
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 8

The Eleventh International
Workshop on Agent Oriented

Software Engineering

AOSE 2010

THE ELEVENTH

INTERNATIONAL WORKSHOP ON

AGENT-ORIENTED SOFTWARE

ENGINEERING

Toronto, Canada
10 of May 2010

Preface

Since the mid 1980s, software agents and multi-agent systems have grown into a very
active area of research and also commercial development activity. One of the limiting
factors in industry take up of agent technology, however, is the lack of adequate software
engineering support, and knowledge in this area.

AOSE is focused on this problem and provides a forum for those who study the
synergies between software engineering and agent research.

The concept of an agent as an autonomous system, capable of interacting with other
agents in order to satisfy its design objectives, is a natural one for software design-
ers. Just as we can understand many systems as being composed of essentially passive
objects, which have state, and upon which we can perform operations, so we can under-
stand many others as being made up of interacting, autonomous or semi-autonomous
agents. This paradigm is especially suited to complex systems.

Software architectures that contain many dynamically interacting components, each
with their own thread of control, and engaging in complex coordination protocols, are
typically orders of magnitude more complex to correctly and efficiently engineer than
those that simply compute a function of some input through a single thread of con-
trol, or through a limited set of strictly synchronized threads of control. Agent oriented
modelling techniques are especially useful in such applications.

Many current and emerging real-world applications - spanning scenarios as diverse
as worldwide computing, network enterprises, ubiquitous computing, sensor networks,
just to mention a few examples – have exactly the above characteristics. As a conse-
quence, agent oriented software engineering has become an important area: both as a
design modelling means, and as an interface to platforms which include specialised
infrastructure support for programming in terms of semi-autonomous interacting pro-
cesses.

The particular focus of AOSE 2010 will be on how to bridge the gap between AOSE
and conventional software engineering. We aim to look at the integration of concepts
and techniques from multi-agent systems with conventional engineering approaches on
the one hand, and the integration of agent-oriented software engineering and method-
ologies with conventional engineering processes on the other hand.

Marie-Pierre Gleizes
Danny Weyns

(Editors)

A workshop of AAMAS 2010

The Eleventh International Workshop on
Agent-Oriented Software Engineering

Workshop Chairs

Marie-Pierre Gleizes IRIT, Universitè Paul Sabatier, Toulouse, France
Danny Weyns DistriNet Labs, Katholieke Universiteit Leuven,

Belgium

Steering Committee

Paolo Ciancarini University of Bologna
Michael Wooldridge University of Liverpool
Joerg Mueller Siemens AG
Gerhard Weiss University of Maastricht

II

Programme Committee

Aditya Ghose (University of Wollongong, Australia)
Adriana Giret (Technical University of Valencia, Spain)
Alessandro Garcia (PUC Rio, Brazil) Alessandro Ricci (Universita di Bologna, Italy)
Anna Perini (Fondazione Bruno Kessler, Italy)
Brian Henderson-Sellers (University of Technology, Australia)
Carole Bernon (University Paul Sabatier, France)
Eric Yu (University of Toronto, Canada)
Fariba Sadri (Imperial College, UK)
Flavio Oquendo (Universit de Bretagne-Sud, France)
Frdric Migeon (Paul Sabatier University, France)
Gauthier Picard (ENS Mines Saint-Etienne France)
H. Van Dyke Parunak (TechTeam Government Solutions, USA)
Haralambos Mouratidis (University of East London, UK)
Holger Giese (Hasso Plattner Institute Postdam, Germany)
Jeffrey Kephart (IBM T.J. Watson Research Center, USA)
Joao Leite (Universidade Nova de Lisboa, Portugal)
Jorge J. Gmez Sanz (Universidad Complutense de Madrid, Spain)
Juan Antonio Botia Blaya (Universidad de Murcai, Spain)
Juergen Lind (Iteratec, Germany)
Laszlo Gulyas (AITIA International Inc.,Hungary)
Mark Klein (Software Engineering Institute, Carnegie Mellon, USA)
Massimo Cossentino (ICAR-CNR, Italy)
Michael Winikoff (University of Otago, New Zealand)
Michael Zapf (Universitt Kassel, Germany)
Michal Pechoucek (Czech Technical University in Prague, Czech Republic)
Onn Shehory (Haifa University, Israel)
Paolo Giorgini (University of Trento, Italy)
Philippe Mathieu (University of Lille, France)
Ruben Fuentes (Universidad Complutense, Spain)
Scott DeLoach (Kansas State University, USA)
Simon Miles (King’s College London, UK)
Tom Holvoet (K.U. Leuven, Belgium)
Valeria Seidita (University of Palermo, Italy)
Vicente Julian Inglada (Universidad Politecnica de Valencia, Spain)
Vincent Hilaire (Belfort-Montbeliard Technology University, France)
Virginia Dignum Delft University of Technology, The Netherlands)
Viviana Mascardi (Universit di Genova, Italy)
Yuriy Brun (University of Washington, USA)

Table of Contents

A Value-Sensitive Approach to Agent-Oriented Software Engineering 1
Christian Detweiler, Koen Hindriks and Catholijn Jonker

- A Semiotic Approach for Multiagent Systems Situational Development 7
Sara Casare, Anarosa Brando and Jaime Sichman

Organizations Partitioning Optimization . 13
Ammar Lahlouhi

Engaging Stakeholders with Agent-Oriented Requirements Modelling 19
Tim Miller, Sonja Pedell, Leon Sterling and Bin Lu

Towards Requirement Analysis Pattern for Learning Agents 31
Shiva Vafadar and Ahmad Abdollahzadeh Barfourosh

Test Coverage Criteria for Agent Interaction Testing . 37
Tim Miller, Lin Padgham and John Thangarajah

Model-Driven Agents Development with ASEME . 49
Nikolaos Spanoudakis and Pavlos Moraitis

Towards the automatic derivation of Malaca agents using MDE 61
Inmaculada Ayala, Mercedes Amor and Lidia Fuentes

ForMAAD: Towards A Model Driven Approach For Agent Based Application
Design . 73

Zeineb Graja, Amira Regayeg and Ahmed Hadj Kacem

An architectural perspective on multiagent societies, . 85
Juan Manuel Serrano and Sergio Saugar

Development of a Reference Architecture for Agent-based Systems 91
Duc Nguyen, Rob Lass, Kyle Usbeck, William Mongan, Chris Cannon,
William Regli, Israel Mayk and Todd Urness

A Middleware Model in Alloy for Supply Chain-Wide Agent Interactions 97
Robrecht Haesevoets, Danny Weyns, Mario Henrique Cruz Torres,
Alexander Helleboogh, Tom Holvoet and Wouter Joosen

IV

A Value-Sensitive Approach to Agent-Oriented Software

Engineering

Christian Detweiler, Koen Hindriks, Catholijn Jonker

{c.a.detweiler,k.v.hindriks,c.m.jonker}@tudelft.nl

Abstract. Prominent agent-oriented software engineering methodologies such

as Tropos support the engineer throughout most of the development process.

Though in this method attention is paid to system stakeholders by explicitly

modeling them, potential harms and benefits of the system to these

stakeholders, and the underlying human values that are impacted, are not

explicitly accounted for. Value-Sensitive Design is a methodology that does

address such issues, but offers little guidance in operationalizing them. We

demonstrate differences between these methodologies using the development of

a Conference Management System as a case study. Subsequently, we propose a

means of integrating the methodologies to operationalize Value-Sensitive

Design and take values into account in agent-oriented software engineering.

1 Introduction

In making choices in the design of information systems, designers "necessarily impart

social and moral values" [3]. Beyond such choices, once a system has been put into

use it affects its direct stakeholders and indirect stakeholders and their values. Privacy

issues with social networking websites, bias in search engines, and intellectual

property issues with file-sharing software are a few examples of value issues that are

brought about by technology and that originate in their design.

Few design methodologies explicitly take values into account in the design

process. Values are treated informally and left implicit, leaving them in essence

unincorporated in the design.

Value-Sensitive Design [5] (henceforth VSD) provides a comprehensive

framework for making value issues explicit in designing a system, but provides little

to concretize these values. Agent-oriented software engineering (AOSE)

methodologies such as Tropos do focus on stakeholders’ goals, but do not explicitly

take values into account. Human values are left implicit as goals, and as such are lost

in the details of the design.

This paper is organized as follows. In section 2 we briefly discuss VSD and one of

the more well-known and comprehensive AOSE methodologies, Tropos. Then, we

discuss a case study to identify issues related to values that are not explicitly

supported by current agent-oriented software engineering methodologies in section 3.

In section 4, we analyze important differences between central concepts in VSD and

Tropos. In section 5, we present our proposal for an integration of VSD into AOSE,

and conclude this paper in section 6.

1

2 Background

2.1 Value-Sensitive Design

VSD is an approach to the design of technology that accounts for human values the

design process [4]. In VSD, emphasis is given to supporting moral values or values

with ethical import, such as human welfare, ownership of property, privacy, and

freedom from bias [5].

VSD provides an iterative and integrative three-part methodology consisting of

conceptual, empirical, and technical investigations. Conceptual investigations focus

on discovering affected stakeholders, their values, and analyzing these values and

tensions between them [7]. The designer identifies direct and indirect stakeholders

and potential harms and benefits to those stakeholders. He or she then maps these

onto associated values, especially human values with ethical import. Next, the

designer clearly defines these values. Potential value conflicts are then examined.

Conceptual investigations need to be informed by empirical investigations of the

technology's context, in which "the entire range of quantitative and qualitative

methods used in social science research is potentially applicable" [5].

Technical investigations can either focus on the properties and mechanisms of

existing technologies that support or hinder human values, or can consist of designing

a system to support identified human values.

It could be argued that the steps taken in VSD are common sense. Common sense as it

may be, values are often neglected in design and addressed after the fact, as cases of

privacy issues with social networking websites, bias in search engines, and

intellectual property issues with file-sharing software illustrate.

2.2 Tropos

The Tropos software development methodology supports the agent-oriented paradigm

and the associated concepts of actors, plans and goals throughout the software

development process [1-2, 6]. The emphasis placed on stakeholders in Tropos makes

it closely related to, and therefore suitable for combination with, VSD.

Tropos identifies stakeholders early in the design process, in the Early

Requirements phase. Stakeholders’ goals are identified next, and for every goal the

developer decides whether the actor itself can achieve it or it needs to be delegated to

another actor. Actors, and goal dependencies between them, are captured in an Actor

Diagram.

Actors’ goals are then decomposed (through AND/OR, means-end, or contribution

analysis) into sub-goals and plans. Non-functional requirements, represented as soft-

goals, can also be identified at this point. The goal-decomposition process results in a

Goal Diagram.

The designer introduces the system-to-be as an actor in the Late Requirements

phase and delegates goals to it. The activities in this phase result in an extended

domain model and the Late Requirements Actor and Goal diagrams.

2

The Architectural Design phase focuses on defining the global architecture of the

system, and the Detailed Design phase further refines these models to make them

operational.

3 Case study

3.1 Value-Sensitive Design

To apply VSD to the Conference Management System case, we conducted semi-

structured interviews with stakeholders to elicit potential harms and benefits, and

underlying values. We elicited these based on the context of use of the future

conference management system.

Several stakeholders mentioned potential harms related to the anonymity of

reviewers. They stated that anonymity removes context, making it difficult to assess

reviewers’ expertise and damaging the quality of discussion. Also, it allows reviewers

to “ride their hobby horse”, posing a threat to their objectivity. Transparency and

accountability are important underlying values here.

Several interviewees also expressed concerns regarding the possibility of conflicts

of interest introduced by users being able to occupy multiple roles within the same

system. For example, PC members that are also authors could see the ranking of their

submission, or reviewers could review papers of colleagues.

The most frequently mentioned benefits were related to anonymity. Several

interviewees stated that anonymity removes hierarchical considerations, leading to

judgments based on quality and not on academic position. It also allows reviewers to

be as critical as (they feel) they need to be. Equality and privacy are underlying values

here.

Many saw the possibility of using the same CMS for multiple conferences as a

potential benefit, as it enhances the trustworthiness of the system and the process it

supports. Also, the record of interactions with the system that could be provided

enhances the transparency and accountability.

3.2 Tropos

We will focus on the Analysis phase of Tropos in this case study, as the level of

abstraction in this phase is most closely related to that of VSD as described above.

The case study described in [2], begins with the identification of stakeholders,

represented as the actors Author, PC, PC Chair, Reviewer, and Publisher.

The following step is goal identification. For example, there is a goal dependency

between Author and PC for the Peer review goal. The designer then decomposes

goals. For example, the Manage Conference goal is AND-decomposed into the

(satisfiable) sub-goals Get papers, Select papers, Print proceedings, Nominate PC

and Decide deadlines. Satisficeable soft-goals are also analyzed, such as the PC

Chair actor’s Conference quality, to which the soft-goal better quality papers

contributes positively [2].

3

Next, the designer introduces the system-to-be as an actor to which (human)

actors’ goals can then be delegated. For example, the PC delegates the Coordinate

conference goal to the CMS System actor, which is then further decomposed into

sub-goals and eventually plans. Design is then continued in the Architectural Design

and Detailed Design phases of Tropos, which will not be discussed here.

4 Analysis

The case studies above illustrate a number of a number of similarities and differences

between VSD and Tropos.

The central role of stakeholders is a strength of both methodologies. Both begin

their analyses by identifying stakeholders. After stakeholder identification, VSD

proceeds to identify stakeholders’ values, and Tropos identifies their goals.

Both methodologies examine an existing practice in which a system will be

introduced, through focus on the context of use and actor networks into which a

system is introduced, respectively.

Another overlap seems to exist between VSD’s values and non-functional

requirements captured in Tropos’ soft-goals. However, there are some important

differences to consider.

The implicit aim of VSD is to design systems that are good and do no wrong in an

ethical sense. To this end, VSD calls for uncovering potential harms and benefits and

the values they affect. Potential harms are to be avoided, so that underlying values are

not hindered. Potential benefits are to be promoted, so that underlying values are

supported.

So, in VSD, values lead to norms for supporting and not hindering those values.

For example, upholding the value of privacy generally means following norms of

distribution of (personal) information. Violating such norms constitutes a violation of

privacy and is morally wrong.

In this sense values are not merely non-functional requirements that can be

captured in Tropos’ soft-goals. We cannot say that not satisficing a soft-goal as such

is morally wrong. We can say that hindering a moral value is. Also, soft-goals in

themselves do not lead to norms in the way values do.

If we were to consider values non-functional requirements and represent them as

soft-goals in Tropos, there would be no explicit distinction between values, such as

privacy, and other non-functional requirements, such as conference quality.

Representing values as soft-goals would leave them implicit.

A strength of VSD is that it makes values explicit, so that they are a focal point

throughout design. A weakness of VSD is that values are left abstract. Values are not

concretized and connected to actual designs, making it difficult to assess specifically

how they are incorporated into designs and how values supported (or hindered) by the

design.

4

5 Value-Sensitive Agent-Oriented Software Engineering

To design systems that perform well in a moral sense as well as in a functional sense,

we need a way of making values explicit and concrete. As discussed above, VSD

helps to make values explicit, but does not make them concrete. We have argued that

soft-goals in Tropos are not sufficient to capture (and thus concretize) values, because

values cannot be considered non-functional requirements as such. Therefore, we

propose a number of extensions to the Tropos methodology.

The first of these is a set of “design questions” that help designers using Tropos to

identify values and distinguish them from “normal” goals. After identifying

stakeholders, their goals, their values, and potential harms and benefits to

stakeholders, the designer can ask the following questions to assess whether the

elicited item is a value or a goal. These questions are derived from the analysis in

section 4. Can not meeting the requirement be considered wrong in a moral sense?

Can meeting the requirement be considered morally good? Does this requirement

lead to norms that can be violated or conformed to?

In this case, not achieving the requirement of privacy (e.g. of reviewers) can be

considered morally wrong. It leads to norms of distribution of information, in this

case. Violating such norms could be considered morally wrong.

Now that values can be identified and distinguished from goals, they must be

represented in Tropos models to be able to properly take them into account. As

discussed above, values cannot be captured directly in Tropos goals or soft goals.

So, we propose introducing new model entities to Tropos models: the value and the

actor-value link. As argued, values cannot be captured in goals or soft-goals, and as

such should be entities in themselves. Values are elicited from stakeholders, so should

be attached to stakeholders in models. Values as such are not delegated to other actors

as goals are in Tropos, so a means is required to connect actors and values without the

need to create dependencies between actors. The actor-value link fulfills this function.

As discussed above, values lead to norms that can be violated or conformed to.

Values should then be linked to such norms, to make explicit how the value is

operationalized and what the source of a norm is. Some work has dealt with norm

specification in Tropos (e.g. [8]). However discussion of norm specification in Tropos

is beyond the scope of this work.

Consider, for example, the value of privacy elicited from reviewer stakeholders.

This value would be represented as a value entity in Tropos and linked, by means of

an actor-value link, to the Reviewer actor. It leads to a norm of sharing personal

information appropriately. In this case, the designer would introduce the norm Do not

share personal information for (indirect) dependencies between the Reviewer and

the Author actors. This could be operationalized as a Shield identity goal that would

be an AND-decomposed sub-goal of the PC actor’s goal Collect reviews.

5

6 Conclusions

We have argued that human values are impacted by technological designs. However,

few methodologies explicitly take such values into account. We described VSD, a

methodology that aims to account for (moral) values in design. We argued that VSD

is a useful methodology for eliciting stakeholders’ values and making them explicit.

However, VSD as-is leaves values abstract. It does not provide a means for

concretizing such values. This makes it difficult to assess the extent to which values

are incorporated in actual designs.

Tropos seems well-equipped to deal with stakeholders’ values due to their focus on

stakeholders and their goals. However, we argued that Tropos’ concept of soft-goals,

which can be used to represent non-functional requirements, is fundamentally

different from human values as described here. Representing values as soft-goals does

not make values sufficiently explicit as values.

To address these problems, we proposed complementing Tropos with two model

entities: the value and the actor-value link. These entities will allow the designer to

explicitly represent values throughout the design process, and to make values concrete

enough to operationalize them.

References

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopoulos, J.:

Tropos: An agent-oriented software development methodology. Autonomous Agents

and Multi-Agent Systems, 8(3):203-236, (2004)

2. DeLoach, S., Padgham, L., Perini, A., Susi, A. and Thangarajah, J.: Using

three AOSE toolkits to develop a sample design. International Journal of Agent-

Oriented Software Engineering, 3(4):416-476, (2009)

3. Friedman, B. (ed.): Human Values and the Design of Computer Technology.

Cambridge University Press and CSLI, New York, NY and Stanford, CA (1997)

4. Friedman, B., Kahn, P. and Borning, A.: Value sensitive design: Theory and

methods. University of Washington Technical Report, (2002)

5. Friedman, B., Kahn, P. and Borning, A.: Value sensitive design and

information systems. Human-Computer Interaction and Management Information

Systems: Foundations. ME Sharpe, New York:348-372, (2006)

6. Giunchiglia, F., Mylopoulos, J. and Perini, A.: The tropos software

development methodology: processes, models and diagrams. Lecture Notes in

Computer Science:162-173, (2003)

7. Miller, J., Friedman, B. and Jancke, G.: Value tensions in design: the value

sensitive design, development, and appropriation of a corporation's groupware

system. In Proc. pp. 281-290. ACM (2007)

8. Siena, A.: Engineering Normative Requirements. In Proc. 1st International

Conference on Research Challenges in Information Science (RCIS'07). pp. 439–444

(2007)

6

A Semiotic Approach for Multiagent Systems
Situational Development

Sara Casare1, Anarosa A. F. Brandão1, Jaime S. Sichman1
1 Intelligent Techniques Laboratory – University of São Paulo - Brazil

{sara.casare, anarosa.brandao, jaime.sichman}@poli.usp.br

Abstract. Based on a semiotic approach, this paper proposes a MAS Semiotic
Taxonomy that is a first step towards combining the advantages from AOSE
methods and AI inspired AO models, in order to provide a set of categories that
glues together both AOSE typical aspects and AO models characteristics,
allowing a better identification of different MAS development aspects related to
them. Moreover, it may serve as the basis for building MAS method fragments´
repositories that could be used to create MAS situational methods. The
taxonomy has three complementary inspiration sources: (i) MAS specific
development aspects originated from AOSE methods and AO models; (ii)
Situational Method Engineering related concepts; and (iii) method content and
method process notions.

Keywords: Software engineering (multiagent oriented), Social and
organizational structure, Semiotic.

1 Introduction

In order to structure the development and to manage the complexity associated with
Multiagent Systems (MAS), several development methods have been proposed in
AOSE field during the last decade, e.g. Gaia [19], Tropos [1], MaSE [18], O-MaSE
[8], Ingenias [15] and PASSI [3]. Additionally, following the AI tradition in MAS,
different agent organization (AO) models such as AGR (Agent, Group, Role) [7],
OperA (Organization per Agent) [6], and MOISE+ (Model of Organization for
Multiagent Systems) [11] were proposed.

While a great part of methods adopts an agent centered MAS approach, focusing
on the agent’s behavior, agent organization models consider the notion of group or
agent organization as a leading concept, called by some authors as an organization
centered approach [13].

Since some AO models are not currently incorporated into AOSE based MAS
development methods, someone who adopts an organization centered approach to
build a MAS may not have tool support for using both AOSE methods and AO
models together. Nevertheless, using one of them separately may cause some project
drawbacks. On the one hand, MAS methods that offer a structured development cycle
may not adopt an explicit agent organization model. On the other hand, most AO

7

models do not provide a structured MAS development cycle in terms of phases, tasks
and work products.

The variety of AOSE methods and AO models is due to the specific needs raised
on MAS development and to the different approaches adopted by MAS developers. It
shows that a method cannot be general enough in order to be applied to every MAS
development project without some level of customization [9]. Nevertheless, it seems
that reinventing a method for each new project situation wouldn’t be a best practice,
given that there are a great number of available methods for MAS development. This
scenario suggests that Method Engineering techniques [2] and, particularly,
Situational Method Engineering [10] seem to be promising approaches to be
considered for MAS development. A situational method is a method tailored and
tuned to a particular project situation that is configured in a formal and computer-
assisted manner out of standardized and proven building blocks - called Method
Fragments - stored in a data base.

Based on a semiotic approach [17], this paper proposes a MAS Semiotic
Taxonomy that can be viewed as a first step towards combining the advantages from
AOSE methods and AI inspired AO models, in order to provide a set of categories
that glues together both AOSE typical aspects and AO models characteristics,
allowing a better identification of different MAS development aspects related to them.
Moreover, it may serve as the basis for building MAS method fragments´ repositories
that could be used to create MAS situational methods.

This paper is organized in four sections. Section 2 presents MAS development
issues and situational method engineering aspects for MAS and section 3 outlines the
set of categories that composes the MAS Semiotic Taxonomy. Finally, section 4
presents a discussion about usages for the Semiotic Taxonomy.

2 MAS Development Issues and Situational Method Engineering

Lemaitre and Excelente [13] suggest that the two main MAS research field
approaches are related to its main components: agent and group of agents. Agent
approaches propose several formalisms for representing individual agent architecture
and agent’s “internal” knowledge, as beliefs, intentions and desires, among others.
Group approaches adopt a sociological and organizational vision for modeling MAS,
involving organizations, teams and inter-agent relationships notions.

An AO model offers a conceptual framework and syntax for designing
organizational specifications that can be implemented on a traditional agent platform
or using some organizational middleware. In order to participate in an AO, agents are
supposed to previously know the organization main characteristics. In this way, they
can play available organization roles, contribute to achieve global goals, participate in
organization interactions and be aware of organization norms, as permissions,
obligations and rights [5].

Several researchers are dealing with situational method engineering for MAS
development. Among them, Cossentino et al [4] reported the experience of creating a
new process involving PASSI methodology, Rougemaille et al [16] discussed the
main aspects related to MAS fragment definition, and Garcia-Ojeda et al [8] proposed

8

an organization-based MAS engineering process framework (O-MaSE) that extends
MaSE meta-model in order to support organization centered MAS development.

Situational Method Engineering [2] is the sub-area of Method Engineering that
addresses the controlled, formal and computer-assisted construction of situational
methods out of method fragments. Roughly speaking, building a situational method
consists on reusing portions of existing methods taking into account a given project
situation that encompasses, for example, notions of class of application (as traditional
and pervasive computing) and project perspectives.

Along with the project situation and method fragments repositories, situational
method building involves distinct reuse mechanisms, such as assembly-based [10] and
method configuration mechanisms [12]. While an assembly-based mechanism begins
the situational method building with assembling a set of disconnected method
fragments in a bottom-up fashion, method configuration mechanism does it by taking
a base method and modifying it to cover the project situation in a top-down fashion,
eliminating, adding or exchanging additional fragments captured from another
methods.

However, reusing available MAS development approaches to build MAS
situational methods raise issues related to the construction of a method fragment
repository and to the creation of a situational method using fragments. SPEM 2.0 [14]
can be used as a common meta-model for the method fragment repository, offering
concepts (as task, activity, work product, role, guidance, category) for a common
definition across MAS development approaches. In addition, general reuse
mechanisms for situational method building, such as assembly-based and method
configuration mechanisms, can be customized suitably for the MAS context.
Nevertheless, such mechanisms raise questions as: (i) How could the MAS project
situation be described? (ii) How could MAS development approaches, as AOSE
methods and AO models, be described? (iii) Finally, how could MAS project
situation be matched with several aspects of MAS development approaches to build
an appropriated method for the MAS project?

The Semiotic Taxonomy presented in this paper constitutes a first step towards
solving these issues, since it offers a structured way to describe MAS development
approaches. Moreover, in a MAS situational method framework this taxonomy could
provide the categorization for method fragments to build their repositories and to take
part on a MAS situational reuse mechanism. At the best of our knowledge, we are not
aware of researches proposing a broad collection of categories for classifying and
describing MAS aspects in order to support the customization of situational methods
for MAS. Such categories are outlined in the next section.

3 MAS Semiotic Taxonomy

Semiotics deals with the syntactic (structure), semantics (meaning) and pragmatics
(usage) aspects of signs. Ronald Stamper [17] proposed the Semiotic Ladder to treat
information as signs: he has extended the traditional division of Semiotics – syntactic,
semantic and pragmatic - by including three new signs aspects called social (social
dimensions), empirics (statistics properties) and physical (hardware properties).

9

Based on such semiotic approach, we propose to use a MAS Semiotic Taxonomy
to classify several aspects involved in MAS development approaches. By using this
taxonomy, someone that has a MAS project to be developed may search for a good
choice among the existing MAS development approaches, such as AOSE methods
and AO models.

As shown in figure 1, the MAS Semiotic Taxonomy involves the following levels:
Social Level, Pragmatic Level, Semantic Level, Syntactic Level and Empirical Level.
Although there are applications related to agents’ physical aspects (as pervasive and
ubiquitous systems) the physical level is not taken into account in this taxonomy since
such aspects are related to project information infrastructure that is treated as project
situation aspect [10] and not as a method fragment aspect.

Fig. 1: Five levels of MAS Semiotic Taxonomy (as UML class diagram)

Using such a semiotic perspective, this taxonomy puts together concepts originated
from three main sources: (i) MAS specific development aspects originated from
AOSE and AO, (ii) Situational Method Engineering related concepts, mainly those
proposed by Harmsen [10] and (iii) method content and method process notions
provided by SPEM 2.0.

The Social Level aims to identify the set of social norms related to the MAS
development aspects, involving the following categories: Utilization Degree, Success
Degree, Reuse Degree, Validation Degree, User Participation Degree, Iteration Type
and Development Type.

The Pragmatic Level allows distinguishing MAS development aspects based on
their usage and intention. It is composed of the following categories: Agent Discipline
Category, Group Discipline Category, Analysis Style Category, MAS Approach
Category, Fragment Source Category, MAS Nature Category and Agent Architecture
Category.

The Semantic Level allows distinguishing MAS development aspects based on
their meaning, i.e., method fragment specific meaning into a software and process
engineering meta-model as SPEM 2.0. Therefore, this level is mainly composed of
method engineering typical aspects: Fragment Content Category and Fragment
Process Category.

The Syntactic Level allows distinguishing MAS development aspects according to
their structure and format. This level takes into account categories related to the
notation and the language used to structure and to express them: Fragment Notation
Category, Language Paradigm Category and Fragment Language Category.

Finally, the Empirical Level allows distinguishing MAS development aspects
according to their development standards and patterns, involving the following
categories: Code Generation Category and Development Platform Category.

MAS SemioticTaxonomy

Pragmatic Level Semantic Level Syntactic Level Empirical LevelSocial Level

10

For instance, a MAS project developer looking for components reusing (Social
Level - Reuse Degree Category) could select method fragments sourced from MaSE,
while the application of a goal based requirement analysis in the MAS project
(Pragmatic Level - Analysis Style Category) as well as a graphical design notation
(Syntactical Level - Fragment Notation Category) could consider method fragments
sourced from Tropos. Additionally, the development of a MAS project that will
follow an organization centered approach (Pragmatic Level –MAS Approach
category) could take into account fragments captured from MOISE+ or AGR. Finally,
if the MAS project developer considers a model driven approach (Empirical Level -
Code Generation Category) method fragments could be sourced from Ingenias.

4 Conclusions

In this paper we have shown that a semiotic perspective could facilitate putting
together MAS development approaches from both AOSE and AO fields in order to
take advantages from all of them to build organization centered MAS.

We claimed that a semiotic approach can offer the backbone for describing MAS
development aspects, given that it allows identifying several aspects typically
involved in MAS development, answering part of the questions raised in section 2.
Some of these aspects are related to its intention and usage (pragmatic), its meaning
(semantic) and its structure (syntactic),

In a MAS situational method framework, this taxonomy could provide both: the
categorization for method fragments to build their repository and to help on a MAS
situational reuse mechanism. In an assembly-based mechanism scenario this
taxonomy could be used to support the method fragment selection in a bottom-up
fashion and, in a configuration mechanism scenario it could be used to support the
MAS base method selection in a top-down fashion, as well as additional method
fragments.

Acknowledgments. This work is part of the MEDEIA project from FAPESP, Brazil,
grant 2009/10121-4. Authors are partially supported by CNPq and CAPES, Brazil.

References

[1] Bresciani, P.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J.; Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems, vol 8(3), 203--236 (2004)

[2] Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology, vol. 38 (4), 275--280 (1996)

[3] Cossentino, M.: From Requirements to Code with the PASSI Methodology. In:
Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented Methodologies, Idea Group
Publishing, 79--106 (2005)

11

[4] Cossentino, M.; Galland, S. ; Gaglio, S.; Gaud, N.; Hilaire, V.; Koukam, A.;Seidita, V.: A
MAS metamodel-driven approach to process composition. In: 9th International Workshop
on Agent-Oriented Software Engineering (AOSE) (2008)

[5] Coutinho, L. ; Sichman, J. S. ; Boissier, O.: Modelling Dimensions for Agent
Organizations. In: Virginia Dignum. (Org.). Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. Hershey: IGI Global, 18--50 (2008)

[6] Dignum, V. A model for organizational interaction: based on agents, founded in logic. Phd
thesis, Universiteit Utrecht (2004).

[7] Ferber, J.; Gutknecht, O., Michel, F.: From agents to organizations: an organizational view
of multi-agent systems. In: Agent-Oriented Software Engineering IV International
Workshop (AOSE2003), LNCS, vol. 2935, Springer, 214–230 (2004)

[8] Garcia-Ojeda, J. C.; Deloach, S. A.; Robby; Oyenan, W. H.; Valenzuela, J. O-Mase: A
Customizable Approach to Developing Multiagent Development Process. In: 8th
International Workshop on Agent Oriented Software Engineering (AOSE) (2007)

[9] Guessoum, Z; Cossentino, M.; Pavón, J.: Roadmap of Agent-Oriented Software
Engineering – The AgentLink Perspective. In: F. Bergenti, M. P. Gleizes, & F. Zambonelli
(Eds.), Methodologies and software engineering for agent systems, Kluwer Academic
Publishers, 431--450 (2004)

[10] Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young (1997)

[11] Hübner, J., Sichman, J.; Boissier, O.: A model for the structural, functional, and deontic
specification of organizations in multiagent systems. In: Bittencourt, G. & Ramalho, G. L.
(Eds.), 16th Brazilian Symposium on AI, SBIA’02, LNAI 2507, Berlin: Springer, 118--
128 (2002)

[12] Karlsson, F.: Method Configuration - Method and Computerized Tool support. Doctoral
Dissertation Dept. of Computer and Information Science, Linkoping University (2005)

[13] Lemaıtre, C.; Excelente, C. B.: Multi-agent organization approach. In: 2nd Iberoamerican
Workshop on Distributed AI and MAS, Toledo, Espana (1998)

[14] OMG. Object Management Group. Software & Systems Process Engineering Meta-Model
Specification, version 2.0. OMG document number: formal/2008-04-01 (2008) Available
on http://www.omg.org/spec/SPEM/2.0/PDF.

[15] Pavon, J.; Gomez-Sanz, J.; ; Fuentes, R.: The Ingenias Methodology and Tools. In:
Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented Methodologies, Idea Group
Publishing, 236--276 (2005)

[16] Rougemaille S.; Migeon, F.; Millan, T.; Gleizes, M.-P.: Methodology Fragments
Definition in SPEM for Designing Adaptive Methodology: A First Step. In: Luck, M.;
Gomez-Sanz, J.J. (Eds.): AOSE 2008, LNCS, vol. 5386, Springer, Heidelberg, 74–-85
(2009)

[17] Stamper, R.: Signs, Norms, and Information System. In: Holmqvist, B.; Andersen, P. B.;
Klein, H.; Posner, R. (Eds) Signs at Work: Semiosis & Information Processing in
Organizations, Walter de Gruyter, Berlin, 349--397 (1996)

[18] Wood, M.; DeLoach, S. A.: An overview of the multiagent systems engineering
methodology. In: 1st International Workshop on Agent-Oriented Software Engineering.
LNCS, vol. 1957, 1--53 (2001)

[19] Zambonelli, F., Jenningns, N. R.; Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. ACM Transaction on Software Engineering and Methodology, vol
12(3), 417--470 (2003)

12

Organizations Partitioning Optimization

Ammar Lahlouhi

Computer science department, University of Batna, 05000 Batna, Algeria
ammar.lahlouhi@gmail.com

Abstract. In this paper we describe an original approach to improve
the organizational development of multi-agent systems. The approach
extends the usual organization definition by adding the partitioning cri-
teria and constraints. A such extension allows organization partitioning
automation by a coherent optimization of an initial obvious partitioning
using an adapted heuristic. The specification of criteria and constraints
improves the quality of the developed organizations and the automa-
tion alleviates the development task. The heuristic’s adaptation is made
by adopting a multi-criteria method and the optimization is based on
a coherent evolution. The first allows to benefit from the naturalism of
multi-criteria methods and to add unlimited number of criteria while
the second supports preventive and corrective constraints. The purpose
of this paper is to clarify the organization’s extension and the heuristic’s
adaptation.

Key words: Multi-agent systems, role-based development, graph par-
titioning, coherent evolution, multi-criteria optimization

1 Introduction

The development of Multiagent systems (MAS) is intricate. The agent-oriented
software engineering (AOSE) (see [1] and AOSE workshops, for a survey) aims at
simplifying such development by producing related techniques, tools and meth-
ods. The most promising of them are based on organizational metaphor. Hard
work is accomplished in several organizational methodologies (such as Gaia [7]
and TROPOS [5]). In spite of such efforts, MAS development remains however
difficult. This paper targets improving MAS organizational development.

An organization is seen as a collection of roles that will be played by agents
[2]. The common process of organizational development includes two main stages:
designing an organization responding to customer’s requirements and then devel-
oping the MAS that implements such an organization. Realizing an organization
is made by partitioning it in partitions of roles and associating agents to the
organization’s partitions. To be valid, rational and reflects naturally the orga-
nizational characteristics, the organization partitioning (OP) must be coherent
and optimized. To be more precise, it must optimize some criteria while main-
taining some constraints. The usual organizational development considers OP as
domain dependent, i.e., it leaves implicit the criteria and constraints. Hence, the

13

developer cannot conduct an accurate validation of OP. In addition, optimizing
coherently criteria (which can be numerous, various and conflicting) is difficult
to perform rigorously in an empirical way. The developer will then consider the
first discovered issue which can be neither coherent nor optimal; forgetting, fre-
quently, the OP’s validation, rationality and naturalism. OP is then source of
difficulties in MAS development. Our objective in this paper is the OP’s improve-
ment in two directions. Firstly, we improve MAS quality (validation, coherence
. . .) by making explicit the partitioning criteria and constraints. The usual orga-
nization definition is then extended by the definition of partitioning criteria and
constraints. More details on a such extension are given in section 2. Secondly,
we offer a support of automating OP and then freeing the developer from such
partitioning.

In this paper, we consider a representation of an organization as a graph
G=(V, E) where V is the set of vertices representing the organization’s roles
and E is the set of edges representing the relations between these roles. Such a
representation allows us to consider OP as graph partitioning (GP). GP is an
important problem with extensive applications to many areas. It is well known
as NP-hard. Due to its importance, many efforts have been made to develop
efficient heuristics and approximation algorithms. The GP problem is defined as
follows: Given a graph G=(V, E), split V into k (k > 1) non empty pairwise
disjoint sets (called partitions) V1, V2. . .Vn covering V. The goal of GP is to
minimize the number of edges of E whose incident vertices belong to different
partitions (referred to as edge-cut). For instance, in the application of GP to
parallel computing, the nodes represent tasks and the edges represent commu-
nications between these tasks. The goal is to partition the tasks in k (k is the
processors number) equilibrated (approximately equal size of tasks by proces-
sor) partitions while minimizing the edge-cut. The proposed solutions for such
a problem can be classified into three classes [3]. Firstly, the algorithms to be
executed off line either at compile or load time, secondly, those to be executed at
run-time, and thirdly, those mapping the solution domain of partial differential
equations to parallel computers. Heiss and Schmitz have proposed the particles’
approach (PA) [4] which combines the benefits of all three classes. In addition,
it avoids local minima. We use then PA to automate OP. However, some OP’s
particularities, such as the development context, prevent the direct use of PA.
Consequently, we adapted PA to OP’s context.

The remainder of the paper is organized as follows. Section 2 develops the
organization definition’s extension and the PA’s adaptation. Section 3 concludes
the paper.

2 Organization Partitioning

A graph modeling similar to that used in parallel computing can be used to
model OP. The processors and their communications represent the agents and
their communications. The tasks and their communications represent the roles
and their relations. However, several dissimilarities prevent the direct use of

14

existing approaches of GP. Then, a GP approach (such as PA [4]) must be
adapted before applying it to OP. The remainder of this section explains the
OP’s basics and the PA’s adaptation. The PA’s algorithm is given in Fig. 1 (see
[4] for further details).

2.1 Constraints and Criteria

A GP can be considered as criteria optimization under constraints. For instance,
PA [4] considers the parallel computer graph as an implicit (hard coded) prede-
fined constraint, and load balancing... as criteria (which are combined to consti-
tute one criterion, the resulted force). In the organization’s partitioning (devel-
opment context), the criteria can be varied, conflicting and of different scales.
They cannot be then pondered to constitute one function as made in PA. They
are domain knowledge and will be specified by the developer at the organiza-
tion’s development. Consequently, they cannot be hard coded (implicit) in the
OP algorithm. The constraints will be described as logical expressions and the
criteria as mathematical functions (to be optimized).

Code Comments

cycle
wait for load change
if load increase then

M:= {i ∈ T/xi = 1}
loadbalanced := false
while M 6= φ and not loadbalanced do

get information from neighbors

for all i ∈ M do Functions evaluations
for all k ∈ neighbors do calculate f(i,k)

cand:= i with︸ ︷︷ ︸
i∈M,k∈neighbors

max {f(i, k)} Choosing candidate node

direct:= k with︸ ︷︷ ︸
k∈neighbors

max {f(cand, k)}

if f(cand, direct) > 0 then Conditional migration
migrate(cand, direct)
send new load data to neighbors

else loadbalanced := true
else send new load data to neighbors

end cycle

Fig. 1. Outline of the load balancing algorithm of PA [4]. The comments indicate the
parts that will be adapted in OP

15

2.2 Coherent Evolution

Optimizing a partitioning P is a P’s evolution preserving the organization’s co-
herence and optimizes the criteria. A partitioning evolution consists of a combi-
nation of coherent operations of creation, removing and / or modifying a parti-
tion pi. The creation of pi starts by creating an empty set pi before moving a
role from another partition pj to pi. Removing pi will be made after moving the
last role from pi to another partition pj . Finally, the modification of pi will be
made by moving a role from pi (to pj) or inversely (from pj) to pi. In addition
to the creation and removing empty sets, it is clear that coherently moving roles
between partitions is a fundamental process of OP’s optimization.

Moving a role between two partitions can break some organization’s con-
straints. Two strategies can be used to preserve the organization’s coherence,
preventive and corrective. The first strategy authorizes an evolution if it is co-
herent otherwise prevent it. The second strategy authorizes the evolution and
then executes a corrective process to re-establish the coherence. The process
of coherent moving roles must include the two strategies as follows. Verify the
prevented incoherences. If a such moving is coherent (regarding the preventive
constraints) then move the role and then re-establish the coherence (regarding
the corrective constraints).

2.3 Coherent Optimized Evolution

The OP optimization uses an adapted PA [4]. In the following, we explain three
fundamental adaptations we made to PA. Firstly, PA assumes an initial preexist-
ing graph (architecture) between the partitions (processors) which is that of the
parallel computer. In OP, such an initial graph does not exist. In the particular
case of OP, we exploited the fact that each role is designed so it can be coherently
assumed by an agent without requiring from that agent to assume other roles.
A simple coherent obvious solution for the initial partitioning consists then of
one role by partition.

Secondly, PA considers the optimization of one function (mono-criteria op-
timization); what is insufficient for OP which can require optimization of no
fixed number of various conflicting criteria. To deal with a such situation, we
use multi-criteria optimization [6]. In multi-criteria optimization, the simple or-
der relation of mono-criteria optimization is replaced by that of dominance.
Instead of seeking the partition with the maximum value, we seek the one
with dominating value. A partition X dominates another partition Y if the
two following conditions meet: (1) X is not worse than Y for all criteria (∀k ∈
{1, 2 . . .m} fX

gk(ti) ≤ fY
gk(ti)), and (2) X is strictly better than Y for at least one

criterion (∃k ∈ {1, 2 . . .m} fX
gk(ti) < fY

gk(ti)). The set of the partitions not satis-
fying one of the two previous conditions are incomparable; they are referenced
as Pareto front.

In PA, the process of evaluating criteria consists of computing one function for
each role and node. With the multi-criteria approach, we must evaluate several
functions. In addition, PA chooses a destination node with the maximum value

16

of the function (force) but it must be positive since the negative one is directed
to the source node itself (”no migration” is necessary). In the multi-criteria
approach, we consider the source node s as any node but the values of its criteria
are null since no change will be made in the criteria values without migration.
We initialize then the functions of each role r for s by f(r, s) =〈0, 0 . . . 0〉. Finally,
if there are several incomparable nodes, we choose one of them randomly.

Thirdly, PA assumes that moving roles between partitions is conditioned by
the criteria optimization only since the constraints are hard coded in PA. How-
ever, OP requires the coherence verification for some constraints (before role
moving), and the coherence re-establishing for others (after role moving). We
add then to the migration process of PA a preprocess ”constraints verification”
and a post-process ”coherence re-establishing” for moving a role. The prepro-
cess starts by choosing the dominating node N and removes it from the list of
considered nodes. If moving the role to N does not verify the constraints, the
process chooses another node, and so on. In all cases, a node will be chosen (at
least the source node s, which is considered as any node) since leaving the role
in the source node is always coherent where the evolution process starts from
a coherent partitioning. The equilibrium will be reached when the source node
dominates.

The PA adaptation is outlined in Fig. 2. The adapted parts are indicated by
comments in Fig. 1 and Fig. 2.

Code Comments

Functions evaluations

for all i ∈ M do Multi-criteria
f(i, s)= 〈0, 0 . . . 0〉 functions evaluations
for all k ∈ neighbors do

f(i, k) = 〈f1(i, k), f2(i, k) . . . fn(i, k)〉
Choosing candidate node

repeat
cand:= p with︸ ︷︷ ︸

i∈M∧i6=p∧k∈neighbors

not dom (f(i,k), f(p,k)) Searching

direct:= q with︸ ︷︷ ︸
k∈neighbors∧k 6=q

not dom (f(cand,k), f(cand,q)) non dominated node

chosen:= verify-constraints (cand, direct) verifying the constraints
remove f(cand, direct)

until chosen

Conditional migration

if direct 6= s then if chosen node is not
migrate(cand, direct) the source s, migrate and
re-establish-coherence (cand, direct) re-establish coherence

Fig. 2. Adaptation of PA algorithm of Fig. 1 to OP

17

3 Conclusion

The work presented in this paper can be considered as an improvement of GP
methods. However, our goal is its embedding in MAS development process. In the
development environment, our choice of PA has several advantages. For instance,
it can be used with continually evolving organization since it endorses adding
roles at run time.

The work presented in this paper includes several originalities. The organi-
zation definition’s extension with partitioning criteria and constraints is made
at the first time in this paper. The extension improves the MAS quality and
allows automating OP freeing then the developer from OP. The automation is
made by coherently optimizing an initial ”simple obvious coherent” partitioning
using an adapted PA. Such an automation is also made for the first time in this
paper. The adaptation is based on making explicit the partitioning constraints
and criteria, adopting multi-criteria optimization, and managing the evolution’s
coherence. Unlimited number of constraints and criteria (which can be conflict-
ing) can be defined at the development time (not hard coded) and taken into
consideration by the adapted PA. The latter endorses coherent evolution with
preventive and corrective constraints.

It is worth noticing that further effort is needed to complete this work. For
instance, it is important to define (or choose) a language (and an associated com-
piler or interpreter) and a methodology for expressing criteria and constraints.
It is important to note that this work will be extended to support adaptive sys-
tems development. A such adaptation will be based on programming software
processes.

References

1. Bergenti, F.; Gleizes, M.-P. and Zambonelli, F.: Methodologies and software en-
gineering for agent systems: The Agent-Oriented Software Engineering Handbook.
Kluver academic publisher (2004)

2. Ferber, J.; Stratulat, T., and Tranier, J.: Towards an integral approach of orga-
nizations in multi-agent systems: the MASQ approach. In: Multi-agent Systems:
Semantics and Dynamics of Organizational Models, Virginia Dignum (eds.), IGI
(2009)

3. Heiss, H.-U. and Dormanns, M.: Partitioning and Mapping of Parallel Programs by
Self-Organization. Concurrency-Practice and Experience 8 (9) pp. 685-706 (1996)

4. Heiss, H.-U. and Schmitz, M.: Decentralized Dynamic Load Balancing: The Particles
Approach. Information Sciences 84(1-2), pages 115-128 (1995)

5. Kolp, M.; Giorgini, P. and Mylopoulos, J.: A goal-based organizational perspective
on multiagent architectures. In: Intelligent Agents VIII: Agent Theories, Architec-
tures, and Languages, LNAI, vol. 2333, pp. 128-140, Springer, Heidelberg (2002)

6. Pomerol J.-Ch.: Multicriteria DSSs: State of the art and problems. Central European
Journal for Operations Research and Economics, vol. 2(3), pp. 197-212 (1993)

7. Wooldridge, M.; Jennings, N. R. and Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (3) pp. 285-312 (2000)

18

Engaging Stakeholders with Agent-Oriented
Requirements Modelling

Tim Miller1, Sonja Pedell2, Leon Sterling1, and Bin Lu1

1 Department of Computer Science and Software Engineering
2 Department of Information Systems,

University of Melbourne, Parkville, 3010, VIC, Australia

Abstract. One advantage of using the agent paradigm for software engi-
neering is that the concepts used for high-level modelling, such as roles,
goals, organisations, and interactions, are accessible to many different
stakeholders. Existing research demonstrates that including the stake-
holders in the modelling of systems for as long as possible improves the
quality of the development and final system because inconsistencies and
incorrect behaviour are more likely to be detected early in the devel-
opment process. In this paper, we propose three changes to the typical
requirements engineering process found in AOSE methodologies, with the
aim of including stakeholders over the requirements engineering process,
effectively using stakeholders as modellers. These changes are: withhold-
ing design commitment, delaying the definition of the system boundary,
and delaying the stakeholder “sign-off” of the requirements specification.
We discuss our application of these changes to a project with an indus-
try partner, and present anecdotal evidence to suggest that these changes
can be effective in maintaining stakeholder involvement.

1 Introduction

In software engineering, product and project stakeholders are a valuable resource
for eliciting and validating requirements. Stakeholders are especially important
for socio-technical systems, in which the interaction between people and technical
systems can form behaviour outside of the control of the technology itself.

The agent paradigm recognises that most stakeholders are non-technical, so
by using concepts such as roles and goals, which are palatable for most people,
stakeholders can provide feedback on models early in the development process.
As a result, artifacts in agent-oriented software engineering play a somewhat dif-
ferent role to other types of artifacts. As well as documenting the requirements
engineers’ understanding of the domain, which requirements specifications typi-
cally do, they can also be used to encourage rich discussion between stakeholders,
including requirements engineers.

Many requirements engineering processes, including those in agent-oriented
software engineering methodologies, aim to define the interface and product fea-
tures, and to precisely specify and validate these as early as possible in the
development lifecycle. Our view is that, while making these decisions early has

19

benefits, premature commitment to certain solutions and definitions may dis-
courage stakeholders that do not agree with or understand these decisions from
participating in conversations with system developers. We advocate involving
stakeholders in the development process for as long as possible, to continue
engaging them in rich conversations that can help understand and define the
system.

For engineering socio-technical systems, we propose small changes in the typ-
ical requirements engineering process found in software engineering (including
AOSE) methodologies, with the aim of promoting conversation between stake-
holders. The changes are based on results from existing research, which is dis-
cussed in Section 3. The proposed changes are:

1. Withholding design commitment by allowing inconsistencies and ambigui-
ties early in the requirements engineering process. This allows different view-
points of stakeholders to be represented, encouraging them into conversations
for longer than they otherwise may. We are not the first authors to take this
stance. For example, Easterbrook and Nuseibeh [5] discuss a framework with
the purpose of allowing and dealing with different stakeholders’ viewpoints.
Paay et al. [15] suggest that withholding design commitment encouraged
conversations between different stakeholders.

2. Delaying the definition of the system boundary. By defining the system
boundary early in the process, some solutions may be eliminated before
they can be discussed by the stakeholders, even though they may be more
suitable than the remaining solutions.

3. Delaying the “sign-off” of requirements (or the end of the requirements engi-
neering process) until the high-level agent design. That is, the requirements
are considered only complete once we identify which agents are to be built
and what their behaviour is to be. This is related to the second point, as it
also helps to define the system boundary.

It is our view that these changes can be used in any agent-oriented develop-
ment methodology, and are useful for breaking down barriers between stakehold-
ers and software engineers, especially for social-technical systems. In Section 4,
we present the application of these changes to an industry case study, and discuss
the advantages and disadvantages that resulted from these changes. The goals
of the paper are to present these processes to researchers and practitioners in
agent-oriented software engineering in order to promote discussion and receive
feedback on these ideas.

2 Agent-Oriented Requirements Engineering

With the agent paradigm increasingly becoming a popular and successful way
for modelling complex systems [14], methodologies for agent-oriented software
engineering have become an important research field. Several such methodologies
have been proposed, such as Tropos [2], Prometheus [16], Gaia [22], INGENIAS
[17], and ROADMAP [10].

20

The typical requirements engineering process in these methodologies involves
the following steps3:

1. elicit requirements from the stakeholders on the project;
2. derive scenarios that specify typical usage of the system;
3. define the system boundary;
4. define the environment;
5. derive a goal model outlining the major goals of the system;
6. define the role descriptors for the roles that will help to achieve the system

goals;
7. define the interaction model, which specifies how roles in the system will

interact; and
8. iterate over steps 1-7 with stakeholders until a shared understanding of the

system is reached.

Although agent methodologies do not discuss requirements sign off, they
define the software requirements specification (SRS) as the combination of the
system boundary, goal models, role, and interaction models. From this, we infer
that the major stakeholders would sign off on these documents after step 8. This
would form the basis of a contract for the system development to proceed.

Variations of these steps are possible; for example, the Gaia methodology
defines preliminary version of the role and interaction models as requirements,
and more detailed definitions as architectural design; and Prometheus defines
interaction models as architectural design.

From this point in the development process, agent-oriented methodologies
typically treat subsequent tasks as design-level, so stakeholder input would not
be required. The tasks include defining the agent types in the system, which
agent types will play which roles, the activities that the agents will perform
(these activities will both fulfill the agent’s role and the goals related to that
role), and implementing and testing the agents.

2.1 Modelling with Roles and Goals

The work in this paper builds mainly on the work of Sterling and Taveter [19].
Their work has focused on how to make high-level agent-oriented models palat-
able to non-technical stakeholders. This is achieved using role and goal models
with a straightforward and minimal syntax and semantics.

Goal models are useful at early stages of requirements analysis to arrive
at a shared understanding [11, 9]; and the agent metaphor is useful as it is
able to represent human behaviour. Agents can take on roles associated with
goals. These goals include quality attributes that are represented in a high-level
pictorial view used to inform and gather input from stakeholders. For example,
a role may contribute to achieving the goal “Release pressure”, with the quality
goal “Safely”. We include such quality goals as part of the design discussion

3 Some methodologies do not strictly follow this process, but this is a good approxi-
mation of all methodologies.

21

and maintain them as high-level concepts while eliciting the requirements for a
system. For this purpose the AOSE goal models have to be simple yet meaningful
enough to represent the goals of social interactions.

Figure 1 shows the syntax employed by Sterling and Taveter, which we have
used in our work. Goals are represented as parallelograms, quality goals are
clouds, and roles are stick figures. These constructs can be connected using
arcs, which indicate relationships between them. Figure 1 shows a high-level
role and goal model from our industry project of an aircraft turnaround simu-
lator. This system simulates the process of multiple aircraft landing at a single
airport, allowing one to experiment with resource allocation. The goal Aircraft
Turnaround is the highest-level goal, and the sub-goals below this contribute to
fulfill the higher-level goal. The quality goal Efficient specifies that goal Aircraft
Turnaround must be satisfied with the quality attribute Efficient. The roles plays
some part in bringing about the goal Aircraft Turnaround.

Fig. 1. An excerpt for the high-level goal on the aircraft turnaround project.

It is important here to note that the semantics described above is a complete
definition of Sterling and Taveter’s goal models, leaving space for interpreta-
tion of the model. This helps to engage stakeholders who have no experience
in agent modelling, and encourages round-table discussion between stakeholders
and requirements engineers.

3 Changing the Agent-oriented Requirement Engineering
Process

The changes presented in this paper are based on existing research in software en-
gineering and interaction design, however, it is our view that the agent paradigm
offers certain unique capabilities to the requirements engineering process that
other paradigms to not. In this section, we motivate and justify our reasons for
modifying the requirements engineering process, link this to existing literature
that provides evidence to confirm our hypothesis, and discuss why the agent
paradigm is particularly suited to these changes.

22

At first sight, delaying clear definitions seems antithetical or uncommon to
the routines of software engineering, which is typically a structured process aimed
at removing ambiguity and deriving clear definitions as early as possible in the
development process. However, a body of literature that looks at software engi-
neering from a social science perspective recognises that models and other doc-
umentation in software engineering have been used as a way to think through
problems, to reach agreements, and to elaborate the needs of stakeholders in a
different way than simply feeding into a formal process of modelling for system
design [13, 3, 18]. For example, a goal and role model serves a different purpose
for a designer than for a domain expert.

3.1 Withholding Design Commitment

The first change to the requirements engineering process is to withhold the
commitment of system designs. By this, we mean holding off any particularly
functional details of the system that fulfill the user requirements. At the early
stages of requirements elicitation, we may not be able to clarify social concepts
sufficiently to resolve uncertainty. For example, in a business domain, roles such
as manager, researcher, and team leader can be well defined. However, in a social
domain, roles may not be so straightforward to define. Consider trying to define
the role of a grandparent, and the goals that role may want to achieve. As a
result, we advocate that the social goals related to these concepts should be
modelled ambiguously, even to the point where formal documents are written.

Quality requirements at the early stages of elicitation tend to be imprecise,
subjective, idealistic and context-specific, as discussed by Jureta and Faulkner
[11]. Garcia and Medinilla [6] describe high-level quality goals as a specific form
of uncertainty that can be used as a descriptive complexity reduction mechanism
and to model and discuss uncertainties in the environment. In our requirements
elicitation process, we seek complexity reduction without losing the richness of
the concepts themselves. Instead of eliminating uncertainty early in the process,
we embrace it and withhold design commitment, at least until there is clarity
and understanding between stakeholders of what it may mean to disambiguate
[7].

High-level goals associated with activities can act as a point of reference for
discussing the usefulness of design alternatives to achieve these goals instead
of a decomposition into single requirements. The multi-agent paradigm offers
benefits over other paradigms because the concepts used in modelling, such as
roles, goals, and interactions, are part of every day language. Real organisations
consist of roles, and specific people fill these roles each day, including stakeholders
in a software engineering project. As such, stakeholders are familiar with these
concepts, and are comfortable talking about them.

23

3.2 Delaying the Definition of the System Boundary

In many software engineering processes, the system boundary is defined before
requirements analysis takes place. Often, this is one of the first agreements made
between clients and software engineers.

Gause and Weinberg [8] found that natural subconscious disambiguation is
one of the most common sources of requirements failure. In this situation, un-
recognized or unconsciously assumed, incorrect meaning finds its way into the
specification [1]. The problem is compounded by the fact that not only do soft-
ware engineers consciously try to resolve uncertainty early in the process, before
its impact on design is completely understood, they may also do this subcon-
sciously. More importantly, checking the absence of requirements once we have a
formal specification document is likely to be more difficult, because these docu-
ments are typically highly technical, and there less accessible to the stakeholders
[12].

Once the boundaries of a system are defined, the focus of attention is within
these boundaries; solutions beyond this boundary are no longer considered. Such
a restriction discounts solutions that may be more suitable, and is more likely to
result in some stakeholders losing interest in the project if their desired solution
falls outside of these boundaries.

This does not imply that one should not be thinking about the system bound-
ary. Specifically, all stakeholders should be aware of any other systems that may
be used as part of the solution to the domain problem.

The multi-agent paradigm is well suited for such models, because high-level
role and goal models can be discussed and modified without defining the system
boundary, while still allowing all stakeholders to come to a shared agreement of
what the entire socio-technical system will comprise.

3.3 Delaying the “Sign-off” of Requirements

The sign-off of the SRS often forms part of a contractual agreement between
clients and developers. The SRS defines the external interfaces to a software
system and provides a complete description of the extended behaviour of the
software.

In the process of software engineering, the sign-off of a requirements spec-
ification is generally performed before any high-level design takes place. If left
until after design commences, developers may unnecessarily waste time on design
tasks, only to find the requirements have changed.

In the multi-agent domain, we advocate delaying the sign-off of the SRS
by stakeholders until as late as possible before it impacts architectural design.
This allow discussions to continue between stakeholders for a longer period.
Furthermore, it also helps stakeholders to understand the proposed behaviour
of the system, because role and goal models define motivation, not behaviour.

24

3.4 Discussion

The first two changes proposed in this section are not new in the social domain.
Our work is consistent with results from researchers cited in the previous sec-
tions. As far as the authors are aware, the third change, delaying the sign-off,
has not been investigated before.

While we present these three proposed changes as being separate changes,
they are in fact, closely related. By not defining the system boundary, we are
in fact withholding design commitment. Similarly, by not signing off on the
SRS early, we are leaving open design decisions, thereby withholding design
commitment.

These changes are presented separately because we view them as different
tasks. Withholding design commitment is a general approach in which we do not
take design decisions too early, but in general, the requirements elicitation pro-
cess will run in the same order. However, the definition of the system boundary
is a specific task that we aim to put later in the requirements engineering pro-
cess. Typically, defining the system boundary is one of the first tasks performed
in requirements engineering, and this is suitable for most business applications.
However, for socio-technical systems, we see that a benefit in delaying the defi-
nition of the system boundary until after we fully understand the behaviour of
the entire socio-technical system, including humans and external systems, not
just the software system being built.

4 Experience

In this section, we present our experience on a project involving an industry
partner. We discuss how the changes were achieved in an industry project, what
effect they had on the project, and how other stakeholders responded to them.

4.1 The Project

The project is a joint project between the University of Melbourne and Jeppe-
sen, a company that specialises in aeronautical services. The goal of the project
is to construct simulation software for air traffic management using the agent
paradigm as the modelling tool. The particular project on which we applied the
modified requirements engineering process was a simulation of aircraft turnaround.
This system simulates the process of multiple aircraft landing at a single airport,
and how resources (including staff) could be allocated to efficiently turn around
the aircraft, including re-stocking supplies, as well as cleaning, repairing, and
maintaining the aircraft.

The major stakeholders of the project were our research team and a group of
software engineers at Jeppesen who had no significant exposure to agent-oriented
modelling in the past.

Figure 1 (in Section 2) shows part of the high-level role-goal model for the
aircraft turnaround project. In this figure, the high-level goal of turning around

25

the aircraft is achieved by the four subgoals of preparing for arrival, servicing
the aircraft, maintaining the aircraft, and preparing for departure. The roles of
Airline Staff and Airport Staff in this figure are in fact aggregate roles; that is,
they are sets of roles, such as aircraft maintenance engineers, cleaners, and airline
crew, which are described in lower-level role-goal models. The Manager role is
responsible for overseeing the entire turnaround and re-allocating resources if
there is a delay in turning around one aircraft.

4.2 Withholding Design Commitment

The requirements elicitation proceeded by our group being given an overview of
the aircraft turnaround process, including the staff involved, and constructing a
high-level goal and role model that represented our understanding of the system.
These diagrams were improved and refined over a series of six round-table meet-
ings with the stakeholders, in which the role and goal models were distributed
to each stakeholder before a meeting, and were then used as shared artifacts to
guide conversations. Over the course of these meetings, other models including
the interaction models, environment models, and agent types were progressively
introduced as we gained further understanding of the system.

Withholding design commitment was achieved by basing conversations be-
tween stakeholders on the role-goal models and using the role-goal models as
a facilitator to open up the discussion. In this regard, the goal models took a
similar role as the guiding rules described by Tjong et al. [20], whose aim is to
detect uncertainties in order to trigger questions to be asked of the client.

The role and goal models were helpful in triggering communication about
the specific challenges of the domain, and for identifying missing parts of the
system. For example, one stakeholder commented from a single glance at the
high-level goal model that air traffic controllers play a role in aircraft turnaround,
and this induced discussion about how the system should handle new traffic
entering the airport. In subsequent iterations, the air traffic controller role was
deemed unnecessary for the system and was dropped, but changes related to this
remained.

Our experience indicates that having models evolve over time lead to a clearer
solution, as early concerns regarding concepts such as resources were delayed
without jumping to a pre-conceived solutions. Later in the development process,
successive versions of the models were used as a reminder to the design decisions
that were made. This gave the research team something to fall back on when
discussions started to get too complex for some stakeholders or drifting off from
original high-level goals. The example of the air traffic controller role illustrates
this, in which the models were updated to reflect this role, but even after its
removal, parts of the model related to it remained. This is consistent with the
findings described by MacLean and Bellotti [13].

Our industry partners are comfortable with the role and goal models, al-
though this is perhaps to be expected as they are software engineers. However,
Paay et al. [15] have used role and goal models as shared artifacts in the social-

26

technical domain with non-technical stakeholders such as ethnographers to sim-
ilar effect.

4.3 Including Agent Types as an SRS

We delay the system boundary definition and the SRS sign-off using the same
technique: by leaving both until the high-level design.

The major divergence we take from the typical AOSE methodology is to
include the agent types, including the activities they perform, as part of the SRS.
As discussed in Section 2, methodologies typically use roles, goal, and interaction
models as requirements, while agent types are part of the architectural design.

In this project, the SRS consisted of the role and goal models, the interaction
models, the environment model, and the agent types. Combining the environ-
ment model and the agent types defines the functionality of the system, while
the role and goal models, and the interaction models, help to motivate this func-
tionality. For this particular simulation system, there was a one-to-one mapping
between roles and agents.

Signing-off on the SRS We believe that roles, goals, and interactions do not
provide sufficient detail to define system behaviour. While role and goal models
specify the goals that the system will achieve, and the roles (and their respon-
sibilities) that will help to achieve them, they do not define functionality; that
is, how the system will behave to achieve these goals. For example, the model in
Figure 1 specifies the goals that need to be achieved to turnaround the aircraft.
Role descriptors for the three roles in this figure outline the responsibilities to
ensure the turnaround goals are achieved. However, this does not define which
activities will be performed to achieve the goals. In some cases, one can extrap-
olate the activities from the responsibilities and goals, but this is not always the
case.

Our approach of including the environment model and agent types, including
activity descriptions and their effect on the environment, specifies the behaviour
of the system. As such, these activity descriptions are similar to functional re-
quirements that one would find in a non-agent-based SRS, and it is at this point
that the major stakeholders will be able to sign-off on the models.

A sign off is an agreement that overall goals are important, and that the
defined system will achieve these goals. We came to a solution that all were
satisfied with. We see this as a benefit in itself.

Furthermore, the stakeholders commented that the behaviour of the system
was clearer when the agent types were included, even though the mapping from
roles to agents was one-to-one. This is perhaps partly due to the similarity
between activities and functional requirements, but the stakeholders commented
that this was due to the fact that they were able to make a clear judgement as
to whether the behaviour fulfilled their expectations. In our view, this justifies
the decision to include the agent types in the SRS.

27

Defining the System Boundary Including agent types in an SRS has a
second effect: it completely defines the system boundary. Role and goal models
define the entire socio-technical system, with no commitment to which roles will
be played by which agents. As Cheng and Atlee [4] discuss, integrated systems
pose problems in defining the system boundary, which can be solved by assigning
responsibilities to different parts of the system, including the software system
being constructed, human operators/users, and external systems. Our notion
of a system boundary is exactly this: by describing the responsibilities of roles
in the entire system, we can define the system boundary by specifying which
agents will fulfill which roles, whether these agents are software agents, humans,
or external systems.

For example, in Figure 1 we can define one system boundary by specifying
that software agents will play all of the relevant roles, making the system a com-
plete simulator of the turnaround process. Alternatively, we can define another
system boundary in which the Manager role is played by a human. One can see
that assigning one role to a human instead of an agent changes the system and
its interface greatly. In the first instance, the system is a complete simulation of
the aircraft turnaround process. In the second instance, the result is an inter-
active system in which managers are able to assess different resource allocation
mechanisms.

In this project, the system boundary was left undefined for most of the re-
quirements elicitation process. The stakeholders were comfortable with the lack
of a system boundary, and this was not explicitly mentioned to them during the
requirements elicitation. However, as software engineers themselves, they did not
see any great benefit for this project, because they felt only one system bound-
ary was sensisble. However, they also did not find that it was detrimental to
the project. We did not find that delaying the definition of the system bound-
ary had any adverse effects on the progression of the system, although this was
not a controlled experiment. In addition, we found that conversations about the
system, including details about roles and goals, continued after the agent types
had been assigned, due to the system functionality becoming clearer.

To our group, the benefits of not defining a system boundary are illustrated
by the project. The system was intended to be a simulation of the air traffic
turnaround domain, with all roles, including those in Figure 1, being played by
software agents (the first boundary in the previous paragraph). One discussion
that took place late in the requirements elicitation process indicated that there
may have been scope for the system boundary to be changed to the second
boundary, in which the Manager role is partly played by a human. Had the
system boundary been defined at the start of the requirements elicitation, this
discussion may not have taken place.

5 Conclusions and Related Work

AOSE models are useful as a shared artifact for communication between stake-
holders and software engineers. We find that using the agent-oriented models of

28

Sterling and Taveter [19] as part of requirements elicitation allows meaningful
conversations between all stakeholders about abstract concepts, with goals as the
catalyst. The role of the goal models is not simply to lead to the development of
a system, but also as a way to think through problems and to reach agreements.
By making these accessible to all stakeholders, and by keeping stakeholders in-
volved in discussions as long as possible in the requirements elicitation process,
we aim to increase the quality of requirements specifications.

In this paper, we proposed three changes to the typically AOSE requirements
engineering process that we believe help to engage stakeholders: 1) withholding
design commitment; 2) delaying the definition of the system boundary; and 3)
delaying the sign-off of the SRS to be as late as possible without affecting system
development.

Our experience with an industry partner suggests that not committing to a
specific design solution early in the requirements elicitation gave the team an
opportunity to further explore and understand the specific challenges related to
the high-level goals of the socio-technical system.

We propose delaying the definition of the system boundary and the signing-
off of the requirements by including the agent types as part of the SRS. As far
as we know, we are the first authors to consider this, rather than including these
as part of the architectural or detailed design. By defining which agents will
play which roles, we define the behaviour of the system, and implicitly define
the system boundary. The experience with our industry partner indicates that
this decision is justified.

Guizzardi and Pereni [9] have also recognised the importance of stakeholder
involvement. Like us, they consider the goals of all stakeholders, and the inter-
dependencies between these goals, as an initial step in understanding require-
ments. Yu [21] advocates the agent-oriented paradigm as a tool for helping to
establish the why of a system, which helps stakeholders to understand the prob-
lem at hand. Similar to us, Yu uses high-level motivation models, in this case,
specified in i∗, to share between stakeholders. The i∗ models contain signifi-
cantly more information than our motivation models, including concepts such as
activities, resources, and dependencies between all of these. We explicitly aim to
reduce the number of concepts and the amount of syntax to keep models simple.
Yu offers no specific techniques for engaging stakeholders, as the focus of the
work appears to be on the tools and notations for doing so.

References

1. D. Berry, E. Kamsties, and M. Krieger. From contract drafting to software speci-
fication: Linguistic sources of ambiguity - a handbook version 1.0, 2000.

2. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

3. G. Button and W. Sharrock. Occasioned practices in the work of software engi-
neers. In M. Jirotka and J. Goguen, editors, Requirements Engineering: Social and
Technical Issues, pages 217–240. Academic Press, 1994.

29

4. B. Cheng and J. M. Atlee. Research directions in requirements engineering. In
L. Briand and A. Wolf, editors, Proceedings of the International Conference on
Software Engineering, pages 285–303, 2007.

5. S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency management.
Software Engineering Journal, 11(1):31–43, 1995.

6. A. Garcia and N. Medinilla. The ambiguity criterion in software design. In Inter-
national Workshop on Living with Uncertainties. ACM, 2007.

7. D. Gause. User driven design – the luxury that has become a necessity, a workshop
in full life-cycle requirements management. In ICRE 2000, Tutorial T7, 2000.

8. D. Gause and G. Weinberg. Exploring Requirements: Quality Before Design. Dorset
House Publishing Co., Inc., New York, NY, USA, 1989.

9. R. Guizzardi and A. Perini. Analyzing requirements of knowledge management
systems with the support of agent organizations. Journal of the Brazilian Computer
Society (JBCS)-Special Issue on Agents Organizations, 11(1):51–62, 2005.

10. T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gaia methodology
for complex open systems. In Proceedings of the First Int. Conf. on Autonomous
Agents and Multi-Agent Systems, pages 3–10. ACM Press, 2002.

11. I. Jureta and S. Faulkner. Clarifying goal models. In J. Grundy, S. Hartmann,
A. Laender, L. Maciaszek, and J. Roddick, editors, ER (Tutorials, Posters, Panels
& Industrial Contributions), volume 83 of CRPIT, pages 139–144, 2007.

12. E. Kamsties, D. Berry, and B. Paech. Detecting ambiguities in requirements doc-
uments using inspections. In Proceedings of the First Workshop on Inspection in
Software Engineering (WISE’01), pages 68–80, 2001.

13. A. MacLean, V. Bellotti, and R. M. Young. What rationale is there in design? In
D. Diaper, D. J. Gilmore, G. Cockton, and B. Shackel, editors, Proceedings of the
3rd Int. Conf. on Human-Computer Interaction, pages 207–212, 1990.

14. S. Munroe, T. Miller, R. Belecheanu, M. Pechoucek, P. McBurney, and M. Luck.
Crossing the agent technology chasm: Lessons, experiences and challenges in com-
mercial applications of agents. Knowledge Engineering Review, 21(4):345–392, De-
cember 2006.

15. J. Paay, L. Sterling, F. Vetere, S. Howard, and A. Boettcher. Engineering the
social: The role of shared artifacts. International Journal of Human-Computer
Studies, 67(5):437–454, 2009.

16. L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A practical
guide. John Wiley and Sons, August 2004.

17. J. Pavón and J. Gómez-Sanz. Agent oriented software engineering with INGE-
NIAS. In Multi-Agent Systems and Applications III, volume 2691 of LNCS, pages
394–403. Springer, 2003.

18. D. Randall, J. Hughes, and D. Shapir. Steps toward a partnership: ethnography and
system design. In M. Jirotka and J. Goguen, editors, Requirements Engineering:
Social and Technical Issues, pages 241–254. Academic Press, 1994.

19. L. Sterling and K. Taveter. The Art of Agent-Oriented Modelling. MIT Press,
2009.

20. S. F. Tjong, M. Hartley, and D. Berry. Extended disambiguation rules for require-
ments specifications. In C. Alves, V. Werneck, and L. Marcio Cysneiros, editors,
Proceedings of Workshop in Requirements Engineering, pages 97–106, 2007.

21. E. Yu. Agent-oriented modelling: software versus the world. In Agent-Oriented
Software Engineering II, volume 2222 of LNCS, pages 206–225. Springer, 2002.

22. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering Methodology,
12(3):317–370, 2003.

30

Towards Requirement Analysis Pattern for Learning
Agents

Shiva Vafadar, Ahmad Abdollahzadeh Barfourosh

Intelligent Systems Lab

Computer Engineering and IT Faculty

Amirkabir University of Technology

vafadar@aut.ac.ir, ahmad@ce.aut.ac.ir

Abstract. Learning is a capability that can be incorporated into software agents
to handle the complexity of dynamic and unexpected situations, exploiting
available artificial intelligence (AI) techniques. Despite design techniques for
learning agents have been discussed in agent oriented software engineering
literature, how to identify and analyze the requirements for learning agents is
still poorly addressed. In this paper, we introduce a pattern for requirement
analysis of learning agents. This analysis pattern contains a group of related,
generic meta-classes of learning and their relations in a domain neutral manner
which can be described as elements of conceptual modeling of learning
requirement of agents. The applicability of the pattern has been investigated
through the development of a book trading case study.

Keywords: Agent Oriented Software Engineering (AOSE), Analysis Patterns,
Requirements Analysis, Learning

1 INTRODUCTION

Today software systems are used in more complex application domains such as web-base
computational markets and distributed network management [1], which demand for software
systems with autonomic properties [2]. This complexity often arises from open networked and
heterogeneous environments with dynamic and unpredictable scenarios in which software is
expected to operate. Enriching software systems with the capability of improving while
operating can benefit from available artificial intelligence (AI), and agent oriented software
engineering aims at providing methods to support developing systems with this property [1].
One of the capabilities which can help intelligent software agents to perform more
appropriately in dynamic and volatile situations is learning. Issues in designing software agents
with learning capabilities have been discussed [3,4] but techniques for requirement analysis of
an agent’s learning is still poorly addressed.

Requirements analysis addresses the identification and specification of the functional and non-
functional (or quality) characteristics expected for the system to be developed, and analyze
them in terms of ways to operationalize them. Therefore, requirements analysis activities
encompass the problem domain as well as the solution domain, with the aim to provide
effective information for the system design. More specifically, first activities of requirements
analysis are focused on the problem domain analysis and the elicitation of expected features of

31

the system-to-be, but late requirements analysis activities focus on a deeper understanding of
these system features, thus providing information for architectural and design concerns in terms
of available candidate. The latter tries to provide required information for moving smoothly
from requirements to high level design of the system. Taking the perspective of a requirements
engineer who may not be expert in AI techniques, we believe that providing methods for
supporting analysis of learning as one of the capabilities which help software agents to achieve
their goals would be beneficial.

Based on this view, in this paper we present a pattern based approach for analyzing agent’s
learning capability. A main novelty of this work is its focus on the late requirements analysis
phase of the development of learning agents, which abstracts from the learning approach that
will be adopted in design and implementation. Analysis patterns are a group of related, meta-
classes and their relations which present issues of conceptual modeling for analyzing
requirements [5,6]. These objects are defined in a domain-neutral manner and they resemble the
notion of chunks of formalized knowledge that are at a higher level of abstraction than
individual classes. Our pattern can be considered as a guideline for modeling learning during
requirement analysis of agent based systems. Using this pattern during late analysis activities
can provide information to move easily from requirements to architectural design of software
agents.

In order to evaluate the pattern we use a case study (which is a book trading system) and apply
the pattern on it. By comparing the results of applying the pattern on the case study with
required information for design and implementation of learner agent during software
development, we can assess the applicability of our pattern on developed application.

In the following sections of this short paper, we present analysis pattern for learning agents and
describe participants of the pattern. We also introduce our case study for investigating
applicability of the pattern and discuss preliminary results.

2 Analysis Pattern for learning agents

In this section, we present our analysis pattern for learning agents. We suppose that an agent-
oriented approach is used during requirements engineering process. In addition, it is supposed
that during early analysis, requirements engineer has identified learning as a feature which
assists agent(s) to achieve the goals. Having these prerequisites, for late analysis of the
requirements, software engineer can use this pattern for modeling learning requirement of the
agents. This pattern can be used as a guideline for modeling the learning as an AI capability
which incorporated to agents. The result will be a model which helps stakeholders to
understand learning-related issues of the system and making decision among multiple options
which are available for designing and testing the learning of the agent.

Name: Learning Pattern

Classification: Analysis

Problem: How should an agent be analyzed in order to specify its learning capabilities?

Context: An agent-based system where a role needs to improve its performance while
executing its tasks and getting experience. This role needs learning capability in order to carry
out one or more tasks or achieving a goal.

Domain of Application: the pattern is of a general nature. The domain of application is
not specified.

32

Forces:

─ Performing the task
learning makes it possible

─ Agent’s knowledge (which can be related to the process of doing the task or primitive
knowledge or rules

─ The agent can perform some tasks in order to
training data which

─ The agent can receive

 Solution: We suggest using the following model to analysis learning requirement
shows our solution to solv

As figure 3 shows, there are
these meta-classes.

─ Agent: Indicates the agent which its learning requirement is analyzed.
─ Goal: Indicates the goal(s) that the agent is responsible for. Identifying the goal

agent is the first step
goals an agent tries to achieve plays vital role in agent analysis. Learning is a technique
that can help the agent
from the agent is influenced by

─ Task: Specifies the tasks
learning is bidirectional. In one hand, we can specify the tasks the agent can perform and
then identify which of them needs improvement by incorporating learning. At th
hand, we may know that to achieve its goals or improve its behavior agent must have
learning capability. Therefore, we should recognize that what kind of tasks the agent
should be able to perform to learn (such as the tasks required for exploration
experience generation). Both approaches are necessary for determining the required
tasks.

─ Performance Measure:
achieving its goal.
performing the tasks. This improvement is
Therefore, performance measure is a factor for evaluating learning capability of agent
and it has an important

─ Learning Goal:
expected by incorporating learning. It also specifies in which duration this improvement

Performing the task(s) or achieving the goal(s) is not possible without learning or
it possible in higher quality or less time.

knowledge (which can be related to the process of doing the task or primitive
knowledge or rules) is not complete and it can be improved by getting experience.

perform some tasks in order to get some experience or there is
training data which help the agent to improve its behavior.

receive feedback from the environment after carrying out the task.

: We suggest using the following model to analysis learning requirement
solve mentioned problem.

Fig. 1. Analysis Pattern for learning agent

there are 13 participants in suggested model. In the following,

Indicates the agent which its learning requirement is analyzed.
Indicates the goal(s) that the agent is responsible for. Identifying the goal

agent is the first step of analyzing activity. Since agents are goal-oriented entities, the
goals an agent tries to achieve plays vital role in agent analysis. Learning is a technique

the agent to achieve its goals. Therefore, the kind of the learning
is influenced by the goal(s) it is responsible for.

Specifies the tasks that the agent can perform. The relationship between tasks and
learning is bidirectional. In one hand, we can specify the tasks the agent can perform and
then identify which of them needs improvement by incorporating learning. At th
hand, we may know that to achieve its goals or improve its behavior agent must have
learning capability. Therefore, we should recognize that what kind of tasks the agent
should be able to perform to learn (such as the tasks required for exploration
experience generation). Both approaches are necessary for determining the required

Performance Measure: embodies the criterion for success of an agent's behavior for
achieving its goal. An agent has learning capability if its performance improves
performing the tasks. This improvement is measured by performance measure.
Therefore, performance measure is a factor for evaluating learning capability of agent

an important role for defining learning goal.
 Denotes improvement in agent's performance measure which is

expected by incorporating learning. It also specifies in which duration this improvement

is not possible without learning or

knowledge (which can be related to the process of doing the task or primitive
experience.

is adequate

carrying out the task.

: We suggest using the following model to analysis learning requirement. Figure 1

 we explain

Indicates the goal(s) that the agent is responsible for. Identifying the goal(s) of the
oriented entities, the

goals an agent tries to achieve plays vital role in agent analysis. Learning is a technique
is expected

the agent can perform. The relationship between tasks and
learning is bidirectional. In one hand, we can specify the tasks the agent can perform and
then identify which of them needs improvement by incorporating learning. At the other
hand, we may know that to achieve its goals or improve its behavior agent must have
learning capability. Therefore, we should recognize that what kind of tasks the agent
should be able to perform to learn (such as the tasks required for exploration and
experience generation). Both approaches are necessary for determining the required

embodies the criterion for success of an agent's behavior for
if its performance improves during

by performance measure.
Therefore, performance measure is a factor for evaluating learning capability of agent

Denotes improvement in agent's performance measure which is
expected by incorporating learning. It also specifies in which duration this improvement

33

is expected. It affects on learning elements of the agent because the amount of
improvement defines which parts of the agent should improve their behavior to attain
learning goal. It is affected by many meta-classes such as agent goal, its performance
measure, input data and its quality, feedback is available for the agent, tasks the agent
can perform, prior knowledge and its quality. For example if the input data is not
adequate or its quality is low, requirements engineer may decide extend duration which
agent can achieve its learning goal.

─ Learning Subject: Specifies the subject of the learning. It can be a concept of the
environment or an internal state that agent capture knowledge about it.

─ Learning Element: Defines issues that agent should learn to achieve learning goal. On
the other hand, it defines learning goal in more details with respect to the learning subject
such as: State which is mapping from conditions on the current state to the actions,
Environment which is relevant properties of the world from percept sequence, Mapping
information which is information about the way world evolves, results of possible
actions the agent can take on the environment. Utility which is information indicating the
desirability of the world state and action

─ Feedback: Defines the type of the feedback is received by the agent which can be
supervised, unsupervised or reinforcement. The feedback is one of the major issues that
affect on selecting appropriate leaning algorithm during design. Therefore, during
analysis we should specify what type of feedback is obtained for agent in the domain.

─ Knowledge: Defines the agent's knowledge. It contains the knowledge the agent has
prior to start his actions. This knowledge is defined according to the tasks the agent
should perform, the knowledge that the agent expected to achieve during performing the
tasks and the knowledge is required to achieve learning goal.

─ Environment: Defines the environment the agent is acting on and all of its participants.
Environment is an important factor in analyzing agent. How well an agent can behave
depends on the nature of the environment. The properties of the environment such as
fully observable vs. partially observable should be defined during analysis. These
characteristics also influence learning algorithms which are selected during design. On
the other hand, environment provides all the data that agent learns from. Therefore, the
constraints of the environment vastly affect the constraints of the learning of the agent.

─ Data: Defines the raw data that is received from environment (and all its participants)
and is used as learning input. Therefore, it has a vital role in learning process. Amount of
data and its quality has an important role for deciding about learning algorithm and it is
an important criterion which affects our expectation from learning. Information which is
related to data helps requirements engineer to decide about tradeoffs between duration
and quality of learning. Test Data and Training Data are different types of data that
should be considered during analysis.

─ Learning Measure: Defines the measure for evaluating learning capability of the agent.
It can be described by criterion such as preciseness and speed.

─ Learning Level: Describes level of the learning expected from the agent. It can have a
wide range from remembering the information to knowledge based inductive learning.

Resulting Context: The meta-classes of the model are domain independent conceptual classes
that present abstract issues of learning capability. For analyzing various systems in different
domains, it is just required to find the instances of each meta-class in the domain. These
instances (or type of entities) and interaction between them construct the conceptual model of
learning capability of the agent. By using analysis pattern for learning agent, analysis activity
of learning capability can become easier because the pattern contains the issues that should be
considered during analysis of learning.

Related Patterns: learning design patterns [3, 4]

34

3 Case Study: Book Trading System

In this section, we define our case study for evaluating applicability of the pattern. We also
present the results of developing the case study and applying the pattern on it.

The case study that we select is a Book Trading System (BTS). Our system is an extension on
Book Trading examples that comes with JADE 3.1. We modify the scenario as it includes some
agents that sell books and other agents, which buy them on behalf of their users. Buyer's goal is
purchasing the cheapest book while seller’s goal is to achieve the highest profit. In this case, we
also consider learning as an expected capability for the seller agent. Seller should explore
various prices for each book and try to find the best price, which increases its profit.

Using an analysis pattern for modeling a system contains three main steps; retrieval, adaptation,
and integration. In our case study, in retrieval step, we choose learning pattern for seller agent
because learning is an expected capability of this agent. For adaptation, we instantiate
conceptual classes of the pattern by recognizing related concepts in the application domain. The
result will be the conceptual model of the seller agent, which contains learning related issue of
the application. Figure 2 shows seller agent conceptual model, which is the result of applying
the pattern on BTS.

Fig. 2. Seller Agent Conceptual Model

To evaluate the applicability of our pattern and discovering how it can be realized during
design and implementation, we compared our learning pattern participants with their instances
on the case study and related design and implementation elements (such as agent, class,
attribute and methods). The results show that, agent, task, environment, input, performance
measure and knowledge are the meta-classes of the model, which there are design and
implementation elements for them. These concepts have been highlighted as yellow meta-
classes in figure 2. While goal, learning goal, learning element and learning measure are meta-
classes which are used for understanding the domain of the application and they aren’t
instantiated as a design or implementation element. These classes are related to non-functional
properties of learning and provide important information for designer that can help him/her for
selecting appropriate algorithm for learner agent. They are also important for designing test
cases of the agent and therefore can be useful for testers as other stakeholders of analysis
artifacts. These concepts have been shown as white meta-classes in figure 2.

35

4 Conclusion and Further Work

In this paper, we introduced the first version of our analysis pattern for learning capability of
software agents that can be used by software engineers during late requirements analysis. This
pattern is defined in the terms of domain neutral meta-classes (and their relations) that can be
identified as elements of conceptual modeling for analyzing and understanding the learning
requirements of agents. According to this pattern, for analyzing the learning capability of an
agent, its goals, tasks, learning goal, environment, data and feedback, knowledge, learning
elements, learning measure and learning level should be considered. Conceptual models of
learner agents in various domains can be constructed by applying the pattern on the application
domain, which means these meta-models are instantiated in the domain. By using this pattern,
the required information for understanding the learning requirement is provided during analysis
phase. This will help the software analysts who are not expert in AI or learning to provide
required information for designer to decide about learning algorithm and methods according to
the application domain constraints.

Although our results provide some evidences about the applicability of our pattern in agent
based systems, they also point out some limitations in our research, which we consider as part
of our future work agenda to improve our pattern. We can mention the following among them;
applying pattern on more complex case studies in various application domain, taking into
account more resources of learning, evaluating pattern by other criterion, designing empirical
case studies to evaluate the effectiveness of the pattern during software development process,
investigating the usage of our pattern in various agent oriented methodologies.

Acknowledgments. The authors would like to thank Anna Perini for her comments on the early
draft of the paper.

5 REFERENCES

[1] Zambonelli, F., Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. J. Autonomous Agents and Multi-Agent Systems, Volume.9 No.3,
253—283 (2004)

[2] Ganek, A. G, Corbi, T. A.: The dawning of the autonomic computing era. J. IBM Systems
42(1),5--18,(2003).

[3] Sardinha, J. A. R. P., Garcia A. F., Milidiú R. L., Lucena C. J. P.: The Agent Learning
Pattern. 4th Latin American Conference on Pattern Languages of Programming,
SugarLoafPLoP'04, Fortaleza, Brazil,(2004)

[4] Alessandro F. Garcia, Uirá Kulesza, José Alberto R. P. Sardinha, Ruy L. Milidiú, Carlos J.
P. Lucena.: The Learning Aspect Pattern. The 11th Conference on Pattern Languages of
Programs (PLoP2004), (2004)

[5] Coad, P., D. North, M. Mayfield: Object Models: Strategies, Patterns, & Applications.
Prentice Hall, Upper SaddleRiver, NJ. (1995)

[6] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, MA.
(1997)

36

Test Coverage Criteria for Agent Interaction
Testing

Tim Miller1, Lin Padgham2, and John Thangarajah2

1 Department of Computer Science and Software Engineering, University of
Melbourne, Australia

2 Department of Computer Science, RMIT University, Melbourne, Australia

Abstract. By the very definition of complex systems, complex behaviour
emerges from the interactions between the individual parts. This emer-
gent behaviour may be difficult or impossible to predict by analysing the
parts. As a result, systematic and thorough testing of the interactions
of complex systems, including multi-agent systems, is an important part
of the verification and validation process. This paper defines two sets of
test coverage criteria for multi-agent interaction testing. The first uses
only the protocol specification, while the second considers also the plans
that generate and receive the messages in the protocol. We describe how
an existing debugging agent can be used as a test oracle for assessing
correctness of a test, and how the Petri Net representation of the de-
bugging agent can be annotated to support test coverage measurements.
This work both specifies, and shows how to measure, the degree of thor-
oughness of a set of test cases. It also provides a basis for the future
specification of test case input, designed to provide good coverage.

1 Introduction

Like other types of complex systems, the overall behaviour of multi-agent systems
emerges from the interaction of their parts. Often, this emergent behaviour is dif-
ficult or even impossible to identify without running the system. This increased
complexity makes verification and validation of these systems a non-trivial task.
Furthermore, the fact that the behaviour cannot be accurately predicted implies
that manual test case generation is unlikely to test the more complex behaviour.
Automated test generation offers one solution to help with this problem.

Previous work on testing multi-agent systems [1, 2, 8, 10, 15, 16] has contri-
buted to testing frameworks and automated test case generation. However, none
have explicitly focused on testing interactions, the source of complexity in many
systems. In many multi-agent methodologies, such as Prometheus, Tropos and
OMaSE [3], interactions are captured via interaction protocols in design dia-
grams.

Our focus in this paper is on using protocol specifications, as well as infor-
mation about how the interacting agents use these specifications, to define and
measure systematic interaction testing. We also describe how correctness can
be determined using the debugging agent of Poutakidis et al. [13]. Section 2
defines two sets of test coverage criteria for interaction testing, the first using

37

only the protocol specification, and the second including information about the
plans involved in receiving and sending messages for a particular protocol. Sec-
tion 3 describes the use of Poutakidis et al.’s “debugging agent” as a test oracle
for determining whether a set of interacting agents is correctly following a valid
protocol. Modifications to this debugging agent are made to automatically mea-
sure how well a test set achieves the coverage criteria. We finish with a discussion
of relationships to previous work and a comment on future work.

2 Test Coverage Criteria

To measure the quality of a set of test cases, a criterion is necessary. Standard
control-flow and data-flow criteria [9] that are defined for imperative program-
ming languages are based on program statements and predicates, so are not
directly applicable to agent interaction. However, many of the underlying ideas
are valid. In this section, we define two sets of criteria based on the control-flow
of interactions. This control-flow is extracted from the design models. The first
set is based on the ordering of messages, which we obtain from protocol specifi-
cations. We refer to these as protocol-based criteria. The second set also considers
the plans that send and receive the messages in protocols. We refer to these as
plan-based criteria. We describe and compare each of these.

2.1 Protocol-based Coverage Criteria

Based on protocols specified in a standard protocol language such as AUML2
interaction diagrams, it is possible to construct a protocol graph that shows all
possible orderings of messages3. Figure 1 shows the protocol graph corresponding
to the FIPA Query Interaction Protocol [5].

The conversation IDs annotated to each message identify six conversations
that have happened using this protocol, in which a conversation is a possible
chaining of messages.

Criterion Definition Our coverage criteria are based on graph traversal of the
protocol graph. For protocol coverage, we define three criteria:

Message coverage Every message in the protocol must be sent at least once.
Pairwise message coverage For every message, start node, and end node in

the protocol, all directly proceeding messages/nodes must be executed after
the first message/node at least once; that is, we must test every case in which
one message can be followed by another.

Message path coverage Every possible interaction sequence permitted by the
protocol must be executed at least once.

These three criteria correspond to node, arc, and path coverage of a graph.
Figure 1 contains a minimal set of conversations that, if fully executed, achieve
these criteria on the protocol graph.

3 Our coverage criteria are then based on these orderings. We are not concerned with
the content of messages, nor the time at which they are sent, only the relative
ordering.

38

Init iator

Participant

query-ref

refuse

query-if

agree

inform failure

{ 1 , 2 , 3 }

{1 ,2 ,4 ,5 }

{ 1 , 4 }

{ 4 , 5 , 6 }

{ 3 , 6 }

{ 2 , 5 }

M
message M starts the

M
message M terminates

M N
sequence of M followed

{ # , # } conversation identif ier

R message scope for role R

Criter ion Conversat ions

Message

Pairwise Message

Message Path

1, 2, and 6

1, 2, 3, 4, and 6

1-6

protocol

protocol

by N

Fig. 1. A protocol graph for the FIPA Query interaction protocol specified, and the
conversations required to achieve coverage criteria.

Achieving path coverage is sometimes not possible as a protocol may be
defined as an infinitely iterative or recursive structure, leading to an infinite
number of paths. Workarounds include achieving only non-cyclical path coverage,
or using heuristics such as the 0-1-many rule, which specifies that we test only
three of these paths: paths containing 0 loops, 1 loop, and more than one loop.

Coverage Measures Spillner [14] defines coverage measures for integration
testing criteria. Coverage measures are defined as “the ratio between the test
cases [inputs] required for satisfying the criteria and those of these which have
been executed”. These measures can be applied to test sets to determine how
complete they are for a particular program.

The interaction coverage measures (IC) for our three protocol-based criteria
are defined as follows:

ICprotocol message = #messages sent at least once
#totalmessages in protocol

ICpairwise message = #arcs executed
#total arcs in protocol

ICmessage path = #paths executed
#total message paths in protocol

As an example, in Figure 1 the set of conversations 1, 2, and 6 achieves 100% for
protocol message coverage (6 messages that are all executed), 82% for pairwise
message coverage (11 arcs, 9 arcs covered), and 50% for message path coverage
(6 different paths, 3 paths covered).

Protocol-based coverage criteria are intuitively useful for interaction testing
because they are strictly related to the interactions that can occur between
the agents. However, purely message-based criteria do not consider the internal
structure of the agents. For example, an agent may be able to send or receive the
same message in many different plans. Consequently, we develop an additional
set of coverage criteria that take into account the plans of the agents, and the
relationship of messages to these plans.

39

2.2 Plan-based Coverage Criteria

We extract from the design artifacts, the information to build a plan graph
for each protocol, of the kind shown in Figure 2. This graph represents the
relationship between plans and messages for a particular protocol.

query-if

query-ref

agree

P3 Q2

Q1P1

refuse

Init iator Participant

inform

P4 Q3

Q4

P2

failure

P5

P6

{ 3 }
{ 3 }

{ 3 }

{ 3 }
{ 3 }

{1a ,1b ,2a ,2b}

{ 1 a , 2 a }

{ 1 b , 2 b }

{ 2 a , 2 b }

{ 1 a , 1 b }

Plan P initiates protocol

Final plan in protocol

P

Plan P sends
message M

M

Plan P receives
message M

P M

P Q

Super arc from
plan P to plan Q

P

P

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b} {1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

Fig. 2. A plan graph for the FIPA Query interaction protocol specified.

Plan graphs are built by extracting as nodes, those plans that send or receive
any message in the protocol, and the messages themselves. In addition to the
obvious send/receive links between plans and messages, we add a link between
any two plans in the graph, which are connected by a chain (or multiple chains)
of triggering links. We will call such links between plans super-arcs as they
represent an entire plan structure. Figure 3 shows the internals of the super-arc
between plan nodes Q3 and Q4 in Figure 2.

From Figure 2, one can see that the participant always agrees to a query-if
request and always refuses a query-ref; so while the agents may follow the proto-
col, they do not use all parts of it. We also note that plans can send more than
one message or receive more than one message, for example, plan Q4 sends both
inform and failure.

Unlike other branches in the graph, the branch at Q3 is not a choice. Instead
Q3 sends the message agree, and then triggers the plan Q4. For the purpose of
test criteria, it is not necessary to model whether this is a choice or the ability
to do more than one action because we need only measure whether the message
was sent.

40

agree

QB

inform

Q3

Q4

QA

{ 1 a , 2 a } { 1 b , 2 b }

{1a ,1b ,2a ,2b}

P Q Plan P triggers plan Q

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

{1a ,1b ,2a ,2b}

P M Plan P sends message M

Criterion Conversations
Message 1(a or b), 2(a or b), and 3
Plan 1a, 1b, and 3
Plan arc 1a, 2b, and 3
Pairwise internal path 1a, 1b, 2a, 2b, and 3
Plan path 1a, 1b, 2a, 2b, and 3

Fig. 3. Internal plan structure between plans Q3 and Q4 for the graph from Figure 2,
and the conversations required to achieve coverage criteria for the entire protocol.

Criterion Definition We define a set of coverage criteria using plan graphs,
in a similar way to those we defined on the protocol graph. We note how these
correspond to criteria in standard (non-agent-oriented) integration testing [14].

Message coverage Every message in the plan graph is sent at least once.
The analogous case in standard integration testing is ensuring that each
method/function in the target component’s interface is executed at least
once.

Plan coverage Every plan that sends or receives a message in the protocol
is executed at least once. The analogous case in integration testing is en-
suring that each method in the program that calls a method in the target
component’s interface is executed.

Plan arc coverage Every occurrence of a message being sent by a plan and
every occurrence of a plan being triggered (by a message, an event (a start
node), or another plan) is executed at least once. This is different from plan
coverage because a plan may be able to send more than one message (e.g.
plan Q4 sending inform and failure in Figure 2). The analogous case in
integration testing is ensuring that every call made to every method in the
target component’s interface is tested.

Pairwise internal path coverage Every possible path, including paths in su-
per arcs, between two pairwise messages, or between a first/last message in a
protocol and its corresponding start/end node is executed at least once. This
ensures that all paths that could be used to produce a particular message in
the protocol, are tested. The analogous case in integration testing is ensuring
that every path between two method calls from the target component’s in-
terface is executed. Note that pairwise messages cannot be determined from
the plan graph, but must be determined from the protocol specification or
protocol graph. For example, in Figure 2, one cannot determine that agree
is sent directly before inform.

Plan path coverage Every possible path through the structure induced by ex-
panding super-arcs within the plan graph is executed at least once. The anal-

41

ogous case in integration testing is ensuring that every possible sequence of
calls to every method in the target component’s interface is tested. Even
without the expansion of super-arcs this differs from message path coverage
defined on the protocol graph, in that it addresses the case where the same
message may be sent from, or received by, two different plans. (e.g. plan P4
and P5 receiving agree in Figure 2).

Again, some of the above criteria correspond to graph coverage criteria. Message
and plan coverage combined correspond to node coverage. Plan arc coverage, and
plan path coverage correspond to arc, and path coverage respectively. Pairwise
internal path coverage corresponds to path coverage between plan nodes within
a super arc, combined with arc coverage on the other arcs of the graph.

To illustrate, Figure 3 contains a minimal test sets that, when fully executed,
achieve each criteria, using the plan graph from Figures 2 and 3.

Coverage Measures We define coverage measures for these criteria in the
same way as the protocol-based criteria: the ratio of executed nodes/arc/paths
to the total number of nodes/arc/paths.

For example, in Figures 2 and 4, the set of conversations 1a, 2b, and 3 achieves
100% coverage for message coverage (6/6), plan coverage (10/10), and plan arc
coverage (19/19), 85% for pairwise internal path coverage (11/13), and 55.5%
for plan path coverage (5/7).

2.3 Comparison of Coverage Criteria

To compare these criteria, we are interested in any subsumption relationships
between them. Test criterion A subsumes test criterion B if and only if any test
set that achieves 100% coverage on criterion A also achieves 100% coverage on
criterion B.

Figure 4 shows the subsumption relationship between our criteria. We know
from graph theory that path coverage subsumes arc coverage, and arc coverage
subsumes node coverage. This directly gives us the subsumption relation between
the different protocol graph criteria (message path subsumes pairwise message,
and pairwise message subsumes message).

In the plan graph, plan path subsumes plan arc, and plan arc subsumes
message/plan coverage, directly from graph theory. Although neither message
nor plan coverage are equivalent to node coverage, both are subsumed by it.
Plan coverage does not subsume message coverage, because plans can send and
receive multiple messages. For example, plan coverage of Figure 2 can be achieved
by executing plans Q4 and P6 once each, which means either inform or failure
will not be sent. There is also an additional coverage metric, pairwise internal
path coverage, which sits between plan path coverage and plan arc coverage.
The argument for this is straightforward: by definition it subsumes arc coverage,
and if every path, including every path internal to a super arc, is executed, then
every arc plus all super-arc paths must also be executed.

To compare the criteria for the two different types of graph, we make the
assumption that all criteria are feasible. For example, in plan message coverage,

42

we assume that the participating agents are programmed such that every mes-
sage in a protocol is able to be sent by these agents. Otherwise, 100% coverage
is not achievable. It is not uncommon for this assumption to be false, partic-
ularly when pre-existing protocols are used. For example, a developer using a
third-party protocol may choose not to use some messages defined in a protocol.

Message
(protocol graph)

Message
(plan graph)

Pairwise message

Message path

Plan

Plan arc

Pairwise internal path

Plan path

Fig. 4. The subsumes relation
between the protocol-based and
plan-based coverage.

If this assumption is relaxed, the result is
simply that there is no subsumption relation
between any of the criteria4. With this as-
sumption of feasibility we can establish some
relationships between the criteria based on
the two different graphs. Firstly, we note
that the two types of message coverage are
equivalent. That is, they both require test
cases that send every message in the proto-
col. The next relation is that pairwise inter-
nal path coverage subsumes pairwise mes-
sage coverage. Pairwise internal path cover-
age is defined as executing all paths (includ-
ing super arcs) between all pairwise mes-
sages, therefore, it trivially subsumes pair-
wise message coverage. Finally, we have that
plan path coverage subsumes message path
coverage. With our assumption of feasibil-
ity, this subsumption relation holds because
if there is a path defined by the protocol, there must be a path in the plan
graph that executes it. If all paths through the plan graph are executed, then
this implies all paths in the protocol graph must also be executed.

We argue that the combination of message path coverage and pairwise inter-
nal path coverage is a minimum testing level to aim for in rigorous interaction
testing. It tests the various plan combinations that may be used in moving from
receipt of a message, to the production of the next message in the protocol, and
also tests every possible conversation. Although there is some amount of expo-
nential growth, this is likely to be substantially more limited than that required
for testing all paths in the plan graph.

3 Measuring Correctness and Coverage Using a
Debugging Agent

The model-based measure of correct behaviour of agent interaction is primarily
whether the agents follow the specified interaction protocols. While the cover-
age measures we have defined can tell us how thoroughly a given set of test
cases actually exercises the program under test, we require some way of knowing
whether the agents interact as specified. To establish this we use the work of

4 This can be demonstrated by the examples in Figures 1 and 2: the agents are pro-
grammed such that the sequence 〈query-ref → agree〉 is infeasible, therefore, pair-
wise message coverage is not achievable on the protocol graph, but pairwise internal
path coverage is achievable on the plan graph.

43

Poutakidis et al. [13] on debugging agent interactions. The monitor that is used
in that work for detecting bugs, can equally well be used as a test oracle.

The IEEE Standard Glossary of Software Engineering Terminology [6] defines
a test oracle as: “any means of determining whether a system or component’s
behaviour is consistent with its specification.”

In Poutakidis et al.’s work, the agent platform is modified so that the debug-
ging agent receives copies of all messages sent within the system. This debugging
agent then raises an alert if a sent message does not follow one of the specified
protocols, or if a protocol does not reach a specified end state. These are the two
possible errors that can arise with respect to the agent interactions.

We use the infrastructure of Poutakidis et al. to collect information regard-
ing our protocol graph interaction coverage criteria. This information can be
collected by an independent observer. For the plan-graph coverage criteria, in-
formation must be known about the inner details of the participants. In current
work, we are adapting Zhang et al.’s automated unit test framework [16] to
measure plan-graph coverage criteria.

3.1 Petri-Net Representation for Protocols

Poutakidis et al. systematically translate AUML protocol specifications into
Petri Nets, and executing these as agents interact, are able to ascertain whether
the interaction is following a specified protocol.

A Petri Net is a bipartite graph containing two types of nodes: places and
transitions. Places are represented with circles, and transitions are represented
with rectangles (see Figure 5). Arcs connect transitions to places. The execution
semantics of Petri Nets specifies that tokens can be located at places. A transition
can be fired if all incoming places contain a token and the outgoing place is empty;
when the transition fires, a token is placed at all outgoing places.

Poutakidis et al. define Petri Nets with two kinds of places: state places and
message places. State places represent the state prior to a given message being
received, or end states. When a Petri Net instance is initialised by the debugger,
it has a token placed on its relevant message and state places. At each cycle
all Petri Net instances are fired to completion, and then retained until the next
cycle, when a token is added to the message place in the relevant Petri Nets.
Poutakidis et al. define mappings from protocols to Petri Nets to model the
possible protocol executions.

Figure 5(a) shows the Petri Net for the FIPA query protocol. When a query-if
message arrives, this is identified as a start message for this protocol, and a
new Petri Net instance is created. A token is placed in the query-if message
place, and the corresponding state place. The Petri Net is then executed allowing
the transition to fire producing a token on the outgoing state-place, P, as in
Figure 5(b). The Petri Net is now in a state where, when a token is placed
on either the agree or refuse message place, it can fire the relevant transition,
producing a token in either R or T.

The debugging agent contains a copy of every protocol (and its corresponding
Petri Net) used in the system. Each conversation held between a set of agents
must contain a conversation ID to allow placement of a message into the correct

44

query-if query-ref

agree refuse

{ 1 , 2 } { 6 }

{ 6 }{ 1 , 2 }

{ 1 } { 2 }

inform failure

P Q

R S

T U

V W X Y

(a)

query-if query-ref

agree refuse

{ 1 , 2 } { 6 }

{ 6 }{ 1 , 2 }

{ 1 } { 2 }

inform failure

Q

R S

T U

V W X Y

(b)

Fig. 5. An example of a Petri Net transformation.

Petri Net instance as there may be concurrent conversations. This requirement
is supported by the FIPA standard for agent communication [4].

Each time the debugging agent receives a copy of a message, it first confirms
whether the conversation ID corresponds to a current conversation. If not, it
creates a Petri Net for all protocols that contain the received message as their
initial message, initialises these appropriately, (as in Figure 5(a)). This is neces-
sary because it has no way of knowing which protocol the sending agent is using
if more than one protocol has that message as the initial message. The agent
maintains a set of Petri Net instances for each conversation, until it becomes
clear by a process of elimination, which protocol is being used.

If the message corresponds to an existing conversation, the debugging agent
places the message in the appropriate message-place of all the Petri Nets in
the set for the conversation. Those that do not have an appropriate place, or
where the message place does not enable a transition, are removed from the
set, because it is evident the conversation is not following this protocol. If the
set becomes empty, then this indicates a fault: the agents are not following any
known protocol. For example, if the Petri Net is in the state shown in Figure 5(b),
and the debugging agent received the message agree, then this transition could
fire. Alternatively, if the message was refuse, the transition could not fire because
there would be no token at Q. This indicates a fault.

The process continues until the conversation is deemed to have terminated.
If there are tokens remaining in any non-terminal places, this indicates a fault,
because the conversation did not follow the protocol to completion.

3.2 Measuring Coverage Using Petri Nets

We adapt Poutakidis et al.’s debugging agent to measure the coverage corre-
sponding to the protocol-based criteria defined in Section 2. First, we modify

45

the oracle such that, when a transition is fired, the transition is annotated with
the conversation ID, such as in Figure 5(a).This records all of the conversations
that take place using a particular protocol. In this example, conversations 1, 2,
and 6 from Figure 1 have been executed, and the appropriate transitions have
been annotated.

To measure message coverage, we analyse each message place in the Petri
Net and determine if at least one of its outgoing transitions has been fired (is
annotated). If so, the message has been sent. We can then use the coverage
measure definition from Section 2.1 to measure coverage.

To measure pairwise message coverage, we analyse each place in the Petri Net
that represents an intermediate state; that is, all non-message-places between two
transitions. If the incoming transition and at least one outgoing transition share
at least one conversation ID, then this pair was executed. For example, the place
P contains one incoming transition and two outgoing transitions. The incoming
arc and the left outgoing transition both contain the conversation IDs 1 and 2,
so this pair was executed in sequence. To show this is valid, we note that the
unfolding rules specified by Poutakidis et al. [13] result in a graph such that any
two places are linked by at most one path. As a result, each intermediate place
in a Petri Net must have at least one input and one output transition, and all
pairwise messages in a protocol are connected by exactly one such message place
in the Petri Net representation. If the incoming and outgoing message place
share a conversation ID, then the pair of messages must have been executed.

Finally, to measure message path coverage, we take each terminal place, and
determine if the incoming transition to that place was fired; that is, contains at
least one conversation ID. To demonstrate validity of this, we again note that
Poutakidis et al.’s unfolding rules result in a graph such that any two places are
linked by at most one path. Therefore, the final transition is unique to a path,
so if this transition has been fired, the entire path must have been executed.

3.3 Measuring Coverage for Concurrent Conversations

To monitor multiple conversations over a single protocol, Poutakidis et al. create
multiple instances of the same Petri Net. Using a single instance is not suitable
because, upon testing to see if a message is valid, the Petri Net may be in a
configuration such that the message is valid for another conversation, but not the
current one. Creating multiple instances of a Petri Net is suitable for monitoring
interactions, however, to measure coverage, the coverage information is spread
over multiple Petri Nets for a single protocol.

One solution is to collate all information from all Petri Nets after a test suite
has been executed. However, this is somewhat inefficient and cumbersome.

A more elegant solution is to adapt Poutakidis et al.’s solution to use coloured
Petri Nets [7]. Coloured Petri Nets extend Petri Nets by (among other things)
allowing tokens to carry a value. A transition can be fired only if all incoming
places contain a token with the same shared value.

To handle concurrent conversations, each protocol corresponds to a single
Petri Net in the test oracle. Rather than creating multiple copies for multiple
conversations, tokens are given values corresponding to the conversation ID. Us-
ing this, the test oracle receives a message containing a conversation ID, and can

46

determine at which place the correct token resides. From here, it can determine
whether the message is valid.

Taking this approach, tokens remain at the terminal places after conversa-
tions have terminated. Therefore, measuring path coverage is as simple as count-
ing the number of terminal places that contain at least one token, and dividing
this by the total number of terminal places.

4 Discussion and Conclusion

Due to the complex emergent behaviour that results from agents interacting
with each other, testing these interactions is an important part of the verification
and validation process. The fact that emergent behaviour in complex systems
is often difficult or impossible to identify without running these systems implies
that using human test engineers to generate test cases manually is not sufficient,
and automated test case generation techniques are required.

There has been recent work on automating test case generation such as the
Unit test framework of Zhang et al. [16] already mentioned in this work, and
the eCAT system associated with Tropos [10–12]. eCAT is a testing tool that
automates test case generation and execution. There are 4 test generation tech-
niques employed in eCAT: goal-oriented, which is manual test generation using
goal diagrams; ontology-based, where test cases are derived automatically from
the specification of the agent interaction ontology; random, where values for test
cases are randomly generated; and evolutionary mutation, where genetic algo-
rithms generate test cases measured by the quality goals of the system. Our
approach to testing correctness, and measuring thoroughness could complement
any of these test case generation techniques.

Whether test cases are generated automatically or manually, it is important
to have a measure of the quality of the set of test cases. This paper has pro-
vided criteria by which to measure this, showing the subsumption relationships
between these criteria, and discussing which we would practically aim for. We
suggest that testing all paths through the protocol, combined with all plan paths
between two messages achieves a high level of coverage, and is likely to be more
feasible than plan path coverage, which subsumes both of these criteria. This
paper has also shown how to collect these measurements as part of the testing
process. We consider that these coverage definitions provide a sound basis for
guiding test case generation where test cases are designed to give good coverage.

Low et al. [8] also consider test coverage criteria for BDI agents. They derive
two types of control-flow graphs: one with nodes representing plans and arcs
representing messages or other events that trigger plans; and one with nodes
representing statements within plans and arcs representing control-flow between
statements (a standard control-flow graph). Several coverage criteria are defined,
based on node, arc, and path coverage, as well as some based on the success or
failure of executing statements and plans. However, Low et al.’s work builds
graphs over the entire program, and thus does not facilitate the modular and
focused testing based on specific interaction protocols.

Low et al.’s coverage criteria relate to ours. Their plan graph is similar to
our plan graph, except that they consider plans that are not related to interac-
tion. As a result, their coverage criteria subsume ours; for example, their plan

47

path coverage subsumes our plan path coverage. However, their criteria do not
consider pairwise messages, as they do not focus on interaction protocols. Low
et al. do not define specific coverage measures or how to calculate them, nor do
they discuss test oracles.

The work in this paper is one step towards a larger goal: model-based au-
tomated testing for multi-agent systems. Future work will define methods for
automatically deriving test cases from design artifacts. With respect to interac-
tion testing, we will attempt to automatically generate complete test suites that
achieve message path coverage combined with pairwise internal path coverage,
using design documents as the models.

References

1. G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci. Multi-Agent Systems
Implementation and Testing. In the Fourth International Symposium: From Agent
Theory to Agent Implementation, Vienna, April 14-16 2004.

2. R. Coelho, U. Kulesza, A. von Staa, and C. Lucena. Unit testing in multi-agent
systems using mock agents and aspects. In Proc. of the 2006 Intl. Workshop on
Software Engineering for Large-Scale Multi-Agent Systems, pages 83–90, 2006.

3. S. DeLoach, L. Padgham, A. Perini, A. Susi, and J. Thangarajah. Using three
AOSE toolkits to develop a sample design. International Journal of Agent-Oriented
Software Engineering, 3(4):416–476, 2009.

4. FIPA. FIPA ACL message structure specification. Standard SC00061G, Founda-
tion for Intelligent Physical Agents, December 2002.

5. FIPA. FIPA query interaction protocol specification. Standard SC00027H, Foun-
dation for Intelligent Physical Agents, December 2003.

6. IEEE. IEEE standard glossary of software engineering terminology. Technical
Report 610.12-1990, Institute of Electrical and Electronic Engineers, 1990.

7. K. Jensen. Coloured Petri Nets. Springer Verlag, 1997.
8. C. Low, T. Y. Chen, and R. Ronnquist. Automated test case generation for BDI

agents. Autonomous Agents and Multi-Agent Systems, 2(4):311–332, 1999.
9. Glenford J. Myers. The Art of Software Testing. Wiley, New York, 1979.

10. C. Nguyen, A. Perini, and P. Tonella. Automated continuous testing of multi-
agent systems. In Fifth European Workshop on Multi-Agent Systems, Hammamet,
Tunisia, December 2007.

11. C. Nguyen, A. Perini, and P. Tonella. eCAT: a tool for automating test case gen-
eration and execution in testing multi-agent systems (demo paper). In Proceedings
of AAMAS-08, pages 1669–1670, Estoril, Portugal, 2008.

12. C. Nguyen, A. Perini, and P. Tonella. Ontology-based test generation for multi-
agent systems. In Proceedings of AAMAS-08, pages 1315–1320, 2008.

13. D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using
design artifacts: The case of interaction protocols. In Proceedings of AAMAS-02,
pages 960–967, 2002.

14. A. Spillner. Test criteria and coverage measures for software integration testing.
Software Quality Journal, 4(4):275–286, 1995.

15. A. Tiryaki, S. Öztuna, O. Dikenelli, and R. Cenk Erdur. SUNIT: A unit testing
framework for test driven development of multi-agent systems. In Agent-Oriented
Software Engineering VII, volume 4405 of LNCS, pages 156–173, 2006.

16. Z. Zhang, J. Thangarajah, and L. Padgham. Automated unit testing for agent sys-
tems. In 2nd International Working Conference on Evaluation of Novel Approaches
to Software Engineering, pages 10–18, Spain, July 2007.

48

Model-Driven Agents Development with ASEME

Nikolaos Spanoudakis
1,2

 and Pavlos Moraitis
2

1Technical University of Crete, Dept of Sciences, University Campus, 73100 Chania, Greece

nikos@science.tuc.gr
2Laboratory of Informatics Paris Descartes (LIPADE), Paris Descartes University,

45 rue des Saints-Pères, 75270 Paris Cedex 06, France

{Nikolaos.Spanoudakis, pavlos}@mi.parisdescartes.fr

Abstract. This paper shows how an AOSE methodology, the Agent Systems

Engineering Methodology (ASEME), uses state of the art technologies from the

Model-Driven Engineering (MDE) domain. We present the Agent Modeling

Language (AMOLA) Metamodels and the model transformation tools that we

developed and discuss our choices. Then, we compare ASEME with a set of

existing AOSE methodologies.

Keywords: Model Driven Engineering, Agent Oriented Software Engineering

1 Introduction

During the last years, there has been a growth of interest in the potential of agent

technology in the context of software engineering. A new trend in the Agent Oriented

Software Engineering (AOSE) field is that of converging towards the Model-Driven

Engineering (MDE) paradigm. Thus, a lot of well known AOSE methodologies

propose methods and tools for automating models transformations, such as Tropos

[18] and INGENIAS [4], but this is done only for some of the software development

phases.

This paper aims to show for the first time how the principles of MDE can be used

throughout all the software development phases and how the AOSE community can

use three different types of transformations in order to produce new models based on

previous models. This approach has been used by the Agent Systems Engineering

Methodology1 (ASEME) [21, 22] and shows how an agent-based system can be

incrementally modeled adding more information at each step using the appropriate

type of model.

ASEME offers some unique characteristics regarding the used MDE approach. It

covers all the classic software development phases (from requirements to

implementation) and the transition of one phase to another is done through model

transformations. It employs three transformation types, i.e. model to model (M2M),

1 From the ASEME web site the interested reader can download the tools and metamodels used

in this paper, URL: http://www.amcl.tuc.gr/aseme

49

text to model (T2M) and model to text (M2T). Thus, the analysts/engineers and

developers just enrich the models of each phase with information, gradually leading to

implementation. Moreover, the design phase model of ASEME is a statechart [7], a

modeling paradigm well known to engineers, which can be instantiated using a

variety of programming languages or an agent-oriented framework.

This paper presents the ASEME process showing the models transformations

between the different development phases. The models that are used by ASEME are

defined by the Agent Modeling Language (AMOLA, a first version is presented in

[23]). Section two provides a background on metamodeling and models

transformation followed by the definition of the AMOLA metamodels in section

three. The ASEME MDE process is presented in section four discussing the used

transformation tools. An overview of the related work and a brief discussion of our

findings conclude the paper in section five.

2 Metamodeling and Models Transformation

Model driven engineering relies heavily on model transformation [20]. Model

transformation is the process of transforming a model to another model. The

requirements for achieving the transformation are the existence of metamodels of the

models in question and a transformation language in which to write the rules for

transforming the elements of one metamodel to those of another metamodel.

In the software engineering domain a model is an abstraction of a software system

(or part of it) and a metamodel is another abstraction, defining the properties of the

model itself. However, even a metamodel is itself a model. In the context of model

engineering there is yet another level of abstraction, the metametamodel, which is

defined as a model that conforms to itself [10].

There are four types of model transformation techniques [12]:

• Model to Model (M2M) transformation. This kind of transformation is used for

transforming a type of graphical model to another type of graphical model. A M2M

transformation is based on the source and target metamodels and defines the

transformations of elements of the source model to elements of the target model.

• Text to Model (T2M) transformation. This kind of transformation is used for

transforming a textual representation to a graphical model. The textual

representation must adhere to a language syntax definition usually using BNF. The

graphical model must have a metamodel. Then, a transformation of the text to a

graphical model can be defined.

• Model to Text (M2T) transformations. Such transformations are used for

transforming a visual representation to code (code is text). Again, the syntax of the

target language must be defined along with the metamodel of the graphical model.

• Text to Text (T2T) transformations. Such transformations are used for

transforming a textual representation to another textual representation. This is

usually the case when a program written for a specific programming language is

transformed to a program in another programming language (e.g. a compiler).

50

In the heart of the model transformation procedure is the Eclipse Modeling

Framework (EMF, [2]). Ecore [2] is EMF’s model of a model (metamodel). It

functions as a metametamodel and it is used for constructing metamodels. It defines

that a model is composed of instances of the EClass type, which can have attributes

(instances of the EAttribute type) or reference other EClass instances (through the

EReference type). Finally, EAttributes can be of various EDataType instances (such

are integers, strings, real numbers, etc).

A similar technology, the Meta-Object Facility (MOF), is an OMG standard [14]

for representing metamodels and manipulating them. MOF is older than EMF and it

influenced its design. However, the EMF meta-model is simpler than the MOF meta-

model in terms of its concepts, properties and containment structure, thus, the

mapping of EMF’s concepts into MOF’s concepts is relatively straightforward and is

mostly 1-to-1 translations [5]. EMF is also used today by a large open source

community becoming a de facto standard in MDE.

3 The AMOLA Metamodels

System Actor Goal model (SAG)

The SAG model is a subset of the Actor model of the Tropos ecore model [27].

Tropos is, on one hand, one of the very few AOSE methodologies that deal with

requirements analysis, and, on the other hand it borrows successful practices from the

general software engineering discipline. This is why we have been inspired by

Tropos. The reason for not using the Tropos diagrams as they are is that they provide

more concepts than the ones used by AMOLA as they are also used for system

analysis. However, as we will show later, AMOLA defines more well-suited diagrams

for system analysis. Thus, the AMOLA System Actors Goals diagram is the one that

appears in Figure 1(a) employing the Actor and Goal concepts. The actor references

his goals using the EReference my_goal, while the Goal references a unique depender

and zero or more dependees. The reader should notice the choice to add the

requirements EAttribute of Goal where the requirements per goal information is

stored.

Use case model (SUC)

In the analysis phase, the analyst needs to start capturing the functionality behind the

system under development. In order to do that he needs to start thinking not in terms

of goal but in terms of what will the system need to do and who are the involved

actors in each activity. The use case diagram helps to visualize the system including

its interaction with external entities, be they humans or other systems. It is well-

known by software engineers as it is part of the Unified Modeling Language (UML).

In AMOLA no new elements are needed other than those proposed by UML,

however, the semantics change. Firstly, the actor “enters” the system and assumes a

role. Agents are modeled as roles, either within the system box (for the agents that are

to be developed) or outside the system box (for existing agents in the environment).

51

Human actors are represented as roles outside the system box (like in traditional UML

use case diagrams). This approach aims to show the concept that we are modeling

artificial agents interacting with other artificial agents or human agents. Secondly, the

different use cases must be directly related to at least one artificial agent role.

The SUC metamodel containing the concepts used by AMOLA is presented in

Figure 1(b). The concept UseCase has been defined that can include and be included

by other UseCase concepts. It interacts with one or more roles, which can be Human

roles (HumanRole) or Agent roles (SystemRole).

(a)

(b)

Fig. 1. The AMOLA SAG (a) and SUC (b) metamodels

Role model (SRM)

An important concept in AOSE is the role. An agent is assumed to undertake one or

many roles in his lifetime. The role is associated with activities and this is one of the

main differences with traditional software engineering, the fact that the activity is no

longer associated with the system, rather with the role. Moreover, after defining the

capabilities of the agents and decomposing them to simple activities in the SUC

model we need to define the dynamic composition of these activities by each role so

that he achieves his goals. Thus, we defined the SRM model based on the Gaia Role

model [29]. Gaia defines the liveness formula operators that allow the composition of

formulas depicting the role’s dynamic behavior. However, we needed to change the

role model of Gaia in order to accommodate the integration in an agent’s role the

incorporation of complex agent interaction protocols (within which an agent can

assume more than one roles even at the same time), a weakness of the Gaia

methodology. The AMOLA SRM metamodel is presented in Figure 2(a). The SRM

metamodel defines the concept Role that references the concepts:

• Activity, that refers to a simple activity with two attributes, name (its name) and

functionality (the description of what this activity does),

• Capability that refers to groups of activities (to which it refers) achieving a high

level goal, and,

• Protocol. The protocol attributes name and participant refer to the relevant items

in the Agent Interactions Protocol (AIP) model. This model is not detailed here-in.

It is used for identifying the roles that participate in a protocol, their activities

within the protocol and the rules for engaging (for more details consult [24]).

The Role concept also has the name and liveness attributes (the first is the role

name and the second its liveness formula). The reader should note the functionality

52

attribute of the Activity concept which is used to associate the activity to a generic

functionality. For example, the “get weather information” activity can be related to

the “web service invocation” functionality (see [23], [25]).

Intra-agent control model (IAC)

In order to represent system designs, AMOLA is based on statecharts, a well-known

and general language and does not make any assumptions on the ontology,

communication model, reasoning process or the mental attitudes (e.g. belief-desire-

intentions) of the agents, giving this freedom to the designer. Other methodologies

impose (like Prometheus or INGENIAS [8]), or strongly imply (like Tropos [8]) the

agent mental models. Of course, there are some developers who want to have all these

things ready for them, but there are others who want to use different agent paradigms

according to their expertise. For example, one can use AMOLA for defining Belief-

Desire-Intentions based agents, while another for defining procedural agents [21].

The inspiration for defining the IAC metamodel mainly came from the UML

statechart definition. Aiming to define the statechart using the AMOLA definition of

statechart [26], the IAC metamodel differs significantly from the UML statechart.

However, a UML statechart can be transformed to an IAC statechart although some

elements would be difficult to define (UML does not cater for transition expressions

and association of variables to nodes and uses statecharts to define a single object’s

behaviour). Thus, the IAC metamodel, which is presented in Figure 2(b), defines a

Model concept that has nodes, transitions and variables EReferences. Note that it also

has a name EAttribute. The latter is used to define the namespace of the IAC model.

The namespace should follow the Java or C# modern package namespace format. The

nodes contain the following attributes:

• name. The name of the node,

• type. The type of the node, corresponding to the type of state in a statechart,

typically one of AND, OR, BASIC, START, END (see [7]),

• label. The node’s label, and

• activity. The activity related to the node.

Nodes also refer to variables. The Variable EClass has the attributes name and type

(e.g. the variable with name “count” has type “integer”). The next concept defined in

this metamodel is that of Transition, which has four attributes:

• name, usually in the form <source node label>TO<target node label>

• TE, the transition expression. This expression contains the conditions and events

that make the transition possible. Through the transition expressions (TEs) the

modeler defines the control information in the IAC. TEs can use concepts from an

ontology as variables. Moreover, the receipt or transmission of an inter-agent

message can be used (in the case of agent interaction protocols). For the formal

definition of the TE and some examples see [21] or [24].

• source, the source node, and,

• target, the target node.

53

(a)

(b)

Fig. 2. The AMOLA SRM (a) and IAC (b) metamodels.

4 The ASEME Model-Driven Process and Tools

ASEME is described in detail in [21]. It is a complete process incorporating all the

traditional software engineering methodology phases, however, using the SPEM 2.0

process metamodel [17] it can be modified to provide an agile process. Figure 3, a

screenshot from the EPF2 modeling tool, shows on the left side the ASEME method

library and its various properties. From top to bottom the most important are the:

• Work Product Kinds, we have defined two product kinds, models (graphical

models, e.g. SAG, SUC, etc) and text (textual representation, e.g. a computer

program).

• Role sets, where the different human actors implicated in the software

development process are identified.

• Tools, the various tools used in the process, in this case the transformation tools.

• Processes, can be delivery processes, which provide the project manager with an

initial project template, showing the project milestones with the work products to

be delivered and needed resources, or capability patterns that allow project

managers to use one or more method libraries to compose their project-specific

process.

In Figure 3, the reader can see two defined capability patterns, the first named

ASEME and containing the six software development phases, and a more compact

one, the ASEME MDE process where the model-driven development process for a

single agent system is depicted. This process shows the nine tasks needed for

developing an agent-based system:

2 The Eclipse Process Framework (EPF) aims at producing a customizable software process

engineering framework. URL: http://www.eclipse.org/epf/

54

Fig. 3. The ASEME MDE Process

1. Edit SAG model. The business consultant of the software development firm

identifies the actors involved in the system to be along with their goals.

2. SAG2SUC. An automated task, as the reader can see in the figure this task has only

a mandatory input model (SAG) and an output model (SUC). It creates an initial

SUC model based on the previously created SAG model.

3. Refine Use Cases. The analyst works on the SUC model and refines the general use

cases using the include relationship. He/she also identifies which actors will be

implemented defining them as human or artificial agent actors. The overall system

design is enriched by identifying the tasks that have to be carried out by the actors.

4. SUC2SRM. An automated task, it has only a mandatory input model (SUC) and an

output model (SRM). It creates an initial SRM model based on the previously

created SUC model.

5. Refine the SRM model. The analyst works on the SRM model by defining the

liveness formulas that will describe the dynamic compilation of the previously

identified tasks.

6. SRM2IAC. An automated task, it has only a mandatory input model (SRM) and an

output model (IAC). It creates multiple initial IAC models based on the previously

created SRM model, one for each role.

7. Refine the IAC model. The designer works on each IAC model by defining the

conditions and/or events that will enable the transitions from one task to the other.

8. IAC2JADE. An automated task, it has only a mandatory input model (IAC) and an

output model (Java JADE Agent and Behaviours code). It creates a JADE Agent

class and multiple JADE Behaviour classes for each IAC model.

9. Write SimpleBehaviour action methods. The programmer writes code only for the

JADE SimpleBehaviour class descendants’ action methods.

55

ASEME M2M Transformation Tools (SAG2SUC and SUC2SRM)

For model to model (M2M) transformation the Atlas Transformation Language [11]

was used (ATL). Another alternative to ATL would be the Query-View

Transformation (QVT) language [16], however, ATL was better documented on the

internet with a user guide and examples, while the only resource located for QVT was

a presentation. Therefore, and as the requirements of both languages (ATL and QVT)

are the same the decision was to choose the better documented one. Such

transformations are the SAG2SUC and SUC2SRM.

The ATL rules for the SAG2SUC transformation are presented in Figure 4. At the

top of the right window, the IN and OUT metamodels are defined followed by rules

that have an input model concept instance and one or more output concept model

instances. The first rule (Goal2UseCase) takes as input a SAG Goal concept and

creates a SUC UseCase concept copying its properties. The ATL is declarative and

has catered for the cases that a concept references another. The depender and

dependee references of a SAG Goal are both transformed to participator references of

the SUC UseCase. The ATL engine searches the rules to find one that transforms the

types of the EReference (i.e. the SAG Actor concepts to a SUC Role). It finds the

second rule (Actor2Role) and fires it, thus creating the EReference type objects and

completing the first rule firing. At the left hand side of Figure 4 the reader can see the

files relevant to this transformation: a) the SAG.ecore and SUC.ecore metamodel

files, b) the SAG2SUC.atl rules file, c) the SAGModel.xmi file containing the SAG

model in XML format and d) the SUCModelInitial.xmi file containing the

automatically derived initial SUC model.

ASEME T2M Transformation Tool (SRM2IAC)

The trick in text to model transformations is to define the meta-model of the text to be

transformed. This can be done in the form of an EBNF syntax (for languages with a

grammar) or through string manipulation. Efftinge and Völter [3] presented the xtext

framework in the context of the Eclipse Modeling Project (EMP3). According to their

work, an xText grammar is a collection of rules. Each rule is described using

sequences of tokens. Tokens either reference another rule or one of the built-in tokens

(e.g. STRING, ID, LINE, INT). A rule results in a meta type, the tokens used in the

rule are mapped to properties of that type. xText is used to automatically derive the

meta model from the grammar. Then a textual representation of a model following

this grammar can be parsed and the meta-model is automatically generated.

Rose et al. [19] described an implementation of the Human-Usable Textual

Notation (HUTN) specification of OMG [15] using Epsilon, which is a suite of tools

for MDE. OMG created HUTN aiming to offer three main benefits to MDE: a) a

generic specification that can provide a concrete HUTN language for any model, b)

the HUTN languages to be fully automated both for production and parsing, and, c)

the HUTN languages to conform to human-usability criteria. The HUTN

implementation automates the transformation process by eliminating the need for a

3 The Eclipse Modeling Project provides a unified set of modeling frameworks, tooling, and

standards implementations, URL: http://www.eclipse.org/modeling/

56

grammar specification by auto defining it accepting as input the relevant EMF meta-

model. This is the main reason for choosing HUTN for ASEME.

A T2M transformation is used for transforming a liveness formula to a statechart

(IAC model). We first use an iterative algorithm (see [26]) that creates the HUTN

model, which is then automatically transformed to an IAC model. The usage of the

HUTN technology also helped a lot in debugging the algorithm as the output was in

human-readable format.

Fig. 4. The eclipse ATL project for the SAG2SUC and the SUC2SRM M2M transformations.

ASEME M2T Transformation Tool (IAC2JADE)

The last transformation type used in the ASEME process is M2T. The platform

independent IAC model must be transformed to a platform dependent one and to

executable code. We used the Xpand language offered by the Eclipse. Another

commonly used M2T transformation language (in EMP) is the Java Emitter

Templates (JET). JET uses JSP-like templates, thus it is easy to learn for developers

familiar with this technology.

The advantages of Xpand are the fact that it is source model independent, which

means that any of the EMP parsers can be used for common software models such as

MOF or EMF. Its vocabulary is limited allowing for a quick learning curve while the

integration with Xtend allows for handling complex requirements. Then, EMP allows

for defining workflows that allow the modeler to parse the model multiple times,

possibly with different goals.

In ASEME, the developer uses the IAC2JADE tool that automatically generates

the message receiving and sending behaviours and the composite behaviours that

coordinate the execution of simple behaviours. Thus, the user just needs to program

the action methods of simple behaviours.

57

5 Related Work and Conclusion

A number of works in AOSE have introduced concepts and ideas from the model-

driven engineering domain. Most of them just introduce an MDE technique for

transforming one of their models to another in one phase, e.g. from a Tropos plan

decomposition diagram to a UML activity diagram in [18] and from a BDI (Belief-

Desire-Intention) representation in XML format to JACK platform code in [9].

Almost all AOSE methodologies define a single, usually huge metamodel covering all

the requirements, analysis and design phases [1].

Other works aim to create a single meta-model that can be used by different AOSE

methodologies in a specific phase, like in [6], where the authors defined a meta-model

(PIM4Agents) that can be used to model MAS in the PIM level of MDA, and in [1],

where the authors try to envisage a unifying MAS metamodel. Finally, a more recent

work [4] presents an algorithm to generate model transformations by-example that

allows the engineer to define himself the transformations that he wants to apply to

models complying with the INGENIAS metamodel.

ASEME furthers the state of the art by being the first AOSE methodology to

propose a model-driven approach covering all the development phases and

incorporating three types of transformations (M2M, T2M, M2T). Moreover, in

ASEME the information to be added at each phase is clear and the models used are

common in the software engineering community, which means that any engineer can

quickly adapt to the ASEME process. Model transformations are automated

throughout the software development process. In the previous sections, we presented

the formal definition of the AMOLA metamodels, which have been inspired by

previous works but are original in the way that they uniquely extend those works and

insert new semantics, thus assisting the ASEME process. We also presented the

models transformations that occur in the different phases of ASEME. The platform

independent model of ASEME, i.e. the IAC, is a statechart which can be transformed

to a platform specific model in C++ or Java (using commercial CASE tools) or in the

JADE agent platform. This is another originality of ASEME, it is the first AOSE

methodology to provide a PIM model that is compatible with existing software tools

(i.e. the statechart) giving multiple platform choices to the developers.

ASEME has been successfully used for the development of two real world systems

([13], [25]). Table 1 shows a quick comparison of ASEME with existing AOSE

methodologies. It has been inspired by a similar table in [28] from which we use some

criteria (rows). The first row shows the levels of abstraction supported by the

methodologies. Only ASEME maintains three levels of abstraction throughout the

software development phases. Some do not support abstraction at all, while others do

a phase-based abstraction (e.g. define agent interactions and roles in the analysis

phase and focus in the specific agent development in the design phase). The next row

shows the MDE support for the different software development phases. ASEME

supports all the phases, many methodologies support some phases and INGENIAS

allows the modeler to define his own transformations. The third row shows if a

methodology covers all the software development phases, i.e. requirements analysis,

system analysis, design, implementation, verification and optimization. The forth row

58

shows what kind of agents each methodology supports and the fifth row indicates

which methodologies define an intra-agent control model that allows an agent to

coordinate his capabilities, thus supporting a modular development approach. Finally,

the sixth row shows that ASEME is the only methodology to use a uniform

representation of inter-agent protocols and the intra-agent control allowing for an easy

integration of protocols in an agent specification. In Table 1 “n/a” means not

applicable.

Table 1. ASEME compared with existing AOSE methodologies.

Methodology ASEME Gaia Tropos INGENIAS PASSI Prometheus MaSE

Abstraction
all
phases

n/a
phase-
based

n/a
phase-
based

phase-based n/a

MDE phases all n/a some
defined by
the modeler

some n/a some

Phases coverage all some all some some some some

Agent nature
hetero-
geneous

hetero-
geneous

BDI-like
agents

agents with
goals and
states

hetero-
geneous

BDI -like
agents

not
specified

Intra-agent control (IAC) yes no no no no no yes

Uniform representation
of IAC and inter-agent
protocols

yes no no no no no no

References

1. Bernon, C., Cossentino, M., Pavon, J.: Agent Oriented Software Engineering. The Knowl.

Eng. Rev., 20, 99--116 (2005)

2. Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A., Grose, T.J.: Eclipse

Modeling Framework. Addison Wesley (2003)

3. Efftinge, Sven and Völter, Markus. oAW xText: A framework for textual DSLs. In Eclipse

Summit 2006 Workshop: Modeling Symposium (2006)

4. García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model Transformations for

Improving Multi-agent Systems Development in INGENIAS. In: 10th International

Workshop on Agent-Oriented Software Engineering (AOSE'09), Budapest Hungary (2009)

5. Gerber, A., Raymond, K.: MOF to EMF: there and back again. In: Proceedings of the 2003

OOPSLA workshop on eclipse technology eXchange (eclipse '03), pp. 60--64. ACM Press,

New York (2003)

6. Hahn, C., Madrigal-Mora, C., and Fischer, K.: A platform-independent metamodel for

multiagent systems. J. Auton. Agents and Multi-Agent Syst., 18, 2, 239--266 (2009)

7. Harel, D., Kugler, H.: The RHAPSODY Semantics of Statecharts (Or on the Executable

Core of the UML). In: Integration of Software Specification Techniques for Applications in

Engineering. LNCS, vol. 3147, pp. 325--354. Springer, Heidelberg (2004)

8. Henderson-Sellers B. and Giorgini P.: Agent-Oriented Methodologies. Idea Group

Publishing (2005)

9. Jayatilleke, G.B., Padgham, L., and Winikoff, M.: A model driven component-based

development framework for agents. Int. J. Comput. Syst. Sci. Eng. 20, 4, 273--282 (2005)

10. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Formal Methods for

Open Object-Based Distributed Systems (FMOODS 2006). LNCS, vol. 4037, pp. 171--185.

Springer, Heidelberg (2006)

59

11. Jouault, F. and Kurtev, I.: Transforming models with ATL. In: Satellite Events at the

MoDELS 2005 Conference. LNCS, vol. 3844, Springer-Verlag, pp. 128--138 (2006)

12. Langlois, B., Jitia, C.E., Jouenne, E.. DSL Classification. In 7th OOPSLA Workshop on

Domain-Specific Modeling, URL: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.133.136 (2007)

13. Moraitis, P., Spanoudakis N.. Argumentation-based Agent Interaction in an Ambient

Intelligence Context. IEEE Intell. Syst. 22, 6, 84--93 (2007)

14. Object Management Group: Meta Object Facility (MOF) Core Specification (2001)

15. Object Management Group: Human-Usable Textual Notation V1.0 (2004)

16. Object Management Group: Revised Submission for MOF 2.0 Query/View/Transformations

RFP, OMG Document ad/2005-07-01 (2005)

17. Object Management Group: Software & Systems Process Engineering Meta-Model

Specification, version 2.0 (2008)

18. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:

Agent-Oriented Software Engineering VI. LNCS, vol. 3950, pp. 167--178. Springer (2006)

19. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing models with the Human-

Usable Textual Notation. In: 11th International Conference on Model Driven Engineering

Languages and Systems (MoDELS). LNCS, vol. 5301, pp. 249--263. Springer (2008)

20. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-Driven

Software Development. IEEE Softw. 20(5), 42--45 (2003)

21. Spanoudakis, N.: The Agent Systems Engineering Methodology (ASEME). Philosophy

Dissertation. Paris Descartes University, Paris, France, URL: http://users.isc.tuc.gr/

~nispanoudakis/SpanoudakisThesis.pdf (2009)

22. Spanoudakis N., Moraitis, P.: The Agent Systems Methodology (ASEME): A Preliminary

Report. In: Proc. of the 5th European Workshop on Multi-Agent Systems (EUMAS'07),

Hammamet, Tunisia, December 13 - 14 (2007)

23. Spanoudakis, N. and Moraitis, P.: The Agent Modeling Language (AMOLA). In:

Proceedings of the 13th International Conference on Artificial Intelligence: Methodology,

Systems, Applications (AIMSA 2008), LNCS, vol. 5253, pp. 32--44. Springer (2008)

24. Spanoudakis, N. and Moraitis, P.: An Agent Modeling Language Implementing Protocols

through Capabilities. In: Proceedings of The 2008 IEEE/WIC/ACM Int. Conference on

Intelligent Agent Technology (IAT-08) , Sydney, Australia, December 9-12, (2008)

25. Spanoudakis N., Moraitis, P.: Automated Product Pricing Using Argumentation. In: Iliadis,

L.; Vlahavas, I.; Bramer, M. (Eds.), IFIP Advances in Information and Communication

Technology Book series, Vol. 296, Springer (2009)

26. Spanoudakis, N., Moraitis, P.: Gaia Agents Implementation through Models

Transformation. In: Proceedings of the 12th International Conference on Principles of

Practice in Multi-Agent Systems (PRIMA 2009), LNAI, vol. 5925, pp. 127--142 (2009)

27. Susi, A., Perini, A., Giorgini, P. and Mylopoulos, J.. The Tropos Metamodel and its Use.

Inform. 29, 4, 401--408 (2005)

28. Tran, Q.N.N., Low, G.C.: Comparison of ten agent-oriented methodologies. In [8] (2005)

29. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia

Methodology. ACM T. Softw. Eng. Meth. 12(3), 317--370 (2003)

60

Towards the automatic derivation of Malaca agents using

MDE*

Inmaculada Ayala, Mercedes Amor and Lidia Fuentes

E.T.S.I. Informática, Universidad de Málaga

{ayala,pinilla,lff}@lcc.uma.es

Abstract. The automatic transformation of software agent designs into

implementations for different agent platforms is currently a key issue in the

MAS development process. Recently several approaches have been proposed

using model driven development concepts to specify generic agent metamodels

and/or define a set of transformation rules from the design phase for different

agent implementation platforms. However, all these approaches propose

different sets of transformation rules for each target agent platform, thereby

making the integration of new agent platforms more difficult. In this paper we

propose to transform PIM4Agents, a generic agent metamodel used at the

design phase, into Malaca, an agent specific platform-neutral metamodel for

agents. With only one set of transformations it is possible to specify platform-

neutral agents and to generate a partial implementation in Malaca, which can be

executed on top of different FIPA compliant platforms.

Keywords: Agent Oriented Software Engineering, Model driven engineering,

Malaca, PIM4Agents, Code generation

1 Introduction

In order to make agent-based computing a widely accepted paradigm for the emerging

application areas, advanced development processes of software engineering should be

adopted. This process must be supported by agent development tools that alleviate the

complexity of programming with agent platforms (APs) by providing facilities to

express domain concepts at a higher level of abstraction.

Model-Driven Engineering (MDE) [1] is an approach for Software Development

that promotes the use of models and metamodels to formally represent domain

concepts. One important contribution of MDE is that a software system is obtained

through the transformation of different metamodels defined at different abstraction

layers. These transformations, defined by means of a model transformation language,

allow deriving a PSM (Platform-Specific Metamodel) from a PIM (Platform-

Independent Metamodel). MDE ideas can bring important benefits to the development

* This work has been supported by the Spanish Ministry Project RAP TIN2008-01942 and the regional

project FamWare P09-TIC-5231.

61

of Multi-Agent Systems (MAS) as shown in [2, 3, 8,16]. With MDE it is possible to

specify a MAS in a platform-independent model, focusing on the domain model, and

later transform it automatically to different design or implementation models,

bridging the traditional gap between design and implementation.

One recent and notable effort in this direction is [4]. This work proposes a PIM for

MAS (PIM4Agents) and a set of vertical transformations from this metamodel to

different AP models, concretely JADE and JACK. However, this work has some

drawbacks that we will address in this paper. Although PIM4Agents can be used in

theory to derive PSMs for any AP, in practice the DSL4MAS Development

Environment (DDE) tool [10] provided by the authors only supports the

transformation to JADE and JACK. This means that other APs which have emerged

recently such as Andromeda [5], or different versions of JADE (e.g. LEAP, Android)

are not currently covered by this proposal. But, what is the cost of including a new AP

in this proposal? It requires the definition of a new set of transformation rules, from

PIM4Agents into the metamodel of the new AP, and from the new AP metamodel

into code. This is a very complex task, sometimes impossible to perform properly in

this and in other approaches [6] due to: (i) the metamodel of the target AP must be

available, which is not always the case; (ii) sometimes the target metamodel is not

specified completely, and some mappings to the target metamodel are made in an ad-

hoc manner; (iii) this task also requires some expertise in a transformation language;

and (iv) also the transformations from the target AP metamodel to code have to be

implemented, requiring an depth knowledge of the target agent implementation

framework.

In order to bridge the gap from design to implementation, we previously defined a

set of transformations from different agent methodologies to Malaca, an agent model

able to be executed in different APs [13]. Although Malaca can be used as an agent

model at the detailed design phase, its model is also a PSM. Nevertheless, we had a

similar problem to [4], since we had to define different transformation rules to go

from different design models (e.g. Tropos) to Malaca. As a solution in [8] we

proposed to define a generic agent metamodel modelling the most commons elements

covered by the existing agent-methodologies. In this direction, and instead of defining

a new MAS metamodel, we studied the feasibility of using one of the works proposed

recently [4, 9]. Finally we decided to use PIM4Agents since this metamodel meets the

following requirements: (i) it is possible to represent concepts from different agent

types (e.g. BDI, reactive agents), (ii) it is easy to specify MAS for different domains;

(ii) the DDE tool helps to specify different views of MAS.

Therefore, as a solution for the automatic derivation of MAS to different APs, in

this paper we propose to transform specifications from PIM4Agents to Malaca.

Malaca applies aspect-oriented principles (AOSD†) to separate the distribution of

messages according to different transport services in a distribution aspect

(implemented as a plug-in), which reduces AP dependency inside the agent

architecture.

† Aspect-Oriented Software Development (AOSD) http://aosd.net/

62

The structure of this paper is as follows. Section 2 provides a brief overview of

MDE, and it introduces PIM4Agents and Malaca metamodels. Section 3 describes our

main contribution, by showing the transformation rules implemented in ATL to

transform agents from the PIM4Agents metamodel to Malaca and we illustrate how to

use them with an example. Section 4 outlines some of the problems and limitations of

our approach. Finally, Section 5 provides related work and Section 6 draws some

conclusions.

2 Background

In this section we introduce the concept of MDE and the two agents’ metamodels

used by our approach, the PIM4Agents and Malaca metamodels (MalacaMM).

2.1 Model Driven Engineering

MDE is an approach for Software Development where models are now first class

citizens of the software development process, and even the code is managed as a

model. The best known MDE initiative is the OMG initiative Model-Driven

Architecture (MDA). In MDA, PSMs are derived from PIMs of the upper abstraction

layer, by means of model transformations (i.e. how an output model is constructed

based on the elements of an input model).

An important advantage of the application of MDA is that model transformations

expressed in a well-defined model transformation language can be compiled and

executed, automating the process of constructing a target model for a given source

model. ATL (ATLAS Transformation Language) [7] is a model transformation

language. ATL provides ways to produce a set of target models from a set of source

models. Developed on top of the Eclipse platform, the ATL Integrated Environment

provides a number of standard development tools that aims to ease development of

ATL transformations. It also includes a library of ATL transformations.

2.2 PIM4Agents

Domain Specific Modelling Language for MultiAgent System (DSML4MAS) [10] is

an approach that tries to fill the gap between agent methodologies and agent-based

development tools by using MDE principles. This approach provides PIM4Agents,

which is a PIM for MAS, and a tool (DDE) that provides a graphical modelling

framework to design MAS. The PIM4Agents metamodel tries to include concepts

that are present in most agent architectures. It has several views: Multiagent view,

Agent view, Behavioural view, Organisation view, Role view, Interaction view and

Environment view. Since we are interested in deriving agent designs we will focus on

the Agent and the Interaction views. Fig. 1 shows the metamodel used by the agent

view.

63

Fig. 1: Metamodel reflecting agent aspect

In PIM4Agents, an agent is an autonomous entity capable of acting in the

environment, which can access a set of resources and perform some domain roles

derived from its collaboration with other agents. Agents can also perform a set of

Behaviors, which can be separated into a set of internal processes represented by Plan

elements. A Plan is composed by a set of Flow and Activity. Activity elements can be

simple (Task) or complex (StructuredActivity). In the interaction view metamodel

(Fig. 2) the main component is the Protocol, which represents the interaction between

a set of Actor. An Actor has a set of activeStates, which corresponds to MessageFlow,

and specifies how the exchange of messages is performed. A MessageScope defines

the Messages and the order in which these arrive.

Fig. 2: Partial metamodel reflecting interaction aspect

2.3 Malaca

Most existing agent architectures focus on the type of agent (BDI, reactive), but do

not provide direct support for handling and reusing properties and functionality

separately. This approach results in agent design and implementations being quite

complex, brittle and difficult to understand, maintain, and reuse in practice. The main

feature of the internal architecture of a Malaca [13] agent is that it represents

separately application-specific functions from extra-functional agent properties. This

separation improves the internal modularization of the agent architecture, which is

based on the composition of components and aspects, and contributes to enhance the

adaptation, reuse and maintenance of the software agent. The Malaca agent model is

used from the detailed design phase right through to implementation. At the detailed

design stage two XML-based domain-specific languages (MaDL and ProtDL) are

used to design the internal architecture of each agent of the system and its interaction

[13]. MalacaMM, which is partially given in Fig. 3, presents the concepts and

constructs available in MaDL to describe an agent architecture.

64

Fig. 3. (Partial view of) the Malaca Metamodel.

The AgentDescription provides a description of the agent architecture in view of

the agent functionality (the actions that an agent is able to perform described by

means of components) and the agent interaction (how the agent communicates with

other agents, which is provided by different aspects). The agent includes reusable

software components, which offer the set of core services, and also the application-

dependent functionality.

Fig. 4. (Partial view of) the protocol and process metamodel.

The way the agent interacts is described at the architectural level by a set of

aspects. Each aspect covers a different property of agent communication. Based on

the FIPA communication model, three issues are considered essential for an effective

communication: the use of an interaction protocol, a common language representation

format for the ACL and a MTS (Message Transport Service) to distribute messages.

In Malaca, each one is supplied by different aspects (coordination, representation and

distribution) decoupling these interaction issues. Specifically, the distribution aspect

copes with the use of MTS, facilitating the use of different AP just by plugging in the

agent architecture the aspect implementing a specific AP. Any interaction protocol

supported by the agent is controlled by a coordination aspect (class Coordination).

This aspect uses a description of the interaction protocol in ProtDL to coordinate

message interchange with the agent internal behaviour. The description of this aspect

also indicates the role played by the agent. The UML class diagram in Fig. 4 depicts

the metamodel of a protocol description in ProtDL (ProtDLMM), which includes a

description of the ACL messages interchanged during the interaction and a

description of the internal behavior of each participant role (RoleDescription

element). A finite state machine (FSM) is used to represent each participant role. Each

FSM is represented by a set of state transition rules enclosed by the

FiniteStateMachine class and each rule is defined in a StateTransitionRule class. The

transition from a state to another carries out the execution of the agent functionality

65

(defined in the StateTransitionRule by the attribute executeTransition). The

TransitionDescription class encloses the description of the set of agent actions that

are invoked during protocol execution using a Process model (Fig. 4). A

TransitionDescription carries out the description a ProcessComponent, which can be

either a single (or atomic) action, or a composite process composed of a set of

processes related by typical control construct.

3 From PIM4Agents to Malaca

MDE ideas and techniques enhance AOSE enabling reuse at the domain level. The

DSML4MAS approach applies MDE and using PIM4Agents as a PIM provides a set

of mapping functions to transform PIM4Agents model to JACK and JADE (see Fig.

5). However, one of the problems in this approach is found when trying to implement

the MAS for an AP different from these. This decision requires expert knowledge to

derive the appropriate mappings to the new AP. To solve this problem, we propose a

mapping from PIM4Agents to Malaca, an agent architecture that can be executed on

top of any AP using the appropriate plug-in. An overview of our approach can be seen

in Fig. 5 (right side).

Fig. 5: The overall picture: From PIM4Agents metamodel to Malaca metamodel.

With this approach we obtain the benefits of using a general platform independent

metamodel to specify the design of a MAS, and transform it (using the set of

transformation rules presented in this paper) automatically into a set of Malaca agents

in accordance with MalacaMM. The benefit of using Malaca as PSM is twofold: The

incorporation of new APs (i.e. PSMs) to this proposal has a lower cost since instead

of requiring the specification of PSM metamodels and coding a new set of

transformations rules, only the implementation of a new plug-in is needed; and the

implementation of a MAS for different APs does not require transforming and

implementing it for each AP, instead, it just involves selecting and using the

appropriate AP plug-in for each Malaca agent.

66

3.1 Transformation rules

In the MalacaMM two main parts can be distinguished: the specification of the agent

architecture (Fig. 3); and the specification of interaction protocols (Fig. 4), in MaDL

and ProtDL languages respectively. Table 1 summarizes main mappings between

PIM4Agents concepts and MaDL concepts. In the following section we will focus on

the transformation of coordination-related concepts in PIM4Agents to ProtDL

protocols descriptions. This section introduces this transformation, which requires

several ATL mapping rules.

Table 1. Process mapping between the PIM4Agents concepts and MaDL concepts

Target Source Explanation

AgentDescription Agent Each agent in PIM4Agents is mapped to an

Agent in MaDL.

Functionality InternalTask Each InternalTask from a Plan associated to an

Agent in PIM4Agents is a Functionality in

MaDL.

Coordination Protocol Each Protocol associated to an Agent means of a

Collaboration is mapped to a Coordination.

Distribution JADE-mts by default.

Representation FIPA-ACL by default.

The mapping rules included do not constitute an exhaustive list. We have only

included those that help to comprehend the most relevant model mappings required

for the use case scenario. Each mapping rule consists of (i) a head that defines which

concepts from the source metamodel are mapped to which concepts of the target

metamodel and (ii) a body that defines how attribute information of the target

metamodel is derived. Some mapping rules are applied automatically (simple ATL

rules), while the application of other rules depends on the previous application of

other mapping rules or must be invoked by other rules (ATL lazy rules).

MR 1: Head: PIM4Agents!Protocol → ProtDLMM!Protocol

 Body: Each Protocol from PIM4Agents is mapped to a Protocol in Malaca.

This rule maps a PIM4Agents!Protocol to a Protocol in Malaca with the same ID,

interchanged messages and actors.

MR2: Head: PIM4Agents!Actor → ProtDLMM!RoleDescription

 Body: Each Actor is mapped to a RoleDescription associated to a specific

Protocol

Each Actor in the PIM4Agents!Protocol is mapped to a RoleDescription in

ProtDLMM!Protocol. The RoleDescription has the same ID as the Actor. The Actor

activeStates (Fig. 2) are mapped to the states of the RoleDescription’s

FiniteStateMachine.

67

MR3: Head: PIM4Agents!MessageFlow, PIM4Agents!MessageFlow →

ProtDLMM!StateTransitionRule

 Body: From two MessageFlow this rule creates a StateTransitionRule that

begins in the first MessageFlow and ends in the second one.

This rule is linked to MR2 and it is used to derive the StateTransitionRule of a

FiniteStateMachine. The occurrence of two consecutive MessageFlows (for a given

Protocol and Actor) is mapped to a StateTransitionRule. The first MessageFlow is

mapped to the current state while the second one is mapped to the next state.

MR4: Head: PIM4Agents!MessageFlow, PIM4Agents!MessageFlow →

ProtDLMM!TransitionDescription

 Body: From two MessageFlow this rule creates a TransitionDescription that

begins in the first MessageFlow and ends in the second one.

This rule is linked to MR3 and it is very similar to MR3. The occurrence of two

consecutive MessageFlows is mapped to a TransitionDescription which describes a

message sending.

MR5: Head: PIM4Agents!Plan,String → ProtDLMM!RoleDescription

 Body: Creates a RoleDescription from a Plan and a String that is the name

for the Role.

This lazy rule maps a Plan (associated to a given Actor or Agent denoted by the String

that is passed as an argument) to RoleDescription, identified with the same String.

During its application, MR8 needs a special function (helper) to ignore

ReceiveMessage Activity (Malaca does not consider it as a Process but as a

MESSAGE InputType for a StateTranstionRule). Then the MR9 is applied.

MR6: Head: PIM4Agents!Activity, PIM4Agents!Activity →

ProtDLMM!StateTransitionRule

 Body: From two Activity this rule creates a StateTransitionRule that begins in

the first MessageFlow and ends in the second one.

This rule is very similar to MR4 but it considers Activities instead of MessageFlows to

generate StateTransitionRule(s) of the FiniteStateMachine.

MR7: Head: PIM4Agents!Activity, PIM4Agents!Activity → ProtDLMM!

TransitionDescription

 Body: From two Activity this rule creates a TransitionDescription that begins

in the first Activity and ends in the second one.

This rule maps an Activity (or a StructuredActivity) to a TransitionDescription. The

description of the TransitionDescription is derived from the application of the next

rules.

MR8: Head: PIM4Agents!InternalTask → ProtDLMM!ProcessComponent

 Body: Each InternalTask is mapped to a ProccesComponent that have an

AtomicProcess whose type is DoActionType.

The rule maps a PIM4Agents InternalTask of to a Malaca DoAction atomic process.

68

MR9: Head: PIM4Agents!Split → ProtDLMM!ProcessComponent

 Body: Each Split is mapped to a ProccesComponent that have a

CompositeProcess whose type is SplitType.

Each PIM4Agents StructuredActivity is mapped to a ProtDLMM CompositeProcess.

As an example, this rule maps Split to a ProccessComponent with a

CompositeProcess that is a Split. MR8 is used to map the BasicTasks of the

StructuredActivity.

MR10: Head: PIM4Agents!Protocol, PIM4Agents!Organization →

ProtDLMM!Protocol

 Body: Each Protocol which is from an Organization is mapped to a Protocol.

This rule maps each PIM4Agents Protocol within an Organization to a ProtDLMM

Protocol. The application of this rule generates a Protocol which includes a

RoleDescription which corresponds to a set of actions describing the behaviour of the

agent during the interaction. If there is no PIM4Agents Plan associated to the

protocol, then just the message interchanged is described (MR3).

3.2 Use case scenario

To illustrate the MDE process, the Conference Management System (CMS) case

study will be used. This case study was used and evaluated in our previous work [14]

and it was also used in the PIM4Agents work [4]. The design of the CMS system has

been derived from the DDE tool using a tutorial [15]. The full example consists of 7

diagrams but for simplicity we will only consider the diagrams shown in Fig. 6 and

Fig. 7, which corresponds to a protocol and a plan.

Fig. 6. PIM4Agents Protocol Diagram of the PaperSubmission protocol.

Fig. 6 shows the protocol diagram of the PaperSubmission protocol, which covers

the interaction between the Requester and Responder actors in the submission phase.

Requester sends a CFP that can be answered by Responders with a Propose or a

Refuse message. Fig. 7 depicts the plan HandleCFP, which is executed by the

Responder when it receives a CFP, and it decides whether to submit a paper or to

send a refuse message and relax. Fig. 8 presents a partial result of the application of

rules MR10, MR5, MR6 and MR7 (in this order) to the Responder actor in the

PaperSubmission protocol. After the application of the rule MR10 to the protocol

diagram of Fig. 6 (and related organization diagram), the rule MR5 is applied to the

HandleCFP plan (Fig. 7) and generates a ProtDL RoleDescription for the role

69

Responder. Rules MR6 and MR7 are also applied to the HandleCFP plan to derive the

states and StateTransitionRules of the FiniteStateMachine of the Responder.

Fig. 7. PIM4Agents Plan diagram for the Handle CFP plan.

Fig. 8. ProtDL Role description of the Requester role (in Paper Submission protocol).

4 Discussion

This section shows some comparative results between the code generated with DDE

tool and the configuration files generated by our approach, for the CMS case study.

Although we have defined a systematic mapping from PIM4Agents to Malaca, it is

not possible to generate a complete ProtDL specification since: (i) DDE does not

support the specification of significant message details (at least a rough description)

and protocol design features; and (ii) some typical fields of protocol specification

(such as the ontology used by the ACLMessage) are not supported either by the

PIM4Agents metamodel or by the tool (they are supported by different design

metamodels). In addition, some concepts related to the MAS social organization

cannot be mapped to Malaca (such as the Organization concept), because Malaca is

focused on the specification and configuration of the agents internal architecture.

Hence, some abstractions of PIM4Agents could not be mapped in Malaca; and some

concepts present in Malaca could not be generated from the PIM4Agents metamodel.

Then, the generated MaDL and ProtDL descriptions have to be completed by the

developer (using the Malaca editor [13]) before executing the agents.

This also happens in the implementations generated by the DDE tool (applying

transformations to JADE and JACK as target implementation APs). For the case

Message(cfp)/

Begin execution

Event(end)/

WritePaper execution

 Begin Write

paper End

70

study, which comprises the design of one protocol and two plans, the DDE tool

generates 22 Java classes (for the JADE implementation). The generated classes

provide the agent structure, and the developer has to complete the implementation

classes. Comparing both approaches, we consider that completing the Java classes

generated with DDE tool is more error prone than using the Malaca Agent

Development (MAD) tool to complete the configuration of the Malaca agents.

Whereas in DDE approach the developer has to deal with 22 classes, in the Malaca

approach only has to complete a single configuration file with the MaDL/ProtDL

specification, with the aid of the MAD tool.

On the other hand, the code generated with DDE is not optimized. For example, in

JADE several template classes encapsulating FIPA protocols are provided, but the

DDE generator does not consider these templates in the code generation. Malaca

offers similar template files for FIPA protocols, and the configuration files generated

are optimized using these templates. As a result, it is possible to reuse protocol

specifications in several case studies, avoiding the generation of code for the same

protocol once again. Also, it is possible to reuse some protocol information, such as

the ontology used, or the message content, for similar case studies, but in DDE this is

not possible. Hence, completing protocol implementation classes, scattered across

several classes, requires greater effort in the DDE approach.

5 Related Work

There are some approaches that apply MDE concepts to AOSE in different contexts.

The Gaia methodology [6] defines a specific mapping to JADE as PSM, but it is not

an automatic process. Different agent oriented methodologies, such as MaSE[17]

support a complete tool-aided life cycle process from early requirements to code

generation. Moreover, in some of them, such as Tropos[16] and INGENIAS[3], the

life-cycle is an MDE process. MDE is also approached in [5], which applies MDE for

mobile agents. It takes Agent-π, a metamodel for mobile devices, as PIM and

provides transformations to two mobile-specific PSMs, Andromeda and JADE-Leap.

Although the intention of these approaches was to cover the implementation phase,

they have the same disadvantages as those mentioned for the PIM4Agents approach:

(i) a different transformation is needed for every PSM; and (ii) the implementation of

agents in JADE and other OO agent architectures is difficult to maintain and reuse.

The problem is that normally the agent internal architecture consists of a collection of

highly-coupled objects, making it difficult to extend. Since different agent concerns

such as the agent domain-specific functionality are not very well modularized, each

time the agent needs to be upgraded, the developer must inspect the implementation

code, then change and re-compile it. An additional disadvantage of these approaches

is that they use their own agent metamodel (and not a generic one) in the design

phase. Recently, a proposal was made to define a generic agent metamodel,

FAML[18]. Unlike PIM4Agents model, which was defined from an AP, FAML is a

unified metamodel defined considering the concepts present in the metamodel of

several agent methodologies. However, it has no tool support yet.

71

6 Conclusion

This paper presents an MDE approach to developing MAS using the PIM4Agents

metamodel as PIM and Malaca as PSM, focusing on the external and internal

coordination of agents. Following an MDE approach we have defined mapping rules

to generate a set of MaDL/ProtDL files. From these, implementation details are added

and can be used to deploy and execute Malaca agents. The derivation of agents for

new APs is enhanced in this approach, since it is accomplished by simply selecting

the appropriate distribution aspects. In other approaches, this has to be done by

defining new agent platform metamodels, and the corresponding transformation rules.

We are currently integrating the mapping rules presented in this paper in MAD tool.

7 References

1. A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven Architecture–

Practice and Promise. Addison-Wesley Professional, April 2003.

2. F. Zambonelli, and A. Omicini, Challenges and Research Directions in Agent-Oriented

Software Engineering, Auton Agent Multi-Agent Syst (2004), 9:253–283.

3. J. Pavón, J. Gómez-Sanz and R. Fuentes, Model Driven Development of Multi-Agent

Systems, Proceedings of the ECMDA-FA conference, LNCS, 4066/2006

4. C. Hahn, C. Madrigal-Mora, and K. Fischer. A platform-independent metamodel for

multiagent systems, Auton Agent Multi-Agent Syst (2009) 18:239–266

5. Agüero, J., Rebollo, M., Carrascosa, C., and Julián, V. (2009). Agent Design Using Model

Driven Development. PAAMS’09, AISC 55, pp. 60–69.

6. Moraitis, P., & Spanoudakis, N. I. (2006). The Gaia2Jade process for multi-agent systems

development. Applied Artificial Intellige1nce, 20(2–4), 251–273.

7. ATL. http://www.eclipse.org/m2m/atl/

8. Amor M., Fuentes L. and Vallecillo A. Bridging the gap Between Agent–Oriented Design

and Implementation Using MDA, In AOSE 2004, LNCS 3382, pp. 93–108, 2005.

9. Beydoun, G., et al. Synthesis of a generic mas metamodel. In SELMAS 05. pp. 1–5.

10. Stefan Warwas, Christian Hahn. The DSML4MAS Development Environment, in Proc.
AAMAS 2009, pp. 1379-1380.

11. Paolo Busetta, et al, JACK Intelligent Agents - Components for IntelligentAgents in Java.
Tech. Rep. Agent Oriented Software 1998.

12. Bellifemine, F., Rimassa, G., Poggi, A., JADE - A FIPA-compliant Agent Framework. In
Proc. of PAAM 1999.

13. M. Amor and L. Fuentes. Malaca: A component and aspect-oriented agent architecture.
In Information and Software Technology 51 (2009) 1052–1065.

14. M. Amor, L. Fuentes, J. Valenzuela, Separating learning as an aspect in Malaca agents,
in: KES-AMSTA, LNCS 4953, 2008, pp.505-515.

15. DDE tool. http://sourceforge.net/apps/trac/dsml4mas/wiki
16. Susi, A., Perini, A., Mylopoulos, J. The Tropos Metamodel and its Use. Informatica 29,

401–408 (2005)

17. S. A. DeLoach and M. Wood, Developing Multiagent Systems with agentTool, in ATAL
2000. LNAI , 2001.

18. G. Beydoun, et al., FAML: A Generic Metamodel for MAS Development, IEEE
Transactions on Software Engineering, 99, pp. 841-863, 2009

72

ForMAAD: Towards A Model Driven Approach
For Agent Based Application Design

Zeineb Graja, Amira Regayeg, and Ahmed Hadj Kacem

ReDCAD Laboratory
Faculty of Economics and Management

University of Sfax, Tunisia
zeineb.graja@acm.org

{amira.regayeg,ahmed.hadjkacem}@fsegs.rnu.tn

Abstract. Current trends in multi-agent systems development show a
move towards adopting the Model Driven Architecture (MDA) approach
to improve the development process and the quality of the agent-based
software. Our work has two main contributions. First, it presents a refor-
mulation of the ForMAAD methodology in terms of the MDA paradigm
by using the AML language. Second, it proposes a transition of each
model to a formal language, TemporalZ that integrates linear temporal
logic to the Z notation, in order to guarantee a formal verification of
the models. Furthermore, we make extensions to the StarUML tool to
support the proposed models and use the transition rules. Our work is il-
lustrated by developing an agent-based solution for the air traffic control
problem.

Key words: MDA, AML language, formal methods, refinement,verification

1 Introduction

Current trends in Multi-Agent Systems (MAS) development show a move to-
wards adopting the MDA approach to improve the development process and
the quality of the agent-based software ([1], [2], [3], [4]). The basic motivation
of MDA is that it allows improvement of an application development process.
In fact, MDA suggests to use model transformation techniques to generate au-
tomatically PSM (Platform Specific Model) from PIM (Platform Independent
Model).

The work presented in this paper consists of a reformulation of ForMAAD
methodology, based on a formal framework and dedicated for the design of multi-
agent systems application. The goal is to enrich ForMAAD with a foreground
design based on a semi-formal language and allowing the use of the MDA trans-
formation techniques to automatically generate an executable code. For this
purpose, we have adopt the Agent Modeling Language (AML) ([5], [6]) as the
formalism for the models representing steps of the ForMAAD methodology.

In order to guarantee a formal verification of the design models, we propose to
translate the AML models of the foreground design to a background design which

73

uses a formal language TemporalZ [7] that integrates linear temporal logic into
the Z notation. The background design, enables us to use formal verification tools
supporting raw Z notation, such as Z/EVES [8], for verification purposes. Such
tools allow us to perform syntax, type and domain checking of our specification
and to reason about correctness by proving several properties. This background
design is described in [9] and [10] allowing a formal verified specification of an
agent based application.

This paper is structured as follows. Section 2 presents a fragment of the
AML meta-model. Section 3 describes the models proposed to cover the differ-
ent phases of the ForMAAD approach. The translation rules are presented in
section 4. Tools developed to support the use of the foreground design are de-
scribed in section 5. Section 6 concludes the paper and dress perspectives to our
work.

2 AML Meta-Model

The Agent Modeling Language (AML) ([5], [6]) is a semi-formal visual modeling
language for specifying, modeling and documenting systems that incorporate
features drawn from multi-agent systems theory. It is specified as an exten-
sion to UML 2.0 in accordance with major OMG modeling frameworks (MDA,
MOF, UML, and OCL). The current version of AML offers support for the ab-
straction of architectural and behavioral concepts associated with multi-agent
systems, i.e. ontologies, MAS entities, social aspects, behavior abstraction and
decomposition, communicative interactions, services, observations and effecting
interactions, mental aspects used for modeling mental attitudes of entities, MAS
deployment and agent mobility [5].

The AML meta-model is structured as packages according to the various
aspects of MAS abstractions: mental package, architecture package, behaviors
package, etc. In the reminder of this section, we will present, as an example, a
fragment of the architecture package and the mental one.

The architecture package defines the meta-classes used to model architectural
aspects of MAS, such as entities (agents, environment, ressources), social aspect,
ontologies, etc. Fig. 1 is a fragment of the AML meta-model extracted from the
architecture package. The mental package defines the meta-classes used to model
mental aspects of MAS, i.e. mental attitudes of autonomous entities, which rep-
resent their believes and goals. It defines also meta-classes which can be used to
model problem decomposition and complex problems, in particular representing
intentionality in use case models and goal-based requirements modeling. Fig. 2
is a fragment of the mental package.

3 ForMAAD: Towards a Model Oriented Approach for
MAS Design

The ForMAAD approach is based on two main phases. The first one is a spec-
ification phase in which the user requirements are described. The second one is

74

Fig. 1. An excerpt of the architecture pack-
age. [5]

Fig. 2. An excerpt of the mental package.
[5]

a design phase in which a detailed specification is derived based on a succession
of refinements of collective (inter-agents) and individual (intra-agent) behaviors.
In this section, we will review the ForMAAD steps and associate to them the
corresponding models.

3.1 Specification Phase

In this phase, we specify the requirements which correspond, for a society of
agents, to a common objective that must be achieved by these agents and the
environment in which the agents evolve. This phase is captured by the require-
ment specification model in which, each entity is modeled by a class, a society of
agent is modeled by an organization unit type, the environment is modeled by
an environment unit type and an objective is modeled by a decidable goal. The
common objective of an agent organization is expressed through a constraint
associated to this organization.

As an example, the requirement specification diagram in the air traffic control
application is illustrated by the Fig. 3. The class System models the agents’s envi-
ronment which is composed of an organization of planes (called Planes). This or-
ganization contains at least two planes and must achieve the goal SolveConflict .
The note attached to the class Planes is a constraint that corresponds to the
objective of the organization Planes which consists in solving each potential
conflict situation between two planes.

3.2 Design Phase

The ForMAAD design process follows seven refinement steps. The first step
defines a cooperation strategy for achieving the common objective. It consists
in decomposing the common objective into a set of sub-goals, called local goals.
The definition of an organization structure is performed into two steps. First,

75

Fig. 3. A requirement specification model example.

we identify the roles by grouping local goals; then, we relate them with suit-
able relationships. Simultaneously, we assign roles to agents. The relationships
between roles are translated at the agent level into organization links. Based
on these links, we identify the needed collective behaviour. Finally, we have to
define an appropriate individual behaviour for each agent. These steps will be
given in details in the following sections.

Cooperation Strategy Definition This step consists in a decomposition of
the common objective into local goals. In the foreground design, the cooperation
strategy is defined onto two levels: the first one allows the description of the
objective types and the decomposition relations between them using a class
diagram; the second allows the instantiation of the objective classes using an
object diagram. In the context of the air traffic application, the Fig. 4 shows the
decomposition of the objective SolveConflict .

Organization Structure Definition The organization structure is depicted
by the organization structure definition model composed of three diagrams: the
role identification diagram, the organization structure diagram and the prece-
dence order graph.

– Role identification diagram: this diagram describes the main roles needed
to achieve the local goals. It is derived automatically from the cooperation
strategy definition model by grouping local goals, instantiated from the same
class, together. For example, the negoWith1 and negoWith2 goals (Fig. 4)

76

Fig. 4. A cooperation strategy definition model example: class level (a) and instance
level (b).

are instances from the same goal class NegoWith. Thus, they are grouped to
form the role Negotiator (Fig. 5).

– Organization structure diagram: this diagram is created by instantiating the
roles identified in the previous diagram and creating the organization rela-
tions between them. In practice, we will identify common attribute values of
the local goals of different roles. A common attribute between two roles indi-
cates an organizational relation between them. As an example, the solConf
local goal and the negoWith1 local goal have two common attribute values
pl1 and pl2. Thus, an organization relationship between the solver role and
the negotiator role will be created (Fig. 5). Given the set of roles and the set
of relations between them, we will identify necessary agents and assign the
retained roles to them. Given the set of agents and their corresponding roles,
we can generate automatically the organization links between agents. In fact,
each organizational relation between two roles leads to an organizational link
between the agents having these roles. Fig. 5 shows an example of a complete
organization structure diagram. It depicts three roles: detector , negotiator

77

Fig. 5. An organization structure diagram example.

and solver with respective types Detector , Negotiator and Solver , two agents
: pl1 and pl2, three organizational relations: rorg1, rorg2 and rorg3 and three
organizational links ol1, ol2 and ol3.

– Precedence order graph: this activity diagram models the precedence order
between local goals and serves to facilitate the identification of the necessary
agents.

3.3 Collective Behaviour Definition

The collective behavior of the agents is defined according to their organizational
links. In fact, an organizational link established between two agents leads to
a sequence diagram describing the messages exchanged between them. In the
air traffic control application, the collective behaviour definition model (Fig. 6)
describes the negotiation protocol between two planes.

3.4 Individual Behavior Definition

The individual behavior definition model describes, with an activity diagram,
the behavior of each type of agent. The agent actions and the sent messages are
described with more details by a class diagram. Fig. 7 details some agent actions
as behaviour fragments.

4 Translation to TemporalZ
In order to verify some properties in our models, we propose to use formal verifi-
cation techniques. The formal verification is applied after each step of the design
methodology and is composed of two parts. The first part allows one to translate
automatically the models to the TemporalZ formal language. The second one con-
sists in verifying some theorems. The TemporalZ formal language was presented
in [7] and is the result of the integration of the temporal formulas into Z schemas.
This section presents the principals rules allowing translation and the theorems

78

Fig. 6. A sequence diagram modeling the negotiation protocol.

Fig. 7. An individual behaviour definition model.

79

to be proved. For space constraints, we show only some results of the transla-
tion of the requirement specification model and the cooperation strategy definition
one. More details can be found in [9].

4.1 Translation of the Requirement Specification Model

The translation of this model allows one to define the Z schemas modeling the
entities of the system and the environment of the agents. In the case of the
air traffic control, the requirement specification model leads to a collection of
Z schemas. For example, we mention the Plane schema describing a plane, the
Planes schema representing an organization of planes and the System schema
describing the environment.

Plane
speed : N
alt : N
route : Route
...

Planes
PL : FPlane

System
planes : Planes

4.2 Translation of the Cooperation Strategy Definition Model

The translation of the cooperation strategy definition model to TemporalZ com-
pletes the specification of type Formula [9] with the atomic formulas (local goals)
and leads to the implementation0 schema including System schema and contain-
ing declaration of variable L having the type FFormula (Variable L is the set of
the local goals). In addition, we generate the CoopStrategy theorem which guar-
antees that the common objective can be derived from the local goals (these
concepts are described in [9]).

Formula ::=
... | detectConflict〈〈Plane × Plane〉〉
| solConf 〈〈Plane × Plane〉〉
| negoWith1〈〈Plane × Plane〉〉
| negoWith2〈〈Plane × Plane〉〉

implementation0
System
L : FFormula

L = {detectConflict(av1, av2),
negoWith1(init , part), ...}
Eval(solveConflict(av1, av2)) = T
⇔ Eval(detectConflict(av1, av2)) = T
∧ Eval(resConflict(av1, av2)) = T
...

80

4.3 Translation of the Organization Structure Definition Model

As seen in the last section, the construction of the organization structure defi-
nition model requires four steps. After each step, we have to translate the cor-
responding part of the obtained model in order to prove the adequate theorem.

– Translation of the roles instances:
this transition is done after the identification and the instantiation of roles.
It leads to the generation of implementation1 schema describing the roles in
terms of their local goals. It includes the System schema and contains the
declaration of variable R typed FRole representing the system set of roles.
Moreover, it allows the generation of Completeness theorem. This theorem
states that each local goal belongs to a role, and the roles cover all local
goals [9].

– Translation of organization relations between roles:
this transition is done after the creation of the organization relation between
roles. It allows the generation of the implementation2 schema describing
the organizational relations in term of their participant roles. It includes
the System schema and contains the declaration of the variable Rorg typed
FOrgRelationship representing the set of organizational relations. We can
also generate the RoleParticipant theorem verifying that the organizational
relation participants cover the set of roles.

– Translation of the links with the stereotype play :
this translation is done after the role assignment step. It leads to the gen-
eration of the implementation3 schema describing the roles of each agent
according to a set of rules such as: ”each object oA with the stereotype <<
agent >> connected to an object oR with the stereotype << entity role >>
by a link with the stereotype << play >> leads to a variable oARoles typed
FRole in the implementation3 schema”. The RoleAssignement theorem is
also generated in order to verify that each role was assigned at least to one
agent.

– Translation of organization link between agents:
this transition is done after dressing the complete organization structure
definition model. It allows the generation of the implementation4 schema
describing the organizational links between agents. It includes the System
schema and contains the declaration of the variable organizationLink typed
FOrganizationLink representing the organizational links set.
The Instantiation1 and Instantiation2 theorems are also generated stating
that every organizational link instantiates an organizational relationship and
that every organizationa relationship is instantiated by an organizational
link.

4.4 Translation of the Collective and Individual Behavior Definition
Model

The translation of these models to TemporalZ is done according to the following
rules:

81

– Translation of the messages payloads:
classes with the stereotype << dm payload >> allow the description of mes-
sages exchanged between agents. Each one of these classes is characterized by
a performative representing the message name and a list of attributes repre-
senting the transmitted objects. The messages payloads lead to the creation
of a new type called Message whose values are the messages payloads per-
formatives.

Message ::= propose〈〈Solution〉〉 | accept〈〈Solution〉〉 |
reject〈〈Solution〉〉 | counterProposition〈〈Solution〉〉

– Translation of the behaviour fragments:
the behaviour fragments describe the actions performed by an agent. Each
behaviour fragment is characterized by a name and the set of actions. The
behaviour fragments lead to the definition of a new type called Action whose
values are the actions existing in these behaviour fragments.

Action ::= send〈〈Plane × Plane ×Message〉〉 |
receive〈〈Plane × Plane ×Message〉〉 |
perceive | performSolution〈〈Solution〉〉 | evaluateSolution〈〈Solution〉〉

– Translation of temporal constraints:
send and receive actions are constrained by temporal constraints given by
the user. These constraints will be inserted in the predicative part of the
implementation6 schema. Thus, constraints specified in the diagram of Fig. 6
leads to the implementation6 schema. We also generate the VerifSpec theo-
rem verifying that the obtained specification allows the achievement of the
initial common objective.

5 ForMAAD Tools

StarUML 1 is a UML modeling framework supporting the MDA approach. This
framework is characterized by its flexibility and its functionality extensibility.
Thus, StarUML allows adding new functions in order to satisfy the user’s re-
quirements.

In order to be adapted to the ForMAAD approach, we propose to extend
StarUML by (1) the insertion of a new approach in the approach part of StarUML
called ForMAAD approach that integrates the presented models and that can be
selected when launching StarUML ; (2) the extension of the UML profile part
by creating a new profile called ForMAAD that is a part of the AML profile
allowing the modification of the tool palette content for each diagram of the
ForMAAD approach; the addition of some JScript scripts allowing the automa-
tization of the model generation; (3) the addition of the Add − In COM object
developed under the NetBeans environment and allowing the transformation of

1 http://staruml/sourceforge.net

82

the generated models into LaTeX; and (4) the insertion of a new panel called
ForMAAD (figure 8) integrating some commands assisting the user to move
from one ForMAAD’s step to another and translating the resulting models
into TemporalZ.

Fig. 8. ForMAAD menu.

The generation of a LaTeX file from the ForMAAD models follows two steps.
The first step allows the creation of aUMLXMI file using the transformation tool
proposed by StarUML. The second step, consists on the application of a set of
transformations of the UMLXMI file in order to generate the LaTeX file. These
transformations implement the translation rules presented in the previous section
using some XSLT (eXtensible Styles Language Transformation) programs. Thus,
the LaTeX file presenting a formal specification of the designed application, can
be imported by the Z/EVES tool in order to prove the necessary theorems and
to guarantee the requirement satisfaction.

6 Conclusion

In this paper, we proposed a reformulation of the ForMAAD methodology in
terms of the MDA paradigm. Our main contribution consists in providing a set of
methodological hints which guide the design process and stressing the correctness
of the obtained design with respect to the requirements specification. Thus,
we defined two ground designs: in the foreground design, we present a model
oriented representation using AML and in the background design, we propose
the translation of each model of the foreground design into a formal language
called TemporalZ ([7]) that consists in the introduction of a temporal operators
in the Z schemas enabled us to make use of Z supporting tools, like Z/EVES

83

[8], for syntax and type checking, as well as reasoning about the correctness of
refinement steps.

As an example, we cited the air traffic control problem that allowed an illus-
tration of the proposed method. Indeed, we designed a decentralized agent-based
solution for conflict control in air traffic. The solution models a plane as an au-
tonomous agent able to detect potential conflicts. The effective resolution of a
conflict is the result of a negotiation process between planes.

The presented design process is supported by extending the StarUML tool
in order to define a ForMAAD profile and to integrate the proposed approach
with the five models. In this tool, we implemented the necessary rules allowing
the transition into TemporalZ and the generation of the required theorems in
order to be proved with the Z/EVES tool.

It is necessary to point out that these results, though original and promising,
constitute a first step in the development process of MAS. Thus, our perspective
consists in the pursuit of the proposed process in order to define a complete
model oriented approach allowing the code generation of the designed system
starting from the verified abstract specifications generated by ForMAAD.

References

1. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and Tools.
In: Agent-Oriented Methodologies. (2005) 236–276

2. Guessoum, Z., Jarraya, T.: Meta-Models and Model-Driven Architectures. In: the
AOSE TFG AgentLink3 meeting, Ljubljana (2005)

3. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Mod-
elling. In: Proceedings of 6th International Workshop AOSE 2005, Utrecht (2005)

4. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.P.: Model Driven Engineer-
ing for Designing Adaptive Multi-Agent Systems. In: International Workshop on
Engineering Societies in the Agents World (ESAW), Athens, Greece (2007)

5. Technologies, W.: AML 0.9 AML Specification. Technical Report 2004–12–20
(2004)

6. Trencansky, I., Cervenka, R.: Agent Modeling Language (AML): A Comprehensive
Approach to Modeling MAS. Informatica 29 (2005) 391–400

7. Regayeg, A., Hadj-Kacem, A., Jmaiel, M.: Specification and Verification of Multi-
Agent Applications using Temporal Z. In: 2004 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT 2004), 20-24 September 2004,
Beijing, China, IEEE Computer Society (2004) 260–266

8. Meisels, I., Saaltink, M.: The Z/EVES 2.0 Reference Manual. Technical Report
TR–99–5493–03e, ORA, Canada (1999)

9. Hadj-Kacem, A., Regayeg, A., Jmaiel, M.: ForMAAD: A Formal Method for Agent-
Based Application Design. Journal of Web Intelligence and Agent Systems 5 (2007)
216–334

10. Regayeg, A.: Approche Formelle de Développement de Systèmes Multi-Agents :
de la Spécification à la Conception. PhD thesis (2009)

11. Regayeg, A., Kallel, S., Hadj-Kacem, A., Jmaiel, M.: ForMAAD Method: An Ex-
perimental Design for Air Traffic Control. International Transactions on Systems
Science and Applications 1 (2006) 327–334

84

An architectural perspective on multiagent

societies?

Juan Manuel Serrano and Sergio Saugar

University Rey Juan Carlos, Madrid, Spain
juanmanuel.serrano@urjc.es sergio.saugar@urjc.es

Abstract. This paper attempts to explicate multiagent societies by ex-
ploiting the notion of software connector. From this architectural per-
spective, the social environment is structured in terms of a tree of social
interactions, viz. a composite connector which provides the context for
speech acts, invocations and observations, the three atomic interaction
mechanisms provided by the environment. The paper also shows how
to con�gure these social connectors for a particular application using a
UML pro�le. This overall approach is intended to achieve a better align-
ment of multiagent societies with mainstream software engineering, as
well as challenge some common architectural assumptions, namely the
application-independence of software connectors.

1 Introduction

Arguably, the most salient and distinctive feature of multiagent societies is repre-
sented by the social environment, viz. the software infrastructure that mediates
the interactions among agents and provide them with access to di�erent types of
resources. The social environment plays a role akin to the one played by middle-
ware in mainstream software engineering [11]. Unlike conventional middleware,
however, the social environment stands as a �rst-class design abstraction for
application developers [12].

Software architecture is a mature software engineering discipline [2, 1] that
also places signi�cant importance to the separation of concerns between interac-
tion and computation. In fact, component interactions are embodied in �rst-class
abstractions, namely software connectors [3]. Although multiagent systems have
already been approached several times from an architectural perspective [10, 9,
5], the notion of software connector has largely been omitted.

This paper attempts to alleviate this omission by providing a connector-based
account of social environments. Thus, section 2 puts forward four kinds of social
connectors, namely speech acts, invocations, observations and social interactions,
which represents di�erent kinds of interactions between agents and resources
through the social environment. From this perspective, programming the social
environment becomes a matter of de�ning the types of social connectors that
conforms to the application domain. Section 3 introduces an UML pro�le for the
design of these social connector types. The paper concludes with a discussion on
related and current work.
? Research sponsored by project TIN2006-15455-C03-03

85

2 C&C architecture of multiagent societies

According to the catalogue of architectural viewtypes proposed in [1], modular

views focus on the implementation units of the system and their relationships
(functional dependencies, inheritance and part-of relations, etc.), whereas Com-

ponent & Connector (C&C) views describe the structure of the system from a
runtime perspective, thus focusing on the units of execution (components) and
interaction (connectors). An architectural style of the C&C viewtype, such as
object-oriented, pipe-and-�lter, publish-subscribe, etc., is de�ned through dif-
ferent types of components and connectors, and hence characterise a particular
kind of computational model. A crucial feature in the de�nition of a new type
of connector consists of the roles played by their participating software compo-
nents. Thus, invocation connectors involves two components that play the caller

and callee roles.
Middleware infrastructures and C&C styles are tightly related. In fact, mid-

dleware infrastructures are composite connectors which o�er several kinds of
atomic interaction mechanisms to distributed components. For instance, CORBA-
based middleware o�ers several variants of invocations, the characteristic con-
nector of the object-oriented style: synchronous, deferred synchronous, one-way
method calls, etc. Being connectors, middleware infrastructures are characterised
by a number of role types. For instance, in object-oriented middleware, the ma-
jor role played by interacting components is that of object. Thus, a CORBA
software component (e.g. programmed in Prolog) is not an object due to certain
intrinsic properties that it posseses, but because it is attached to an ORB to
provide the services speci�ed by its IDL speci�cation. Indeed, in a distributed
setting objects are essentially roles, not components.

Since multiagent societies are distributed systems, the C&C perspective leads
us to explicate the nature of these kinds of systems in terms of the types of
connectors supported by social middlewares and the roles played by software
components interacting through them. Figure 1 describes schematically the C&C
structure of multiagent societies proposed in this paper.

2.1 Social components

There are two kinds of components interacting through a social middleware:
agents and resources. Agent and resource roles are represented in �gure 1 as
stick �gures and triangle icons, respectively. Thus, the only agent components
are c2, c3 and c4, and the resource roles are played by components c1 and c5.
Components behaving as agents are characterised by the goal that they purport
to achieve within the social environment, and are regarded as heterogeneous
and autonomous, i.e. they can neither be forced to act nor its state be altered.
Agent roles also hold an event mailbox which stores any noti�cation addressed
to them by the environment. Unlike agents, resources are non-autonomous, and
provide di�erent computational or informational (e.g. virtualization [11]) services
to the multiagent society where they are attached. Basically, resources are akin
to objects deployed in a social setting.

86

c1:Component

i1:Socialnteraction

a4:Agent

:SocialMiddleware

r1:Resource

c4:Component

v1:Invocation

:Observer

:Caller:Callee

:Observed

:Observation

c2:Component

i2:Socialnteraction

:Socialnteraction

i3:Socialnteraction

:Socialnteraction

c3:Component
a41:Agent

a42:Agent

c5:Component

:Resourcea2:Agent

:Observation

:SpeechAct

:Speaker

:Listener
a3:Agent

c3:Component

KEY

:Socialnteraction
:SpeechAct

Composite

connector
Atomic connectors Role-playingTop-level roles

Fig. 1. Schematic C&C view of multiagent societies

2.2 Social connectors

In order to achieve their purpose, agents must be able to say things (possibly to
other agents), manipulate the resources and observe their environment. Accord-
ingly, three kinds of atomic interaction mechanisms are proposed: speech acts,
invocations and observations. Besides, a composite social connector, namely so-

cial interactions, is provided which enables structuring the interaction space of
the social environment.

Being connectors, atomic interaction mechanisms are stateful entities, not
events (e.g. transient messages delivered through the low-level messaging in-
frastructure), and they are characterised by speci�c roles (e.g. the speaker and
listener roles of speech acts). The initiation of these interactions is governed
by empowerment rules, and their �nishing by permission norms. Thus, if some
agent is institutionally capable to say something (i.e. if it is empowered), the
speech act will be initiated. Then, if the circumstances for saying that are met
(i.e. if the speech act is permitted) the illocutionary purpose of the speech act
will be brought about (i.e. the addressees will be noti�ed, institutional facts will
be created, etc.). Statefulness is also a necessary requirement for frozen interac-
tions whose execution is neither permitted nor prohibited [6]. Moreover, it also
allows for speech acts to be performed in a synchronous modality, meaning that
addressees must listen to the speech act in order for the interaction to proceed.
Figure 1 shows that agent a41 has said something to agents a2 and a3, who has
listened to the speech act.

87

Social interactions represent social processes of di�erent kinds and scales (e.g.
conversations, teams, groups, organizations, etc.), and provide the context for
the activities of agents and resources. In fact, agents and resources represent
the two types of roles of this type of social connector. Social interactions can
be decomposed into lower-level subinteractions, in such a way that the whole
interaction space of the multiagent society is structured in terms of a tree of
social interactions. Besides this connector hierarchy, the topology of the multi-
agent society also consists of the role-playing agent hierarchies. These runtime
structures represent the decomposition of the agent activity according to the
di�erent contexts in which it participates. Thus, the activity of agent a4 within
the context of social interactions i2 and i3 is represented by agents a41 and a42,
respectively. The topology of the interaction space evolves dynamically accord-
ing to the initiation and �nishing of social interactions, which may happen in
one of two ways: �automatically�, according to the general rules of the society,
or �manually� through the standard speech act declarations SetUp and Close.

3 UML Pro�le for social connectors types

Taking into account section 2, programming the social environment amounts to
declaring the types of social connectors which implement the functional require-
ments of the application domain � as far as interaction is concerned. For instance,
program committees, submissions, reviewing teams, etc., are common social in-
teraction types of a conference management application; submit a paper and
notify its acceptance or rejection are among its characteristic speech act types;
last, observe a review is a common type of observation which is characterised
by speci�c empowerment and permission rules (e.g. permission is granted to au-
thors during the rebuttal stage). Note that some social connector types may be
largely generic and, hence, reusable across many applications. For instance, the
design of the reviewing team may pro�t from customizing a generic discussion

group social interaction type.

The de�nition of social connector types requires a metamodel which identi�es
the programmable features of social interaction, speech act, observation and in-
vocation connectors. This section brie�y describes a light-weight implementation
of this metamodel in terms of an UML Pro�le, and its application to the confer-
ence management domain (cf. �gure 2). Note that the UML diagram of �gure 2
actually represent a modular view of the application, in contrast with the C&C
view shown in �gure 1. As �gure 2 shows, social interaction types are de�ned
by stereotyped use cases. This is in accordance with the UML standard, since
social interaction types can be regarded as units of functionality o�ered by the
social middleware (the system) to its external software components (the users).
Types of agents and resources are represented as stereotyped UML actors (in
the latter case, using a distinguishing icon). This decision is also consistent with
the UML metamodel which de�nes actors as roles played by external entities in
its interaction with the system.

88

Fig. 2. Social interaction types of the conference management application

Lack of space precludes a detailed description of the stereotypes and tagged
values which specialises the use case metamodel for representing social inter-
action types. Essentially, these allow the designer (1) to constrain the types
of subinteractions in which its activity is decomposed, as well as their types
of roles: member agents and environmental resources (�context�, �sub�, �mem-
ber�, �env�); (2) specifying the agent role types (�purpose� and �role�); and (3)
declaring their life-cycle rules (�initiate� and ��nish�). Thus, reviewing inter-
actions can only take place within the context of submissions, are automatically
initiated when the paper is submitted, and provides the context for three re-
viewer agents and their corresponding reviews.

4 Discussion

The connector-based conceptualization put forward in this paper facilitates the
comparison of multiagent societies and traditional architectural styles. For in-
stance, in terms of the connector taxonomy proposed in [3], speech acts, invo-
cations and observations are communication connectors, since they support the
transmission of data among components (namely, agent and resource compo-
nents). Moreover, invocations also ful�ll a coordination role. They di�er from
common message passing, data access and procedure call connectors in the rules
which govern their life-cycle, viz. empowerment and permission rules. Besides,
they take place within the context of social interactions, a facilitation connector

89

which helps to structure the interaction space of the social environment. Some
types of speech acts, particularly declarations (e.g. SetUp and Close), may also
play a facilitator role. The connector-based approach has also inspired distin-
guishing features such as the synchronicity of speech acts and the possibility
of frozen executions [6]. Similarly, the accompanying role-based notion of agent-
hood promotes higher levels of openness, autonomy and heterogeneity of software
components.

Our approach fully endorses the view of the agent environment as a �rst-class
design abstraction [12], and shows how it can be realised through a social con-
nector metamodel. As such, this overall approach challenges the common view in
the software architecture community which regards connectors as application-
independent architectural elements [3]. In this regard, our proposal is closely
aligned to the notion of coordination artifact [4].

The work presented in this paper attempts to provide the software architec-
tural foundations of an ongoing research e�ort aimed at the design of a social
interaction programming language. The runtime semantics [5, 8, 6] and type sys-
tem [7] of this language, named Speech, provides the formal semantics for the
social connectors and UML pro�le presented in this paper.

References

1. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison Wesley, 2nd edition, 2003.

2. Paul C. Clements and Mary Shaw. "the golden age of software architecture"
revisited. IEEE Software, 26(4):70�72, 2009.

3. Nikunj R. Mehta, Nenad Medvidovic, and Sandip Phadke. Towards a taxonomy
of software connectors. In ICSE, pages 178�187. ACM Press, June 2000.

4. A. Ricci and M. Viroli. Coordination artifacts: A unifying abstraction for engi-
neering environment-mediated coordination. Informatica, 29:433�443, 2005.

5. Juan Manuel Serrano and Sergio Saugar. Operational semantics of multiagent
interactions. In Edmund H. Durfee, Makoto Yokoo, Michael N. Huhns, and Onn
Shehory, editors, AAMAS'07, pages 889�896. IFAAMAS, 2007.

6. Juan Manuel Serrano and Sergio Saugar. Dealing with incomplete normative states.
In Proc. COIN@MALLOW workshop. Revised and selected papers. Springer, 2009.

7. Juan Manuel Serrano and Sergio Saugar. Programming social middleware through
social interaction types. In LADS'09. Revised and selected papers. Springer, 2009.

8. Juan Manuel Serrano and Sergio Saugar. Run-time semantics of a language
for programming social processes. In Michael Fisher, Fariba Sadri, and Michael
Thielscher, editors, CLIMA IX, volume 5405 of LNAI, pages 37�56. Springer, 2009.

9. Munindar P. Singh and Amit K. Chopra. Programming multiagent systems without
programming agents. In Proc. of the AAMAS ProMAS workshop, 2009.

10. Danny Weyns. Special issue on multiagent systems and software architecture.
IJAOSE, 2(1), 2008.

11. Danny Weyns, Alexander Helleboogh, Tom Holvoet, and Michael Schumacher. The
agent environment in multi-agent systems: A middleware perspective. Multiagent

and Grid Systems, 5(1):93�108, 2009.
12. Danny Weyns, Andrea Omicini, and James Odell. Environment as a �rst class

abstraction in multiagent systems. JAAMAS, 14(1):5�30, 2007.

90

Developing an Agent Systems Reference Architecture

Duc N. Nguyen1, Robert N. Lass1, Kyle Usbeck1, William M. Mongan1,
Christopher T. Cannon1, William C. Regli1, Israel Mayk2 and Todd Urness2

1 Applied Communications and Information Networking Institute, Drexel University
{dn53, urlass, kfu22, wmm24, ctc82, regli}@cs.drexel.edu

2 Communications-Electronics Research, Development and Engineering Center, US Army

Abstract. One reason for the slow adoption in industry of agent-oriented method-
ologies as a paradigm for developing systems is the lack of integration and general-
purpose technologies. To this end, there is a need to define common patterns, re-
lationships between components, and structural qualities of an agent system. A
reference architecture for agent-based systems would suit this need. This work
describes the methodology for constructing an agent systems reference archi-
tecture by combining reverse software engineering techniques and tools and a
documentation methodology. The goal of the resulting reference architecture is
to identify common patterns and relationships between concepts present in agent
systems to aid in describing and designing new agent systems.

1 Introduction

Using agent-based approaches for constructing large complex distributed systems can
provide advantages over traditional methods. Unfortunately, industry has been slow to
adopt this agent-oriented paradigm. One reason for this slow adoption is the lack of inte-
gration and general-purpose technologies [7]. Standards bodies such as the Foundation
for Intelligent Physical Agents (FIPA)3 are leading efforts to standardize protocols and
formats of an agent-based system. However, there is a need to construct a reference ar-
chitecture that defines the relationships between standardized terms and concepts of an
agent-based system. Furthermore, such an architecture would give a set of architectural
blueprints and best practices to aid in developing new agent frameworks and systems.
To this end, a reference architecture for agent-based systems would speed other stan-
dardization efforts and adoption as a viable systems engineering perspective.

The purpose of the Agent Systems Reference Architecture (ASRA) is to describe
relationships and structural qualities to support the construction of an agent-based sys-
tem. The ASRA is created from multiple cross-cutting levels: the framework level, the
system behavior level, and agent systems in the context of larger external systems. Con-
structing such an architecture for general systems is impossible given the various kinds
of agent systems. One approach for building a reference architecture would be to an-
alyze the tools used to build agent systems to determine the interactions between the
functional concepts of an agent system.

This paper focuses on the process of developing a reference architecture for agent-
based systems. Our approach is the application of a modified 4+1 View Model [3] to

3 http://www.fipa.org

91

existing agent framework implementations creating five architectural views. We apply
this process to functional concepts in an agent system to obtain the reference architec-
ture.

We analyzed three existing agent framework implementations: Cougaar, JADE, and
AGLOBE. This methodology is applied to agent frameworks rather than deployed agent
systems because the functional concepts defined in the Agent Systems Reference Model
(ASRM) [5] are already implemented in these frameworks.

The main contribution of this paper is a methodology for creating an agent sys-
tems reference architecture through the application of reverse engineering methodolo-
gies combined with the modified 4+1 View model used for documenting existing agent
frameworks.

The rest of this paper is organized as follows: The next section provides a sum-
mary of related efforts in reference architectures for agent-based systems, and defines
the terms architecture, reference architecture in the context of agent systems and agent
frameworks. Section 3 describes the Agent Systems Reference Model and its basis for
creating the ASRA. Section 4 describes how the 4+1 Model is applied to agent frame-
works. Section 5 demonstrates the application of the process to create a portion of the
ASRA. Finally, we conclude with a roadmap of continuing work for developing a ref-
erence architecture.

2 Background and Related Work

There is no general consensus for the definition of a reference architecture; however,
we describe related standards efforts and reference architectures in this section.

The Foundation for Intelligent Physical Agents There are efforts to describe the
behavior and interaction of agent systems. The FIPA Abstract Architecture Specifica-
tion [2]discusses agent system architecture in an effort to promote interoperability and
reusability. FIPA intends to provide a generic view on agent systems and describe how
specific functionality should interact. This specification states low-level details such as
the mechanisms for how agents perform service look-ups. The ASRA also focuses on
identifying architectural paradigms and patterns in agent frameworks. So the ASRA ac-
knowledges that service look-ups may be implemented in different ways and identifies
the different ways of performing this action.

Reference Architecture for Situated Multiagent Systems Weyns et al. [6] devel-
oped a reference architecture for situated multiagent systems consisting from an agent
and an application environment viewpoints. This architecture was developed through an
interative process of analysis and validation studying different agent-based systems. In
their reference architecture, the authors constructed multiple documents from different
views: the module decomposition, the shared data, and the communicating processes
views.

This reference architecture for situated multiagent systems has a similar result of
constructing multiple documents for each view; however, the approach is different. The
ASRA uses a combination of static and dynamic code analysis of representative agent
framework implementations , whereas the former reference architecture examines sev-
eral multiagent systems implementations.

92

RCS and RCS Related Work The Real-time Control System, first developed by
Barbera, et al.at the National Institute of Standards and Technology, is a reference ar-
chitecturefor hierarchical intelligent control. The RCS reference architecture provides
for intelligent control what the ASRA provides for agent systems. As stated by the RCS
reference architecture [1]: “the evolution of the RCS concept has been driven by an
effort to include the best properties and capabilities of most, if not all, of the intelligent
control systems currently known in the literature, from subsumption to SOAR, from
blackboards to object-oriented programming.”

The notion of a reference architecture has different meanings based on the view-
points and concerns of the stakeholders. In this work, a reference architecture for agent-
based systems is defined as a set of documents addressing patterns and component re-
lationships of the functional concepts set forth in the ASRM.

3 The Agent Systems Reference Model

The Agent Systems Reference Model (ASRM) [5] is a model for software systems
composed of agents. It establishes terms, concepts and definitions needed for the com-
parison of agent systems. The ASRA is an elaboration of the ASRM since it establishes
relationships between concepts in agent frameworks and defines structural patterns for
those concepts.

The ASRM defines an intelligent agent—or simply agent—as situated computa-
tional processes that embody one or more of the following qualities: autonomy, proac-
tivity, interactivity, continuous, sociality, and/or mobility. The ASRM also formalizes
concepts and layers of organization in an agent-based system. The layers described are:
agents, frameworks, platforms, hosts, and environments. An agent-based system is the
set of frameworks, the agents that execute in them, the platform (other software) that
supports them and the hosts (hardware) upon which they execute.

The functional concepts of an agent system support overall system execution. They
are essential in the definition of the ASRA and are made up of the following: Agent
Administration, Security and Survivability, Mobility, Conflict Management, Messag-
ing, Logging, and Directory Services.

4 Methodology for creating an Agent Systems Reference
Architecture

Our approach to constructing a reference architecture for agent systems is to create
multiple architecture documents by analyzing existing open source agent framework
implementations and applying a rigorous 4+1 view model augmented with reverse en-
gineering data.

Deriving 4+1 Views Using Reverse Engineering The 4+1 View Model [3] creates dif-
ferent architectural descriptions, or views, of software systems for different interested
parties (e.g., system developers, business-persons, customers). Each view identifies and
describes the relationships between components and concepts. Interested parties will

93

view these relationships with different weights and significance, in some cases they are
meaningless. The Views of the 4+1 model, and their construction for the ASRA, are
described in detail in Section 5.

Our approach in deriving and documenting each architecture is a modified version
of the 4+1 approach. Here, we begin by iterating over the functional concepts of the
ASRM, and developing the Scenario View consisting of use cases. For each use case,
we developed an agent that exercised the scenario, and performed reverse-engineering
runtime analysis to obtain the Process View. This data provides a slice of the program
(and, thus, the framework and other libraries), through which we can focus our static
analysis in the Development View. Finally, this is abstracted into components using
clustering algorithms to form the basis of the Logical View. By contrast to traditional
4+1 approaches, we document the most abstract views first and augment each with
reverse engineering data or domain knowledge to create the next view.

We utilized reverse software engineering tools and performed dynamic and static
analysis [4] to assist with our data mining and move from scenarios and existing imple-
mentations to a reference 4+1 architectural description. In this approach, the data used
to construct a view is used to inform the construction of the next view.

5 Case Study: JADE Mobility

We demonstrate the analysis and application of the modified 4+1 documentation model
for agent mobility within an agent system implemented using the JADE framework.

The Scenario View: The documentation process begins with stating the use cases for
the functional concept defined by the ASRM and further elaborating actors and invoca-
tion points. The intended audience are high-level practitioners who need explanation of
concepts for an agent-based system.

The Process View: To create the Process view, dynamic analysis data is generated for a
system by running a slice of a program representing the scenario. We create a process
diagram to illustrate the process view. Reverse engineered runtime data augments the
process diagram to create a package diagram to provide a conceptual view. For agent
mobility, we generate a runtime trace by running a profiler against code snippets that
demonstrate agent mobility. The runtime trace documents the percentage of time meth-
ods are invoked during the code’s execution. Figure 1(a) displays the temporal view
of a scenario demonstrating the invocation points of the agent mobility functional con-
cept. The resulting process diagram after augmenting with package names is shown in
Figure 1(b). Upon creating similar diagrams for AGLOBE and Cougaar, two patterns
for defining the process of agent mobility emerge: serialization mobility and shared-
object mobility. With serialization mobility as exhibited by JADE and AGLOBE, (1)
the agent’s thread of execution is paused, (2) the agent is converted into a transfer-
able form, (3) the is transfered to the target platform, (4) the agent is converted back
into an executable form, and (5) the agent resumes (or begins) thread of execution.
With shared-object mobility (as is the case with Cougaar) mobile agents are shared
between platform containers. The agent’s state includes current platform location and

94

5.4% WhereaboutsAgent$2.action(...) (5.00 s)
0.0% jade.domain.FIPAAgentManagement.SearchConstraints.<init>(...) (0.00 ns)
0.0% java.lang.Long.<init>(...) (0.00 ns)
0.0% jade.domain.FIPAAgentManagement.SearchConstraints.setMaxResults(...) (0.00 ns)
0.0% jade.domain.FIPAAgentManagement.AMSAgentDescription.<init>(...) (0.00 ns)
3.3% jade.domain.AMSService.search(...) (3.00 s)
2.1% WhereaboutsAgent.moveMyself(...) (2.00 s)

0.0% jade.core.Agent.getAMS(...) (10.00 ms)
0.0% jade.domain.JADEAgentManagement.QueryPlatformLocationsAction.<init>(...) (0.00 ns)
0.0% jade.content.onto.basic.Action.<init>(...) (0.00 ns)
0.5% WhereaboutsAgent.sendRequest(...) (540.00 ms)
0.0% jade.core.Agent.getAMS(...) (0.00 ns)
0.0% jade.lang.acl.MessageTemplate.MatchSender(...) (0.00 ns)
0.0% jade.lang.acl.MessageTemplate.MatchPerformative(...) (0.00 ns)
0.0% jade.lang.acl.MessageTemplate.and(...) (0.00 ns)
0.0% jade.core.Agent.blockingReceive(...) (40.00 ms)
0.0% jade.core.Agent.getContentManager(...) (0.00 ns)
1.0% jade.content.ContentManager.extractContent(...) (1.00 s)
0.0% java.lang.ClassLoader.checkPackageAccess(...) (0.00 ns)
0.0% jade.core.Agent.here(...) (0.00 ns)
0.0% jade.domain.mobility.MobileAgentDescription.<init>(...) (0.00 ns)
0.0% jade.domain.mobility.MobileAgentDescription.setName(...) (0.00 ns)
0.0% jade.domain.mobility.MobileAgentDescription.setDestination(...) (0.00 ns)
0.5% jade.core.Agent.doMove(...) (540.00 ms)

0.5% jade.core.Agent.initMobHelper(...) (530.00 ms)
0.4% jade.core.Agent.getHelper(...) (410.00 ms)
0.1% java.lang.ClassLoader.loadClassInternal(...) (120.00 ms)
0.0% jade.core.Agent$1.<init>(...) (0.00 ns)
0.0% jade.core.mobility.AgentMobilityService$AgentMobilityHelperImpl.registerMovable(...) (0.00 ns)

0.0% jade.core.mobility.AgentMobilityService$AgentMobilityHelperImpl.move(...) (10.00 ms)
0.0% jade.core.mobility.AgentMobilityService$TransitLifeCycle.<init>(...) (0.00 ns)

0.0% jade.core.mobility.AgentMobilityService$TransitLifeCycle.<init>(...) (0.00 ns)
0.0% jade.core.LifeCycle.<init>(...) (0.00 ns)
0.0% jade.core.mobility.AgentMobilityService.getName(...) (0.00 ns)
0.0% jade.util.Logger.getMyLogger(...) (0.00 ns)

0.0% jade.core.Agent.changeStateTo(...) (10.00 ms)
0.0% jade.core.LifeCycle.setAgent(...) (0.00 ns)
0.0% jade.core.LifeCycle.equals(...) (0.00 ns)
0.0% jade.core.Agent$ActiveLifeCycle.transitionTo(...) (0.00 ns)
0.0% jade.core.Agent.notifyChangedAgentState(...) (10.00 ms)

(a) Runtime Trace.

Jade Mobility

jade.core.Agent.getAMS

jade.core.Agent.doMove

jade.core.mobility.AgentMobilityService.TransitLifeCycle

jade.core.Agent.ActiveLifeCycle.transitionTo

jade.core.Agent.notifyChangedAgentState

(b) Process View Diagram

Fig. 1. Jade Mobility runtime trace and resulting Process view diagram.

upon “transmission”, the agent’s shared object state is modified to indicate the agent’s
new platform location.

The Development View: The development view is the static view of the agent system de-
rived through the use of static code analysis tools and temporal data from the previously
created process view. Static analysis tools produce a graph of all the software compo-
nents. This data is analyzed and informed by the runtime analysis (to focus the search
of a large static analysis data set) obtained during the construction of the Process View
to create the Development View. This view provides a sense of the topology of the agent
system software, including the logical components responsible for performing tasks and
design patterns representing the connections between them. The resulting agent mobil-
ity functional concept is described using the data obtained in the serial approach, and
consists of: Destination Platform Discovery, in which Directory Services are used to
locate the addressing information of the destination platform, Agent Encapsulation,
in which the mobile agent is serialized into a message from the Messaging functional
concept, Message Communication, in which the agent is delivered to its destination
via the messaging component, and Agent Extraction, in which the agent is extracted
at the destination platform from its serialized state.

The Logical View: The logical view is constructed by observing the clustered runtime
data generated from our reverse engineering tools, and organizing the major objects
into packages. Although the process and logical views concern themselves with con-
crete system details in an architecture, they are also helpful to express the high level
packages and interacting components existing in an agent system. For agent mobility,
the abstracted logical view illustrates that even though agent mobility can be imple-
mented using the functional concepts for directory services and messaging, there is the
additional requirement to identify the messages as encapsulated serialized agents.

95

The Physical View: The physical view is normally reserved by the 4+1 model for non-
functional requirements of a system, including deployment and administration concerns
and is developed independently of the serial approach that generated the scenario, pro-
cess, development, and logical views because it deals with more of the physical aspects
of the framework and the agent system.. Although the ASRA addresses some of these
concerns, the physical view section primarily concerns itself with the physical aspects
and design decisions in deploying an agent system in a given environment. Otherwise
this functional concept is not abstractable, so it is omitted here.

6 Conclusion and Future Work

This paper described our approach for creating a reference architecture for agent sys-
tems and frameworks using the 4+1 View Model. We demonstrated this application
on the Agent Mobility functional concept in each view. This approach satisfies prac-
titioners at multiple levels: high-level, system designer, system architect, developer,
system deployer. The ASRA provides architectural design paradigms for agent frame-
work functional concepts defined by the ASRM. These serve as architectural blueprints
for constructing new agent frameworks, or identifying the functional components re-
quired to construct new systems using existing frameworks. Further documentation of
the functional concepts and their interactions at each view is in progress and a complete
document is forthcoming. Further work also includes creating reference architectures
focusing on the paradigms of agents and external systems outside the traditional agent-
based system construct (for example, agents integrated with web services) and on agent
societies and communities.

References

1. James Albus and G. Rippey. RCS: a reference model architecture for intelligent control. In
Proceedings of the From Perception to Action Conference, pages 218—229, September 1994.

2. Foundation for Intelligent Physical Agents. Abstract architecture, December 2002. http:

//www.fipa.org/specs/fipa00001/.
3. P. Kruchten. Architectural blueprints—The “4+1” view model of software architecture. IEEE

Software, 12(6):42–50, November 1995.
4. W. M. Mongan, C. J. Dugan, R. N. Lass, A. K. Hight, J. Salvage, W. C. Regli, and P. J. Modi.

Dynamic analysis of agent frameworks in support of a multiagent systems reference model.
IADIS International Conference Intelligent Systems and Agents, 2007.

5. W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass, P. J. Modi, W. M. Mongan, J. K.
Salvage, and E. A. Sultanik. Development and specification of a reference model for agent-
based systems. IEEE Trans. On Systems, Man, and Cybernetics, Part C, 39(5):572–596, Sep.
2009.

6. D. Weyns and T. Holvoet. A reference architecture for situated multiagent systems. Lecture
Notes in Computer Science, 4389:1, 2007.

7. D. Weyns, H. V. D. Parunak, and O. Shehory. The future of software engineering and multi-
agent systems. Special issue on Future of Software Engineering and Multi-Agent Systems,
International Journal of Agent-Oriented Software Engineering (IJAOSE), 2008.

96

A Middleware Model in Alloy
for Supply Chain-Wide Agent Interactions

Robrecht Haesevoets, Danny Weyns, Mario Henrique Cruz Torres,
Alexander Helleboogh, Tom Holvoet, and Wouter Joosen

Distrinet, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
robrecht.haesevoets@cs.kuleuven.be

Abstract. To support the complex coordination activities involved in
supply chain management, more and more companies have autonomous
software agents acting on their behalf. Due to confidentiality concerns,
such as hiding sensitive information from competitors, agents typically
only have a local view on the supply chain. In many situations, however,
companies would like to expand the view of their agents to share valuable
information such as transportation tracking and service delays. Non of
the participating companies, however, has enough knowledge or authority
to realize such interactions in a controlled manner.
In this paper, we present an organization middleware that offers a col-
laboration platform and enables agents to interact across the boundary
of local interactions. Policies and laws enable companies to define the
scope of interactions of their agents and the restrictions on their exposed
information. Using Alloy, we formally define the relation between the
interactions offered by the middleware, the exposed information and the
provided policies and laws. This allows us to guarantee a number proper-
ties which are of particular interest to companies using the middleware.

Key words: Organisations and institutions; Social and organizational
structure; Verification of MAS

1 Introduction

In today’s competitive and globalized market, streamlined collaborations be-
tween business entities are a necessity. In the DiCoMas project1, a joint research
effort with academic and industrial partners, we have been studying the use of
agents for managing collaborations between business entities in the domain of
supply chain management. A key objective of this project is to improve integra-
tion and collaboration among supply chain partners.

Due to company-specific restrictions, such as hiding sensitive data from com-
petitors or having clients exchange pricing info with subcontractors, companies
typically only allow their agents to participate in local supply chain interac-
tions [10]. As a result, agents only have a local view on the supply chain. Nev-
ertheless, in many situations companies would like to extend the view of their

1 DiCoMas: Distributed Collaboration using Multi-agent System Architectures:
http://distrinet.cs.kuleuven.be/projects/dicomas/index.html

97

agents and allow them to participate in supply chain-wide interactions in a con-
trolled manner. Examples are tracking containers throughout the supply chain
or monitoring problems such as delays outside the local view of agents.

A typical way to structure such interactions between agents is by means
of roles and organizations [7, 1]. In previous work [13], we have presented an
organization model for collaborative multi-agent systems. Although the model
is relatively simple, it is powerful enough to model controlled supply chain-wide
interactions. A subset of the model is shown in Fig. 1. The core abstractions of
the model are organization, role, and capability. Organizations, defined as a set
of roles, specify the boundaries in which controlled interactions can take place. A
role represents a concrete participation in the organization. It defines the agents
that have access to the organization, and it defines the capabilities these agents
have in the organization. Each capability represents a concrete interaction ability
relative to another role in the organization.

Fig. 1. A visual representation of the organization model.

Realizing organizations and managing their dynamics in a heterogeneous
and distributed supply chain setting is a very complex task, for which none of
the participating companies has enough authority or knowledge. Additionally,
companies want guarantees before exposing confidential information or allowing
their agents to collaborate with external parties.

To address these challenges we present an organization middleware approach.
The middleware offers organizations and roles as a set of reusable programming
abstractions to application developers. At run-time, the middleware realizes a
collaboration platform. Agents provide the middleware with local information on
the supply chain, and in return, the middleware offers managed organizations
that enable agents to engage in supply-wide interactions in a controlled way.
Companies can specify interaction laws to define the desired scope of interactions
for their agents and a set of policies to restrict the information they expose, in
order to deal with confidentiality concerns. These laws and policies will then be
enforced by the middleware.

The use of organizational abstractions together with a middleware has a
number of key benefits: (1) it allows to represent and structure supply chain-
wide interactions at a high-level of abstraction; (2) it allows to separate the
management of dynamic supply chain-wide interactions, performed by the mid-
dleware, from the actual functionality, provided by agents participating in the
interactions; (3) it allows to accurately restrict the interactions between agents
according to provided policies in terms of capabilities.

The contributions of this paper are:

98

1. We motivate and specify a set of concrete requirements for supply chain-wide
interactions in the domain of logistics for supply chain management.

2. We present a formal model in the Alloy specification language [6] of an orga-
nization middleware supporting supply chain-wide interactions. The model
formally defines the relation between supply chain-wide interactions enabled
by the organizations offered by the middleware and the local supply chain
information exposed by the agents and the provided policies.

3. We assert a number of relevant properties offering companies formal guar-
antees in terms of confidentiality using the model and the Alloy Analyzer.

Overview of this paper. Section 2 introduces a running example together
with a set of requirements for supply chain-wide interactions. The organization
middleware is presented in Sect. 3 and illustrated in the running example. Sec-
tion 4 presents the middleware model in Alloy and shows how the Alloy Analyzer
can be used to assert a number of properties. Finally, related work is discussed
in Sect. 5, and Sect. 6 concludes and reflects on future work.

2 Logistics in Supply Chain Management

In the domain of supply chain management, companies usually outsource their
logistic activities to one or more specialized third-party logistics providers (3PL).
To integrate and streamline the operations of different 3PLs, an extra level of
outsourcing can be introduced, called fourth-party logistics providers (4PL).
Figure 2 shows an example of a hierarchical outsourcing structure in a supply
chain, used as a running example in this paper. In the example, several com-
panies collaborate to realize the logistic needs of company 0. Company 0 has
an outsourcing contract with company 1, which as acts as a 4PL and integrates
the services of two 3PLs, company 2 and 3. Company 2, in turn, has two addi-
tional subcontractors, company 4 and 5. In the example, company 3 is currently
carrying a container of company 0, and company 4 and 5 are expecting a delay.

Fig. 2. Supply chain collaborations.

Due to confidentiality concerns, companies only allow their agents to partic-
ipate in local interactions corresponding to active outsourcing contracts. As a
result, agents only have a local view on the supply chain. Typical supply chain
flows, such as information and services, are propagated through the supply chain
based on local interactions. In the DiCoMas project, we aim to enhance the in-
tegration and collaboration of the supply chain partners to improve information

99

sharing and responsiveness. To realize this, agents acting on behalf of companies
need extended views on the supply chain and have to interact across the supply
chain in a controlled way. We give a number of concrete stakeholder require-
ments that motivate the need for supply chain-wide interactions. For clarity, the
requirements are explained in the context of the running example.

Collaborative Planning. To create a planning in correspondence with the
individual goals of each stakeholder, company 1 wants to use a collaborative
planning approach. This requires agents of both clients, such as company 0, and
subcontractors, such as company 2 and 3, to participate in coordinated planning
and negotiation activities, while company 1 maintains a supervising position and
can enforce the necessary restrictions on the involved interactions.

Traceability. Company 0 wants to track the location and status of its con-
tainers throughout the supply chain. Instead of having to contact its service
provider, company 1, who in turn has to contact other service providers, com-
pany 2 or 3, and so on, company 0 requires it agents to directly interact with
the agents of the current carriers of its containers, increasing responsiveness and
reducing overhead. Using policies, intermediate companies such as company 1
should be able to restrict the information that can be exposed to company 0.

Improved Responsiveness in Case of Problems. As a 4PL, Company 1
wants its agents to be directly informed by agents managing third-party resources
when serious problems occur, such as delays or decommitment. This enables
company 1 to anticipate future problems at a supply chain-wide level and offer
its clients a higher quality of service. Intermediate companies should be able to
restrict the information exposed by their subcontractors.

3 The Organization Middleware

The previous section introduced a number of stakeholder requirements that un-
derpin the need for supply chain-wide interactions. Such interactions can be
modeled and coordinated using organizational abstractions we introduced in [13].
In this section we present an organization middleware that offers such organi-
zations and roles as a set of reusable programming abstractions to application
developers. At runtime, the middleware provides a collaboration platform and
takes the responsibility of managing organizations and their dynamics, for which
non of the partners in a supply chain has enough authority or knowledge.

Figure 3 gives a high-level overview of the approach. To participate, agents of
supply chain companies have to provide the middleware with context information
and a set of interaction laws. In return, the middleware offers agents a broader
view on the supply chain and support for supply chain-wide interactions, while
taking the responsibility of managing the interactions and their dynamics. Using
a middleware allows us to separate the management of the organizations from
the agents, who can now focus on realizing the functionality in organizations.
Internally the middleware can be realized using different technologies including
agents. Agents using the middleware have to conform to certain communication
standards, which are outside the scope of the current model.

100

Fig. 3. High-level overview of the approach.

In the remainder of this section we first explain the notions of context and
interaction laws in more detail. We then show how context and laws can be used
by the middleware to offer organizations that enable controlled supply chain-
wide interactions in the running example.

3.1 Context Information and Interaction Laws

Agents have to provide the middleware with local information on the supply
chain, consisting of context and interaction laws. The completeness of the con-
text depends on the amount of information exposed by the agents on behalf
of the companies. Context includes information on companies, their dynamic
properties, such as containers currently carried or expected delays, the current
outsourcing contracts between companies, and a set of flow policies. Flow policies
define the allowed supply chain flows between agents of particular companies. We
currently consider two types of flows: information flow and service flow. These
allow companies to specify which information exchange and which concrete ser-
vice provision can take place between which specific companies. Flow policies are
specified at the level of outsourcing contracts as allowed flows within outsourcing
contracts as well as between different contracts. An example is shown in Fig. 4,
illustrating how flow policies of different companies create a graph-like structure
defining the allowed information and service flows at a supply chain-wide level.

Interaction laws allow companies to define in a declarative way the desired
scope of the supply chain-wide interactions for their agents. In particular, an
interaction law specifies a desired set of interaction partners whose agents should
be allowed to participate in the interaction, such as “all providers of a company”
or “all companies carrying a specific container”, as well as the supply chain flows
the interaction should enable between these partners.

Fig. 4. Context consisting of flow policies and outsourcing contracts.

101

3.2 Realizing Supply Chain-Wide Interactions.

The middleware uses the interaction laws together with the current context to
provide a set of organizations supporting the desired supply chain-wide interac-
tions. Each organizations enables a set of interactions, defined by the capabilities
of its role and each capability enables a specific supply chain flow toward an-
other role in the organization in correspondence with the current flow policies.
As context or laws change, the middleware adapts the organizations accordingly.

Figure 5 illustrates a set of organizations realizing the requirements for sup-
ply chain-wide interactions introduced in Sect. 2 for the running example. Or-
ganization 1 illustrates collaborative planning, enabling the agents of client 0 to
exchange planning information with the agents of subcontractors 2 and 3. Role
capabilities, compliant with the flow policies, show that company 1, as a 4PL,
remains in a supervising position, ensuring clients have no capabilities to make
any direct service requests to subcontractors. Organization 2 shows the tracking
of a container throughout the supply chain, enabling the agents of company 0 to
interact with the carrier of their container, the agents of company 3. Improved
responsiveness is exemplified by organization 3, allowing agents of company 1
to interact with the agents of company 4, which is expecting a delay. Because
company 2 wants to hide its internal outsourcing strategy, it does not allow any
flows between company 5 and other parties, as illustrated in Fig. 4. As a result,
company 5 is excluded from organization 3, although it is also expecting a delay.

Fig. 5. Examples of organizations and roles realizing supply chain-wide interactions.

4 Middleware Model in Alloy

In this section we give a formal model of the middleware abstractions using the
Alloy specification language. Alloy [6] is a structural modeling language based
on first-order logic for expressing complex structural constraints and behavior in
software systems. The Alloy Analyzer2 is a constraint solver, supporting auto-
matic simulation and checking of Alloy models within a specific scope. Simulation

2 Alloy Analyzer 4 - http://alloy.mit.edu/alloy4/

102

consists of finding instances satisfying a specification, while checking consists of
finding counter examples violating certain assumptions about a model. The Al-
loy analysis is based on the notion of small scope hypothesis [6], assuming that
assertions checked within a well-chosen scope will also hold for larger scopes.
However, with a well-chosen scope and model, it can even be possible to do a
complete analysis for a specific setting.

The purpose of our formal model in Alloy is threefold: (1) present a rigorous
specification of the main concepts of the organization middleware; (2) formally
define which supply chain-wide interactions the middleware can and should pro-
vide, given the context and a set of interaction laws; (3) show how this model
can be used together with the Alloy analyzer to guarantee a number of proper-
ties in terms of confidentiality constraints. Due to space constraints, parts of the
formal specification are omitted. A complete model is available for download3.

4.1 Middleware Model

The model is shown in Spec. 1. Concepts are represented by a number of signa-
tures, each introducing a new set of atoms in the universe (univ) of the model.

Context Information. Context information consists of information on com-
panies, their dynamic properties and their flow policies. We start by defining the
signatures Company and Contract to represent companies and their outsourcing
contracts. Company has one field, named properties, mapping each company to
a set of properties, defined by the signature Property. Contract has three fields,
two disjunct companies representing the client and provider in the contract, and
a field flows mapping each contract to the set of supply chain flows that are
allowed to take place within the contract. Supply chain flows are defined by the
signature Flow. Subtypes Info and Service represent some of the typical supply
chain flows, but more expressive subtypes can be introduced.

On line 11 the signature context defines the context of the middleware as
a set of companies, contracts and flow policies. Flow policies are defined on
line 144 as ternary relations which specify the allowed flows between different
contracts. A signature fact on line 165 introduces an additional constraint to
ensure companies can only define flow policies between their own contracts. We
also define a help function allowedFlows on line 196 which returns the supply
chain flows that are allowed between companies by the contracts and flow policies
in the given context.

Interaction laws. Interaction laws are represented by the signature Law on
line 25. The field scope specifies the desired scope of interaction, as the set of

3 http://www.cs.kuleuven.be/~robrecht/AOSE2010/
4 The field flowPolicies can refer to multiple flow policies. The Alloy syntax does not

require the set keyword for relations.
5 The box join a[b] is the equivalent of the relational join b.a. The + sign represents

the union of two sets while the & sign represents the intersection.
6 The set comprehension {a: A | constraint} returns all elements of A satisfying the

given constraint. *a represents the reflexive transitive closure. <: and :> represent
the domain and range restriction of a relation.

103

Specification 1 Middleware Model

1 sig Company{

2 properties:set Property

3 }

4 sig Contract{

5 disj client,provider:Company,

6 flows:set Flow

7 }

8 sig Property{}

9 abstract sig Flow{}

10 one sig Info,Service extends Flow{}

11 sig Context{

12 companies:set Company,

13 contracts:set Contract,

14 flowPolicies:Flow->contracts->contracts

15 }{

16 all c1,c2:Contract | c1->c2 in flowPolicies[univ] implies

17 some c1.(client+provider) & c2.(client+provider)

18 }

19 fun allowedFlows[context:Context]:Flow->Company->Company{

20 {flow:Flow,com1,com2:Company | some c1,c2:context.contracts |

21 flow in c1.flows & c2.flows and

22 com1+com2 in (c1+c2).(client+provider) and

23 c2 in c1.*(flows.flow<:context.flowPolicies[flow]:>flows.flow)}

24 }

25 sig Law{

26 scope:Flow->Company->Company

27 }

28 fun propertyBasedSelection[p:Property, vp:Company, context:Context]:set Company{

29 {c:Company | p in c.properties and Info->c->vp in allowedFlows[context]}

30 }

31 sig Role{

32 company:Company,

33 capabilities:Role->Flow

34 }

35 sig Organization{

36 roles:set Role

37 }

38 fun enabledFlows[org:Organization]:Flow->Company->Company{

39 {flow:Flow,com1,com2:Company | some r1,r2:org.roles |

40 r1.company = com1 and r2.company = com2 and r2->flow in r1.capabilities}

41 }

42 sig MiddlewareModel{

43 context:Context,

44 laws:set Law,

45 orgs:set Organization

46 }{

47 enabledFlows[orgs] = laws.scope & allowedFlows[context]

48 }

104

supply chain-wide flows the interaction should enable between companies. To
represent a meaningful scope of interaction, functions can be used which use the
current context as input. An example is the property-based selection function
on line 28, which returns all companies having a given property p and that are
visible from the given viewpoint vp.

Roles and Organizations. Roles and organizations are defined on lines 31
and 35. Each role has a field company, mapping the role to the company whose
agents are allowed to play the role, and a field capabilities, representing the
capabilities of the role in terms of supply chain flows allowed toward other roles
in the organization. Organizations contain the field roles representing the current
roles of the organization. We also define a help function enabledFlows which
returns the flows between companies that are enabled by a given organization.

Middleware Model. The state of the middleware is represented by the sig-
nature MiddlewareModel on line 42. This state is defined as the current context
and interaction laws, and the organizations offered by the middleware. A signa-
ture fact on line 47 uses the two help functions, we defined earlier, to specify the
relation between the organizations offered by the middleware and the current
context and interaction laws. The fact specifies that organizations offered by
the middleware should enable those, and only those, supply chain flows between
companies that are both defined by the scope of the interaction laws and allowed
within the current context and its flow policies.

4.2 Asserting Properties

Using the Alloy Analyzer, we can check a number of useful properties of our
model. We focus on two relevant properties: (1) asserting that the middleware
only offers organizations compliant with the current context; (2) asserting that
companies can put forward a number of confidentiality constraints, by restricting
the supply chain flows in the outsourcing hierarchy. The Alloy specification of
these properties is shown in Spec. 27. Both properties have been checked by the
Alloy analyzer within a scope of 6 atoms for each type. Although this scope is
limited, it covers more than all the possibilities in our running example.

The first property states that companies always need some direct or indirect
contractual link, known to the middleware, before their agents can participate
in any supply chain-wide interaction. The second property states that a com-
pany (com3) can restrict all supply chain-wide interactions between any two
companies (com1 and com2) that do not have a direct or indirect contractual
link with each other independent from the restricting company (com3). This
property ensures, for example, that 3PLs, such as company 2 in Fig. 4, can re-
strict the information their subcontractors can expose, such as company 4 and
5. In the example, company 2 allows company 4 to expose information in supply
chain-wide interactions, but restricts this for company 5. As a result, the agents

7 contractPath[com1,com2,context] returns true if a path from com1 to com2
exists in the contractual structure of the given context. indepContract-
Path[com1,com2,com3,context] returns true if a path exists independent from com3.

105

of company 1 can participate in an interaction with the agents of company 4,
expecting a delay, but not with the agents of company 5, also expecting a delay.

Specification 2 Properties

1 check property1{

2 all mw:MiddlewareModel, disj com1,com2:Company |

3 !contractPath[com1,com2,mw.context] implies

4 no role1,role2:mw.orgs.roles | role1.company = com1 and

5 role2.company = com2 and role2 in role1.capabilities.univ

6 } for 6

7 check property2{

8 all mw:MiddlewareModel, disj com1,com2,com3:Company |

9 !indepContractPath[com1,com2,com3,mw.context] and

10 (all c1,c2:(client+provider).com3 |

11 no Flow->c1->c2 & mw.context.flowPolicies) implies

12 no r1,r2:mw.orgs.roles | some r2->Flow & r1.capabilities

13 and r1.company = com1 and r2.company = com2

14 } for 6

5 Related Work

The approach presented in this paper intersects with several domains of related
work. We focus on a number of representative approaches for business to business
(B2B) integration in supply chain management, organization middleware and
formal methods for organizations in multi-agent systems.

B2B Integration in Supply Chain Management. Preist et al. [9] rec-
ognize the problems of setting up interactions between agents of different supply
chain partners, and propose a Web service architecture providing automated
B2B integration. Stefansson [11] stresses the importance of automated informa-
tion sharing in supply chains, but also states the lack of scientific research cov-
ering the management of information flows within supply chains. Projects, such
as CrossFlow [3], have explored the integration of business process between out-
sourcing partners using cross-organizational workflow management and virtual
organizations. In contrast to the work presented in this paper, these approaches
typically focus on the local integration of business processes, lacking explicit
support for setting up and managing supply chain-wide interactions.

Organization Middleware. A number of approaches propose middleware-
supported organizations and interactions, such as AMELI [2], S-moise+ and
ORA4MAS [5], and Law-Governed Interactions [8]. However, most other ap-
proaches take an agent-centric perspective in which agents are responsible for
performing the functions in organization and managing life cycle of organiza-
tions. Novelty toward e-institutions and norm-based approaches is two-folded: (1)
Flow policies can specify local restrictions on agent interactions. E-institutions

106

and norm-based approaches typically use global norms rather than company-
specific and context-aware restrictions. (2) Implementations of norm-based ap-
proaches often rely on central entities enforcing norms, e.g. managers in AMELI
and S-Moise+. Our model could also support decentralized realizations [14].

Formal Methods for Organizations. Formalization is recognized as a
foundation for analyzing properties such as structure and stability of organi-
zations [1, 12]. Most approaches focus on theoretical aspects of organizations,
relying on heavyweight formal methods. Grossi et al. [4], for example, repre-
sent organizations as multi-graphs. By adding formal semantics to the graphs,
different organizational structures can be compared in terms of performance,
flexibility and efficiency. In this paper, we presented a model in Alloy and fo-
cused on the management of organizations and domain specific concerns, such
as confidentiality. Because Alloy is limited, both in terms of expressiveness and
the ability to analyze complex models, alternative approaches such as tempo-
ral logic and Petri nets may be more appropriate to explore run-time issues of
organizations or complex interaction protocols.

6 Conclusions and Future Work

We have made the case for using an organization middleware to support supply
chain-wide interactions in the domain of supply chain management. The orga-
nization middleware realizes a collaboration platform and offers organization
and role as reusable abstractions to enhance the integration of different business
processes. Although we applied our approach to a specific case in logistics man-
agement, we have shown how a limited set of organizational abstractions and a
light-weight formal modeling language can be used to offer formal guarantees in
terms of confidentiality constraints, such as the ability of companies to restrict
the interactions between their subcontractors. These guarantees can contribute
in establishing the trust of companies in such a middleware approach.

The organizational abstractions, used by the middleware, have proved pow-
erful enough to structure supply chain-wide interactions at a high-level, and
enable the separation of managing the interactions and their dynamics from
providing the actual functionality provided in the interactions itself. But most
importantly, they allow to accurately restrict the interactions among agents,
according to company-specific confidentiality constraints.

A prototype implementation of the middleware is also available on the web8,
showing a visual representation of the approach within a controlled setting. Us-
ing a web-based GUI, users are able to set up a number of supply chain-wide
interactions and dynamically alter the context, flow policies and laws.

Future work. A number of concerns are not addressed by our current model
such as dealing with incomplete and incorrect information, security and au-
thentication, and explicit support for interaction protocols, such as automated
auctions. Other interesting future directions include a domain specific policy
language and integrating the model into a development process.

8 http://www.cs.kuleuven.be/~robrecht/AOSE2010/

107

Acknowledgement

This research is supported by the Foundation for Scientific Research in Flanders
(FWO-Vlaanderen), the Interuniversity Attraction Poles Programme Belgian
State, Belgian Science Policy, and the Research Fund K.U.Leuven.

References

1. V. Dignum. Handbook of Research on Multi-Agent Systems: Semantics and Dy-
namics of Organizational Models. Information Science Reference, 2009.

2. M. Esteva, B. Rosell, J. Rodriguez-Aguilar, and J. Arcos. Ameli: An Agent-Based
Middleware for Electronic Institutions. In AAMAS’04, pages 236–243. IEEE Com-
puter Society Washington, DC, USA, 2004.

3. P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-organizational
workflow management in dynamic virtual enterprises. Computer Systems Science
and Engineering, 15(5):277–290, 2000.

4. D. Grossi, F. Dignum, V. Dignum, M. Dastani, and L. Royakkers. Structural
aspects of the evaluation of agent organizations. LNCS, 4386:3, 2007.

5. J. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting Multi-Agent Or-
ganisations with Organisational Artifacts and Agents. Autonomous Agents and
Multi-Agent Systems, pages 1–32.

6. D. Jackson. Software Abstractions: logic, language, and analysis. The MIT Press,
2006.

7. N. R. Jennings. On agent-based software engineering. Artificial Intelligence,
177(2):277–296, 2000.

8. N. Minsky and V. Ungureanu. Law-Governed Interaction: A Coordination and
Control Mechanism for Heterogeneous Distributed Systems. ACM TOSEM, 9(3),
2000.

9. C. Preist, J. Esplugas-Cuadrado, S. Battle, S. Grimm, and S. Williams. Auto-
mated business-to-business integration of a logistics supply chain using semantic
web services technology. LNCS, 3729:987, 2005.

10. H. Stadtler. Supply chain management and advanced planning: basics, overview
and challenges. European Journal of Operational Research, 163(3):575–588, 2005.

11. G. Stefansson. Business-to-business data sharing: A source for integration of supply
chains. International Journal of Production Economics, 75(1-2):135–146, 2002.

12. E. Van Den Broek, C. Jonker, A. Sharpanskykh, J. Treur, and P. Yolum. Formal
modeling and analysis of organizations. LNCS, 3913:18, 2006.

13. D. Weyns, R. Haesevoets, and A. Helleboogh. The MACODO Organization
Model for Context-Driven Dynamic Agent Organzations. ACM Transaction on
Autonomous and Adaptive Systems, 2010, http://www.cs.kuleuven.be/~danny/
papers/2010TAAS-model.pdf.

14. D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W. Joosen. The MA-
CODO Middleware for Context-Driven Dynamic Agent Organzations. ACM Trans-
action on Autonomous and Adaptive Systems, 5(1):3:1–3:29, 2010.

108

