The number transitions sampled for each of the
first four components as a function of iteration number.
(bottom) The number of intervals of Markov neighbors of
each component as a function of iteration number.

created a chain network where each component has rates
that are of half the magnitude of its parent. This means that
the first component tends to switch state twice as fast as the
second, the second is twice as fast as the third, and so on.
When we examine the number of transitions in the sampled
trajectories Figure 7, we see that indeed they are consistent
with these rates, and quickly converge to the expected num-
ber, since in this example the evidence is relatively weak.
When we examine the number of intervals in the Markov
blanket of each components, again we see that neighbors
of fast components have more intervals. In this graph X1

is an anomaly since it does not have a parent.

6 Discussion
In this paper we presented a new approach for approx-
imate inference in Continuous-Time Bayesian Networks.
By building on the strategy of Gibbs sampling. The core



of our method is a new procedure for exact sampling of a
trajectory of a single component, given evidence on its end
points and the full trajectories of its Markov blanket com-
ponents. This sampling procedure adapts in a natural way
to the time scale of the component, and is exact, up to a
predefined resolution, without sacrificing efficiency.

This is the first MCMC sampling procedure for this
type of models. As such it provides an approach that
can sample from the exact posterior, even for unlikely ev-
idence. As the current portfolio of inference procedures
for continuous-time processes is very small, our procedure
provides another important tool for addressing these mod-
els. In particular, since the approach is asymptotically un-
biased in the number of iterations it can be used to judge
the systematic bias introduced by other, potentially faster,
approximate inference methodologies, such as the one of
Saria et al. (2007).

It is clear that sampling complete trajectories is not use-
ful in situations where we expect a very large number of
transitions in the relevant time periods. However, in many
applications of interest, and in particular our long term goal
of modeling sequence evolution (El-Hay et al., 2006), this
is not the case. When one or few components transitions
much faster than neighboring components, then we are es-
sentially interested in its average behavior (Friedman and
Kupferman, 2006). In such situations, it would be useful to
develop a Rao-Blackwellized sampler that integrates over
the fast components.

As with manyMCMC procedures, one of the main con-
cerns is the mixing time of the sampler. An important di-
rection for future research is the examination of methods
for accelerating the mixing - such as Metropolis-coupled
MCMC or simulated tempering (Gilks et al., 1996) - as well
as a better theoretic understanding of the convergence prop-
erties.
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Abstract
Continuous-time Bayesian networks is a natural structured representation language for multi-
component stochastic processes that evolve continuously over time. Despite the compact represen-
tation provided by this language, inference in such models is intractable even in relatively simple
structured networks. We introduce a mean field variational approximation in which we use a prod-
uct of inhomogeneous Markov processes to approximate a joint distribution over trajectories. This
variational approach leads to a globally consistent distribution, which can be efficiently queried.
Additionally, it provides a lower bound on the probability of observations, thus making it attractive
for learning tasks. Here we describe the theoretical foundations for the approximation, an efficient
implementation that exploits the wide range of highly optimized ordinary differential equations
(ODE) solvers, experimentally explore characterizations of processes for which this approximation
is suitable, and show applications to a large-scale real-world inference problem.
Keywords: continuous time Markov processes, continuous time Bayesian networks, variational
approximations, mean field approximation

1. Introduction

Many real-life processes can be naturally thought of as evolving continuously in time. Examples
cover a diverse range, starting with classical and modern physics, but also including robotics (Ng
et al., 2005), computer networks (Simma et al., 2008), social networks (Fan and Shelton, 2009),
gene expression (Lipshtat et al., 2005), biological evolution (El-Hay et al., 2006), and ecological
systems (Opper and Sanguinetti, 2007). A joint characteristic of all above examples is that they
are complex systems composed of multiple components (e.g., many servers in a server farm and
multiple residues in a protein sequence). To realistically model such processes and use them in

∗. A preliminary version of this paper appeared in the Proceedings of the Twenty Fifth Conference on Uncertainty in
Artificial Intelligence, 2009 (UAI 09).

†. These authors contributed equally.

c�2010 Ido Cohn, Tal El-hay, Nir Friedman and Raz Kupferman.



COHN, EL-HAY, FRIEDMAN AND KUPFERMAN

making sensible predictions we need to learn how to reason about systems that are composed of
multiple components and evolve continuously in time.

Generally, when an evolving system is modeled with sufficient detail, its evolution in time is
Markovian; meaning that its future state it determined by its present state—whether in a deter-
ministic or random sense—independently of its past states. A traditional approach to modeling a
multi-component Markovian process is to discretize the entire time interval into regular time slices
of fixed length and represent its evolution using a Dynamic Bayesian network, which compactly
represents probabilistic transitions between consecutive time slices (Dean and Kanazawa, 1989;
Murphy, 2002; Koller and Friedman, 2009). However, as thoroughly explained in Nodelman et al.
(2003), discretization of a time interval often leads either to modeling inaccuracies or to an unnec-
essary computational overhead. Therefore, in recent years there is a growing interest in modeling
and reasoning about multi-component stochastic processes in continuous time (Nodelman et al.,
2002; Ng et al., 2005; Rajaram et al., 2005; Gopalratnam et al., 2005; Opper and Sanguinetti, 2007;
Archambeau et al., 2007; Simma et al., 2008).

In this paper we focus on continuous-time Markov processes having a discrete product state
space S = S1 × S2 × · · ·× SD, where D is the number of components and the size of each Si is
finite. The dynamics of such processes that are also time-homogeneous can be determined by a
single rate matrix whose entries encode transition rates among states. However, as the size of the
state space is exponential in the number of components so does the size of the transition matrix.
Continuous-time Bayesian networks (CTBNs) provide an elegant and compact representation lan-
guage for multi-component processes that have a sparse pattern of interactions (Nodelman et al.,
2002). Such patterns are encoded in CTBNs using a directed graph whose nodes represent com-
ponents and edges represent direct influences among them. The instantaneous dynamics of each
component depends only on the state of its parents in the graph, allowing a representation whose
size scales linearly with the number of components and exponentially only with the indegree of the
nodes of the graph.

Inference in multi-component temporal models is a notoriously hard problem (Koller and Fried-
man, 2009). Similar to the situation in discrete time processes, inference in CTBNs is exponential
in the number of components, even with sparse interactions (Nodelman et al., 2002). Thus, we
have to resort to approximate inference methods. The recent literature has adapted several strategies
from discrete graphical models to CTBNs in a manner that attempts to exploit the continuous-time
representation, thereby avoiding the drawbacks of discretizing the model.

One class of approximations includes sampling-based approaches, where Fan and Shelton (2008)
introduce a likelihood-weighted sampling scheme, and more recently El-Hay et al. (2008) introduce
a Gibbs-sampling procedure. The complexity of the Gibbs sampling procedure has been shown
to naturally adapt to the rate of each individual component. Additionally it yields more accurate
answers with the investment of additional computation. However, it is hard to bound the required
time in advance, tune the stopping criteria, or estimate the error of the approximation.

An alternative class of approximations is based on variational principles. Recently, Nodelman
et al. (2005b) and Saria et al. (2007) introduced an Expectation Propagation approach, which can be
roughly described as a local message passing scheme, where each message describes the dynamics
of a single component over an interval. This message passing procedure can be efficient. Moreover
it can automatically refine the number of intervals according to the complexity of the underlying
system. Nonetheless, it does suffer from several caveats. On the formal level, the approximation
has no convergence guarantees. Second, upon convergence, the computed marginals do not neces-
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sarily form a globally consistent distribution. Third, it is restricted to approximations in the form
of piecewise-homogeneous messages on each interval. Thus, the refinement of the number of in-
tervals depends on the fit of such homogeneous approximations to the target process. Finally, the
approximation of Nodelman et al does not provide a provable approximation on the likelihood of
the observation—a crucial component in learning procedures.

Here, we develop an alternative variational approximation, which provides a different trade-
off. We use the strategy of structured variational approximations in graphical models (Jordan et al.,
1999), and specifically the variational approach of Opper and Sanguinetti (2007) for approximate
inference in latent Markov Jump Processes, a related class of models (see below for more elaborate
comparison). The resulting procedure approximates the posterior distribution of the CTBN as a
product of independent components, each of which is an inhomogeneous continuous-time Markov
process. We introduce a novel representation that is both natural and allows numerically stable com-
putations. By using this representation, we derive an iterative variational procedure that employs
passing information between neighboring components as well as solving a small set of differential
equations (ODEs) in each iteration. The latter allows us to employ highly optimized standard ODE
solvers in the implementation. Such solvers use an adaptive step size, which as we show is more
efficient than any fixed time interval approximation.

We finally describe how to extend the proposed procedure to branching processes and particu-
larly to models of molecular evolution, which describe historical dynamics of biological sequences
that employ many interacting components. Our experiments on this domain demonstrate that our
procedure provides a good approximation both for the likelihood of the evidence and for the ex-
pected sufficient statistics. In particular, the approximation provides a lower-bound on the likeli-
hood, and thus is attractive for use in learning.

The paper is organized as follows: In Section 2 we review continuous-time models and inference
problems in such models. Section 3 introduces a general variational principle for inference using a
novel parameterization. In Section 4 we apply this principle to a family of factored representations
and show how to find an optimal approximation within this family. Section 5 discusses related work.
Section 6 gives an initial evaluation. Section 7 presents branching process and further experiments,
and Section 8 discusses our results.

2. Foundations

CTBNs are based on the framework of continuous-time Markov processes (CTMPs). In this section
we begin by briefly describing CTMPs. See, for example, Gardiner (2004) and Chung (1960) for
a thorough introduction. Next we review the semantics of CTBNs. We then discuss inference
problems in CTBNs and the challenges they pose.

2.1 Continuous Time Markov Processes

A continuous-time stochastic process with state space S is an uncountable collection of S-valued
random variables {X (t) : t ≥ 0} where X (t) describes the state of the system at time t. Systems with
multiple components are described by state spaces that are Cartesian products of spaces, Si, each
representing the state of a single component. In this paper we consider a D-component stochastic
process X (t) = (X (t)

1 , . . . ,X (t)
D ) with state space S = S1× S2× . . .× SD, where each Si is finite. The

states in S are denoted by vectors, x= (x1, . . . ,xD).
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A continuous-time Markov process is a continuous-time stochastic process in which the joint
distribution of every finite subset of random variables X (t0),X (t1), . . . ,X (tK), where t0 < t1 < · · ·< tK ,
satisfies the conditional independence property, also known as the Markov property:

Pr(X (tK) = xK |X (tK−1) = xK−1, . . . ,X (t0) = x0) = Pr(X (tK) = xK |X (tK−1) = xK−1).

In simple terms, the knowledge of the state of the system at a certain time make its states at later
times independent of its states at former times. In that case the distribution of the process is fully
determined by the conditional probabilities of random variable pairs Pr(X (t+s) = y|X (s) = x), namely,
by the probability that the process is in state y at time t+ s given that is was in state x at time s, for
all 0≤ s< t and x,y ∈ S. A CTMP is called time homogeneous if these conditional probabilities do
not depend on s but only on the length of the time interval t, thus, the distribution of the process is
determined by the Markov transition functions,

px,y(t)≡ Pr(X (t+s) = y|X (s) = x), for all x,y ∈ S and t ≥ 0,

which for every fixed t can be viewed as the entries of a stochastic matrix indexed by states x and y.
Under mild assumptions on the Markov transition functions px,y(t), these functions are differ-

entiable. Their derivatives at t = 0,

qx,y = lim
t→0+

px,y(t)−11x=y
t

,

are the entries of the rate matrix Q, where 11 is the indicator function. This rate matrix describes the
infinitesimal transition probabilities,

px,y(h) = 11x=y+qx,yh+o(h), (1)

where o(·) means decay to zero faster than its argument, that is limh↓0
o(h)
h = 0. Note that the off-

diagonal entries of Q are non-negative, whereas each of its rows sums up to zero, namely,

qx,x =−∑
y�=x

qx,y.

The derivative of the Markov transition function for t other than 0 satisfies the so-called forward, or
master equation,

d
dt
px,y(t) =∑

z
qz,ypx,z(t). (2)

A similar characterization for the time-dependent probability distribution, p(t), whose entries are
defined by

px(t) = Pr(X (t) = x), x ∈ S,

is obtained by multiplying the Markov transition function by entries of the initial distribution p(0)
and marginalizing, resulting in

d
dt
p= pQ. (3)

The solution of this ODE is
p(t) = p(0)exp(tQ),
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Figure 1: An example of a CTMP trajectory: The process starts at state x1 = s0, transitions to
x2 = s2 at t1, to x3 = s1 at t2, and finally to x4 = s2 at t3.

where exp(tQ) is a matrix exponential, defined for any square matrix A by the Taylor series,

exp(A) = I+
∞

∑
k=1

Ak

k!
.

Applying this solution to the initial condition px�(0) = 11x=x� , we can express the Markov transition
function px,y(t) using the rate matrix Q as

px,y(t) = [exp(tQ)]x,y. (4)

Although a CTMP is an uncountable collection of random variables (the state of the system at
every time t), a trajectory σ of {X (t)

}t≥0 over a time interval [0,T ] can be characterized by a finite
number of transitions K, a sequence of states (x0,x1, . . . ,xK) and a sequence of transition times
(t0 = 0, t1, . . . , tK , tK+1 = T ). We denote by σ(t) the state at time t, that is, σ(t) = xk for tk ≤ t < tk+1.
Figure 1 illustrates such a trajectory.

2.2 Multi-component Representation - Continuous-Time Bayesian Networks

Equation (4) indicates that the distribution of a homogeneous Markov process is fully determined
by an initial distribution and a single rate matrix Q. However, since the number of states in a D-
component Markov Process is exponential in D, an explicit representation of this transition matrix
is often infeasible. Continuous-time Bayesian networks are a compact representation of Markov
processes that satisfy two assumptions. First it is assumed that only one component can change at a
time, thus transition rates involving simultaneous changes of two or more components are zero. Sec-
ond, the transition rate of each component i depends only on the state of some subset of components
denoted Pai ⊆ {1, . . . ,D}\{i} and on its own state. This dependency is represented using a directed
graph, where the nodes are indexed by {1, . . . ,D} and the parent nodes of i are Pai (Nodelman et al.,
2002). With each component i we then associate a conditional rate matrix Qi|Pai

·|ui for each state ui of

Pai. The off-diagonal entries qi|Paixi,yi|ui represent the rate at which Xi transitions from state xi to state

yi given that its parents are in state ui. The diagonal entries are q
i|Pai
xi,xi|ui = −∑yi �=xi q

i|Pai
xi,yi|ui , ensuring

that each row in each conditional rate matrix sums up to zero. The dynamics of X (t) are defined by
a rate matrix Q with entries qx,y, which combines the conditional rate matrices as follows:

qx,y =






qi|Paixi,yi|ui δ(x,y) = {i}

∑i q
i|Pai
xi,xi|ui x= y

0 otherwise,
(5)
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where δ(x,y) = { j|x j �= y j} denotes the set of components in which x differs from y.
To have another perspective on CTBN’s, we may consider a discrete-time approximation of

the process. Let h be a sampling interval. The subset of random variables {Xtk : k ≥ 0}, where
tk = kh, is a discrete-time Markov process over a D-dimensional state-space. Dynamic Bayesian
networks (DBNs) provide a compact modeling language for such processes, namely the conditional
distribution of a DBN Ph(X (tk+1)|X (tk)) is factorized into a product of conditional distributions of
X (tk+1)
i given the state of a subset of X (tk)∪X (tk+1). When h is sufficiently small, the CTBN can be
approximated by a DBN whose parameters depend on the rate matrix Q of the CTBN ,

Ph(X (tk+1) = y|X (tk) = x) =
D

∏
i=1
Ph(X

(tk+1)
i = yi|X

(tk)
i = xi,U (tk) = ui), (6)

where
Ph(X

(tk+1)
i = yi|X

(tk)
i = xi,U (tk) = ui) = 11xi=yi +qi|Paixi,yi|uih. (7)

Each such term is the local conditional probability that X (tk+1)
i = yi given the state of Xi and Ui at

time tk. These are valid conditional distributions, because they are non-negative and are normalized,
that is

∑
yi∈Si

�
11xi=yi +qi|Paixi,yi|uih

�
= 1

for every xi and ui. Note that in this discretized process, transition probabilities involving changes
in more than one component are o(h), as in the CTBN. Moreover, using Equations (1) and (5) we
observe that

Pr(X (tk+1) = y|X (tk) = x) = Ph(X (tk+1) = y|X (tk) = x)+o(h).

(See Appendix A for detailed derivations). Therefore, the CTBN and the approximating DBN are
asymptotically equivalent as h→ 0.

Example 1 An example of a multi-component process is the dynamic Ising model, which corre-
sponds to a CTBN in which every component can be in one of two states, −1 or +1, and each
component prefers to be in the same state as its neighbor. These models are governed by two
parameters: a coupling parameter β (it is the inverse temperature in physical models, which deter-
mines the strength of the coupling between two neighboring components), and a rate parameter τ,
which determines the propensity of each component to change its state. Low values of β correspond
to weak coupling (high temperature). More formally, we define the conditional rate matrices as

qi|Paixi,yi|ui = τ
�
1+ e−2yiβ∑ j∈Pai x j

�−1

where x j ∈ {−1,1}. This model is derived by plugging the Ising grid to Continuous-Time Markov
Networks, which are the undirected counterparts of CTBNs (El-Hay et al., 2006).

Consider a two component Ising model whose structure and corresponding DBN are shown in
Figure 2. This system is symmetric, that is, the conditional rate matrices are identical for i ∈ {1,2}.
As an example, for a specific choice of β and τ we have:

Qi|Pai
·|−1 =

- +
- −1 1
+ 10 −10

Qi|Pai
·|+1 =

- +
- −10 10
+ 1 −1
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(a) (b)

Figure 2: Two representations of a two binary component dynamic process. (a) The associated
CTBN. (b) The DBN corresponding to the CTBN in (a). The models are equivalent when
h→ 0.

The local conditional distributions of the DBN can be directly inferred from Equation (7). For
example

Ph(X
(tk+1)
1 = 1|X (tk)

1 =−1,X (tk)
2 = 1) = 10h.

Here, in both components the conditional rates are higher for transitions into states that are identical
to the state of their parent. Therefore, the two components have a disposition of being in the same
state. To support this intuition, we examine the amalgamated rate matrix:

Q =

- - -+ +- ++
- - −2 1 1 0
-+ 10 −20 0 10
+- 10 0 −20 10
++ 0 1 1 −2.

Clearly, transition rates into states in which both components have the same value is higher. Higher
transitions rate imply higher transition probabilities, for example:

p-+ ,--(h) = 10h+o(h),
p-- ,-+(h) = h+o(h).

Thus the probability of transitions into a coherent state is much higher than into an incoherent state.

2.3 Inference in Continuous-time Markov Processes

Our setting is as follows: we receive evidence of the states of several or all components within a
time interval [0,T ]. The two possible types of evidence that may be given are continuous evidence,
where we know the state of a subsetU ⊆ X continuously over some sub-interval [t1, t2]⊆ [0,T ], and
point evidence of the state of U at some point t ∈ [0,T ]. For convenience we restrict our treatment
to a time interval [0,T ] with full end-point evidence X (0) = e0 and X (T ) = eT . We shall discuss the
more general case in Section 5.

Given a continuous-time Bayesian network and evidence of the above type we would like to
evaluate the likelihood of the evidence, Pr(e0,eT ;Q) and to compute pointwise posterior proba-
bilities of various events (e.g., Pr(U (t) = u|e0,eT ) for some U ⊆ X). Another class of queries are
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conditional expectations of statistics that involve entire trajectories of the process. Two important
examples for queries are the sufficient statistics required for learning. These statistics are the amount
of time in which Xi is in state xi and Pai are in state ui, and the number of transitions that Xi un-
derwent from xi to yi while its parents were in state ui (Nodelman et al., 2003). We denote these
statistics by T ixi|ui and M

i
xi,yi|ui respectively. For example, in the trajectory of the univariate process

in Figure 1, we have Ts2 = t2− t1+ t4− t3 andMs0,s2 = 1.
Exact calculation of these values is usually a computationally intractable task. For instance,

calculation of marginals requires first calculating the pointwise distribution over X using a forward-
backward like calculation:

Pr(X (t) = x|e0,eT ) =
pe0,x(t) px,eT (T − t)

pe0,eT (T )
, (8)

and then marginalizing

Pr(U (t) = u|e0,eT ) =∑
x\u
Pr(X (t) = x|e0,eT ),

where px,y(t) = [exp(tQ)]x,y, and the size of Q is exponential in the number of components. More-
over, calculating expected residence times and expected number of transitions involves integration
over the time interval of these quantities (Nodelman et al., 2005a):

E [Tx] =
1

pe0,eT (T )

� T

0
pe0,x(t) px,eT (T − t)dt,

E [Mx,y] =
1

pe0,eT (T )

� T

0
pe0,x(t)qx,y py,eT (T − t)dt .

These make this approach infeasible beyond a modest number of components, hence we have to
resort to approximations.

3. Variational Principle for Continuous-Time Markov Processes

Variational approximations to structured models aim to approximate a complex distribution by a
simpler one, which allows efficient inference. This problem can be viewed as an optimization
problem: given a specific model and evidence, find the “best” approximation within a given class of
simpler distributions. In this setting the inference is posed as a constrained optimization problem,
where the constraints ensure that the parameters correspond to valid distributions consistent with
the evidence. Specifically, the optimization problem is constructed by defining a lower bound to
the log-likelihood of the evidence, where the gap between the bound and the true likelihood is
the divergence of between the approximation and the true posterior. While the resulting problem
is generally intractable, it enables us to derive approximate algorithms by approximating either
the functional or the constrains that define the set of valid distributions. In this section we define
the lower-bound functional in terms of a general continuous-time Markov process (that is, without
assuming any network structure). Here we aim at defining a lower bound on lnPQ(eT |e0) as well as
to approximating the posterior probability PQ(· | e0,eT ), where PQ is the distribution of the Markov
process whose instantaneous rate-matrix is Q. We start by examining the structure of the posterior
and introducing an appropriate parameterization.

2752



MEAN FIELD APPROXIMATION FOR CONTINUOUS-TIME BAYESIAN NETWORKS

Recall that the distribution of a time-homogeneous Markov process is characterized by the con-
ditional transition probabilities px,y(t), which in turn is fully redetermined by the constant rate
matrix Q. It is not hard to see that whenever the prior distribution of a stochastic process is that of a
homogeneous Markov process with rate matrix Q, then the posterior PQ(·|e0,eT ) is also a Markov
process, albeit generally not a homogeneous one. The distribution of a continuous-time Markov
processes that is not homogeneous in time is determined by conditional transition probabilities,
px,y(s,s+ t), which depend explicitly on both initial and final times. These transition probabilities
can be expressed by means of a time-dependent matrix-valued function, R(t), which describes in-
stantaneous transition rates. The connection between the time-dependent rate matrix R(t) and the
transition probabilities, px,y(s,s+ t) is established by the master equation,

d
dt
px,y(s,s+ t) =∑

z
rz,y(s+ t)px,z(s,s+ t),

where rz,y(t) are the entries of R(t). This equation is a generalization of Equation (2) for inhomoge-
neous processes. As in the homogeneous case, it leads to a master equation for the time-dependent
probability distribution,

d
dt
px(t) =∑

y
ry,x(t)py(t),

thereby generalizing Equation (3).
By the above discussion, it follows that the posterior process can be represented by a time-

dependent rate matrix R(t). More precisely, writing the posterior transition probability using basic
properties of conditional probabilities and the definition of the Markov transition function gives

PQ(X (t+h) = y|X (t) = x,X (T ) = eT ) =
px,y(h)py,eT (T − t+h)

px,eT (T − t)
.

Taking the limit h→ 0 we obtain the instantaneous transition rate of the posterior process

rx,y(t) = lim
h→0

PQ(X (t+h) = y|X (t) = x,X (T ) = eT )
h

= qx,y ·
py,eT (T − t)
px,eT (T − t)

. (9)

This representation, although natural, proves problematic in the framework of deterministic ev-
idence because as t approaches T the transition rate into the observed state tends to infinity. In par-
ticular, when x �= eT and y= eT , the posterior transition rate is qx,eT ·

peT ,eT (T−t)
px,eT (T−t)

. This term diverges
as t → T , because the numerator approaches 1 while the denominator approaches 0. We therefore
consider an alternative parameterization for this inhomogeneous process that is more suitable for
variational approximations.

3.1 Marginal Density Representation

Let Pr be the distribution of a Markov process, generally not time homogeneous. We define a family
of functions:

µx(t) = Pr(X (t) = x),

γx,y(t) = lim
h↓0

Pr(X (t) = x,X (t+h) = y)
h

, x �= y.
(10)
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The function µx(t) is the marginal probability that X (t) = x. The function γx,y(t) is the probability
density that X transitions from state x to y at time t. Note that this parameter is not a transition rate,
but rather a product of a point-wise probability with the point-wise transition rate of the distribution,
that is, the entries of the time-dependent rate matrix of an equivalent process can be defined by

rx,y(t) =

�
γx,y(t)
µx(t) µx(t)> 0,
0 µx(t) = 0.

(11)

Hence, unlike the (inhomogeneous) rate matrix at time t, γx,y(t) takes into account the probability
of being in state x and not only the rate of transitions.

We aim to use the family of functions µ and γ as a representation of the posterior process.
To do so, we need to characterize the set of constraints that these functions satisfy. We begin by
constraining the marginals µx(t) to be valid distributions that is, 0 ≤ µx(t) ≤ 1 and ∑x µx(t) = 1.
A similar constraint on the pairwise distributions implies that γx,y(t) ≥ 0 for x �= y. Next, we infer
additional constraints from consistency properties between distributions over pairs of variables and
their uni-variate marginals. Specifically, Equation (10) implies that for x �= y

Pr(X (t) = x,X (t+h) = y) = γx,y(t)h+o(h). (12)

Plugging this identity into the consistency constraint

µx(t) = Pr(X (t) = x) =∑
y
Pr(X (t) = x,X (t+h) = y),

defining
γx,x(t) =−∑

y�=x
γx,y(t)

and rearranging, we obtain

Pr(X (t) = x,X (t+h) = y) = 11x=yµx(t)+ γx,y(t)h+o(h), (13)

which unlike (12) is valid for all x,y. Marginalizing (13) with respect to the second variable,

Pr(X (t+h) = x) =∑
y
Pr(X (t) = y,X (t+h) = x),

we obtain a forward update rule for the uni-variate marginals

µx(t+h) = µx(t)+h∑
y
γy,x(t)+o(h).

Rearranging terms and taking the limit h→ 0 gives a differential equation for µx(t),

d
dt
µx(t) =∑

y
γy,x(t).

Finally, whenever µx(t) = 0 we have Pr(X (t) = x,X (t+h) = y) = 0, implying in that case that γx,y(t) =
0. Based on these observations we define:
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Definition 1 A family η = {µx(t),γx,y(t) : 0 ≤ t ≤ T} of functions is a Markov-consistent density
set if the following constraints are fulfilled:

µx(t) ≥ 0, ∑
x
µx(0) = 1,

γx,y(t) ≥ 0 ∀y �= x,
γx,x(t) = −∑

y�=x
γx,y(t),

d
dt
µx(t) = ∑

y
γy,x(t),

and γx,y(t) = 0 whenever µx(t) = 0. We denote byM the set of all Markov-consistent densities.

Using standard arguments we can show that there exists a correspondence between (generally
inhomogeneous) Markov processes and density sets η. Specifically, given η, we construct a process
by defining an inhomogeneous rate matrix R(t) whose entries are defined in Equation (11) and
prove the following:

Lemma 2 Let η= {µx(t),γx,y(t) : 0≤ t ≤ T}. If η∈M , then there exists a continuous-time Markov
process Pr for which µx and γx,y satisfy (10) for every t in the right-open interval [0,T).

Proof See appendix B

The converse is also true: for every integrable inhomogeneous rate matrix R(t) the corresponding
marginal density set is defined by d

dt µx(t) = ∑y ry,x(t)µy(t) and γx,y(t) = µx(t)rx,y(t). The processes
we are interested in, however, have additional structure, as they correspond to the posterior distri-
bution of a time-homogeneous process with end-point evidence. In that case, multiplying Equation
(9) by µx(t) gives

γx,y(t) = µx(t) ·qx,y ·
py,eT (T − t)
px,eT (T − t)

. (14)

Plugging in Equation (8) we obtain

γx,y(t) =
pe0,x(t) ·qx,y · py,eT (T − t)

pe0,eT (T )
,

which is zero when y �= eT and t = T . This additional structure implies that we should only con-
sider a subset of M . Specifically the representation η corresponding to the posterior distribution
PQ(·|e0,eT ) satisfies µx(0) = 11x=e0 , µx(T ) = 11x=eT , γx,y(0) = 0 for all x �= e0 and γx,y(T ) = 0 for all
y �= eT . We denote by Me ⊂M the subset that contains Markov-consistent density sets satisfying
these constraints. This analysis suggests that for every homogeneous rate matrix and point evi-
dence e there is a member inMe that corresponds to the posterior process. Thus, from now on we
restrict our attention to density sets fromMe.

3.2 Variational Principle

The marginal density representation allows us to state the variational principle for continuous pro-
cesses, which closely tracks similar principles for discrete processes. Specifically, we define a
functional of functions that are constrained to be density sets from Me. The maximum over this
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set is the log-likelihood of the evidence and is attained for a density set that represents the poste-
rior distribution. This formulation will serve as a basis for the mean-field approximation, which is
introduced in the next section.

Define a free energy functional,

F (η;Q) = E(η;Q)+H (η),

which, as we will see, measures the quality of η as an approximation of PQ(·|e). (For succinctness,
we will assume that the evidence e is clear from the context.) The two terms in the functional are
the average energy,

E(η;Q) =
� T

0
∑
x

�
µx(t)qx,x+∑

y�=x
γx,y(t) lnqx,y

�
dt,

and the entropy,

H (η) =
� T

0
∑
x
∑
y�=x

γx,y(t)[1+ lnµx(t)− lnγx,y(t)]dt.

The following theorem establishes the relation of this functional to the Kullback-Leibler (KL)
divergence and the likelihood of the evidence, and thus allows us to cast the variational inference
into an optimization problem.

Theorem 3 Let Q be a rate matrix, e= (e0,eT ) be states of X, and η ∈Me. Then

F (η;Q) = lnPQ(eT |e0)− ID(Pη||PQ(·|e))

where Pη is the distribution corresponding to η and ID(Pη||PQ(·|e)) is the KL divergence between
the two processes.

We conclude from the non-negativity of the KL divergence that the energy functional F (η;Q) is
a lower bound of the log-likelihood of the evidence. The closer the approximation to the target
posterior, the tighter the bound. Moreover, since the KL divergence is zero if and only if the two
distributions are equal almost everywhere, finding the maximizer of this free energy is equivalent
to finding the posterior distribution from which answers to different queries can be efficiently com-
puted.

3.3 Proof of Theorem 3

We begin by examining properties of distributions of inhomogeneous Markov processes. Let X (t) be
an inhomogeneous Markov process with rate matrix R(t). As in the homogeneous case, a trajectory
σ of {X (t)

}t≥0 over a time interval [0,T ] can be characterized by a finite number of transitions K, a
sequence of states (x0,x1, . . . ,xK) and a sequence of transition times (t0 = 0, t1, . . . , tK , tK+1 = T ).
We denote by Σ the set of all trajectories of X [0,T ]. The distribution over Σ can be character-
ized by a collection of random variables that consists of the number of transitions κ, a sequence
of states (χ0, . . . ,χκ) and transition times (τ1, . . . ,τκ). Note that the number of random variables
that characterize the trajectory is by itself a random variable. The density fR of a trajectory
σ = {K,x0, . . . ,xK , t1, . . . , tK} is the derivative of the joint distribution with respect to transition
times, that is,

fR(σ) =
∂K

∂t1 · · ·∂tK
PR(κ= K,χ0 = x0, . . . ,χK = xK ,τ1 ≤ t1, . . . ,τK ≤ tK),
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which is given by

fR(σ) = px0(0) ·
K−1

∏
k=0

�
e
� tk+1
tk rxk ,xk (t)dtrxk,xk+1(tk+1)

�
· e

� tK+1
tK rxK ,xK (t)dt .

For example, in case R(t) =Q is a homogeneous rate matrix this equation reduces to

fQ(σ) = px0(0) ·
K−1

∏
k=0

�
eqxk ,xk (tk+1−tk)qxk,xk+1

�
· eqxK ,xK (tK+1−tK).

The expectation of a random variable ψ(σ) is an infinite sum (because one has to account for all
possible numbers of transitions) of finite dimensional integrals,

E fQ [ψ]≡
�

Σ
fR(σ)ψ(σ)dσ≡

∞

∑
K=0
∑
x0
· · ·∑

xK

� T

0

� tK

0
· · ·

� t2

0
fR(σ)ψ(σ)dt1 · · ·dtK .

The KL-divergence between two densities that correspond to two inhomogeneous Markov pro-
cesses with rate matrices R(t) and S(t) is

ID( fR|| fS) =
�

Σ
fR(σ) ln

fR(σ)
fS(σ)

dσ . (15)

We will use the convention 0ln0= 0 and assume the support of fS is contained in the support of fR.
That is fR(σ) = 0 whenever fS(σ) = 0. The KL-divergence satisfies ID( fR|| fS) ≥ 0 and is exactly
zero if and only if fR = fS almost everywhere (Kullback and Leibler, 1951).

Let η ∈ Me be a marginal density set consistent with e. As we have seen, this density set
corresponds to a Markov process with rate matrix R(t) whose entries are defined by Equation (11),
hence we identify fη ≡ fR.

Given evidence e on some event we denote fQ(σ,e)≡ fQ(σ) ·11σ|=e, and note that

PQ(e) =
�

{σ:σ|=e}
fQ(σ)dσ=

�

Σ
fQ(σ,e)dσ ,

where σ |= e is a predicate which is true if σ is consistent with the evidence. The density function
of the posterior distribution PQ(·|e) satisfies fS(σ) = fQ(σ,e)

PQ(e) where S(t) is the time-dependent rate
matrix that corresponds to the posterior process.

Manipulating (15), we get

ID( fη|| fS) =
�

Σ
fη(σ) ln fη(σ)dσ−

�

Σ
fη(σ) ln fS(σ)dσ≡ E fη [ln fη(σ)]−E fη [ln fS(σ)] .

Replacing ln fS(σ) by ln fQ(σ,e)− lnPQ(e) and applying simple arithmetic operations gives

lnPQ(e) = E fη [ln fQ(σ,e)]−E fη [ln fη(σ)]+ ID( fη|| fS).

The crux of the proof is in showing that the expectations in the right-hand side satisfy

E fη [ln fQ(σ,e)] = E(η;Q),

2757



COHN, EL-HAY, FRIEDMAN AND KUPFERMAN

and
−E fη [ln fη(σ)] =H (η),

implying that F (η;Q) is a lower bound on the log-probability of evidence with equality if and only
if fη = fQ almost everywhere.

To prove these identities for the energy and entropy, we treat trajectories as functions σ :R →R
where R is the set of real numbers by denoting σ(t) ≡ X (t)(σ)—the state of the system at time t.
Using this notation we introduce two lemmas that allow us to replace integration over a set of
trajectories by a one dimensional integral, which is defined over a time variable. The first result
handles expectations of functions that depend on specific states:

Lemma 4 Let ψ : S×R → R be a function, then

E fη

�� T

0
ψ(σ(t), t)dt

�
=

� T

0
∑
x
µx(t)ψ(x, t)dt.

Proof See Appendix C.1

As an example, by setting ψ(x�, t) = 11x�=x we obtain that the expected residence time in state x is
E fη [Tx] =

� T
0 µx(t)dt. The second result handles expectations of functions that depend on transitions

between states:

Lemma 5 Let ψ(x,y, t) be a function from S×S×R to R that is continuous with respect to t and
satisfies ψ(x,x, t) = 0, ∀x,∀t then

E fη

�
Kσ

∑
k=1

ψ(xσk−1,x
σ
k , t

σ
k )

�
=

� T

0
∑
x
∑
y�=x

γx,y(t)ψ(x,y, t)dt,

where the superscript σ stresses that Kσ, xσk and t
σ
k are associated with a specific trajectory σ.

Proof See Appendix C.2

Continuing the example of the previous lemma, here by settingψ(x�,y�, t) = 11x�=x11y�=y11x �=y the sums
within the left hand expectation become the number of transitions in a trajectory σ. Thus, we obtain
that the expected number of transitions from x to y is E f [Mx,y] =

� T
0 γx,y(t)dt.

We now use these lemmas to compute the expectations involved in the energy functional. Sup-
pose e= {e0,eT} is a pair of point evidence and η∈Me. Applying these lemmas with ψ(x, t) = qx,x
and ψ(x,y, t) = 11x �=y · lnqx,y gives

E fη [ln fQ(σ,e)] =
� T

0
∑
x

�
µx(t)qx,x(t)+∑

y�=x
γx,y(t) lnqx,y(t)

�
dt .

Similarly, setting ψ(x, t) = rx,x(t) and ψ(x,y, t) = 11x �=y · lnrx,y(t), where R(t) is defined in Equation
(11), we obtain

−E fη [ln fη(σ,e)] =−

� T

0
∑
x

�
µx(t)

γx,x(t)
µx(t)

+∑
y�=x

γx,y(t) ln
γx,y(t)
µx(t)

�
dt =H (η) .
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4. Factored Approximation

The variational principle we discussed is based on a representation that is as complex as the original
process—the number of functions γx,y(t) we consider is equal to the size of the original rate ma-
trix Q. To get a tractable inference procedure we make additional simplifying assumptions on the
approximating distribution.

Given a D-component process we consider approximations that factor into products of indepen-
dent processes. More precisely, we defineM i

e to be the continuous Markov-consistent density sets
over the component Xi, that are consistent with the evidence on Xi at times 0 and T . Given a collec-
tion of density sets η1, . . . ,ηD for the different components, the product density set η=η1× · · ·×ηD

is defined as

µx(t) = ∏
i
µixi(t),

γx,y(t) =






γixi,yi(t)µ
\i
x (t) δ(x,y) = {i}

∑i γ
i
xi,xi(t)µ

\i
x (t) x= y

0 otherwise

where µ\ix (t) =∏ j �=i µ
j
x j(t) is the joint distribution at time t of all the components other than the i’th

(it is not hard to see that if ηi ∈M i
e for all i, then η ∈Me). We define the set M F

e to contain all
factored density sets. From now on we assume that η= η1× · · ·×ηD ∈M F

e .
Assuming that Q is defined by a CTBN, and that η is a factored density set, we can rewrite

E(η;Q) =∑
i

� T

0
∑
xi

�
µixi(t)Eµ\i(t)

�
qxi,xi|Ui

�
+ ∑

xi,yi �=xi
γixi,yi(t)Eµ\i(t)

�
lnqxi,yi|Ui

�
�
dt

(see derivations in Appendix D). Similarly, the entropy term factors as

H (η) =∑
i
H (ηi) .

Note that terms such as Eµ\i(t)
�
qxi,xi|Ui

�
involve only µj(t) for j ∈ Pai, because Eµ\i(t) [ f (Ui)] =

∑ui µui(t) f (ui). Therefore, this decomposition involves only local terms that either include the i’th
component, or include the i’th component and its parents in the CTBN defining Q.

To make the factored nature of the approximation explicit in the notation, we write henceforth,

F (η;Q) = F̃ (η1, . . . ,ηD;Q).

4.1 Fixed Point Characterization

The factored form of the functional and the independence between the different ηi allows optimiza-
tion by block ascent, optimizing the functional with respect to each parameter set in turn. To do so,
we should solve the following optimization problem:

Fixing i, and given η1, . . . ,ηi−1,ηi+1, . . . ,ηD, inM 1
e , . . .M

i−1
e ,M i+1

e , . . . ,M D
e , respec-

tively, find
arg max

ηi∈M i
e

F̃ (η1, . . . ,ηD;Q) .
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If for all i, we have a µi ∈M i
e , which is a solution to this optimization problem with respect to

each component, then we have a (local) stationary point of the energy functional withinM F
e .

To solve this optimization problem, we define a Lagrangian, which includes the constraints in
the form of Definition 1. These constraints are to be enforced in a continuous fashion, and so the
Lagrange multipliers λixi(t) are continuous functions of t as well. The Lagrangian is a functional of
the functions µixi(t), γ

i
xi,yi(t) and λ

i
xi(t), and takes the following form

L = F̃ (η;Q)−
D

∑
i=1

� T

0
λixi(t)

�
d
dt
µixi(t)−∑

yi
γixi,yi(t)

�
dt .

A necessary condition for the optimality of a density set η is the existence of λ such that (η,λ) is a
stationary point of the Lagrangian. A stationary point of a functional satisfies the Euler-Lagrange
equations, namely the functional derivatives with respect to µ, γ and λ vanish (see Appendix E
for a brief review). The detailed derivation of the resulting equations is in Appendix F. Writing
these equations in explicit form, we get a fixed point characterization of the solution in term of the
following set of ODEs:

d
dt
µixi(t) = ∑

yi �=xi

�
γiyi,xi(t)− γixi,yi(t)

�
,

d
dt
ρixi(t) =−ρixi(t)

�
q ixi,xi(t)+ψixi(t)

�
− ∑

yi �=xi
ρiyi(t)q̃

i
xi,yi(t)

(16)

along with the following algebraic constraint

ρixi(t)γ
i
xi,yi(t) = µixi(t)q̃

i
xi,yi(t)ρ

i
yi(t), xi �= yi (17)

where ρi are the exponents of the Lagrange multipliers λi. In these equations we use the following
shorthand notations for the average rates

q ixi,xi(t) = Eµ\i(t)
�
qi|Paixi,xi|Ui

�
,

q ixi,xi|x j(t) = Eµ\i(t)
�
qi|Paixi,xi|Ui

| x j
�
,

where µ\i(t) is the product distribution of µ1(t), . . . ,µi−1(t),µi+1(t), . . . ,µD(t). Similarly, we have
the following shorthand notations for the geometrically-averaged rates,

q̃ixi,yi(t) = exp
�
Eµ\i(t)

�
lnqi|Paixi,yi|Ui

��
,

q̃ixi,yi|x j(t) = exp
�
Eµ\i(t)

�
lnqi|Paixi,yi|Ui

| x j
��

.

The last auxiliary term is

ψixi(t) = ∑
j∈Childreni

∑
x j

�
µjx j(t)q

j
x j,x j|xi(t)+ ∑

x j �=y j
γ jx j,y j(t) ln q̃

j
x j,y j|xi(t)

�
.

To uniquely solve the two differential Equations (16) for µixi(t) and ρ
i
xi(t) we need to set boundary

conditions. The boundary condition for µixi is defined explicitly inM
F
e as

µixi(0) = 11xi=ei,0 . (18)
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The boundary condition at T is slightly more involved. The constraints inM F
e imply that µixi(T ) =

11xi=ei,T . As stated in Section 3.1, we have that γiei,T ,xi(T ) = 0 when xi �= ei,T . Plugging these values
into (17), and assuming that all elements ofQi|Pai are non-zero we get that ρxi(T ) = 0 for all xi �= ei,T
(It might be possible to use a weaker condition that Q is irreducible). In addition, we notice that
ρei,T (T ) �= 0, for otherwise the whole system of equations for ρ will collapse to 0. Finally, notice
that the solution of (16,17) for µi and γi is insensitive to the multiplication of ρi by a constant. Thus,
we can arbitrarily set ρei,T (T ) = 1, and get the boundary condition

ρixi(T ) = 11xi=ei,T . (19)

Putting it all together we obtain a characterization of stationary points of the functional as stated in
the following theorem:

Theorem 6 ηi ∈M i
e is a stationary point (e.g., local maxima) of F̃ (η1, . . . ,ηD;Q) subject to the

constraints of Definition 1 if and only if it satisfies (16–19).

Proof see Appendix F

It is straightforward to extend this result to show that at a maximumwith respect to all the component
densities, this fixed-point characterization must hold for all components simultaneously.

Example 2 Consider the case of a single component, for which our procedure should be exact, as
no simplifying assumptions are made on the density set. In that case, the averaged rates q i and the
geometrically-averaged rates q̃i both reduce to the unaveraged rates q, and ψ≡ 0. Thus, the system
of equations to be solved is

d
dt
µx(t) = ∑

y�=x
(γy,x(t)− γx,y(t)) ,

d
dt
ρx(t) =−∑

y
qx,yρy(t),

along with the algebraic equation

ρx(t)γx,y(t) = µx(t)qx,yρy(t), y �= x.

These equations have a simple intuitive interpretation. First, the backward propagation rule for
ρx implies that

ρx(t) = Pr(eT |X (t) = x).

To prove this identity, we recall the notation px,y(h) ≡ Pr(X (t+h) = y|X (t) = x) and write the dis-
cretized propagation rule

Pr(eT |X (t) = x) =∑
y
px,y(h) ·Pr(eT |X (t+h) = y) .

Using the definition of q (Equation 1), rearranging, dividing by h and taking the limit h→ 0 gives

d
dt
Pr(eT |X (t) = x) =−∑

y
qx,y ·Pr(eT |X (t) = y),
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which is identical to the differential equation for ρ. Second, dividing the above algebraic equation
by ρx(t) whenever it is greater than zero we obtain

γx,y(t) = µx(t)qx,y
ρy(t)
ρx(t)

. (20)

Thus, we reconstructed Equation (14).
This analysis suggest that this system of ODEs is similar to forward-backward propagation,

except that unlike classical forward propagation, here the forward propagation already takes into
account the backward messages to directly compute the posterior. Given this interpretation, it is
clear that integrating ρx(t) from T to 0 followed by integrating µx(t) from 0 to T computes the exact
posterior of the processes.

This interpretation of ρx(t) also allows us to understand the role of γx,y(t). Equation (20) sug-
gests that the instantaneous rate combines the original rate with the relative likelihood of the evi-
dence at T given y and x. If y is much more likely to lead to the final state, then the rates are biased
toward y. Conversely, if y is unlikely to lead to the evidence the rate of transitions to it are lower.
This observation also explains why the forward propagation of µx will reach the observed µx(T )
even though we did not impose it explicitly.

Example 3 Let us return to the two-component Ising chain in Example 1 with initial state X (0)
1 =−1

and X (0)
2 = 1, and a reversed state at the final time, X (T )

1 = 1 and X (T )
2 =−1. For a large value of β,

this evidence is unlikely as at both end points the components are in a undesired configurations. The
exact posterior is one that assigns higher probabilities to trajectories where one of the components
switches relatively fast to match the other, and then toward the end of the interval, they separate
to match the evidence. Since the model is symmetric, these trajectories are either ones in which
both components are most of the time in state −1, or ones where both are most of the time in
state 1 (Figure 3(a)). Due to symmetry, the marginal probability of each component is around
0.5 throughout most of the interval. The variational approximation cannot capture the dependency
between the two components, and thus converges to one of two local maxima, corresponding to the
two potential subsets of trajectories (Figure 3(b)). Examining the value of ρi, we see that close to
the end of the interval they bias the instantaneous rates significantly. For example, as t approaches 1,
ρ11(t)/ρ1−1(t) approaches infinity and so does the instantaneous rate γ1−1,1(t)/µ1−1(t), thereby forcing
X1 to switch to state 1 (Figure 3(c)).

This example also allows to examine the implications of modeling the posterior by inhomoge-
neous Markov processes. In principle, we might have used as an approximation Markov processes
with homogeneous rates, and conditioned on the evidence. To examine whether our approximation
behaves in this manner, we notice that in the single component case we have

qx,y =
ρx(t)γx,y(t)
ρy(t)µx(t)

,

which should be constant.
Consider the analogous quantity in the multi-component case: q̃ixi,yi(t), the geometric average

of the rate of Xi, given the probability of parents state. Not surprisingly, this is exactly a mean field
approximation, where the influence of interacting components is approximated by their average
influence. Since the distribution of the parents (in the two-component system, the other component)
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(a) (b)

(c) (d)

Figure 3: Numerical results for the two-component Ising chain described in Example 3 where the
first component starts in state−1 and ends at time T = 1 in state 1. The second component
has the opposite behavior. (a) Two likely trajectories depicting the two modes of the
model. (b) Exact (solid) and approximate (dashed/dotted) marginals µi1(t). (c) The log
ratio logρi1(t)/ρi−1(t). (d) The expected rates q̃11,−1(t) and q̃1−1,1(t) of component X1 of the
Ising chain in Example 1. We can notice that the averaged rates are highly non-constant,
and so cannot be approximated well with a constant rate matrix.

changes in time, these rates change continuously, especially near the end of the time interval. This
suggests that a piecewise homogeneous approximation cannot capture the dynamics without a loss
in accuracy. As expected in a dynamic process, we can see in Figure 3(d) that the inhomogeneous
transition rates are very erratic. In particular, the rates of X1 spike at the transition point selected
by the mean field approximation. This can be interpreted as putting most of the weight of the
distribution on trajectories which transition from state -1 to 1 at that point.

4.2 Optimization Procedure

If Q is irreducible, then ρixi and µ
i
xi are non-zero throughout the open interval (0,T ). As a result,

we can solve (17) to express γixi,yi as a function of µ
i and ρi, thus eliminating it from (16) to get

evolution equations solely in terms of µi and ρi. Abstracting the details, we obtain a set of ODEs of
the form

d
dt
ρi(t) = α(ρi(t),µ\i(t)) ρi(T ) = given,

d
dt
µi(t) = β(µi(t),ρi(t),µ\i(t)) µi(0) = given.
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where α and β are defined by the right-hand side of the differential equations (16). Since the evo-
lution of ρi does not depend on µi, we can integrate backward from time T to solve for ρi. Then,
integrating forward from time 0, we compute µi. After performing a single iteration of backward-
forward integration, we obtain a solution that satisfies the fixed-point equation (16) for the i’th com-
ponent (this is not surprising once we have identified our procedure to be a variation of a standard
forward-backward algorithm for a single component). Such a solution will be a local maximum
of the functional w.r.t. to ηi (reaching a local minimum or a saddle point requires very specific
initialization points).

This suggests that we can use the standard procedure of asynchronous updates, where we update
each component in a round-robin fashion. Since each of these single-component updates converges
in one backward-forward step, and since it reaches a local maximum, each step improves the value
of the free energy over the previous one. As the free energy functional is bounded by the probability
of the evidence, this procedure will always converge, and the rate of the free energy increase can be
used to test for convergence.

Potentially, there can be many scheduling possibilities. In our implementation the update
scheduling is simply random. A better choice would be to update the component which would
maximally increase the value of the functional in that iteration. This idea is similar to the schedul-
ing of Elidan et al. (2006), who approximate the change in the beliefs by bounding the residuals of
the messages, which give an approximation of the benefit of updating each component.

Another issue is the initialization of this procedure. Since the iteration on the i’th component
depends on µ\i, we need to initialize µ by some legal assignment. To do so, we create a fictional rate
matrix Q̃i for each component and initialize µi to be the posterior of the process given the evidence
ei,0 and ei,T . As a reasonable initial guess, we choose at random one of the conditional rates Qi|ui

using some random assignment ui to determine the fictional rate matrix.
The general optimization procedure is summarized in the following algorithm:
For each i, initialize µi using some legal marginal function.
while not converged do

1. Pick a component i ∈ {1, . . . ,D}.

2. Update ρi(t) by solving the ρi backward differential equation in (16).

3. Update µi(t) and γi(t) by solving the µi forward differential equation in (16) and
using the algebraic equation in (17).

end
Algorithm 1: Mean field approximation in continuous-time Bayesian networks

4.3 Exploiting Continuous-Time Representation

The continuous-time update equations allow us to use standard ODE methods with an adaptive
step size (here we use the Runge-Kutta-Fehlberg (4,5) method). At the price of some overhead,
these procedures automatically tune the trade-off between error and time granularity. Moreover,
this overhead is usually negligible compared to the saving in computation time, because adaptive
integration can be more efficient than any fixed step size integration by an order of magnitude (Press
et al., 2007).
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To further save computations, we note that while standard integration methods involve only
initial boundary conditions at t = 0, the solution of µi is also known at t = T . Therefore, we stop
the adaptive integration when µi(t) ≈ µi(T ) and t is close enough to T . This modification reduces
the number of computed points significantly because the derivative of µi tends to grow near the
boundary, resulting in a smaller step size.

The adaptive solver selects different time points for the evaluation of each component. There-
fore, updates of ηi require access to marginal density sets of neighboring components at time points
that differ from their evaluation points. To allow efficient interpolation, we use a piecewise linear
approximation of η whose boundary points are determined by the evaluation points that are chosen
by the adaptive integrator.

5. Perspectives and Related Work

Variational approximations for different types of continuous-time processes have been recently
proposed. Examples include systems with discrete hidden components (Opper and Sanguinetti,
2007); continuous-state processes (Archambeau et al., 2007); hybrid models involving both discrete
and continuous-time components (Sanguinetti et al., 2009; Opper and Sanguinetti, 2010); and spa-
tiotemporal processes (Ruttor and Opper, 2010; Dewar et al., 2010). All these models assume noisy
observations in a finite number of time points. In this work we focus on structured discrete-state
processes with noiseless evidence.

Our approach is motivated by results of Opper and Sanguinetti (2007) who developed a varia-
tional principle for a related model. Their model is similar to an HMM, in which the hidden chain
is a continuous-time Markov process and there are (noisy) observations at discrete points along the
process. They describe a variational principle and discuss the form of the functional when the ap-
proximation is a product of independent processes. There are two main differences between the
setting of Opper and Sanguinetti and ours. First, we show how to exploit the structure of the target
CTBN to reduce the complexity of the approximation. These simplifications imply that the update
of the i’th process depends only on its Markov blanket in the CTBN, allowing us to develop effi-
cient approximations for large models. Second, and more importantly, the structure of the evidence
in our setting is quite different, as we assume deterministic evidence at the end of intervals. This
setting typically leads to a posterior Markov process in which the instantaneous rates used by Opper
and Sanguinetti diverge toward the end point—the rates of transition into the observed state go to
infinity, leading to numerical problems at the end points. We circumvent this problem by using the
marginal density representation which is much more stable numerically.

Taking the general perspective of Wainwright and Jordan (2008), the representation of the dis-
tribution uses the natural sufficient statistics. In the case of a continuous-time Markov process, the
sufficient statistics are Tx, the time spent in state x, andMx,y, the number of transitions from state x to
y. In a discrete-time model, we can capture the statistics for every random variable. In a continuous-
time model, however, we need to consider the time derivative of the statistics. Indeed, as shown in
Section 3.3 we have

d
dt
E [Tx(t)] = µx(t) and

d
dt
E [Mx,y(t)] = γx,y(t).

Thus, our marginal density sets η provide what we consider a natural formulation for variational
approaches to continuous-time Markov processes.
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Our presentation focused on evidence at two ends of an interval. Our formulation easily extends
to deal with more elaborate types of evidence: (1) If we do not observe the initial state of the i’th
component, we can set µix(0) to be the prior probability of X (0) = x. Similarly, if we do not observe Xi
at time T , we set ρix(T ) = 1 as initial data for the backward step. (2) In a CTBN where one (or more)
components are fully observed throughout some interval, we simply set µi for these components to
be a distribution that assigns all the probability mass to the observed trajectory. Similarly, if we
observe different components at different times, we may update each component on a different time
interval. Consequently, maintaining for each component a marginal distribution µi throughout the
interval of interest, we can update the other ones using their evidence patterns.

6. Evaluation on Ising Chains

To gain better insight into the quality of our procedure, we performed numerical tests on models
that challenge the approximation. Specifically, we use Ising chains with the parameterization in-
troduced in Example 1, where we explore regimes defined by the degree of coupling between the
components (the parameter β) and the rate of transitions (the parameter τ). We evaluate the error
in two ways. The first is by the difference between the true log-likelihood and our estimate. The
second is by the average relative error in the estimate of different expected sufficient statistics de-
fined by ∑ j |θ̂ j−θ j|/θ j, where θ j is exact value of the j’th expected sufficient statistics and θ̂ j is
the approximation. To obtain a stable estimate the average is taken over all θ j > 0.05max j� θ j� .

Applying our procedure on an Ising chain with 8 components, for which we can still perform
exact inference, we evaluated the relative error for different choices of β and τ. The evidence in
this experiment is e0 = {+,+,+,+,+,+,−,−}, T = 0.64 and eT = {−,−,−,+,+,+,+,+}. As
shown in Figure 4(a), the error is larger when τ and β are large. In the case of a weak coupling
(small β), the posterior is almost factored, and our approximation is accurate. In models with few
transitions (small τ), most of the mass of the posterior is concentrated on a few canonical “types” of
trajectories that can be captured by the approximation (as in Example 3). At high transition rates,
the components tend to transition often, and in a coordinated manner, which leads to a posterior that
is hard to approximate by a product distribution. Moreover, the resulting free energy landscape is
rough with many local maxima. Examining the error in likelihood estimates (Figure 4(b),(c)) we
see a similar trend.

Next, we examine the run time of our approximation when using fairly standard ODE solver
with few optimizations and tunings. The run time is dominated by the time needed to perform
the backward-forward integration when updating a single component, and by the number of such
updates until convergence. Examining the run time for different choices of β and τ (Figure 5), we
see that the run time of our procedure scales linearly with the number of components in the chain.
The differences among the different curves suggest that the runtime is affected by the choice of
parameters, which in turn affect the smoothness of the posterior density sets.

7. Evaluation on Branching Processes

The above-mentioned experimental results indicate that our approximation is accurate when rea-
soning about weakly-coupled components, or about time intervals involving few transitions (low
transition rates). Unfortunately, in many domains we face strongly-coupled components. For exam-
ple, we are interested in modeling the evolution of biological sequences (DNA, RNA, and proteins).
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Figure 4: (a) Relative error as a function of the coupling parameter β (x-axis) and transition rates τ
(y-axis) for an 8-component Ising chain. (b) Comparison of true vs. estimated likelihood
as a function of the rate parameter τ. (c) Comparison of true vs. likelihood as a function
of the coupling parameter β.

Figure 5: Evaluation of the run time of the approximation versus the run time of exact inference as
a function of the number of components.

In such systems, we have a phylogenetic tree that represents the branching process that leads to
current day sequences (see Figure 6).

It is common in sequence evolution to model this process as a continuous-time Markov pro-
cess over a tree (Felsenstein, 2004). More precisely, the evolution along each branch is a stan-
dard continuous-time Markov process, and branching is modeled by a replication, after which each
replica evolves independently along its sub-branch. Common applications are forced to assume that
each character in the sequence evolves independently of the other.

In some situations, assuming an independent evolution of each character is highly unreasonable.
Consider the evolution of an RNA sequence that folds onto itself to form a functional structure,
as in Figure 7(a). This folding is mediated by complementary base-pairing (A-U, C-G, etc) that
stabilizes the structure. During evolution, we expect to see compensatory mutations. That is, if a
A changes into C then its based-paired U will change into a G soon thereafter. To capture such
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Figure 6: An example of a phylogenetic tree. Branch lengths denote time intervals between events.
The interval used for the comparison with non-branching processes is highlighted.

Figure 7: (a) Structure of an RNA molecule. The 3 dimensional structure dictates the dependencies
between the different positions. (b) The form of the energy function for encoding RNA
folding, superimposed on a fragment of a folded structure; each gray box denotes a term
that involves four nucleotides.

coordinated changes, we need to consider the joint evolution of the different characters. In the case
of RNA structure, the stability of the structure is determined by stacking potentials that measure the
stability of two adjacent pairs of interacting nucleotides. Thus, if we consider a factor network to
represent the energy of a fold, it will have structure as shown in Figure 7(b). We can convert this
factor graph into a CTBN using procedures that consider the energy function as a fitness criteria
in evolution (El-Hay et al., 2006; Yu and Thorne, 2006). Unfortunately, inference in such models
suffers from computational blowup, and so the few studies that deal with it explicitly resort to
sampling procedures (Yu and Thorne, 2006).
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Figure 8: Structure of the branching process. (a) The discretized CTBN underlying the process
in an intersection. (b) Illustration of the ODE updates on a directed tree, updating ρi(t)
backwards using (21) and µi(t) forwards using (22).

7.1 Representation

To consider phylogenetic trees, we should take a common approach in evolutionary analysis, in
which inference of the tree topology and branch lengths is performed separately from inference
of sequence dynamics. Thus, we need to extend our framework to deal with branching processes,
where the branching points are fixed and known. In a linear-time model, we view the process as a
map from [0,T ] into random variables X (t). In the case of a tree, we view the process as a map from a
point t= �b, t� on a tree T (defined by branch b and the time t within it) into a random variable X (t).
Similarly, we generalize the definition of the Markov-consistent density set η to include functions
on trees. We define continuity of functions on trees in the obvious manner.

To gain intuition on this process we return to the discrete case, where our branching process
can be viewed as a branching of the Dynamic Bayesian Network from one branch to two separate
branches at the vertex, as in Figure 8(a).

7.2 Inference on Trees

The variational approximation on trees is thus similar to the one on intervals. Within each branch,
we deal with the same update formulas as in linear time. We denote by µixi(b, t) and ρ

i
xi(b, t) the

messages computed on branch b at time t. The only changes occur at vertices, where we cannot use
the Euler-Lagrange equations (Appendix E), therefore we must derive the propagation equations
using a different method.

The following proposition establishes the update equations for the parameters µi(t) and ρi(t) at
the vertices, as depicted in Figure 8(b):
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Figure 9: Comparison of exact vs. approximate inference along the highlighted path from C to D
in the tree of Figure 6 with and without additional evidence at other leaves. In the latter
case the problem is equivalent to inference on a linear segment. Exact marginals are
shown in solid lines, whereas approximate marginals are in dashed lines. The horizontal
gray lines indicate branch points along the path. Notice that evidence at the leaves result
in discontinuities of the derivatives at such points. The two panels show two different
components.

Proposition 7 Given a vertex T with an incoming branch b1 and two outgoing branches b2,b3. The
following are the correct updates for our parameters µixi(t) and ρ

i
xi(t):

ρixi(b1,T ) = ρixi(b2,0)ρ
i
xi(b3,0), (21)

µixi(bk,0) = µixi(b1,T ) k = 2,3. (22)

Proof See Appendix G

Using Proposition 7 we can set the updates of the different parameters in the branching process
according to (21–22). In the backward propagation of ρi, the value at the end of b1 is the product
of the values at the start of the two outgoing branches. This is the natural operation when we recall
the interpretation of ρi as the probability of the downstream evidence given the current state (which
is its exact meaning in a single component process): the downstream evidence of b2 is independent
of the downstream evidence of b3, given the state of the process at the vertex �b1,T �. The forward
propagation of µi simply uses the value at the end of the incoming branch as initial value for the
outgoing branches.

When switching to trees, we essentially increase the amount of evidence about intermediate
states. Consider for example the tree of Figure 6 with an Ising chain model (as in the previous
subsection). We can view the span from C to D as an interval with evidence at its end. When
we add evidence at the tip of other branches we gain more information about intermediate points
betweenC andD. Even though this evidence can represent evolution from these intermediate points,
they do change our information state about them. To evaluate the impact of these changes on our
approximation, we considered the tree of Figure 6, and compared it to inference in the backbone
between C and D (Figure 4). Comparing the true marginal to the approximate one along the main
backbone (see Figure 9) we see a major difference in the quality of the approximation. The evidence
in the tree leads to a much tighter approximation of the marginal distribution. A more systematic
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comparison (Figure 10) demonstrates that the additional evidence reduces the magnitude of the error
throughout the parameter space.

Figure 10: (a) Evaluation of the relative error in expected sufficient statistics for an Ising chain in
branching-time; compare to Figure 4(a). (b),(c) Evaluation of the estimated likelihood
on a tree w.r.t. the rate τ and coupling β; compare to Figure 4(b),(c).

Figure 11: Evaluation of the run time vs. accuracy trade-off for several choices of parameters for
mean field and Gibbs sampling on the branching process of Figure 6.

Similarly to mean-field, the Gibbs sampling procedure for CTBNs (El-Hay et al., 2008) can
also be extended to deal with branching processes. Comparing our method to the Gibbs sampling
procedure we see (Figure 11) that the faster mean field approach dominates the Gibbs procedure
over short run times. However, as opposed to mean field, the Gibbs procedure is asymptotically
unbiased, and with longer run times it ultimately prevails. This evaluation also shows that the
adaptive integration procedure in our methods strikes a better trade-off than using a fixed time
granularity integration.
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Figure 12: Comparison of estimates of expected sufficient statistics in the evolution of 18 interact-
ing nucleotides, using a realistic model of RNA evolution. Each point is an expected
value of: (a) residence time in a specific state of a component and its parents; (b)
number of transition between two states. The x-axis is the estimate by the variational
procedure, whereas the y-axis is the estimate by Gibbs sampling.

As a more demanding test, we applied our inference procedure to a model similar to the one
introduced by Yu and Thorne (2006) for a stem of 18 interacting RNA nucleotides in 8 species in
the phylogeny of Figure 6. In this model the transition rate between two sequences that differ in
a single nucleotide depends on difference between their folding energy. Specifically, the transition
rate from sequence x to sequence y is given by

qx,y = 1.6
�
1+ eEfold(y)−Efold(x)

�−1
, |δ(x,y)|= 1,

where Efold is the folding energy of the sequence. This equation implies that transition rates are
increasing monotonically with the reduction of the folding energy. Hence, this model tends to evolve
into low energy states. The folding energy in turn is a sum of local stacking energies, involving
quadruples of nucleotides as described by the factors in Figure 7. Denoting the subset of positions
contained in each quadruple by Dk, the energy is

Efold(x) =∑
k
Ekfold(x|Dk),

where x|Dk is the subset of nucleotides that belong factor k. This model is equivalent to a CTBN in
which the parents of each components are the other components that share the same factors. This
property follows from the fact that for any pair x and y, where δ(x,y) = {i}, the difference between
the energies of these two sequences depends only on the factors that contain i.

We compared our estimate of the expected sufficient statistics of this model to these obtained
by the Gibbs sampling procedure. The Gibbs sampling estimates were chosen by running the pro-
cedure with an increasing computation time until there was no significant change in the results. The
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final estimates was obtained using 5000 burn-in rounds, 10000 number of samples and 100 rounds
between two consecutive samples. The results, shown in Figure 12, demonstrate that over all the two
approximate inference procedures are in good agreement about the value of the expected sufficient
statistics.

8. Discussion

In this paper we formulate a general variational principle for continuous-time Markov processes (by
reformulating and extending the one proposed by Opper and Sanguinetti, 2007), and use it to derive
an efficient procedure for inference in CTBNs. In this mean field approximation, we use a product
of independent inhomogeneous processes to approximate the multi-component posterior.

Our procedure enjoys the same benefits encountered in discrete-time mean field procedure (Jor-
dan et al., 1999): it provides a lower-bound on the likelihood of the evidence and its run time scales
linearly with the number of components. Using asynchronous updates it is guaranteed to converge,
and the approximation represents a consistent joint distribution. It also suffers from expected short-
comings: the functional has multiple local maxima, it cannot capture complex interactions in the
posterior (Example 3). By using a time-inhomogeneous representation our approximation does cap-
ture complex patterns in the temporal progression of the marginal distribution of each component.
Importantly, the continuous-time parameterization enables straightforward implementation using
standard ODE integration packages that automatically tune the trade-off between time granularity
and approximation quality. We show how it is extended to perform inference on phylogenetic trees,
where the posterior distribution is directly affected by several evidence points, and show that it
provides fairly accurate answers in the context of a real application (Figure 12).

A key development is the introduction of marginal density sets. Using this representation we
reformulate and extend the variational principle proposed by Opper and Sanguinetti (2007) , which
incorporates a different inhomogeneous representation. This modification allows handling direct
evidence of the state of the process, as in the case of CTBNs, while keeping the representation of
the approximation bounded. The extension of this principle to CTBNs follows by exploiting their
networks structure. This adaptation of continuously inhomogeneous representations to CTBNs in-
creases the flexibility of the approximation relative to the piecewise homogeneous representation of
Saria et al. (2007) and, somewhat surprisingly, also significantly simplifies the resulting formula-
tion.

The proposed representation is natural in the sense that its functions are the time-derivatives of
the expected sufficient statistics that we are willing to evaluate. Hence, once finding the optimal
value of the lower bound, calculating these expectations is straightforward. This representation is
analogous to mean parameters which have proved powerful in variational approximations of expo-
nential families over finite random variable sets (Wainwright and Jordan, 2008).

We believe that even in cases where evidence is indirect and noisy, the marginal density rep-
resentation should comprise smoother functions than posterior rates. Intuitively, in the presence of
a noisy observation the posterior probability of some state x can be very small. In such cases, the
posterior transition rate form x into a state that better explains the observation might tend to a large
quantity. This reasoning suggests that marginal density representations should be better handled by
adaptive numerical integration algorithms. An interesting direction would be to test this conjecture
empirically.
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A possible extension is using our variational procedure to generate the initial distribution for
the Gibbs sampling procedure and thus skip the initial burn-in phase and produce accurate samples.
Another attractive aspect of this new variational approximation is its potential use for learning model
parameters from data. It can be easily combined with the EM procedure for CTBNs (Nodelman
et al., 2005a) to obtain a Variational-EM procedure for CTBNs, which monotonically increases the
likelihood by alternating between steps that improve the approximation η (the updates discussed
here) and steps that improve the model parameters θ (an M-step Nodelman et al., 2005a). Finally,
marginal density sets are a particularly suitable representation for adapting richer representations
such as Bethe, Kikuchi and convex approximations to non-homogeneous versions (El-Hay et al.,
2010). Further work in that direction should allow bridging the gap in the wealth of inference
techniques between finite domain models and continuous-time models.
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Appendix A. The Relation Between CTBNs and DBNs

In this section we show that the DBN construction of Equations (6-7) is such that as h approaches
0, the distribution Ph approaches Pr. To show this, it suffice to show that

lim
h→0

Ph(X (tk+1) = y|X (tk) = x)−11x=y
h

= qx,y .

We ensured this condition holds component-wise, and now need to show that this leads to global
consistency.

Plugging Equation (7) into Equation (6), the transition probability of the DBN is

Ph(X (tk+1) = y|X (tk) = x) =∏
i

�
11xi=yi +qi|Paixi,yi|ui ·h

�
.

Since we consider the limit as h approaches 0, any term that involves hd with d > 1 is irrelevant.
And thus, we can limit our attention to the constant terms and terms linear in h. Expanding the
product gives

Ph(X (tk+1) = y|X (tk) = x) =∏
i
11xi=yi +∑

i
qi|Paixi,yi|ui ·h∏

j �=i
11x j=y j +o(h) .

Now, ∏i 11xi=yi = 11x=y. Moreover, it is easy to verify that

qx,y =∑
i
qi|Paixi,yi|ui∏

j �=i
11x j=y j .

Thus,
Ph(X (tk+1) = y|X (tk) = x) = 11x=y+qx,yh+o(h),

proving the required condition.
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Appendix B. Marginal Density Sets and Markov Processes - Proof of Lemma 2

Proof Given η, we define the inhomogeneous rate matrix R(t) as in Equation (11). R(t) is a valid
rate matrix because its off-diagonals are non-negative as they are the quotient of two non-negative
functions, and because applying the requirement on γx,x(t) in Definition 1

rx,x(t) =
γx,x(t)
µx(t)

=−
∑y�=x γx,y(t)

µx(t)
=−∑

y�=x
rx,y(t) ,

we see that R(t)’s diagonals are negative and the rows sum to 0. We can use these rates with the
initial value µx(0) to construct the Markov process Pη from the forward master equation

d
dt
Pη(X (t) = x) =∑

y
Pη(X (t) = y)ry,x(t) ,

and
Pη(X (0)) = µ(0) .

To conclude the proof we show that Pη and the marginal density set satisfy (10). First, from
Definition 1 it follows that µ(t) is the solution to the master equation of Pη(X (t)), because the initial
values match at t = 0 and the time-derivatives of the two functions are identical. Thus

Pη(X (t) = x) = µx(t) .

Next, the equivalence of the joint probability densities can be proved:

lim
h→0

Pr(X (t) = x,X (t+h) = y)
h

= lim
h→0

µx(t)Pr(X (t+h) = y|Pr(X (t) = x)
h

= lim
h→0

µx(t)rx,y(t)h
h

= µx(t)rx,y(t) .

From the definition of rx,y(t) and the fact that γx,y(t) = 0 whenever µx(t) = 0, it follows that
µx(t)rx,y(t) is exactly γx,y(t)

Appendix C. Expectations in Inhomogeneous Processes

This section includes the proofs of the lemmas used in the proof of the variational lower bound
theorem.

C.1 Expectations of Functions of States - Proof of Lemma 4

Proof Changing the order of integration we obtain

E fη

�� T

0
ψ(σ(t), t)dt

�
≡

�

Σ
fη(σ)

� T

0
ψ(σ(t), t)dtdσ =

� T

0

�

Σ
fη(σ) ·ψ(σ(t), t)dσdt .
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For each t ∈ T we decompose the inner integral according to possible states at that time:
�

Σ
fη(σ) ·ψ(σ(t), t)dσ = ∑

x

�

Σ
fη(σ) ·11σ(t)=x ·ψ(x, t)dσ

= ∑
x
ψ(x, t)

�

Σ
fη(σ) ·11σ(t)=x dσ

= ∑
x
ψ(x, t)µx(t) .

C.2 Expectations of Functions of Transitions - Proof of Lemma 5

Proof Given a trajectory σ there exists a small enough h> 0 such that for every transition and for
every t ∈ (tk−h, tk) we have σ(t) = xk−1 and σ(t+h) = xk. In that case we can rewrite the sum in
the expectation term as

Kσ

∑
k=1

ψ(xσk−1,x
σ
k , t

σ
k ) =

Kσ

∑
k=1

1
h

� tk

tk−h
ψ(σ(t),σ(t+h), t)dt+

o(h)
h

=
1
h

� T−h

0
ψ(σ(t),σ(t+h), t)dt+

o(h)
h

,

where the first equality follows from continuity and the second one from the requirement that
ψ(x,x, t) = 0. Taking the limit h→ 0 and using this requirement again gives

Kσ

∑
k=1

ψ(xσk−1,x
σ
k , t

σ
k ) =

d
ds

�� T

0
ψ(σ(t),σ(t+ s), t)dt

�

s=0
.

Taking expectation we obtain
�

Σ
f (σ)

d
ds

�� T

0
ψ(σ(t),σ(t+ s), t)dt

�

s=0
dσ

=
�

Σ
f (σ)

d
ds

�� T

0
∑
x
∑
y�=x

ψ(x,y, t)11σ(t)=x11σ(t+s)=y dt
�

s=0

dσ

=
d
ds

�� T

0
∑
x
∑
y�=x

ψ(x,y, t)
�

Σ
f (σ)11σ(t)=x11σ(t+s)=ydσ dt

�

s=0

.

The inner integral in the last term is a joint probability
�

Σ
f (σ)11σ(t)=x11σ(t+s)=ydσ= Pr(X (t) = x,X (t+s) = y) .

Switching the order of integration and differentiation and using

d
ds
Pr(X (t) = x,X (t+s) = y)

����
s=0

= γxy(t), x �= y,

gives the desired result.
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Appendix D. Proof of the Factored Representation of the Energy Functional

Proof We begin with the definition of the average energy

E(η;Q) =
� T

0
∑
x

�
µx(t)qx,x+∑

y�=x
γx,y(t) lnqx,y

�
dt

=
� T

0
∑
x

�
µx(t)qx,x+∑

i
∑
yi �=xi

γixi,yi(t)µ
\i(t) lnqx,y

�
dt .

where the equality stems from the observation that the only states y that may have γx,y(t) > 0, are
those with δ(x,y) ≤ 1 (all the rest are 0). Thus, the enumeration over all possible states collapses
into an enumeration over all components i and all states yi �= xi. Due to the fact that we are only
considering transitions in single components, we may replace the global joint density γx,y with
γixi,yi ·µ

\i(t), as per definition.
Using (5), we can decompose the transition rates qx,x and qx,y to get

E(η;Q) = ∑
i

� T

0
∑
x

�
µx(t)qxi,xi|ui + ∑

yi �=xi
γixi,yi(t)µ

\i(t) lnqxi,yi|ui

�
dt

= ∑
i

� T

0
∑
xi

�
µixi(t)∑

x\i
µ\ix\i(t)qxi,xi|ui + ∑

yi �=xi
γixi,yi(t)µ

\i
x\i(t) lnqxi,yi|ui

�
dt .

To get to the last equality we use the factorization of µ(t) as a product of µi(t) with µ\i(t) and the
reordering of the summation. Next we simply write the previous sum as an expectation over X \ i

E(η;Q) = ∑
i

� T

0
∑
xi
µixi(t)Eµ\i(t)

�
qxi,xi|Ui

�
+∑

i

� T

0
∑
yi �=xi

γixi,yi(t)Eµ\i(t)
�
lnqxi,yi|Ui

�
dt ,

which concludes the proof.
Turning to the entropy-like term we have:

H (η) =
� T

0
∑
x
∑
y�=x

γx,y(t)[1+ lnµx(t)− lnγx,y(t)]dt

= ∑
i

� T

0
∑
x
∑
yi �=xi

µ\i(t)γxi,yi(t)[1+∑
i
lnµixi(t)− lnγxi,yi(t)−∑

j �=i
lnµxj(t)]dt

= ∑
i

� T

0
∑
xi
∑
yi �=xi

γxi,yi(t)[1+ lnµixi(t)− lnγxi,yi(t)]dt

= ∑
i
H (ηi) ,

where, the first equality is definition of H . The second one follows from the definition of the fac-
tored density set. The third one is obtained by algebraic manipulation and the last one is again the
definition of H .
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Appendix E. Euler-Lagrange Equations

The problem of finding the fixed points of functionals whose arguments are continuous functions
comes from the field ofCalculus of variations. We briefly review the usage Euler-Lagrange equation
for solving optimization problems over functionals. Additional information can be found in Gelfand
and Fomin (1963).

A functional is a mapping from a vector space to its underlying field. In our case the functional
is the Lagrangian introduced in Section 4, which is an integral over real-valued functions, and the
underlying field is the real numbers.

Given a functional over a normed space of continuously differentiable real functions of the form

I[y] =
� b

a
f (t,y(t),y�(t))dt

where y�(t) is the time-derivative of the function y(t), we would like to find a function y(t) that
minimizes (or in our case maximizes) the functional subject to y(a) = ya and y(b) = yb. In the
simplest case, when there are no additional constraints, a necessary condition for y to be a local
optimum is that y is a stationary point. Roughly, a stationary point is a function y, where I[y] is
insensitive to small variations in y. That is, given a function h(t) where h(a) = 0 and h(b) = 0, the
change of the functional I[y+h]− I[y] is small relative to the norm of h. For y(t) to be a stationary
point, it must satisfy the Euler-Lagrange equations (Gelfand and Fomin, 1963)

∂
∂y
f (t,y(t),y�(t))−

d
dt

�
∂
∂y�

f (t,y(t),y�(t))
�
= 0 . (23)

In this paper we have additional constraints describing the time derivative of µ. The general-
ization of the Euler-Lagrange equations to that case is straightforward. Denoting the subsidiary
constraints by g(t,y(t),y�(t)) = 0 , we simply replace f (t,y,y�) by f (t,y,y�)−λ(t)g(t,y,y�) in Equa-
tion 23.

An example for the use of this equation is in the following proof.

Appendix F. Stationary Points of the Lagrangian - Proof of Theorem 6

Proof For convenience, we begin by rewriting the Lagrangian in explicit form: L =
� T
0 f (y(t),y�(t))dt

where y(t) = �µ(t),γ(t),λ(t)� is a concatenation of the parameters and Lagrange multiplier and

f (y(t),y�(t)) =
D

∑
i=1
∑
xi

�
µixi(t)Eµ\i(t)

�
qxi,xi|Ui

�
+ ∑

yi �=xi
γixi,yi(t)Eµ\i(t)

�
lnqxi,yi|Ui

�

+ ∑
yi �=xi

γxiyi
�
1+ lnµixi(t)− lnγ

i
xiyi(t)

�
−λixi(t)

�
d
dt
µixi(t)−∑

yi
γixiyi(t)

��
.

The Euler-Lagrange equations of the Lagrangian define its stationary points w.r.t. the parameters of
each component µi(t), γi(t) and λi(t).

First, we take the partial derivatives of f w.r.t to µixi(t) as well as
d
dt µ

i
xi(t) and plug them into

Equation 23. We start by handling the energy terms. These terms involve expectations in the form
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Eµ\ j(t) [g(U j)] =∑u j µu j(t)g(u j). The parameter µ
i
xi(t) appears in these terms only when i is a parent

of j and u j is consistent with xi. In that case ∂
∂µixi

µu j = µuj/µixi . Thus,

∂
∂µixi

Eµ\ j(t) [g(U j)] = Eµ\ j(t) [g(U j) | xi] ·δ j∈Childreni

Recalling the definitions of the averaged rates

q ixi,xi|x j(t) = Eµ\i(t)
�
qi|Paixi,xi|Ui

| x j
�

and
q̃ixi,yi|x j(t) = exp

�
Eµ\i(t)

�
lnqi|Paixi,yi|Ui

| x j
��

we obtain
∂
∂µix j

Eµ\ j(t)
�
q jx j,x j|U j

�
= δ j∈Childreniq

j
x j,x j|xi(t)

and
∂
∂µix j

Eµ\ j(t)
�
lnq jx j,x j|U j

�
= δ j∈Childreni ln q̃

j
x j,x j|xi(t).

Therefore the derivative of the sum over j �= i of the energy terms is

ψixi(t)≡ ∑
j∈Childreni

∑
x j

�
µjx j(t)q

j
x j,x j|xi(t)+ ∑

x j �=y j
γ jx j,y j(t) ln q̃

j
x j,y j|xi(t)

�
.

Additionally, the derivative of the energy term for j = i is q ixi,xi(t) ≡ Eµ\i(t)
�
qxi,xi|Ui

�
. Next, the

derivative of the entropy term is γixi,xi(t)/µ
i
xi(t). Finally, the derivative of f with respect to

d
dt µ

i
xi(t)

is −λixi(t). Plugging in these derivatives into Equation (23) we obtain

q ixi,xi(t)+ψixi(t)−
γixi,xi
µixi(t)

+
d
dt
λixi(t) = 0 . (24)

Next, the derivative w.r.t. γixi,yi(t) gives us

lnµixi(t)+ ln q̃
i
xi,yi(t)− lnγ

i
xi,yi(t)+λiyi(t)−λixi(t) = 0 . (25)

Denoting ρixi(t) = exp{λ
i
xi(t)}, Equation (25) becomes

γixi,yi(t) = µixi(t)q̃
i
xi,yi(t)

ρiyi(t)
ρixi(t)

,

which is the algebraic equation of γ. Using this result and the definition of γixi,xi we have

γixi,xi(t) =− ∑
yi �=xi

γixi,yi(t) =−µixi(t)∑
xi,yi

q̃ixi,yi(t)
ρiyi(t)
ρixi(t)

.

Plugging this equality into (24) and using the identity d
dtρ

i
xi(t) =

d
dtλ

i
xi(t)ρ

i
xi(t) gives

d
dt
ρixi(t) =−ρixi(t)

�
q ixi,xi(t)+ψixi(t)

�
− ∑

yi �=xi
q̃ixi,yiρ

i
yi(t) .

Thus the stationary point of the Lagrangian matches the updates of (16–17).
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Appendix G. Proof of Proposition 7

Proof We denote the time at the vertex t0 = (b1,T ), the time just before as t1 = (b1,T −h) and the
times just after it on each branch t2 = (b2,h) and t3 = (b3,h), as in Figure 13.

Figure 13: Branching process with discretization points of Lemma 7.

The marginals µixi(b1, t) are continuous, as they are derived from the forward differential equa-
tion. To derive the propagation formula for the ρixi(t) requires additional care. The ρ

i
xi(t) have been

derived from the constraints on the time-derivative of µixi(t). In a vertex this constraint is threefold,
as we now have the constraints on b1

µixi(t0)−µixi(t1)
h

=∑
yi
γixi,yi(t1)

and those on the other branches bk for k = 2,3

µixi(tk)−µixi(t0)
h

=∑
yi
γixi,yi(t0) .

The integrand of the Lagrangian corresponding to point t0 is

L|t0 = F̃ (η;Q)|t0 +λ0(t1)

�
µixi(t0)−µixi(t1)

h
−∑

yi
γixi,yi(t1)

�

− ∑
k=2,3

λk(t0)

�
µixi(tk)−µixi(t0)

h
−∑

yi
γixi,yi(t0)

�
,

as this is the only integrand which involves µxi(t0), the derivative of the Lagrangian collapses into

∂
∂µixi(t0)

L =
∂

∂µixi(t0)
L|t0

=
λ0(t1)
h

−

�
λ2(t0)
h

+
λ3(t0)
h

�
+

∂
∂µixi(t0)

F̃ (η;Q)|t0 = 0 .

Rearranging the previous equation and multiplying by h, we get

λ0(t1) = λ2(t0)+λ3(t0)+
∂

∂µixi(t0)
F̃ (η;Q)|t0h .
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Looking at (24) we can see that as t0 is not a leaf, and thus µixi(t0) > 0 and the derivative of the
functional cannot diverge. Therefore, as h→ 0 this term vanishes and we are left with

λ0(t1) = λ2(t0)+λ3(t0)

which after taking exponents gives (21).
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Abstract
Many temporal processes can be naturally mod-
eled as a stochastic system that evolves con-
tinuously over time. The representation lan-
guage of continuous-time Bayesian networks

allows to succinctly describe multi-component
continuous-time stochastic processes. A crucial
element in applications of such models is infer-
ence. Here we introduce a variational approx-
imation scheme, which is a natural extension
of Belief Propagation for continuous-time pro-
cesses. In this scheme, we view messages as
inhomogeneous Markov processes over individ-
ual components. This leads to a relatively simple
procedure that allows to easily incorporate adap-
tive ordinary differential equation (ODE) solvers
to perform individual steps. We provide the
theoretical foundations for the approximation,
and show how it performs on a range of net-
works. Our results demonstrate that our method
is quite accurate on singly connected networks,
and provides close approximations in more com-
plex ones.

1. Introduction
The dynamics of many real-life processes are naturally
modeled in terms of continuous-time stochastic processes,
allowing for a wide range of time scales within the same
process. Examples include biological sequence evolu-
tion(Felsenstein, 2004), computer systems (Xu & Shelton,
2008; Simma et al., 2008), and social networks (Fan &
Shelton, 2009).

While the mathematical foundations of continuous-time
stochastic processes are well understood (Chung, 1960),

Appearing in Proceedings of the 27 th
International Conference

on Machine Learning, Haifa, Israel, 2010. Copyright 2010 by the
author(s)/owner(s).

the study of efficient computer representations, inference,
and learning of complex continuous-time processes is still
in its early stages. Continuous-time Bayesian networks

(CTBNs) (Nodelman et al., 2002) provide a sparse rep-
resentation of complex multi-component processes by de-
scribing how the dynamics of an individual component de-
pends on the state of its neighbors. A major challenge is
translating the structure of a CTBN to computational gains
in inference problems—answering queries about the pro-
cess from partial observations.

As exact inference in a CTBN is exponential in the num-
ber of components, we have to resort to approximations.
Broadly speaking, these fall into two main categories. The
first category includes stochastic approximations (Fan &
Shelton, 2008; El-Hay et al., 2008), which sample trajecto-
ries of the process. While these can be asymptotically ex-
act, they can be computationally expensive and incur com-
putational penalties when sampling rapidly evolving sub-
processes. The second category of approximations includes
variational methods. Nodelman et al. (2005) and Saria et al.
(2007) developed an approach based on expectation propa-

gation (Minka, 2001; Heskes & Zoeter, 2002), where the
posterior distribution over a process is approximated by
piecewise homogeneous factored processes. This involves
an elaborate message passing scheme between the approx-
imations for different components, and an adaptive proce-
dure for determining how to segment each time interval.
More recently, we introduced a mean-field approximation
(Cohn et al., 2009), which uses factored inhomogeneous

processes (Opper & Sanguinetti, 2007). This allowed us to
build on the rich literature of adaptive ODE solvers. While
the mean-field approximation provides a lower-bound on
the likelihood, it suffers from the expected drawbacks when
approximating highly coupled processes.

Here we introduce a variational approximation that com-
bines insights from both previous approaches for varia-
tional inference in CTBNs. Our approximation is a natural
extension of the successful Bethe approximation (Yedidia
et al., 2005) to CTBNs. Alternatively, it can be viewed
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applying the approach of Nodelman et al where the seg-
ment length diminishes to zero. Our approximation finds
a collection of inhomogeneous processes over subsets of
components, which are constrained to be locally consistent
over single components. We show that this approximation
is often accurate on tree-networks, and provides good ap-
proximations for more complex networks. Importantly, the
approximation scheme is simple and allows to easily ex-
ploit the large suites of computational tools offered in the
field of ODEs.

2. Continuous-Time Bayesian Networks

Consider a d-component Markov process X(t) =

(X(t)
1 , X(t)

2 , . . . X(t)
d ) with state space S = S1×S2× · · ·×

Sd. A notational convention: vectors are denoted by bold-
face symbols, e.g., X , and matrices are denoted by black-
board style characters, e.g., Q. The states in S are denoted
by vectors of indexes, x = (x1, . . . , xd). We use indexes
1 ≤ i, j ≤ d for enumerating components and X(t) and
X(t)

i to denote the random variable describing the state of
the process and its i’th component at time t.

The dynamics of a time-homogeneous continuous-time

Markov process are fully determined by the Markov transi-

tion function,

px,y(t) = Pr(X(t+s) = y|X(s) = x),

where time-homogeneity implies that the right-hand side
does not depend on s. These dynamics are captured by a
matrix Q—the rate matrix, with non-negative off-diagonal
entries qx,y and diagonal entries qx,x = −

�
y �=x qx,y .

The rate matrix is related to the transition function by

d

dt
px,y(t)

����
t=0

= qx,y.

The probability of being in state x at time t satisfies the
master equation (Chung, 1960)

d

dt
Pr(X(t) = x) =

�

y

qy,xPr(X(t) = y).

A continuous-time Bayesian network is a structured multi-
component continuous-time Markov process. It is de-
fined by assigning each component i a set of components
Pai ⊆ {1, . . . , d} \ {i}, which are its parents in the net-
work (Nodelman et al., 2002). With each component i we
then associate a family of rate matrices Qi|Pai

·|ui
, with entries

qi|Pai

xi,yi|ui
, that describe the rates of change of the i’th com-

ponent given the state ui of the parents Pai. The dynamics
of X(t) are defined by a rate matrix Q with entries qx,y

that combines the conditional rate matrices as follows:

qx,y =






qi|Pai

xi,yi|ui
δx,y = {i}

�
i q

i|Pai

xi,xi|ui
x = y

0 otherwise,
(1)

where δx,y = {i|xi �= yi}. This definition implies that
changes occur one component at a time.

Given a continuous-time Bayesian network, we would like
to evaluate the likelihood of evidence, to compute the prob-
ability of various events given the evidence (e.g., that the
state of the system at time t is x), and to compute condi-
tional expectations (e.g., the expected amount of time Xi

was in state xi). Direct computations of these quantities
involve matrix exponentials of the rate matrix Q, whose
size is exponential in the number of components, making
this approach infeasible beyond a modest number of com-
ponents. We therefore have to resort to approximations.

3. A Variational Principle
Variational inference methods pose the inference task in
terms of an optimization problem. The objective is to
maximize a functional which lower-bounds the log prob-
ability of the evidence by introducing an auxiliary set of
variational parameters (Wainwright & Jordan, 2008). Re-
cently, we introduced a variational formulation of inference
in continuous-time Markov processes. We start by review-
ing the relevant results of Cohn et al.

For convenience we restrict our treatment to an interval
[0, T ] with boundary evidence X(0) = e0 and X(T ) = eT .
The posterior distribution of a homogeneous Markov pro-
cess given evidence e = {e0, eT } on the two boundaries
is a non-homogeneous Markov process. Such a process can
be represented using a time varying rate matrix Q(t) that
describe the instantaneous transition rates. However, such
a representation is unwieldy, since as t approaches T the
transition rates from x �= eT to eT approach infinity.

To circumvent the problem of unbounded values near the
boundaries, we introduced marginal density sets which rep-
resent the posterior process in terms of uni-variate and joint
pairwise distributions. More formally, if Pr denotes the
posterior distribution, its marginal density set is the follow-
ing family of continuous functions:

µx(t) = Pr(X(t) = x)

γx,y(t) = lim
h↓0

Pr(X(t) = x,X(t+h) = y)

h
, x �= y.

(2)
In addition to providing a bounded representation to the
posterior, this representation allows to easily compute ex-
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pected sufficient statistics using numerical integration:

E [Tx(t)] =

� t

0
µx(s)ds, E [Mx,y(t)] =

� t

0
γx,y(s)ds,

where Tx(t) is the residence time in state x in the inter-
val [0, t], and Mx,y(t) is the number of transitions from
x to y in the same interval. Thus, this representation is
analogous to sets of mean parameters that are employed in
variational approximations over exponential families with a
finite dimensional parametrization (Wainwright & Jordan,
2008; Koller & Friedman, 2009).

Families of functions µ, γ that satisfy (2) for some Pr,
must satisfy self-consistent relations imposed by the master
equation.

Definition 3.1 : (Cohn et al., 2009) A family η =
{µx(t), γx,y(t) : 0 ≤ t ≤ T} of continuous functions is
a Markov-consistent density set if the following constraints
are fulfilled:

µx(t) ≥ 0,
�

x

µx(0) = 1,

γx,y(t) ≥ 0 ∀y �= x,

d

dt
µx(t) =

�

y �=x

(γy,x(t)− γx,y(t)) .

and γx,y(t) = 0 whenever µx(t) = 0. For convenience,
we define γx,x = −

�
y �=x γx,y .

The evidence at the boundaries impose additional con-
straints on potential posterior processes. Specifically,
the representation η corresponding to the posterior dis-
tribution PQ(·|e0, eT ) is in the set Me that contains
Markov-consistent density sets {µx(t), γx,y(t)}, that sat-
isfy µx(0) = 11x=e0 , µx(T ) = 11x=eT and γxy(T ) = 0 for
all y �= eT . In addition, since these sets are posteriors of
a CTBN, they also change one component at a time, which
implies that γx,y(t) = 0 if |δx,y| > 1.

Using this representation, the variational formulation is
reminiscent of similar formulations for discrete probabilis-
tic models (Jordan et al., 1998).

Theorem 3.2: (Cohn et al., 2009) Let Q be a rate matrix
and e = (e0, eT ) be states of X . Then

lnPQ(eT |e0) = max
η∈Me

F(η;Q),

where
F(η;Q) = E(η;Q) +H(η),

is the free energy functional which is a sum of an average

energy functional

E(η;Q) =

� T

0

�

x



µx(t)qx,x +
�

y �=x

γx,y(t) ln qx,y



 dt,

and an entropy functional

H(η) =

� T

0

�

x

�

y �=x

γx,y(t)[1+lnµx(t)− ln γx,y(t)]dt .

To illustrate this principle, we can examine how to derive
an exact inference procedure. We can find the optimum
of F(η;Q) by introducing Lagrange multipliers that en-
force the consistency constraint, and then find the station-
ary point of the corresponding Lagrangian. Since we are
dealing with a continuous-time formula, we need to use the
Euler-Lagrange method . As we show, the maximum satis-
fies a system of differential equations:

d

dt
ρx = −

�

y

qx,yρy ρx(T ) = 11x=eT

d

dt
µx =

�

y �=x

(γy,x − γx,y), µx(0) = 11x=e0

γx,y = µxqx,y
ρy
ρx

, y �= x, ρx �= 0,

(3)

where we omit the (t) argument for clarity. The auxiliary
functions ρx(t) are Lagrange multipliers.

These equations have a simple intuitive solution that in-
volves backward integration of ρx(t), as we have a bound-
ary condition at time T and ρx(t) does not depend on
µx(t). This integration results in

ρx(t) = Pr(eT |X
(t) = x)

Once we solve for ρx(t), we can forward integrate µx(t)
from the boundary conditions at 0 to get the solution for
µx and γx,y . This analysis suggests that this system of
ODEs is similar to forward-backward propagation, except
that unlike classical forward propagation, here the forward
propagation takes into account the backward messages to
directly compute the posterior. Note that applying this ex-
act solution to a multi-component process results in an ex-
ponential (in d) number of coupled differential equations.

4. Continuous-Time Expectation Propagation
Approximate variational inference procedures are derived
by posing an optimization problem that is an approximate
version of the original one. Different approximations differ
in terms of whether they approximate the objectives, limit
or relax the allowed set of solutions, or combine several
such approaches. Here, we follow a strategy which is
based on the approach of expectation propagation, in which
the set of admissible solutions is extended to ones that are
consistent only on the expectations of statistics of interest,
and in addition, use an approximate functional.
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Figure 1. A CTBN and a corresponding factor graph.

4.1. Approximate Optimization Problem

To represent potential solutions, we follow methods used
in recent approximate inference procedures that use factor
graph representations (Yedidia et al., 2005; Koller & Fried-
man, 2009). Specifically, we keep only marginal density
sets over smaller clusters of components.

We start with definitions and notations. A factor graph is an
undirected bipartite graph. One layer in the graph consists
of component nodes that are labeled by component indexes.
The second layer consists of clusters nodes A , where each
cluster α ∈ A, is a subset of {1, . . . , d}. The edges in the
graph are between a component node i to a cluster node α
if and only if i ∈ α. Thus, the neighbors of α are N(α) =
{i : i ∈ α} and the neighbors of i are N(i) = {α : i ∈ α}.

A factor graph is family preserving, with respect to a given
CTBN, if there exists an assignment function ξ(i) that
maps components to clusters, such that for every i, we have
that {i} ∪Pai ⊆ ξ(i). We denote by A(α) the set of com-
ponents i for which ξ(i) = α. From now on, we assume
that we deal only with family preserving factor graphs.

Example 4.1: Figure 1 shows a simple CTBN and a cor-
responding factor graph. In this specific factor graph,
A(a) = {1, 2}, A(b) = {3} and A(c) = {4}.

Given a factor graph, we use its structure to define an ap-
proximation for a distribution. Instead of describing the
distribution over all the components, we use a family of
density sets η̃ = {ηi : i = 1, . . . , d} ∪ {ηα : α ∈ A}. A
family of marginal density sets can be inconsistent. We do
not require full consistency, but only consistency between
neighboring nodes in the following sense.

Definition 4.2: A family of density sets η̃ is said to be
locally consistent if for all α ∈ A and all i ∈ N(α) we
have µi = µα|i where

(µα
|i)xi

=
�

xα\i

µα
[xα\i,xi] (4)

and [xα\i, xi] is the assignment to xα composed from xα\i
and xi. Likewise, γi = γα|i where

(γα
|i)xi,yi

=
�

xα\i

γα
[xα\i,xi],[xα\iyi]. (5)

Let M̃e be the set of locally consistent densities that cor-
respond to evidence e

The local consistency of ηα and ηi does not imply that
the distribution Prηi(Xi) is equal to the marginal distribu-
tion Prηα(Xi), as marginalization of a Markov process is
not necessarily a Markov process. Rather, Prηi is the pro-
jection of Prηα(Xi) to a Markov process with the match-
ing expectations of E [Txi(t)] and E [Mxi,yi(t)] (Koller &
Friedman, 2009).

Such locally consistent sets allow us to construct a tractable
approximation to the variational optimization problem by
introducing the continuous-time Bethe functional

F̃(η̃;Q) =
�

i

Ei(η
ξ(i);Qi|Pai) +

�

α

H(ηα)−
�

i

ciH(ηi)

where, for α = ξ(i),

Ei(η
α;Qi|Pai) =

� T

0

�

xα

�
µα
xα

(t)qi|Pai

xi,xi|ui
+

�

y �=x

γα
x,y(t) ln q

i|Pai

xi,yi|ui

�
dt,

and ci = N(i)− 1 ensure that the total weight of sets con-
taining component i sums up to 1. This functional is anal-
ogous to the well-known Bethe approximation for discrete
models (Yedidia et al., 2005).

Combining the two approximations the approximate opti-
mization problem becomes:

max
η̃∈M̃e

F̃(η̃;Q) (6)

Once the optimal parameters are found, we can use the rel-
evant marginal density set to answer queries.

4.2. Stationary Point Characterization

To characterize the stationary points of the approximate op-
timization problem (6) we use again the Euler-Lagrange
method, where we introduce Lagrange multiplier func-
tions to enforce the cluster-wise constraints, d

dtµ
α
xα

=�
y �=x(γ

α
yα,xα

− γα
xα,yα

) as well as the local consistency
constraints defined in equations (4) and (5). Differentiat-
ing the Lagrangian, equating the derivatives to zero, and
performing some algebra, which we omit for the lack of
space, we obtain fixed-point equations that consist of the
initial constraints and two classes of coupled equations.

The first class consists of equations similar to (3), which
refer to the dynamics within each cluster. To simplify the
presentation, we introduce some definitions.

Definition 4.3: Assume we are given a time-varying matrix
function G(t), and boundary conditions x0 and xT . Define



Continuous-Time Belief Propagation

the operator η = R(G,x0,xT ) to return η = (µ, γ), the
unique solution of the following ODEs

d

dt
ρx = −

�

y

gx,yρy, ρx(T ) = 11x=xT

d

dt
µx =

�

y �=x

(γy,x − γx,y), µx(0) = 11x=x0

γx,y = µxgx,y
ρy
ρx

, ρx �= 0,y �= x.

Note that this set of equations is identical to (3), but re-
places the constant rate matrix Q by a time varying matrix
function G(t). Using this terminology, the first part of the
fixed-point equations is

ηα = R(Gα, e0|α, eT |α), (7)

where Gα(t) is the time-dependent matrix with entries

gαxα,yα
= (8)






(qi|Pai

xiyi|ui
)11i∈A(α) · ni→α

xi,yi
δxα,yα

= {i}
�

i∈N(α)

�
11i∈A(α)q

i|Pai

xixi|ui
+ ni→α

xi,xi

�
xα = yα

0 otherwise,

and ni,α are time-dependent functions that originate from
the Lagrange multipliers that enforce local consistency
constraints,

�

α∈N(i)

ni→α
xi,yi

=

�
γi
xiyi

µi
xi

�ci

, xi �= yi

�

α∈N(i)

ni→α
xi,xi

= ci
γi
xixi

µi
xi

.

(9)

These equations together with, (4) and (5) form the second
set of equations that couple different clusters.

Equation (7) suggests that the matrix Gα plays the role
of a rate matrix. Unlike Q, Gα is not guaranteed to be a
rate matrix as its rows do not necessarily sum up to zero.
Nonetheless, even though it is not a rate matrix, this system
of equations has a unique solution that can be found using a
backward-forward integration. Thus, since the matrix func-
tion Gα corresponds to a unique density set, we say that Gα

is an unnormalized parametrization of the process Pηα .

At this point, it is tempting to proceed to construct a mes-
sage passing algorithm based on this fixed point characteri-
zation in analogous manner to the developments of Yedidia
et al. (2005) . However, we are faced with a problem. Note
that limt→T

γxiei
µxi

= ∞. Therefore, according to Equation
(9), when t approaches T , there exists some α ∈ N(i) for
which ni,α

xieT,i
(t) approaches ∞ as t → T . This implies that

a simple-minded message passing procedure is susceptible
to unbounded values and numerical difficulties.

4.3. Gauge Transformation

To overcome these numerical difficulties, we now derive
an alternative characterization, which does not suffer from
unbounded values. We start with a basic result.

Proposition 4.4: Let G be a unnormalized rate matrix func-

tion, and let ωx(t) be a smooth positive vector-valued func-

tion, where ωx(t) > 0 in [0, T ). Let Gω
to be the matrix

function with

gωxy =

�
gxy ·

ωx
ωy

y �= x

gxx −
d
dt logωx y = x.

(10)

Then, R(G,x0,xT ) = R(Gω,x0,xT ).

Proof sketch: Let ρ, η satisfy the system of equations of
Def. 4.3 with G. Define ρω = ρ · ω, and show that ρω, η
satisfy the same system of equations with Gω .

This result characterizes transformations of (8–9) that do
not change the fixed point solutions for cluster density sets.
We seek transformations that reweigh the functions ni,α so
that they remain bounded using the following result.

Proposition 4.5: Assume G is a unnormalized rate matrix

function such that gx,y(t) �= 0 for all x,y, gx,y(t) is con-

tinuously differentiable in [0, T ], and η = R(G,x0,xT ).
If ω(t) is a family of smooth functions satisfying ωx(T ) =
11x=xT and

d
dtωx(T ) < 0 for x �= xT , then

lim
t→T

γx,y(t)

µx(t)

ωx(t)

ωy(t)
< ∞, ∀x �= y

and

lim
t→T

�
γx,x(t)

µx(t)
−

d

dt
logωx(t)

�
< ∞, ∀x.

Example 4.6: One function that satisfies the conditions
of Proposition 4.5 is ωx(t) = 1 − t/T, ∀x �= eT and
ωeT (t) = 1.

Using this result, we introduce weight functions ωi
xi

(as above) and define ωα
xα

=
�

i∈N(α)(ω
i
xi
)ci/(ci+1).

Using these weight functions, we define mi→α
xi,yi

=

ni→α
xi,yi

(
ωi

xi
ωi

yi

)ci/(ci+1) and mi→α
xi,xi

= ni→α
xi,xi

−
ci

ci+1
d
dt logω

i
xi

.

Now if we define the time-dependent matrix G̃α with en-
tries

g̃αxα,yα
= (11)






(qi|Pai

xiyi|ui
)11i∈A(α) ·mi→α

xi,yi
δxα,yα

= {i}
�

i∈N(α)

�
11i∈A(α)q

i|Pai

xixi|ui
+mi→α

xi,xi

�
xα = yα

0 otherwise,
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Algorithm 1 Continuous-Time Belief Propagation
Initialize messages: for all α and all i ∈ N(α)

Choose ηα ∈ Mα
e

Compute ηα→i using (14)
Set mi→α

xi,yi
= 1 ∀xi �= yi, mi→α

xi,xi
= 0

repeat
Choose a cluster α:
1. ∀i ∈ N(α), set mi→α

xi,yi
using (15)

2. Update G̃α using (11)
3. Compute ηα from G̃α using (12)
4. ∀i ∈ N(α) compute ηα→i using (14)

until convergence

then G̃α = (Gα)ω
α

. By Proposition 4.4,

ηα = R(G̃α, e0|α, eT |α). (12)

Plugging the definition of mi→α
xi,yi

and mi→α
xi,xi

into (9) we get

�

α∈N(i)

mi→α
xi,yi

=

�
γi
xiyi

µi
xi

ωi
xi

ωi
yi

�ci

, xi �= yi

�

α∈N(i)

mi→α
xi,xi

= ci

�
γi
xixi

µi
xi

−
d

dt
logωi

xi

�
.

(13)

If the preconditions of Proposition 4.5 are satisfied, the
terms in (13) are bounded. Together (11)–(13) provide an
alternative characterization of the fixed point(s) of the op-
timization problem.

4.4. Message Passing Scheme

We now use the above characterization as justification for
a message passing scheme, that if converged, will satisfy
the fixed point equations. While (11) and (12) are readily
transformed into assignments, (13) poses a challenge.

We start by noting that (13) contains the terms µi
xi

and
γi
xi,yi

. We can get these terms from ηα for any α ∈ N(i).
Thus, for α ∈ N(i), we define

µα→i = µα
|i γα→i = γα

|i (14)

We view these as the messages from cluster α to the com-
ponent i. At convergence, µα→i = µβ→i for α,β ∈ N(i),
but this is not true before convergence.

Next, we rewrite (13) as an assignment

mi→α
xi,yi

=






�

β∈N(i)
β �=α

1

mi→β
xi,yi

γβ→i
xiyi

µβ→i
xi

ωi
xi

ωi
yi

xi �= yi

�

β∈N(i)
β �=α

�
γβ→i
xixi

µβ→i
xi

−
d

dt
logωi

xi
−mi→β

xi,xi

�
else,

(15)

where we write
γi
xiyi
µi
xi

=
γβ→i
xiyi

µβ→i
xi

once for each β.

The algorithm is summarized in Algorithm 1. The im-
plementation of these steps involve a few details. We start
with the initialization of messages. The only free param-
eter is the initial values of ηα. To ensure that these initial
choices are in Mα

e , we choose initial rates, and perform
computations to get a valid posterior for the clusters. An-
other degree of freedom is the order of cluster updates. We
use a randomized strategy, choosing a cluster at random,
and if one of its neighbors was updated since it was last
chosen, we update it. The computation in Step 3, involves
reverse integration followed by forward integration (as ex-
plained in Section 3) . We gain efficiency by using adap-
tive numerical integration procedures. Specifically, we use
the Runge-Kutta-Fehlberg (4,5) method. This method
chooses temporal evaluation points on the fly, and returns
values at these points. The computations of Step 2 is done
on demand only at the evaluation points. To allow
efficient interpolation, we use a piecewise linear approxi-
mation of η whose boundary points are determined by the
evaluation points that are chosen by the adaptive integrator.
Finally, as might be expected, we do not have convergence
guarantees. However, if the algorithm converges, the fixed
point equations are satisfied, hence giving a stationary point
(hopefully a local maximum) of problem (6).

5. Experiments
We tested our method on three representative network
structures: a directed tree, a directed toroid, and a bidi-
rectional ring (Fig. 2). The tree network does not have any
cycles. The toroid network has cycles, but these are fairly
long, whereas the bidirectional ring has multiple short cy-
cles. All networks are parametrized as dynamic Ising mod-

els, in which neighboring components prefer to be in the
same state. Specifically, we use the conditional rates

qi|Pai

xi,yi|ui
= τ

�
1 + exp

�
−2yiβ

�
j∈Pai

xj

��−1

where xj ∈ {−1, 1}, β is a coupling parameter and τ is
a rate parameter. Small values of β correspond to weak
coupling, whereas τ determines how fast components tend
to switch states. For each experiment we set evidence at
times 0 and 1 (Fig. 2, left panel).

We compare the Bethe approximation to exact inference
and mean-field (Cohn et al., 2009). We start by comparing
the value of sufficient statistics (residence time and number
of transitions of each component for each state of its par-
ents) computed by each method. For example, for a par-
ticular choice of β and τ , (Fig. 2 middle columns) we can
see that the Bethe approximation is virtually exact on the
tree model and the toroid, but has some bias on the bidi-
rectional ring model. These scatter plots also shed light
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Network Residence time Number of Transitions Estimated log-likelihood

Figure 2. Simulation results for a tree network (top row), a toroid network (middle), and a bidirectional chain (bottom). Left network
structure and the evidence at start and end points; black is +1 and white is −1. Middle-left: scatter plot of expected conditional
residence times for networks with β = 1, τ = 8. Each point corresponds to a single statistic, the x-axis is the exact value and the
y-axis is the approximate value. Middle-right: same for expected conditional transition numbers. Right: exact and approximations of
log-likelihood as function of β, the strength of coupling between components (τ = 8).

on the nature of the difference between the two methods.
Specifically, in the most likely scenario, two components
switch from −1 to 1 near the beginning and the other two
switch from 1 to −1 near the end, and so through most of
the interval all the components are in the same state. The
mean-field algorithm gives a uni-modal solution, focusing
on the most likely scenario, resulting in zero residence time
for the less likely states. These states are represented by the
points close on the x-axis. The Bethe representation on the
other hand can capture multiple scenarios.

Another aspect of the approximation is the estimation of the
likelihood. In Fig. 2 (right column) we compare these esti-
mations as function of β, the problem hardness. Again, we
see that the Bethe approximation is essentially exact on the
tree network, and provides close approximations in the two
other networks. When we push β and τ to extreme values
we do see inaccuracies even in the tree network, showing
that the algorithm is an approximation.

While the ODE solvers used here allow adaptive integra-
tion error control, we do not have an a-priory control on
the propagation of this error. To test this effect on over-
all accuracy, we repeated these experiments using standard
grid refinement. Specifically, we computed integrals us-
ing uniformly spaced evaluation points and systematically
halving integration intervals until no changes in the output
were observed. Final results of these tests were practically

the same as those obtained using adaptive integration.

Figure 3. Run time vs. the number components in the three net-
works types (β = 1, τ = 8).

Next, we examine how the algorithm scales with the num-
ber of components in the networks. In all three networks
we see that the magnitude of relative error is essentially
independent of the number of components (not shown).
Fig. 3 shows that the run time scales linearly with the num-
ber of components. In harder networks the algorithm re-
quires more iterations leading to slower convergence.

6. Discussion
Here, we introduce a message passing scheme that provides
a variational approximation for CTBNs. This scheme is
derived from an approximate free energy functional, based
on the principles of expectation-propagation, where we re-
quire the posteriors on clusters to be locally consistent in
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terms of the Markovian projections on individual compo-
nents. We show that stationary points of this optimization
problem are the fixed points of a message passing algo-
rithm, whose structure closely mirrors Belief Propagation.

In contrast to Belief Propagation on discrete (atemporal)
networks, our algorithm is not guaranteed to be exact on
tree CTBNs. The source of inaccuracy is the projection of
the marginal distributions over components onto Markov
processes. While this projection looses information, our
empirical results suggest that this approximation is rela-
tively accurate.

The works that are closest to ours are those of Nodelman
et al. (2005) and Saria et al. (2007) which are also derived
from an expectation-propagation energy functional. The
main difference between the two methods is the structure of
the approximation. Nodelman et al use a piecewise homo-
geneous representation, allowing them to represent the rate
in each homogeneous segment by a constant (conditional)
rate matrix. This, however, requires introducing machinery
for deciding how to segment each component. As Saria et
al show, this choice can have dramatic impact on the qual-
ity of the approximation and the running time. In contrast,
our approach uses a (continuously) inhomogeneous repre-
sentation, which is essentially the limit when segment sizes
tend to zero. Surprisingly, rather than making the problem
more complex, this choice simplifies the mathematics and
also the implementation. In particular, our solution decou-
ples the probabilistic issues (dependencies between com-
ponents) and numerical issues (adaptive integration) and
allows us to build on well-understood methods from nu-
merical integration for efficient and adaptive selection of
the number and placement of discretization points.

Our results show how a careful choice of representations
and operations over them can narrow the gap between in-
ference methods in discrete and continuous-time graphical
models. Our constructions can be naturally generalized to
capture more complex dependencies using methods based
on Generalized Belief Propagation (Yedidia et al., 2005).
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Chapter 6

Discussion

In this dissertation I have presented models and tools for probabilistic reasoning about
structured stochastic systems in continuous-time. This framework is natural for many
dynamic systems, potentially leading both to succinct and intuitive models as well as to
efficient and relatively simple algorithms. The first part of the dissertation introduces
the modeling language of continuous-time Markov networks. This language allows
us to learn a compact representation of the stationary distribution of a process even
when the sampled process has not reached equilibrium. As this task requires inferring
expected sufficient statistics, we provide a transformation from CTMNs to CTBNs,
allowing us to exploit CTBN inference algorithms. This leads us to deal with the in-
ference problem on CTBN’s, which is the main computational bottleneck in learning
procedures. We begun by introducing a Gibbs sampling algorithm providing asymptot-
ically unbiased estimates. Then, using a variational approach we derive to algorithms
that are biased but are generally more efficient than sampling.

6.1 Modeling and Learning the Stationary Distribution

Continuous-time Markov networks describe processes that are composed of two major
forces: a local proposal stochastic process acting independently on each component;
and a global probabilistic selection function parameterized by a distribution over the
states of the system. We showed that the distribution that determines selection is also
the stationary distribution of the process.

In general, the stationary distribution reflects the propensity of the system to be
in different states. Modeling this distribution as a Markov network provides both a
compact as well as an interpretable representation. The edges in the graph describe
which components interact with each other, while the parameters encode the nature of
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these interactions. This graphical representation has a dual role: edges describe both
local influences on the dynamics of neighboring components as well as dependency
structure of the equilibrium distribution. In contrast, the graphical structure of CTBN’s
does not imply about the structure of equilibrium distribution.

In parallel to our work, a compact representation of a the stationary distribution
was presented by Yu and Thorne [2006] for the special case of RNA molecules. In
this work the stationary distribution is a function of the folding energy of an RNA
molecule, which in turn is described as a sum of local terms. Although such repre-
sentation is a special case of a Markov network, the definition of the dynamics given
the folding energy is different than CTMN. The learning procedure presented in this
work allows estimation of only global parameters such as a rate scaling factor or the
extent to which the equilibrium distribution is affected by the energy function. The
language of CTMNs provides a more flexible learning procedure allowing to learn pa-
rameters that are associated with local terms. The crux of CTMNs which allows this
flexibility is the decomposition of this process into a hidden proposal process and a
selection process that depends on a fitness function. The resulting likelihood function
is a linear function of hidden sufficient statistics allowing to learn the model using an
expectation-maximization procedure.

Exploration of the power of CTMNs to model real life phenomena requires some
further steps. As an example we consider the problem of using evolutionary models to
learn about structure and function of proteins. Proteins are sequences of basic molec-
ular building blocks called amino-acids of which there are 20 types. The sequence of
a protein determines the structure to which it folds, which in turn determines its func-
tion. Many species share a common set of proteins such as hemoglobin, which have
a relatively conserved structure and function but differ in their sequences [Felsenstein,
2004]. The conserved features of such protein families impose constraints on their se-
quences. For example, an interaction between two amino acids may occur if they have
complementary charges. A major goal in biology is to infer constraints that determine
the structure and function of the protein from sequence data.

Learning such constraints from a given set of sequences involves questions such
as mapping which positions interact which each other and what is the nature of these
interactions. Such constraints can be elegantly modeled as a set of features of Markov
network where the parameters account for their quantitative effect on fitness. This
approach was recently used to detect residues involved in protein-protein interactions
[Weigt et al., 2009, Burger and van Nimwegen, 2010]. However, it uses only correla-
tions within sequences but does not take into account the dynamics of the evolutionary
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process that generates these sequences. Ignoring this history can lead to severe errors,
demonstrating that evolutionary relations is a major confounding factor when deter-
mining dependencies between different residues [Bhattacharya et al., 2007]. Burger
and van Nimwegen [2010] addressed this problem using a heuristic approach although
they argue that the best way to address this difficulty would be to explicitly model
the evolution of the sequences along the tree, using an evolutionary model that takes
dependencies between positions into account. They claim however that it appears that
such a rigorous approach is computationally intractable.

The introduction of CTMN along with the inference methods presented in this the-
sis are first steps towards tackling this challenge. However there are some additional
steps not addressed in this thesis. First, in chapter 2 we presented a parameter esti-
mation procedure. However, learning interactions involves searching for the structure
of the stationary distribution of the model that reflect the interactions in the protein.
This task is difficult even for Markov networks in the context of static models. How-
ever, it should be possible to adopt some of methods used in this domain [Della Pietra
et al., 1997, Lee et al., 2007, Ganapathi et al., 2008, Dudı́k et al., 2007]. Second, even
if we determine the correct graphical structure of the model, using an exhaustive pa-
rameterization for every edge of the graph may be redundant and uninformative. For
example, instead of considering every one of the 400 possible amino-acid pairs in a
single interaction, considering generic feature such as whether they have complemen-
tary charges may be more robust. The CTMN language, in contrast to CTBNs, allows
to incorporate such features in a natural manner. However, determining what are the
informative features that emerge from data is a challenging task. This problem is re-
lated to the structure search problem and has been addressed as well in the context of
static Markov networks using semi-heuristic search approaches.

6.2 Gibbs Sampling

The continuous-time Gibbs sampling algorithm proposed here can be described as a
block-Gibbs procedure that iterates by sampling trajectories from the distribution over
subsets X([0,T ])

i given trajectories of other components. Each of theses samples is taken
using a dynamic programming procedure, whose complexity scales with the number
of transitions.

This algorithm exploits the structure of the model both in CTBNs and in CTMNs.
In CTBNs, the posterior distribution of a trajectory of every component depends only
on trajectories of its Markov-blanket—its parents, children and children’s parents. In
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CTMNs it depends on trajectories of the neighbors.
An important merit of Gibbs sampling procedures is that they are asymptotically

unbiased. Moreover, as our numerical evaluation suggests, in contrast to importance
sampling algorithm, the likelihood of the evidence has a relatively mild effect on the
convergence rate of the algorithm. These properties make the algorithm suitable for
evaluating the bias of more efficient approximation algorithms presented in chapters
4-5.

Two limitations of the algorithm are that in highly coupled networks convergence
may be too slow and it is hard to estimate the stopping criteria. To overcome the second
problem we experimented with several generic stopping evaluation statistics for such
methods [Brooks and Gelman, 1998, Kass et al., 1998] mainly the one of Gelman and
Rubin [1992]. However, further experiments are needed to determine how to tune these
diagnostic statistics (results not shown).

6.3 Variational Approximations

The mean field and belief propagation algorithms presented in Chapters 4 and 5 are
derived from the same variational principle for continuous-time Markov processes. A
similar principle and a mean field algorithm was proposed by Opper and Sanguinetti
[2007] for a Markov model with indirect and noisy observations. In this work, the pos-
terior distribution of a Markov process is parameterized by a set of continuous func-
tions representing transition rates as a function of time. In Chapter 4 we introduced a
different representation—marginal density sets—and reformulate the variational prin-
ciple.

The marginal density set representation is attractive for two reasons: First, the den-
sity set of the exact solution is guaranteed to be bounded. In contrast, in the case
of direct evidence, posterior rates tend to infinity near evidence points. Second, this
representation is natural in the sense that it is composed of the time derivatives of
the expected sufficient statistics that we wish to query. Hence, once we find an op-
timal solution, these expectations are read out by simple numerical integration. This
is analogous to the modern approach for inference in discrete graphical models where
instead of representing posterior distributions directly they are represented in terms of
expected sufficient statistics [Wainwright and Jordan, 2008].

The differences between the proposed mean field and belief propagation algorithms
follows from the structure of the approximation. In the mean field approximation the
posterior is constrained to a product of independent inhomogeneous process. This ap-
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proximation also provides a lower bound to the log-likelihood of evidence allowing to
learn parameters of a model using a variational EM approach, which searches for pa-
rameters that maximize a lower bound of the log-likelihood [Jordan et al., 1999]. Nu-
merical tests suggest that the algorithm provides good results if evidence is not sparse,
as is the case in the example of evolutionary models where we are given sequences in
the leafs of a phylogenetic tree.

The belief propagation algorithm allows dependencies between different compo-
nents. The resulting approximation provides highly accurate expected sufficient statis-
tics even in the presence of sparse evidence. The approximation to the log-likelihood
is also more accurate than the one of mean field. However, in this case it is not guar-
anteed to be a lower bound.

Both algorithms search for an optimal approximation using an iterative message
passing scheme. In the mean-field algorithm each components use the marginal den-
sity sets of neighboring nodes to update its own density set. In belief propagation
messages are passed and updated between clusters of nodes. These update steps in-
volve numerical solution of ordinary differential equations, allowing to incorporate
standard solvers that use adaptive step size, which in turn provide an optimal trade-off
of accuracy versus efficiency.

Prior to our work, Nodelman et al. [2005b] introduced a message passing algo-
rithm for CTBNs that allows dependencies between components. In this work, poste-
rior distribution over clusters of components are modeled using a piecewise homoge-
neous Markov processes. Saria et al. [2007] demonstrated that the choice of demarca-
tion points between segments of constant parameterization is crucial and suggested a
mechanism to automatically tune these points. In contrast, the belief propagation algo-
rithm proposed here uses a non-homogeneous representation equivalent to an interval
length that approaches zero. Surprisingly, the resulting algorithm becomes more sim-
ple avoiding the need to construct an additional mechanism for adaptive computations,
rather than making the problem more complex.

The important insight that belief propagation and mean field algorithm can be de-
rived using similar principles was made by [Yedidia et al., 2005] in the context of
discrete models. This insight has led to derivation of a generalized belief propagation

algorithm and later on to a tremendous number of other extensions [Wainwright et al.,
2003, Meshi et al., 2009, Meltzer et al., 2009, Hazan and Shashua, 2010].

Although the belief propagation algorithm provides highly accurate results for tree
and toroid topologies, the bias introduced on bidirectional rings motivated us to gener-
alize the continuous-time algorithm. The ring structure induces clusters of triplet com-
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ponents such as {X1, X2, X3}, {X2, X3, X4}. While the intersection between such
sets include pairs of components (here {X2, X3}) the algorithm requires that the cor-
responding should agree on each component separately. Generalizing our algorithm to
handle stricter constraints, which demand agreement on subsets of components rather
than singletons, virtually eliminated this bias (results not shown).

These developments demonstrate that the introduction of marginal density sets, us-
ing them to derive a variational principle and using additional tools presented in Chap-
ter 5 can possibly allow to adopt further extensions of belief propagation that are based
on similar principles. An additional extension is to derive a more efficient algorithm
for CTMNs. Our current approach is to convert the CTMN into a CTBN and to per-
form inference on the CTBN. This can be inefficient for nodes that have large number
of neighbors especially if the cardinality of each component is not small. Performing
inference directly on a CTMN can lead to a dramatic improvement in runtime.

Finally, it will be interesting to explore whether the ideas used to develop the
continuous-time belief propagation algorithm can be applied to other continuous time
models with different state-space structures. Such developments could provide accu-
rate and efficient inference for a wealth of applications in molecular-biology, robotics,
social networks, medical care and many more.

6.4 Concluding Remarks

Continuous-time modeling is a promising direction for studying complex dynamic sys-
tem, although this field of research is its in early stages. In this dissertation I described
works aimed to provide tools that facilitate fulfillment of the potential of this field. We
showed that by defining an appropriate modeling language, one can potentially cap-
ture the main forces of a dynamic process in a compact and interpretable manner. The
rest of the thesis deals with the computationally intensive inference task by borrowing
approaches from finite dimensional graphical models while exploiting the advantages
of continuous time modeling. This requires proper presentations and suitable mathe-
matical tools to exploit them.

A common theme in this thesis is that while the mathematical foundations are
somewhat involved, the resulting models and algorithms are relatively simple. The
inference algorithms proposed here have a simple flow, which involves standard nu-
meric procedures for manipulation of continuous functions. Additionally, we believe
that principled consideration of the dynamic and interactions of a system should lead to
more succinct and accurate models avoiding spurious correlations. However, as most
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of our tests were performed on synthetic data, this conjecture is yet to be supported
by experiments with real data. We hope that the accuracy and simplicity that can be
obtained by continuous-time modeling will encourage the application of this approach
to the wealth of domains that are suitable for this framework.
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