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Abstract. We present an effective intensity-based method for rigid reg-
istration of a patient preoperative CT to its intraoperative situation
with a few fluoroscopic X-ray images obtained with a tracked C-arm.
It improves upon existing methods and overcomes most of their intrinsic
speed, robustness, and accuracy problems. For speed, we generate Digi-
tally Reconstructed Radiographs on small, dynamically selected regions
of interest from precomputed ray gray levels in expected viewing direc-
tions, and use a multiresolution hierarchy of fluoroscopic X-ray images.
For robustness and accuracy, we use a two-step comparison measure: Nor-
malized Cross Correlation followed by Variance Weighted Sum of Local
Normalized Correlation. To avoid local minima, we use a genetic search
method. Our experiments on simulated, in-vitro, and cadaver data show
an overall mean Target Registration Error of 0.8mm (max=1.5mm), 95%
of the time, computed in 20-100 seconds under realistic conditions.

1 Introduction

Registration is an essential step in most computer-aided surgery (CAS) systems.
It consists of finding a transformation that aligns common features from two
modality data sets taken at different times [1]. It is required in image-guided
and robotic surgery to match preoperative images and plans to the intraoperative
situation, to determine the relative position of surgical tools and anatomy, and
to accurately position and move surgical robots. Several types of CAS systems
have been developed, mostly for neurosurgery [2], orthopaedic surgery [3], and
radiation therapy [4].

Most CAS systems in clinical use rely on implanted fiducials, which may re-
quire additional surgery, or on points harvested by direct contact on the anatomy
surface, which may require additional anatomy exposure and is time consuming.
An alternative is anatomical image-based registration, which relies on anatomical
structures to match the data sets. It allows both less invasive and percutaneous
procedures, is faster and less prone to human error, and does not require train-
ing. Intraoperative X-ray fluoroscopy is an ubiquitous modality which is well
suited for registering preoperative CT data of bones and rigid structures.

Anatomical image-based 2D /3D rigid registration between fluoroscopic X-ray
and CT is technically much harder than fiducial or contact-based registration.



It requires analyzing the fluoroscopic X-ray images, which are 2D, have a small
field of view, have limited resolution, have camera position-dependent geometric
and intensity distortions, and may contain surgical tools, implants, and anatomy
not present in the preoperative CT.

2 Previous work

Because of its great potential, researchers have developed a variety methods for
2D/3D rigid registration between X-ray and CT. Geometry-based algorithms
match selected geometric features from each data set by finding the transforma-
tion that minimizes the sum of distances between paired features [5-7]. Intensity-
based algorithms match the intensities of one image data set with the intensity
of the other by minimizing a similarity measure between them [8-14]. The main
advantage of intensity-based registration is that it does not require the segmen-
tation of CT and X-ray images. By averaging out all the available information,
it reduces the influence of outliers and is thus more robust to the presence of
foreign objects and surrounding anatomy.

However, intensity-based registration is computationally expensive. It re-
quires generating many Digitally Reconstructed Radiographs (DRRs) for com-
parison with the original X-ray images and searching a 6-dimensional space which
can have many local minima and is very sensitive to the similarity measure. It
requires an initial bone pose estimate close to the final one. Proposed methods to
overcome these limitations include speeding up DRR generation [11], computing
DRRs in small Regions of Interest (ROIs) [9], approximating or subsampling
DRRs [10], defining new similarity measures [13], and guiding the search with
stochastic optimization [14]. To date, the Cyberknife [4] is the only system in
clinical use based on intensity-based registration [9]. The main obstacles are
robustness, accuracy, efficiency, and system integration.

3 Effective Intensity-based Registration

We address the entire registration process, which includes orientation-dependent
fluoroscopic X-ray C-arm calibration [15] and optical tracking. Our approach
is generic, customizable, and targeted to routine clinical use in orthopaedics.
Following an in-depth analysis of the most common orthopaedic procedures,
we set our goal to obtain a registration with an overall mean surface Target
Registration Error (STRE) of lmm (max=2mm), 95% of the time or more, in
less than two minutes on a CT data set with Imm thick slices 1.5mm apart and
2-5 fluoroscopic X-ray images from different viewpoints, with foreign objects
and surrounding anatomy, with viewpoint localization of 0.3mm (max=0.5mm).

We improve upon existing intensity-based registration methods and success-
fully combine their strengths to overcome most of the speed, robustness, and
accuracy problems (see [16] for a complete description).

The registration consists of: 1. initial bone pose estimation, 2. precomputa-
tion, and 3. intensity-based registration. The initial bone pose can be determined



TECHNIQUE SPEED | ROBUSTNESS | ACCURACY
range noise
1. Dynamic ROIs yes some
2. Multiresolution fluoroscopy| yes
3. Transgraph yes
4. NCC and VLNC measures yes  yes yes
5. Genetic search yes

Table 1. The role of each technique on the effectiveness of intensity-based registration.

from the clinical setup, estimated from skin markers, or computed from a few
surgeon-defined matching landmarks on the CT and fluoroscopic X-ray images.
The precomputation step generates a Transgraph [11], a data structure for fast
DRR generation, and a multiresolution hierarchy of fluoroscopic X-ray images.
Intensity-based registration is performed in three steps: 1. generation of DRRs
for each C-arm viewpoint; 2. bone pose difference measurement by comparing
the DRRs with the real fluoroscopic X-ray images, and 3. computation of the
new bone pose that minimizes the difference. The process is repeated with the
new bone pose estimate until no further progress can be made. To make the
algorithm effective, we incorporate into it five special techniques (Table 1).

To speed up the comparison between fluoroscopic X-rays and DRRs, it is
performed only on small, dynamically selected ROIs. The key observation is
that uniform regions with small pixel value variance, which usually correspond
to background, soft tissue, and bone interior, add very little information for
matching and can thus be ignored. High-variance regions usually correspond to
bone exterior and interior contours and to pronounced thickness changes; they
are far fewer (10-15% of the image pixels) and contain more information. High-
variance regions are automatically identified once on the original fluoroscopic
X-ray images by selecting small, non-overlapping rectangular windows (e.g., 7x7
pixels) whose normalized gray value variance is above a prespecified threshold
(Fig. 1). In addition, pixels corresponding to the calibration grid spheres and to
the image margins are not included. Dynamically selected ROIs improve upon
random pixel sampling [14] and upon predefined static ROIs [9]. These ROIs
increase the final accuracy because they focuses the registration on informative
data. To further reduce the number of pixels, we use a multiresolution hierarchy
of fluoroscopic X-ray images. The original images are downsampled and stored,
and the DRR computation is performed at the appropriate resolution. We use a
two-level 1:16 downsampling in our implementation.

The DRRs for the estimated bone pose of selected ROIs are generated using
a Transgraph, a data structure of gray-level ray values from expected viewing
directions [11]. Its indexing planes are computed from an initial bone pose esti-
mate and CT volume size. A data structure stores the gray-level values of rays
in the expected viewing directions. The gray value of each DRR pixel is com-
puted by quadrilinear interpolation with just 45 arithmetic operations. In our
implementation, a 800 x 600 DRR is generated in about 0.08secs on a 30MB



(a) Original X-ray (b) DRR generated from CT (c) ROIs

Fig. 1. Illustration of ROIs. In (c), black pixels do not belong to the ROIs.

Transgraph consisting of 15M rays constructed from 100 x 70 x 150mm3 CT
volume, computed in about 5 minutes.

To robustly and accurately compare the DRRs and the fluoroscopic X-ray
images, we use a two-step comparison. The similarity measure should emphasize
rigid bone, filter out deformable soft tissue, and minimize image contrast, and
sharpness differences. It should filter out surgical tools and surrounding anatomy
that are present in the fluoroscopic X-ray images but not in the CT. As observed
in [12] and based on our own experiments, a single similarity measure cannot
simultaneously be fast, robust, accurate, and have a wide convergence range.
Instead, we apply the Normalized Cross Correlation (NCC) comparison mea-
sure first and then automatically switch to an improved Variance Weighted Sum
of Local Normalized Correlation (VLNC) [11] when NCC leads to convergence.
The NCC measure is invariant to linear changes in image intensity, has a wide
convergence range, and is robust, but is not very accurate (Fig. 3a). The VLNC
measure weights more high-variance regions where the relevant information is,
so it improves the accuracy (Fig. 3b). It also reduces the influence of regions con-
taining foreign objects since their local NCC values are small when the estimated
bone pose is close to the actual one.

To effectively search for the final pose, we use the iterative downhill simplex
optimization method. The objective function is the sum of comparison measures
(NCC or VLNC) for each C-arm viewpoint. To avoid local minima, we use a
genetic search method. The search starts from the initial guess and n randomly
generated guesses. For each guess, its transformation is computed by solving an
optimization problem. The transformations yielding similarirty values that are
too far from the best one are discarded, and the process is repeated with n/2
new transformations obtained by random pairwise linear combinations of the
best ones. The process stops when one transformation is left.

The algorithm effectively combines all the above techniques in three suc-
cessive refinement steps. It starts from the initial pose guess plus n additional
randomly generated poses on entire downsampled X-ray images and uses the
NCC measure. It proceeds from the computed pose guess plus n additional ran-



Data set Ideal Realistic Bad
Ah = 0.6mm, none|Ah = 2.4mm, some|Ah = 4.2mm, some

SIMULATION
1. clinical pelvis — 0.3 (0.7) 0.5 (0.7)

IN VITRO

3. dry spine 0.3 (0.4) 0.4 (0.7) 0.7 (1.5)

2. dry femur 0.7 (1.1) 09 (1.8) 1.6 (3.4)

CADAVER

4. lamb hip 1.0 (1.1) 11 (18) 1.3 (24)

Table 2. Summary of experimental results. Each entry shows the mean (maximum)
surface target registration error (STRE) in millimeters. Each scenario (ideal, realistic,
and bad) is defined by the CT slice spacing Ah and the presence of foreign objects
in the fluoroscopic X-ray images (none, some). Three fluoroscopic X-ray images were
used in all cases. Computation times are 20-100 secs.

domly generated poses on ROIs downsampled X-ray images and uses the VLNC
measure. It then computes the final transformation for the computed pose guess
on ROIs full-resolution X-ray images and uses the VLNC measure. In our imple-
mentation, n = 4 and the registration takes on average 70 seconds and requires
3,000 DRRs: 5 seconds for initialization, 10 seconds and 400 DRRs in the first
step, 30 seconds and 2,400 DRRs in the second step, and 25 seconds and 200
DRRs in the third step.

4 Experimental Results

We implemented the algorithm, incorporated it in the registration process, and
validated it in three situations: 1. simulation experiments with clinical CT data
and simulated fluoroscopic X-rays; 2. in-vitro experiments with dry bones, and;
3. a cadaver experiment. The simulation experiments establish the algorithm ac-
curacy with no fluoroscopic X-ray imaging and no tracking errors. The in-vitro
experiments establish the overall error for real CT, fluoroscopic X-ray images,
and tracking under ideal conditions. The cadaver experiment emulates the surgi-
cal situation and establishes the expected navigation error. We demonstrate the
genericity of our method by applying it to four anatomical structures: human
femur, spine, pelvis, and lamb hip. Fig. 2 and Table 2 summarize the results.

We used a CT scanner (Marconi, USA), a 9” BV29 C-arm (Phillips, The
Netherlands), a Polaris optical tracking camera (NDI, Canada), a FluoroTrax
C-arm calibration ring and active optical trackers (Traxtal, Canada), and a
Matrox Meteor II digital frame grabber. Processing was on a 2.4Ghz, 1GB RAM
PC under Windows XP. All CT scans were at 0.6mm slice interval and 0.5mm
slice thickness except for the pelvis CT.

We performed a simulation experiment on a clinical pelvis CT. We generated
DRRs at known C-arm viewpoints to simulate fluoroscopic X-ray images. We
offset the bone pose by 10mm sTRE, a typical initial guess. The resulting mean



(a) CT model (b) before registration (c) after registration

Fig. 2. Registration results: in-vitro dry spine and cadaver lamb hip. The first column
shows the CT model. The second and third column show one fluoroscopic X-ray image
with contours at initial and final pose superimposed on them (white lines).

STRE is 0.4mm (max=0.7mm) on CT data sets with 2.0mm and 4.0mm slice
interval with 1.5mm slice thickness. It is most likely the best possible simulation
result obtainable at this CT resolution.

We performed in-vitro experiments on a single vertebra of a dry spine and
on a dry proximal femur. First, we implanted seven 6mm aluminum spheres and
CT scanned them. We extracted the sphere centers to a mean accuracy of 0.1lmm
(max=0.3mm). We then acquired two sets of three fluoroscopic X-ray images at
various C-arm viewpoints, one with, and one without anatomy for optimal C-
arm calibration. We performed C-arm calibration to a mean accuracy of 0.3mm
(max=0.6mm), and obtained a ground-truth registration by fiducial contact-
based registration on the spheres to a mean accuracy of 0.3mm (max=0.5mm).
We then performed 2D /3D registration and compared the results. We obtained
an average STRE of 0.7mm, maximum of 1.3mm with 100% (95%) success for
an initial STRE pose offset of 0-25mm (0-40mm) for the femur and 0-10mm
for the vertebra (0-15mm). The vertebra convergence range is smaller because
of the presence of other vertebra. We observed a slight decrease (0.1mm for the
femur) in accuracy when only two fluoroscopic X-ray images were used, an no
significant increase with more than three images.

We performed a cadaver experiment on a fresh lamb hip with the same in-
vitro protocol, except that we used only four fiducials. The small decrease in
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Fig. 3. Similarity comparison measures effect for the lamb hip experiment on the cu-
mulative percentage of failures (top), and on the final accuracy (bottom) when using:
(a) the NCC measure only; (b) the VLNC measure only, and; (c) both. The horizontal
axis indicates the initial pose offset as the mean STRE from the ground-truth trans-
formation. The vertical axis indicates the cumulative percentage of failures (top) and
the final mean and maximum sTRE.

accuracy was due to a less accurate ground-truth registration, to the presence of
surrounding anatomy, and to few salient bone features on the lamb femur. Fig. 3
shows the effect of the NCC and VLNC similarity measures on the cumulative
percentage of failures and on the final accuracy. Running times are 40-60 secs for
NCC only, 30-70 secs for VLNC only, and 70-90 secs for both. The combination
of NCC and VLNC achieves lmm accuracy with small deviation (max=0.3mm)
and a 5% cumulative failure (an sSTRE > 2mm is considered a failure) for initial
sTRE poses of up to 55mm, well within the range of coarse initial pose estimation
at the expense of a small time increase.

5 Conclusion

We conclude from our experimental results that anatomical image-based rigid
registration between fluoroscopic X-ray and CT with an overall mean sTRE of
1lmm (max=2mm), 95% of the time, with three X-ray images in less than two
minutes in a realistic setup, is practically feasible. This is achieved by judiciously
combining five techniques to enhance the speed, robustness, and accuracy of the
basic intensity-based registration algorithm. Dynamic ROIs, two-step similarity
measure, and genetic search are used for the first time in this context. The algo-
rithm is fully automatic and does not rely on high-quality image segmentation.
It proved robust in the presence of foreign objects and surrounding anatomy.



We are currently conducting further in-vitro and cadaver experiments and are
incorporating the registration in an image-guided navigation system for trauma.
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