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Abstract 
 
We describe a new algorithm for microcalcificationsegmentation in mammographic X-
ray images.  The algorithm detectsmicrocalcifications in two steps. First, it removes 
background tissue witha multiscale morphological operation.  Then, it applies entropy
thresholding based on a 3-dimensional co-occurrence matrix.  Unlikeexisting methods, 
ours is fully automatic, parameter-free, and independentof local statistics.  To test its 
efficacy, we applied it to images from the Mammographic Image Analysis Society 
database and analyzed the results with the assistance of a clinician.  We obtained detection 
rates of 93.75% of true positives, 6.25% of falsepositives, and 2% of false negatives�  
 
Keywords: X-ray mammograms, microcalcification segmentation, entropy thresholding. 
 
1. Introduction 
 
Most early breast cancer can be diagnosed by detecting microcalcification clusters in 
mammographic X-ray images.  The clusters appear as groups of small, bright particles 
with arbitrary shapes.  Detecting microcalcifications is difficult because they are 
embedded in a non-homogeneous background.  Many missed radiologist diagnoses can be 
attributed to human factors such as subjective or varying decision criteria, distraction by 
other image features, large number of images to be inspected, or simple oversight.  
Therefore, there is strong motivation to develop reliable and effective methods for 
automatic microcalcifications detection.  While many methods for microcalcification 
segmentation have been developed in the past ten years, they either require manual 
thresholds adjustment or depend on local statistics to compute those thresholds�  This 
paper presents a new fully automatic, parameter-free, and local statistics independent 
algorithm for microcalcification segmentation in mammographic X-ray images�  For a 
detailed description of the method, see [1]. 
 
2. Previous work  
 
Strickland and Hahn [2] describe a method that uses multiscale matched filters with 
wavelet transforms for enhancing and detecting calcifications. Nishikawa et al [3] use a
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difference technique to enhance microcalcifications. First, it extracts potential 
microcalcifications with global thresholding based on an erosionoperator and local 
adaptive thresholding.  False positives are then eliminated by texture analysis, and the 
remainingcandidates are grouped with a non-linear clustering algorithm. Cheng et al. [3] 
propose a method based on fuzzy logic, which consists of image fuzzification, 
enhancement, irrelevant structure removalsegmentation, and reconstruction. Chan et al. 
[4] investigate a convolution neural network based approach that is effective for reducing 
false positive detections. Nagel et al. [5] compare three feature analysis methods based on 
rules, artificialneural networks, and a combination of both. They report that thecombined 
method performs best because each filter eliminatesdifferent types of false positives. 
McGarry and Deriche [6]use a hybrid modelcombining knowledge of mammographic 
imaging process and anatomicalstructure and Markov random fields. The drawbacks of 
these methods are that they either requiremanual adjustment of thresholds or depend on 
local statistics to computethe thresholds. This motivated our search for a parameter-free 
algorithm for thresholdestimation�  

3. Method 
 
The algorithm detects microcalcifications in two steps. First, it removes background tissue 
with a multiscale morphological operation.  Then, it applies entropy thresholding based on 
a third-order spatial gray-level dependence matrix�  
 
Background tissue elimination is necessary to enhance the visibility and detectability of 
microcalcifications.  We use a multiscale top hat morphological filtering to remove the 
slow rate of variation of the image intensity values and to enhance the image contrast.  In 
morphology, filtering is performed using a kernel, and multi-scaling is performed by 
changing the size of the kernel. The top hat filter �  is a morphological opening operation. 
For a given image I, the multiscale top hat operator �  removes objects whose size is larger 
than the given kernel size.  The kernel is taken to vary from the smallest to the largest size 
of individual microcalcifications.  The multiscale top hat equation is: 

 

)()( IkIIk
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where k  is the kernel size. 
 
The opening operation consists of erosion followed by dilation on a kernel that defines the 
size of the region over which pixel values are taken.  Erosion replaces the pixel value at 
the center of the kernel by the minimum value of its neighborhood pixels, while dilation 
replaces it by the maximum value of its neighborhood pixels. The opened image is then 
subtracted from the originalimage.  We use square kernels whose sizes vary between one 
and five pixels. For each scale, we ob tain different filtered images with candidate 
microcalcifications�  
 
To segment the resulting filtered images, we apply the following entropy -based 
thresholding method.  First, we compute the spatial gray-level dependence matrix. This is 
a three-dimensional co-occurrence matrix T whose entries are the joint probabilities that 
pixel triplets’ intensities (wi,wj,wk) are in a rectangular region of width s and height h.  The 
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entries of the third-order entropy matrix of the image are then obtained by summing the 
pixel triplet probability times its logarithm over all regions of size sxh.  We choose to use 
the third-order space mean over the more commonly used second order matrix because 
our experiments indicated that higher order correlations improved the discrimination 
capabilities�  The (i,j,k)th entry of the 3D co-occurrence matrix, denoted by Tijk, is defined 
by:  
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 Next, we partition the resulting matrix into two regions: the background information B, 
which appears in the upper left corner of the matrix, and the microcalcification 
information O, which appears in the restof the matrix�  Each region defines a distribution 
of the of gray-levels transitions. Then, we build for each region the probability P based on 
the distribution of the pixels transitions in the given region of the 3D co -occurrence 
matrix. By normalizing the total number of transitions in the given region of the co-
occurrence matrix, we obtain the desired transition probability P.  
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The size of the regions B and O is adjusted dynamically by changing the position of the 
boundary between the two regions.  We compute the entropy of each region according to 
the boundary position.  The boundary separating background and microcalcifications is 
the one that gives the maximum sum of the entropies.  The optimal threshold is the one 
that maximizes the sum the entropies of the background and microcalcification regions
defined by this boundary  
 
Formally, let t be the threshold of the two groups the foreground and the background in 
the image. The background entropy HB(t) and the objects entropy HO(t) are computed on 
the volumes B and O. The entropies quantify the background-to-background transitions 
and objects-to-objects transitions. The image entropy is obtained by 
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The optimal threshold is the value t that yields the maximum of the image entropies 
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Then, we segment the filtered image according the optimal threshold. The fusion of the 
different scale segmented images produces the final mammogram segmentation. 
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4. Results 
 
We applied the algorithm to a database consisting of a few dozen images from the 
Mammographic Image Analysis Society (MIAS) database and our own clinical images.  
We then performed a quantitative analysis of the results with the assistance of a 
radiologist.  Images are of size 1024x1024 pixels with 8-bit gray-values.  We use a 
morphological multiscale top hat with 1x1 pixels to 5x5 pixels kernels for background 
filtering and applied entropy thresholding as described above to detect individual 
microcalcifications.  The algorithm was able to detect subtle microcalcifications and its 
results were deemed highly accurate.  The microcalcifications were then are grouped into 
clusters based on their proximity using the Cluster Affinity Search Technique �  The 
intermediate steps of the algorithm are illustrated in Fig. 1 on a sample mammogram. 
 
We obtained mean detection rates of 93.75% of true positives, 6.25% of false positives, 
and 2.0% of false negatives (ranging from 0% to 3.75%).  The results were evaluated and 
confirmed by a radiologist.  These are considered very low false positive and false 
negative rates.  We noted some variance depending on the size of the region of interest 
and the texture of the mammogram in the region.  Running times on a Pentium III 700 
MHz PC with 256MB of main memory and no code optimization average 20 minutes per 
image.  This was deemed acceptable based on the quality of the results�  
 
To further evaluate our algorithm, we compared it to three state of the art algorithms.  Yu 
and Guan [7] compute statistical features and report 90% mean true positives at the cost of 
0.5% false positives per image.  On our data set, our implementation of the algorithm 
produced 92% mean true positives and 8% false positives, which is significantly worse 
than our results.  Its drawbacks are that it has many statistical features and parameters to 
adjust, and is very computation-intensive.  Vilarras et al. [8] use morphological operations 
to remove noise background and report a true positives rate of only 85% on the MIAS 
data set. Karssemeijer and Barke [9] applya statistical method and report a mean of 93% 
true positives for a cost of two false positives per image�  
 
 
4. Conclusion 
 
We have presented a new algorithm for microcalcification segmentation in 
mammographic X-ray images.  The algorithm uses a multiscale morphological operation 
and entropy thresholding based on a three dimensional co-occurrence matrix.  Unlike 
existing methods, ours is fully automatic �  parameter-free, and independent of local 
statistics�  We are currently applying our algorithm to alarger data set and investigating 
the causes for the small percentage of false positives and false negatives.  To improve 
these results, we plan to perform an analysis of the extracted microcalcifications in the 
morphological and texture feature spaces�  
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             (a) Original region of interest   (b) After background removal  
 

      
   
     (c) After microcalcification segmentation         (d) After clustering into suspicious regions  
 

Fig. 1: Illustration of the algorithm steps on a sample mammogram 
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