
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 7

The Twelfth International 
Workshop on Agent-Mediated 

Electronic Commerce

AMEC 2010  

  



 



 

Twelfth International Workshop on 

Agent-Mediated 
Electronic Commerce 

AMEC 2010 
 

 

 

Onn Shehory 
IBM Haifa Research Lab 
Haifa University, Israel 

onn@il.ibm.com 

 

Esther David 
Department of Computer Science 

Ashkelon Academic College, Israel 
astrdod@acad.ash-college.ac.il 

 

Sebastian Stein 
School of Electronics and Computer Science 

University of Southampton, UK 
ss2@ecs.soton.ac.uk 

 

Alex Rogers 
School of Electronics and Computer Science 

University of Southampton, UK 
acr@ecs.soton.ac.uk 

 



 

Programme Committee 
 

 

John Collins, University of Minnesota, USA 

Shaheen Fatima, Loughborough University, UK 

Enrico Gerding, University of Southampton, UK 

Minghua He, Aston University, UK 

Sverker Janson, SICS, Sweden 

Sven Koenig, University of Southern California, USA 

Kate Larson, University of Waterloo, Canada 

Tracy Mullen, Penn State University, USA 

David Pardoe, University of Texas, USA 

Simon Parsons, City University of New York, USA 

Juan Antonio Rodriguez Aguilar, IIIA-CSIC, Spain 

Jeffrey Rosenschein, The Hebrew University of Jerusalem, Israel 

Alberto Sardinha, Carnegie Mellon University, USA 

Perukrishnen Vytelingum, University of Southampton, USA 

William Walsh, CombineNet, Inc., USA 

Michael Wellman, University of Michigan, USA 

Dongmo Zhang, University of Western Sydney, Australia 
 
 

  



Table of Contents 
 

FULL PRESENTATIONS 

Decentralised Supply Chain Formation: A Belief Propagation-Based Approach ................................................. 1 
Michael Winsper and Maria Chli 

Search Costs as a Means for Improving Market Performance ............................................................................. 15 
David Sarne 

Flexibly Priced Options: A New Mechanism for 
Sequential Auctions with Complementary Goods ............................................................................................... 29 
Valentin Robu, Enrico Gerding, Ioannis Vetsikas and Nicholas Jennings 

Time Constraints in Mixed Multi-unit Combinatorial Auctions .......................................................................... 43 
Andreas Witzel and Ulle Endriss 

Characterization of Revenue Monotonicity in Combinatorial Auctions .............................................................. 57 
Taiki Todo, Atsushi Iwasaki and Makoto Yokoo 

Network Effects in Double Auction Markets with Automated Traders ............................................................... 71 
Kai Cai, Jinzhong Niu and Simon Parsons 

Setting Fees in Competing Double Auction Marketplaces: An Equilibrium Analysis ........................................ 85 
Bing Shi, Enrico Gerding, Perukrishnen Vytelingum and Nicholas Jennings 

A Grey-Box Approach to Automated Mechanism Design .................................................................................. 99 
Jinzhong Niu, Kai Cai and Simon Parsons 

Modeling Seller Listing Strategies ..................................................................................................................... 113 
Quang Duong, Neel Sundaresan, Nish Parikh and Zeqian Shen 

 
SHORT PRESENTATIONS 

An Automated Mechanism Design Approach 
for Sponsored Search Auctions with Federated Search Engines ....................................................................... 127 
Sofia Ceppi and Nicola Gatti 

A Comparison of Different Automated Market-Maker Strategies ..................................................................... 141 
Janyl Jumadinova and Prithviraj Dasgupta 

On Optimal Agendas for Multi-Issue Negotiation ............................................................................................. 155 
Shaheen Fatima, Michael Wooldridge and Nicholas Jennings 

A Practical Multiagent Model for Resilience in Commercial Supply Networks ............................................... 169 
Andrew Smith and Jose Vidal 

A Resource Bounded Multi-Agent Approach to Deciding Advertisement Display .......................................... 183 
Yue Zhang and Nadeem Jamali 



 

 

 

 

 

 

 

FULL  PRESENTATIONS 
 



Decentralised Supply Chain Formation: A Belief 

Propagation-Based Approach 

Michael Winsper, Maria Chli 

 

Computer Science, Aston University, Aston Triangle, 

Birmingham B4 7ET, United Kingdom 

{winsperm, m.chli}@aston.ac.uk  

Abstract. Decentralised supply chain formation involves determining the set of 

producers within a network able to supply goods to one or more consumers at 

the lowest cost. This problem has been tackled in a number of ways, including 

auctions, negotiations, and argumentation-based approaches. In this paper we 

show how this problem can be cast as an optimisation of a Markov Random 

Field energy function. Optimising this class of energy functions is NP-hard but 

efficient approximations to the global minimum can be obtained using Loopy 

Belief Propagation (LBP). Here we detail a LBP-based approach to the supply 

chain formation problem, involving decentralised message-passing between 

participants. Our approach is evaluated against a well-known double-auction 

method and an optimal centralised technique, showing several improvements: it 

obtains better solutions for most networks that admit a competitive equilibrium1 

while also solving problems where no competitive equilibrium exists, for which 

the double-auction method frequently produces inefficient solutions. 

Keywords: Supply chain formation, task allocation, belief propagation 

1   Introduction 

As the drive for efficiency and adaptability becomes an increasing focus in industry, 

together with rising levels of uncertainty about market conditions, the ability to 

quickly form effective, mutually beneficial trading partnerships becomes increasingly 

important. Although the concept of virtual enterprises – ad-hoc coalitions of 

businesses formed to pool resources and create synergies in order to respond to 

emergent business opportunities – may have yet to reach the level of popularity its 

proponents had hoped for, the principles of such arrangements, along with 

outsourcing, remain integral to the business processes of many organizations [1].  

Traditional non-computational approaches to supply chain formation are inefficient 

processes, with time wasted on contract tendering and negotiations. Time constraints 

and human irrationality may lead to the establishment of inefficient supply chains, a 

problem that could be mitigated or avoided with the use of computational techniques. 

                                                           
1 Bounded competitive equilibrium is an SAMP-SB-specific notion defined in [2]. The authors 

use this definition to allow for minor inefficiencies in their auction protocol and agent 

bidding strategies.  
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Agent-based computational approaches to supply chain formation model potential 

supply chain participants – businesses capable of forming a link in the yet-to-be-

completed chain – as rational self-interested computational agents. These agents 

deliberate between themselves, typically either through centralised negotiations or 

decentralised auctions, about the subset of agents capable of forming the most 

efficient supply chain. At the conclusion of these deliberations, which, although 

depending on the number of potential participants, are typically much faster than real 

life negotiations, the supply chain is formed instantly.  

While both negotiation and auction-based approaches to supply chain formation 

have seen significant research, the reliance on an assumption of centralisation (for 

many negotiation-based approaches), or the problem of inefficient agent bidding 

strategies leading to suboptimal allocations (for auction-based approaches) has meant 

that neither method has been truly established as the most efficient technique for the 

computational formation of supply chains.    

In this paper, we propose a belief propagation-based approach to decentralised 

supply chain formation which is capable of producing efficient results over a range of 

network topologies. With our use of belief propagation, we are able to produce results 

comparable to that of a centralised approach whilst still working in a decentralised 

manner. The use of message passing also allows us to take full advantage of the 

graphical structure of our networks.  

In section 2, we provide details of previous models of decentralized supply chain 

formation, and explain why belief propagation is a useful approach for supply chain 

formation when networks are represented graphically. In section 3, we provide details 

of our model, inspired by work previously conducted by Walsh and Wellman [2], and 

provide the details of the loopy belief propagation algorithm. Section 4 describes our 

experiments, while section 5 shows our results and compares them to the results 

obtained by [2] and the optimal centralised method. Section 6 provides some 

conclusions about our work, while section 7 identifies areas of related future research. 

2   Background 

Multi-agent systems enable us to model a number of properties characteristic of 

supply chains: uncertainty, decentralized decision making by self-interested agents 

and the process of self-organisation being just a few examples. It is no surprise, then, 

that application of the multi-agent paradigm to the area of supply chain formation and 

related areas has been an ongoing focus of multi-agent systems research for several 

years. Existing decentralised supply chain formation and related literature can be 

thought of as encompassing two broad areas: research which focuses on methods for 

decentralised negotiation as a means for determining allocations, and studies which 

model the supply chain as networks of auctions. 

Davis and Smith’s Contract Net protocol [3], which details a method for 
distributed problem solving based on task decomposition and negotiation, formed the 

basis for agent-based models of decentralised negotiation, an approach which lends 

itself well to the modelling of supply chains: each individual procurement and sale 

decision by each participant in the supply chain can be looked at as a multi-party 
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negotiation, with factors such as negotiation protocols and bidding rules providing 

interesting avenues of investigation. Papers using the negotiation approach include 

Wang et al. [4], which uses argumentation-based negotiation for decision making in 

supply chain formation, and Jiang et al. [5], which applies an extension of the contract 

net to a petroleum supply chain.  

The other main approach to supply chain formation involves modelling the supply 

chain as a network of auctions, with first and second-price sealed bid auctions, double 

auctions and combinatorial auctions among the most frequently-used methods.  

Supply chain formation through auctions is a popular approach for a number of 

reasons: auctions are frequently used for real-world tendering and sales opportunities, 

many auctions possess a number of interesting game-theoretic properties, and 

auctions are often able to form satisficing solutions. Perhaps the most comprehensive 

series of studies on supply chain formation using auctions comes from Walsh, 

Wellman et al, who examine the efficiency of supply chains formed using 

simultaneous auctions [2] and combinatorial auctions [6]. In their simultaneous 

auctions paper, Walsh and Wellman define a market protocol with bidding 

restrictions, referred to as SAMP-SB – simultaneous ascending M+1st Price Auctions 

with Simple Bidding – capable of producing near-optimal allocations, over several 

network structures, although it frequently struggled on networks where competitive 

equilibria did not exist. They proposed a similar protocol with the provision for 

decommitment in order to remedy the inefficiencies caused by “dead ends” created by 
producers acquiring input goods and not finding a buyer for their output, but this was 

recognized as an imperfect solution, due to the possible problems created by 

rendering the results of auctions as non-binding. More recent work has seen the 

proposal of mixed multi-unit combinatorial auctions (MMUCAs) for supply chain 

formation [7], with the standard combinatorial model of bids being placed for bundles 

of goods replaced by negotiations over “transformations”, essentially commitments 

by bidders to produce a set of output goods given a set of input goods.  

We chose to use [2] as a basis for our model due to its being extensively and 

lucidly defined, with clearly specified graphical network structures and results 

providing a sound foundation for performance evaluation and comparison. As stated 

in [2], supply chain networks lend themselves well to a graphical representation, in 

the form of task dependency networks, due to the property of hierarchical subtask 

decomposition, a defining feature of supply chain formation.  Where [2] use double 

auctions to determine allocations, however, we use loopy belief propagation. The 

graphical nature of the supply chain networks used by [2] provides for the use of 

graphical inference algorithms in determining the optimal participants within a supply 

chain network, allowing us to quickly find efficient allocations in a decentralized 

manner. Loopy belief propagation, an extension of Pearl’s polytree algorithm [8] for 
inference in graphs containing cycles, is well-suited to this task, due to its ability to 

converge to correct solutions on acyclic and single-cycle graphs [9] whilst still 

providing good approximations for more complex graphs [9].  

Although loopy belief propagation has not heretofore been applied to supply chain 

formation, it has seen success in related areas such as sensor networks [10], [11]. 

Loopy belief propagation works using decentralised message passing, allowing our 

agents to share beliefs about the optimal structure of the network without revealing 
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any more private cost information than they would in an open auction, whilst being 

able to produce results comparable to those of centralised approaches. 

3   Model 

We model our supply chain networks as bipartite directed acyclic graphs. There are 

two types of node: individual producers and consumers, which are represented by 

rectangles in our network diagrams, and goods represented with circles. Directed 

edges indicate potential flows of goods. Edges signify the ability for supply chain 

participants to produce or consume goods. An edge leading from a producer to a good 

indicates that the producer is capable of producing the good, while an edge leading 

from a good to a producer or consumer means that that producer or consumer is able 

to consume the good. Consumers, as their name suggests, cannot produce goods. 

 
 

 

 

 

 

This approach, identical to that used by Walsh and Wellman [2], allows us to clearly 

state network structures while retaining fidelity to the structure of real-world supply 

chains. For example, in Figure 1, we see that producer P1 is able to produce good 1 at 

a cost of 0.36, which producer P3 needs to consume in order to produce good 3, at a 

cost of 0.53 plus the cost of acquiring good 1, for consumer C1. Similarly, producer 

P2 is able to produce good 2, for possible consumption by producer P4, which is also 

able to supply consumer C1 with good 3. If both producers P3 and P4 are able to 

acquire their single input good, C1 must make a choice about which producer to 

purchase from. Ideally it will choose the producer able to supply the good at the 

lowest accumulated cost, in this example P3, leaving C1 with a final positive 

consumption value of ). 

Goods represent a single unit of a commodity which is non-divisible, and 

equivalent in all aspects other than price; for reasons of simplicity and clarity, we do 

not attempt to model aspects such quality, quantity or delivery constraints.  

 

3.1   Agents 

Our supply chain networks are made up of multiple interlinked producers aiming to 

supply a good or goods to one or more consumers. 

 

Fig. 1. A sample supply chain network, from [2]. Producers (P1,P2,P3,P4) and consumers 

(C1) are represented by rectangles, with goods represented by circles. Edges between vertices 

show possible flows of goods. Numbers below producers indicate production costs, while 

numbers below consumers indicate consumption values. 
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Producers Producers are capable of producing a single unit of a single type of output 

good, and to do so are required to have obtained a single unit of each of the goods in 

their set of input goods, which may be zero, one, or many. Producers which do not 

require any inputs to produce their output good are known as no-input producers, and 

form the initial echelon of the supply chain. In the case of a producer requiring 

multiple inputs, we refer to the goods as complementary – a producer is unable to 

produce its output good if it is only able to acquire a subset of its required input 

goods. In producing their output good, producers incur a production cost. This is a 

constant that depends on the particular producer. It represents the expense incurred by 

producing a certain product, e.g. the cost of running a factory.  

 

Consumers Consumers require a single unit of a single good from their set of 

consumable goods. In each network, each consumer is assigned a static consumption 

value : this is the personal valuation the consumer holds for obtaining one of its 

consumable goods.  

 

3.2 States 

Due to the fixed structure of the networks, for each agent there exist a finite number 

of purchases and sales (if the agent is a producer) in which the agent is viable. We 

encode each of these tuples of exchange relationships as states, with each state 

defining a list of suppliers and a buyer if the agent is a producer, and a single supplier 

for consumers. For example, a possible state for producer P3 in Figure 1 is “Buy from 

P1 and sell to C1”. The number of states an agent possesses increases with the 

number of producers able to supply its input good(s), and the number of producers or 

consumers able to consume its output good. As well as a list of active states, we also 

allow for the inactive state, where the agent does not acquire or produce any goods.  

 

3.3 Cost Function 

We allow for two distinct types of cost, denoted as  , the unary cost for agent  

of being in state , and  , the pairwise cost of connected agents  and  

being in states  and . Our method minimises the function given below:  

 

                 .                       (1) 

 

Where  is the set of agents,  is the unary cost of agent  being in 

state , and  is the pairwise cost of linked agents  and , being labeled 

with states  and . With all else equal, the lower the cost function, the more 

efficient the allocation. We use the efficiency of an allocation as a measure of the 

quality of the solution found. 

 

Unary Cost Each agent associates each of its states with a cost. For all agents, the 

cost of being in the inactive state is zero. For producers, all active states incur a 

positive cost, equal to their production cost. Consumers assign a negative cost  

to all states in which they acquire a good, where  represents the consumer’s 
consumption value, the value they assign to the acquisition of their consumable good.  
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Pairwise Cost In order to calculate the pairwise cost for two states, we must first 

assess their compatibility. Two states are compatible if both are inactive states, or  the 

lists of sellers and buyers align such that neither is trying to buy from or sell to the 

same agent, or the states describe a situation where agent  wants to sell to agent , 

’s list of sellers includes , and neither is inactive, and vice versa. If the states are 

compatible, we set the pairwise cost to zero; if not, the pairwise cost is infinite.  

 

Simple Network Costs To provide an example of our system of costs in practice, we 

now show the vectors of unary costs and matrices of pairwise costs in our simple 

network, as shown in Figure 1. The simple network is made up of a set of four 

producers and a single consumer, as well as three potential goods for production. The 

possible states of our agents are: 
 
P1: .  = “Inactive”.  = “Sell to P3”. 
P2: .  = “Inactive”.  = “Sell to P4”. 
P3: .  = “Inactive”.  = “Buy from P1 and sell to C1”. 
P4: .  = “Inactive”.  = “Buy from P2 and sell to C1”. 
C1: .  = “Inactive”.  = “Buy from P3”.  = “Buy from P4”. 
 

Producer P1 does not require any inputs, and is only capable of selling to one agent - 
producer P3 - meaning its sole active state is , representing the state of not buying 
any inputs, and selling to P3. Consumer C1 has two valid active states: buying from 
P3 and selling to no-one -  - and buying from P4 and selling to no-one, . 

With our list of states complete, we now show the unary costs of the states. 

Inactive states incur a unary cost of 0, while active states depend upon the type of 

agent in question. For producers, the unary cost is equal to the production cost of the 

producer in question. Consumers incur a unary cost of , where  is the 

consumption value of the consumer in question. Thus, our unary costs are as follows: 

 

P1: . . 

P2: . . 

P3: . . 

P4: . . 

C1: . . . 

 

Finally, we show the pairwise costs associated with P3 in our simple network: 

 

. , . . 

. , . , 

. , . , 

. . 

. , . , 

. . 

 

The next section introduces the details of loopy belief propagation, the technique we 

employ to minimise our cost function. There are, of course, other possible 
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approaches: a brute force approach, for example, would be able to deliver consistent 

optimal results given enough time,; various DCOP and DPOP search algorithms 

would also be capable of producing optimal solutions. We propose LBP, as an as-yet 

unused approach to this problem, for its ability to produce efficient results whilst 

operating in a decentralised manner. 

 

3.4 Loopy Belief Propagation 

The process of belief propagation [12] begins by first initialising the beliefs of the set 

of agents about each of their states to zero. The agents then pass a message – 

containing a vector of belief values – to each of their neighbours in the network. Once 

all agents have passed a message to each of their neighbours, each agent updates its 

beliefs based upon the content of the messages it received. This process of message 

passing and belief aggregation continues until the beliefs of our agents become stable, 

at which point we determine the final state of each agent and perform the allocation. 

 

Belief Aggregation For each of agent ’s possible states, we use equation 2 to 
calculate ’s belief in that state. At initialisation, each agent holds a belief of zero 

about each of its states. 

 

 .                           (2) 

 

 corresponds to agent ’s belief in its state . This belief is made up of two 

parts: first is the unary cost  to  incurred by being in state . This is added to 

the sum of the beliefs about state  contained within the messages  

received from ’s set of neighbours .  

 

Messages At each step, each agent in the network passes a message to each of its 

neighbours, consisting of a vector of values representing the sender’s beliefs about 
each of the recipient’s states. This involves sender  comparing the compatibility of 

each individual state from its own set of states with each individual state  from 

recipient ’s set of states, taking into account ’s belief about its own state , as well 

as the belief value about state  contained within the message passed from  to  in 

the previous step. Messages can therefore be interpreted as encoding both a 

compatibility component (through the pairwise cost) and a cost component (through 

the encoding of cost data in one’s current beliefs, if the states are compatible). 
 

 .           (3) 

 

Equation 3 show the process of calculating a message to be passed from agent  to 

agent .  corresponds to agent ’s belief in its own state . We subtract 

from this the belief passed from  to  about state  in the previous round of 

messages, represented as . Finally, we add the pairwise cost incurred by 

agents  and  being in states  and . We repeat this process for each of agent ’s 
possible states, comparing them in turn to agent ’s state . Once the set of possible 

costs for state  dependent on ’s set of states have been determined, we take the 

minimum of these values and add it to the vector of beliefs to be passed from agent  
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to agent . This process is repeated for each of ’s possible states, resulting in a final 
vector of values to be passed from  to . Before we perform allocation, we 

determine the “final state” of each agent – the state, at convergence, which the agent 

believes holds the lowest cost.  

 

3.5 Allocation 

Once the final states of each of the agents have been determined, we can perform the 

process of allocation. For each of the agents in the network, we remove edges leading 

to other agents which are not listed in their final state if there are no other 

producers/consumers of that good; in the case of agents being in the inactive state, we 

remove all of their edges. We then iterate through the agents once more, this time 

checking to see if, given the results of the previous stage of allocation, each producer 

was able to acquire all the goods in its set of input goods. If a producer is determined 

to have acquired an incomplete set, we remove the edge leading to their output good. 

 

Allocation Value We determine the value of our allocations by the equation given 

below, where  is the set of consumers to acquire a good,  is the consumption value 

obtained by each of those consumers,  is the set of producers in the allocation who 

produce a good, and  is the production cost of each producer . This is equivalent 

to equation (1). 

 

           .                                            (4) 

4   Experiments 

4.1 Network Structures 

We test our belief propagation method over a variety of network structures, taken 

from [2]. For the purposes of evaluation, upon initialisation of each of the networks, 

the production cost of each producer is set to a decimal value drawn from the interval 

. These values are re-computed and changed after each run. Consumption 

values, taken from [2], are fixed at the values given underneath each consumer (C1, 

C2 and so on) in each of the following figures, over every run. We implemented our 

system using a combination of Java and MATLAB. 

 

 
 

 

Fig. 2. Simple network, from [2]. Numbers below consumers indicate consumption values, 

which remain static for each network over each run. Production costs vary between runs and are 

drawn randomly from the interval . 
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Fig. 4. Two-Cons network, from [2]. 

Fig. 3. Greedy-Bad network, from [2]. 

Fig. 5. Unbalanced network, from [2]. 

Fig. 6. Bigger network, from [2]. 
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4.2 Performance Evaluation 

To evaluate the performance of our method, we perform belief propagation on each 

network until a convergence is reached, using the final state of each agent as the basis 

for our allocations. If no convergence is reached, i.e. we see a continuing oscillation 

in the transmitted messages, we regard the result as zero-value allocation, indicating 

that no solution was found. We compare the value of our allocations to the optimal 

efficient value, calculated using a centralised technique, and to the results of the 

auction protocols given in [2]: SAMP-SB, and SAMP-SB-D. SAMP-SB-D is a 

modification of SAMP-SB which allows inactive producers to decommit from 

contracts for inputs for which they would pay a positive price, a situation referred to 

as a “dead end”. Decommitment allows for the avoidance of this potential source of 

inefficiency, though at the cost of rendering contracts non-binding. As in [2], we 

gather 100 results for each network, discarding runs in which the optimally efficient 

value is non-positive.  

 

4.3 Efficiency 

We first divide our results into efficiency classes: negative, zero, suboptimal and 

optimal. Recall equation 4, which allows us to determine the value of an allocation. 

The efficient allocation within a network, given a set of producer costs, is the one 

which maximises this value. We use the efficient allocation as a benchmark for the 

results we obtain using our loopy belief propagation method. We determine the 

efficient allocation for each run by using local search, finding each possible solution 

Fig. 7. Many-Cons network, from [2]. 
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in the network and determining the most efficient. We classify our results using the 

belief propagation method as follows:  

 

Negative: A negative efficiency result is an allocation in which the production costs 

of active producers exceeds the value that the consumer(s) obtain from acquiring their 

consumable good. This is caused by dead ends: the presence of inactive producers 

who acquire one or more input goods but do not produce an output, either due to no 

buyer being found for their potential output good, or due to the producer acquiring an 

incomplete set of input goods. SAMP-SB-D avoids the problem of dead ends – and 

thus negative efficiency – by allowing producers in such situations to decommit from 

contracts for their inputs. 

Zero: A zero-value allocation is one in which our algorithm does not reach 

convergence, with all producers assigned to an inactive state, and as such is 

equivalent to a zero efficiency allocation produced by SAMP-SB or SAMP-SB-D. 

Zero valued allocations are more desirable than negative-valued allocations, but less 

desirable than suboptimal or optimal allocations. 

Suboptimal: Suboptimal allocations are allocations in which a non-optimal solution 

was found. This can be caused by the presence of dead ends, or by finding an 

allocation without dead ends when an allocation which would have produced a higher 

value existed.  

Optimal: An optimal allocation means that our algorithm was able find the allocation 

which produced the maximum efficiency available, meaning we achieved the same 

value as the centralised benchmark, determined by local search. There are no dead 

ends in optimal allocations. 

5   Results 

In keeping with our desire for as fair a comparison between the methods as possible, 

the efficiency classes of the results produced by SAMP-SB and SAMP-SB-D are near 

identical to those for our belief propagation method. For SAMP-SB and SAMP-SB-D, 

a zero result means that no solution was found, with no dead ends. This is equivalent 

to our zero result in which no convergence is reached. The definitions of negative, 

suboptimal and optimal allocations given in [2] are identical to ours. The ability for 

inactive producers to decommit from contracts under the SAMP-SB-D protocol 

means that there is no negative efficiency category for SAMP-SB-D. 

We see from Table 1 that our belief propagation approach is able to match SAMP-

SB’s performance for network Simple while significantly outperforming it over all 
other networks tested. Due to the absence of producer surplus in our model, we make 

no attempt to distinguish between the existence of competitive equilibrium (CE) or 

otherwise in our results. Our producers aim to break even, as in [2], but are not 

limited in their attempts to do so by bidding strategy inefficiencies. Despite this, even 

if we compare our results with the best case for SAMP-SB, using only those results in 

which competitive equilibria exist, we are still able to show a significant advantage in 

the proportions of our runs showing optimal efficiency, with marked reductions in 

negative, zero and suboptimal solutions in almost all cases. 
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Our results are also comparable to those produced by SAMP-SB-D, with similar 

efficiency class proportions between the two methods if only the results where 

competitive equilibria exist for SAMP-SB-D are compared. In this case, SAMP-SB-D 

generates optimal allocations slightly more frequently than belief propagation for 

networks Unbalanced and Greedy-Bad, though like SAMP-SB it struggles when 

competitive equilibria are not present. The performance of our method is aided by the 

fact that, when viewed as undirected graphs, networks Simple, Two-Cons and Many-

Cons are all acyclic – recall that belief propagation is guaranteed to converge to the 

correct solution under such conditions.  The performance of belief propagation on the 

other networks, however, shows that such favourable conditions are not a prerequisite 

for the production of good results.   

Table 2 shows the average efficiency achieved by belief propagation, SAMP-SB 

and SAMP-SB-D as a fraction of the efficient value. Negative values indicate that 

runs over a network recorded negative average efficiency. For example, a result 

showing -1.0 average efficiency means the method achieved, on average, -100% of 

the maximum available allocation value. Once again, belief propagation essentially 

equals or significantly outperforms SAMP-SB for every network, capturing, with the 

exception of the unbalanced network, a higher proportion of the efficient value than 

SAMP-SB is able to, performing at 82.7% of the optimal or better for each network 

tested. As with the previous set of experiments, if our results are compared to only 

those where competitive equilibria are present for SAMP-SB-D, then we see that 

SAMP-SB-D is able to capture slightly more of the average efficiency than belief 

propagation for the Unbalanced and Greedy-bad networks, with essentially equal 

results for the other networks. Unlike SAMP-SB-D however, we are able to produce 

Network 

 

Belief Propagation 

% of instances 

 

SAMP-SB 

% of instances 

SAMP-SB-D 

% of instances 

Neg Zero Sub Opt Neg Zero Sub Opt Zero Sub Opt 

Simple 0.0 0.0 0.0 100.0 0.0 0.3 0.0 99.7 0.3 0.0 99.7 

Unbalanced 8.0 1.0 0.0 91.0        

CE     5.0 1.0 7.0 87.0 1.0 1.0 98.0 

No CE     100.0 0.0 0.0 0.0 100.0 0.0 0.0 

Two-Cons 0.0 0.0 0.0 100.0        

CE     11.0 0.0 6.0 83.0 0.0 3.0 97.0 

No CE     18.0 0.0 78.0 4.0 1.0 95.0 4.0 

Bigger 0.0 0.0 0.0 100.0 0.0 0.0 4.0 96.0 0.0 0.0 100.0 

Many-Cons 0.0 0.0 0.0 100.0 27.0 0.0 56.0 17.0 0.0 2.0 98.0 

Greedy-bad 0.0 7.0 0.0 93.0        

CE     4.0 0.0 21.0 75.0 1.0 0.0 99.0 

No CE     100.0 0.0 0.0 0.0 100.0 0.0 0.0 

Table 1. Distribution of efficiency classes from Belief Propagation, SAMP-SB and 

SAMP-SB-D. Classes are Negative, Zero, Suboptimal and Optimal. 
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strong results, in most cases, regardless of the cost structure of the networks, as long 

as there exists a solution with a positive value. 

 

 

 

 

 

6   Conclusions 

In this paper, we present a new method for decentralized supply chain formation, 

using work by [2] as both a foundation for the structure of our networks, and as a 

comparison to our results. Our belief propagation method, involving decentralized 

message passing to propagate beliefs held by our agents, is able to perform at worst 

equally and, more frequently, significantly better in creating efficient allocations than 

an established approach utilizing ascending auctions [2], whilst making no 

assumptions of centralisation. Over every network structure tested, we were able to 

show that, even in the best case for the auction-based approach, our method is able to 

match or outperform the results it obtains, producing consistently optimal or near-

optimal average efficiency results.  

We believe that our method provides an interesting avenue for future research by 

merit of its ability to produce more efficient allocations than an established auction 

protocol in a comparable scenario, whilst operating in a decentralised manner. By 

allowing our agents to share limited information about their capabilities and 

production costs (equivalent to sale price, which means participants are revealing no 

more information about their private preferences than in an open auction) we are able 

to produce highly efficient allocations over a range of network topologies. 

Network 

 

Belief Propagation 

 

SAMP-SB SAMP-SB-D 

Simple 1.000 0.997 0.997 

Unbalanced 0.827   

CE  0.867 0.990 

No CE  -20.080 0.000 

Two Cons 1.000   

CE    0.733 0.986 

No CE    0.268 0.686 

Bigger 1.000 1.000 1.000 

Many-Cons 1.000 0.120 0.996 

Greedy-bad 0.854   

CE  -5.320 0.990 

No CE  -18.230 0.000 

Table 2. Fraction of average efficiency obtained by Belief Propagation, SAMP-SB and SAMP-SB-D in 

each network. Negative values indicate that the method achieved less than 0% of the available allocation 

value on average. 

13



7   Future Work 

In using [2] as a basis for our work, we traded potentially complex extensions in 

favour of an expressive graphical representation of supply chain networks and a clear 

basis for fair comparison. Potential extensions, therefore, might involve expanding the 

properties of goods, to take into account factors such as quality, quantity, delivery 

dates and default penalties. Producers could be improved by implementing properties 

to model production capacity and the possibility of strategic behaviour – at present all 

agents are truth-telling – while consumers might be imbued with richer preferences 

over the goods available, using principles taken from consumer behavior theory. A 

temporal aspect could be introduced, with trading relationships forming and 

dissolving over time, based upon scarcity of goods and inherent preferences, with 

trust and reputation interesting issues to be taken into account.  
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Abstract. In this paper we study the benefits of search costs in distributed
multi-agent systems (MAS). These costs, often associated with obtaining, pro-
cessing and evaluating information relating to other agents in the environment,
can be either monetary or manifested in some tax on the agent’s resources. Tra-
ditionally, such costs are considered as market inefficiency, and, as such, aimed
to be reduced to the minimum. Here we show, in contrast, that in many MAS
settings the introduction of search costs can actually improve market perfor-
mance. This is demonstrated in three different settings. First we consider one-
sided and two-sided (equilibrium-driven) search applications. In both settings
we show that, while search costs may decrease the individual agents’ outcomes,
the overall market throughput may actually improve with the introduction of
such costs. Next, we demonstrate a setting where, somewhat paradoxically, the
introduction of search costs improves both the overall market throughput and
the utility of each and every individual agent. We stress that we assume that
the proceeds from the search costs are wasted, with no one directly benefiting
from them. The importance of the results is for the design of MAS systems,
where in many cases one should consider deliberately increasing (potentially
artificially) the search friction to some desired level in order to improve the
system’s performance.

1 Introduction

In many cases, market friction and seemingly “inefficiency -based” mechanisms can
be used for establishing desired market behaviors. For example, minimum wage has
been shown as a mechanism that can, in some cases, improve employment rates [16]
and Vickrey Clarke Groves (VCG) ensures assignment of items in a socially optimal
manner and truth telling by requiring significant transfer of payments from agents to
the center [8]. Similarly, particular taxes (known as marginal cost pricing) can eliminate
inefficiencies of equilibria as demonstrated in transportation economics [5].

In this paper, we learn the positive role that search costs, incurred as part of a
repeated search process, can play in enhancing performance of markets. In many multi-
agent systems (MAS), agents may incur a cost when engaged in obtaining, processing
or reasoning about information related to their environment and other agents that
can be found in it [14, 9]. These costs can be either in the form of explicit monetary
payments or resources that need to be consumed in order to carry out these activities
(e.g., computational, communication). In economics and operations research such costs
are often referred to as “search costs” or “environment friction” as they represent the
inefficiency and lack of transparency of the environment the agents are operating in [3,
25]. Typical examples include distributed matching applications (where the interaction
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2 David Sarne and Yonatan Aumann

with other agents is costly) [1], shopbots (where price and product information must
be actively gathered) [14], and reputation systems (where agents may need to pay a
fee for querying the system) [13].

Traditionally, search costs are regarded as market inefficiency, and associated with
reduced market performance. Indeed, in the presence of search costs, a rational player
would not aim to find the optimal element in the environment, but rather settle for the
“good enough”, beyond which the marginal benefit of continuing the search is less than
the search cost. Thus, search costs promote sub-optimal results (or so it would seem). As
such, the traditional wisdom is that when designing a MAS environment, search costs
should be avoided or reduced as much as possible. Taking eCommerce as an example,
most researchers see a great benefit in the ability of electronic marketplaces to lower
the buyers’ cost to obtain information (e.g. about the price and product features) from
multiple sellers, as well as the sellers’ reduced costs to communicate their information
[4]. The lowered buyer’s search cost is associated in this case with an increased economic
efficiency and enable new markets to emerge [4]. Similarly, many systems have been
introduced in which central mechanisms or mediators are used in order to supply the
agents full immediate information concerning market opportunities, eliminating the
need to engage in costly search [10, 2].

In this paper we show that, not withstanding the above, search costs — “friction”
— can also be beneficial, and may improve market performance, in some cases, when
applied appropriately. We show this on two levels. First, we note that while each player’s
individual goal is to maximize its own utility, and as such may suffer from search costs,
the market designer should consider the overall welfare produced by the system as a
whole. This, we argue, is not the average utility of the individual players, but rather
the total utility throughput, i.e. the aggregate utility per time unit. Note that in search
settings the players’ individual utilities and the utility throughput are not necessarily
directly correlated, as players can stay in the system for longer or shorter time periods.
With this understanding in mind, we show two examples where introducing search
costs increases the market throughput, and hence also the social welfare. Specifically,
we consider classical one and two-sided search settings, and show that in both, search
costs can improve market throughput. It is important to stress that throughout the
paper we assume that the proceeds from the search costs are discarded and do not
benefit anyone in the system.

Next, we show that even when considering the benefit of each individual player,
there are cases where search costs can increase the expected utility of each and every

player in the system. This seemingly paradoxical phenomena is exhibited in a setting of
two-sided search with multiple search rounds, each round consisting of several parallel
searches. We show that if the cost for each round is given, then it may be beneficial
to artificially increase (up to a certain level) the cost of each individual parallel search
within the round, and that all players simultaneously benefit from this. The exact
details are provided in Section 4.

The common rational to all these examples is that in some cases it may be beneficial
(either to the system designer or to all) to reduce the amount of searches performed
by the players, but when dealing with self-interested agents this cannot be directly
dictated. Search costs provide a means to incite players to perform less searches. What
is interesting in these examples is that even when the proceeds of the costs are wasted,
the benefit of the reduced search outweighs the loss.

The analysis given differs from classical examples of seemingly “inefficiency -based”
mechanisms as it inherently derives from the modeling of the search strategy as a
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repeated process, and applies to the various models investigated as part of classical
search theory [21, 15, 26, 6, 11, 18, 19]. The main contribution of this paper is thus in
establishing the notion of market throughput within the context of search-based MAS
applications and demonstrating that market friction in the form of search cost can often
play a positive role market-wise, despite the reduction in individual performance expe-
rienced by the agents. In some cases, search costs can actually improve both individual
and market performance. Therefore, when designing a new MAS, the system designer
should carefully consider the option of deliberately generating some inefficiency in the
system in the form of search costs.

2 One-Sided Search

Consider an environment with N homogeneous servers, and an infinite incoming flow
of homogeneous agents requesting service from these servers.1 In practice, the servers
may represent medical specialists and agents - the patients, or servers may represent
online retailers and the agents - shopbots. Each agent can send a query to any of the
servers, where the utility of reply x received by agent j from a server i is randomly
drawn from a distribution characterized by a probability distribution function (p.d.f.)
f(x), and cumulative distribution function (c.d.f.) F (x), defined over the interval (x, x).
For example, patients may seek for a second opinion from medical specialists, where
the quality of the diagnosis received varies, and shopbots may query different retailers
for price information. For simplicity we assume that all servers and all agents are
homogeneous, and thus share the functions f(x) and F (x), and that an agent’s utility
from the returned value x equals x. We assume that the time it takes to execute a
single query on any of the servers is fixed and WLOG will be considered a time unit.
Based on the revealed utility of x, the agent can decide to send an identical query to an
additional server, again obtaining a utility drawn from the same distribution function.
This process continues until the agent decides that there is no point in sending any
further queries, or until all N servers have been queried. In both cases, the resulting
utility is the maximum among the utilities obtained from the queries sent. We assume
that queries sent by agents that have already received service have priority over those
of newly arriving agents.

Agents are assumed to be self-interested, and thus aiming to maximize their ex-
pected utility. The system designer, on the other hand, should be interested in the
aggregate utility. Since the system is assumed to continue working indefinitely, the ag-
gregate is not well defined, and what we are really interested in is the average through-
put, i.e., the average aggregate utility per time unit. Formally, denote by A(t, t) the
set of agents that have completed their querying process within the time interval (t, t),
and by U(Ai) the utility obtained by agent Ai ∈ A(t, t). The average throughput of
the system during the interval (t, t), denoted T (t, t), is defined as:

T (t, t) =

∑

Ai∈A(t,t) U(Ai)

t− t
(1)

1 Since the purpose of this paper is to investigate the effect of search costs over throughput
of MAS, we deliberately assume that the demand for the servers is infinite. Without this
assumption, the analysis necessitates including queueing theory aspects, which add many
complexities without adding to the understanding of the core phenomena illustrated.
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For a system working indefinitely the throughput is defined as:

T∞ = lim
t→∞

∑

Ai∈A(0,t) U(Ai)

t
(2)

Since the agents are homogeneous and the setting is a symmetric game, they all
use the same optimal querying strategy. Therefore, the following holds for large (t, t)
intervals:

∑

Ai∈A(t,t)

U(Ai) =
E[U(Ai)] ·N · (t− t)

E[q]

where E[q] is the expected number of queries sent by each agent (identical to all agents
as the agents are homogeneous). Therefore:

T (t, t) =
N · E[U(Ai)]

E[q]
(3)

Note that the right-hand side of Equation (3) is independent of (t, t). Hence, the same
value also holds for the limit T∞.

Suppose that each agent queries exactly k ≤ N servers, i.e., E[q] = k. The expected
utility of each agent in this case is the expected maximum of a sample of size k taken

from the distribution f(x), which equals
∫ x

y=x
yfk(y)dy, where fk(x) is the probability

distribution function of the maximum of a sample of size k drawn from f(x).2 Therefore:

T∞ =
N

∫ x

y=x
yfk(y)dy

k
(4)

Obviously, when there is no cost associated with querying a server, agents will

query all servers (as the expected utility
∫ x

y=x
yfk(y)dy, increases with k) . In this case,

substituting k = N in Equation 4, the average throughput reduces to the expected

utility of a single agent, i.e., T∞ =
∫ x

y=x
yfN (y)dy. While this strategy maximizes

individual agents’ utility, it is certainly not so in terms of overall throughput. Given
the limited number of servers and infinite demand, having each agent take advantage
of all servers is clearly sub-optimal.

Therefore, for the sake of optimizing throughput, it would be best for a market
designer to limit the number of queries sent by each agent (the throughput is inversely
related to E[q] - see by Equation (4)). While this is possible in some systems, in many
systems, where agents are self-interested, the system designer cannot directly dictate
such behavior. Introducing search costs is an implicit mechanism by which a system
designer may incite agents to execute less queries. On the other hand, search costs
themselves also reduce the throughput, as their proceeds are assumed to be wasted,
and must thus be deducted from the overall utility. We show that nonetheless a certain
level of search costs may still increase the overall throughput. The details follow.

In the presence of search cost, agents consider the tradeoff between the marginal
utility of each additional query and its cost. This problem, of finding the agents’ optimal
querying strategy in the presence of a search cost, can be mapped to a variant of the

2 The value of fk(x) is the derivative of the c.d.f. of the maximum of a sample of size k,
Fk(x). Since Fk(x) = (F (x))k, we obtain: fk(x) = k(F (x))k−1f(x)dx.
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known “Pandora’s problem” [26].3 Accordingly, in the optimal search strategy, each
agent searches sequentially using a reservation value z, querying (randomly) additional
servers as long as the maximum utility obtained so far is smaller than z or until all
servers have been queried. Given a fixed search cost c (incurred when sending a query to
a server) and assuming the cost is additive and expressed on the same scale as utilities,
the reservation value z that maximizes the agent’s expected utility can be extracted
from:

c =

∫ x

y=z

(y − z)f(y)dy (5)

The expected number of queries each agent sends according to the above strategy
is given by:

E[q] =
N
∑

i=1

iPq(i) (6)

where Pq(i) is the probability that exactly i queries will be sent (Pq(i) = ((F (z))i−1(1−
F (z)) for i < N and Pq(N) = (F (z))N−1 for i = N).

Hence, the expected utility of each agent using the optimal search strategy when
incurring a search cost, denoted Voverall, is:

Voverall = E[x/x > z]
(

N−1
∑

i=1

Pq(i)+Pq(N)(1−F (z))
)

+Pq(N)F (z)E[Max(x1, ..., xN/xi < z)]−cE[q]

(7)
where E[x/x > z] is the expected utility of a single query if above z (E[x/x > z] =
∫ x

y=z
yf(y)/(1− F (z))) and:4

E[Max(x1, ..., xN/xi < z)] =

∫ z

x

yfN (y/yi < z∀i)dy =

∫ z

x

yNf(y)

F (z)

(F (y)

F (z)

)N−1

dy

(8)

The expected throughput is thus N(Voverall−cE[q])
E[q] .

Figure 1 depicts the expected system throughput as a function of the search cost
c, when using a uniform distribution function - f(x) = 1, F (x) = x, 0 ≤ x ≤ 1 - and
ten servers (N = 10). The optimal market setting is obtained with a search cost of
c = 0.12, in which case the market throughput is 2.5. Comparatively, if there is no
search cost (c = 0) then each agent samples all servers, i.e., E[q] = 10. The expected
throughput in this case is 0.91 (the maximum of a sample of size 10 drawn from a
uniform distribution), significantly worse then when using c = 0.12. On the other hand,
if market designer could dictate the number of queries per agent, then a throughput of
5 could have been obtained, by forcing each agent to query a single server (resulting
with individual utility of 0.5, which is smaller than when using c = 0.12).

Figure 2 depicts the optimal search cost to be used and the resulting average
throughput per server as a function of the the number of servers available, N , when us-
ing a uniform distribution function (f(x) = 1, F (x) = x, 0 ≤ x ≤ 1). The middle curve
represents the marginal improvement to the overall throughput due to the addition of

3 Alternatively, the problem can be mapped to a one-sided sequential search problem with a
finite decision horizon and full recall [15, 21] and solved using backward induction, though
with a greater complexity.

4 Using FN (x/x < z) = (F (x/x < z))N , fN (x/x < z) = Nf(x/x < z)(F (x/x < z))N−1dx.

19



6 David Sarne and Yonatan Aumann

0

1

2

3

h
p
u
t

ど4

ど3

ど2

ど1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T
h
ro
u
g
h
p
u
t

search cost (c)
ど4

ど3

ど2

ど1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T
h
ro
u
g
h
p
u
t

search cost (c)

Fig. 1. Throughput as a function of search cost

each server (e.g., the transition from one server to two servers will be accompanied
with a 0.2 addition to the overall system throughput). As can be observed from the
figure, while adding more servers increases the overall throughput, it has no consistent
marginal contribution to the overall throughput. For example, the transition from two
to three servers is accompanied with the least marginal improvement in the system’s
throughput.
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Fig. 2. Throughput per server, marginal improvement to throughput and optimal search cost
as a function of the number of servers in the one-sided search model

As can be seen from Figures 1 and 2, the use of search cost in this model can improve
the average throughput significantly, though the optimal magnitude of search cost to
be used should be determined by analyzing the agents’ resulting search strategies.
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3 Two-Side Search

We next show that the benefits of search costs to market throughput are not limited
only to settings where the agents are competing for limited resources, as in the previous
section. In this section we demonstrate that search cost can also improve throughput
in distributed matching environments, where the agents’ value is generated from part-
nering with other agents, and where the search strategies are affected (in part) by the
strategies of the other agents in the market. The model we use is a standard two-sided
distributed search model, in which self-interested agents search for appropriate part-
ners to form mutually acceptable pairwise partnerships [7]. The model postulates an
environment populated with an infinite number of self-interested fully rational homo-
geneous agents5. Any agent Ai can form a partnership with any other agent Aj in
the environment. A partnership between Ai and Aj results in utility U(Aj →֒ Ai) for
agent Ai and U(Ai →֒ Aj) for agent Aj , where both U(Aj →֒ Ai) and U(Ai →֒ Aj) are
drawn from a distribution characterized by a p.d.f. f(x) and c.d.f. F (x). The agents
are assumed to know the utility distribution function f(x). However, in the absence
of central information source agents cannot tell a-priori what utility can be gained
by a partnership with any specific agent. Therefore, the only way by which an agent
Ai can learn the value it can obtain from partnering with a specific other agent Aj

is by directly interacting with agent Aj . Since each agent in two-sided search mod-
els has no prior information concerning any of the other agents in its environment, it
initiates interactions (i.e., search) with other agents randomly. The two-sided search
model assumes that the agents are satisfied with having a single partner. Hence, once
a partnership is formed the two partnering agents terminate their search process and
leave the environment.

We define a search round as the interval in which the agent interacts with another
agent and learns the utility it can obtain by partnership with it. Based on the learned
values, the agents decide whether to commit or reject the partnership. If both agents
mutually commit to the partnership, then the partnership is formed and both agents
gain the corresponding utilities. If an agent does not form a partnership in a given
round, it continues to the next search round and interacts with another agent in a
similar manner.

We now define the market throughput in such a setting. Since the number of agents
is infinite, it is meaningless to consider the total aggregate utility. Rather, we define
the market throughput as the average expected utility per-agent, per time unit. If there
would be no search costs, the agents’ equilibrium strategy is to commit to partner-
ships only when the utility offered by that partnership is the maximum possible (i.e.,
U). In such case, for any non-atomic p.d.f. the probability of actually attaining this
maximum is zero, and partnerships will never be formed. Hence, in this case the ex-
pected throughput is zero. Adding a search cost to the model reduces each agent’s
expected utility, but can improve the overall throughput. We assume utilities and costs
are additive and that the agents are trying to maximize their overall utility, defined as
the utility from the partnership formed minus the aggregated search costs along the
search process. Suppose that the agent’s cost of interacting with another agent is c.

5 The infinite number of agents assumption is common in two-sided search models (see [7,
23, 22]). In many domains (e.g., eCommerce) this derives from the high entrance and leave
rates. In this case, the probability of running into the same agent twice is negligible.
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The agents’ optimal strategy in such model is reservation-based [22, 17, 26, 19].6 The
reservation value is used as a threshold for accepting/rejecting potential partnerships.
The a reservation value is equal to the expected utility to be obtained from resuming
the search; the agent will always prefer committing to an opportunity greater than the
expected utility of resuming the search and will always prefer to resume the search
otherwise.

Since the agents are not limited by a decision horizon, and their search process
does not imply any new information about the market structure (e.g., about the util-
ity distribution of future partnership opportunities), their strategy is stationary - an
agent will not accept an opportunity it has rejected beforehand and will use the same
reservation value along its search.

We now derive the general formula for the optimal reservation value. The expected
utility of an agent when using a reservation value x, assuming all other agents are using
reservation value x′, denoted V (x, x′), is given by:

V (x, x′) = −c+ (1− F (x′))

∫ x

y=x

yf(y)dy + (1− (1− F (x′))(1− F (x)))V (x, x′) (9)

Here, (1 − F (x′)) is the probability that the agent is found adequate by the other
agent, in which case the partnership will form only if the value obtained from the
partnership is greater than x. Otherwise, if the utility obtained from partnering with
the other agent is below x or the other agent obtains a utility lesser than x′ (i.e., with
probability (1− (1−F (x′))(1−F (x)))), the search is resumed and the expected cost is
V (x, x′). Using some simple mathematical manipulations, Equation 9 can be expressed
as:

V (x, x′) =
−c+ (1− F (x′))

∫ x

y=x
yf(y)dy

(1− F (x′))(1− F (x))
(10)

Differentiating the last equation according to x and setting it to zero, we obtain (using
integration by parts) that the optimal reservation value to be used when all other
agents are using reservation value x′ can be derived from:

c = (1− F (x′))

∫ x

y=x

(1− F (y))dy (11)

The equilibrium reservation value, x∗, is obtained by setting x′ = x = x∗ in Equation
11. The equilibrium expected utility of each agent is thus given by:

V (x∗) =
−c+ (1− F (x∗))

∫ x

y=x
yf(y)dy

(1− F (x∗))2
(12)

Once search cost is introduced, the expected time it takes until a partnership is

formed becomes finite, and its value is: 1
(1−F (x∗))2 . The throughput is thus V (x∗)

(1−F (x∗))2 .

Figure 3 depicts the expected average throughput and individual agents’ utility in
the two-sided search model as a function of the search cost c, when using a uniform
distribution function (f(x) = 1, F (x) = x, 0 ≤ x ≤ 1). As can be observed from the

6 Notice the reservation value used here is different from a reservation price concept (that is
usually used as buyers’ private evaluation). While the reservation price represents an agent’s
valuation of its own utility from a given opportunity, the reservation value is a threshold
defined over the objective (or common) value of the opportunity.
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Fig. 3. Throughput and agents’ utility as a function of search cost in two-sided search

example, the introduction of search cost up to some extent (0.5 in this case) improves
system throughput. The optimal market setting is the one where the search cost is
c = 0.148, in which case the expected throughput is 0.148. The agents’ expected utility
in this case drops to 0.333 and their expected search length (i.e., the number of search
rounds) is in this case 2.25. Comparatively, when there is no search cost (c = 0) the
expected throughput is zero, but each agent’s (theoretical) expected utility is 1. This
is yet another example for a case where an increase in the search cost can improve
overall throughput however with the price of harming individual utilities. If the agents
were fully cooperative and obey the market designer’s instructions, a throughput of
0.5 could be attained, by having each agent search for a single search stage and then
commit to whatever partnership it is offered. However, this behavior is not individually
rational.

4 Search Costs Benefiting Individual Performance

In the two previous sections we exhibited settings where the market throughput is
improved by introducing search costs. This is of interest to a market designer who’s
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10 David Sarne and Yonatan Aumann

goal is to maximize the overall social welfare. However, in both previous examples, the
search costs did reduce the agents’ individual utilities. In this section we give a setting
where, somewhat paradoxically, the introduction of search costs improves both the
overall throughput and each and every player’s individual expected utility. We exhibit
this in the model introduced in [22], which is an extension of the standard two-sided
search model. We now briefly review this model.

As in the standard two sided search, the model considers an environment populated
by an infinite number of agents, each seeking a single partner, and utilities drawn from
a distribution function (as in the previous section). The difference in the [22] model is
in the search process. The model postulates a two-leveled search process, as follows.
The search is conducted in discrete rounds. Within each round, each agent can choose
to meet in parallel any number of other agents, and learn the utility associated with
partnering with any of them. Given this information, each agent chooses if and with
whom to partner. If two agents both choose to pair with one another then they obtain
the said utilities and leave the system. Otherwise, they continue to the next search
round. It is assumed that each agent make its decision independently of the decisions
of all other agents, including potential partners. Furthermore, the agent can choose
to pair with at most one of the agents it meets in a search round, and due to the
synchronous nature of the mechanism has to reject all the rest of the agents met in
that search round. There are two potential costs associated with each round: α - a fixed
per-round cost, and β - an additional cost associated with each parallel probe in the
round. Thus, if an agent chooses to meet with N potential partners then its total cost
for the round will be α +Nβ. The values of α and β are assumed to be the same for
all agents.

Since the agents are not limited by a decision horizon and can control the intensity of
their search, and the interaction with other agents does not imply any new information
about the market structure, their strategy is stationary - an agent will not accept
an opportunity it has rejected beforehand. Thus agents will use a reservation value
strategy.

For analysis purposes, we’ll use several notations. A strategy of sampling N other
agents in each search round, and acting according to a reservation value xN will be
denoted (N, xN ). The expected utility of an agent when using strategy (N, xN ), will
be denoted V (N, xN ). Clearly, since all utilities for all agents are randomly selected
from an identical distribution, there is no sense for any agent to consider partnering
with anyone but the maximum of any given round. Thus, if an agent chooses to meet
with N other agents in a given round, then the possible utility it can obtain during
this round is distributed as the maximum of N random variables from the distribution
with p.d.f. f(x). As in Section 2 we use fN (x) and FN (x) to denote the p.d.f. and c.d.f.
of the maximum distribution, respectively.

We start by formulating the expected utility for the agent when using a strategy
(N, xN ), given that the strategy (k, xk) is being used by all other agents in the envi-
ronment. The expected future utility V (N, xN ) is:

V (N, xN ) = −α−βN+
1

k
(1−Fk(xk))

∫ x

y=xN

yfN (y)dy+(1−
1

k
(1−Fk(xk))(1−FN (xN )))V (N, xN )

(13)
Here, 1

k
(1−Fk(xk)) is the probability that the utility obtained by the agent associated

with the best value in the N -agents sample of agent A from partnering with agent A
is greater than the reservation value xk that is used by that agent and the maximum
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Fig. 4. (a) The expected utility of each agent as a function of the search cost used; (b) The
throughput as a function of the search cost used.

in its k-agents sample. Similarly, the probability (1− Fk(xk))(1− FN (xN )))V (N, xN )
applies to any scenario other than the one where both agents choose to pair with each
other, in which case the agent resumes its search with an expected utility V (N, xN ).
Equation 13 can also be formulated as:

V (N, xN ) =
(1− Fk(xk))

∫ x

y=xN

yfN (y)dy − αk − βNk

(1− Fk(xk))(1− FN (xN ))
(14)

Deriving Equation 14 according to xN and applying several mathematical manipu-
lations, we obtain that the agent’s optimal reservation value xN , satisfies:

αk + βNk = (1− Fk(xk))

∫ x

y=xN

(1− FN (y))dy (15)

Since all agents are homogeneous, the equilibrium strategy is the pair (N, xN ) that
satisfies Equation 15 when substituting k = N and xk = xN . While for each N value
there is potentially a corresponding xN value that satisfies the latter, the equilibrium
strategy is the one yielding the maximum expected utility according to Equation 14
(for more details of the analysis of the model the reader is referred to [22]).

As in the former section, since the number of agents is infinite, themarket throughput

is defined as the average expected utility per-agent, per time unit. Figure 4 depicts the
expected individual utility of each agent and the throughput as a function of β - the
cost for each parallel search within a round, when using a uniform distribution function
(f(x) = 1, F (x) = x, 0 ≤ x ≤ 1) and α = 0.03. The small graphs inside each of the
graphs are enlargements of the originals over the more interesting parts of the graphs.
As can be observed from the graphs, with α fixed, each and every individual agent
actually benefits from the introduction of search costs into the market. The optimal
individual utility of 0.575 is obtained for β = 0.004, in which case each agent meets with
5 possible partners in each round and the throughput is 0.1. The maximum throughput
(0.148) is obtained when using a search cost of 0.118, yielding a utility of 0.333 to the
agents. It is notable that the change in system’s throughput as well as in individual
expected utility is not consistent over large portions of the interval. The market designer
should thus be careful when considering any change (either an increase or a decrease
in search cost) in the setting represented by this example, as there is no way to predict
the usefulness of such a change. In order to understand the implications of a suggested
deviation from one value to another over the horizontal axis a direct calculation is
required.
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12 David Sarne and Yonatan Aumann

5 Related Work

Search is an inherent process in MAS, in particular when there is no central source that
can supply full immediate reliable information on the environment and the state of the
other agents that can be found. The introduction of search costs into MAS models leads
to a more realistic description of MAS environments. In particular, search cost is highly
recognized in eCommerce environments where agents need to invest/consume some of
their resources in order to obtain information concerning the good or the transaction
offered by other prospective agents [3, 9]. The overall agreement is that despite the
significant reduction in search costs in MAS, due to recent advances in communication
technologies, these cannot be ignored completely [3, 14].

Optimal search strategies for settings where individuals aim to locate an opportu-
nity that will maximize the expected utility, while minimizing the associated search
costs have been widely studied ([17, 15], and references therein). Within the framework
of search theory, three main clusters of search models can be found. These are (a) the
fixed sample size model; (b) the sequential search model; and (c) the variable sample
size model. In the fixed sample size model, the searcher executes a single search round
in which it obtains a large set of opportunities simultaneously [24] and chooses the one
associated with the highest utility. In the sequential search strategy [21, 15], which for
the general finite decision horizon case is also known as “Pandora’s Problem” [26], the
searcher obtains a single opportunity at a time, allowing multiple search stages. Several
attempts were made to adopt the fixed sample size search [14] and the sequential search
[9] models in agent-based electronic trading environments associated with search costs.
In these cases the main focus was on establishing the appropriate characteristics of
the environment and search strategy rather than the computational aspects of extract-
ing it. Last, the variable sample size search method [6, 11, 18, 19] suggests a combined
approach in which several opportunities are obtained during each search period.

In an effort to understand the effect of dual search activities in such models, the
”two-sided” search research followed. This notion was explored within the equilibrium
search framework [1, 7, 23]. While the literature in the area of one-sided and two-sided
is rich and thorough, its focus is individual performance and search cost (often modeled
as the discounting of gains) is considered as a non-favorable factor.

Finally, it is notable that the role of friction in distributed environments has been
studied in several contexts before. For example, many authors rationalize the price dis-
persion (i.e., variation in prices across sellers of the same item, holding fixed the item’s
characteristics) observed in both offline and online markets by the cost for consumers
to gather information about prices [24, 20, 12]. Others, have shown that an increase in
the minimum wage, which is often considered by economics to be market inefficiency,
can have positive employment effects [16]. In the auctions domain, the Vickrey Clarke
Groves mechanism ensures several desired bidding characteristics by requiring signifi-
cant transfer of payments from agents to the center [8]. Nevertheless, none of the above
work has considered the positive effect search costs may have on system throughput.

6 Discussion and Conclusions

The main focus of the paper is in exhibiting that search costs are not necessarily and
universally harmful to the system’s performance. The illustrations in Sections 2-4 ex-
hibit the fact that search costs can also play a positive role in improving market perfor-
mance. Sections 2 and 3 exhibit the benefits of search costs for improving throughput.
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The last example demonstrates that the improvement in system’s throughput does not
necessarily have to be at the expense of individual utilities. These results are non-
intuitive, as traditionally search costs are considered to be market friction and as such
their reduction is intuitively favorable. The examples given in the paper suggest that
market designers should not take this latter claim as a general truth.

Notwithstanding, it is notable that the introduction of the measure of market
throughput as a key measure for evaluating the performance and effectiveness of MAS
systems is by itself an important contribution to the research of MAS. Unlike individ-
ual or collective agents’ utilities, the throughput focuses in the value generated by the
system as a whole over time. As such, we believe that this measure should be central
for MAS designers, and understanding its behavior is crucial for the success of future
mechanisms. As evident from Sections 2-4, the throughput is not necessarily correlated
with individual utilities as these lack the aspect of time.

The paper relies on three established models from the “search theory” research area
to support its main claims. Justification and legitimacy considerations for the applica-
bility of these models to day-to-day settings were widely discussed in the literature we
referred to throughout the paper.

It is notable that search costs can have many forms, and there are various methods
for the market designer to control them. For example, search costs can be introduced
as a payment an agent needs to pay in order to meet other agents or obtain a service,
additional communication and computational overhead that result from the interaction
protocol and even a payment per time unit for operating in the system. In this paper
we adopted a pessimistic approach that assumes that the proceeds from any search
costs are wasted and do not benefit anyone. In many cases, However, the proceeds
of these costs can also be somehow redistributed back to the agents (e.g., equally
split the proceeds among all agents when leaving the system - leaving their searching
strategy unaffected). This could further improve individual utilities and the system’s
throughput.

Generally, as can be seen from the analysis given, the introduction of search costs
should be carefully considered and their optimal magnitude should be calculated tak-
ing into consideration the resulting changes in the agents’ strategies and equilibrium
considerations whenever applicable. When search costs are already an inherent part
of the system, there is no general answer for whether or not a decrease in these costs
will improve system performance. In some settings, an increase rather than a decrease
can actually contribute to improving throughput. In other cases, a decrease in search
costs can contribute to improving system throughput, however decreasing these costs
beyond to a certain point can result with the opposite effect. The analysis methodology
given in this paper can facilitate the calculation of the right search cost to which the
market designer should strive.
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Abstract. In this paper we present a novel option pricing mechanism for reduc-
ing the exposure problem encountered by bidders with complementary valuations
when participating in sequential, second-price auction markets. Existing option
pricing models have two main drawbacks: they either apply a fixed exercise price,
which may deter bidders with low valuations, thereby decreasing allocative effi-
ciency, or options are offered for free, in which case bidders are less likely to
exercise them, thereby reducing seller revenues. Our novel mechanism withflex-
ibly priced optionsaddresses these problems by calculating the exercise price as
well as the option price based on the bids in an auction. For this novel setting
we derive the optimal strategies for a bidding agent with complementary pref-
erences. Furthermore, to compare our approach to existing ones, we derive, for
the first time, the bidding strategies for a fixed price mechanism, in which ex-
ercise prices for options are fixed by the seller. Finally, we use these strategies
to empirically evaluate the proposed option mechanism and compare it to exist-
ing ones, both in terms of the seller revenue and the social welfare. We show that
our new mechanism achieves higher market efficiency, while still ensuring higher
revenues for the seller than direct sale auctions (without options).

1 Introduction

Auctions are an efficient method for allocating resources or tasks between self-interested
agents and, as a result, have been an important area of research in the multi-agent com-
munity. In recent years, research has focused on complex auctions where agents have
combinatorial preferences and are interested in purchasing bundles of resources. Most
of the solutions designed to address this problem involve one-shot, combinatorial auc-
tions, where all parties declare their preferences to a center, which then computes the
optimal allocation and corresponding payments [2]. Although such auctions have many
desirable properties, such as incentive compatibility or efficiency of the allocation, in
practice many settings are inherently decentralized and sequential. Often, the resources
to be allocated are offered by different sellers, sometimes in different markets, or in
auctions with different closing times. In such settings, however, a buyer of a bundle is
faced with the so-calledexposureproblem when it has purchased a number of items
from the bundle, but is unable to obtain the remaining items. In order to address this
important problem, this paper proposes a novel option pricing mechanism, and shows
its superiority over existing approaches.
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In detail, sequential auctions form an important part of many application settings in
which agents could be realistically applied, and such settings cannot usually be mapped
to one-shot, combinatorial mechanisms. Examples include inter-related items sold on
eBay by different sellers in auctions with different closing times [6], or decentralised
transportation logistics, in which part-capacity loads are offered throughout a day by
different shippers [10]. In these examples, a buyer is often faced with complementary
preferences, i.e., where bundles of resources have more value than the sum of individual
resources through synergies between these goods. In sequential auctions, this can result
in the exposure problem. This occurs whenever an agent is faced with placing a bid
for an item which is higher than its immediate marginal value, in the expectation of
obtaining extra value through a synergy with another item sold later. However, if she
fails to get the other item for a profitable price, she risks making a loss. In this paper,
we refer to such a bidder as asynergy bidder. Due to the exposure problem, synergy
bidders will shade their bids when entering a sequential auction market, bidding less
than their bundle valuation for the items they desire [1, 3]. This reduces not only their
own expected profits, but also seller revenues and the allocative efficiency of the market.

Although the exposure problem is well known, it has mostly been studied from
the perspective of designing efficient bidding strategies that would help agents act in
such market settings (e.g. [1, 3, 9, 11]). In this paper, we consider a different approach,
that preserves the sequential nature of the allocation problem, and we propose a novel
mechanism which involves auctioningoptionsfor the goods, instead of the goods them-
selves. An option is essentially a contract between the buyer and the seller of a good,
where (1) the writer or seller of the option has theobligation to sell the good for the
exercise price, but not the right, and (2) the buyer of the option has theright to buy the
good for a pre-agreedexercise price, but not the obligation. Since the buyer gains the
right to choose in the future whether or not she wants to buy the good, she pays for this
right through anoption pricewhich she has to pay in advance, regardless of whether
she chooses to exercise the option or not.

Options can help a synergy buyer reduce the exposure problem she faces since, even
though she has to pay the option price, if she fails to complete her desired bundle, she
does not have to pay the exercise price as well and thereby is able to limit her loss.
Part of the uncertainty of not winning subsequent auctions is transferred to the seller,
who may now miss out on the exercise price if the buyer fails to acquire the desired
bundle. At the same time, the seller can also benefit indirectly from the participation in
the market by additional synergy buyers, who would otherwise have stayed away, due
to the risk of exposure to a potential loss.

1.1 Related Work

Options have a long history of research in finance (see [4] for an overview). However,
the underlying assumption for all financial option pricing models is their dependence
on an underlying asset, which has a known, public value that moves independently of
the actions of individual agents This type of assumption does not hold for the online,
sequential auctions setting we consider, as each individual synergy buyer has its own,
private value for the goods/bundles on offer.
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When applying options to the problem of reducing the exposure problem in sequen-
tial auctions, previous literature considers two main types of pricing mechanisms. One
approach, proposed by Juda & Parkes [5, 6]) is to offer options for free (i.e., without an
option price or an advance payment), and then let the exercise price be determined by
the submitted bids in the market. However, this approach enables self-interested agents
to hoard those options, even if they are highly unlikely to exercise them, thus consid-
erably reducing both the allocative efficiency of the market and seller revenue. The
second main approach (proposed by Mous et. al. [8]) is to have a fixed exercise price
set by the seller, and then have the market determine the option price through an open
auction. In this case, however, this preset exercise price can be perceived as a reserve
value, since no bidder with a valuation below that price has an incentive to participate.
This negatively effects the market efficiency, and may also affect the seller’s profits by
excluding some bidders from the market.

1.2 Contributions

To address the shortcomings of existing option models, in this paper we introduce a
novel pricing mechanism in which the exercise price, as well as the option price are
determined by the open market, and we compare this model to existing options models.
In more detail, we extend the state-of-the-art in the following ways:

– To compare our new approach with existing ones, we derive, for the first time,
the optimal bidding strategy for a synergy bidder in an options model with fixed
exercise price (Section 3).

– We introduce a novel option pricing mechanism where the exercise price, as well as
the options price are determined by the bids in an auction, and we show that both
direct auctions (without options), and offering free options to the bidders appear
in this model as particular subcases. Furthermore, we derive the optimal bidding
strategy for the synergy bidder in this new model (Section 4).

– We empirically compare our new pricing model to existing option models from the
literature, as well as to using direct auctions. We show that our flexible options ap-
proach achieves much better market allocation efficiency (measured in terms of the
social welfare of all participating agents) than the state of the art fixed price options
model. Furthermore, we show that sellers do not stand to lose any revenue by using
this option model, by comparison to auctioning their items directly, without using
options (Section 5).

The remainder of the paper is structured as follows. Section 2 formally defines our
sequential auction setting, while Section 3 presents the bidding solution for the option
model using fixed exercise price options. Section 4 introduces our new, flexible options
approach, together with the optimal bidding strategies for this case. Section 5 empiri-
cally compares the two approaches, and Section 6 concludes.

2 The Problem Setting

In this section we formally describe the auction setting and introduce the notation used.
We consider a setting withm second-price, sealed-bid auctions, each selling an option
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to buy a single item. We choose these auctions because bidders without synergies have
a simple, dominant bidding strategy and, furthermore, they are strategically equivalent
to the widely-used English auction. We assume that there exists a singlesynergybidder
who is interested in purchasing all of the items and receives a value ofv if it succeeds,
and0 otherwise. Furthermore, every auctionj ∈ {1, . . . , m} hasNj local bidders.
These bidders only participate in their own auction, and are only interested in acquiring
a single item. The values of this item for local bidders in auctionj are i.i.d. drawn from
a cumulative distribution functionFj . Finally, we assume that all bidders are expected
utility maximisers.

Given this setting, we are interested in finding theBayes-Nashequilibrium strategies
for all of the bidders for different option pricing mechanisms.1 However, even with
options, due to the second-price auction, the local bidders have a dominant bidding
strategy. Therefore, the main problem is finding the optimal strategy for the synergy
bidder and this is largely decision-theoretic in nature.

We furthermore note that, although we focus largely on a single participating syn-
ergy bidder when presenting the strategies and results, this analysis can be easily ex-
tended to multiple synergy bidders. This is because synergy bidders are assumed to only
be interested in either winning all of the auctions or none at all, and therefore, after the
first auction all but one synergy bidder (with the highest valuation) will leave the mar-
ket. Therefore, having multiple synergy bidders only affects the bid distribution in the
first auction. We address this setting in more detail in Section 4.1.

3 Optimal Bidding Strategies for Fixed Exercise Price Options

To compare our new approach with existing option pricing mechanisms, we first derive
the optimal bidding strategies for a synergy bidder in a fixed exercise price setting,
where the exercise price for the options to be acquired is set by the seller before the
start of the auctions.2 While the different exercise prices for the auctions are fixed in
advance, the option prices are determined by the second-highest bid in the auction. In
the following, we let

−→
K denote the vector of fixed exercise prices, whereKj is the

exercise price of thejth auction, i.e. the price that the winner will have to pay in order
to purchase the item in question. Note that, ifKj = 0, this is equivalent to adirect sale
auction, i.e., without any options. Furthermore, note that local bidders have a dominant
strategy to bid their value minus the exercise price if this is positive, and zero otherwise.
We denote byb∗1 . . . b∗m denote the optimal bids of the synergy bidder in them auctions,
and byp1 . . . pm the prices paid in these auctions. The expiry time for the options is
set after the auctions for allm items close. The following theorem then specifies the
optimal bidding strategy of the synergy bidder:

1 The Bayes-Nash equilibrium is the standard solution concept used in game theory to analyze
games with imperfect information, such as auctions.

2 This option protocol is similar to the one proposed by Mous et al. [8], but that work relies
on using a heuristic bidding strategies, and they do not derive analytical expressions for the
equilibrium strategies w.r.t. the local bidders.
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Theorem 1. Consider the setting from Section 2, with a pre-specified exercise price
vector

−→
K . If v ≤

∑m

j=1
Kj , thenb∗r = 0, r ∈ {1, . . . , m} constitutes a Bayes-Nash

equilibrium for the synergy bidder. Otherwise, the equilibrium is given by:

b∗r =











v −
∑m

j=1
Kj , if r = m

∫ b∗r+1+Kr+1

Kr+1
H(ω)dω, if 1 ≤ r < m

(1)

whereHj(x) = (Fj(x))Nj .

Proof. The synergy bidder cares about the value of the highest bid among theNj local
bidders which participate in thejth auction. The latter would place bids which would
be truthful (see [7] for2nd price auctions), if it were not for the existence of the exercise
priceKj of each auction; given thatKj is an additional cost for the winner, the actual
bid placed by a non-synergy bidder is equal to his valuation minusKj . Given that each
valuation is drawn from a distribution with c.d.f.Fj(x), the corresponding bid is drawn
from Fj(x + Kj), and therefore the c.d.f. of the highest bid among local bidders is the
highest order statistic,(Fj(x + Kj))

Nj .
We now compute the bidding strategy of the synergy bidder using backward in-

duction, starting from the last (mth) auction. If the synergy bidder has not won all the
auctions up to the last one, then it will bidb∗m = 0, as it needs to obtain all items in order
to make a profit. On the other hand, assuming that the synergy bidder has won the first
round, it will make a profit equal tov−

∑m

j=1
Kj −pm if it wins the last item at a price

equal topm. This pricepm is equal to the highest opponent bid, which is drawn from
(Fm(x + Km))Nm when the synergy bidder is the winner. LetHj(x) = (Fj(x))Nj .
Then the expected utility of the synergy bidder when biddingbm is:

EPm(v, bm,
−→
K) =



v −
m
∑

j=1

Kj



Hm(Km)+

∫ bm

0



v −
m
∑

j=1

Kj − ω



H
′

m(ω+Km)dω

(2)

The bid which maximizes this utility is found by setting:

dEPm(v, bm,
−→
K)

dbm

= 0 ⇔ v −
m
∑

j=1

Kj − bm = 0,

which gives Equation 1, for the case ofr = m. We can furthermore compute the optimal
expected utility of the synergy bidder in this round by using Equation 2.

Now, we can compute the bidbr placed in auction roundr, assuming that the bid
and expected utility for the next (r + 1) round has been computed. The synergy bidder
will make expected profit equal toEP ∗

r+1(v,
−→
K) − pr if it wins the rth item at a price

equal topr and it has won all auctions up to that point, whereEP ∗
j (v,

−→
K) denotes the

expected profit of the synergy bidder by bidding optimally from roundj onwards. The
pricepr is equal to the highest opponent bid, which is again drawn from(Fr(x+Kr))

Nr
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when the synergy bidder is the winner. The expected utility of the synergy bidder from
biddingbr is thus:

EPr(v, br,
−→
K) = EP ∗

r+1(v,
−→
K)Hr(Kr)+

∫ br

0

(

EP ∗
r+1(v,

−→
K) − ω

)

H
′

r(ω+Kr)dω

(3)

The bid which maximizes this utility is found by setting:

dEPr(v, br,
−→
K)

dbr

= 0 ⇔ EP ∗
r+1(v,

−→
K) − br = 0. (4)

Now, we need to compute the optimal expected profitEP ∗
r . The expected utility of

the synergy bidder when biddingbr is given by Equation 3. Replacing the solution
b∗r = EP ∗

r+1(v,
−→
K) from Equation 4, this gives the optimal utility:

EP ∗
r (v,

−→
K) = b∗rHr(Kr) +

∫ b∗r

0

(b∗r − ω)H
′

r(ω + Kr)dω (5)

We can then substitute the subscriptsr in Equation 5 byr + 1, and then since
EP ∗

r+1(v,
−→
K) = b∗r we get:

b∗r = b∗r+1Hr+1(Kr+1) +

∫ b∗r+1

0

(b∗r+1 − ω)H
′

r+1(ω + Kr+1)dω

Which, after integration by parts and substitution gives Equation 1:

b∗r =

∫ b∗r+1+Kr+1

Kr+1

H(ω)dω

⊓⊔

4 Optimal Bidding Strategies for Flexibly Priced Options

In the fixed exercise price options model from the previous section, the existence of
the exercise prices created a secondary effect similar to having a reserve price in the
auction.3 This is because any bidder with a private valuation lower thanKj will not
participate in the auction and the same will happen if the synergy bidder has a valuation
lower than the sum of the exercise prices.Although this reduces the exposure problem
of the synergy bidder, at the same time it may significantly reduce the market efficiency,
and also negatively effects seller revenue if this value is set too high.

In order to remove this effect, in this section we introduce a novel model with flexi-
bly priced options, i.e., that have a flexible exercise price. In more detail, in this model,
we set amaximumexercise priceKH

j for the auction, but the actual exercise priceKj

depends on the bids placed by the bidders so as to eliminate the reserve price effect.
Specifically:

3 Note, however, that there is a subtle but important difference between having a reserve price
and selling options with a fixed exercise price; whereas the two auctions are equivalent from
the perspective of a local bidder, the same is clearly not true for a synergy bidder.
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KH = 0 KHKH = b2nd b1st

direct sale auctions free options

K = KH , p = b2nd - KH K = b2nd, p = 0

Fig. 1. The relationship between the maximum exercise price parameter,KH , and the second-
highest bid,b2nd, and its effect in determining the option price,p, and actual exercise price,K,
for the mechanism with flexibly priced options.

Definition 1. Flexible Exercise Price Options Mechanism Let each seller in a se-
quence ofm second-price auctions select a parameterKH

j , which is the maximum
exercise price she is willing to offer for the item sold in auctionj. Let b2nd

j denote the
second highest bid placed in this auction by the participating bidders. Then, the actual
exercise price of the auction is given by:

Kj = min{KH
j , b2nd

j }

Furthermore, the price paid by the winning bidder in order to purchase the option is set
to:

pj = b2nd
j − Kj

Figure 1 illustrates the features of this mechanism and how it compares to some
existing approaches. As shown, depending on the values ofKH

j andb2nd, one of two
situations can occur. EitherKH

j < b2nd, in which case the actual exercise price is set
to KH

j , and the winner paysb2nd − KH
j . Otherwise, ifKH

j ≥ b2nd, then the actual
exercise price is set to the second highest bid and the option is given to the winning
bidder for free. In both cases, however, the total payment of the winner (if she decides
to exercise the purchased option) will be equal the second highest bid. Crucially, this
means that, unlike the option mechanism with fixed exercise price, from a local bidder’s
perspective, this auction is identical to a regular second-price auction, and there are no
secondary effects on these bidders. Therefore, this options model only affects bidders
with synergies.

Moreover, note from Figure 1 that this approach is a generalization of two other
auction mechanisms. If the seller setsKH

j = 0, then the auction becomes identical to
a direct sales auction (without options). Furthermore, ifKH

j is set at a sufficiently high
value (i.e. asKH

j → ∞), then the exercise price is always equal to the second highest
bid, and the option is always purchased for free.

We now proceed with deriving the optimal bidding strategy for a synergy bidder.

Theorem 2. Consider the setting from Section 2, using auctions with flexibly priced
options with pre-specified maximal exercise pricesKH

r , for r ∈ {1..m}. The following
bidsb∗r constitute a Bayes-Nash equilibrium for the synergy bidder:

b∗r = v −
r−1
∑

i=1

Ki if v ≤
r−1
∑

i=1

Ki + KH
r (6)
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b∗r = KH
r + EP ∗

r+1(v,
−→
KH

r ) if v >

r−1
∑

i=1

Ki + KH
r (7)

b∗m = v −
m−1
∑

i=1

Ki (8)

with the expected profitEP ∗
r when biddingb∗r being:

EP ∗
r (v,

−→
KH

r ) =

∫ v−
∑ r−1

i=1
Ki

0

EP ∗
r+1(v,

−→
KH

r (ω))H
′

r(ω)dω (9)

if v ≤
∑r−1

i=1
Ki + KH

r , otherwise it is:

EP ∗
r (v,

−→
KH

r ) =

∫ KH
r

0

EP ∗
r+1(v,

−→
KH

r (ω))H
′

r(ω)dω+ (10)

∫ KH
r +EP∗

r+1

(

v,
−→
KH

r

)

KH
r

(

EP ∗
r+1(v,

−→
KH

r ) − ω + KH
r

)

H
′

r(ω)dω

for r ∈ {1, . . . , m − 1}, and

EP ∗
m(v,

−→
KH

m) =

∫ v−
∑m−1

i=1
Ki

0

(

v −
m−1
∑

i=1

Ki − ω

)

H
′

m(ω)dω (11)

whereHr(x) = (Fr(x))Nr and Kr are the exercise prices for the options that have

been purchased in the previous auctions. The vector
−→
KH

r is defined as:
−→
KH

r = {K1, . . . ,Kr−1, K
H
r , . . . , KH

m−1}, for all roundsr = 1, . . . , m.

Furthermore
−→
KH

r (x) is defined as the vector
−→
KH

r where the elementKH
r is replaced

by valuex, thus
−→
KH

r (x) = {K1, . . . , Kr−1, x,KH
r+1, . . . , K

H
m−1}.

Proof. The synergy bidder cares about the value of the highest bid among theNr non-
synergy bidders which participate in therth auction. The latter place truthful bids (as
we discussed). Given that each of their valuations is drawn from a distribution with
cdf Fr(x), therefore the cdf of the highest bid among the local, one-item bidders is:
Hr(x) = (Fr(x))Nr , as it is the maximum ofNr random variables drawn fromFr(x).

To compute the bidding strategy of the synergy bidder, we start from the last (mth)
auction. If the synergy bidder has not won all the previous auctions, then it will bid
bm = 0, as it needs to obtain all items in order to make a profit. If it has won all these
auctions and the exercise prices for the options purchased areKr, then it will make a
profit equal tov −

∑m−1

i=1
Ki − ω if it wins the last item when the highest opponents

bid is equal toω.4 Note that whetherω > KH
m or the other way round, in both cases

4 Note that it should bev ≥
∑m−1

i=1
Ki when the synergy bidder has won all the previous

auctions and the exercise prices areKi. This follows from the fact that the bidder will not bid
more thanv −

∑j−1

i=1
Ki in any auctionj and the exercise price cannot be higher than his bid

if he has won.
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the winning synergy bidder makes a total payment equal toω, whereω is drawn from
Hm(x) when the synergy bidder is the winner. We compute the expected utility of the
synergy bidder when he bidsbm as:

EPm(v, bm,
−→
KH

m) =

∫ bm

0

(

v −
m−1
∑

i=1

Ki − ω

)

H
′

m(ω)dω

The bid which maximizes this utility is found by setting:

dEPm(v, bm,
−→
KH

m)

dbm

= 0 ⇔ v −
m−1
∑

i=1

Ki − b∗m = 0,

which gives Equation 8.
The expected profit of synergy bidder when biddingb∗m is therefore:EP ∗

m(v,
−→
KH

m) =

EPm(v, b∗m,
−→
KH

m), which gives Equation 11, when substitutingbm from Equation 8.
Assume that we have computed the bidsb∗j and expected profitEP ∗

j for ∀j > r and
that these are given by the equations of this theorem. To complete the proof, we will
now show how to compute the bid and the expected utility for therth auction (round).
Depending on whetherbr ≤ KH

r or not, we need to distinguish two different cases:
Case 1:br ≤ KH

r . In this case,∀ω ≤ br ⇒ ω ≤ KH
r . Therefore if the synergy

bidder wins with a bid ofbr, then the second bid in the auction (which is the highest
opponent bid) must be smaller thanKH

r and therefore the exercise price is equal to this
bid and it is given for free. Hence, the expected profit of the synergy bidder is:

EPr(v, br,
−→
KH

r ) =

∫ br

0

EP ∗
r+1(v,

−→
KH

r (ω))H
′

r(ω)dω

To find the bidb∗r that maximizes this expected utility we use Lagrange multipliers. The
inequality is rewritten asbr−KH

r +δ2 = 0, and the Lagrange equation for this problem
becomes:

Λ(br, λ, δ) = −

∫ br

0

EP ∗
r+1(v,

−→
KH

r (ω))H
′

r(ω)dω + λ(br − KH
r + δ2)

The possible variables which maximize this function are found by setting the partial
derivatives for dependent variablesbr, λ, δ to 0:

ϑΛ(br, λ, δ)

ϑbr

= 0 ⇔ EP ∗
r+1(v,

−→
KH

r (br))H
′

r(br) = λ

ϑΛ(br, λ, δ)

ϑλ
= 0 ⇔ br − KH

r + δ2 = 0

ϑΛ(br, λ, δ)

ϑδ
= 0 ⇔ λδ = 0

The last equation can mean that either: (i)δ = 0, thusb∗r = KH
r , or (ii) λ = 0,

and by substituting into the first equation, we getEP ∗
r+1(v,

−→
KH

r (br))H
′

r(br) = 0, thus

EP ∗
r+1(v,

−→
KH

r (br)) = 0. Here, the expected optimal utilityEP ∗
r+1 is given either by
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Equation 9 or 10, depending on whether the valuation discounted by the exercise prices
up to that pointv −

∑i=r

i=1
Ki is less or greater (respectively) thanKH

r+1. The second

case cannot occur ifEPr+1(v,
−→
KH

r (br)) = 0, because the first integral of Equation 10
is greater than0, unlessb∗r = 0, which would yield an expected utility of0 and thus
cannot be the optimal bid (in general). On the other hand, if the optimal expected utility
EP ∗

r+1 is given by Equation 9, thenEP ∗
r+1(v,

−→
KH

r (br)) = 0 exactly when the upper
bound of the integral is0, i.e.v −

∑r−1

i=1
Ki − br = 0, which gives Equation 6.

Note that of the two possible maximab∗r = v −
∑r−1

i=1
Ki andb∗r = KH

r , given by

this analysis, the first one yields a higher revenue, asEP ∗
r+1(v,

−→
KH

r (ω))H
′

r(ω) < 0,
∀ω > v−

∑r−1

i=1
Ki in this case. This means that the optimal bid isb∗r = v−

∑r−1

i=1
Ki.

By adding the case conditionb∗r ≤ KH
r ⇔ v −

∑r−1

i=1
Ki ≤ KH

r , we obtain the bound
in the theorem.

Case 2:br > KH
r . In this case, if the synergy bidder wins with a bid ofbr, then the

second bid in the auction could be smaller thanKH
r and therefore the exercise price is

equal to this bid and it is given for free, like in the previous case. However, it could also
be higher thanKH

r , and thus the exercise price is equal toKH
r , whereas the payment for

getting the options would be equal to the second bid minusKH
r . Hence, the expected

profit of the synergy bidder is:

EPr(v, br,
−→
KH

r ) =

∫ KH
r

0

EP ∗
r+1(v,

−→
KH

r (ω))H
′

r(ω)dω

+

∫ br

KH
r

(EP ∗
r+1(v,

−→
KH

r ) − ω + KH
r )H

′

r(ω)dω

The optimal bidb∗r that maximizes this expected utility is derived in the same way
as in Case 1, by applying Lagrange multipliers to the above equation. We skip this part
of the proof due to space constraints. ⊓⊔

4.1 Multiple Synergy Bidders

We finish the theoretical analysis by showing that in all the theorems that we presented
the bidding strategies would remain unchanged, even if multiple (n) synergy bidders
participate. We prove this for the flexible auction model from Theorem 2, but the same
argument applies to the fixed option model in Theorem 1.

Proposition 1. A setting withn synergy bidders with a valuationvi for synergy bidder
i when it obtainsm items, and0 otherwise, is strategically equivalent (in the case of
a sequence ofm auctions with flexibly priced options) to a setting where only a single
synergy bidder participates and his valuation is equal tomaxi{vi}.

Proof. In the model considered in this paper, each synergy bidder would need to win all
items in order to make a profit (i.e. there are no substitutable items available). Hence,
it follows that only the synergy bidder (if any) who won the first auction would par-
ticipate in the remaining ones, and the bidding strategies and the expected profit in the
remaining rounds would remain unchanged. Now, in the first auction, we notice from
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Equations 6 and 7 that the optimal bids of any synergy bidder in any auction (round) are
not affected by the bids placed by its opponents in that particular auction, but only in
the remaining ones. Therefore, the bid in the first auction is affected only by the oppo-
nent bidding in the remaining auctions, which remains unchanged as there is only one
synergy bidder participating in all remaining auctions. Finally, from Equations 6 and 7
it follows that the bids placed (assuming that all the parametersKL

i andKH
i remain

unchanged) increase as the valuationv increases, therefore the synergy bidder with the
highest valuationv = maxi{vi} is the only one who might win the first auction. From
this, it follows that this scenario is thus strategically equivalent to one where this bidder
with the highest valuation is the only synergy bidder participating.

5 Empirical Analysis

In this section, we evaluate and compare experimentally the fixed and flexible exer-
cise price option models discussed above, as well as the direct auctions case which, as
discussed above, appears as a special case in both models whenK = KH = 0.

5.1 Experimental Setup

The settings used for our experiments are as follows. In each run, we simulate a market
consisting ofm = 3 sequential auctions. Each auction involvesN = 5 local bidders,
and one synergy bidder. The valuations of the local bidders are i.i.d. drawn from normal
distributionsN (µ = 2, σ = 4). This high variance makes the distribution almost flat
(i.e. close to uniform). This uncertain valuation setting makes options more desirable.

The valuation for the synergy bidder,vsyn, is drawn the normal distributionN (µsyn =
20, σ = 2). We choose this setting as it demonstrates the effect of the exposure prob-
lem; if the value of the synergy bidder is set too high, then the it would win all of the
auctions, even in the case of direct sale. On the other hand, if the value is set too low,
then the exposure problem disappears since local bidders will win all of the auctions.
Here the value of the synergy bidder is in between these extremes and is representative
of a setting in which the exposure problem plays an important role.

For this setting, we compare the allocative efficiency as well as the seller revenue of
the fixed and flexible exercise priced options mechanism, and for different values of the
auction parameters (the exercise pricesKi in the first model, and maximum exercise
pricesKH

i in the second). Formally, the allocative efficiency is calculated as follows.
Let vk

i denote the valuation of local bidderi (wherei ∈ {1..N}) in the kth auction
(wherek ∈ {1..m}) and letvsyn be the valuation of the synergy bidder. Furthermore,
let xk

i , xsyn ∈ {0, 1} denote the actual allocation of the options in a certain run of the
simulation. That is,x1

i = 1 means that local bidderi acquired the option in the1st

auction, andxsyn = 1 means that the synergy bidder wonall the auctions. Given this,
the allocative efficiency,η, of the entire market in a given run is defined as:

η =

∑n

i=1

∑m

k=1
xk

i vk
i + xsynvsyn

max
(

vsyn,
∑m

k=1
maxi∈{1,...,N}(v

k
i )
) (12)
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Fig. 2. Allocative efficiency (left) and seller revenue (right) using the options mechanism with
fixed and flexible exercise price, and with identical parametersK andKH respectively in all
auctions. Result are averaged over 3500 runs. The error bars indicate the standard error.

By calculating the efficiency of the market in this way, we implicitly assume that
local bidders will always exercise their options, and that the synergy bidder will exercise
its option if and only if it wins all auctions. We can safely make this assumption because
we consider optimal bidding strategies, and a rational bidder will never place a bid such
that the combined exercise and option price will exceed the (marginal) value of the item.
Therefore, it is optimal for a bidder who has acquired options for all of its desired items
to exercise them. Thus aninefficient outcome occurs in two situations. Either the local
bidders have won the items, but the value of the synergy bidder exceeds the sum of the
values of the local bidders; or, the synergy bidder has won some auctions but not all,
and will therefore not exercise its option(s).

5.2 Discussion of Numerical Results

To reduce the number of parameters, we consider a setting in which the parameters,
Ki andKH

i for the two options mechanism respectively, are set to the same value in
all of the 3 sequential auctions, denoted byK andKH respectively in the following.
This models a setting in which the seller has to pre-specify the protocol for selling her
item without any knowledge about a synergy bidder’s endowment state5 (i.e., how many
options it has won so far).

To this end, Figure 2 compares the allocation efficiency of the market (left), and the
seller revenues (right) for the two option mechanisms. Note that the direct auctions case
appears, in both option models, as a particular subcase, forK = KH = 0.

5 This is especially relevant in a large open environment where synergy bidders can enter and
exit the market dynamically.
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Figure 2 shows that, for thefixed exercise priceoption model, both the efficiency
and the seller revenue start to decrease sharply whenK becomes larger than around
6.2. This is because, at this point, the synergy bidder is likely to leave the market due to
the reservation price effect of this mechanism. Specifically, this occurs when the sum of
the exercise prices of the auctions exceeds the valuation of the synergy bidder, in which
case the bidder no longer has an incentive to participate. This also holds for many of
the local bidders. This is precisely the outcome that we would like to avoid using our
flexibly priced option mechanism. Note that, using our new mechanism, having a very
high value forKH has a very different effect, and the options become effectively free.
This is because, whenKH is very high, it will almost certainly exceed the second-
highest bid. If this happens, the exercise price becomes equal to this bid, and the option
price becomes zero (see also Section 4).

As is shown in Figure 2 (left), since the flexibly priced option mechanism removes
the reserve price effect, this mechanism outperforms a fixed exercise price in terms
of efficiency. Furthermore, both mechanisms outperform direct auctions (i.e. without
options, which is whenK = 0 or KH = 0) for an appropriately set parameter. The
results also show that having free options is suboptimal in terms of efficiency. This is
because there is a small chance that the synergy bidder will win the one or more auctions
in the sequence, but loose the second or the third, and hence not exercise her options.
If this occurs, some goods remain unallocated. This gives rise to inefficiency since the
goods could have been allocated to a local bidder instead.

While the flexibly priced options outperforms other mechanisms in terms of ef-
ficiency, the same cannot be said for seller revenue. In this context, Figure 2 (right)
shows that a seller can achieve significantly higher revenues by using a fixed exercise
price. This is not entirely surprising, since the fixed exercise price has a secondary effect
which is similar to setting a reserve price and standard auction theory shows that, even
in a single second-price auction, the seller can increase its revenues by using reserve
prices [7]. Nevertheless, we find that the flexibly priced option mechanism achieves a
higher revenue than regular, direct sale auctions. Furthermore, it is important to point
out that, if the aim is to maximise revenue, the flexibly priced option mechanism can be
used in combination with a reserve price, and our mechanism enables the separation of
the two effects: reducing the exposure problem of synergy bidders and increasing seller
revenue. We intend to investigate models in which both of these effects are jointly cap-
tured, but through separate parameters, in future work.

6 Conclusions

The exposure problem faced by bidders with valuation synergies in sequential auctions
is a difficult, but an important one, with considerable implications for both theory and
practice, for a wide range of multi-agent systems. Due to the risk of not acquiring all
the desired items in future auctions, bidders with valuation synergies often shade their
bids, or do not participate in such markets, which considerably reduces both allocation
efficiency and auctioneer revenue. Options have been identified before [5, 6, 8] as a
promising solution to address this problem, but existing mechanisms in the literature
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either prescribe free options, or options in which the seller fixes a minimum exercise
price (which can potentially deter many bidders from entering the market).

To this end, in this paper, we propose a novel option mechanism, in which the ex-
ercise price is set flexibly, as a minimum between the second highest bid and a seller-
prescribed maximum level, while the option price is determined by the open market.
We derive the optimal bidding policies of the synergy bidder in this new model and
show that this mechanism can significantly increase the social welfare of the resulting
allocations, while at the same time outperform sequential auction with direct sales in
terms of seller revenues.

While the mechanism proposed in this paper makes a significant step forward in
addressing this problem, several aspects are still left open to future work. One of these
is combining the two options models by allowing sellers to fix a minimum exercise price
for their options, as well as a maximum. Such a mechanism would, on the one hand,
be able to reduce the exposure problem for synergy bidders, and therefore result in a
corresponding increase in market efficiency, but would also allow the seller to extract
more profits, as they do in a fixed-price options model. Another important area where
further work is needed, is the derivation of optimal bidding strategies in more general
market settings, such as those involving substitutable items as well as complementary
ones.
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Abstract. We extend the framework of mixed multi-unit combinatorial auctions

to include time constraints, present an expressive bidding language, and show

how to solve the winner determination problem for such auctions using integer

programming. Mixed multi-unit combinatorial auctions are auctions where bidders

can offer combinations of transformations of goods rather than just simple goods.

This model has great potential for applications in the context of supply chain

formation, which is further enhanced by the integration of time constraints. We

consider different kinds of time constraints: they may be based on either time

points or intervals, they may determine a relative ordering of transformations, they

may relate transformations to absolute time points, and they may constrain the

duration of transformations.

1 Introduction

Cerquides et al. [2] have proposed an extension of the standard combinatorial auction

model, called mixed multi-unit combinatorial auctions (or simply mixed auctions).

In a mixed auction, bidders can offer transformations, consisting of a set of input goods

and a set of output goods, rather than just plain goods. Bidding for such a transformation

means declaring that one is willing to deliver the specified output goods after having

received the input goods, for the price specified by the bid. Solving a mixed auction

means choosing a sequence of transformations that satisfies the constraints encoded by

the bids, that produces the goods required by the auctioneer from those he holds initially,

and that maximizes the amount of money collected from the bidders (or minimizes

the amount paid out by the auctioneer). Mixed auctions extend several other types of

combinatorial auctions: direct auctions, reverse auctions, and combinatorial exchanges.

A promising application is supply chain formation.

We propose extending the framework of mixed auctions by allowing bidders to

specify constraints regarding the times at which they perform the transformations offered

in their bids. The motivation for this extension is that, in a complex economy, the bidders

(service providers) themselves may need services from others and have their own supply

chains, so the bidders may have preferences over the timing of transformations and over

their relative ordering. A notion of time is already implicit in the original framework as

⋆ Most work was done at ILLC on a GLoRiClass fellowship funded by the European Commission

(Early Stage Research Training Mono-Host Fellowship MEST-CT-2005-020841).
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far as the auctioneer is concerned, who builds a sequence of transformations, but this is

not the case for the bidders. In this work we seek to redress this imbalance.

Our contribution covers four types of time constraints:

– Relative time points: associate each transformation with a time point and allow

bidders to express constraints regarding their relative ordering, e.g., transformation

X must be executed before Y .

– Absolute time points: additionally allow references to absolute time, e.g., execute X

at time 15, or at most 3 time units after Y .

– Intervals: associate transformations with intervals and specify constraints, e.g., X

must be executed during Y .

– Intervals with absolute durations: allow intervals with absolute time, e.g., X should

take at least 5 time units.

These constraint types can be freely mixed to, for instance, express an interval taking

place after a time point. Furthermore, it is possible to model soft constraints, allowing

bidders to offer discounts in return for satisfying certain time constraints, and to model

the fact that an auctioneer may sometimes be able to quantify the monetary benefit

resulting from a shorter supply chain. Our approach blends nicely into the existing

framework of mixed auctions, requiring surprisingly few modifications. This facilitates

integration with other extensions and optimizations.

In Sect. 2, we define a suitable bidding language. In Sect. 3, we define the winner

determination problem and present an integer program to solve it. Section 4 presents

the extension to time intervals. Section 5 discusses related work and concludes.

2 Bidding language

In a mixed auction, agents negotiate over transformations of goods that are equipped

with time point identifiers. In this section we introduce an expressive bidding language

that allows bidders to specify their valuations over sets of such transformations. We also

present some purely syntactic extensions to the bidding language, and we show that it is

fully expressive over the class of all “reasonable” valuations.

2.1 Transformations and time points

Let G be the finite set of all types of goods considered. A transformation is a pair

(I,O) ∈ N
G × N

G. An agent offering such a transformation declares that, when

provided with the multiset of goods I, he can deliver the multiset of goods O. Let T
be a finite (but big enough) set of time point identifiers. These time points are merely

identifiers, not variables having an actual value. They can be referred to from bids in

order to specify time constraints over the offered transformations. Agents negotiate over

sets of transformations with time point identifiers D ⊂ N
G × N

G × T , which we can

write as

D = {(I1,O1, τ1), . . . , (Iℓ,Oℓ, τ ℓ)}.

For example, {({}, {q}, τ1), ({r}, {s}, τ2)} means that an agent is able to deliver q

without any input at some time τ1, and to deliver s if provided with r at some time τ2

(possibly with constraints regarding τ1 and τ2).
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2.2 Valuations

A time line Σ (for a given bidder) is a finite sequence of transformations and “clock

ticks” c (when no transformation is allocated to the bidder). That is, Σ ∈ (NG × N
G ∪

{c})∗. A valuation v maps a time line Σ to a real number p. Intuitively, v(Σ) = p

means that an agent with valuation v is willing to make a payment of p for getting the

task of performing transformations according to the time line Σ (p is usually negative,

so the agent is being paid). We write v(Σ) = ⊥ if v is undefined for Σ, i.e., the agent

would be unable to accept the corresponding deal. For example, the valuation v given by

v(({oven, dough}, {oven, cake})) = −2

v(({oven, dough}, {oven, cake}); ({}, {bread})) = −3

v(({}, {bread}); ({oven, dough}, {oven, cake})) = ⊥

expresses that for two dollars I could produce a cake if given an oven and dough, also

returning the oven; for another dollar I could do the same and afterwards give you a

bread without any input; but I could not do it the other way round.

A valuation v uses relative time if for all Σ we have that v(Σ) = v(Σ − c), where

Σ − c stands for Σ with all clock ticks c removed. That is, valuations depend only on

the relative ordering of the transformations. Otherwise v is said to use absolute time.

2.3 Bids

An atomic bid BID(D, p) specifies a finite set of finite transformations with time points

and a price. For complex bids, we restrict ourselves to the XOR-language, which, for

mixed auctions, fully expresses most (if not all) intuitively sensible valuations [2]. Our

framework can easily be extended to also handle the OR-operator. An XOR-bid,

Bid = BID(D1, p1) XOR . . . XOR BID(Dn, pn),

says that the bidder is willing to perform at most one Dj and pay the associated pj .

2.4 Time constraints

The atomic constraints for relative time are of the form τ < τ ′; and for absolute time,

with τ, τ ′ ∈ T , ξ, ξ′ ∈ N:

τ = ξ τ < ξ τ > ξ τ + ξ < τ ′ + ξ′ τ + ξ = τ ′ + ξ′

As mentioned above, the τ are not variables but just identifiers for the associated

transformations, and the above formulas are not assignments but rather constraints on

the associated transformations, with semantics as given in Sect. 2.5. For example,

BID({ ({oven, dough}, {oven, cake}, τ1),

({}, {bread}, τ2)},−3)
τ1 < τ2

expresses the above fact that I am willing to sell you the bread only after the cake.

Time constraint formulas are of the form ϕ = γ1∧· · ·∧γν with atomic constraints

γι. A bidder submits a bid Bid together with a time constraint formula ϕ, expressing that

he is willing to perform according to Bid, but only under the condition that ϕ is satisfied.

This condition is hard: the bidder will only accept if it is met.
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2.5 Semantics

Syntactically, we thus have complex bids with time points together with constraint

formulas over these time points:

BID(D1, p1) XOR . . . XOR BID(Dn, pn) γ1 ∧ · · · ∧ γν .

In order to make the intuitive meanings explained above explicit, we now specify

a formal semantics. In the following, let Σ be a time line (clock ticks allowed), let

τ, τ ′ ∈ T , ξ, ξ′ ∈ N, and let ϕ and ϕ′ be time constraint formulas. Let τ ∈ Σ denote

the fact that τ is associated with some transformation in Σ, and let Σ(τ) denote the

sequence number (starting from 1) of the transformation associated with τ , if τ ∈ Σ.

For clarity, we may include the time point identifiers in the sequence. For example, if

Σ = ((I1,O1, τ1); . . . ), then τ1 ∈ Σ and Σ(τ1) = 1.

We inductively define a satisfaction relation |= as follows:

Σ |= τ ◦ ξ iff τ 6∈ Σ or Σ(τ) ◦ ξ, for ◦ ∈ {=, <,>}

Σ |= τ + ξ < τ ′ + ξ′ iff τ ′ 6∈ Σ or

τ ∈ Σ and Σ(τ) + ξ < Σ(τ ′) + ξ′

Σ |= ϕ ∧ ϕ′ iff Σ |= ϕ and Σ |= ϕ′

Relative time constraints are covered by omitting the +ξ and +ξ′, and τ+ξ = τ ′+ξ′

is an abbreviation for

τ + ξ < τ ′ + (ξ′ + 1) ∧ τ ′ + ξ′ < τ + (ξ + 1).

According to this semantics, time constraints over time point identifiers that are fully

included in Σ are interpreted as expected. Constraints over time point identifiers not

in Σ are simply ignored (they are always satisfied). Note that the choice of semantics

for constraints such as τ < τ ′ is somewhat arbitrary in case only one of the time points

being compared occurs in Σ. As an intuitive justification for this detail of the semantics,

τ may be thought of as a precondition for τ ′, for instance, because some outcome of the

first transformation is needed for the second. In the case of τ + ξ = τ ′ + ξ′, this has

the effect that either none of the two mentioned transformations is included, or both are

and must have the specified distance. However, the exact details do not matter all that

much, since the bidding language allows specifying in all detail which transformations

can occur together and which cannot.

Using a more technical justification, we prefer this interpretation of constraints

because it turns out that it has a straightforward translation to integer constraints, which

we need for the implementation described in Sect. 3.3.

We say that a set of transformations D permits Σ if Σ consists of exactly the trans-

formations in D (and optionally clock ticks). In contrast to this definition, in [2], different

assumptions concerning free disposal are distinguished. Informally, free disposal means

that participants are always happy to accept more goods than they strictly require; if they

really have absolutely no use for them (or are even bothered by them), they can dispose

of them for free. Free disposal makes intuitive sense for most every-day goods; however

it is not as appropriate for certain “goods” like nuclear waste. We do not delve further
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into this issue here and continue without any free-disposal assumptions; however, we

emphasize that this is purely for the sake of clarity, and these assumptions could be built

in with only minuscule changes. In particular, the issue of free disposal as far as bidders

are concerned has no impact on the winner determination problem discussed in Sect. 3;

it only affects the definition of the semantics of the bidding language.

We now define the valuation expressed by an atomic bid Bid = (D, p) together with

a time constraint formula ϕ as

vBid,ϕ(Σ) =

{

p if D permits Σ and Σ |= ϕ

⊥ otherwise.

Accordingly, the valuation expressed by a complex bid Bid = XOR
n
j=1 Bidj together

with a time constraint formula ϕ is (interpreting ⊥ as −∞):

vBid,ϕ(Σ) = max{vBidj ,ϕ(Σ) | j ∈ {1, . . . , n}}.

That is, out of all the applicable atomic bids Bidj (i.e., where vBidj ,ϕ(Σ) 6= ⊥), the

auctioneer is allowed to choose the one giving him maximum profit.

2.6 Syntactic extensions

The time constraint language may seem limited, allowing only conjunctions of atomic

constraints. However, additional expressive power can be “borrowed” from the bidding

language. We discuss two extensions to the time constraint language.

Disjunctive time constraints. A bidder may want to offer (I1,O1), (I2,O2) and

(I3,O3) for price p, where the third should take place after the second or the first, i.e.,

BID({(I1,O1, τ1), (I2,O2, τ2), (I3,O3, τ3)}, p) τ1 < τ3 ∨ τ2 < τ3,

with the obvious meaning of the disjunction ∨. This is not directly possible in our time

constraint language. However, it can be translated into

BID({(I1,O1, ϑ1), (I2,O2, ϑ2), (I3,O3, ϑ3)}, p)

XOR BID({(I1,O1, ζ1), (I2,O2, ζ2), (I3,O3, ζ3)}, p)
ϑ1 < ϑ3 ∧ ζ2 < ζ3.

The choice which of the disjuncts to satisfy has been moved into the bid expression

and is determined by picking one of the atomic bids. Since their variables are disjoint,

this pick makes one conjunct of the transformed time constraint formula vacuously true,

while the other conjunct still needs to be satisfied. Since it may happen that both of

the original disjuncts are satisfied in the end, disjunction is the right notion here, even

though it is translated into an XOR of bids.

For a general formulation, we allow a bid expression in XOR normal form together

with a time constraint formula in disjunctive normal form:

XOR
n
j=1 Bidj

∨ν

ι=1
ϕι,

where the ϕι are standard (conjunctive) time constraint formulas. The bidder can thus

conveniently express, e.g., several alternative partial orders over his transformations.
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Let now σι for ι ∈ {1, . . . , ν} be substitutions (with disjoint ranges), each mapping all

variables occurring in the bid to fresh (used nowhere else) ones. The translation is:

XOR
ν
ι=1 XOR

n
j=1 Bidjσι

∧ν

ι=1
ϕισι.

This may seem surprising, because in the original formulation the auctioneer has two

choices (which of the time constraint disjuncts to satisfy and which bid to pick), and in

the translation he loses the choice among the time constraints. However, in return he gets

the freedom to choose over the outer XOR. As illustrated in the example above, this boils

down to choosing one of the fresh variable spaces, which corresponds to choosing one

of the original disjuncts. All the rest of the transformed time conjunction does not have

any effect, because it talks about variables which do not occur in the chosen sub-bid.

The auctioneer then proceeds to pick a bid from the inner XOR, just as before.

Soft time constraints. Soft constraints are constraints with associated costs. Intuitively,

such a constraint does not have to be satisfied, but if it is, the price of the bid is modified

by the given cost (usually a discount to the auctioneer).

For example, a bidder may want to bid on (I1,O1) and (I2,O2) for price p and

offer a discount, i.e., raise his bid by δ, if he gets to do the first before the second:

BID({(I1,O1, τ1), (I2,O2, τ2)}, p) (τ1 < τ2, δ).

Again, this expression can be translated:

BID({(I1,O1, ϑ1), (I2,O2, ϑ2)}, p)

XOR BID({(I1,O1, ζ1), (I2,O2, ζ2)}, p + δ)
ζ1 < ζ2.

The general translation is analogous to the previous one and omitted for space reasons.

Note also that the transformations can be combined. For example, a soft time con-

straint could have a disjunctive condition.

The blowup resulting from the transformations is straightforwardly seen to be linear

in the number of disjuncts or of alternative discounts, respectively. Our constructions and

the resulting blowup straightforwardly carry over to any bidding language that allows

XOR as outermost connective.

2.7 Expressive power

We say a valuation is finite if it has a finite domain (i.e., yields non-⊥ for finitely many

time lines only) consisting of finite sequences of finite transformations (i.e., with finite

input and output). The XOR language with time constraints is fully expressive for finite

valuations: XOR bids with relative time constraints can express all finite valuations

that use relative time; XOR bids with absolute time constraints can express all finite

valuations. The proof is simple: Take an XOR bid with one atomic bid BID(D, p) for

each Σ in the domain of v, with D set to permit Σ and p set to v(Σ), and impose the

order corresponding to Σ using time constraints (note that there may be several atomic

bids with the same transformations in D, but different time points).
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3 Winner determination

We now study the winner determination problem (WDP). This is the problem, faced

by the auctioneer, of determining which transformations to award to which bidder, so

as to maximize (minimize) the sum of payments collected (made), given the bids of

the bidders expressed in our bidding language. This may be interpreted as computing a

solution that maximizes revenue for the auctioneer, or utilitarian social welfare for the

collective of bidders (if we interpret prices offered as reflecting bidder utility). Note that

we are interested in the algorithmic aspects of the WDP. Game-theoretical considerations,

such as how to devise a more sophisticated pricing rule that would induce bidders to

bid truthfully, are orthogonal to the algorithmic problem addressed here. (We briefly

comment on mechanism design issues in Sect. 5, but this is not the topic of this paper.)

For symmetry between bidders and auctioneer, we do not assume free disposal for

the auctioneer (just like for the bidders), i.e., he does not want to end up with any goods

except the required ones. Note, however, that the formulations are easily adapted to allow

free disposal (and we point out the necessary changes along the way).

After formulating the WDP, we give an integer program [9] solving it. We aim at

keeping the descriptions short and focus on the changes compared to the version from [2].

The advantage of this approach, besides showing how few modifications are necessary,

is that it is modular and can (hopefully) be combined without too much effort with other

extensions or optimizations.

3.1 WDP with time constraints

The input to the WDP consists of

– a bid expression Bidi in XOR normal form together with a conjunction of time

constraints ϕi, for each bidder i;

– a multiset Uin of goods the auctioneer holds in the beginning;

– and a multiset Uout of goods the auctioneer wants to end up with.

Let Bidij denote the jth atomic bid BID(Dij , pij) occurring within Bidi, let tijk be a

unique label for the kth transformation in Dij (for some arbitrary but fixed ordering of

Dij), and let τijk be the time point identifier associated with transformation tijk. Let

(Iijk,Oijk) be the actual transformation labelled with tijk, and T be the set of all tijk.

An allocation sequence Σ resembles the time line we introduced before, but can

only contain transformations actually offered by some bidder, and each one at most once.

That is, Σ now is a permutation of a subset of T , possibly interspersed with clock ticks c.

We write tijk ∈ Σ to say that the kth transformation in the jth atomic bid of

bidder i has been selected, and we write Σ(tijk) to denote the sequence number of

tijk (starting from 1) if tijk ∈ Σ. By Σi we denote the projection of Σ to bidder i,

that is, Σ with each tijk replaced by (Iijk,Oijk, τijk) and all ti′jk replaced by c for

i′ 6= i. By (Im,Om) we denote the mth transformation in Σ. Thus, we have two ways

of referring to a selected transformation: by its position in the received bids (tijk) and by

its position m in the allocation sequence.
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Given Σ, we can inductively define the bundle of goods held by the auctioneer after

each step (let g ∈ G be any good, and let M0 = Uin):3

Mm(g) = Mm−1(g) + Om(g) − Im(g) (1)

under the condition that

Mm−1(g) ≥ Im(g). (2)

Given a multiset Uin of goods available to the auctioneer, a multiset Uout of goods

required by the auctioneer, and a set of bids Bidi with time constraints ϕi, an allocation

sequence Σ is a valid solution if

(i) for each bidder i, some Dij permits Σi, or Σi ∈ {c}∗

(ii) for each bidder i, Σi |= ϕi

(iii) Eq. (1) and (2) hold for each transformation (Im,Om) ∈ Σ and each good g ∈ G

(iv) for each good g ∈ G, M|Σ|(g) = Uout(g).4

The revenue for the auctioneer associated with a valid solution Σ is the sum of the

prices of the selected atomic bids, i.e.,
∑

{̇pij | ∃k : tijk ∈ Σ}̇.
Given multisets Uin and Uout of initial and required goods and a set of bids with

time constraints, the winner determination problem (WDP) consists in finding a valid

solution that maximizes the auctioneer’s revenue.

3.2 Original integer program

In this part, we closely follow Cerquides et al. [2]. The main issue is to decide, for each

offered transformation, whether it should be selected for the solution sequence, and if so,

at which position. Thus, we define a set of binary decision variables xm
ijk ∈ {0, 1}, each

of which takes on value 1 if and only if the transformation tijk is selected at the mth

position of the solution sequence.

The position number m ranges from 1 to an upper bound M on the solution sequence

length. For the time being, we take M = |T |, the overall number of transformations,

accommodating all sequences that can be formed using only transformations (and not

clock ticks). We consider an alternative way for specifying M at the end of Sect. 3.3.

Further, i ranges over all bidders; j ranges for each bidder i from 1 to the number of

atomic bids submitted by i; and k ranges for each atomic bid j of bidder i from 1 to the

number of transformations in that bid.

We use the following auxiliary binary decision variables: xm takes on value 1 if and

only if any transformation is selected at the mth position; xijk takes on value 1 if and

only if transformation tijk is selected at all; and xij takes on value 1 if and only if any

of the transformations in the jth atomic bid of bidder i are selected.

The following set of constraints define a valid solution without taking time constraints

into account (i.e., neglecting (ii) in the valid solution definition above):

(1) Select either all or no transformations from an atomic bid (cf. (i) above):

xij = xijk (∀ijk)

3 Given a multiset S ∈ N
G and an item g ∈ G, we write S(g) to denote the number of copies of

g in S.
4 Replace = by ≥ to model free disposal.
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(2) Select at most one atomic bid from each XOR normal form bid (cf. (i) above):
∑

j xij ≤ 1 (∀i)
(3) Select each transformation at most for one position: xijk =

∑

m xm
ijk (∀ijk)

(4) For each position, select at most one transformation: xm =
∑

ijk xm
ijk (∀m)

(5) There should be no gaps in the sequence: xm ≥ xm+1 (∀m)
Note that this is strictly speaking not required; indeed we drop this constraint later

on in order to allow clock ticks between transformations.

(6) Treating each Mm(g) as integer decision variable, ensure that necessary input goods

are available (cf. (iii) above):

Mm(g) = Uin(g) +
∑m

ℓ=1

∑

ijk xℓ
ijk · (Oijk(g) − Iijk(g))

Mm(g) ≥
∑

ijk xm
ijk · Iijk(g) (∀g ∈ G, ∀m)

(7) In the end, the auctioneer should have the bundle Uout (cf. (iv) above):5

MM (g) = Uout(g) (∀g ∈ G)
Solving the WDP now amounts to solving the following integer program:

max
∑

ij xij · pij , subject to constraints (1)–(7)

A valid solution is then obtained by making transformation tijk the mth element of

the solution sequence Σ exactly when xm
ijk = 1.

3.3 Modified integer program

To implement time constraint handling (thus obeying (ii) in the definition of valid

solution given above), we first introduce an additional set of auxiliary binary decision

variables ym
ijk ∈ {0, 1}, taking on value 1 if and only if transformation tijk is selected

at the mth position or earlier in the solution sequence. This is achieved by adding the

following constraint:

(8) ym
ijk should be 1 iff tijk ∈ Σ and Σ(tijk) ≤ m: ym

ijk = ym−1

ijk + xm
ijk (∀ijkm),

with y0
ijk = 0.

We now give implementations for our two variants of time constraints.

Relative time. Each bidder i’s time constraint formula is a conjunction of atomic time

constraints, and all bidders’ time constraints need to be satisfied. The following set of

integer constraints takes care of this.

(9a) For each τijk < τij′k′ occurring in
∧

i ϕi: ym
ijk ≥ ym+1

ij′k′ (∀m).
In accordance with the time constraint semantics, if neither tijk nor tij′k′ occurs in the

solution sequence, this requirement is vacuously satisfied since both sides stay 0. If tij′k′

does occur, then ym
ij′k′ will become 1 at some point m. In this case, the requirement boils

down to ym−1

ijk being 1 as well, so tijk must have occurred already.

Solving the WDP with relative time constraints thus amounts to the same optimiza-

tion as before, but subject to constraints (1)–(8) and (9a).

Absolute time. In order to have an absolute notion of time, we need some way of

mapping points of a possible solution sequence to an absolute time line. The simplest

5 With free disposal, = would become ≥.
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way is to interpret each sequence point itself as a time unit (a minute, a day, a week, . . . ),

and this is the approach we take.

Before giving the formalization, we need to discuss some conceptual details. If we

interpret steps in the sequence as absolute time units, some issues arise which did not

matter before. Firstly, while it may be acceptable to break time down into discrete steps

of equal duration, it is not so easy to defend that any transformation that can possibly be

offered should have exactly that duration. Secondly, there is no reason why the auctioneer

should wait for one transformation to end before commissioning the next transformation,

which may be offered by a different, idling bidder, unless the output of the former is

needed as input to the latter. To some extent, these issues can be addressed by a purely

conceptual extension presented in Sect. 4. However, we leave it to future work to design

frameworks which handle time in a more flexible way and truly optimize for effective

parallelizations. For our purposes, we simply assume that the auctioneer is busy when he

is delivering or receiving goods of some particular transformation, and cannot deal with

several bidders simultaneously.

To start the formalization, first of all we drop constraint (5). As mentioned, it is not

strictly speaking necessary anyway, and since now the bidders can refer to arbitrary

absolute time points, we actually might have to accept gaps in the sequence.

Now a technical issue arises: The length of possible solution sequences is no longer

bounded by |T |. While it may be possible to find a correct bound by looking at all

numbers occurring in the bidders’ time constraints, we settle for a different solution: The

auctioneer manually specifies M , the maximum length of the solution sequence.

At first glance this seems like a pure loss of generality; however the auctioneer may

profit from having some control over the size of the WDP he has to solve, and he can

always iterate over different values for M in his search for a good solution. Economically

speaking, it also makes sense that the auctioneer wants some control over the length of

his supply chain, rather than allowing an arbitrary length. Indeed, he might have graded

preferences over the time his supply chain takes, as discussed in Sect. 3.4.

We now give the integer constraints for handling absolute time constraints.

(9b) For each τijk + ξ < τij′k′ + ξ′ occurring in
∧

i ϕi: y
m+ξ′

ijk ≥ y
m+ξ+1

ij′k′ (∀m)

For each τijk + ξ = τij′k′ + ξ′ occurring in
∧

i ϕi: y
m+ξ′

ijk = y
m+ξ
ij′k′ (∀m)

(10) For each τijk ◦ ξ, with ◦ ∈ {=, <,>}, occurring in
∧

i ϕi: xm
ijk = 0 (∀m 6 ◦ ξ).

Constraint (9b) requires some explanation. First of all, note that (9a), the version for

relative time, is covered as a special case. As indicated by the semantics, the absolute

time variant is thus an extension of the relative time variant. Secondly, note that the

second half of (9b) can be obtained from the first half if interpreted as an abbreviation,

as in Sect. 2.5. Now consider the case where ξ′ = 0. Intuitively speaking, the time

constraint then says that tijk must take place at least ξ + 1 time steps before tij′k′ . That

is, whenever tij′k′ is selected, tijk must already have been selected for at least ξ + 1
time steps. In terms of the integer program, this means that, for all positions m, ym

ij′k′

must be 0 unless y
m−ξ−1

ijk was already 1. Now it is only a small step to the formulation

in (9b).

Solving the WDP with absolute time constraints amounts to the same optimization

as before, but subject to constraints (1)–(4), (6)–(8), (9b) and (10).
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A valid solution is then obtained by making transformation tijk the mth element of

the solution sequence Σ if and only if xm
ijk = 1, and using a clock tick c as mth element

when there is no xm
ijk which equals 1 (i.e., when xm = 0).

3.4 Valuation for the auctioneer

Given that we decided to require the auctioneer to specify the maximum length M of the

solution sequence (for the absolute-time variant of the framework), we may also want to

enable him to express more detailed preferences over durations. This can be achieved in

a neat way, also enabling the auctioneer to express graded preferences over final bundles.

So assume the auctioneer derives a certain value from a given supply chain, depending

on its overall duration and its outcome, the bundle of goods he owns in the end. Note

that we here assume absolute time; with relative time, preferences over durations do not

make much sense, but the results can easily be adjusted to only model preferences over

outcomes.

We thus assume the auctioneer’s valuation is a function u : N × N
G → R ∪ {⊥},

mapping duration/outcome pairs to a value or ⊥, meaning the duration/outcome pair is

not acceptable. This valuation can be incorporated into the WDP in the following way.

After receiving the bids, the auctioneer decides on a maximum duration M and

creates an additional bid under an unused bidder identity:

XOR
{(m,U) |u(m,U) 6=⊥}

BID({(U , {⊚}, τm,U )}, u(m,U)),

where ⊚ is a special token that does not occur as a good in any other bid, together with

time constraints:
∧

{(m,U) |u(m,U) 6=⊥}

τm,U = m.

The transformations in this bid are to be thought of as terminal transformations: they

denote the possible time points and outcomes at which a solution sequence may end, and

the associated values for the auctioneer. Using this method, the auctioneer’s valuation

can be expressed with very few changes to the integer program:

– The terminal transformations should only be used at the respective intended positions

in the sequence; this is ensured by the given time constraints.

– At most one of them should be used; this is ensured by the XOR (and strictly speaking

also follows from the last point below).6

– At least one7 of them should be used; this can be ensured by setting Uout = {⊚}.

– The unique terminal transformation that is actually used should indeed be the end of

the solution sequence.8

6 Even more strictly speaking, it also follows from the next requirement and the fact that we

assume no free disposal; we include it nevertheless for conceptual clarity and in order to

accommodate a possible free disposal assumption.
7 This could read “exactly one”, but again, we want to accommodate a possible free disposal

assumption.
8 As a last remark, this requirement could be dropped if we did assume free disposal and all bids’

prices were positive.
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For this last point, we need an additional integer constraint:

(11) No transformations are scheduled after a terminal transformation:

xm+1

ijk ≤ 1 − ym
−1j′k′ (∀ijkj′k′m)

(−1 being the auctioneer’s “bidder identity”).

While the above requirements could also be encoded more directly and more effi-

ciently into the integer program, for clarity we here restrict ourselves to this version

using the high-level features of the bidding language.

Many further extensions and optimizations along these lines are conceivable. We do

not try to exhaust them here, but sketch only one example. The auctioneer might want

to extract some goods U from the supply chain by some intermediate time point ξ, not

necessarily at its end. To express this, he can add a transformation (U , {⋄}, τ) with time

constraint τ < ξ + 1 to his bid, and add ⋄ to Uout. Dropping constraint (11) for this

transformation, he makes it non-terminal. He can also make this a soft requirement by

including another transformation that yields ⋄ from no input and attaching appropriate

prices to the corresponding bids.

3.5 Computational complexity

As in the original model [2], the WDP for mixed auctions with time constraints is NP-

complete: NP-hardness follows from NP-hardness of the WDP for standard combinatorial

auctions [8] and NP-membership follows from the fact that the validity of a given

allocation sequence can clearly be verified in polynomial time. Fionda and Greco [4]

have started to chart the tractability frontier for a slightly simplified version of the

original framework by Cerquides et al. [2], using various criteria to restrict the class

of allowed bids. Their results concerning the XOR language still hold in our extended

framework. In particular, even with time constraints the WDP still remains tractable if

only one transformation outputs any particular good [4, Theorem 3.7]. Further tractability

islands may be identified in future work.

Regarding the integer program, while there is room for optimizations, the number

of variables we introduce is of the same order as in the original formulation: O(n2),
where n is the number of transformations occurring in the bids submitted. The most

recent work on winner determination algorithms for mixed auctions has tried to reduce

the number of decision variables needed so as to improve performance [5,7]. Due to

the modular nature of our approach, we are optimistic that it will be possible to take

advantage of these optimizations and integrate them with our extensions.

4 Intervals

It may be desirable to allow transformations to overlap or take place during others, and to

allow transformations to have different durations. Interestingly, intervals can be handled

in our framework without any additional machinery. A transformation with start time

and end time can be rewritten into two transformations with single time points and an

appropriate time constraint:

(I,O, [τ, τ ′])  
(I, ∅, τ), (∅,O, τ ′)

τ < τ ′
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Since the replacement takes place within a single atomic bid, it is guaranteed that

either both the start and end transformations will be selected, or neither. That is, the

interval transformation remains intact.

The usual interval relations (see the interval calculus by Allen [1]; due to sequentiality

we consider only strict relations) can be defined as macros:

[τ1, τ
′
1] BEFORE [τ2, τ

′
2]  τ ′

1 < τ2

[τ1, τ
′
1] OVERLAPS [τ2, τ

′
2]  τ1 < τ2 ∧ τ ′

1 < τ ′
2

[τ1, τ
′
1] DURING [τ2, τ

′
2]  τ2 < τ1 ∧ τ ′

1 < τ2

With absolute time, absolute restrictions on the durations can also be implemented:

duration([τ, τ ′]) ◦ ξ  τ ′ ◦ τ + ξ, ◦ ∈ {<, >,=}

Note that expressions like duration(·) > duration(·) are not so straightforwardly

expressible, but arguably also much less useful in the context of specifying bids.

5 Conclusions and related work

We presented an extension to the existing framework of mixed multi-unit combinatorial

auctions [2], enabling bidders to impose time constraints on the transformations they

offer.

In the original framework, the auctioneer is free to schedule the offered transforma-

tions in any way suitable to achieve his desired outcome, while bidders are left with

no control over this process. Our work redresses this asymmetry, thus representing an

important step towards a more realistic model of supply chain formation, where bidders

themselves may have supply chains or other factors restricting the possible schedules for

performing certain transformations.

Starting from a very basic core language for expressing time constraints, we have

given various extensions, many purely syntactic, showing the somewhat unexpected

power inherent to the core language.

We have also extended the integer program given in [2] to handle time constraints.

Our extensions are modular in a way that will facilitate combining them with other

extensions and optimizations for mixed auctions, such as [5,7].

Time constraints have been applied to different types of combinatorial auctions in

the literature. For example, Hunsberger and Grosz [6] extended an existing algorithm for

winner determination in combinatorial auctions to allow precedence constraints when

bidding on roles in a prescribed action plan (“recipe”). Collins [3] permitted relative time

constraints in a combinatorial reverse auction over combinations of tasks, and tested the

efficiency of various approaches to solving the winner determination problem.

Auction frameworks involving time have also been fruitfully applied to problems

of distributed scheduling. In Wellman et al. [10], time constraints do not enter sepa-

rately, rather time slots are the actual objects being auctioned, and game-theoretic and

mechanism design issues are discussed.

While it would be interesting to examine whether the insights about efficiency

and alternative approaches to handling time could be applied to our framework, the
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roles, tasks, and time slots being auctioned in those contributions are “atomic”, and the

formulations and results do not easily translate to transformations in the context of mixed

auctions.

Concerning mechanism design, with finite valuations, the incentive-compatibility of

the Vickrey-Clarke-Groves (VCG) mechanism carries over from standard combinatorial

auctions to mixed multi-unit combinatorial auctions with time constraints (see also

[2]). It is a question of independent interest, whether and how this can be extended to

non-finite valuations when still allowing only finite bids. In this case the bidders would

not be able to express their true valuations exactly, so it is not obvious how truthfulness

and incentive compatibility should be defined.

Other topics for future work include the exact interplay between the various syntactic

extensions we have given, defining a uniform general language, and determining whether

some of the features can be implemented in more direct (and efficient) ways than through

the translation to the core language used in this work. The same holds for the underlying

bidding language, where operators such as OR may be executed more efficiently than

through translation to XOR.

Changing the integer program to allow OR instead of XOR is straightforward; an XOR-

of-OR language, generalizing both the XOR and the OR languages, can be accommodated

with more extensive changes, buying the advantage of preserving our constructions for

disjunctive and soft time constraints.

Finally, an empirical analysis needs to be performed, including testing and optimizing

our integer program.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983.

2. J. Cerquides, U. Endriss, A. Giovannucci, and J. A. Rodrı́guez-Aguilar. Bidding languages

and winner determination for mixed multi-unit combinatorial auctions. In Proc. IJCAI-2007,

Hyderabad, India, 2007.

3. J. E. Collins. Solving combinatorial auctions with temporal constraints in economic agents.

PhD thesis, University of Minnesota, 2002.

4. V. Fionda and G. Greco. Charting the tractability frontier of mixed Multi-Unit combinatorial

auctions. In Proc. IJCAI-2009, Pasadena, CA, July 2009.

5. A. Giovannucci, M. Vinyals, J. A. Rodrı́guez-Aguilar, and J. Cerquides. Computationally

efficient winner determination for mixed multi-unit combinatorial auctions. In Proc. AAMAS-

2008. IFAAMAS, 2008.

6. L. Hunsberger and B. J. Grosz. A combinatorial auction for collaborative planning. In Proc.

4th International Conference on MultiAgent Systems. IEEE Computer Society, 2000.

7. B. Ottens and U. Endriss. Comparing winner determination algorithms for mixed multi-unit

combinatorial auctions. In Proc. AAMAS-2008. IFAAMAS, 2008.
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Abstract. An auction mechanism consists of an allocation rule and a
payment rule. There have been several studies on characterizing strategy-
proof allocation rules. One desirable property that an auction mechanism
should satisfy is revenue monotonicity; a seller’s revenue is guaranteed
to weakly increase as the number of bidders grows. In this paper, we first
identify a simple condition called summation-monotonicity for character-
izing strategy-proof and revenue monotone allocation rules. To the best of
our knowledge, this is the first attempt to characterize revenue monotone
allocation rules. Based on this characterization, we also examine the con-
nections between revenue monotonicity and false-name-proofness, which
means a bidder cannot increase his utility by submitting multiple bids
under fictitious names. In a single-item auction, we show that a mech-
anism is false-name-proof if and only if it is strategy-proof and revenue
monotone. On the other hand, we show that there exists no combina-
torial auction mechanism that is simultaneously revenue monotone and
false-name-proof under some minor conditions.

1 Introduction

Mechanism design of combinatorial auctions has become an integral part of Elec-
tronic Commerce and a promising field for applying AI and agent technologies.
Among various studies related to Internet auctions, those on combinatorial auc-
tions have lately attracted considerable attention. Mechanism design is the study
of designing a rule/protocol that achieves several desirable properties, assuming
that each agent/bidder hopes to maximize his own utility.

One desirable property of a combinatorial auction mechanism is that it is
strategy-proof. A mechanism is strategy-proof if, for each bidder, reporting his
true valuation is a dominant strategy, i.e., an optimal strategy regardless of the
actions of other bidders. In theory, the revelation principle states that in the
design of an auction mechanism, we can restrict our attention to strategy-proof
mechanisms without loss of generality [1]. In other words, if a certain property,
e.g., Pareto efficiency or high revenue, can be achieved using an auction mech-
anism in a dominant strategy equilibrium, which is a combination of dominant
strategies of bidders, then the property can also be achieved using a strategy-
proof auction mechanism.
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A combinatorial auction mechanism consists of an allocation rule that de-
fines the allocation of goods for each bidder and a payment rule that defines
the payment of each winner. There have been many studies on characteriz-
ing strategy-proof social choice functions (an allocation rule in combinatorial
auctions) in the literature of social choice theory. This is also called the imple-
mentability of social choice functions. In particular, a family of monotonicity

concepts was identified to characterize implementable social choice functions.
For example, Lavi et al. [2] proposed weak-monotonicity and showed that it is
a necessary and sufficient condition for strategy-proof mechanisms when several
assumptions hold on the domain of types. Such a characterization of allocation
rules is quite useful for developing/verifying strategy-proof mechanisms. These
conditions are defined only on an allocation rule; if it satisfies such a condition,
it is guaranteed that there exists an appropriate payment rule that achieves
strategy-proofness. Thus, a mechanism designer can concentrate on allocation
rules when developing a new mechanism or verifying an existing one.

Besides these studies, revenue monotonicity is recognized as one of desirable
properties a mechanism should satisfy [3]. A mechanism is revenue monotone if
the seller’s revenue from an auction is guaranteed to weakly increase as the num-
ber of bidders grows. The property is quite reasonable, since a growing number
of bidders increases competition. However, it is shown that even the theoret-
ically well-founded Vickrey-Clarke-Groves (VCG) mechanism does not achieve
revenue monotonicity. Nevertheless, there has been very little work on charac-
terizing revenue monotone mechanisms. One notable exception is Rastegari et

al. [4], who proved that there exists no mechanism that is revenue monotone,
strategy-proof, and weakly maximal, where weak maximality is a weaker notion
of Pareto efficiency. Furthermore, they mentioned a connection between revenue
monotonicity and false-name-proofness, which is known as another desirable
property of combinatorial auctions on the Internet.

False-name-proofness generalizes strategy-proofness by assuming that a bid-
der can submit multiple bids under fictitious identifiers, e.g., multiple e-mail
addresses [5]. Several false-name-proof mechanisms have been developed so far.
Furthermore, besides combinatorial auctions, false-name-proof mechanism de-
sign has been discussed in domains such as voting [6] and coalitional games [7].
Also, Todo et al. [8] fully characterized false-name-proof allocation rules by a
condition called sub-additivity.

To the best of our knowledge, our paper is the first attempt to characterize
revenue monotone allocation rules in combinatorial auctions. First, we identify a
condition called summation-monotonicity and prove that weak-monotonicity and
summation-monotonicity fully characterize strategy-proof and revenue mono-
tone allocation rules. Second, our characterization successfully clarifies the con-
nections between revenue monotonicity and false-name-proofness. Summation-
monotonicity and sub-additivity look quite similar, but they are different and
interact in a rather complicated way. In single-item auctions, we show that they
are basically equivalent; a mechanism is false-name-proof if and only if it is
strategy-proof and revenue monotone. On the other hand, we show that these

58



two conditions cannot coexist in combinatorial auctions; under some minor con-
ditions, there exists no combinatorial auction mechanism that is simultaneously
revenue monotone and false-name-proof.

2 Preliminaries

Assume there exists a set of potential bidders N = {1, 2, . . . , n} and a set of goods
G = {g1, g2, . . . , gm}. Let us define N ⊆ N as the set of bidders participating
in an auction. Each bidder i ∈ N has his preferences for each bundle or goods
B ⊆ G. Formally, we model this by supposing that bidder i privately observes
a parameter (or signal) θi that determines his preferences. We refer to θi as the
type of bidder i and assume it is drawn from a set Θi.

Let us denote the set of all possible type profiles as ΘN = Θ1 × . . . × Θn

and a type profile as θ = (θ1, . . . , θn) ∈ ΘN. Observe that type profiles always
have one entry for every potential bidder, regardless of the set of participating
bidders N . We use a symbol 0 in the vector θ as a placeholder for each non-
participating bidder i 6∈ N and represent (θ1, . . . , θi−1,0, θi+1, . . . , θn) as θ−i, for
θ = (θ1, . . . , θi−1, θi, θi+1, . . . , θn). When a set of bidders N participates in the
auction, we denote the set of possible type profiles that can be reported by N as
ΘN (⊆ ΘN). That is, ΘN is the set of all type profiles θ for which θi = 0 if and
only if i 6∈ N .

We assume a quasi-linear, private value model with no allocative externality;
the utility of bidder i, when i obtains a bundle, i.e., a subset of goods B ⊆ G

and pays p, is represented as v(θi, B) − p. We also assume a valuation v is
normalized by v(θi, ∅) = 0, satisfies free disposal, i.e., v(θi, B

′) ≥ v(θi, B) for
all B′ ⊇ B, and satisfies no externalities, i.e., a valuation v is determined only
by his obtained bundle. We call each Θi that satisfies these conditions a rich

domain [9]. In other words, the domain of types Θi is rich enough to contain
all possible valuations. This assumption is required so that weak-monotonicity
characterizes strategy-proofness.

A combinatorial auction mechanism M consists of an allocation rule X and
a payment rule p. When a set of bidders N participates, an allocation rule is
defined as X : ΘN → AN , where AN is a set of possible allocations over N .
Similarly, a payment rule is defined as p : ΘN → R

N
+ . Let Xi and pi respectively

denote the bundle allocated to bidder i and the amount bidder i must pay. We
use notations X(θi, θ−i) and p(θi, θ−i) to represent the allocation and payment
when the declared type of bidder i is θi and the declared type profile of other
bidders is θ−i.

For simplicity, we restrict our attention to deterministic mechanisms and as-
sume that a mechanism is almost anonymous across bidders and goods; obtained
results are invariant under the permutation of the identifiers of bidders/goods
except for the case of ties. We also assume that a mechanism satisfies a prop-
erty called consumer sovereignty [4]; there always exists a type θi for bidder i,
where bidder i can obtain bundle B. In other words, if bidder i’s valuation for
B is high enough, then he can obtain B. This property is also called player
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decisiveness [2]. Furthermore, we restrict our attention to individually rational

mechanisms. A mechanism is individually rational if ∀N ⊆ N, ∀i ∈ N , ∀θi, ∀θ−i,
v(θi, Xi(θi, θ−i))− pi(θi, θ−i) ≥ 0 holds. This means that no participant obtains
negative utility by reporting his true type.

Let us introduce the notion called strategy-proofness.

Definition 1 (Strategy-proofness).
A combinatorial auction mechanism M(X, p) is strategy-proof if ∀N ⊆ N,∀i ∈

N, ∀θ−i,∀θi, ∀θ′i, v(θi, Xi(θi, θ−i)) − pi(θi, θ−i) ≥ v(θi, Xi(θ
′
i, θ−i)) − pi(θ

′
i, θ−i)

holds.

A mechanism is strategy-proof if reporting true type θi is a (weakly) dominant
strategy for any bidder i with type θi and any type profile θ−i; it maximizes his
utility regardless of the other bidders’ reports. A strategy-proof allocation rule
is fully characterized by a simple condition called weak-monotonicity, assuming
the type domain is rich [9].

Definition 2 (Weak-monotonicity).
An allocation rule X satisfies weak-monotonicity if ∀N ⊆ N,∀i ∈ N, ∀θ−i,∀θi,∀θ′i,

v(θi, Xi(θi, θ−i))−v(θi, Xi(θ
′
i, θ−i)) ≥ v(θ′i, Xi(θi, θ−i))−v(θ′i, Xi(θ

′
i, θ−i)) holds.

Lavi et al. [2] and Bikhchandani et al. [9] proved that if an allocation rule is
weakly monotone, we can always find an appropriate payment rule to truthfully
implement the allocation rule. Thus, when designing an auction mechanism, we
can concentrate on designing an allocation rule and forget about the payment
rule, at least for a while.

Next, let us introduce the notion of revenue monotonicity [3], which is known
as another desirable property of combinatorial auctions.

Definition 3 (Revenue monotonicity).
A combinatorial auction mechanism M(X, p) is revenue monotone if ∀N ⊆

N,∀θ, ∀j ∈ N,
∑

i∈N

pi(θ) ≥
∑

i∈N\{j}

pi(θ−j). (1)

The left-hand side indicates the seller’s revenue from the auction when the set of
bidders N participates in the auction. The right-hand side indicates the seller’s
revenue when bidder j drops out. In other words, a combinatorial auction is
revenue monotone if the seller’s revenue does not increase by dropping a bidder.

This property is quite reasonable, since a growing number of bidders increases
competition. However, even the theoretically well-founded VCG mechanism is
not always revenue monotone. Rastegari et al. [4], a seminal work on revenue
monotonicity, shows the impossibility result that there exists no deterministic
strategy-proof, weakly maximal combinatorial auction mechanism that is rev-
enue monotone. Roughly speaking, a combinatorial auction mechanism is weakly

maximal if its allocation cannot be augmented to cause a losing bidder to win
without hurting winning bidders. It is a weaker notion of Pareto efficiency.

Furthermore, Rastegari et al. [4] mentioned a connection between revenue
monotonicity and false-name-proofness, which is known as another desirable
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property of combinatorial auctions [5]. This is a kind of generalization of strategy-
proofness for an environment by assuming that a bidder can use multiple identi-
fiers. To introduce this property along with our model, we add several notations.
Let us consider a situation where bidder i uses s false identifiers id1, . . . , ids

and define a mapping function φ such that φ(i) = {id1, . . . , ids}; i.e., φ(i) rep-
resents a set of identifiers owned by bidder i. Let us represent a type profile as
θ = (θid1

, . . . , θids
, θs+1, . . . , θn), and similarly represent a type profile reported

by the set of identifiers φ(i) as θφ(i) = (θid1
, . . . , θids

). Here we use θid1
, . . . θids

instead of θ1, . . . , θs for convenience. On the other hand, let (θi,0, . . . ,0) denote
the type profile when bidder i reports θi with only one identifier although he can
use s identifiers. That is, 0 means that the identifier is not used by bidder i. Note
that these notations can be introduced w.l.o.g., since we assume almost anony-
mous mechanisms. Furthermore, to consistently address false-name-proofness,
we represent a type profile reported by the set of participating bidders other
than φ(i) as θ−φ(i) = (0, . . . ,0, θs+1, . . . , θn).

Now we are ready to introduce false-name-proofness.

Definition 4 (False-name-proofness).
A combinatorial auction mechanism M(X, p) is false-name-proof if ∀N ⊆

N,∀i ∈ N, ∀φ(i), ∀θ−φ(i),∀θi,∀θφ(i),

v(θi, Xi((θi,0, . . . ,0), θ−φ(i))) − pi((θi,0, . . . ,0), θ−φ(i))
≥ v(θi,

⋃

l∈φ(i) Xl(θφ(i), θ−φ(i))) −
∑

l∈φ(i) pl(θφ(i), θ−φ(i)).
(2)

Note that when |φ(i)| = 1, the definition becomes equivalent to strategy-proofness.
It has been shown that VCG is not false-name-proof and that there exists no
false-name-proof, Pareto efficient mechanism [5].

3 Characterization of Revenue Monotonicity

This section introduces a simple condition called summation-monotonicity that
fully characterizes revenue monotone allocation rules when coupled with weak-
monotonicity.

Definition 5 (Summation-monotonicity).
An allocation rule X satisfies summation-monotonicity if ∀N ⊆ N,∀θ, ∀j ∈ N,

∀θ′i s.t. Xi(θ
′
i, θ−i) ⊇ Xi(θ) and v(θ′i, Xi(θ

′
i, θ−i)) = v(θ′i, Xi(θ)),

∀θ′′i s.t. v(θ′′i , Xi(θ
′′
i , θ−{i,j})) = 0,

∑

i∈N

v(θ′i, Xi(θ)) ≥
∑

i∈N\{j}

v(θ′′i , Xi(θ−j)). (3)

Note here that θ−{i,j} denotes a type profile that excludes bidder i and j. This
condition implies that for any set of participating bidders and any type profile,
the revenue, which is the sum of the critical values of the bidders in an auction,
weakly decreases when any bidder drops out from the auction.
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Fig. 1. Summation-monotonicity

The following is an intuitive explanation why summation-monotonicity holds
for a strategy-proof and revenue monotone mechanism. Let us consider a combi-
natorial auction mechanism with two goods g1 and g2. Assume that it allocates
g1 to bidder 1 and g2 to bidder 2 when a set of bidders N participates. On the
other hand, also assume that it allocates g1 to bidder 3 and g2 to bidder 4 when
bidder j drops out from the auction. The top two rectangles of Fig. 1 represent
the total payments for bidder 1 and 2 and the bottoms for bidder 3 and 4. If the
mechanism is revenue monotone, p1(θ) + p2(θ) ≥ p3(θ−j) + p4(θ−j) holds.

The arrows at the top of Fig. 1 indicate the left-hand side of Eq. 3. θ′1 means
the minimal type where bidder 1 obtains g1 or any superset, fixing other bidders’
types than bidder 1. Under the mechanism, v(θ′1, {g1}) must be greater than
p1(θ). Otherwise, bidder 1 has an incentive not to participate in the auction and
individual rationality is violated. Similarly, θ′2 means the minimal type where
bidder 2 obtains g2 or any superset, fixing other bidders’ types than bidder 2
and v(θ′2, {g2}) must be greater than p2(θ).

The arrows at the bottom of Fig. 1 indicate the right-hand side of Eq. 3. θ′′3
means the maximal type where bidder 3 cannot obtain g1; he obtains nothing,
fixing other bidders’ types than bidder 3. Under the mechanism, v(θ′′3 , {g1}) must
be smaller than p3(θ−j). Otherwise, a bidder with θ′′3 as his true type has an
incentive to pretend that his type is θ3 to obtain g1, and strategy-proofness is
violated. Similarly, θ′′4 is the maximal type where bidder 4 cannot obtain g2 and
v(θ′′4 , {g2}) must be smaller than p4(θ−j).

From these facts, Lemma 1 proves that summation-monotonicity must hold
for strategy-proof, revenue monotone mechanisms. Lemma 2 proves that, as long
as summation-monotonicity and weak-monotonicity hold, we can find an appro-
priate payment rule p so that p1(θ) + p2(θ) ≥ p3(θ−j) + p4(θ−j) holds. Thus, we
derive the following theorem:

Theorem 1. There exists an appropriate payment rule p such that a combi-

natorial auction mechanism M(X, p) is strategy-proof and revenue monotone if

and only if X satisfies weak-monotonicity and summation-monotonicity.
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Lemma 1. If a combinatorial auction mechanism M(X, p) is strategy-proof and

revenue monotone, then the allocation rule X satisfies weak-monotonicity and

summation-monotonicity.

Proof. It was already proved in [2] that if M is strategy-proof, then X satisfies
weak-monotonicity. To prove this lemma, it suffices to show that if M is strategy-
proof and revenue monotone, then X satisfies summation-monotonicity.

Let WN denote the set of winners when a set of bidders N participates, and
let WN\{j} denote the set of winners when bidder j drops out. Since M(X, p) is
revenue monotone, from Eq. 1, we derive ∀N ⊆ N,∀θ ∈ ΘN ,∀j ∈ N,

∑

i∈WN
pi(θ) ≥

∑

i∈WN\{j}
pi(θ−j). (4)

Each term pi(θ) of the left-hand side must be smaller than the minimum bid
in which bidder i(∈ N) still wins; otherwise M violates individual rationality.
Thus we obtain

∀i ∈ WN ,∀θ′i s.t. Xi(θ
′
i, θ−i) ⊇ Xi(θ), v(θ′i, Xi(θ

′
i, θ−i)) = v(θ′i, Xi(θ)),

v(θ′i, Xi(θ)) ≥ pi(θ). (5)

On the other hand, each term pi(θ−j) of the right-hand side must be greater
than the maximum bid in which bidder i(∈ N \ {j}) loses; otherwise bidder i

with type θ′′i has an incentive to pretend that his type is θi. Thus we obtain

∀j,∀i ∈ WN\{j},∀θ′′i s.t. v(θ′′i , Xi(θ
′′
i , θ−{i,j})) = 0,

pi(θ−j) ≥ v(θ′′i , Xi(θ−j)). (6)

As a result, from Eqs. 4, 5, and 6, we obtain
∑

i∈N
v(θ′i, Xi(θ)) =

∑

i∈WN
v(θ′i, Xi(θ))

≥
∑

i∈WN
pi(θ)

≥
∑

i∈WN\{j}
pi(θ−j)

≥
∑

i∈WN\{j}
v(θ′′i , Xi(θ−j))

=
∑

i∈N\{j} v(θ′′i , Xi(θ−j))

and Eq. 3 holds. ⊓⊔

Lemma 2. If an allocation rule X satisfies weak-monotonicity and summation-

monotonicity, there exists an appropriate payment rule p such that a combina-

torial auction mechanism M(X, p) is strategy-proof and revenue monotone.

Proof. It was already proved in [2] that if X satisfies weak-monotonicity, there
exists a payment rule p such that M(X, p) is strategy-proof. To prove this lemma,
we show that if X satisfies weak-monotonicity and summation-monotonicity, we
can choose p that also satisfies Eq. 1.

We are going to derive a contradiction by assuming Eq. 1 does not hold,
although M(X, p) is strategy-proof and the allocation rule X satisfies weak-
monotonicity and summation-monotonicity. More specifically, we assume that
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for any payment rule p with which M(X, p) is strategy-proof, ∀p,∃N ⊆ N,∃θ, ∃j,
∑

i∈N
pi(θ) <

∑

i∈N\{j} pi(θ−j) holds. Now let us choose γ(> 0) such that

∑

i∈N

pi(θ) + γ =
∑

i∈N\{j}

pi(θ−j). (7)

Then, choose a small enough value ǫ such that 0 < ǫ < γ

2|N |−1
holds. Also,

let us define a type θ′i for each i ∈ N as

v(θ′i, Bi) =

{

pi(θ) + ǫ if Bi ⊇ Xi(θ),
0 otherwise.

These types satisfy the preconditions of summation-monotonicity: Xi(θ
′
i, θ−i) ⊇

Xi(θ) and v(θ′i, Xi(θ
′
i, θ−i)) = v(θ′i, Xi(θ)).

Furthermore, let us define θ′′i for each i ∈ N \{j} as

v(θ′′i , Bi) =

{

pi(θ−j) − ǫ if Bi ⊇ Xi(θ−j),
0 otherwise.

Similarly, these types satisfy the preconditions of summation-monotonicity:
v(θ′′i , Xi(θ

′′
i , θ−{j,i})) = 0.

As a result, from Eq. 3, the following condition holds:

∑

i∈N

pi(θ) + |N | · ǫ ≥
∑

i∈N\{j}

pi(θ−j) − (|N | − 1) · ǫ. (8)

By substituting Eq. 7 into Eq. 8, we obtain γ ≤ (2|N | − 1) · ǫ. This contradicts
the assumption of ǫ < γ

2|N |−1
. ⊓⊔

4 Revenue Monotonicity and False-name-proofness

This section provides a theoretical consideration of a connection between revenue
monotonicity and false-name-proofness.

As it was considered that there is a connection between revenue monotonicity
and false-name-proofness [3, 4], the following case provides a common example
where VCG is neither revenue monotone nor false-name-proof.

{g1} {g2} {g1, g2}
bidder 1: 7 0 7
bidder 2: 0 0 8
bidder 3: 0 7 7

Let us consider a situation where bidder 1′, who values 14 only on {g1, g2},
uses two identifiers 1 and 3. Since VCG allocates g1 and g2 to identifiers 1 and 3,
respectively, bidder 1′ obtains {g1, g2} and pays 2. On the other hand, when only

64



two bidders 1′ and 2 participate in the auction, i.e., when bidder 1′ does not use
false identifiers, bidder 1′ obtains {g1, g2} and pays 8. As this example shows,
increasing the number of participating bidders by or not by false identifiers can
reduce the seller’s revenue.

Therefore, a sub-additive allocation rule [8] apparently always coincides with
a summation-monotone allocation rule, and vice versa. However, this is not
true, although it is certain that sub-additivity looks quite similar to summation-
monotonicity. Recall that summation-monotonicity implies that the sum of the
critical values of bidders in an auction is guaranteed to weakly decrease when
some of the bidders drop out from the auction. On the contrary, sub-additivity
implies that the critical value of a bidder when he uses a single identifier is
guaranteed to be smaller than or equal to that when he uses multiple identifiers.

4.1 Single-item auctions

We stated that, in general, revenue monotonicity cannot coexist with false-name-
proofness. Nevertheless, in this subsection, we show that revenue monotonicity
and false-name-proofness are equivalent for single-item auctions, assuming the
following natural condition.

Assumption 1 For any set of participating bidders N and for any bidder j(∈
N), if a mechanism allocates a good to a bidder when N \ {j} participates, it

always allocates the good to some bidder when N participates.

We believe that introducing Assumption 1 is quite natural. From a seller’s
viewpoint, it is undesirable that a good is no longer allocated when more bidders
join the auction. Under this assumption, the following theorem holds.

Theorem 2. Under Assumption 1, a single-item auction mechanism is false-

name-proof if and only if it is strategy-proof and revenue monotone.

To show that this theorem holds, let us separately prove Lemmas 4 and 5.
Before proving Lemma 4, we introduce the following lemma for strategy-proof,
revenue monotone single-item auction mechanisms.

Lemma 3. Let us consider strategy-proof, revenue monotone single-item auc-

tion mechanisms that sell good g. If bidder k wins when the set of bidders N

participates, then bidder k also wins when any bidder j(6= k) ∈ N drops out

from the auction.

Proof. First, since we assume almost anonymous and strategy-proof mechanisms,
a bidder can win a good only when his bid is higher than those of other par-
ticipants. Formally, assume that bidder k wins when he reports θk. Then the
left-hand side v(θ′k, g) of Eq. 3 satisfies

v(θ′k, g) ≤ v(θk, g). (9)

This means that the critical value to obtain the good is lower than v(θk, g).
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Second, bidder k still has the largest valuation when bidder j 6= k drops
out. Now, assume that bidder k doesn’t win in this situation. The critical value

cv
N\{j}
k for k to win the good g is strictly greater than v(θk, g). Therefore, we

can choose γ such that

v(θk, g) = cv
N\{j}
k − γ (10)

holds. Let us also choose a small enough ǫ(0 < ǫ < γ) and define a type θ′′k such

that v(θ′′k , g) = cv
N\{j}
k − ǫ. Since bidder k loses when he reports θ′′k , the type θ′′k

satisfies v(θ′′k , Xk((θ′′k ,0, . . . ,0), θ−{k,j})) = 0. Thus, from Eq. 10, we obtain

v(θk, g) < v(θ′′k , g). (11)

Finally, from Eqs. 9 and 11, v(θ′′k , g) > v(θk, g) ≥ v(θ′k, g) holds and this vi-
olates summation-monotonicity. Thus, this mechanism contradicts the assump-
tion that it is revenue monotone. ⊓⊔

Now, we are ready to prove Lemma 4.

Lemma 4. Any strategy-proof, revenue monotone single-item auction mecha-

nism satisfies false-name-proofness.

Proof. To prove this lemma, we are going to derive a contradiction assuming that
a single-item auction mechanism, which is strategy-proof and revenue monotone,
is not false-name-proof. Specifically, we assume that for some θ−φ(i), there exists
bidder i with type θi who can increase his profit using false identifiers φ(i):

v(θi, Xi((θi,0, . . . ,0), θ−φ(i))) − pi((θi,0, . . . ,0), θ−φ(i))
< v(θi,

⋃

l∈φ(i) Xl(θφ(i), θ−φ(i))) −
∑

l∈φ(i) pl(θφ(i), θ−φ(i)).
(12)

Since we consider the case where bidder i can increase his utility, the winner
k must be in φ(i) when a set of bidders N participates. Let θk denote the type
reported by bidder k. From Lemma 3, bidder i wins when he reports θk with
only one identifier. We obtain

Xk(θφ(i), θ−φ(i)) = Xi((θk,0, . . . ,0), θ−φ(i)). (13)

Next, from Eq. 1, we obtain

pi((θk,0, . . . ,0), θ−φ(i)) ≤ pk(θφ(i), θ−φ(i)). (14)

Furthermore, from strategy-proofness, we obtain

v(θi, Xi((θi,0, . . . ,0), θ−φ(i))) − pi((θi,0, . . . ,0), θ−φ(i))
≥ v(θi, Xi((θk,0, . . . ,0), θ−φ(i))) − pi((θk,0, . . . ,0), θ−φ(i)).

(15)

As a result, from Eqs. 13, 14, and 15,

v(θi, Xi((θi,0, . . . ,0), θ−φ(i))) − pi((θi,0, . . . ,0), θ−φ(i))
≥ v(θi, Xk(θφ(i), θ−φ(i))) − pk(θφ(i), θ−φ(i))

holds. Thus, this contradicts Eq. 12. ⊓⊔
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Lemma 5. Under Assumption 1, any false-name-proof single-item auction mech-

anism satisfies strategy-proofness and revenue monotonicity.

Proof. If every bidder uses only one identifier, false-name-proofness is equivalent
to strategy-proofness. To prove this lemma, we show that if a mechanism is false-
name-proof, then it is also revenue monotone. The model of revenue monotonicity
assumes that the set of types of bidders who always participate is fixed. Thus,
we can concentrate on the case where a bidder with θi uses s identifiers and
submits (θi, θid2

, . . . , θids
), in which he still submits his true type θi. Here, if

there is no winner when a set of bidders N \ φ(i) ∪ {i} participates, revenue
monotonicity always holds, regardless of the allocation when N participates.
Then, let us consider the case where the good is allocated to some bidder i when
N \ φ(i) ∪ {i} participates. From Assumption 1, if a good is allocated to bidder
i, then the good is also allocated to bidder k when N participates.

Let us consider that bidder k belongs to N \ φ(i). From strategy-proofness,
a bidder wins if he submits the highest bid. For the winning bidder i when
N \ φ(i) ∪ {i} participates,

v(θi, g) ≥ max
l∈N\φ(i)

v(θl, g) ≥ v(θk, g). (16)

Since the winning bid θi still exists when N participates, for the winning bidder
k ∈ N \φ(i) when N participates, v(θk, g) ≥ v(θi, g) holds. Here, since Eq. 16 is
violated if v(θk, g) > v(θi, g) holds, v(θk, g) = v(θi, g) always holds. Accordingly,
the payment when N \ φ(i)∪ {i} participates and i wins equals to that when N

participates and k wins. In fact, i’s payment pi((θi,0, . . . ,0), θ−φ(i)) is v(θk, g),
while k’s payment pk(θφ(i), θ−φ(i)) is v(θi, g). Therefore, the mechanism satisfies
revenue monotonicity.

On the other hand, let us consider that bidder k belongs to φ(i). In this
case, we obtain v(θi, Xi((θi,0, . . . ,0), θ−φ(i))) = v(θi, Xk(θφ(i), θ−φ(i))). By sub-
stituting this into Eq. 2, pi((θi,0, . . . ,0), θ−φ(i)) ≤ pk(θφ(i), θ−φ(i)) holds, so the
mechanism satisfies revenue monotonicity. ⊓⊔

4.2 Combinatorial auctions

This subsection reveals that false-name-proofness and revenue monotonicity can-
not coexist in combinatorial auction settings. To provide a clear proof, we intro-
duce the following two assumptions.

Assumption 2 (Independence of irrelevant good) Assume bidder i is win-

ning all goods. If we add an additional good that is wanted only by bidder i, and

his valuation for all goods is larger than or equal to some constant c, then he

still wins all goods.

The independence of irrelevant good (IIG) condition [10] is intuitively rea-
sonable and is satisfied in almost all well-known mechanisms, in particular, in
all existing false-name-proof mechanisms (to the best of our knowledge). This is
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true for a mechanism that uses predefined reserve prices assuming that c is large
enough compared to the reserve price. Note that IIG is different from the typical
Independence of Irrelevant Alternatives (IIA) conditions, which are often quite
strong and apply to a wide variety of situations. Since IIG applies only to very
specific situations, we consider it quite mild.

Assumption 3 In a combinatorial auction mechanism, if there exists no bid

on multiple goods, then for each good, the mechanism allocates the good to its

highest bidder, as long as the highest bidder’s valuation is larger than or equal

to some constant c.

This assumption is also quite natural and is satisfied in almost all well-known
mechanisms.

Theorem 3. Under Assumptions 2 and 3, there exists no combinatorial auction

mechanism M that satisfies revenue monotonicity and false-name-proofness.

Proof. Let us assume there exists a mechanism M that satisfies revenue mono-
tonicity and false-name-proofness under Assumptions 2 and 3, and derive a con-
tradiction. First, let us consider the following situation:

Case 1.

{g1} {g2} {g1, g2}
bidder 1: 0 0 c

bidder 2: c − ǫ 0 c − ǫ

Bidder 1 must win in Case 1. Let us assume bidder 1 is interested in {g1}, rather
than {g1, g2}. Then bidder 1 wins from Assumption 3. Then in Case 1, bidder 1
still wins from Assumption 2.

Next, we add another bidder 3:

Case 2.

{g1} {g2} {g1, g2}
bidder 1: 0 0 c

bidder 2: c − ǫ 0 c − ǫ

bidder 3: 0 c/2 − ǫ c/2 − ǫ

We show that bidder 1 still wins in Case 2. If no bidder wins, then the revenue
becomes 0. Thus, revenue monotonicity is violated. Also, if only bidder 3 wins,
the revenue must be at most c/2− ǫ and revenue monotonicity is violated. Thus,
let us assume bidder 2 and 3 win in Case 2. Then consider the following situation:

Case 3.

{g1} {g2} {g1, g2}
bidder 1: 0 0 c

bidder 2: c − ǫ 0 c − ǫ

bidder 3: 0 c − ǫ c − ǫ
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Bidder 3 must also win in Case 3, and the payment is at most c/2−ǫ. Otherwise,
bidder 3 has an incentive to under-declare his valuation to c/2 − ǫ so that the
situation becomes identical to Case 2. Also, since we assume the mechanism is
almost anonymous across bidders and goods, bidder 2 also wins and pays at
most c/2− ǫ. However, in Case 1, bidder 2 can submit false-name bids and make
the situation identical to Case 3 and obtain {g1, g2} by paying c − 2ǫ. Thus,
false-name-proofness is violated. In Case 2, bidder 1 must win and pays c − ǫ.

Then, we add two more bidders 4 and 5:

Case 4.

{g1} {g2} {g1, g2}
bidder 1: 0 0 c

bidder 2: c − ǫ 0 c − ǫ

bidder 3: 0 c/2 − ǫ c/2 − ǫ

bidder 4: c − 2ǫ 0 c − 2ǫ

bidder 5: 0 c/2 − 2ǫ c/2 − 2ǫ

Adding bidders 4 and 5 will not affect the outcome. Otherwise, revenue mono-
tonicity is violated. Thus, in Case 4, bidder 1 still wins and pays c−ǫ for {g1, g2}.

Finally, let us consider the following situation:

Case 5.

{g1} {g2} {g1, g2}
bidder 2: c − ǫ 0 c − ǫ

bidder 3: 0 c/2 − ǫ c/2 − ǫ

bidder 4: c − 2ǫ 0 c − 2ǫ

bidder 5: 0 c/2 − 2ǫ c/2 − 2ǫ

In Case 5, from Assumption 3, bidder 2 and 3 obtain g1 and g2, and pay c−2ǫ and
c/2−2ǫ, respectively. If bidder 1 joins, the situation becomes identical to Case 4.
Then the revenue decreases from 3c

2
− 4ǫ to c− ǫ. Thus, revenue monotonicity is

violated and this contradicts the assumption. ⊓⊔

Let us clarify the difference between our Theorem 3 and Rastegari et al.’s re-
sults [4]. They showed that there exists no deterministic false-name-proof combi-
natorial auction mechanism that is weakly maximal. They also proved that there
exists no deterministic combinatorial auction mechanism that is strategy-proof,
revenue monotone, and weakly maximal. Thus, revenue monotonicity and false-
name-proofness cannot coexist assuming the mechanism is weakly maximal. On
the other hand, we showed that revenue monotonicity and false-name-proofness
cannot coexist assuming1 the mechanism satisfies Assumptions 2 and 3.

Weak maximality and our two assumptions are independent; weak maximal-
ity does not mean the two assumptions hold, and the two assumptions do not
mean weak maximality holds. We believe our assumptions are very mild, since

1 To be precise, we also assume a mechanism is almost anonymous.
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they apply only to very specific situations, while weak maximality applies to a
wide variety of situations. Thus, it is more likely that a mechanism, which does
not satisfy weak maximality, satisfies these two conditions.

5 Conclusions

This paper identified a simple condition called summation-monotonicity for char-
acterizing strategy-proof and revenue monotone allocation rules. To the best of
our knowledge, this is the first attempt to characterize revenue monotone allo-
cation rules. In addition, our characterization enables us to examine the connec-
tions between revenue monotonicity and false-name-proofness. In a single-item
auction, we showed that they are basically equivalent. Whereas, we also showed
that they cannot coexist in combinatorial auctions under some minor conditions.

In future work, we hope to design a novel deterministic, revenue monotone
combinatorial auction mechanism, since only a randomized mechanism has been
proposed so far [11]. Furthermore, by utilizing our characterization, we hope to
examine several theoretical properties of revenue monotone allocation rules, e.g.,
the upper bound on possible social surplus for revenue monotone mechanisms.
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Abstract. Many electronic markets are linked together into larger “network mar-
kets” where the links reflect constraints on traders. These constraints mean that
a choice to trade in one market limits the trader’s choice of other markets to use.
This kind of network market is important because so many basic products, includ-
ing gas, water, and electricity, are traded in such markets, and yet it has been little
studied until now. This paper studies networks of double auction markets pop-
ulated with automated traders, concentrating on the effects of different network
topologies. We find that the topology has a significant effect on the equilibrium
behavior of the set of markets.

1 Introduction

An auction, according to [8], is a market mechanism in which messages from traders
include some price information — this information may be an offer to buy at a given
price, in the case of abid, or an offer to sell at a given price, in the case of anask— and
which gives priority to higher bids and lower asks. The rules of an auction determine, on
the basis of the offers that have been made, the allocation of goods and money between
traders. When well designed [13], auctions achieve desired economic outcomes like
high allocative efficiencywhilst being easy to implement. Auctions have been widely
used in solving real-world resource allocation problems [16], in structuring stock or
futures exchanges [8], and, despite the current recession, are the basis of a vast volume
of trade in electronic markets.

There are many different kinds of auction. One of the most widely used kinds is the
double auction(DA), in which both buyers and sellers are allowed to exchange offers
simultaneously. Since double auctions allow dynamic pricing on both the supply side
and the demand side of the marketplace, their study is of great importance, both to
theoretical economists, and those seeking to implement real-world market places. The
continuous double auction(CDA) is a DA in which traders make deals continuously
throughout the auction. TheCDA is one of the most common exchange institutions, and
is in fact the primary institution for trading of equities, commodities and derivatives
in markets such as the New York Stock Exchange (NYSE) and Chicago Mercantile
Exchange (CME). Another common kind of double auction market is theclearing-house
(CH) in which the market clears at a pre-specified time, allowing all traders to place
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offers before any matches are found. TheCH is used, for example, to set stock prices at
the beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple auctions for the same good.
This interest is motivated by the fact that such situations are common in the real world.
Company stock is frequently listed on several stock exchanges. US companies may be
listed on both theNYSE, NASDAQ and, in the case of larger firms, non-US markets like
the London Stock Exchange (LSE). Indian companies can be listed on both the Na-
tional Stock Exchange (NSE) and the Bombay Stock Exchange (BSE). The interactions
between such exchanges can be complex, like that when the newly created Singapore
International Monetary Exchange (SIMEX) claimed much of the trade in index futures
on Nikkei 225 from Japanese markets in the late 1980s [29], or when unfulfilled orders
on theCME overflowed onto theNYSE during the global stock market crash of 1987
[17]. This kind of interaction between markets has not been widely studied, especially
when the markets are populated by automated traders.

One multiple market scenario that is particularly interesting is that ofnetwork mar-
kets, markets in which individual markets are linked together into larger markets, where
the links between markets reflect constraints on traders in the markets. Network markets
are important because so many basic products, including gas [15], water, and electricity,
are traded in such markets — the products proceed through a series of transactions at
different locations from producer to final consumer, and the need to convey the product
through a complex transportation network provides the constraints.

Our specific focus in this paper is to examine the differences between network mar-
kets with different topologies. We describe some experiments using network markets
where the nodes in the network are double auction markets, traders can move between
the markets, and the connections between markets are limitations on such moves. These
experiments identify whether network topology has a significant effect on the steady
state behavior of a set of connected markets and the speed with which the set of markets
converges to that steady state. We see this work as a first step towards understanding
the relationship between market topology and performance. Our long-term goal is to
be able to use our understanding of this relationship to engineer network markets with
appropriate properties.

2 Background

2.1 Double auctions

Double auctions have been extensively studied using agent-based methods. Gode and
Sunder [10] were the first to use multi-agent simulations in this way, testing the hy-
pothesis, suggested by [30], that the form of the market has more bearing on obtaining
efficient allocation than the intelligence of traders in that market. [10] introduced a
“zero-intelligence” trading strategy (denotedZI-C) — which involves making offers at
random under the constraint that they don’t lead to loss-making trades — and showed
that agents using this strategy could generate high efficiency. Indeed, such agents come
close enough to the performance of human traders that Gode and Sunder claimed that
trader intelligence is not necessary.
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This position was attacked by Cliff [6], who showed that if supply and demand are
asymmetric, the average transaction prices ofZI-C traders can vary significantly from
the theoretical equilibrium. Cliff then introduced thezero intelligence plus(ZIP) trader,
which uses a simple machine learning technique to decide what offers to make based on
previous offers and the trades that have taken place.ZIP traders outperformZI-C traders,
achieving both higher efficiency and approaching equilibrium more closely across a
wider range of market conditions, prompting Cliff to suggest thatZIP traders embodied
the minimal intelligence required. A range of other trading algorithms has been pro-
posed — including those that took part in the Santa Fe double auction tournament [28],
the reinforcement learningRoth-Erevapproach (RE) [26] and theGjer-stad-Dickhaut
approach (GD) [9] — and the performance of these algorithms has been evaluated un-
der various market conditions. Despite the high performance ofGD traders, research
into automated trading mechanisms has continued.

This work on trading strategies is only one facet of the research on auctions. Gode
and Sunder’s results suggest that the structure of the auction mechanism plays an im-
portant role in determining the outcome of an auction, and this is further borne out by
the work of [35] and [21], both of which show that the same set of trading strategies
can have markedly different behaviors in different auction mechanisms. This leads us
to anticipate that in a set of connected markets the way that the markets are connected
will also have an effect on the behavior of the markets.

2.2 Methodology

The basis of our approach comes from Smith [31] via Gode and Sunder [10] and then
Cliff [6]. We follow these authors in having all traders, whether human or machine,
be chosen to be either buyers or sellers. No trader can both buy and sell in the same
experiment. On any given day, each seller is given some number of indivisible goods
that they are allowed to exchange for money, and is given a value for each good — the
trader’slimit price or private value. A typical restriction, which we adopt, is that no
seller may sell a good for less than its private value. Buyers have a similar private value
for a number of goods, but rather than goods, they are given an allocation of money
which they may exchange for goods. No buyer is permitted to pay more than the private
value for any good.

These conditions are what Smith [31] calls “conditions of normal supply and de-
mand”, the conditions in which the flow of goods through the market is at equilibrium
and each day sellers bring to market the same goods that cost the same to produce, and
buyers look to buy the same goods at the same price. The aim of our experiments is to
identify what this equilibrium would be, and to allow us to find the equilibrium point —
bearing in mind that there is a certain amount of learning going on that will take time to
converge — we repeat the same trading conditions day after day, allowing our trading
agents to recall the outcomes of trade on the previous day and trading multiple goods to
speed convergence to equilibrium. Despite this, the slow convergence of the learning3

3 Which we can attribute to the movement of traders between markets since we know that the
trading strategies we use converge in a few days at most in single market experiments.
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means that to get close to a steady state we run our experiments for600 trading days
under identical conditions with each day allowing for multiple rounds of trading.

Clearly, this is not a realistic model. There is no existing market in which the same
set of traders will continue to trade with the same limit prices for more than a year of
trading without some price shock altering prices or traders entering and leaving the mar-
ket. The model is not intended to be realistic in this sense. The model is just intended
to tell us about the steady state, and we know from the literature that introducing price
shocks [9] and permitting traders to enter or leave the market [22] just slows conver-
gence to the steady state.

Our justification for working with such a simplified model is that we see our work
as fitting within the “class-of-models” approach, due to Sutton [18, 32]. According to
Sutton, the aim of modelling economic systems is rarely to model a real market, but is
to model an abstraction from a real market that captures the behavior of a whole class of
markets — exactly those which are the instantiations of the abstract model. In this work
we are trying to see what the steady state behavior is in all sets of competing markets,
both those with price shocks and those without, both those in which traders enter and
leave, and those that don’t. To do that we look first at the most abstract market. We can
take the results of our shock-free and fixed-trader experiments and use them to predict
the results of removing these restrictions, and in the future we can investigate whether
these predictions are true. This approach, of course, ties in with Rubinstein’s suggestion
[27] that economic modelling be used to help sharpen our economic intuitions about
complex phenomena as well as being used to predict the behavior of real systems4.

3 Experimental Setup

3.1 Software

To experiment with multiple markets, we usedJCAT [11], the platform that supports the
TAC Market Design Competition [5].JCAT provides the ability to run multiple double
auction markets populated by traders that use a variety of trading strategies. Auctions
in JCAT follow the usual pattern for work on automated trading agents, running for a
number of tradingdays, with each day being broken up into a series ofrounds. A round
is an opportunity for agents to make offers (shouts) to buy or sell, and we distinguish
different days because at the beginning of a day, agents have their inventories replen-
ished. As a result, every buyer can buy goods every day, and every seller can sell every
day. Days are not identical because agents are aware of what happened on the previous
day. Thus it is possible for traders to learn, over the course of several days, the optimal
way to trade. In addition,JCAT allows traders to move between markets at the end of a
day, and over the course of many days they learn which market they perform best in.

In JCAT there are no restrictions on the movement of traders. To study network ef-
fects, we extendedJCAT to restrict the movement of traders. In particular, our extension

4 [27] presents four purposes for economic modelling in general: to predict behavior; to guide
decision-making by economic agents or policy-makers; to sharpen the intuition of economists
when studying complex phenomena; and to establish linkages between theoretical economic
concepts and everyday thinking.
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(a) (b) (c) (d)

Fig. 1.The different topologies we consider. Each node is a market, each arc a connection between
markets. (a) fully connected, (b) ring, (c) chain, (d) star.

allows us to specify which markets a given market is connected to. At the end of ev-
ery day that a trader spends in that market, the trader has a choice of remaining in that
market or moving to any of the markets to which there are connections. The decision
mechanism employed by the traders to make this choice is discussed below.

In our experiments, market connections have four topologies (1) Fully connected.
Each market is connected to every other market. (2) Ring. Each market is connected
to exactly two other markets. This is what [36] calls a “local connected network”. (3)
Chain structure. All but two of the markets are connected to two other markets as in the
ring. The remaining pair form the ends of the chain and are connected to exactly one
market. (4) Star structure. One market is connected to every other market. There are no
other connections between markets. This is the network topology studied in [25]. These
topologies are illustrated in Fig. 1.

3.2 Traders

In JCAT markets, traders have two tasks. One is to decide how to make offers. The
mechanism they use to do this is theirtrading strategy. The other task is to choose
the market to make offers in. The mechanism for doing this is theirmarket selection
strategy. We studied markets in which all the traders used the same trading strategy,
and considered two such strategies, Gode and Sunder’s zero intelligence strategyZI-C

[10]; and Cliff’s zero intelligence plus (ZIP) strategy [6]. The reason for picking the first
of these is that given by [34], that sinceZI-C is not making bids with any intelligence,
any effects we see have to be a result of market structure, rather than a consequence of
the trading strategy, and hence will be robust across markets inhabited by different kinds
of trader. The reason for pickingZIP is that it is typical of the behavior of automated
traders, rapidly converging to equilibrium in a single market.

In this work we use the standard market selection strategy used byJCAT. Traders
treat the choice of market as ann-armed bandit problem that they solve using anǫ-
greedy exploration policy [33]. Using this approach, a trader chooses what it estimates
to be the best available market, in terms of its average daily trading profit in that market
on previous days, with probability1 − ǫ, for someǫ, and chooses one of the remaining
available markets with equal probability otherwise. We chooseǫ to take a constant value
of 0.1. Our previous work suggests that market selection behavior is rather insensitive
to the parameters we choose here, and we chooseǫ to remain constant so that any
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convergence of traders to markets is due to traders picking markets that work for them
rather than being forced by a reduction in their tendency to explore.

Each trader is permitted to buy or sell at most five units of goods per day, and
each trader has a private value for these goods. Private values are set, just as in [6] to
form perfect “staircase” supply and demand curves, with every buyer having a unique
private value from the set{$50, $54, $58 . . . , $246, $250}. Sellers are allocated values
in the same way. A given trader has the same private value for all goods that it trades
throughout the entire experiment. All of our experiments used 100 traders, divided into
50 buyers and 50 sellers. Initially they are equally distributed between the markets, and
subsequently use their market selection strategy to pick the market to operate in.

3.3 Markets

While JCAT allows us to charge traders in a variety of ways, we used just two kinds of
charge in the work reported here:

– Registration fees, charges made by the market for entering the market. We set this
to a low constant value ($0.5) for every market following [23] which suggests that
such a fee is effective in motivating extra-marginal traders to move between markets
thus preventing their inertia from distorting results.

– Profit fees, charges made by the market on the bid/ask spread of any transactions
they execute. The name arose because the bid/ask spread is the transaction surplus,
and with thek = 0.5 rule that is usually used inJCAT for allocating the surplus,
the amount charged by this fee is thus directly related to the profit realized by both
agents.

Unlike previous work that usedJCAT to investigate multiple market scenarios [22], we
used a simple, non-adaptive scheme for the profit fee, placing a 5% profit charge on all
markets. In all of our experiments we run five markets connected as described above,
and we used bothCDA andCH markets, both of which are provided inJCAT.

3.4 Hypotheses

The aim of this work was to investigate the effect on market performance of different
topological connections between markets. In the context of the double auction markets
that we consider, these connections might reflect a number of different constraints. For
example, they might reflect the physical layout of market makers on a trading floor,
or they might reflect affiliations between electronic markets, or they might reflect the
relationship between the time-zones in which different markets operate.

In any case, we would expect that, as in [12], the topology of the relationships to
have an effect on market behavior. In a model where traders move between markets, we
would expect that placing different restrictions on movement between markets would
lead to differences in the ease with which traders can explore the space of markets and
then reach their preferred market, affecting the time it takes the set of markets to reach
their steady state. In addition, we might expect that these different restrictions might
lead to the steady state favoring some markets over other. These considerations give us
two hypotheses that we will test:
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Fig. 2. How the markets change over time. (a) shows the total number of traders that move at the
end of a given trading day, (b) shows the average transaction price each day for a set of five fully
connectedCDA markets withZIP traders. The x-axis gives the trading day, the y-axis gives (a) the
number of traders, (b) the transaction price.

1. The topology of the network market will affect the speed with which the set of
markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effect on the steady state con-
figuration of the set of markets.

Note that in discussing these hypotheses, we find it helpful to distinguish the fact that
some of the topologies we consider — the star and chain — areasymmetricin the
sense that traders in some markets are more restricted in the markets that they can move
to as opposed to thesymmetricring and fully-connected markets where, in terms of
connections, all markets are equal.

3.5 Experiments

To test these hypotheses, we ran experiments that tested all the different combinations
discussed above. That is we ran experiments forCH and CDA markets using each of
the four different topologies, both the trading strategies described above and both the
market selection strategies. Each of these experiments was run for 600 trading days,
with each day being split into 50 0.5-second-long rounds. We repeated each experiment
50 times and the results that we give are averages across those 50 runs.

In order to assess the effect of the different topologies on the convergence of the
markets, we looked at the number of traders that moved each day. The market selection
strategy picks a random market with probabilityǫ, so there will always be some move-
ment of traders, but we would expect to see the number of traders decreasing from an
initial high to a steady state, and the speed with which the steady state is reached is one
way to measure how quickly the system of traders and markets converges.

To identify any differences between the steady state configurations of different mar-
ket topologies we looked at two things — the number of traders in each market, and
the efficiency of each market. The number of traders in each market gives us some idea
of the preference that traders have for markets, and any time that there is an uneven
distribution it is an indication that from the traders’ point of view differences in market
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ZIC CDA Fully connected 141.25
Ring 107.48
Chain 93.47
Star 93.34

CH Fully connected 184.56
Ring 143.95
Chain 125.43
Star 127.68

ZIP CDA Fully connected 142.91
Ring 108.90
Chain 95.61
Star 98.44

CH Fully connected 155.75
Ring 120.73
Chain 109.11
Star 113.43

Table 1.The average number of traders moving each day for the different topologies.

topologies have an effect. Efficiency, of course, is a standard measure of market behav-
ior, and will indicate whether differences in the market topologies have an effect on the
performance of the set of markets as a whole.

4 Results

4.1 Speed of convergence

When we look at the movement of traders between markets it is clear from Fig. 2 (a)
that the markets make an exponential approach to the steady state (these results are for
ZIP traders and fully connected arkets, but the results for other experiments are similar).
This is despite the fact that the average transaction price in each market is, like that
shown in Fig. 2 (b), far from steady5. Since, as described above, the market selection
strategies we are using will mean that we always have some number of traders still
moving at the end of each trading day, we can’t determine equilibrium by looking for
the point at which all traders stop moving. Instead we need to find a way to estimate the
speed of convergence.

To do this we borrowed from the usual measure of the convergence of a market to
equilibrium [31]. To compute this measure, Smith’salphaas it is known, we compute
the average deviation between the price of each transaction and the equilibrium price
suggested by theory. Here, we look at the number of traders moving each day and
compute the average difference from the number we would expect if the only cause of
trader movement was theǫ in the market selection strategy (which would mean that, on
average, 10% of the traders would move each day). Markets that are faster to converge
to the steady state will have lower values of this difference. These results are shown
in Table 1 and show that there is a clear difference between the speeds with which
the different tologies converge. In particular, the asymmetric topologies converge much
faster than the symmetric topologies.

5 Because the transaction price is a function of the traders in a market (in particular it depends
on both their private values and when and how they choose to bid), it changes as traders move
between markets. Since the reward gained by traders is a function of the transaction price the
dynamics are more complex than those of a set of n-armed bandit learners converging to static
rewards.

78



0 100 200 300 400 500 600
10

20

30

40

50

(a) Full conn.,ZIP CDA

0 100 200 300 400 500 600
10

20

30

40

50

(b) Ring,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(c) Chain,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(d) Star,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(e) Full conn.,ZIC CDA

0 100 200 300 400 500 600
10

20

30

40

50

(f) Ring, ZIC, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(g) Chain,ZIC, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(h) Star,ZIC, CDA

Fig. 3. The number of traders in multiple connectedCDA markets with different connection
topologies on each trading day. The traders in (a)–(d) use theZIP strategy, those in (e)–(h) use
theZIC strategy. The x axis gives the trading days, the y axis the number of traders in each of the
five markets. In the chain markets, the dark lines give the numbers for the markets at the end of
the chain, and for the star markets, the dark line gives the numbers for the market at the center.
All other markets are marked with dashed lines.

4.2 Trader distribution

To examine the steady-state for differences due to connection topology, we looked at
the number of traders in each market. Figure 3 shows this for each day of the experiment
for both ZIC andZIP traders inCDA markets (the other experiments give very similar
results). The graphs in the figure show that the distribution of traders in fully-connected
(Fig. 3(a), Fig. 3(e)) and ring (Fig. 3(b), Fig. 3(f)) markets is pretty uniform.

Chain markets, however, don’t have the same symmetry, and this shows up in the
distribution of traders. As Fig. 3(c) and Fig. 3(g) show, markets at the end of the chain
end up with fewer traders than the markets in the middle of the chain. The effect of the
loss of symmetry is even more marked in star markets, Here, as shown in Figures 3(d)
and 3(h) the hub market in the star collects many more traders than the otherwise iden-
tical markets that are connected to it.

The graphs of Fig. 3 don’t make it easy to decide what differences are significant so
we show the actual trader numbers after the 600th trading day (that is at the end of the
experiment) in Table 2. This includes the results of all the experiments on star and chain
markets, not just those from Fig. 3 (the ones from the figure are in the first and third
rows of the table). In the chain markets, the markets at the ends of the chain are M0 and
M4. T-tests reveal that the numbers of traders in these markets are significantly different
from the numbers of traders in markets M1, M2 and M3 at the 95% level. This holds
for both CDA andCH markets whether the traders areZI-C or ZIP. In the star markets,
the market at the hub of the star is M0. T-tests show that the number of traders in this
market is significantly different from that in all other markets at the 95% level again for
bothCDA andCH markets forZI-C andZIP traders.
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Star Chain
CDA ZIC No. of traders 43.67 13.65 15.82 14.14 12.72 16.24 22.74 20.88 22.21 17.93

Stdev. 11.89 7.88 8.25 8.38 7.23 6.63 8.86 9.86 9.67 7.45
ZIP No. of traders 42.50 13.90 13.57 15.42 14.61 16.10 22.22 22.66 23.72 15.31

Stdev. 9.08 5.13 5.19 5.57 4.76 4.91 5.52 7.08 5.89 4.45
CH ZIC No. of traders 44.71 13.16 13.83 14.40 13.89 16.45 23.66 20.33 22.28 17.28

Stdev. 5.70 2.68 3.01 3.03 3.90 4.82 6.67 5.78 6.03 4.67
ZIP No. of traders 47.41 12.14 12.92 13.60 13.93 15.50 23.02 22.10 24.76 14.63

Stdev. 8.44 3.32 3.07 4.40 4.58 4.80 6.32 7.01 6.31 4.66

Table 2.The number of traders in each market for star and chain configurations for both market
selection strategies. In the star configuration, M0 is the hub, the market at the center. In the chain
markets, markets M0 and M4 are the markets at the end of the chain. All markets make the same
charges. In the star configuration the number of traders in M0 is significantly greater than that in
all the other markets with 95% confidence in all cases and in the chain markets the number of
traders in M0 and M4 is significantly smaller than in all the other markets with 95% confidence
in all cases.

Chain Ring Star F.C.
ZIC CDA Efficiency 95.49 95.42 95.75 95.38

Stdev. 0.30 0.25 0.22 0.16
CH Efficiency 96.61 96.51 96.81 96.56

Stdev. 0.25 0.19 0.15 0.13

Chain Ring Star F.C.
ZIP CDA Efficiency 95.50 95.33 95.68 95.05

Stdev. 0.24 0.19 0.22 0.17
CH Efficiency 96.86 96.77 96.96 96.54

Stdev. 0.24 0.17 0.19 0.15

Table 3. The global efficiencies of sets of market with different connection topologies from left
to right, chain, ring, star and fully connected networks. The table gives results for markets using
bothZI-C andZIP traders, and for bothCDA andCH markets.

4.3 Allocative efficiency

The final results to consider are those in Table 3 which measures the allocative effi-
ciency of sets of markets of different topologies. In particular what they measure is
what we call “global efficiency”, the ratio of the sum of profit made in all of the mar-
kets to the equilibrium profit that would be made in a market containing all the traders.

Pairwise t-tests on the efficiency values in Table 3 reveal that that there are differ-
ences between the efficiencies obtained with different configurations that are significant
at the 95% level. In all the experiments the symmetric markets are significantly less ef-
ficient than the asymmetric markets. In all of the experiments except theCH with ZIC

traders, fully-connected markets are less efficient than ring markets, ring markets are
less efficient than chain markets, and chain markets are less efficient than star markets
— all of these differences being significant at the 95% level. A possible explanation for
this may be the fact that the asymmetric markets tend to concentrate traders in particular
markets but results from our prior work [22] (on the effect of allowing traders to move
in fully connected markets) suggests that such effects are only a partial explanation.

Note that the efficiency results we report forZIP traders are somewhat lower than
are reported for such traders in single markets (and are lower than the results we have
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obtained for the same implementation ofZIP in a single market, results which are sim-
ilar to those seen in the literature). We believe that there are a couple of reasons for
this. First, we are computing efficiency as the surplus obtained divided by the surplus
that would be obtained were all the traders in one market and that market traded at
theoretical equilibrium. It is easy to see that it is possible to match traders in such a
way that individual markets are efficient, but the combined surplus will fall below what
would be possible if all traders were in one market and that is what we believe is hap-
pening here. (ZIP achieves higher efficiency when the efficiency is computed in a more
conventional fashion.). Second, traders are constantly moving between markets, which
means that the equilibrium point of all the markets is constantly changing (recall the
transaction prices of Fig. 2 (b)). We know from [6] thatZIP takes several trading days to
identify market equilibrium, and since this is changing every day,ZIP is always playing
catch-up. Naturally this will mean it is less than completely efficient. (When traders are
constrained not to move, the efficiency ofZIP improves.)

4.4 Discussion

The aim of this work was to test the hypotheses that:

1. The topology of the network market will affect the speed with which the set of
markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effect on the steady state con-
figuration of the set of markets.

The results in Table 1 suggest that the first of these hypotheses is correct — for most of
the experiments that we carried out, the time we estimate it takes the set of markets to
converge varies considerably from topology to topology.

To address the second hypothesis, we measured both the number of traders in each
market and the overall efficiency of the set of markets. When we looked at the num-
ber of traders (Table 2), it was clear that many more traders congregated in the central
market of the star configuration and many fewer traders choose the end markets of the
chain configuration, and pairwise t-tests confirmed that the differences are statistically
significant. This suggests that the second hypothesis is correct. This suggestion is sup-
ported by looking at the efficiency of different sets of markets (Table 3) where we find
that sets of markets with different topologies have significantly different efficiencies.

5 Related work

While network markets have not been studied in the same detail as single markets,
there is a growing body of work to consider. [25], for example, describes a study of a
three-node star network with a uniform-price double auction at each node. The same
authors [24] report experiments using a 9-node gas network that, in addition to buyers
and sellers, also includes pipeline owners, and in [15] study another small gas market.
A further small network model, including just two markets, is the basis of the study
in [4] into the effects of cheating (that is, either not paying for goods, or failing to
deliver goods that have been paid for) and [7] investigates how a 6-node railway network
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responds to two different pricing mechanisms. While these markets are similar to those
in our study, the investigations all dealt with markets with human traders.

Agent-based methods were used by [3] to examine the effects of linked markets on
financial crises, while [19, 20] consider the behavior of supply chains6. This work all
studies smaller sets of markets than we have considered. The agent-based studies in [2]
and [36] are larger but consider a set of connection topologies that overlap with, but
does not contain, the set we consider. Both [2] and [36] deal with networks equivalent
to our ring (their term is “local”) as well as small-world networks, which we don’t
consider. Neither looks st chain or star topologies, the most interesting of the topologies
we looked at, and neither study considers traders that move between markets.

The most closely related research we know of is [12], [37] and [14]. Judd and Kearns
[12] describe experiments with human traders that clearly show that restrictions on who
is allowed to trade with who — restrictions that are somewhat different from those im-
posed in our work — have a significant effect on market clearing performance. Wilhite
[37], though mainly concentrating on results from network versions of the Prisoner’s
dilemma, describes agent-based experiments in the same kind of scenario as studied in
[12] with similar results. Ladley and Bullock [14] looked at networked markets ofZIP

traders and showed that differences in topology affected an agent’s ability to make a
profit. Like the results reported here, all of this work helps us to understand different
aspects of the effect of network topology on market performance.

6 Conclusions

This paper has examined the effect of different connection topologies on network mar-
kets in which the constituent markets are double auctions and the connections denote
the allowed movements of traders between markets. This work is the first systematic
study of the effects of network topology on a set of double auction markets.

Traders in our experiments used eitherZI-C or ZIP strategies, and markets were
either CHs or CDAs. We looked at the behavior of four different topologies — fully
connected, ring, chain and star — and considered the speed with which markets con-
verge to a steady state, the distribution of traders across markets in the steady state,
and the overall allocative efficiency in the steady state. We found that for all of these
aspects, the connection topology can have a significant effect. In particular, the asym-
metric topologies, chain and star, lead to an unequal distribution of traders, and in most
cases an overal increase in efficiency of the markets.

Our main conclusion that topology affects steady state behavior is in line with pre-
vious work on network markets [12, 37]. In addition, since our results are consistent
across different trading strategies (including the minimally rationalZI-C) and different
market selection strategies, we believe that they will prove to be robust across other
variants of our experimental scenario. With this in mind, we are currently working to
analyze the performance of network markets with different topologies — in particular
small-world, random and scale-free topologies — and to handle larger sets of markets
than we considered here.

6 The TAC supply chain competition also studies supply chains, but comes at it from the per-
spective of individual traders rather than from the perspective of overall market performance.
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Abstract. In this paper, we analyse competing double auction market-
places that vie for traders and need to set appropriate fees to make a
profit. Specifically, we show how competing marketplaces should set their
fees by analysing the equilibrium behaviour of two competing market-
places. In doing so, we focus on two different types of market fees: regis-
tration fees charged to traders when they enter the marketplace, and profit
fees charged to traders when they make transactions. In more detail, given
the market fees, we first derive equations to calculate the marketplaces’
expected profits. Then we analyse the equilibrium charging behaviour of
marketplaces in two different cases: where competing marketplaces can
only charge the same type of fees and where competing marketplaces can
charge different types of fees. This analysis provides insights which can
be used to guide the charging behaviour of competing marketplaces. We
also analyse whether two marketplaces can co-exist in equilibrium. We
find that, when both marketplaces are limited to charging the same type
of fees, traders will eventually converge to one marketplace. However,
when different types of fees are allowed, traders may converge to differ-
ent marketplaces (i.e. multiple marketplaces can co-exist).

Key words: Competing Marketplaces, Nash Equilibrium, Evolutionary
Game Theory, Double Auctions

1 Introduction

Financial exchanges, in which securities, futures, stocks and commodities can be
traded, are becoming ever more prevalent. Now, many of these adopt the dou-
ble auction market mechanism which is a particular type of two-sided market
with multiple buyers (one side) and multiple sellers (the other side). Specifi-
cally, in such a mechanism, traders can submit offers at any time in a specified
trading round, and can be matched by the marketplace at a specified time.
The advantages of this mechanism are that traders can enter the marketplace
at any time and they can trade multiple homogeneous or heterogeneous items
in one place without travelling around several marketplaces. In addition, this
mechanism provides high allocative efficiency [3]. These benefits have led many
electronic marketplaces to also use this format. For example, Google owns Dou-
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bleClick Ad Exchange1, which is a real-time double auction marketplace enabling
large online ad publishers, on one side, and ad networks and agencies, on the
other side, to buy and sell advertising space. However, because of the globalised
economy, these marketplaces do not exist in isolation. Thus they compete against
each other to attract traders and make profits by charging fees to traders. For
example, stock exchanges compete to attract companies to list their stocks in
their marketplaces and make profits by charging listing fees to these companies,
and Google competes against other ad exchanges, such as Microsoft’s AdECN
and Yahoo!’s Right Media. However, there exists a conflict between attracting
traders and making profits for the competing marketplace, since when the fees
are increased, traders will leave the marketplace and eventually cause a decrease
of profits for this marketplace. Against this background, in this paper, we anal-
yse the equilibrium behaviour of competing marketplaces in terms of charging
fees to traders, which can provide insights to guide how competing marketplaces
should set their fees.

In more detail, there are two key issues in the research of competing market-
places. The first is how traders should choose which marketplace to go to. Then,
given the traders’ market selection strategies, the second issue is how competing
marketplaces should set their fees to maximise profits while at the same time
maintaining market share at a good level in order to ensure profits in the long
term. Now we have analysed the first issue in our previous work [1], so here we
focus on how competing marketplaces set their fees.

Related to our work, a number of theoretical models have been proposed
to analyse two-sided competing marketplaces (e.g. [2, 5, 6, 8]). However, these
works do not consider auction mechanisms to match traders and set transac-
tion prices. Instead, they assume that traders only select marketplaces based on
the number of other traders in the marketplace. In doing so, they assume that
all traders are homogeneous (i.e. have the same preferences), and the market-
place has complete information about the preferences (also called the types) of
traders. In real-world auction marketplaces, however, traders are usually het-
erogeneous and they are likely to have privately known preferences. Moreover,
transaction prices are usually set according to the marketplace’s pricing policy,
which is affected by current demand and supply. Also related to our work is
the Market Design Competition (CAT), an annual competition and part of the
Trading Agent Competition (TAC) which was introduced to promote research
in the area of competing double auctions [4]. However, the work related to CAT
is still largely empirical in nature. To tackle these limitations, in our previous
work [1], we proposed a novel game-theoretic framework to analyse the competi-
tion between double auction marketplaces from a theoretical perspective, which
assumes that traders are heterogeneous with different types2 and the type of
each specific trader is not known to the other traders and marketplaces. Based
on this framework, we analysed the traders’ Nash equilibrium (NEQ) market

1
http://www.doubleclick.com/

2
The types of buyers and sellers represent the buyers’ limit prices and the sellers’ cost prices
respectively. The limit price is the highest price that the buyer is willing to buy the item for, and
the cost price is the lowest price that the seller is willing to sell the item for.
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selection strategies. Moreover, using evolutionary game theory (EGT) [10], we
analysed how traders dynamically change their market selection strategies and
determined which strategies traders eventually converge to.

In this paper, we extend this work by analysing how double auction mar-
ketplaces set their fees to make profits in a multiple competing marketplaces
environment. In this environment, if the marketplace charges higher fees than
its opponents, then it may make more profits in the short-term. However, even-
tually traders will choose to leave this marketplace and choose to migrate to
the cheaper marketplace. This will therefore result in a decrease of profits. Thus
the competing marketplace should charge appropriate fees to make profit and
maintain market share given its opponents’ fees. In this paper, we will analyse
this pattern by considering the equilibrium charging behaviour between market-
places. In reality, two types of fees are usually charged to traders. One is the
ex-ante fee charged to traders before they make transactions. The other is the
ex-post fee charged conditional on traders making a transaction [5]. Specifically,
in our analysis, we consider the registration fee charged to traders when they
enter the marketplace, and the profit fee charged to traders when they make
transactions as a typical example of ex-ante and ex-post fees respectively. Fur-
thermore, we analyse under what conditions several competing double auction
marketplaces can co-exist when traders converge to their equilibrium market se-
lection strategies. That is, we are interested in analysing whether competition
can be maintained, or whether the marketplaces collapse to a monopoly setting
where all traders move to one marketplace. This is important since competition
drives efficiency and offers more and better choices to traders. In previous work,
we found when competing marketplaces are only allowed to charge the profit
fees, traders eventually converge to one marketplace. In [2] which considers the
competition of two-sided marketplaces, researchers claim that when two com-
peting marketplaces differentiate themselves from each other, they may co-exist.
In this paper, we will analyse the co-existing issue in the context of competing
double auction marketplaces.

In particular, the contributions of this paper are as follows. First, we pro-
vide a novel approach to estimate marketplaces’ expected profits given the equi-
librium strategies of the traders and the fees charged by other marketplaces.
Second, based on the estimated expected profits of marketplaces, we are the
first to analyse the equilibrium charging behaviour of competing double auction
marketplaces. Finally, we show that in our framework, when different types of
fees are allowed, traders may converge to different marketplaces, i.e. competing
marketplaces can co-exist.

The structure of the paper is as follows. In Section 2, we briefly describe the
general framework from [1] for analysing competing double auction marketplaces.
In Section 3, we provide an approach to estimate marketplaces’ expected profits.
Then in Section 4, we analyse the equilibrium for two settings: when competing
marketplaces charge the same type of fees, and with different type of fees. We
also investigate under what under conditions competing marketplaces co-exist.
Finally, we conclude this paper in Section 5.
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2 General Framework

In this section, we briefly introduce the framework developed in [1]. We start by
introducing basic notations of our framework. Then we introduce the market-
places and their policies. Finally, we describe the market selection strategies in
detail and give a general equation for a trader’s expected utility.

2.1 Preliminaries

We assume that there are a set of buyers, B = {1, 2, ...B}, and a set of sellers,
S = {1, 2, ...S}. Each buyer and seller has a type, which is denoted as θb and θs

respectively. We assume that types of all buyers are independently drawn from
the same cumulative distribution function F b, with support [l, l̄], and the types
of all sellers are independently drawn from the cumulative distribution function
F s, with support [c, c̄]. The distributions F b and F s are assumed to be common
knowledge and differentiable. The probability density functions are f b and fs

respectively. In our framework, the type of each specific trader is not known to
the other traders and marketplaces, and only the type distribution functions are
public. In addition, we assume that there is a set of competing marketplaces
M = {1, 2, ...M}, that offer places for trade and provide a matching service
between the buyers and sellers.

2.2 Marketplaces and Fees

Since we consider marketplaces to be commercial enterprises that seek to make
a profit, we assume they charge fees for their service as match makers. The fee
structure of a marketplace m is defined, as Pm = (pb

m, ps
m, qb

m, qs
m), pb

m, ps
m ≥ 0

and qb
m, qs

m ∈ [0, 1], where pb
m, ps

m are fixed flat fees charged to buyers and sellers
respectively (in this paper, as an example, we consider registration fees charged
to traders when they enter the marketplace as a typical kind of fixed flat fee),
and qb

m, qs
m are percentage fees charged on profits made by buyers and sellers

respectively (in the following, we refer to such fees as profit fees). Then the fees
of all competing marketplaces constitute the fee system P = (P1,P2, ...PM ).
Furthermore, the transaction price of a successful transaction in marketplace m

is determined by a parameter km ∈ [0, 1], i.e. a discriminatory k-pricing policy,
which sets the transaction price of a matched buyer and seller at the point
determined by km in the interval between their offers. The pricing parameters
of all marketplaces constitute the pricing system K = (k1, k2, ..., kM ).

2.3 Trader Market Selection

We assume that traders can only choose a single marketplace at a time (called
single-homing), but they can freely migrate to a different marketplace in the
next trading round. A trading round proceeds as follows. First, all marketplaces
publish their fees and pricing parameters. Second, based on the observed fees
and pricing parameters, each trader selects a marketplace according to its market
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selection strategy. Third, traders submit their offers according to their bidding
strategies. Finally, after all traders have submitted their offers, the marketplace
matches buyers and sellers according to its matching policy and then executes
transactions. For simplicity, we assume that only one unit of commodity can
be traded by each trader in a giving trading round. Intuitively, we can see that
the traders’ choice of marketplaces is important since this significantly affects
the marketplaces’ positions in the competition. Given this, in the following, we
present the traders’ market selection strategies in more detail.

We consider a mixed market selection strategy, where each marketplace is
selected with some probability. A pure strategy can be regarded as a degen-
erate case of a mixed strategy, where the particular pure strategy is selected
with probability 1 and every other strategy with probability 0. Now, a mixed
market selection strategy of buyer i is defined as ωb

i : [l, l̄] ×M → [0, 1], which
means the probability that buyer i with type θb chooses the marketplace m is
ωb

i (θ
b, m), where

∑

m∈M ωb
i (θ

b, m) ≤ 1. Here, 1−
∑

m∈M ωb
i (θ

b, m) is the prob-

ability that buyer i with type θb chooses no marketplace. The complete mixed
market selection strategy of buyer i with type θb is given by:

δb
i (θ

b) = 〈ωb
i (θ

b, 1), ωb
i (θ

b, 2), ...ωb
i (θ

b, M)〉, δb
i (θ

b) ∈ ∆,

where ∆ is the set of all possible mixed strategies of a trader:

∆ =

{

〈x1, ..., xM 〉 ∈ [0, 1]M :
M
∑

m=1

xm ≤ 1

}

Similarly, we use ωs
j : [c, c̄]×M → [0, 1] to define the probability of selecting

a marketplace of seller j, and write the complete strategy as:

δs
j (θ

s) = 〈ωs
j (θ

s, 1), ωs
j (θ

s, 2), ...ωs
j (θ

s, M)〉, δs
j (θ

s) ∈ ∆

.
Now we use δb = 〈δb

1(·), δ
b
2(·), ...δ

b
B(·)〉 to denote the strategy profile of buyers,

and δs = 〈δs
1(·), δ

s
2(·), ...δ

s
S(·)〉 that of the sellers. Given a buyers’ strategy profile

δb and a sellers’ strategy profile δs, the expected utility of a buyer i with type
θb is defined by:

Ũ b
i (P,K, δb, δs, θb) =

M
∑

m=1

ωb
i (θ

b, m) × Ũ b
i,m(P,K, δb, δs, θb) (1)

where Ũ b
i,m(P,K, δb, δs, θb) is buyer i’s expected utility if it chooses to trade in

the marketplace m, which depends on the specific matching policy adopted by
marketplace m. The expected utility of the sellers is defined analogously.

3 Marketplace’s Expected Profit

In the above we have specified a general framework for analysing competing
double auction marketplaces. Before we can analyse the equilibrium charging
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behaviour of marketplaces, we need to know marketplaces’ expected profits given
their fees and given the behaviour of the traders. In this section, we will describe
how to calculate marketplaces’ expected profits.

In order to calculate the marketplaces’ expected profits, we need to know
which bidding strategy traders will use to submit their offers and which match-
ing policy marketplaces will use to match buyers and sellers to make transactions.
Specifically, traders’ bidding strategy and marketplaces’ matching policy used in
this work are specified as follows. As we did in [1], we assume that traders use a
truthtelling bidding strategy, which means they will submit their types as their
offers during the trading process. For the matching policy, we consider equilib-

rium matching since this aims to maximise traders’ profits and thus maximises
the allocative efficiency for the marketplace. In detail, this policy will match the
buyer with v-th highest limit price with the seller with v-th lowest cost price if
the seller’s cost price is not greater than the buyer’s limit price. Furthermore,
we assume that traders with the same type will employ the same market selec-
tion strategy. Thus in the following, we omit the trader’s index i, j when it is
intuitively clear.

Now in order to get insight from this complicated game with more traders
and more types, we use the same simplifying assumptions made in [1]. We only
consider the competition between two marketplaces, i.e. M = 2. In order to
allow for tractable results, we restrict our analysis to discrete trader types. In
particular, we assume that there are two types of buyers and two types of sellers:
rich and poor, which are denoted by tb2 and tb1 respectively for buyers, and ts1 and
ts2 for sellers. A rich buyer is defined as having a higher limit price than a poor
buyer, i.e. tb2 > tb1, and a rich seller is defined as having a lower cost price than a
poor seller, i.e. ts1 < ts2. Trader types are independently drawn from the discrete
uniform distribution (i.e. both types are equally likely). In addition, since we
focus on how to set marketplace fees, we keep the pricing parameter km = 0.5
(m = 1, 2). Then marketplaces can only affect traders’ market selections by
changing fees.

Now we are ready to derive the equations to calculate marketplaces’ expected
profits given the fee system P. Firstly, we calculate marketplaces’ expected profit
given traders’ market selection strategies: ωb(tb1, m), ωb(tb2, m), ωs(ts1, m) and
ωs(ts2, m). In order to do this, we calculate the probability that there are exactly
τ b
1 poor buyers and τ b

2 rich buyers choosing the marketplace m:

̺
b

m
(τ

b

1 , τ
b

2 ) =

 

B

τb

1
, τb

2
, B − τb

1
− τb

2

!

∗

 

ωb(tb

1, m)

2

!

τ
b
1

∗

 

ωb(tb

2, m)

2

!

τ
b
2

∗

 

1−
ωb(tb

1, m)

2
−

ωb(tb

2, m)

2

!

(B−τ
b
1
−τ

b
2
)

(2)

where
(

B

τb

1
,τb

2
,B−τb

1
−τb

2

)

is the multinomial coefficient,
ωb(tb

1,m)
2 is the probability

that a buyer is poor and chooses marketplace m. Similarly, we get the probability
that there are exactly τ s

1 rich sellers and τ s
2 poor sellers in the marketplace m:

̺
s

m
(τ

s

1 , τ
s

2 ) =

 

S

τs

1
, τs

2
, S − τs
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Furthermore, marketplace m’s expected profit when there are exactly τ b
1 poor

buyers, τ b
2 rich buyers, τ s

1 rich sellers and τ s
2 poor sellers in this marketplace is

calculated by:

Ũm(P, τ b
1 , τ b

2 , τs
1 , τs

2 ) = (τ b
1 + τ b

2) ∗ pb
m + (τ s

1 + τ s
2 ) ∗ ps

m + Λb ∗ qb
m + Λs ∗ qs

m (4)

where Λb, Λs are the buyers and sellers’ share of the trading surplus respectively
when τ b

1 poor buyers, τ b
2 rich buyers, τ s

1 rich sellers and τ s
2 poor sellers are

matched according to the equilibrium matching policy3. At this moment, we
can get the marketplace’s expected profit given the traders’ market selection
strategies: ωb(tb1, m), ωb(tb2, m), ωs(ts1, m) and ωs(ts2, m):

Ũm

“

P, ωb(tb
1, m), ωb(tb

2, m), ωs(ts
1, m), ωs(ts

2, m)
”

=
P

B

τb
1
=0

PB−τ
b
1

τb
2
=0

P

S

τs
1
=0

PS−τ
s
1

τs
2
=0

̺b
m(τ b

1 , τ b
2 ) ∗ ̺s

m(τs
1 , τs

2 ) ∗ Ũm(P, τ b
1 , τ b

2 , τs
1 , τs

2 ) (5)

Now given a fee system P, we calculate the marketplaces’ expected profits at
the point where all traders use equilibrium market selection strategies. As we
discussed in [1], there can exist multiple Nash equilibria of market selection
strategies. In such cases, the marketplace’s expected profit depends on which
NEQ strategies traders will choose and the probability of choosing such NEQ
strategies. In [1], given a fee system, we have used EGT to analyse how traders
choose NEQ strategies. Similarly, in this paper, we use EGT to find which NEQ
strategies traders will choose and with what probability.

In more detail, in EGT, players gradually adjust their strategies over time
in response to the repeated observations of their opponents’ strategies. In par-
ticular, the replicator dynamics equation is often used to specify the dynamic
adjustment of the probability of which pure strategy should be played. Then
in our work, the 4-population replicator equations (rich buyers, poor buyers,
rich sellers and poor sellers) showing the dynamic changes of traders’ selection
strategies with respect to time t are given by:
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Ũ
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Ũ
b

1 (P,K, δ
b
, δ

s
, t

b

2) − Ũ
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s(P,K, δ

b
, δ

s
, t

s

1)
”

∗ ω
s(ts

1, 1) (8)
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=
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As an example, ω̇b(tb1, 1) describes how the poor buyer with type tb1 changes
its probability of choosing marketplace 1. Here, Ũ b

1(P,K, δb, δs, tb1) is the poor
buyer’s expected utility when choosing marketplace 1 given other traders’ strate-
gies, and Ũ b(P,K, δb, δs, tb1) is the poor buyer’s overall expected utility. Given

3
This can be easily calculated. For example, when there are 2 rich buyers, 3 poor buyers, 3 rich

sellers and 2 poor buyers in the marketplace m, Λb =
“

max(tb

2 − ts

1, 0) ∗ 2 + max(tb
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1, 0) +
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2, 0)∗2
”
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2, 0)∗2
”

∗(1−km).
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that traders use the truthtelling bidding strategy and marketplaces use the equi-
librium matching policy, these equations have been derived in [1]. In order to get
the dynamics of the strategies, we need to calculate trajectories, which indicate
how the mixed strategies evolve. In more detail, initially, a mixed strategy is cho-
sen as a starting point. For convenience, we use

“

ωb(tb

2, 1), ωb(tb

1, 1), ωs(ts

1, 1), ωs(ts

2, 1)
”

to represent this starting point. The dynamics are then calculated according to
the above replicator equations. According to the dynamic changes of traders’
strategies, their current mixed strategy can be calculated. Such calculations are
repeated until ω̇b(·, 1) and ω̇s(·, 1) become zero, at which point the equilibrium
is reached. The replicator dynamics show the trajectories and how they converge
to an equilibrium. When considering traders evolving from all possible starting
points, we get several regions. The region where all trajectories converge to a
particular equilibrium is called the basin of attraction of this equilibrium. The
basin is very useful since its size indicates the probability of traders converging
to that equilibrium, which is necessary for calculating marketplaces’ expected
profits.

However, since probabilities are continuous from 0 to 1, there are infinitely
many mixed strategies available to each type of trader. Thus the set of possi-
ble starting points is also infinite, which results in the difficulty of accurately
calculating the sizes of basins. In this work, we have to discretize the starting
points to approximate the size of basin of attraction to each NEQ. By so doing,
we know the probability of traders converging to each equilibrium. For exam-
ple, in this paper we calculate the size of basin of attraction by discretizing the
mixed strategy of each type from 0.01 to 0.99 with step size 0.049, which gives
214 = 194481 different starting points. Note that if we use even more points, we
can estimate the probability of traders’ convergence to each equilibrium more
accurately.

Now that we know, given a fee system P, what NEQ strategies traders will
choose and with what probabilities. We calculate the expected profit for a mar-
ketplace. Specifically, given that there are X possible NEQs market selection
strategies, we use (x1, x2, ..., xX) to represent the probabilities of traders con-
verging to these NEQs. Then the marketplace m’s expected profit in the fee
system P is:

Ũm(P) =
X

∑

z=1

xz ∗ Ũm

(

P, ωzb(tb1, m), ωzb(tb2, m), ωzs(ts1, m), ωzs(ts2, m)
)

(10)

where ωzb(tb1, m), ωzb(tb2, m), ωzs(ts1, m) and ωzs(ts2, m) denote the z-th NEQ
market selection strategies.

4 Equilibrium Analysis of Market Fees

Given the equations to calculate the marketplaces’ expected profits, we now
define a Nash equilibrium for the marketplaces. Since the strategies of each
marketplace consist of the range of possible fees, an equilibrium constitutes a fee
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system P. Specifically, the Nash equilibrium fee system in our setting is defined
as follows:

Definition 1 The fees system P∗ = (P∗
1 ,P∗

2 , ...P∗
M ) constitutes a Nash equilib-

rium fee system, if ∀m ∈ M,∀P ∈ Ψ ,

Ũm(P∗) =
X∗

∑

z=1

x∗
z ∗ Ũm

(

P∗, ωzb∗(tb1, m), ωzb∗(tb2, m), ωzs∗(ts1, m), ωzs∗(ts2, m)
)

≥ Ũm(P) =
X

∑

z=1

xz ∗ Ũm

(

P, ωzb(tb1, m), ωzb(tb2, m), ωzs(ts1, m), ωzs(ts2, m)
)

where Ψ is the set of all possible fee systems.

We now analyse this equilibrium in detail. First, we need to calculate the mar-
ketplaces’ expected profits given different fee systems. As we know, the range of
possible fees is continuous, which results in infinitely many possible fee systems.
In [7], researchers claim that for this kind of game, it is useful to approximate the
game by restricting the strategy space, and results from the restricted strategy
space still provide insights into the original game. Similarly in this paper, in or-
der to obtain tractable results, we also restrict the fee space by discretizing these
fees. For example, we discretize profit and registration fees from 0 to 1 with step
size 0.1. Then we can calculate marketplaces’ expected profits corresponding to
these fees, and generate an expected profit matrix for marketplaces, by which
we can analyse the equilibrium fee system.

We now analyse this issues in two cases. Specifically, in the first case, we
consider two competing marketplaces that only charge the profit fees. In the
second case, we consider a setting where one marketplace charges the registration
fee, and the other marketplace charges the profit fee.

4.1 Both Marketplaces Charging Profit Fees

First we consider the case that only profit fees can be charged to traders. We
assume that there are 5 buyers and 5 sellers, and the surpluses of buyers and
sellers are symmetric. Specifically, we let tb1 = 4, tb2 = 6, ts1 = 0 and ts2 = 2.
Furthermore, we assume that competing marketplaces charge the same profit
fee to buyers and sellers (i.e. qb

m = qs
m)4. Now we discretize profit fee from 0 to 1

with step size 0.1. Therefore each marketplace can choose from 11 different profit
fees. For two competing marketplaces, there are 112 = 121 different fee systems.
For each of these combinations, we use EGT to obtain the basin of attraction
to each NEQ of market selection strategies. Then by approximating the size of
each basin, we get the probability of traders choosing each NEQ. For example,

4
At this moment, rich(poor) buyer and rich(poor) seller have the same behaviour of selecting
marketplaces. Then Equations 6 and 9 are consistent and Equations 7 and 8 are consistent. By so
doing, we reduce 4-population replicator dynamics to 2-population replicator dynamics. This is
convenient for visualising how traders evolve their strategies and approximating the size of basins
of attraction in a 2-dimensional space.
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NEQ 2

NEQ 1

Fig. 1. Evolutionary process when both marketplaces 1 and 2 charge profit fees. The dotted line
denotes the boundary between the basins of attractions.

(a) Size of basin of attraction to NEQ 1. (b) Size of basin of attraction to NEQ 2.

Fig. 2. Sizes of basins of attraction with respect to different fees.

when marketplace 1 charges 20% profit fee and marketplace 2 charges 30% profit
fee, the basins of attraction are shown in Fig. 15. From this figure, we find that
all traders will converge to marketplace 1 (NEQ 1) or marketplace 2 (NEQ 2).
By approximating the size of each basin of attraction, we can determine the
probability of traders converging to each NEQ (the probabilities to NEQ 1 and
NEQ 2 are 0.658 and 0.342 respectively in this case).

Now we explore traders’ evolutionary process in all fee systems. The proba-
bility of traders choosing each NEQ of market selection strategies corresponding
to all fee systems are shown in Fig. 2. Then using Equation 10, we calculate the
marketplaces’ expected profits. The results are shown in Table 1. From this table,
by using Gambit6, we find that both marketplaces charging 30% profit fee con-
stitutes a unique pure NEQ fee system. Interestingly, in this equilibrium, both
competing marketplaces charge non-zero profit fees and therefore make positive
profits. This contrasts with competition between one-sided marketplaces (such

5
Here we discretize the mixed strategy of each type of trader from 0.01 to 0.99 with a bigger step
size, 0.098, for clearly visualising purpose.

6
http://gambit.sourceforge.net/
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.00,0.00 0.00,0.75 0.00,1.02 0.00,0.97 0.00,0.78 0.00,0.58 0.00,0.42 0.00,0.29 0.00,0.22 0.00,0.20 0.00,0.00
0.1 0.75,0.00 1.00,1.00 1.28,1.44 1.54,1.39 1.73,1.10 1.85,0.77 1.91,0.52 1.95,0.34 1.97,0.24 1.98,0.20 2.00,0.00
0.2 1.02,0.00 1.44,1.28 2.00,2.00 2.63,2.05 3.18,1.64 3.56,1.11 3.77,0.70 3.88,0.43 3.93,0.27 3.95,0.22 4.00,0.00
0.3 0.97,0.00 1.39,1.54 2.05,2.63 3.00,3.00 4.07,2.58 4.97,1.72 5.50,1.01 5.76,0.56 5.88,0.32 5.93,0.22 6.00,0.00
0.4 0.78,0.00 1.10,1.73 1.64,3.18 2.58,4.07 4.00,4.00 5.66,2.93 6.90,1.64 7.54,0.81 7.81,0.38 7.90,0.22 8.00,0.00
0.5 0.58,0.00 0.77,1.85 1.11,3.56 1.72,4.97 2.93,5.66 5.00,5.00 7.45,3.06 9.03,1.36 9.65,0.56 9.86,0.25 10.00,0.00
0.6 0.42,0.00 0.52,1.91 0.70,3.77 1.01,5.50 1.64,6.90 3.06,7.45 6.00,6.00 9.54,2.87 11.30,0.93 11.80,0.31 12.00,0.00
0.7 0.29,0.00 0.34,1.95 0.43,3.88 0.56,5.76 0.81,7.54 1.36,9.03 2.87,9.54 7.00,7.00 12.08,2.19 13.66,0.43 14.00,0.00
0.8 0.22,0.00 0.24,1.97 0.27,3.93 0.32,5.88 0.38,7.81 0.56,9.65 0.93,11.30 2.19,12.08 8.00,8.00 15.07,1.04 16.00,0.00
0.9 0.20,0.00 0.20,1.98 0.22,3.95 0.22,5.93 0.22,7.90 0.25,9.86 0.31,11.80 0.43,13.66 1.04,15.07 9.00,9.00 18.00,0.00
1.0 0.00,0.00 0.00,2.00 0.00,4.00 0.00,6.00 0.00,8.00 0.00,10.0 0.00,12.00 0.00,14.00 0.00,16.00 0.00,18.00 10.00,10.00

Table 1. Profits of marketplace 1 and marketplace 2. The first column is the profit fee of mar-
ketplace 1 and the first row is the profit fee of marketplace 2. The first element in each cell is
marketplace 1’s expected profit, and the second is marketplace 2’s expected profit. Bold italic fees
constitute a NEQ fee system.

as the classical Bertrand competition), in which competing marketplaces reduce
their fees to their cost level and make zero profit in equilibrium [9]. This is
because, in two-sided double auction marketplaces, there is still a probability
that the traders converge to the marketplace which charges slightly higher fees
compared to its opponent (as can be seen in Fig. 2).

Finally, we also analyse the case when both competing marketplaces charge
registration fees. In this case, the traders’ expected profits on both marketplaces
may be negative, and then traders will not enter any marketplaces. However,
other conclusions are similar to the case that both competing marketplaces
charge profit fees. In particularly, we still find traders eventually converge to
one marketplace. The same result holds if we change traders’ types and the
number of traders.

4.2 Asymmetric Market Fees

In this section, we will consider the case that different competing marketplaces
charge different types of fees: marketplace 1 charges the profit fee, and market-
place 2 charges the registration fee. In previous section, we find that traders
always converge to one of two equilibria when they are limited to charging the
same type of fees. This means that marketplaces cannot co-exist when traders
are in equilibrium. In this section, we first analyse whether competing market-
places can co-exist when different types of fees are allowed. Then we analyse the
equilibrium fee system.

We still assume that competing marketplaces charge the same fee to buyers
and sellers (i.e. pb

m = ps
m and qb

m = qs
m). Then we discretize registration and

profit fees from 0 to 1 with step size 0.1. Then there are again 121 different
fee systems. By evolving traders’ strategies from different starting points and
under different fee systems, we find co-existence of competing marketplaces.
For example, when marketplace 1 charges 50% profit fee and marketplace 2
charges 0.8 registration fee, the evolution of traders’ selection strategies from
different starting points is shown in Fig. 3. From this figure, we find that there
are now three basins of attraction: all traders converge to marketplace 1 (NEQ
1); all traders converge to marketplace 2 (NEQ 2); rich traders converge to
marketplace 2, and poor traders converge to marketplace 1 (NEQ 3), i.e. two
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NEQ 2

NEQ 1NEQ 3

Fig. 3. Evolutionary process when marketplace 1 charges profit fee and marketplace 2 charges
registration fee. The dotted line denotes the boundary between the basins of attractions.

(a) Size of basin of attraction to NEQ 1. (b) Size of basin of attraction to NEQ 2.

(c) Size of basin of attraction to NEQ 3.

Fig. 4. Sizes of basins of attraction with respect to different fees.

competing marketplaces co-exist in equilibrium. By exploring traders’ market
selection strategies under all possible fee systems, we obtain the probabilities of
traders converging to each NEQ, which are shown in Fig. 4. Fig. 4(c) shows in
which fee systems, traders may converge to different marketplaces.

After estimating the probabilities of traders’ convergence to each NEQ, we
then calculate the marketplaces’ expected profits using Equation 10. The mar-
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.00,0.00 0.00,0.43 0.00,0.73 0.00,0.90 0.00,0.86 0.00,0.77 0.00,0.67 0.00,0.54 0.00,0.43 0.00,0.31 0.00,0.23
0.1 0.75,0.00 0.89,0.56 1.03,0.97 1.18,1.22 1.32,1.32 1.49,1.20 1.69,0.92 1.79,0.73 1.86,0.54 1.91,0.39 1.95,0.27
0.2 1.02,0.00 1.31,0.67 1.55,1.22 1.84,1.62 2.15,1.85 2.48,1.81 2.83,1.59 3.22,1.22 3.62,0.75 3.76,0.54 3.86,0.36
0.3 1.00,0.00 1.29,0.79 1.59,1.47 1.97,2.01 2.37,2.42 2.88,2.55 3.44,2.33 4.00,1.99 4.49,1.64 5.20,1.01 5.67,0.53
0.4 0.80,0.00 1.03,0.87 1.34,1.66 1.72,2.36 2.19,2.90 2.66,3.34 3.35,3.30 4.17,2.89 4.91,2.48 5.62,2.03 6.32,1.53
0.5 0.57,0.00 0.79,0.92 1.07,1.79 1.36,2.59 1.77,3.29 2.20,3.90 2.72,4.37 3.71,3.99 4.62,3.49 5.56,2.99 6.38,2.56
0.6 0.38,0.00 0.54,0.96 0.76,1.87 0.92,2.77 1.28,3.57 1.66,4.31 2.12,4.94 2.64,5.44 3.92,4.64 4.99,4.03 5.97,3.54
0.7 0.22,0.00 0.32,0.98 0.48,1.93 0.70,2.85 0.85,3.76 1.15,4.59 1.53,5.35 1.93,6.03 2.73,6.14 4.09,5.18 5.19,4.55
0.8 0.11,0.00 0.18,0.99 0.29,1.96 0.37,2.93 0.54,3.86 0.77,4.76 1.01,5.62 1.26,6.45 1.71,7.14 2.86,6.66 4.35,5.54
0.9 0.04,0.00 0.09,1.00 0.16,1.98 0.20,2.97 0.29,3.94 0.45,4.88 0.61,5.80 0.81,6.69 1.10,7.51 1.48,8.26 3.24,6.92
1.0 0.00,0.00 0.00,1.00 0.04,2.00 0.10,2.99 0.14,3.97 0.22,4.95 0.36,5.89 0.50,6.83 0.68,7.73 0.90,8.60 1.18,9.41

Table 2. Profits of marketplace 1 and marketplace 2. The first column is the profit fee of market-
place 1 and the first row is the registration fee of marketplace 2. The first element in each cell is
marketplace 1’s expected profit, and the second is marketplace 2’s expected profit. Bold italic fees
constitute a NEQ fee system.

Fig. 5. Size of basins of attraction with respect to changed registration fees.

ketplaces’ expected profits are shown in Table 2, from which we can see that in
this case, marketplace 1 charging 30% profit fee, and marketplace 2 charging 0.5
registration fee constitutes the unique NEQ fee system.

Now we analyse how registration and profit fees affect the market selections
of traders with different types. We note that, since the surplus of transaction
between rich traders is higher than that between poor traders, then for the
same profit fee, rich traders will lose more absolute profits than poor traders.
Specifically, we let marketplace 1 charge 60% profit fee, marketplace 2 charge
registration fee from 0 to 3 with step size 0.1. The sizes of basins of attraction
with respect to the registration fee are shown in Fig. 5. From the figure, we can
see that when the registration fee is low, traders prefer to choose marketplace
2. This is shown by the line with triangle, which is above two other lines in the
beginning. Then as the registration fee increases, poor traders will choose to leave
marketplace 2 since increased registration fee cause decreased and even negative
profits for them. Rich traders may still prefer marketplace 2 since compared to
marketplace 1 which extracts more absolute profits by charging the profit fee,
marketplace 2 is still cheaper. This is shown by the increased lines with circle
and square when the registration fee increases from 0 to about 1. However, when
the registration fee becomes very high, both rich and poor traders will leave since
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their profits will be negative if they still choose to stay. This is shown by the
decreased lines with triangle and circle and the increased line with square when
the registration fee increases from 1 to 3.

5 Conclusions

In this paper, we provided an approach to estimate marketplaces’ expected prof-
its for a given fee system, based on the equilibrium of the traders’ market se-
lection strategies, and the likelihood of various equilibria occurring. We then
analysed the NEQ fee system in two different cases: where marketplaces charge
the same type of fees and where they charge different types of fees. Such anal-
ysis is useful to guide the charging behaviour of competing marketplaces. For
the settings analysed in this paper, we found that a pure Nash equilibrium
always exists in which both competing marketplaces charge non-zero fees. In
addition, we found that when one marketplace charges the registration fee and
the other charges the profit fee, two competing marketplace may co-exist in
which the traders are in equilibrium. In this equilibrium, rich traders converge
to the marketplace charging the registration fee, and poor traders converge to
the marketplace charging the profit fee.

In this analysis, we have assumed that traders use the truthtelling bidding
strategy, which results in traders’ true profits being revealed to the marketplaces.
However, when traders adopt a bidding strategy that can shade their true types,
traders can keep more profits even when the profit fee is high. In the future,
we intend to analyse the equilibrium fee system in this case. Moreover, in prac-
tice, traders may never converge to any NEQ market selection strategies since
competing marketplaces may keep adapting their fees. In this dynamic process,
we want to address how competing marketplaces dynamically change their fees
corresponding to the opponents’ fees and traders’ current market selections. Fur-
thermore, we also would like to generalise our analysis of the traders’ equilibrium
behaviour of market selection strategies as well as the bidding strategies by con-
sidering traders with continuous types, and then analyse how to find a NEQ fee
system for competing marketplaces.
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Abstract. This paper presents an approach to automated mechanism design in
the domain of double auctions. We describe a novel parameterized space of dou-
ble auctions, and then introduce an evolutionary search method that searches
this space of parameters. The approach evaluates auction mechanisms using the
framework of the TAC Market Design Game and relates the performance of the
markets in that game to their constituent parts using reinforcement learning. Ex-
periments show that the strongest mechanisms we found usingthis approach not
only win the Market Design Game against known, strong opponents, but also
exhibit desirable economic properties when they run in isolation.

1 Introduction

Auctions play an important role in electronic commerce, andhave been used to solve
problems in distributed computing. A major problem to solvein these fields is:Given a
certain set of restrictions and desired outcomes, how can wedesign a good, if not opti-
mal, auction mechanism; or when the restrictions and goals alter, how can the current
mechanism be improved to handle the new scenario?

The traditional answer to this question has been in the domain of auction theory [9].
A mechanism is designed by hand, analyzed theoretically, and then revised as necessary.
The problems with the approach are exactly those that dog anymanual process — it
is slow, error-prone, and restricted to just a handful of individuals with the necessary
skills and knowledge. In addition, there are classes of commonly used mechanisms,
such as the double auctions that we discuss here, which are too complex to be analyzed
theoretically, at least for interesting cases [21].

Automated mechanism design (AMD ) aims to overcome the problems of the manual
process by designing auction mechanisms automatically.AMD considers design to be a
search through some space of possible mechanisms. For example, Cliff [2] and Phelpset
al. [16, 17] explored the use of evolutionary algorithms to optimize different aspects of
the continuous double auction. Around the same time, Conitzer and Sandholm [4] were
examining the complexity of building a mechanism that fitteda particular specification.

∗This work was carried out as part of the first author’s PhD research at CUNY.
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These different approaches were all problematic. The algorithms that Conitzer and
Sandholm considered dealt with exhaustive search, and naturally the complexity was
exponential. In contrast, the approaches that Cliff and Phelps et al.pursued were com-
putationally more appealing, but gave no guarantee of success and were only searching
tiny sections of the search space for the mechanisms they considered. As a result, one
might consider the work of Cliff and Phelpset al., and indeed the work we describe here,
to be what Conitzer and Sandholm [5] call “incremental” mechanism design, where one
starts with an existing mechanism and incrementally altersparts of it, aiming to iterate
towards an optimal mechanism. Similar work, though work that uses a different ap-
proach to searching the space of possible mechanisms has been carried out by [20] and
has been applied to several different mechanism design problems [18].

The problem with taking the automated approach to mechanismdesign further is
how to make it scale — though framing it as an incremental process is a good way
to look at it, it does not provide much practical guidance about how to proceed. Our
aim in this paper is to provide more in the way of practical guidance, showing how it
is possible to build on a previous analysis of the most relevant components of a com-
plex mechanism in order to set up an automated mechanism design problem, and then
describing one approach to solving this problem.

2 Grey-box AMD

We propose agrey-boxAMD approach, which emerged from our previous work on the
analyses of theCAT games.

2.1 From analyses ofCAT games towards a grey-box approach

TheCAT game, a.k.a. the Trading Agent Competition Market Design game, which has
run for the last three years, asks entrants to design a marketfor a set of automated traders
which are based on standard algorithms for buying and selling in a double auction,
includingZI-C [8], ZIP [3], RE [6], andGD [7]. The game is broken up into a sequence
of days, and each day every trader picks a market to trade in, using a market selection
strategy that models the situation as ann-armed bandit problem [19, Section 2]. Markets
are allowed to charge traders in a variety of ways and are scored based on the number of
traders they attract (market share), the profits that they make from traders (profit share),
and the number of successful transactions they broker relative to the total number of
shouts placed in them (transaction success rate). Full details of the game can be found
in [1].

We picked theCAT game as the basis of our work for four main reasons. First, the
double auctions that are the focus of the design are a widely used mechanism. Second,
the competition is run using an open-source software package calledJCAT which is
a good basis for implementing our ideas. Third, after three years of competition, a
number of specialists have been made available by their authors, giving us a library
of mechanisms to test against. Fourth, there have been a number of publications that
analyze different aspects of previous entrants, giving us agood basis from which to
start searching for new mechanisms.
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With colleagues we have carried out two previous studies ofCAT games [11, 13],
which mirror the white-box and black-box analyses from software engineering. [13]
provides a white-box analysis, looking inside each market mechanism in order to iden-
tify which components it contains, and relating the performance of each mechanism
to the operation of its components. [11] provides a black-box analysis, which ignores
the detail of the internal components of each market mechanism, but provides a much
more extensive analysis of how the markets perform. These analyses make a good com-
bination for examining the strengths and weaknesses of specialists. The white-box ap-
proach is capable of relating the internal design of a strategy to its performance and
revealing which part of the design may cause vulnerabilities, but it requires internal
structure and involves manual examination. The black-box approach does not rely upon
the accessibility of the internal design of a strategy. It can be applied to virtually any
strategic game, and is capable of evaluating a design in manymore situations. How-
ever, the black-box approach tells us little about what may have caused a strategy to
perform poorly and provides little in the way of hints as to how to improve the strategy.
It is desirable to combine these two approaches in order to benefit from the advantages
of both. Following theGA-based approach to trading strategy acquisition and auction
mechanism design in [2, 15, 17], we propose what we call agrey-boxapproach to auto-
mated mechanism design that solves the problem of automatically creating a complex
mechanism by searching a structured space of auction components. In other words, we
concentrate on the components of the mechanisms as in the white-box approach, but
take a black-box view of the components, evaluating their effectivenesses by looking at
their performance against that of their peers.

More specifically, we view a market mechanism as a combination of auction rules,
each as an atomic building block. We consider the problem:how can we find a com-
bination of rules that is better than any known combination according to a certain
criterion, based on a pool of existing building blocks?The black-box analysis in [11]
maintains a population of strategies and evolves them generation by generation based
on their fitnesses. Here we intend to follow a similar approach, maintaining a population
of components or building blocks for strategies, associating each block with aquality
score, which reflects the fitnesses of auction mechanisms using this block, exploring the
part of the space of auction mechanisms that involves building blocks of higher quality,
and keeping the best mechanisms we find.

Having sketched our approach at a high level, we now look in detail at how it can
be applied in the context of theCAT game.

2.2 A search space of double auctions

The first issues we need to address arewhat composite structure is used to represent
auction mechanisms?andwhere can we obtain a pool of building blocks?

Viewing an auction as a structured mechanism is not a new idea. Wurmanet al.
[22] introduced a conceptual, parameterized view of auction mechanisms. Niuet al.
[13] extended this framework for auction mechanisms competing in CAT games and
provided a classification of entries in the firstCAT competition that was based on it.
The extended framework includes multiple intertwined components, orpolicies, each
regulating one aspect of a market. We adopt this framework, include more candidates
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for each type of policy and take into consideration parameters that are used by these
policies.

These policies are either inferred from the literature [10], taken from our previous
work [11, 13, 14], or contributed by entrants to theCAT competitions. The set of poli-
cies, each a building block, form a solid foundation for the grey-box approach.

Figure 1 illustrates the building blocks as a tree structurewhich we describe after
we review the blocks themselves. Below we describe the different types of policies
just briefly due to space limitations. An in-depth understanding of these policies is not
required in understand the grey-box approach, but a full description of these policies
can be found in the extended version of this paper [12].

Matching policies, denoted asM in Figure 1, define how a market matches shouts
made by traders, includingequilibrium matching(ME), max-volume matching(MV),
andtheta matching(MT). ME clears the market at the equilibrium price, matching asks
(offers to sell) lower than the price with bids (offers to buy) higher than the price.MV

maximizes transaction volume by considering also less-competitive shouts that would
not be matched inME. MT uses a parameter,θ ∈ [−1,1], to realize a transaction volume
that is proportional to 0 and those realized inME andMV.

Quote policies, denoted asQ in Figure 1, determine the quotes issued by markets,
including two-sided quoting(QT), one-sided quoting(QO), andspread-based quoting
(QS). Typical quotes are ask and bid quotes, which respectivelyspecify the upper bound
for asks and the lower bound for bids that may be placed in a quote-driven market.QT

defines the quotes based on information from both the seller side and the buyer side,
while QO does so considering only information from a single side.QS extendsQT to
maintain a higher ask quote and a lower bid quote for use withMV.

Shout accepting policies, denoted asA in Figure 1, judge whether a shout made
by a trader should be permitted in the market, includingalways accepting(AA), never
accepting(AN), quote-beating accepting(AQ), self-beating accepting(AS), equilibrium-
beating accepting(AE), average-beating accepting(AD), history-based accepting(AH),
transaction-based accepting(AT), andshout type-based accepting(AY). AE uses a pa-
rameter,w, to specify the size of a sliding window in terms of the numberof transac-
tions, and a second parameter,δ , to relax the restriction on shouts [14].AD is basically
a variant ofAE and uses the standard deviation of transaction prices in thesliding win-
dow rather thanw to relax the restriction on shouts.AH is derived from theGD trading
strategy and accepts only shouts that will be matched with probability no lower than
a specified threshold,τ ∈ [0,1]. AY stochastically allows shouts based merely on their
types, i.e., asks or bids, and uses a parameter,q ∈ [0,1], to control the chances that
shouts of either type are allowed to place.

Clearing conditions, denoted asC in Figure 1, define when to clear the market
and execute transactions between matched asks and bids, includingcontinuous clearing
(CC), round clearing(CR), andprobabilistic clearing(CP). CP uses a parameter,p ∈
[0,1], to define a continuum of clearing rules withCR andCC being the two ends.

Pricing policies, denoted asP in Figure 1, set transaction prices for matched ask-
bid pairs, includingdiscriminatory k-pricing(PD), uniform k-pricing(PU), n-pricing
(PN), andside-biased pricing(PB). BothPD andPU use a prefixed parameter,k∈ [0,1],
to control the bias in favor of buyers or sellers, andPB adjusts an internalk aiming to
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Fig. 1: The search space of double auctions modeled as a tree,discussed in details in Section 2.
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obtain a balanced demand and supply.PN was introduced in [14] and sets the transaction
price as the average of the latestn pairs of matched asks and bids.

Charging policies, denoted asG in Figure 1, determine the charges imposed by
a market, includingfixed charging(GF), bait-and-switch charging(GB), andcharge-
cutting charging(GC), learn-or-lure-fast charging(GL). GF imposes fixed charges while
the rest three policies adapt charges over time in differentways.GL relies upon two pa-
rameters,τ andr, to achieve dynamic adjustments. All these charging policies require
an initial set of fees on different activities, including fee on registration, fee on infor-
mation, fee on shout, fee on transaction, and fee on profit, denoted asfr , fi , fs, ft , and
fp respectively in Figure 1.

2.3 The GREY-BOX-AMD algorithm

The tree model of double auctions in Figure 1 illustrates howbuilding blocks are se-
lected and assembled level by level. There areand nodes,or nodes, andleaf nodes
in the tree. Anand node, rounded and filled, combines a set of building blocks, each
represented by one of its child nodes, to form a compound building block. The root
node, for example, is anandnode to assemble policies, one of each type described in
the previous section, to obtain a complete auction mechanism. An or node, rectangular
and filled, represents the decision making of selecting a building block from the candi-
dates represented by the child nodes of theor node based on their quality scores. This
selection occurs not only for those major aspects of an auction mechanism, i.e.M, Q,
A, P, C, andG (atG’s child node of ‘policy’ in fact), but also for minor components, for
example, a learning component for an adaptive policy (following Phelpset al.’s work
on acquiring a trading strategy [15]), and for determining optimal values of parameters
in a policy, likeθ in MT andk in PD. A leaf node represents an atomic block that can
either be for selection at itsor parent node or be further assembled into a bigger block
by itsandparent node. A special type ofleaf node in Figure 1 is that with a label in the
format of [x,y]. Such aleaf node is a convenient representation of a set ofleaf nodes
that have a common parent — the parent of this specialleaf node — and take values
evenly distributed betweenx andy for the parameter labeled at the parent node.

or nodes contribute to the variety of auction mechanisms in thesearch space and are
where exploitation and exploration occur. We model eachor node as ann-armed bandit
learner that chooses among candidate blocks, and use the simple softmax method [19,
Section 2.3] to solve this learning problem.

Given a set of building blocks,B, and a set of fixed markets,FM, as targets to beat,
we define the skeleton of the grey-box algorithm in Algorithm1. The GREY-BOX-
AMD algorithm runs a certain number of steps (num of steps in Line 2). At each
step, a singleCAT game is created (CREATE-GAME() in Line 3) and a set of markets are
prepared for the game. This set of markets includes all markets inFM, a certain number
(num of samples in Line 5) of markets sampled from the search space, denoted asSM,
and a certain number (num of hof samples in Line 11) of markets, denoted asEM,
chosen from a Hall of Fame,HOF. All these markets are put into the game, which is
run to evaluate the performance of these markets (RUN-GAME(G, FM∪EM∪ SM)
in Line 12).HOF has a fixed capacity,capacity of hof, and maintains markets that
performed well in games at previous steps in terms of their average scores across games
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GREY-BOX-AMD(B,FM)

1 HOF←{}
2 for s← 1 to num of steps

3 do G← CREATE-GAME()

4 SM← {}
5 for m← 1 to num of samples

6 do M← CREATE-MARKET()

7 for t← 1 to num of policytypes

8 do B← SELECT(Bt ,1)

9 ADD-BLOCK(M,B)

10 SM← SM∪{M}
11 EM← SELECT(HOF,num of hof samples)

12 RUN-GAME(G,FM∪EM∪SM)

13 for each M in EM∪SM

14 do UPDATE-MARKET-SCORE(M,SCORE(G,M))

15 if M not in HOF

16 then HOF←HOF∪{M}
17 if capacity of hof < |HOF|
18 then HOF←HOF−{WORST-MARKET(HOF)}
19 for each B used byM
20 do UPDATE-BLOCK-SCORE(B,SCORE(G,M))

21 return HOF

Algorithm 1: The GREY-BOX-AMD algorithm.

they participated.HOF is empty initially, updated after each game, and returned inthe
end as the result of the grey-box process.

Each market inSM is constructed based on the tree model in Figure 1. After
an ‘empty’ market mechanism,M, is created (CREATE-MARKET() in Line 6), build-
ing blocks can be incorporated intoM (ADD-BLOCK(M,B) in Line 9, whereB ∈ B).
num of policytypes in Line 7 defines the number of different policy types, and
from each group of policies of same type, denoted asBt wheret specifies the type,
a building block is chosen forM (SELECT(Bt , 1) in Line 8). For simplicity, this algo-
rithm illustrates only what happens to theor nodes at the high level, includingM, Q,
A, C, andP. Markets inEM are chosen fromHOF in a similar way (SELECT(HOF,
num of hof samples) in Line 11).

After a CAT game,G, completes at each step, the game score of each participating
marketM ∈ SM∪EM, SCORE(G, M), is recorded and the game-independent score of
M, SCORE(M), is updated (UPDATE-MARKET-SCORE(M, SCORE(G, M)) in Line 14).
If M is not currently inHOF and SCORE(M) is higher than the lowest score of markets
in HOF, it replaces that corresponding market (WORST-MARKET(HOF) in Line 18).

SCORE(G, M) is also used to update the quality score of each building block used by
M (UPDATE-BLOCK-SCORE(B, SCORE(G, M)) in Line 20). Both UPDATE-MARKET-
SCORE and UPDATE-BLOCK-SCORE calculate respectively game-independent scores
of markets and quality scores of building blocks by averaging feedback SCORE(G, M)
over time. Because choosing building blocks occurs only ator nodes in the tree, only
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child nodes of anor node have quality scores and receive feedback after aCAT game.
Initially, quality scores of building blocks are all 0, so that the probabilities of choosing
them are even. As the exploration proceeds, fitter blocks score higher and are chosen
more often to construct better mechanisms.

3 Experiments

This section describes the experiments that are carried outto acquire auction mecha-
nisms using the grey-box approach.

3.1 Experimental setup

We extendedJCAT with the parameterized framework of double auctions and allthe
individual policies described in Section 2.2. To reduce thecomputational cost, we elim-
inated the exploration of charging policies by focusing on mechanisms that impose a
charge of 10% on trader profit, which we denote asGF0.1. Analysis ofCAT games [11]
and what entries have typically charged in actualCAT competitions, especially in the
latest two events, suggest that such a charging policy is a reasonable choice to avoid
losing either intra-marginal or extra-marginal traders. Even with this cut-off, the search
space still contains more than 1,200,000 different kinds of auction mechanisms, due
to the variety of policies on aspects other than charging andthe choices of values for
parameters.

The experiments that we ran to search the space each last 200 steps. At each step,
we sample two auction mechanisms from the space, and run aCAT game to evaluate
them against four fixed, well known, mechanisms plus two mechanisms from the Hall
of Fame. To sample auction mechanisms, the softmax exploration method used byor
nodes starts with a relatively high temperature (τ = 10) so as to explore randomly, then
gradually cools down,τ scaling down by 0.96 (α) each step, and eventually maintains a
temperature (τ = 0.5) that guarantees a non-negligible probability of choosing even the
worst action any time. After all, our goal in the grey-box approach is not to converge
quickly to a small set of mechanisms, but to explore the spaceas broadly as possible
and avoid being trapped in local optima.

The fixed set of four markets in everyCAT game includes twoCH markets —CHl

and CHh — and twoCDA markets —CDAl and CDAh — with one of each charging
10% on trader profit, likeGF0.1 does, and the other charging 100% on trader profit (de-
noted asGF1.0). The CH and CDA mechanisms are two common double auctions and
have been used in the real world for many years, in financial marketplaces in partic-
ular due to their high allocative efficiency. Earlier experiments we ran, involvingCH

andCDA markets against entries intoCAT competitions, indicate that it is not trivial to
win over these two standard double auctions. Markets with different charge levels are
included to avoid any sampled mechanisms taking advantage otherwise. Based on the
parameterized framework in Section 2.2, theCH andCDA markets can be represented
as follows:

CHl / CHh = ME + QT + AQ + CR + PUk=0.5 + GF0.1 / GF1.0

CDAl / CDAh = ME + QT + AQ + CC + PDk=0.5 + GF0.1 / GF1.0
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The Hall of Fame that we maintain during the search contains ten ‘active’ members
and a list of ‘inactive’ members. After eachCAT game, the two sampled mechanisms
are compared with those active Hall of Famers. If the score ofa sampled mechanism is
higher than the lowest average score of the active Hall of Famers, the sampled mecha-
nism is inducted into the Hall of Fame and replaces the corresponding Hall of Famer,
which becomes inactive and ineligible forCAT games at later steps (lines 15–18 in Al-
gorithm 1). An inactive Hall of Famer may be reactivated if anidentical mechanism
happens to be sampled from the space again and scores high enough to promote its
average score to surpass the lowest score of active Hall of Famers. In addition, the soft-
max method used to choose two Hall of Famers out of the ten active ones involves a
constantτ = 0.3. Since the scores of the Hall of Famers gradually converge in the ex-
periments and the difference between the best and the worst Hall of Famers is less than
25% (see Figure 2b below), this value ofτ guarantees that the bias towards the best Hall
of Famers is modest and all Hall of Famers have fairly big chances to be chosen.

EachCAT game is populated by 120 trading agents, usingZI-C, ZIP, RE, andGD

strategies, a quarter of the traders using each strategy. Half the traders are buyers, half
are sellers. The supply and demand schedules are both drawn from a uniform distribu-
tion between 50 and 150. EachCAT game lasts 500 days with ten rounds for each day.
This setup is similar to that of actualCAT competitions except for a smaller trader pop-
ulation that helps to reduce computational costs. A 200-step grey-box experiment takes
around sixteen hours on aWINDOWS PCthat runs at 2.8GHz and has a 3GB memory. To
obtain reliable results, we ran the grey-box experiments for 40 iterations and the results
that are reported in the next section are averaged over theseiterations.

3.2 Experimental results

We carried out four experiments to check whether the grey-box approach is successful
in searching for good auction mechanisms.

First, we measured the performance of the generated mechanisms indirectly, through
their effect on other mechanisms. Since the four standard markets participate in all the
CAT games, their performance over time reflects the strength of their opponents — they
will do worse as their opponents get better — which in turn reflects whether the search
generates increasingly better mechanisms. Figure 2a showsthat the scores of the four
markets (more specifically, the average daily scores of the markets in a game) decrease
over 200 games, especially over the first 100 games, suggesting that the mechanisms
we are creating get better as the learning process progresses.

Second, we measured the performance of the set of mechanismswe created more
directly. The mechanisms that are active in the Hall of Fame at a given point represent
the best mechanisms that we know about at that point and theirperformance tells us
more directly how the best mechanisms evolve over time. Figure 2b shows the scores of
the ten active Hall of Famers at each step over 200-step runs.4 As in Figure 2a, the first
100 steps sees a clear, increasing trend. Even the scores of the worst of the ten at the end

4Note that the active Hall of Famers will be different mechanisms at different steps in the process,
so what we see in the figure is the performance of the best mechanisms we know of up to the
point we collected the data.
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Fig. 2: Scores of market mechanisms across 200 steps (games), averaged over 40 runs.

are above 0.35, higher than the highest score of the four fixedmarkets from Figure 2a,
and the difference is statistically significant at the 95% confidence level. Thus we know
that our approach will create mechanisms that outperform standard mechanisms, though
we should not read too much into this since we trained our new mechanisms directly
against them.

Third, a better test of the new mechanisms is to run them against those mechanisms
that we know to be strong in the context ofCAT games, asking what would have hap-
pened if our Hall of Fame members had been entered into priorCAT competitions and
had run against the carefully hand-coded entries in those competitions. We chose three
Hall of Famers, which are internally labeled asSM7.1, SM88.0, andSM127.1 and can be
represented in the parameterized framework in Section 2.2 as follows:

SM7.1 = MV + QO + AHτ=0.4 + CPp=0.3 + PNn=11 + GF0.1

SM88.0 = MTθ=0.4 + QT + AA + CPp=0.4 + PUk=0.7 + GF0.1

SM127.1 = MV + QS + AS + CPp=0.4 + PUk=0.7 + GF0.1

We ran these three mechanisms against the best recreation ofpastCAT competitions that
we could achieve given the contents of theTAC agent repository,5 where competitors
are asked to upload their entries after the competition. There were enough entries in the
repository at the time we ran the experiments to create reasonable facsimiles of the 2007
and 2008 competitions, but there were not enough entries from the 2009 competition
for us to recreate that year’s competition. TheCAT games were set up in a similar way
to the competitions, populated by 500 traders that are evenly split between buyers and
sellers and between the four trading strategies —ZI-C, ZIP, RE, and GD — and the
private values of sellers or buyers were drawn from a uniformdistribution between 50
and 150. For each recreated competition, we ran three games.

Table 1 lists the average cumulative scores of all the markets across their three
games along with the standard deviations of those scores. The three new mechanisms
we obtained from the grey-box approach beat the actual entries forCAT 2007 andCAT

5http://www.sics.se/tac/showagents.php.
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Table 1: The scores of markets inCAT games including the best mechanisms from
the grey-box approach and entries in priorCAT competitions, averaged over threeCAT

games respectively.
(a) AgainstCAT 2007 entries.

Market Score SD

SM7.1 199.4500 5.9715
SM88.0 191.1083 10.3186
SM127.1 180.1277 9.0289
MANX 154.6953 1.3252
CrocodileAgent 142.0523 9.0867
TacTex 138.4527 5.8224
PSUCAT 133.1347 5.6565
PersianCat 124.3767 11.2409
jackaroo 108.8017 8.6851
IAMwildCAT* 106.8897 4.4006
Mertacor 89.1707 4.9269

(b) AgainstCAT 2008 entries.

Market Score SD

SM7.1 196.7240 9.2843
SM88.0 186.9247 4.2184
SM127.1 183.5887 9.7835
jackaroo 177.5913 2.5722
Mertacor 161.5440 5.8741
MANX 147.3050 15.7718
IAMwildCAT 142.9167 8.9581
PersianCat 139.1553 17.9783
DOG 130.2197 18.9782
MyFuzzy 125.9630 1.9221
CrocodileAgent* 71.4820 5.8687
PSUCAT* 68.3143 6.7389

* IAMwildCAT from CAT 2007, andCrocodileAgent andPSUCAT from CAT 2008 worked
abnormally during the games and tried to impose invalid fees, probably due to competition
from the three new, strong opponents. Although we modifiedJCAT to avoid kicking out these
markets on those trading days when they impose invalid fees —which JCAT does in an actual
CAT competition — these markets still perform poorly, in contrast to their rankings in the actual
competitions.

2008 by a comfortable margin in both cases. The fact that we can take mechanisms
that we generate in one series of games (against the fixed opponents and other new
mechanisms) and have them perform well against a separate set of mechanisms suggests
that the grey-box approach learns robust mechanisms.

In passing, we note that the rankings of the entries from the repository do not reflect
those in the actualCAT competitions. This is to be expected since the entries now face
much stronger opponents and different markets will, in general, respond differently to
this. Excluding the markets that attempt to impose invalid fees and are marked with
‘*’, we can see that the overall performance of entries into the 2008CAT competition is
better than that of those into the 2007CAT competition when they face the three new,
strong, opponents, reflecting the improvement in the entries over time.

Finally, we tested the performance ofSM7.1, SM88.0, andSM127.1 when they are
run in isolation, applying the same kind of test that auctionmechanisms are tradition-
ally subject to. We tested the mechanisms both for allocative efficiency and, following
our work in [14], for the extent to which they trade close to theoretical equilibrium as
measured by the coefficient of convergence,α, even when populated by minimally ra-
tional traders. In [14] we investigated a class of double auctions, calledNCDAEE, which
can be represented as:
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Table 2: Properties of the best mechanisms from the grey-boxexperiments and the
auction mechanisms explored in [14]. AllNCDAEE mechanisms are configured to have
w = 4 in theirAE policies andn = 4 in theirPN policies.The best result in each column
is shaded. Data in the first four rows are averaged over 1,000 runs and those in the last
four are averaged over 100 runs.

Market
ZI -C GD

Ea α Ea α

Mean SD Mean SD Mean SD Mean SD

CDA 97.464 3.510 13.376 4.351 99.740 1.5534.360 3.589
NCDAEEδ=0 98.336 3.262 4.219 3.141 9.756 28.873 14.098 1.800
NCDAEEδ=10 98.912 2.605 5.552 2.770 23.344 41.727 7.834 5.648
NCDAEEδ=20 98.304 2.562 7.460 3.136 89.128 30.867 4.826 3.487
NCDAEEδ=30 97.708 3.136 8.660 3.740 99.736 1.723 4.498 3.502

SM7.1 99.280 1.537 4.325 2.509 58.480 47.983 4.655 4.383
SM88.0 98.320 2.477 11.007 4.25199.920 0.560 4.387 2.913
SM127.1 97.960 3.225 11.152 4.584 99.520 1.727 4.751 3.153

NCDAEE = ME + AEw,δ + CC + PNn

The advantage ofNCDAEE is that it can give significantly lowerα — faster convergence
of transaction prices — and higher allocative efficiency (Ea) than aCDA when populated
respectively by homogeneousZI-C traders and can perform comparably to aCDA when
populated by homogeneousGD traders.

We replicated these experiments usingJCAT and ran additional ones for the three
new mechanisms with similar configurations. The results of these experiments are shown
in Table 2.6 The best result in each column is shaded. We can see that bothSM7.1 with
ZI-C traders andSM88.0 with GD traders give higherEa than the best of the existing
markets respectively, and both of these increases are statistically significant at the 95%
level. Both cases also lead to lowα, not the lowest in the column but close to the lowest,
and the differences between them and the lowest are not statistically significant at the
95% level. Thus the grey-box approach can generate mechanisms that perform as well
in the single market case as the best mechanisms from the literature.

4 Conclusions and future work

This paper describes a practical approach to the automated design of complex mech-
anisms. The approach that we propose breaks a mechanism downinto a set of com-
ponents each of which can be implemented in a number of different ways, some of

6Our results are slightly different from those in [14], but the pattern of these results still holds. In
addition, we ran anNCDAEE variant (δ = 30) that was not tested in [14], observing that those
with δ ≤ 20 do not perform well when populated byGD traders.
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which are also parameterized. Given a method to evaluate candidate mechanisms, the
approach then uses machine learning to explore the space of possible mechanisms, each
composed from a specific choice of components and parameters. The key difference
between our approach and previous approaches to this task isthat the score from the
evaluation is not only used to grade the candidate mechanisms, but also the components
and parameters, and new mechanisms are generated in a way that is biased towards
components and parameters with high scores.

The specific case-study that we used to develop our approach is the design of new
double auction mechanisms. Evaluating the candidate mechanisms using the infrastruc-
ture of the TAC Market Design competition, we showed that we could learn mecha-
nisms that can outperform the standard mechanisms against which learning took place
and the best entries in past Market Design competitions. We also showed that the best
mechanisms we learned could outperform mechanisms from theliterature even when
the evaluation did not take place in the context of the MarketDesign game. These re-
sults make us confident that we can generate robust double auction mechanisms and,
as a consequence, that the grey-box approach is an effectiveapproach to automated
mechanism design.

Now that we can learn mechanisms effectively, we plan to adapt the approach to
also learn trading strategies, allowing us to co-evolve mechanisms and the traders that
operate within them.
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Abstract. Online markets have enjoyed explosive growths and emerged as an

important research topic in the field of electronic commerce. Researchers have

mostly focused on studying consumer behavior and experience, while largely ne-

glecting the seller side of these markets. Our research addresses the problem of

examining strategies sellers employ in listing their products on online market-

places. In particular, we introduce a Markov Chain model that captures and pre-

dicts seller listing behavior based on their present and past actions, their relative

positions in the market, and market conditions. These features distinguish our

approach from existing models that usually overlook the importance of histori-

cal information, as well as sellers’ interactions. We choose to examine successful

sellers on eBay, one of the most prominent online marketplaces, and empirically

test our model framework using eBay’s data for fixed-priced items collected over

a period of four and a half months. This empirical study entails comparing our

most complex history-dependent model’s predictive power against that of a semi-

random behavior baseline model and our own history-independent model. The

outcomes exhibit differences between different sellers in their listing strategies

for different products, and validate our models’ capability in capturing seller be-

havior. Furthermore, the incorporation of historical information on seller actions

in our model proves to improve its predictions of future behavior.

1 Introduction

Online marketplaces have fundamentally transformed businesses’ sale strategies and

consumers’ shopping experiences. Online retail in the United States alone generated a

revenue of $175 billion in the year of 2007 [6]. The rise of electronic commerce has

come with an influx of user-activity data extensively employed in improving shopping

sites’ profitability in many different ways, such as recommending relevant products or

personalizing search queries’ results. Researchers have indeed put an ever-increasing

focus on developing and deploying machine learning and mining techniques to extract

valuable information about users’ behavior. However, this surge of research on online

marketplaces has been largely limited to buyer-related issues, such as consumer behav-

ior, feedback mechanism, and fraud [4, 10]. As a result, there is a lot to be done in

terms of analyzing these marketplaces from the sellers’ perspective. Considering the

fast growing importance of electronic commerce across many industry sectors, we at-

tempt to bridge this gap between buyer and seller behavior studies with this pilot study
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on seller listing behavior. Online marketplace websites allow sellers to customize a wide

variety of their product listings’ features, such as listing duration, price, product descrip-

tion, shipping, pictures, and advertising banners, giving rise to a diverse and innovative

ways for sellers to list products on these sites. The diversity of products and sellers

and the sheer volume of items listed and sold on eBay motivate our study of analyzing

successful eBay sellers’ strategies. In particular, our work aims to identify and capture

listing strategies that help attract sizable numbers of shoppers on the site. Intuitively,

in order to maintain and gain their competitive advantage over other sellers, successful

high-volume eBay sellers need to devise and adopt listing strategies through different

mechanisms, such as adjusting their prices, number of listings, and listings’ features.

Moreover, different sellers may employ different listing strategies, which prompts us to

study how differences in sellers’ strategies translate into differences in sales.

In this paper, we propose a Markov Chain model to capture sellers’ strategic choices

in listing their products, and apply it to the study of eBay’s successful sellers. Specif-

ically, we first process and categorize data on sellers’ activities by grouping listings

of similar product categories and computing statistical measures that summarize same-

group listings. The processed data then constitute building blocks for our Markov chain

model of seller behavior. Furthermore, we demonstrate how one can validate our model

using testing data, and compare different instances of the model built for different prod-

ucts and sellers. Learning sellers’ strategies helps us to identify good seller listing prac-

tices that yield high and profitable sales, and moreover, suggest these practices to aver-

age sellers as a way to foster better and more efficient listings by the sellers. In addition,

we can also estimate how changes in eBay platform impact sellers’ strategies and thus

can make changes catered to sellers’ needs.

1.1 Related Work

Extensive research on online behavior of electronic markets’ participants has played

a vital role in improving buyers’ shopping experience and sellers’ profitability. The

ability to learn and predict buying behavior is the main focus of studies on recom-

mender systems, which employ data of buyers’ activities in tailoring their websites to

the users’ needs and preferences [1]. Sellers can also utilize models of buyers’ clicking

and viewing behaviors to suggest and test changes to their websites’ features and de-

sign to maximize profits [8, 5]. In dynamic pricing markets, such as eBay’s auctions,

where one buyer’s actions may affect other buyers’ trades, predictions of buyers’ bids

and the expected final price of an auctioned product are instrumental to both sellers

and buyers’ strategy construction. For instance, one solution to the problem of detect-

ing unusual harmful bidding behaviors on eBay’s marketplace, such as bid sniping, is

data-mining eBay bidders’ strategies for categorizing bidding patterns [12]. In addition,

when competing in a series of auctions, bidders can learn from past bidding-action data

and incorporate its predictions of other bidders’ behavior in forming their own bidding

strategies that may be the best response to the expected auction outcome [13, 7].

Seller behavior studies are usually of smaller scope and smaller number than those

on buyer behavior, as for many cases, only online market designers and operators, such

as eBay, Amazon, and Overstock, have the capability and resources to conduct such
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investigations. As electronic commerce is more amenable to dynamic pricing than tra-

ditional commerce is, examining and modeling online stores’ pricing strategies prove

to be valuable to maximizing sellers’ profits [9]. With the advent of eBay come several

studies on the product listing’s formats that eBay sellers should adopt to maximize their

profit. In particular, the “Buy It Now" option, which allows the seller to convert the

auction into a fixed price market, encourages higher bids for the auctioned items and

attracts more bidders [2]. A more general eBay seller’s strategy model that incorpo-

rates not only the “Buy It Now" option, but other features such as the auction’s length,

starting price, and product description, and employs statistical regressions, shows that

different types of sellers pursue systematically different strategies on listing their items

[3]. A similar study that employs clustering algorithms in grouping sellers based on

their characteristics of successful sales, reputation, and sale volume, and their listing

choices of price, duration, quantity, and volume, identifies important factors to support

sellers’ decision and recommend selling practices [11].

Our model of seller listing strategies involves a variety of factors that sellers can de-

cide for their fixed-price listings. However, unlike the aforementioned models [3, 11],

which only focus on one particular seller’s decisions, our model investigates seller be-

havior within the context of the entire market, in which sellers compete for buyers,

and consequently include market conditions and sellers’ relative positions in its repre-

sentations. Moreover, we account for the time-variant characteristic of sellers’ listing

strategies by including past listing choices in its state representations, instead of con-

ditioning seller behavior entirely on present conditions. Furthermore, our probabilistic

Markov model differs from the previously mentioned models as it induces a probabil-

ity distribution of listing actions, which can be employed in predicting sellers’ listing

behavior.

1.2 Contributions

1. We propose using a Markov Chain model for capturing and predicting seller list-

ing strategies on online marketplaces, and moreover, incorporate information on

sellers’ competition and historical data of listing activities in the model.

2. Our seller listing strategy model demonstrates that eBay sellers indeed do consis-

tently rely on certain strategies to decide how to list their inventory on eBay. We

empirically illustrate the top-ranked seller’s strategy variations across three differ-

ent product categories that we examined.

3. Our investigation of different sellers’ behaviors in the same product category sug-

gests that the best and second-best sellers adopt similar strategies in some cate-

gories, and differ in others. The best seller’s strategy diverges significantly from a

typical seller’s in the categories that we studied.

4. We empirically show that the inclusion of information on sellers’ past listing choices

indeed enhances the model’s predictive power for seller strategies.

In Section 2, we will proceed to describe the seller data obtained from eBay and the

data processing methods we employ to extract relevant information for our model con-

struction. Section 3 introduces our Markov Chain model of seller listing strategies, and
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specifies some of its variations, as well as proposes a validation process for these be-

havior models. Our empirical study in Section 4 analyzes and compare the performance

of our model and some baseline models in predicting seller listing behavior. Section 5

concludes the paper with some remarks and future research directions.

2 Overview of eBay Seller Data

We use data that capture eBay sellers’ sale activities over a certain time period in our

investigation of the sellers’ fixed-price product listing strategies on eBay’s marketplace.

Each tuple or listing in the data set describes different features and characteristics of a

product listing, among which are seller identification, product identification, listing’s

start date, listing’s end date, price, listing’s title, and average shipping cost.

Example 1. A listing from seller ’ABC’ of a black Apple iPod Nano for a price of $100

and average shipping cost of $7.5, active from 03/20/2009 to 03/27/2009, a listing from

the same seller of the same product for a price of $150 and average shipping cost of

$0, active from 03/21/2009 to 03/29/2009, and one from ’DEF’ of a red Apple iPod

Nano for a price of $150 and average shipping cost of $0, active from 03/20/2009 to

03/29/2009, are stored as follows. Note that these products belong to the same product

category of Apple iPod Nano, specified in the given product catalog.

Seller ID Product ID Start Date End Date Price Title Shipping

’ABC’ 111 03/20/2009 03/27/2009 $100 ’silver Apple iPod Nano’ $7.5

’ABC’ 222 03/21/2009 03/29/2009 $150 ’iPod Nano Apple NEW’ $0

’DEF’ 333 03/20/2009 03/29/2009 $150 ’iPod Nano Apple NEW RED’ $0

2.1 Product Clustering

As sellers can choose many different ways to describe the same product, the first step of

data processing is to group listings of the same product in order to capture and summa-

rize sellers’ listing strategies for different products. We use available catalogs to address

this problem. We first filter out data entries for bundled items, where two or more items

are grouped in one listing. We then compute the matching score πL,P between every

listing L in the seller data and every product P in the catalog based on its brand name

and description. L will then be classified as product P that has the highest matching

score πL,P . A product category P̂ consists of products P of different brands and mod-

els. For instance, iPhone charger and Blackberry charger belong to the product category

“charger." Our study assumes that sellers adopt the same strategy for all products in the

same product category, as managing each product’s listings individually appears to re-

quire an enormous amount of detail and effort, especially for a sizable inventory, that we

do not expect eBay sellers to be able to afford. In our model, sellers follow a coherent

listing strategy for each product category, such as charger, screen protector, battery, and

so on. The three listings described in Example 1 will be clustered as the same product

although their descriptions and titles are different.

116



5

2.2 Data Summarizing

Different sellers may adjust their listing strategies in different time frequency: some

may update their listing strategies every day while others may choose to change theirs

monthly. We simplify the problem by imposing a fixed time frequency of seller strategy

updates. As a listing can only stay active for a maximum of four weeks, and sold items

are mostly purchased within two weeks after their start date, we assume that sellers

updates their listing strategies every week.

For each product P and for each time interval t of one week, we capture and sum-

marize the state st
i,P of seller i’s own business and the market’s conditions for P using

the following set of parameters:

– pt
i,P : the average price of all listings of P starting in time interval t by i

– rpt
P : the average price of all listings of P starting in t

– lti,P : the total number of listings created by seller i in t for product P

– sht
i,P : percentage of free-shipping listings by seller i for product P in t

We only integrate in our models the above parameters, as they are identified as major

representative indicators of the market conditions sellers face. Our observation of a

significant difference between the rates of successful sales for free-shipping listings and

those that charge shipping fees prompts us to consider the percentage of free-shipping

listings, rather than the average shipping cost. In Example 1, under the assumptions that

seller ’ABC’ (index 1) only had those two listings for Apple iPod Nano, and he was the

sole seller of this product during the week starting on 03/20/2009, the Nano’s market

conditions will be: pt
i,P = 150+100

2
= $125; rpt

P = 150+150+100

3
= $133.33; lti,P =

2; sht
i,P = 50%.

3 Learning Sellers’ Listing Strategies

3.1 Overview

In this section, we detail the construction of predictive Markov Chain models of seller

listing behaviors using information abstracted from the seller data, as specified in Sec-

tion 2. These models will then help verify whether successful eBay sellers do employ

and exhibit any consistent strategies in listing their merchandise, and if so, how well

these learned models can predict their listing decisions. Figure 1 summarizes how data

are processed and employed in constructing eBay sellers’ listing strategy models.

3.2 Markov Models of Listing Strategies

For each pair of seller i and product category P̂ , we construct a corresponding Markov

Chain model of the i’s listing strategies for P̂ , under the assumption that sellers make

their strategic decisions based solely on what they observe in the present state ŝt

i,P̂
. Note

that this state notation slightly differs from the notation st
i,P above as ŝ is computed

over all P ∈ P̂ . The assumption that sellers’ strategies are coherent across different
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Fig. 1. Seller data are fed to the product clustering unit that uses a given product catalog to

categorize the listings. These processed listings are then grouped based on their owners (sellers),

and summarized in week long intervals. The model construction phase then learns the transitions

between states represented by these statistics.

products P in the same product category P̂ allows to us to employ ŝ, instead of s, for

constructing the listing strategy model.

Seller i executes action at at time t that transitions its current state to another state.

One can certainly add more complexity to this model by incorporating the history of

states that sellers have gone through. Given that eBay sellers are businesses of much

smaller size than online retail stores , we decided to only include seller i’s immediately

past action at−1 in the state representation at time t. Moreover, we will demonstrate

the benefit of including additional historical information in our models in the empirical

study.

State representation Each state of the model contains information about the market

condition and the seller’s new listings created in a time interval. Because our model’s

state space is discrete while the state representation s is continuous, we propose to

discretize s’s parameters to construct the model’s state s̄ as follows. For simplicity, we

drop the subscript notations i and P .

– p̄t ∈ {0, 1, 2} is the average price level of listings by seller i at time t, in which 0
corresponds to low price, 1 to medium, and 2 to high. We first compute the min and

max prices, pmin and pmax, across all sellers and all time periods for product P , and

then divide the interval [pmin, pmax] prices into 3 equal intervals, corresponding to

0, 1 and 2. Each price value pt is subsequently assigned a price level.

– r̄pt ∈ {0, 1, 2} corresponds to lower, equal, and higher prices by seller i relative to

the average price at time t. In each time interval t, we compute the average price
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across all sellers rpt and then categorize (pt − rpt) into one of the 3 categories that

equally divide the interval [pmin − pmax, pmaax − pmin]
– l̄t ∈ {0, 1, 2} denotes the volume of listings created by seller i. Since different

sellers have different inventory capacity, we compute the min and max number of

listings across time periods, but not across sellers. The number of listings is then

discretized and categorized as in price.

– s̄h
t
∈ {0, 1} represents the percentage of free-shipping listings by seller i for prod-

uct P in t, where 0 corresponds to the interval [0%, 50%] and 1 to the remaining.

Action representation An action by seller i at time t, at
i, explicitly represents the

changes in p̄, l̄, and s̄h for the new listings created by seller i at time t, relative to those

created at time t − 1:

at = (p̄t − p̄t−1, l̄t − l̄t−1, s̄h
t
− s̄h

t−1
) = (△p̄t,△l̄t,△s̄h

t
). (1)

Note that since the seller does not have control over relative price r̄p, we treat it as an

external parameter.

However, our primitive results showed that in a majority of the states, sellers take no

action, i.e. a = (0, 0, 0, 0). This is possibly a result of the state representation’s coarse-

ness: a seller’s transition from one state to another usually takes several time periods.

We therefore propose an alternative action representation where an action āt explicitly

specifies the discretized percentage difference between 2 states’ prices, listings, ship-

ping and feature:

△p̄t =































2 if pt − pt−1 > 2ǫp

1 if pt − pt−1 ∈ [ǫp, 2ǫp]

−1 if pt − pt−1 ∈ [−2ǫp, ǫp]

−2 if pt − pt−1 < −2ǫp

0 otherwise

(2)

The other action parameters △l̄ and △s̄h are defined similarly. We choose ǫp =
0.05, and ǫl = ǫsh = 0.1. Note that Equation 2 defines △p̄t using the original continu-

ous parameter p, instead of the derived discrete parameter p̄ in Equation 1. As a result,

the new △p̄ captures more accurately changes in market conditions and seller listings.

State-action model Imposing the Markov property on our model may limit its expres-

sive power, since sellers may review their past actions’ effectiveness and incorporate

such evaluations in their decision for the next move. In an effort to incorporate such in-

formation, we extend our model’s state representation such that a state not only contains

information immediately available at time t but also the seller’s last action. However,

instead of adding the entire past action āt−1 in the new state representation ṡt, we

only incorporate the two more important parameters △p̄t−1 and △l̄t−1. In other words,

ṡt = (s̄t,△p̄t−1,△l̄t−1). The exclusion of △s̄h
t−1

in this state-action representation

is to balance the model’s complexity and its expressiveness.
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State-action transition model Since we are mostly interested in the actions the sellers

take in certain market environments, we compute and present the transition model from

state to action, instead of the typical state-state transition model. In other words, we

would like to estimate for the probability distribution of actions a seller may take in a

particular state: Pr(ā|ṡ). An edge from a state to an action indicates the probability and

the number of times that the seller’s taking ā in state ṡ, Pr(ā|ṡ) and c(ā|ṡ) respectively.

Figure 2 displays an example state-action transition model. We will next present the

learning method for our state-action transition model, and show empirical study of its

prediction performance in comparison with some baseline models.

p = 2

rp = 0

l = 2

sh = 0

" p = 0

" l =1

" p = 0

"rp = 0

" l = #1

"sh = 0

" p = #1

"rp = 0

" l = #1

"sh = 0

Pr=0.15 

c=6!

Pr=0.85!

c=34!

Fig. 2. Markov state-action transition model

3.3 Model Learning

Given seller data D, we are able to divide the listings based on their time interval,

products, and sellers, as described in Section 2. For each of these listing sets, we can

compute the corresponding state ṡD and action āD, employing the methods in Section

2.2 and Section 3.2. Consequently, we can learn the Markov Chain strategy model from

D:

c(ā|ṡ) =
∑

D∈D

I{āD=ā|ṡD=ṡ}

Pr(ā|ṡ) =

∑

D∈D I{āD=ā|ṡD=ṡ}

∑

D∈D I{ṡD=ṡ}

where I{āD=ā|ṡD=ṡ} = 1 if the state and action induced from data entry D ∈ D

are ṡ and ā respectively, and 0 otherwise. Similarly, I{ṡD=ṡ} = 1 if the state is ṡ for

data entry D ∈ D.
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3.4 Evaluation

In order to evaluate the predictive power of a model, we calculate the testing data D
′’s

log likelihood induced by the model:

LM =
1

|D′|

∑

D∈D′

log(Pr(āD|ṡD)

In order to compare two models M1 and M2, we subsequently compute the ratio

between their log likelihood measures on the same data set D′:

LM1,M2
=

LM1

LM2

. (3)

When we compare two strategy models M1 and M2 constructed from two different

data source D1 and D2, we need to compute the corresponding LM1,M2
(LM2,M1

) on

the same testing data set D
′
1 (D′

2) to qualitatively determine the similarity between

the strategies that the two models represent. Furthermore, we introduce a new notation

L̂M1,M2
= 1 − LM1,M2

to evaluate how better in prediction one model (M1) is against

another (M2). We would like to emphasize that both measures LM1,M2
and L̂M1,M2

are

proper scoring functions, and thus, encourage accurate predictions [14].

4 Empirical Results

4.1 Experiment Overview

We employ our models to learn seller strategies in the subcategory “Cell phone and

PDA accessories.” The seller data set consists of all listings in this subcategory for the

span of three months, which consists information of over 100000 listings or auctions.

The output data set spans over a period of one and a half months. Three product cat-

egories, cell phones’ “charger,” “battery,” and “screen protector," are chosen for our

experimental study, as there are a sufficiently large number of listings and reasonably

small number of product variations for these categories.

Let S0 be the top seller, S1 is the second best seller, and S2 is the typical seller. S2 is

chosen such that S2’s sale-through rate is approximately half of S0’s and S2’s number

of listings is less than one half of S0’s.

Semi-random Model First, we would like to determine if successful sellers in gen-

eral do employ any listing strategies by comparing our model with a baseline model

M0, which entails computing the relative measure LM,M0
. The observation that many

actions taken are ā = (0, 0, 0, 0) and sellers tend not to change their listings too dramat-

ically leads to setting Pr((0, 0, 0, 0)|ṡ) = 0.5 for all ṡ in M0. Moreover, M0 assumes

that the seller chooses “extreme" actions that have either 2 and/or −2 in their repre-

sentation tuple ā with zero probability, and the remaining actions are chosen uniformly

randomly. Therefore, M0 is a pre-determined semi-random model of listing strategies

that incorporates some rule-of-thumb knowledge about seller behavior.
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History-independent Model Our model, described last in Section 3.2, is a history-

dependent model as it incorporates information about both the current market environ-

ment and the past market conditions in its state representation ṡt = (s̄t,△p̄t−1,△l̄t−1).
For the purpose of assessing the benefits of including historical information in repre-

senting sellers’ behavior, we empirically compare this model with a history-independent

baseline model Mh, whose state representation is simply s̄t,. In other words, this ad-

ditional baseline model simply dismisses the importance of past actions in predicting

future actions, and bases its predictions solely on information available at the present

time period.

4.2 Results

In Table 1, we can observe that our models for sellers S0 and S1 outperform the corre-

sponding semi-random baseline model with significant margins of approximately 70%.

This outcome confirms that sellers do adopt actively strategies in listing their items for

sale, instead of randomly deciding on their listings’ specifications or using the same

features for their listings.

Charger Battery Screen Protector

L̂Ms0
,M0

77.9% 69.8% 77.4%

L̂MS1
,M0

67.1% 62.8% 57.7%

Table 1. Comparison against the baseline model M0

We next investigate for the top seller in this subcategory: we are interested in testing

if he adopts different strategies for different product categories. Note L̂M1,M2|D′

1
corresponds

to the testing scenario where we validate models M1 and M2using model M1’s testing

data set D
′
1. The results displayed in Table 2 show that the top seller, S0, appears to

execute relatively different strategies for different product categories.

L̂M1,M2|D
′

1
L̂M2,M1|D

′

2

Charger vs. Battery 30.1% 25.3%

Charger vs. Screen Protector 36.9% 22.1%

Battery vs. Screen Protector 32.7% 40.6%

Table 2. Strategy models of different product categories for the top seller

Moreover, we are interested in comparing strategies of different sellers for the same

product category. Table 3 shows that the best and second-best sellers have similar strate-

gies in the two product categories: charger and battery, but different strategies for the

screen protector category. The gap between the top seller and the typical seller is much

more prominent: their strategies diverge significantly for both charger and screen pro-

tector (There are an insufficient number of observations in the battery category for S2).
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Charger Battery Screen Protector

L̂MS0
,MS1

|D′

S0

10% 5.6% 45%

L̂MS0
,MS2

|D′

S0

69% N/A 60%

Table 3. Strategy models of different product categories for the top seller

The next study assesses the effect of incorporating past actions in our models’ state

representations by comparing their performances with that of history-independent mod-

els Mh, as previously outlined. Table 4 shows that our models consistently outperform

history-independent models by 60% to 70%, affirming the benefits of including infor-

mation about past actions in capturing and predicting sellers’ listing strategies. Note that

these differences are smaller than those between Ms0
and M0, which suggests that the

history-independent models do possess more predictive power than the semi-random

baseline. A further study on models that only incorporate past actions but no present

market conditions will help to evaluate more thoroughly the importance of different

past and present information sources.

Charger Battery Screen Protector

L̂Ms0
,Mh

76.1% 67.9% 61.2%

Table 4. Comparison against the history-indepedent model Mh

In order to examine more closely these strategies’ effectiveness, we proceed to com-

pare S0 an S2’s strategies in similar state scenarios. We propose to evaluate an action

based on the change in sale-through rate, the ratio of successful sales over all listings,

and the seller’s average revenue per listing. Given that listings created at time t may

affect sales of formerly created listings that are still active, it is non-trivial to compute

these measures of effectiveness. We decided to include items sold within 2 weeks from

time t in the calculation of āt’s effectiveness, while including items sold after 2 weeks

from their original listing date in the computation of āt′ ’s effectiveness, where t′ is the

time interval where they are sold. For instance, at time t = 0, if seller ’ABC’ listed

5 items, 2 of which were sold at time t = 1 and the other 3 were sold at t = 4, his

sale-through rate at t = 0 is 40%, while his sale through rate at time t = 4, assuming

that he has nothing else to sell, is 60%.

We observe that when price, relative price and listing are all at the medium level,

seller S0 seems to mix different actions from adjusting price to increasing the number

of listings. All these actions produce considerable gains in average revenue, ranging

from $2.5 to $29.13, with no considerable decline in sale-through rate. At the same

time, seller S2’s main action is decreasing listings, which gives him a negligible boost

in revenue. When price is low, relative price is medium and listing is high, seller S0

again appears more effective: decreasing price only helps him to improve sale-through

rate and revenue by 0.3% and $12.5; decreasing listing only does not hurt sale-through

rate; increasing both listing and price cause his revenue to grow by $4.7. On the other
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hand, seller S2 mostly increases listing, which leads to a decline in his sale-through

rate by 0.35%. These results suggest that seller S0 executes a wider range of generally

more complex actions, which often result in more gains in both his sale-through rate

and average revenue. For other states, the difference between their actions is much less

pronounced.

5 Conclusions

This paper introduces a Markov Chain strategy model that captures sellers’ listing ac-

tivities, accommodates probabilistic reasoning about their behavior, and enables the

inclusion of historical information. We also describe and demonstrate the application

of our model in comparing listing strategies from different sellers across different prod-

uct categories. The empirical results exhibit the difference in listing behavior between

sellers of different success levels, as models best predict listing behavior of the users

whose data are used in constructing those same models. An investigation on the top

seller’s strategies reveals that he employs moderately different strategies for different

product categories, which illuminates the complexity of seller listing strategies. Fur-

thermore, the experimental section also highlights the model’s capability of capturing

sellers’ listing strategies, in comparison to a semi-random baseline model and a history-

independent variation of the model. We empirically show that the incorporation of past

listings does significantly improve our model’s predictive power. In addition, using sale-

through rate and average revenue per listing to measure the effects of an action is the

first step to convey and promote its benefits to businesses.

This pilot study definitely has room for further explorations and extensions. First,

we would like to extend our study for many different product categories outside of

“Cell phone and PDA accessories," and to include more sophisticated baseline mod-

els adopted from the regression-based model and clustering-based model described in

Section 1.1 [3, 11]. In addition, a study on the effects of the amount of historical data

employed in the model’s state representation will definitely provide more guidelines

on improving the current model. Moreover, incorporating in the current model game-

theoretic multiagent reasoning that take into account strategic reasoning among sellers

and solve for the market’s equilibrium states will help us to understand and capture their

behavior more systematically and thoroughly. Although the performance measures em-

ployed in our study are proper scoring functions, conveying their implications using

business-friendly terminologies will advance the importance of this study and in gen-

eral the problem of modeling seller behavior.
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Abstract. Advertising mechanisms for search engines (i.e., sponsored
search auctions) have recently received a lot of attention in the scientific
community. Advertisers bid on keywords and, when a user enters key-
words for her search, the search engines uses an auction mechanism to
select the list of sponsored links to display alongside the search results.
In this paper, we make a first attempt to extend the currently available
mechanisms for sponsored search auctions to the new paradigms of search
computing. According to them, multiple federated domain-specific search
engines are integrated by a special search engine (called integrator). The
user can enter a multi-domain query that is decomposed by the integra-
tor in single-domain queries and these are singularly addressed to the
most appropriate domain-specific search engine. The integrator merges
the search results. We propose a business model for this scenario and
we develop an economic mechanism for it resorting to the automated
mechanism design approach.

1 Introduction

Sponsored search auctions [1, 2] play a prominent role in Internet advertising,
generating more than 90% of the search engines’ revenues. A large number of
theoretical/practical works can be found in the very recent literature. Never-
theless, this market is still largely unexplored and a number of problems are
currently open. The functioning of sponsored search auctions is simple. When
a user enters keywords into a search engine, several sponsored links related to
the entered keywords are displayed alongside the search results, e.g., see [3]. The
search engine chooses the sponsored links to display and the ranking over them
by using an auction mechanism where the bidders are advertisers and the item
over which they bid are keywords. The payment scheme is the pay-per-click,
i.e., the advertiser pays the search engine only after a user has clicked on its
sponsored link.

The most employed auction mechanism in sponsored search auctions is the
generalized second price (from here on GSP) [4] that is an ad hoc extension of
the Vickrey auction (from here on VA) [2] to the setting where a set of ranked
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objects is being sold. In the VA, a winner pays the second highest bid, while, in
the GSP, each winner pays an amount equal to its next highest bid. However, as
shown in [4], in the GSP the truth telling strategy is not (generally) optimal for
the players, as instead it is in the VA. The exact generalization of the VA to the
above settings, satisfying the property that the truth-telling strategy is optimal,
is similar to the GSP except for the definition of the payments. Although this
last mechanism is strategy-proof and could assure a higher degree of the outcome
stability, it is not currently adopted in real-world applications.

The available economic mechanisms for sponsored search auctions effectively
work with the major general-purpose search engines. However, the recent ad-
vancements in the search computing field lead to the definition of novel searching
paradigms that rise new challenges and that require extensions of the available
auction mechanisms [5, 6]. The main general-purpose search engines crawl the
Web and index Web pages, finding the best pages for each specific list of keywords
with excellent precision. Anyway, the so-called “deep Web” contains information
that is more valuable than that contained in single Web pages and the current
general-purpose search engines are not able to discover it. The development
of new searching paradigms able to address more complex searches than those
addressed to the current search engines and to discover deeper information is
currently one of the most interesting challenges in the search computing field. In
particular, the emerging paradigm is based on the integration of heterogeneous
data sources. According to that, a special search engine (from here on integrator)
integrates the results produced by multiple domain-specific search engines, e.g.,
see [7]. The basic idea is the following. The user’s search is a multi-domain query.
Each multi-domain query is automatically decomposed by the integrator in mul-
tiple single-domain queries and each of them is addressed to the most appropriate
domain-specific search engine. Obviously, when a query addresses a specific do-
main, domain-specific search engines works better than general-purpose ones.
Once the integrator has received the search results from all the domain-specific
search engines, it aggregates them in a unique result. This is shown by using ad

hoc interfaces that allow the user to explore the search results, adding/removing
domains and thus refining the search itself, e.g., see [9].

The search computing field is working exclusively on the searching techniques
and is neglecting the business model behind the above scenario (e.g., what kind
of contracts will be drawn up between the integrator and the domain-specific
search engines?). Currently the commercial use of the search results produced
by a search engine is ruled by a contract between the search engine and the
publisher prescribing that the publisher must display the list of sponsored links
produced by the search engine, e.g., as in [10]. Once a user clicks on a sponsored
link, the search engine receives the payment from the corresponding advertiser
and gives part of it to the publisher. The payment ratio kept by the search
engine is defined by a commercial contract and it is independent of the specific
search. On the one hand, the basic idea behind this business model can be
“naturally” applied to the above scenario. On the other hand, the contracts
between the publisher (in our case the integrator) and the search engines (in
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our case the domain-specific search engines) must be reconsidered keeping into
account that each search engine plays a role in the search process. Our opinion
is that the contracts between the integrator and the search engines should be
drawn up dynamically, depending on the specific search and, in particular, on
the contribution provided by the specific search engine to the search.

In this paper we propose an economic mechanism [11] to rule the contracts
between the integrator and the domain-specific search engines. In our proposal,
the integrator receives the lists of sponsored links from the domain-specific search
engines and merges them in a unique list. In the merging process, the integrator
keeps into account the advertisers’ bids and click probabilities related to the list
of each domain-specific search engine in order to generate the list of sponsored
links that gives the largest expected utility. Being the information on the adver-
tisers’ bids and click probabilities private for each domain-specific search engine,
we must produce the appropriate incentives to the domain-specific search engines
not to misreport such a information. We formulate this problem as a single-stage
mechanism design problem [2] and we discuss the desired properties. We show
that the domain-specific search engines present interdependent valuations due
to the aggregation of their information. We study it by using the automated
mechanism design approach [12]. It provides a flexible tool to design mecha-
nisms on-the-fly and allows one to customize each problem by varying different
objective functions and adding/removing possible constraints over the contracts.
However, the hardness of solving an automated mechanism design problem al-
lows us to solve in exact way only small settings with a few of search engines
and advertisers. For large settings, approximate (anytime) algorithms can be
developed to produce a sub-optimal solutions by a given deadline.

Finally, we remark that the possibility to integrate multiple lists of sponsored
links provides, in our opinion, two advantages. First, the integrator can target
at best the advertisement to the user by exploiting multiple information sources
(i.e., the domain-specific search engines) and the user’s feedback during her
exploration of the search. Second, this paradigm allows domain-specific search
engines to federate together and to be real competitors to the major general-
purpose search engines. This could open new economic opportunities for online
advertising.

The rest of the paper is structured as follows. In Section 2, we discuss the
state of the art related to the sponsored search auctions, the multi-domain search
computing, and the automated mechanism design. In Section 3, we propose a
business model for the scenario we study, we formally state an economic mecha-
nism, we discuss the desired properties, and we formulate the problem of design-
ing the mechanism as an automated mechanism design problem. In Section 4,
we discuss some examples. Section 5 concludes the paper.

2 State of the Art

We introduce a formal model of sponsored search auctions in Section 2.1, we
discuss the multi-domain search computing paradigm in Section 2.2, and we
survey the idea behind the automated mechanism design in Section 2.3.
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2.1 Sponsored Search Auctions

The formal model of a sponsored search auction is constituted by m items (i.e.,
the ranked set of slots for sponsored links given a specific keyword) sold by the
auctioneer (i.e., the search engine) and by a set of bidders (i.e., the advertisers)
N = {1, 2, . . . , n} where n ≥ m. Each advertiser can submit a bid constituted by
a value per click on the advertisement for a keyword. The bid is unique for all
the slots. Being the payment scheme pay-per-click, each advertiser pays nothing
if its sponsored link is displayed but not clicked by the user. Instead, in the case
the user clicks on the link, the advertiser is required to pay an amount of money
that is non-larger than its bid. The exact value of the payment is carried out by
the auction mechanism.

The search engine assigns to each bidder a click probability called click-

through-rate (from here on CTR) [2]. CTR depends on various factors including
the probability that users click on advertisement, the relevance of the bidders’
advertisement, and so on. Formally, we denote by αi,j the probability that the ad-
vertiser i’s sponsored link is clicked when it is displayed on the j-th highest slot.
Usually, these probabilities are supposed to be separable into two independent
components, where the first component refers only to the advertiser and the sec-
ond component refers only to the position of the slot. Formally, αi,j = αai · αrj

where αai is the probability that advertiser i is clicked independently of the
specific slot in which its sponsored link is displayed and αrj

is the probability
assigned to the j-th highest slot independently of the specific advertiser. The
common assumption is that αr1

> αr2
> . . . > αrk

. Currently, Google ranks the
advertisements by using a separable CTR.

The GSP auction extends the VA as follows. We call bi the bid submitted
by advertiser i. The auctioneer ranks the bids in decreasing order in the value
αai · bi. For the sake of simplicity suppose that, given αai and αah

, if i < j, then
αai ·bi > αah

·bh. The advertiser with αa1
·b1 will be displayed at the first slot, the

advertiser with αa2
· b2 will be displayed in the second slot, and so on. Once the

sponsored link displayed in the i-th position is clicked, the i-th advertiser pays

pi =
αai+1

·bi+1

αai
to the search engine (while the other search engines’ payments

are zero).

2.2 Multi-Domain Search Computing

The new advancements produced in the field of the search computing are di-
rected to fill the gap between general purpose search engines and domain-specific
search engines. General purpose search engines work well in finding Web pages
related to the entered keywords, but are unable to find information spanning
multiple topics. Domain-specific search engines work well in finding structured
information spread on multiple Web pages related to a specific domain, but their
expertise is clearly limited to a given domain. An expert user can perform several
independent searches and then manually combine the results, but the missing
aspect is the ability of joining the results of each search process so as to build a
collective answer.
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The emerging search computing paradigm prescribes that a user can com-
pose her search as a multi-domain query and this is addressed to a federated
search platform. Each single-domain query is addressed to the most appropri-
ate domain-specific search engine. The search results produced by the domain-
specific search engines are merged by an integrator through syntactic and/or
semantic joint methods [13]. The merging of the search results is only the first
feature provided by the integrator. Indeed, this allows a user to explore the search
by changing modularly the dimensions of the multi-domain query. In particular,
a user can add or remove dimensions, can manipulate results via composition
and aggregation, and can reorder results [14].

Search results are shown through tables where the columns are the dimen-
sions and the rows are items of the search. In the cells of the tables, information
related to the specific item and dimension is reported. An example is Google
Squared [9]. The definition of a business model for federated search engines and
the integrator is currently an open problem.

2.3 Automated Mechanism Design

Classical mechanism design provides general mechanisms, satisfying some notion
of non-manipulability and maximizing some objective. The most famous general
mechanisms, VCG and dAGVA [2], only maximize social welfare. For almost all
the other social choice functions, there is no known mechanism that implements
them. For example, revenue-maximizing mechanisms are only known for very
restricted settings, such as the Myerson’s expected revenue maximizing auction
for selling a single item, and the Maskin and Riley’s expected revenue maxi-
mizing auction for selling multiple identical units of an item [2]. In practice, a
designer often has prior information over agents’ types and only needs to design
a mechanism suitable for her particular context. In the automated mechanism
design approach, a mechanism is designed automatically for the specific pref-
erence aggregation problem. The mechanism design problem can be formulated
as an optimization problem where the input is characterized by the number of
agents, the agents’ possible types (preferences), and the aggregator’s prior prob-
ability distributions over the agents’ types and the output is a non-manipulable
mechanism that is optimal with respect to some objective.

3 The Economic Mechanism

We propose a business model in Section 3.1 for multi-domain search computing
scenarios in which domain-specific search engines are federated, we formulate an
economic mechanism supporting our business model in Section 3.2, we discuss
the desired properties of our mechanism in Section 3.3, and we state the problem
of designing the social choice function and the payments in our mechanism as
an automated mechanism design problem in Section 3.4.
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3.1 The Proposed Business Model

The commercial use of the search results is currently ruled by a contract between
the search engine and the publisher prescribing that the publisher must display
the list of sponsored links alongside the search results, e.g., see [3]. If the user
clicks on a sponsored link, the corresponding advertiser pays the search engine
which, in its turn, gives a part of the revenue to the publisher. The ratio of
revenue kept by the search engine does not depend on the specific search and is
established by the contract. The values of the advertisers’ bids and the corre-
sponding click probabilities constitute private information of the search engine
and are hidden to the publisher.

This business model can be easily applied to the case in which an integrator
merges the search results of multiple search engines. The idea is:

– the integrator merges the lists of sponsored links returned by each single
domain-specific search engine,

– the payments from the domain-specific search engines to the integrator de-
pends on the specific search.

The crucial issue is the development of techniques that allows the integrator
to produce the list that maximizes a given objective function (e.g., the ex-
pected revenue of the integrator or the expected revenue of a combination of
specific-domain search engines). We propose an economic mechanism to govern
the merging of the lists where:

– the domain-specific search engines communicate to the integrator their pri-
vate information (values of the bids and click probabilities) concerning the
sponsored links related to their own list;

– the integrator produces an estimation of the click probability for each spon-
sored link as a function of the received click probabilities (e.g., averaging the
click probabilities of a sponsored link over the different search engines);

– the integrator selects the list of sponsored links in order to maximize a given
objective function (e.g., the integrator’s expected utility or the cumulative
expected utility) and produces the appropriate incentives (i.e., payments) for
each domain-specific search engine to make them not misreport their true
values;

– the integrator keeps into account how the user explores the search results in
estimating the click probabilities and produces a new list of sponsored links
every time the user add/remove domains.

In what follows, we formally state the economic mechanism.

3.2 The Formal Mechanism

We consider a direct mechanism [2] M(X, S,Θ, V, f, p) where the agents are the
domain-specific search engines (from here on we omit “domain-specific”) and
the integrator acts as auctioneer. We denote by X the set of alternatives. For
the sake of presentation, we formally define X below, after having defined S and
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Θ. We denote by S the set of search engines. We denote by A the overall set of
advertisers and by A(s) with s ∈ S the set of advertisers appearing in the list of
sponsored links of search engine s. Each advertiser a ∈ A(s) is characterized by
a bid b and a click probability α that are private information for search engine s.
The type θs ∈ Θs of search engine s specifies a value for b and a value for α for
all the advertisers a ∈ A(s). Set Θ is composed by all the sets Θss and θ denotes
the profile of search engines’ types. We assume that we have a probabilistic prior
over Θs and we can represent it as a set of independent probability distributions,
each over a specific advertiser a ∈ A(s). In particular, we denote by Θs,a the set
of possible types of advertiser a appearing in the list of sponsored links of search
engine s and we denote by θs,a ∈ Θs,a the type. We introduce the functions
b(θs,a) : Θs,a → R, returning the bid submitted by advertiser a to search engine
s related to type θs,a, and α(θs,a) : Θs,a → [0, 1], returning the click probability
of advertiser a in the sponsored link list of search engine s related to type θs,a.
Generally, an advertiser a can appear in the lists of more than one search engine
with different values of bid and click probability, i.e., b(θs,a) can be different from
b(θs′,a), as well as α(θs,a) can be different from α(θs′,a). We denote by ω(θs,a)
the probability that the actual type of advertiser a for search engine s is θs,a.
Therefore, the type of search engine s is a tuple specifying the type related to
each advertiser a ∈ A(s), e.g., θs = (θs,1, . . . , θs,|A(s)|). The probability ω(θs)
related to θs is defined as ω(θs) =

∏

θs,a∈θs
ω(θs,a).

Now we focus on set X. An alternative x ∈ X specifies a winner for each slot
of the list of sponsored links displayed by the integrator. We assume that the
number of available slot is fix and it is equal to k. A winner is identified by a pair
(s, a), that is advertiser a related to the sponsored link list of search engine s.
This is because the same advertiser a ∈ A can appear in the sponsored link lists
of different search engines. We need to specify the search engine to which the
sponsored link belongs because such a search engine will be paid by the advertiser
and a may have submitted different bids to different search engines. Formally,
x = 〈(s, a), . . . , (s′, a′)〉, where the first element of x specifies the winner of the
first slot, the second element of x specifies the winner of the second slot, and so
on. The unique constraint is that a sponsored link can appear only in one slot,
that is, for all a and a′ appearing in x in different positions, we have a 6= a′.

We denote by V the set V = {vs : s ∈ S} where vs : X → R denotes the
valuation function of search engine s. Given x, if s does not appear in x, then
vs(x) = 0. Instead, if s appears in x, vs(x) returns the s’s expected valuation
over x defined as: for each (s, a) ∈ x, the s’s expected valuation is the product
between the a’s click probability and the valuation that s receives when the
a’s sponsored link is clicked. Before formally stating v(x), we focus on these
two elements. First, we consider the a’s click probability. It is a function of
α(θs′,a) for all s′ where θs′,as are the reported types. That is, the integrator
produces an estimation of such click probability, denoted by α(a), aggregating
the click probabilities over the advertiser a of all the search engines s such that
a ∈ A(s). In estimating α, the integrator can exploit several parameters, e.g.,
it can assign different weights to different search engines or excluding search
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engines, once the user has removed the corresponding dimension. In our work

we use a simple estimator: the average α(a) =
P

s∈S:a∈A(s) α(θs,a)

|A| . Second, we

consider the valuation that s receives when the a’s sponsored link is clicked. In
this work we assume that advertiser a pays to s exactly its bid. Essentially, we
assume a first-price approach. We make this assumption for simplicity because
we are focusing only on the interaction between the integrator and the search
engines. In future works, we shall consider also the interaction between the search
engines and the advertisers. Now, we are in the position to formally state vs(x)
as vs(x) =

∑

(s,a)∈x α(a) · b(θs,a) where θs,as are the true types of s.

In mechanism M, f and p define respectively the social choice function and
the search engines’ payments. More precisely, f is a function f : Θ → X that
given the type of all the search engines returns an alternative, while p : Θ →
R

k·|S|, where k is the number of slots, returns the payment for each search engine
for each situation in which one sponsored link is clicked. We use a quasi-linear
setting where the utility of a search engine is equal to the difference between its
valuation and the payment. We want to design f and p such that M satisfies a
set of properties.

3.3 Required Properties

Before discussing the properties we require that our mechanism satisfies, we
underline that, in the general case, search engines in mechanism M present
interdependent valuations [15, 16]. This is because vs(x) depends on α(a) that,
in its turn, depends on θs′,as for all s′. Exclusively when A(s)∩A(s′) = ∅ for all
s 6= s′, α(a) depends only on the type of the search engine s such that a ∈ A(s)
and therefore the search engines’ valuations are not interdependent. We require
the following properties.

(Ex-post) Individual rationality. For every x such that f(θ) = x, we require
that, for every realization of x, the utility of all the search engines is non-negative.
This requires that, given x, whenever a sponsored link a related to search engine
s is clicked, s does not pay the mechanism more than b(θs,a), while the payments
of all the other search engines s′s are non-positive.

(Ex-post Nash and Bayesian) Incentive compatibility. We require the imple-
mentation of f either in ex-post Nash or in Bayes-Nash equilibrium. Therefore,
we require that each search engine reporting its true type is an optimal strategy.
(We use ex-post Nash implementation instead of dominant strategy implementa-
tion because in our problem valuations are interdependent. We recall that ex-post

Nash and dominant strategy implementations are always the same except when
the valuations are interdependent.)

(Ex-post) Weak budget balance. For every x such that f(θ) = x, we require
that, for every realization of x, the cumulative payments of the search engines is
non-negative. This requires that, given x, whenever a sponsored link a appearing
in the sponsored link list of search engine s is clicked, the sum of search engines’
payments excluded s is not smaller than −b(θs,a). The revenue of the integrator
is equal to the cumulative payments of the search engines.
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Optimality. We consider several objective functions: the maximization of the
ex-ante expected utility of the integrator (defined as the sum of the expected
payments of the search engines), the maximization of the ex-ante cumulative
expected valuations of the search engines, the maximization of the ex-ante cu-
mulative expected utilities of the search engines, and the maximization of the
ex-ante expected utility of a specific search engine. The choice of the objective
function depends on the specific contract.

We remark that in the general case (interdependent valuations) our mech-
anism cannot be efficient. Indeed, with interdependent valuations and multiple
signals a one-stage mechanism may not be incentive compatible and efficient [17]
(with two-step mechanism is instead possible to have efficient incentive compat-
ible mechanisms [16]; we shall explore this option in future works). It can be
easily shown that even in the basic case in which there are two search engines
and the same advertiser for both search engines, and only the click probabilities
are uncertain, a one-stage mechanism may not be incentive compatible and ef-
ficient. Indeed, in the case each player has a single signal, three conditions need
to be satisfied in order to make a mechanism incentive compatible and efficient,
see [17]. One of these requires that ∂vs

∂θs
>

∂vs′

∂θs
for all s, s′. Generally this condi-

tion is not satisfied in our basic case. As a result, f cannot be easily defined as
the argument maximizing the social welfare, as instead it is possible for efficient
mechanism.

3.4 The Automated Mechanism Design Formulation

We formulate our mechanism as an automated mechanism design [12] problem.
We represent f as a collection fs,a,θ,r ∈ {0, 1} where fs,a,θ,r = 1 means that
advertiser a related to search engine s is assigned position r when type profile
of the search engines is θ. Index r belongs to the range R = {1, . . . , k}. For
simplicity, for a ∈ A \ A(s) we set fs,a,θ,r = 0, b(θs,a) = 0, and ω(θs,a) = 0. We
introduce the constraints in a mathematical programming fashion. Initially, we
constrain every sponsored link a to appear at most in one position r:

X

r∈R

X

s∈S:a∈A(s)

fs,a,θ,r ≤ 1 ∀θ ∈ Θ, ∀a ∈ A (1)

We constrain that for each position r there is exactly one sponsored link:

X

s∈S

X

a∈A

fs,a,θ,r = 1 ∀θ ∈ Θ, ∀r ∈ R (2)

We denote by ps,θ,r the payment of the search engine s when the r-th sponsored
link is clicked and the type profile is θ. To make the mathematical programming
formulation easier, we divide ps,θ,r in payments concerning the single advertisers,
one for each of them. We denote these payments by ps,a,θ,r and we define ps,θ,r =
∑

a∈A(s) ps,a,θ,r for all s ∈ S, θ ∈ Θ, and r ∈ R. The ex-post individual rationality
constraints make each search engine to pay no more than its valuation, formally,
we have:

ps,a,θ,r ≤ b(θs,a) · fs,a,θ,r

∀s ∈ S,∀a ∈ A(s),

∀θ ∈ Θ, ∀r ∈ R
(3)
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We require further that, if the sponsored link of advertiser a is displayed at
the r-th position when the type profile is θ, then its payment is non-negative,
formally, we have:

ps,a,θ,r ≥ −M ·

0

@1 −
X

a′
∈A(s)

fs,a′,θ,r

1

A

∀s ∈ S,∀a ∈ A(s),

∀θ ∈ Θ, ∀r ∈ R
(4)

where M is an arbitrarily large number. With abuse of notation we denote by
α(a, r) the probability that the integrator assigns to a when it is displayed at
the r-th position. We represent θ = (θs, θ−s) where θs is the type profile of
search engine s and θ−s is the type profile θ once excluded θs. The ex-post Nash
incentive compatibility constraints are:

X

r∈R

X

a∈A

“

b(θs,a) · fs,a,(θs,θ
−s),r − ps,a,(θs,θ

−s),r

”

· ᾱ(a, r) ≥

X

r∈R

X

a∈A

“

b(θs,a) · fs,a,(θ′
s,θ

−s),r − ps,a,(θ′
s,θ

−s),r

”

· ᾱ(a, r)

∀s ∈ S,

∀θ ∈ Θ,

∀θ
′

s ∈ Θs

(5)

The Bayesian incentive compatibility constraints are:

X

θ
−s

X

r∈R

X

a∈A

 

“

b(θs,a) · fs,a,(θs,θ
−s),r−

−ps,a,(θs,θ
−s),r) · ᾱ(a, r)

”

·
Y

s′∈S/{s}

ω(θs′ )

!

≥

X

θ
−s

X

r∈R

X

a∈A

 

“

b(θs,a) · fs,a,(θ′
s,θ

−s),r−

−ps,a,(θ′
s,θ

−s),r

”

· ᾱ(a, r)) ·
Y

s′∈S/{s}

ω(θs′ )

!

∀s ∈ S,

∀θs ∈ Θs,

∀θ
′

s ∈ Θs

(6)

The ex-ante weak budget balance constraints are:

X

s∈S

X

a∈A

ps,a,θ,r ≥ 0 ∀θ ∈ Θ, ∀r ∈ R (7)

In what follow we point out the possible objective functions for our model. The
maximization of the integrator’s ex-ante expected utility is:

max
X

θ∈Θ

0

@

X

r∈R

X

s∈S

X

a∈A

ps,a,θ,r · α(a, r)

1

A ·
Y

θs∈θ

ω(θs,a) (8)

The maximization of the cumulative search engines’ ex-ante expected valuations
is:

max
X

θ∈Θ

0

@

X

r∈R

X

s∈S

X

a∈A

b(θs,a) · fs,a,θ,r · ᾱ(a, r)

1

A ·
Y

θs∈θ

ω(θs,a) (9)

The maximization of the cumulative search engines’ ex-ante expected utility is:
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max
X

θ∈Θ

0

@

X

r∈R

X

s∈S

X

a∈A

“

b(θs,a) · fs,a,θ,r − ps,a,θ,r

”

· ᾱ(a, r)

1

A ·
Y

θs∈θ

ω(θs,a) (10)

The maximization of the search engine s’s ex-ante expected utility is:

max
X

θ∈Θ

0

@

X

r∈R

X

a∈A

“

b(θs,a) · fs,a,θ,r − ps,a,θ,r

”

· ᾱ(a, r)

1

A ·
Y

θs∈θ

ω(θs,a) (11)

It can be easily observed that all the above constraints and objective functions
are linear. That is, our formulation is linear mixed integer.

4 Some Examples

We briefly analyze in Section 4.1 the business model currently adopted by Ad-
Sense and we show an example of our mechanism in Section 4.2.

4.1 Single Search Engine Case

We consider the business model currently adopted by AdSense where a publisher
displays the search engine’s sponsored links alongside the search results and, if a
link is clicked, the search engine pays a fix ratio of its revenue to the publisher.
We study this situation with our framework by introducing a constraint over
the payment of the search engine to the publisher (in our case the integrator).
Formally, we need to impose that ps,a,θ,r = ρ·b(θs,a) with ρ ∈ [0, 1] if fs,a,θ,r = 1.
It can be easily shown that no incentive compatible mechanism can be designed
in general. Consider the following example.

We have a single search engine s and two possible advertisers. The types
related to the first advertiser are θs,1 ∈ {θ1

s,1, θ
2
s,1, θ

3
s,1} with b(θ1

s,1) = 0.4,
b(θ2

s,1) = 0.5, b(θ3
s,1) = 0.6, and α(θ1

s,1) = α(θ2
s,1) = α(θ3

s,1) = 0.3. The types
related to the second advertiser are θs,2 ∈ {θ1

s,2, θ
2
s,2, θ

3
s,2} with b(θ1

s,2) = 0.5,
b(θ2

s,2) = 0.6, b(θ3
s,2) = 0.7, and α(θ1

s,2) = α(θ2
s,2) = α(θ3

s,2) = 0.2. The probabili-
ties ω(·)s can be arbitrary. It can be shown that there is no incentive compatible
mechanism. Easily, when the true type of search engine s is (θ3

s,1, θ
3
s,2), its op-

timal strategy is to report (θ1
s,1, θ

1
s,2) independently of the implemented social

choice function and independently of the value of ρ. (Practically, our mathemat-
ical programming formulation coding the automated mechanism design problem
results to be infeasible.) In order to remove this impossibility, we need to remove
the constraint on ps,a,θ,r = ρ · b(θs,a).

4.2 Analyzing a Case Study

We consider a scenario where an integrator aggregates two domain-specific search
engines. The domain of the first search engine is music concerts, while the domain
of the second search engine is hotels. A demo of integrator can be found at [7].
We report the user interface of the demo in Fig. 1. We consider a simple example
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Fig. 1. An example of user interface of an integrator.

and we discuss the functioning of our mechanism (larger scenarios require long
time and cannot be solved in exact way in practical applications).

We assume that the user searches for:

– (on the first domain) a concert at Toronto at May 9-15 2010,
– (on the second domain) an hotel at Toronto for the same range of days.

We assume that the first domain-specific search engine returns three spon-
sored links. We report the Bayesian prior over them in Tab 1. We assume that
the second domain-specific search engine returns three sponsored links. We re-
port the Bayesian prior over them in Tab 2. We assume that the number of
available slots for sponsored links displayed by the integrator are two.

advertiser taxi service restaurant1 restaurant2

bid (b) 0.40 e 0.40 e 0.50 e 0.50 e 0.65 e 0.65 e 0.70 e 0.70 e 0.60 e 0.70 e
click probability (α) 0.020 0.030 0.020 0.030 0.040 0.050 0.040 0.050 0.035 0.035
type probability (ω) 0.25 0.25 0.25 0.25 0.30 0.30 0.20 0.20 0.40 0.60

Table 1. Bayesian prior over the sponsored link list returned by the first domain-
specific search engine.

advertiser restaurant1 tourist office taxi service

bid (b) 0.50 e 0.50 e 0.60 e 0.60 e 0.25 e 0.35 e 0.20 e 0.20 e 0.30 e 0.30 e
click probability (α) 0.030 0.035 0.030 0.035 0.030 0.035 0.020 0.030 0.020 0.030
type probability (ω) 0.30 0.20 0.20 0.30 0.50 0.50 0.25 0.25 0.25 0.25

Table 2. Bayesian prior over the sponsored link list returned by the second domain-
specific search engine.

We solved our automated mechanism design problem with Bayes-Nash imple-
mentation with the maximization of the integrator’s expected utility as objective
function. We report the results only for a small number of type profiles. Exactly,
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we consider the type profiles reported in Tab. 3. The results are reported in
Tab. 4, where fθ,r1

denotes the sponsored link displayed in the first position
and the search engine it belongs to, fθ,r2

is the same for the second position,
pθ,r1

denotes the payment of the search engine whose sponsored link is in the
first position once the user clicked on the link, pθ,r2

is the same for the second
position. All the other payments are equal to zero. It can be easily observed that
the advertiser taxi service is the one that gives both search engines, if singularly
considered, the smallest expected utility. Instead, considering the search engines
together, taxi service is displayed in the second position.

search engine 1 search engine 2
taxi service restaurant1 restaurant2 restaurant1 tourist office taxi service

θ b α b α b α b α b α b α

type profile 1 0.40 e 0.02 0.70 e 0.05 0.60 e 0.035 0.50 e 0.03 0.35 e 0.035 0.20 e 0.03
type profile 2 0.40 e 0.02 0.65 e 0.04 0.60 e 0.035 0.50 e 0.03 0.35 e 0.035 0.30 e 0.02
type profile 3 0.50 e 0.02 0.70 e 0.04 0.70 e 0.035 0.60 e 0.035 0.25 e 0.030 0.20 e 0.03

Table 3. Some type profiles.

θ fθ,r1
fθ,r2

pθ,r1
pθ,r2

type profile 1 restaurant1, search engine 1 taxi service, search engine 1 0.70 e 0.40 e
type profile 2 restaurant1, search engine 1 taxi service, search engine 1 0.65 e 0.30 e
type profile 3 restaurant1, search engine 1 taxi service, search engine 1 0.70 e 0.50 e

Table 4. Social choice function and payments.

5 Conclusions and Future Works

The recent advancements in search computing techniques lead to new search
paradigms according to which multiple domain-specific search engines are inte-
grated by a special search engine (called integrator). A user can enter a multi-
domain query, this query is decomposed by the integrator in a set of single-
domain query, each one of them is addressed to a specific-domain search engine.
The integrator merges the search results received from each specific-domain
search engine. This paradigm allows one to discover a large number of infor-
mation and to produce very precise search results with respect to the currently
available general purpose search engines. In this paper we made a first attempt
towards the design of an advertising auction mechanism for this scenario. More
precisely, we proposed a business model in which the domain-specific search en-
gines returns, in addition to the search results, a list of sponsored links to the
integrator and the integrator merges these lists in a unique list. In order to
produce an effective merging, the integrator must be informed about the click
probabilities and bids of the advertisers appearing in the lists. We resort to the
automated mechanism design framework to design an economic mechanism for
the scenario we study. We discuss its desired properties and we report some
examples.
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The automated mechanism design approach can be used for small problems,
but it does not scale for large real-world problem. This pushes for the develop-
ment of analytical mechanisms or of approximate algorithms. Furthermore, in
this paper we have not posed any cooperative constraint over the revenue shar-
ing. In future, our intention is to explore, on the one side, group strategy-proof
mechanisms, such as the Moulin’s mechanism and its extensions, and, on the
other side, two-stage mechanisms to address interdependence valuations.
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Abstract. Financial markets such as stock exchanges and electronic
prediction markets frequently use the services of an entity called the
market-maker to ensure that the market’s traders can make their trans-
actions. Recently, several strategies that can be used by market-makers to
control market trading prices have been proposed by various researchers.
A detailed comparison of these market maker strategies using real trad-
ing data extracted from financial markets is essential to understanding
the relative merits and requirements of the different market-maker strate-
gies. We address this aspect of market-maker strategies by empirically
comparing different strategies with data obtained from the NASDAQ
market. Our results show that a reinforcement learning-based strategy
performs well in maintaining low spread as well as in obtaining high
utilities, whereas other strategies only succeed in either maintaining low
spread or outperforming others in utilities. 1

Keywords: Market-maker strategy, electronic financial markets, market-maker
simulation.

1 Introduction

Over the past few years, the rapid growth and success of automated techniques
for e-commerce have resulted in their wide adoption in various domains beyond
traditional B2B and B2C commodity markets. For example, in financial mar-
kets human traders are being replaced by automated agents that efficiently buy
and sell financial securities. Currently many modern exchanges, such as NYSE,
NASDAQ, and Toronto Stock Exchange as well as electronic prediction mar-
kets, such as tradesports.com, use such automated agents called market-makers

to regulate prices and quantities of securities or stocks traded by the market’s
participants.

A market-maker holds a certain number of securities in its inventory with
the purpose of being able to sell them to an interested buyer, or to buy securities
from a seller selling securities in the market. A market can have either a single
market-maker or multiple market-makers that compete with each other. The

1 This research has been supported by DoD-ONR grant number N000140911174, 2009-
2012.
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fundamental role of a market-maker is to bring buyers and sellers together so
that trading can occur in an efficient and fair manner. The main advantage of
automated market-makers is its ability to maintain the liquidity 2 in the market
[6]. The liquidity in turn reduces the trading cost of the market’s participants
[1]. Additionally, market-makers can help to smooth price fluctuations due to
spurious supplies or demands [15]. Appropriately designed automated market-
makers do not have an incentive to engage in the market manipulation [16].

As the role of the market-makers grows, the need for better understanding
of the impact of the market-makers in the market increases as well. In this pa-
per we use a model of a financial market with multiple market-makers to study
the potential impact of widespread automated market-maker usage on market
dynamics. We investigate four different strategies for automated market-making
in financial markets - a myopically optimizing strategy, a reinforcement learn-
ing strategy, a market scoring rule and a utility maximizing strategy - with the
goal of testing the existing strategies against each other and examining their
strengths and weaknesses. Our experiments reveal that the myopically optimiz-
ing and market scoring rule-based strategies perform well in maintaining low
spread and smooth market price, however they fall short in maximizing utilities
as compared to other strategies. On the other hand, the utility maximizing strat-
egy with different risk attributes performs very well in obtaining high utilities,
although it fails in maintaining low and consistent spread. Consequently, the
market price tends to fluctuate significantly. Finally, the reinforcement learning
strategy fulfills its tasks of both controlling the spread and maximizing utility.

2 Related Work

The automation of a market-makers’s functions was suggested more than three
decades ago [2]. Previously, several theoretical approaches, albeit with certain
simplifying assumptions, have been proposed to understand the effects of market-
makers on financial markets. Garman [7] describes a model with a single, monop-
olistic market-maker, who sets prices, receives orders and clears trades and tries
to maximize expected profit per unit time. Such market-maker fails when it runs
out of inventory or cash. In [14], the authors study the optimal behavior of a
single market-maker who gets a stochastic demand and tries to maximize its ex-
pected utility of final wealth, which depends on the profit it receives from trading.
Glosten and Milgrom [10] investigate the market-making model with asymmet-
ric information. Das [6] empirically studies different market-making strategies
and concludes that a heuristic strategy that adds a random value to zero-profit
market-makers improves the profits in the markets. Gu [11] explores chang-
ing the market-maker behavior by estimating the market-maker’s profitability
under different parameters. The results show that a profit-maximizing market-
maker’s objectives may not align with price variance minimization, which can
be one of the qualities of an orderly market. Westerhoff [17] also explores the

2 A market is said to be liquid if traders can buy or sell large quantities of a se-
curity without causing large changes in the market price. Liquidity is a valuable
characteristic of a market because it enables high volume trades.
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impact of inventory restrictions in a setup with an implied market-maker. The
market-maker price adjustment reactions differ depending on the current inven-
tory position along with current excess demands. The market-maker is assumed
to make greater price adjustments when these two variables are of the same
sign. Market-making has also been adopted as a test-bed for machine learning
techniques [15] with a goal to demonstrate the general effectiveness of a learning
algorithm.Also, empirical work has demonstrated the limitations of hard-coding
market-making rules into an algorithm [12]. In [16], the primary goal is to opti-
mally change the spread over the next iteration instead of finding the best model
for past transactions.

In the past, several market-maker strategies have been proposed and there
have been a few studies on the market-maker’s effect on the market. Most of
these past studies focus on a market with a single market-maker or a market
with multiple market-makers of the same strategy. However, there does not exist
a study comparing the effect of different market-maker strategies in a market
with multiple market-makers. In this paper, we attempt to address this deficit by
providing experimental results using data from real security markets to examine
the behavior of a market with multiple market-makers that employ different
competing strategies. We also analyze the effect of each market-making strategy
and the combinations of strategies on the market price dynamics.

3 Model

We have adapted the well-known Glosten and Milgrom [6, 10] model of financial
markets to a multi-agent framework of a financial market with multiple electronic
market-makers. In our model, each human trader is modeled as a software agent
called a trading agent that embodies the behavior of a human trader.

The market consists of N traders and M market-makers who buy and sell
securities or stocks, where N >> M . Each trading episode e consists of T trading

periods. Each stock s, has a true or fundamental value Vs,e at trading episode
e. That is, there is some exogenous process that determines the value of the
stock. The true price of a stock is different from the market price at which the
stock gets traded. The market price of a stock is determined by the interaction
between the market-makers and the traders. The stock’s true price Vs,e gets
updated during each trading episode with some probability πs,e+1 according to
the following equation [5,?]:

Vs,e+1 = Vs,e + jump, (1)

where jump is a parameter sampled from a normal distribution with mean µV s,e

and variance δVs,e
. The jump in the true value of the stock can be positive

or negative and usually corresponds to some new information about the stock
arriving in the market from external sources. The volatility of the stock value is
influenced by the value of the standard deviation of the jump and the probability
that the jump will occur.

Market-maker m’s bid(buy) price of the stock s at trading period t, psell
m,s,t,

is the price the market-maker charges traders for buying 1 share of stock s.
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The market sell price of the stock s at trading period t, P sell
s,t , is the price that

the market-maker pays to traders for buying 1 share of the stock s. The market
bid(buy) price P

buy
s,t at trading period t for stock s is the maximum of the market-

makers’ bid prices. The market ask(sell) price P sell
s,t at trading period t for stock

s is the minimum of the market-makers’ ask prices.
The different parameters used in our financial market model to define the

market characteristics and specify the market-makers and trading agents behav-
ior are shown in Table 1 and described below.

Market Parameters

e Trading episode
t Trading period
N Number of traders in the market
M Number of market-makers in the market
S Number of stocks
Vs,e True value of stock s during trading episode e

πs, e Probability that the jump in the true value
of stock s occurs during trading episode e

P sell
s,t Market sell price of the stock s at trading period t

P
buy
s,t Market buy price of the stock s at trading period t

Market-Maker Agent Parameters

psell
m,s,t Market-maker m’s sell price of the stock s at trading period t

p
buy
m,s,t Market-maker m’s buy price of the stock s at trading period t

θm Risk coefficient of the market-maker agent m

um Market-maker m’s utility

Table 1. Parameters used in our model.

3.1 Trader Behavior

When a trader enters the market, it is randomly assigned to some market-maker.
At each trading period t, traders place a buy or sell order, or no order at all, based
on the buy or sell price of the stock given by the market-maker. Each trader n

has a valuation for each stock s, Wn,s sampled from a normal distribution. If

Wn,s > P sell
s,t , the trader buys one unit of the stock s, if Wn,s < P

buy
s,t , the trader

sells one unit of the stock s, and if P
buy
s,t ≤ Wn,s ≤ P sell

s,t , the trader holds the
stock.

3.2 Market-maker Behavior

At each trading period t, each market-maker sets the bid and ask prices for
each stock according to some algorithm. The difference between the bid and ask
prices is called the stock’s spread. Market-makers use this spread of a stock to
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ameliorate their risks of holding a considerable quantity of the stock. Market-
makers execute the buy or sell stock orders from the traders immediately. A
market-maker does not know the true value of a stock, but it receives a noisy
signal about the jump in the true value of the stock, jump + Ñ(0, δm), where
jump is the actual jump that has occurred and Ñ(0, δm) represents a sample
from a normal distribution with mean 0 and variance δ2

m. Figure 1 shows the
operations of the market-maker in a market.

Enter the market 

New 
information 
on stock s?

Trading 
period
t over?

Handle transaction with a trader 

Update bid 
and ask prices

Set bid and ask prices

No

No

Yes

Yes

for
each
stock 
  s

Trading 
episode 
e over?

Yes

No

Fig. 1. A flowchart showing the operation of the market-maker agents in the market.

Before we present our experimental results, we first briefly review the market-
maker algorithms that we use for our comparisons.

A Myopically Optimizing Market-Maker A Myopically Optimizing Market-
Maker uses an algorithm developed by Das in [6]. The key aspect of the algorithm
is that the market-maker uses the information conveyed in trades to update its
beliefs about the true value of the stock, and then it sets buy/ask prices based on
these beliefs. The market-maker maintains a probability density estimate over
the true price of the stock. There are two key steps involved in the market-
making algorithm. The first is the computation of bid and ask prices given a
probability density estimate over the true price of the stock, and the second is
the updating of the density estimate given the information implied in trades.
This market-maker optimizes myopically, setting the prices that give the highest
expected profit at each trading period. That is, the optimal buy price is the
price that maximizes the expression E(profits|p

buy
m,s,t = x), and the optimal sell

price is the price that maximizes the expression E(profitb|p
sell
m,s,t = x), where
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profits(profitb) is the profit from a marginal sell(buy) order being received. The
market-maker uses the Bayesian updating method described in [5] to update its
density estimates. All of the points in the density estimate are updated based on
whether a buy order, sell order, or no order was received. The density estimate
is initialized to be normal.

Reinforcement Learning Market-Maker Chan and Shelton [3] have mod-
eled the market-making problem in the framework of reinforcement learning.
They have used Markov decision process (MDP) to model reinforcement learn-
ing of a market-maker. A state is defined as st = (invm,t, imbt, qltt), where invm,t

is the market-maker m’s inventory level, imbt is the order imbalance, and qltt is
the market quality at trading period t. The inventory level is the market-maker’s
current holding of the stock. The order imbalance is calculated as the sum of the
buy order sizes minus the sum of the sell order sizes during a certain period of
time t. Market quality measures are the bid-ask spread and price continuity (the
amount of price change in subsequent trades). Given the states of the market, the
market-maker reacts by adjusting the bid/ask prices and trading with incoming

orders. The action vector for market-maker m is defined as am,t = (pbuy
m,t, p

sell
m,t).

The market-makers can obtain the optimal strategy by maximizing the profit,
by minimizing the inventory risk, or by maximizing market qualities. Thus, the
reward at each time step depends on the profit received, the change of inventory,
and the market quality measures. This strategy assumes the risk-neutrality of
the market-maker.

Utility Maximizing Market-Maker with Risk attributes Previous re-
search [9, 19] has shown that by considering risk-taking and risk-averse behaviors
of the human traders, the behavior of the market can be improved. We set out
to see if the incorporating the risk behavior of the market-makers can improve
the financial market performance. Following [9], we adopt a constant relative
risk averse (CRRA) utility function ũm,t for market-maker m with a relative
risk aversion coefficient. CRRA utility functions have been widely used to model
risk behaviors. Relative risk aversion coefficient, θm, is used to classify market-
maker m’s risk levels as follows. If θm > 0, the market-maker m is risk-averse,
if θm = 0, the market-maker m is risk-neutral, and if θm < 0, the agent m

is risk-seeking. Unless otherwise specified, the market-makers’ risk coefficients
are normally distributed in our simulations. Following the trading agent utility
model in [9], during each trading period t market-maker m uses its instantaneous
utility úm,t and its risk-taking coefficient to calculate its modified instantaneous
utility for that trading period, using Equation 2.

ũm,t(úm,t, θm) =

{

ú
1−θm
m,t

1−θm
, if θm 6= 1;

ln(úm,t) , if θm = 1.
(2)

These market-maker agents are utility maximizers, that is they update prices so
that their overall utility is maximized.

LMSR Market-Maker Hanson invented a market-maker for the use in pre-
diction market applications called the logarithmic market scoring rule (LMSR)
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market-maker [13]. We have used Chen and Pennock’s formulation of Hanson’s
(LMSR) market-maker [4]. Let q = (q1, q2...qN ) be the vector specifying quanti-
ties of stocks held by the different trading agents in the market. The total cost
incurred by the trading agents for purchasing these stocks is calculated by the

market-maker using a cost function C(q) = b · ln(
∑|q|

j=0
= eqj/b). The parame-

ter b is determined by the market-maker and it controls the maximum possible
amount of money the market-maker can lose as well as the quantity of shares
that agents can buy at or near the current price without causing massive price
swings. If an agent purchases a quantity δq of the security, the market-maker

determines the payment the agent has to make as p
buy
s,m,t = C(q + δq) − C(q).

Correspondingly, if the agent sells δq quantity of the security, it receives a pay-
ment of psell

s,m,t = C(q) − C(q − δq) from the market-maker.

4 Experimental Results

We have compared the four market-maker algorithms described in the previous
section through several simulations. The true value for stock s during episode
s was obtained from the data of real NASDAQ stock markets. First ten stocks
were randomly selected from all the stocks traded on NASDAQ. Then the real
data of those ten stocks was downloaded from Yahoo! Finance [20]. We have used
open prices of each day to simulate the true value of the stock at the beginning
of each trading episode.

Each trading episode consists of 100 trading periods, where each trading
period lasts for 0.5sec. We simulate the financial market with 100 traders and
3 or 2 market-makers. We show the results of our simulations over 100 trading
episodes.

First we want to observe the behavior of the market with market-makers
that use the same strategy. After that we perform the pairwise comparison of
different market-maker strategies and evaluate the performance of each one in
more detail. We report the market price, the spread, and the utility earned by
the each type of the market-maker used in our simulations. The market price
and the spread evaluate the quality of the market, whereas the utility evaluates
the profitability of the strategy employed by the market-maker. In our graphs we
show the results for the Yahoo! stock. Figure 2 shows the Yahoo! stock’s price
obtained from [20]. In our first set of experiments there are 3 market-makers
that use the same strategy in the market. Figure 3 shows the simulations of
the market with myopically optimizing market-makers. We can see from the
spread graph that the myopically optimizing market-maker is sensitive to the
price variations in the market. The spread value has large fluctuations following
the jump in the true value of the stock. Spread seems to stabilize somewhat until
the next jump. Due to large jumps in the spread value, myopically optimizing
market-makers are able to keep increasing their utilities. Myopically optimizing
market-makers are able to avoid causing big jumps in the market price, which
is one of the important functions of the market-makers.

Figure 4 shows the simulations of the market with reinforcement learning
market-makers. The utility of the reinforcement learning market-makers is ex-
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Fig. 2. Yahoo! price data used in our simulations.
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Fig. 3. Myopically Optimizing Market-Makers.

pected to improve with each trading episode. As expected, these market-makers
perform very well with respect to utility-maximization. However, the spread
value fluctuates somewhat throughout the trading episodes. The market price
does not fluctuate a lot throughout the simulation.

Figure 5 shows the simulations of the market with logarithmic market scoring
rule (LMSR) market-makers. LMSR market-makers perform very well the func-
tion of maintaining an orderly market. That is, the market price is smooth and
the spread is steady and consistent. LMSR market-makers do not aggressively
maximize their utility, as can be seen from the utility graph in Figure 5.

Figure 6 shows the simulations of the market with utility maximizing market-
makers with different risk attributes, i.e. with one risk-taking, risk-neutral, and
risk-averse market-maker. We can see that the risk-taking market-maker is able
to obtain slightly higher utility than the risk-neutral and risk-averse market-
makers. Risk-averse market-maker gets the least utility, but maintains the small-
est spread. Risk-taking market-maker does not control the spread value well, as
it fluctuates a lot and by large amounts. Also, the market price has more fluc-
tuations with these market-makers than with other types of market-makers.

For our next set of simulations we perform pairwise comparisons of different
market-maker strategies. We simulate the market with 2 market-makers, one of
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Fig. 4. Reinforcement Learning Market-Makers.
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Fig. 5. LMSR Market-Makers.

each type. However, when comparing utility maximizing market-makers with 3
different risk attributes, we use 4 market-makers in the market.

First we compare myopically optimizing market-maker with 3 utility max-
imizing market-makers, one risk-taking, one risk-neutral, and one risk-averse
market-maker. As can be seen from Figure 7, the fluctuations in the market price
are pretty significant. We foresee that this is mainly due to presence of utility
maximizing market-makers, since their primary function is not the control of the
quality of the market, but utility maximization. Although, it is interesting to see
that the risk-averse utility maximizing market-maker is able to maintain steady
and low spread, and is very compatible in that regard with the myopically op-
timizing market-maker. Myopically optimizing market-maker also outperforms
the risk-averse market-maker in overall utility.

Figure 8 illustrates the market with one myopically optimizing market-maker
and one LMSR market-maker. We can see that these market-makers contribute
to maintaining smooth market price and close spread values. However, myopi-
cally optimizing market-maker outperforms the LMSR market-maker by 40% on
average in utility.

In Figure 9 we present the comparison of the myopically optimizing market-
maker with reinforcement learning market-maker. Our results show that rein-
forcement learning market-maker is able to obtain 24% higher utility on aver-
age than the myopically optimizing market-maker. However, myopically opti-
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Fig. 6. Utility Maximizing Market-Makers with different risk attributes.
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Fig. 7. Myopically Optimizing Market-Maker versus Utility Maximizing Market-
Makers with different risk attributes.

mizing market-maker maintain 6.5% less spread on average than the reinforce-
ment learning market-maker. Both market-makers do a good job in maintaining
smooth market price and steady spread.

Next we compare the performance of the LMSR market-maker with 3 utility
maximizing market-makers, i.e. risk-taking, risk-neutral, and risk-averse market-
maker. We can see from Figure 10 that the volatility in the market is significant,
with the fluctuations in the market price and large variations in the spread
values. All utility maximizing market-makers outperform LMSR market-maker
in utility. For example, risk-taking utility maximizing market-maker obtains 49%
higher utility than LMSR market-maker. However, LMSR market-maker has
31% lower average spread than the risk-taking market-maker, which has the
highest spread.

Figure 11 shows the performance of the reinforcement learning market-maker
against the utility maximizing market-maker with different risk attributes. Our
results indicate that the reinforcement learning market-maker has lower spread.
In particular its average spread is 25%, 22%, and 13% lower than the risk-taking,
risk-neutral, and risk-averse utility maximizing market-makers. Also, reinforce-
ment learning market-maker is able to outperform risk-averse market-maker in
utility by 11%, but it receives 69% less utility than risk-neutral market-maker,
and over 100% less utility than the risk-taking market-maker.
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Fig. 8. Myopically Optimizing Market-Maker versus LMSR Market-Maker.
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Fig. 9. Myopically Optimizing Market-Maker versus Reinforcement Learning
Market-Maker.

Reinforcement learning market-maker performance comparison with LMSR
market-maker is shown in Figure 12. The market price is smooth throughout
100 trading episodes. Although reinforcement learning market-maker obtains
54% more utility than the LMSR market-maker, the spread difference between
two market-makers is not very significant (8%).

Finally, we simulate the market with all four market-makers as shown in
Figure 13. The market price is smooth throughout 100 trading episodes. We ob-
serve that the utility maximizing, risk-neutral market-maker outperforms other
market-makers in utility. The difference in the utility between the utility max-
imizing market-maker and LMSR market-maker (which got the least utility) is
on average 60%. However, LMSR market-maker is able to maintain the lowest
spread in the market. The difference in spread between the LMSR market-maker
and the utility maximizing, risk-neutral market-maker is on average 73%. How-
ever, the spread difference between reinforcement and myopically optimizing
market-makers is not very significant (11%).

5 Discussions and Lessons Learned

In this paper, we have used an agent-based financial market model to analyze the
dynamics in the market with multiple market-makers. We investigated the effects
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Fig. 10. LMSR Market-Maker versus Utility Maximizing Market-Makers with
different risk attributes.
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Fig. 11. Reinforcement Learning Market-Maker versus Utility Maximizing
Market-Makers with different risk attributes.

of various market-making strategies on the market prices and market-makers’
spread and utilities. The difficulty in constructing the market-making strategies
comes from the need for the market-maker to balance conflicting objectives of
maximizing utility and market quality, that is fine-tuning the tradeoff between
utility and market quality.

Our simulation results show that the utility maximizing risk-taking and risk-
neutral market-makers outperform all the other types of market-makers in util-
ity, however they lack in maintaining the market quality, i.e. low and continuous
spread and smooth market price. Myopically optimizing market-maker performs
well with both maintaining good market quality and obtaining high utility. Re-
inforcement learning market-maker has comparable results when it comes to
utility compared to the other market-maker strategies that are designed with
a primary goal of maintaining market quality. Reinforcement learning market-
makers also do their job of market control very well. LMSR market-maker does
not do so good in terms of maximizing its utility, since it is not designed to do
that. However, it performs well in maintaining continuously low spread.
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Fig. 12. Reinforcement Learning Market-Maker versus LMSR Market-Maker.
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Fig. 13. Market with Reinforcement Learning, Utility Maximizing, Myopically
Optimizing and LMSR market-makers.

6 Future work

This is our first step in performing a comparison of multiple market-maker strate-
gies. In the future, we wish to explore different extensions of this work. First of
all, we would like to propose and perform comparisons of other market-maker
strategies such as using a minimax regret algorithm for price adjustments by the
market-maker. Secondly, we would like to study the performance of the market-
makers with a more complex behavior, such as dynamically switching strategies
based on past performance. This way, a better balance of maintaining market
quality and maximizing market-maker utilities may be obtained. And lastly,
we would like to add various behavioral attributes to the market-maker model
such as different risk attributes and making untruthful price revelations through
bluffing for improving profits. Market-makers provide a reliable and economic
technology for efficient operation of financial markets and we believe that future
investigation of their strategies along the directions we explored in this paper
will lead to more efficient market performance.
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Abstract. This paper analyzes bilateral multi-issue negotiation where the issues

are divisible, there are time constraints in the form of deadlines and discount

factors, and the agents have different preferences over the issues. The issues are

negotiated using the package deal procedure. The set of issues to be negotiated

is a choice variable in that the agents can decide what issues to negotiate. This

set is called the negotiation agenda. Since the outcome of negotiation depends on

the agenda, it is important to determine what agenda maximizes an agent’s utility

and is therefore its optimal agenda. To this end, this paper presents polynomial

time methods for finding an agent’s optimal agenda.

1 Introduction

Negotiation has long been studied by economists and game theorists but is now receiv-

ing increasing attention from researchers in multi-agent systems [10, 13]. In the existing

work, the analysis of negotiation typically begins with a given set of issues and the par-

ties’ preferences (in the form of their utilities) for different possible settlements of the

issues. Within this framework, theorists have investigated a range of negotiation proce-

dures such as the package deal procedure (PDP), the simultaneous procedure (SP), and

the sequential procedure (SQP) [7, 8, 2].

It is well known that different procedures result in different outcomes and, there-

fore, give different utilities to the agents [6]. So it is important that agents choose the

right procedure. Moreover, for a given procedure, it is also important that the agents

choose an appropriate agenda. The term agenda refers to the set of issues included for

negotiation [11]. The agenda is important because, irrespective of the procedure, the

outcome of negotiation depends on the agenda [7, 14]. Thus, given the utility maximiz-

ing feature of agents, it is important to find what agenda maximizes their utility and is

therefore optimal for them. For example, consider a car dealer who has five second hand

cars to sell. A potential buyer may be interested in buying two of these. So he must first

choose which two cars to negotiate the price for (i.e., from all possible subsets of size
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two, he must choose the one that maximizes his utility and so is his optimal agenda).

Note that here, the buyer has choice over the agenda but not the seller.

Although the importance of agendas has been recognized [7, 11], most existing

work has taken the agenda as given and then analyzed the outcome for different proce-

dures [8, 5, 6]. But as the above example illustrates, the set of issues to be negotiated

themselves are often choice variables (i.e., what issues to negotiate can be chosen by

a negotiator) whose ultimate configuration can have decisive effects on the negotiation

outcome [14]. Thus, in addition to knowing what procedure is best for an agent, it is

important to know what agenda maximizes an agent’s utility and is therefore its optimal

agenda. To this end, this paper analyzes the problem of finding optimal agendas in the

context of the PDP (future work will deal with SP and SQP). The key contribution of

this paper lies in presenting, for the first time, polynomial time methods for determining

optimal agendas for the PDP.

The rest of the paper is structured as follows. Section 2 provides a discussion of

related literature. Section 3 describes the setting and defines ‘agenda’ and ‘optimal

agenda’. Section 4 shows how to find optimal agendas for the complete information

setting. Section 5 builds on Section 4 to show how to find optimal agendas in an incom-

plete information setting. Section 6 concludes.

2 Related Literature

There are different procedures such as the PDP, the SP, and the SQP for multi-issue

negotiation, and the term agenda has different meanings in these different contexts. For

the PDP (which is the focus of this paper) and the SP, the term agenda refers to the

set of issues to be included for negotiation. But for the SQP, the term refers to not just

the set of issues to be included for negotiation but also the order in which they will be

negotiated.

Although the importance of agendas has been recognized [7, 11], most existing

work has taken the set of issues as given and then analyzed the equilibrium outcome

for different procedures [9, 8, 6]. In the context of the SQP, [1] takes the set of issues

to be negotiated as given and provides an analysis of the role of information and time

preferences on the equilibrium, while [4, 5] has dealt with taking the set of issues to be

negotiated as given and finding an optimal ordering for the given set. But as the example

outlined in the Introduction illustrates, the set of issues to be negotiated themselves

are often choice variables (i.e., what issues to negotiate can be chosen by a negotiator)

whose ultimate configuration can have decisive effects on the negotiation outcome [14].

Thus, a negotiator must make three key choices: he/she must decide the following:

1. what negotiation procedure to use,
2. what set of issues to negotiate, and
3. for the SQP, what ordering to use for negotiating a given set of issues.

To our knowledge, there is no existing work that deals with finding what set of issues

to negotiate. Hence, the novelty of this paper lies in showing how to find the set of

issues to negotiate. Specifically, it analyzes the problem of finding optimal agendas in

the context of the PDP. The key contribution of this paper lies in presenting, for the first

time, polynomial time methods for determining optimal agendas for the PDP.
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3 The Negotiation Setting

An agent’s optimal agenda depends on its equilibrium utility from all possible agendas.

So we first give an overview of the equilibrium for single and multi-issue negotiation.

On the basis of this equilibrium, we will show how to find optimal agendas in Sections 4

and 5. A formal definition of optimal agenda is given toward the end of this section.

3.1 Equilibrium for Single Issue

We use the single issue model of [6] in which two agents, a and b, negotiate over a single

divisible issue which is a ‘pie’ of size 1. The agents want to determine how to split it

between themselves. Let n ∈ N+ be the deadline and 0 < δ ≤ 1 the discount factor for

both agents. The agents use an alternating offers protocol [12], which proceeds through

a series of time periods. One of the agents, say a, starts in the first time period (i.e.,

t = 1) by making an offer (0 ≤ xa ≤ 1) to b. Agent b can accept/reject the offer. If it

accepts, negotiation ends in an agreement with a getting xa and b getting xb = 1 − xa.

Otherwise, negotiation goes to the next time period, in which b makes a counter-offer.

This process continues until one of the agents either accepts an offer or quits negotiation

(resulting in a conflict).

Agent a’s utility at time t from a share xa is ua(xa, t) = xaδt−1 if t ≤ n, otherwise

it is zero. For b, ub is analogous. For this setting, the equilibrium offers are obtained

using backward induction (BI) as follows. Let n = 1 and let a be the first mover. If b

accepts a’s proposal at t = 1, the division occurs as agreed; if not, neither agent gets

anything (since the deadline is n = 1). Here, a is in a powerful position and is able to

keep 100% of the pie and give nothing to b1. Agent b accepts and agreement takes place

at t = 1.

Now, let n = 2 and δ = 1/2. The first mover (say a) decides what to offer at t = 1,

by looking ahead to t = 2 and reasoning backwards. Agent a reasons that if negotiation

goes to t = 2, b will take 100% of the shrunken pie by offering [0, 1/2]. So, at t = 1, if

a offers b anything less than 1/2, b will reject the offer. So, at t = 1, a offers [1/2, 1/2].

Agent b accepts and an agreement occurs at t = 1. In this way, BI was used to obtain

the equilibrium offer for t > 2.

3.2 Equilibrium for Multiple Issues for the PDP

Let I = {1, 2, . . . ,m} be the set of issues. Agent a’s (b’s) preference for issue i is

represented with a weight wa
i ∈ R+ (wb

i ∈ R+). Each issue is a pie of size 1 and can

be split between the agents such that if xa
i and xb

i are a’s and b’s shares for issue i,

then xa
i + xb

i = 1. Here n is the deadline for all the issues, and δ the discount factor

for all of them. Agent a’s cumulative utility at time t ≤ n is given by Ua(I, xa, t) =

δt−1
∑m

i=1
wa

i xa
i . For b, U b(I, xb, t) is analogous. As before, an agent’s utility for t > n

is zero.

1 It is possible that b may reject such a proposal. But, irrespective of whether b accepts or rejects,

it gets zero utility (since the deadline is n = 1). So, b accepts a’s offer.
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For the above model, the equilibrium was obtained, using BI, as follows [6]. We

give an overview of this first for complete information setting, and then explain its ex-

tension to an incomplete information setting.

The complete information setting. Let SA(t) (SB(t)) denote a’s (b’s) equilibrium strat-

egy for time t. For t = n, the offering agent gets a 100% of all the shrunken pies. For all

previous time periods, t < n, the offering agent (say a) proposes a package ([xa, xb])

such that b’s cumulative utility from it is what b would get from its own offer for t + 1.

If there is more than one such package, then a must choose the one that maximizes its

own cumulative utility. Thus, a must solve the following trade-off problem (called TA):

maximize
∑m

i=1
wa

i xa
i , subject to

∑m

i=1
wb

i (1 − xa
i ) = Y where 0 ≤ xa

i ≤ 1. Here, Y

is b’s cumulative utility from its own offer SB(t+1). On the other hand, if a receives an

offer [xa, xb] at time t, then it accepts if Ua(I, xa, t) = Z where Z is a’s cumulative

utility from its own offer SA(t + 1). The equilibrium strategy for b (in terms of TB) is

analogous. Thus we have:

SA(n) =

{

OFFER [1, 0] If a’s turn to offer

ACCEPT If a’s turn to receive

where 0 (1) denotes a vector of m zeros (ones). For all preceding time periods t < n,

the strategies are as follows:

SA(t) =







OFFER TA If a’s turn to offer

If (Ua(I, xa, t) ≥ Z) ACCEPT If a receives xa

else REJECT

For b, SB(t) is analogous. Both TA and TB are standard fractional knapsack problems

[3]. The solution to TA is for a to consider issues in ascending order of wa
i /wb

i and

allocate to b maximum possible share for the individual issues until b’s cumulative util-

ity equals Y . If the issues 1, . . . ,m are in ascending order of wa
i /wb

i , the equilibrium

solution is xa = {0, .., 0, xa
c , 1, .., 1}, xb = {1, .., 1, 1− xa

c , 0, .., 0}. The solution to TB

is analogous.

An incomplete information setting. Here, the agents are uncertain about their utilities.

Let T be the number of possible utility function pairs. The jth possible pair (Ua
j , U b

j )

occurs with probability γj . For a, the jth function is: Ua
j (I, xa, t) = δt−1

∑m

i=1
wa

ijx
a
i ,

and its expected utility is EUa(I, xa, t) = δt−1
∑T

j=1
γj × Ua

j (I, xa, t). Agent a’s

expected weight for issue i is ewa
i = δt−1

∑T

j=1
γjw

a
ij . For b, U b

j , EU b(I, xb, t), and

ewb
i are analogous.

Given this, agent a’s tradeoff problem at time t is to find a package [xa, xb] that

solves the following problem:

TA-I maximize EUa
(I, xa, t)

subject to EU b
(I, xb, t) = EY 0 ≤ xa

i ≤ 1

Here I is fixed and EY is b’s equilibrium utility for t + 1. Given this, a’s equilibrium

strategy for time t is the same as SA(t) (defined earlier) with TA replaced with TA-I, and
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Ua replaced with EUa. Likewise for agent b. The problem TA-I is also the standard

fractional knapsack problem, and is solvable using a greedy approach.

On the basis of the above equilibrium, we will show how to find an optimal agenda,

for the PDP, for each agent.

3.3 The Negotiation Agenda

As noted in Section 1, in many cases, the set of issues to be negotiated are choice

variables. So, before negotiation begins, the agents must decide upon an agenda which

we define as follows:

Definition 1. In the context of the PDP, an agenda Ag of size g ≤ m is a set of g issues,

i.e., Ag ⊆ I such that |Ag| = g. Let AGg denote the set of all possible agendas of size

g.

Definition 2. For the PDP, an agenda (AAg) of size g ≤ m is agent a’s optimal agenda

if

AAg
= arg maxX∈AGgEUa

(X, xa, 1)

where xa denotes a’s equilibrium allocation (for agenda X , for t = 1). For b, ABg is

analogous. For the complete information setting, EUa and EU b are replaced with Ua

and U b respectively.

For the agenda I containing m issues, Section 3.2 showed how to find equilibrium

outcomes (i.e., Ua, EUa, U b, and EU b). Given this equilibrium, our problem now is to

find each agent’s optimal agenda: AAg and ABg for 1 ≤ g ≤ m. We show how to find

these agendas in Section 4.

Below, we focus on the case where one of the agents, say a, prefers different issues

differently but b prefers all the issues equally2. So, for a, different issues have different

weights but b has the same3 weight for all the issues. We let the issues {1, . . . ,m}
be such that wa

i ≤ wa
i+1 for 1 ≤ i ≤ n − 1. Also, for agenda X ∈ AGg , we let

X = {1, . . . , g} be such that wa
Xi

≤ wa
Xi+1

for 1 ≤ i < g. Note that, although we are

viewing X as a list, as per its definition, an agenda is a set because the equilibrium for

the PDP is independent of the ordering of issues. However, we view X as a list because

it makes it easier to refer to the individual elements of X .

4 Optimal Agendas: Complete Information

We first show how to find optimal agenda for the complete information setting and then

for the incomplete information setting described in Section 3.2. For the complete in-

formation setting, Theorem 1 (Theorem 2) shows how to find a’s (b’s) optimal agenda.

2 This is situation occurs often: for the previous car dealer example, a buyer may have different

preferences over the seat color and the car color, but the dealer may be indifferent between

colors.
3 Future work will deal with those situations where, for both a and b, the weights are different

for different issues.
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Then, for the incomplete information setting described in Section 3.2, Theorem 3 (The-

orem 4) gives a’s (b’s) optimal agenda. Theorem 5 gives the time complexity of com-

puting the optimal agendas.

Theorem 1. In a setting where agent a has different weights for different issues and b

has the same weight for all m issues, a’s optimal agenda of size g is a set of g issues

that are associated with the g highest weights in wa (i.e., AAg = {m−g +1, . . . ,m}).

Proof. Here AAg is obtained using BI. If an agenda is optimal for a for the last time

period t = n, then by BI, it will be optimal for all previous ones. Consider the last

time period (t = n) for which two possibilities can arise: either a or b could be the

last mover. Consider first the case where a is the last mover. As per the equilibrium

for the PDP, irrespective of the agenda, a gets a 100% of all the shrunken pies. So,

from among all possible agendas, its cumulative utility is maximized for the agenda

AAg = {m − g + 1, . . . ,m}.
Now, consider the case where b is the last mover. Here, as per the equilibrium for

PDP, b gets a 100% of all the shrunken pies and a gets nothing (i.e., a’s utility for t = n
is zero). Also, since b has equal weights for all the issues, its cumulative utility for t = n
is independent of the agenda. We therefore consider the previous time period (t = n−1)
for which it is a’s turn to offer. As per the equilibrium for t = n − 1, b’s utility must

be equal to its equilibrium utility for t = n. If U b denotes b’s equilibrium utility for

t = n, then in the equilibrium for t = n − 1, b must get U b. Note that since b has

equal weights, U b is independent of the agenda. But a’s utility depends on the agenda.

Given U b, a’s equilibrium utility for t = n − 1 (for an agenda X ∈ AGg) will be

Ua
X = (

∑g

i=1
wa

Xi
)−U b. Then, a’s optimal agenda is the one that maximizes Ua

X . Since

all weights are positive, and the issues in X = {1, . . . , g} are in ascending order of wa
i ,

Ua
X is maximized when X = {m− g + 1, . . . ,m}. Thus, AAg = {m− g + 1, . . . ,m}.

�

Regarding b’s optimal agenda, one might think that ABg will be the set of g issues that

correspond to the g lowest weights for a. But this is not so, because an agent’s cumu-

lative utility from an agenda depends not just on its weights but also on its equilibrium

shares for the g issues. The following example clarifies this point.

Example 1. Let m = 4, I = {1, 2, 3, 4}, g = 3, δ = 0.5, n = 2, wa = {1, 2, 3, 4},

wb = {1, 1, 1, 1}, and b be first mover. There are four possible agendas of size g = 3:

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. For each of them, the agents’ equilibrium

utilities for t = 1 (i.e., Ua
1 and U b

1 ) are as given in Table 1. Agent b’s utility U b
1 is high-

est for the agenda {1, 2, 4}, and so ABg = {1, 2, 4} is b’s optimal agenda. Likewise,

AAg = {2, 3, 4}.

As Example 1 shows, the optimal agenda may be different for different agents. But in

many practical cases, only one of the two agents has a choice over the agenda. This

is also the case in the car dealer example (outlined in Section 1) where the buyer can

choose an agenda but not the seller.

We will now show how to find b’s optimal agenda ABg using the following method.

Initially, the optimal agenda is empty. Then, we add issues to it one by one using a

greedy approach. For 1 ≤ k ≤ g, let AB
g
k denote the issue that is b’s optimal choice at

step k. Then, b’s optimal agenda ABk of size k is ABk = ∪k
i=1AB

g
i .
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Agenda Ua
1 Ub

1 b’s Optimal Agenda?

{2, 3, 4} 4.5 1.833 No

{1, 2, 3} 3 2 No

{1,2,4} 3.5 2.125 Yes

{1, 3, 4} 4 2 No

Table 1. Agents’ utilities (for t = 1) for possible agendas.

Theorem 2. In a setting where agent a has different weights for different issues and b

has the same weight for all of them, b’s optimal agenda ABg (for g ≥ 2) is obtained as

follows. Agent b’s optimal choice for the first two issues is:

AB
g
1 = 1 and AB

g
2 = m.

Then AB
g
k (3 ≤ k ≤ g) is given by the following rule. If we let ∪k−1

i=1
AB

g
i = {1, . . . , p, q, . . . , m}

where (1 ≤ p < q ≤ m) and (p + m − q + 1 = k − 1), then if

m
∑

i=q

wa
i ≥ δ

k−1
∑

i=1

wa
AB

g

i
+ δwa

p+1 (1)

then AB
g
k = p + 1. Otherwise, if ∃Z ∈ I − ∪k−1

i=1
AB

g
i such that

wa
Z +

m
∑

i=q

wa
i ≥ δ

k−1
∑

i=1

wa
AB

g

i
+ δwa

Z (2)

then if

δ

k−1
∑

i=1

wa
AB

g

i
≥

m
∑

r=q

wa
AB

g
r

(3)

then AB
g
k = p + 1. Otherwise (i.e., Eq. 2 or 3 is false), AB

g
k = q − 1.

Proof. An agent’s optimal agenda problem exhibits the ‘greedy choice property’ and the

‘optimal sub-structure property’. So a globally optimal solution can be found by making

locally optimal choices. A problem has ‘optimal substructure’ if an optimal solution can

be constructed from optimal solutions to its subproblems. An agent’s optimal agenda

problem has both these properties since all weights are positive and so an agent’s

cumulative utility is maximized if its utility from the individual issues is maximized.

Given that b has equal weights for all the issues, b’s cumulative utility is maximized if

the issues are chosen such that its cumulative equilibrium share for them is the maxi-

mum over all possible agendas. So if xb
X denotes b’s equilibrium share for agenda X ,

then ABg = arg maxX∈AGg

∑g

i=1
xb

Xi
or ABg = arg minX∈AGg

∑g

i=1
xa

Xi
(since,

xa
i = 1 − xb

i ). To find ABg , we will choose one issue at a time. At step k (1 ≤ k ≤ g)

we will choose AB
g
k such that a’s shares for the issues chosen thus far are minimized

(relative to all possible agendas of size k). In more detail, this is done as follows.
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As before, if an agenda is optimal for b for t = n, then by BI, it will be optimal for

all previous time periods. Now, either a or b could be the last mover. If it is a, it gets a

100% of all the shrunken pies and b gets zero utility. But if b is last mover, then it gets

a 100% of all shrunken pies and a gets nothing. So irrespective of who the last mover

is, b’s utility for t = n is independent of the agenda. Hence, we look at the previous

time period t = n − 1 to find ABg . Consider the case where b is the offering agent for

t = n − 1. If xa
X denotes a’s equilibrium share for t = n − 1, then b’s optimal agenda

for this time period is ABg = arg minX∈AGg

∑g

i=1
xa

Xi
.

To begin, we show how to find the first and second issues (i.e., AB
g
1 and AB

g
2 ) that

will be included in ABg . Then, we will show how to find issues one by one (using a

greedy approach) to include in ABg until the number of issues in it is g. Let the m

issues {1, . . . ,m} be such that wa
i ≤ wa

i+1 for 1 ≤ i < m − 1. We decide what AB
g
1

and AB
g
2 should be on the basis of the relation between wa

AB
g

1

and wa
AB

g

2

. Irrespective

of what these two issues are, there are two4 possible relations between their weights:

wa
AB

g

1

< wa
AB

g

1

or else wa
AB

g

1

> wa
AB

g

1

. We consider each of these below.

For the case wa
AB

g

1

< wa
AB

g

2

: At this stage, we know the relation between wa
AB

g

1

and

wa
AB

g

2

but not the actual weights. Given this relation, as per the equilibrium for t = n−1

(see Section 3.2), b will first allocate a share to a for the issue AB
g
2 and then for AB

g
1 .

This will be done such that a’s cumulative utility (say Y ) from AB
g
1 and AB

g
2 is equal

to its cumulative utility for t = n (i.e., Y = δn−1
∑2

i=1
wa

AB
g

i

). When doing this

allocation for t = n − 1, one of two possible cases (C1.1 or C1.2) can arise:

C1.1 The entire utility Y can be given to a from the issue AB
g
1 alone so a’s share for

AB
g
2 is zero, so we have:

wa
AB

g

2
δn−2 ≥ (wa

AB
g

1
+ wa

AB
g

2
)δn−1 (4)

If xa
AB

g

2

denotes a’s equilibrium share for AB
g
2 for t = n − 1, then as per Sec-

tion 3.2, we have:

xa
AB

g

2
= (wa

AB
g

1
+ wa

AB
g

2
)δn−1/wa

AB
g

2
δn−2 (5)

Clearly, it is optimal for b to choose AB
g
1 and AB

g
2 such that xa

AB
g

2

is minimized. In

Equation 5, since δ is a constant, xa
AB

g

2

is minimized when wa
AB

g

1

is minimized and

wa
AB

g

2

is maximized. Thus, AB
g
1 is the issue with lowest weight in wa, and AB

g
2 , is

the one with highest weight in wa. So AB
g
1 = 1 and AB

g
2 = m.

C1.2 The utility Y cannot be given just from the issue AB
g
2 so a’s share for AB

g
2 is a

100% of it and its share for AB
g
1 is non-zero, so Equation 4 is false. and if xa

AB
g

1

denotes a’s equilibrium share for AB
g
1 for t = n − 1, then as per Section 3.2, we

have:

(wa
AB

g

1
xa

AB
g

1
+ wa

AB
g

2
)δn−2

= (wa
AB

g

1
+ wa

AB
g

2
)δn−1, or

4 For the case wa
B1 = wa

B2 , the agents’ equilibrium shares are independent of wa
AB

g
1

and wa
AB

g
1

.

This can be verified by substituting wa
AB

g
1

= wa
AB

g
1

in Equations 5 and 6.
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xa
AB

g

1
= δ −

wa
AB

g

2

wa
AB

g

1

(1 − δ) (6)

Here, xa
AB

g

1

is minimized when wa
AB

g

2

is maximized and wa
AB

g

1

is minimized. So

AB
g
1 = 1 and AB

g
2 = m.

Thus, if wa
AB

g

1

< wa
AB

g

2

, then AB
g
1 = 1 and AB

g
2 = m for both cases (C1.1 and

C1.2).

For the case wa
AB

g

1

> wa
AB

g

2

: This case is the same as the previous one, with wa
AB

g

1

and

wa
AB

g

2

swapped.

Now, we will choose AB
g
3 . Since AB

g
1 = 1 and AB

g
2 = m, we have wa

1 < wa
AB

g

3

<

wa
m. So, in the equilibrium for t = n − 1, b will first allocate to a, a share for the issue

AB
g
2 , then for AB

g
3 , and finally for AB

g
1 . In the equilibrium allocation for t = n − 1,

a’s utility is Y = δn−1
∑3

i=1
wa

AB
g

i

. We find a’s equilibrium shares in this allocation by

considering the following three possible cases (C3.1 that corresponds to Eqn. 1 being

true, C3.2 that corresponds to Eqn. 1 being false and Eqn. 2 being true, or C3.3 that

corresponds to Eqns. 1 and 2 being false) that can arise:

C3.1 The entire utility Y can be given to a from the issue AB
g
2 alone so a’s share for

AB
g
1 and AB

g
3 is each zero. So we have:

wa
AB

g

2
δn−2 ≥

3
∑

i=1

wa
AB

g

i
δn−1 (7)

If xa
AB

g

2

denotes a’s equilibrium share for AB
g
2 for t = n − 1, then as per Sec-

tion 3.2, we have:

xa
AB

g

2
= (

3
∑

i=1

wa
AB

g

i
)δn−1/wa

AB
g

2
δn−2 (8)

Here, xa
AB

g

2

is minimized by choosing as AB
g
3 the issue with lowest weight from the

remaining issues in I−{AB
g
1 ∪AB

g
2}. This gives AB

g
3 = 2. Moreover, Equation 7

is true iff AB
g
3 = 2 because, in I −{AB

g
1 ∪AB

g
2}, 2 is the issue with least weight.

C3.2 The utility Y cannot be given just from AB
g
2 but can be given from AB

g
2 and

AB
g
3 . So a’s share for AB

g
2 is a hundred percent of it and its share for AB

g
3 is

non-zero, i.e., Equation 7 is false ∀AB
g
3 ∈ I − {AB

g
1 ∪ AB

g
2} and ∃AB

g
3 ∈

I − {AB
g
1 ∪ AB

g
2} s.t.:

(wa
AB

g

2
+ wa

AB
g

3
)δn−2 ≥

3
∑

i=1

wa
AB

g

i
δn−1 (9)

If xa
AB

g

3

denotes a’s equilibrium share for AB
g
3 for t = n − 1, then as per Sec-

tion 3.2, we have:

(wa
AB

g

3
xa

AB
g

3
+ wa

AB
g

2
)δn−2

=

3
∑

i=1

wa
AB

g

i
δn−1 (10)
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Solving the above equation for xa
AB

g

3

, we get:

xa
AB

g

3
=

∑2

i=1
δwa

AB
g

i

− wa
AB

g

2

wa
AB

g

3

+ δ

Here, if Eqn. 3 is true, then xa
AB

g

3

is minimized if wa
AB

g

3

is maximized. So AB
g
3

must be the issue with lowest weight from the remaining issues, or AB
g
3 = 2. But if

Equation 3 is false, xa
AB

g

3

is minimized when AB
g
3 = m − 1.

C3.3 The entire utility Y cannot be given from AB
g
2 and AB

g
3 so a’s share for each

of AB
g
2 and AB

g
3 is a hundred percent and its share for AB

g
1 is non-zero, i.e.,

Equations 7 and 9 are false ∀AB
g
3 ∈ I − {AB

g
1 ∪ AB

g
2} , so:

(

3
∑

i=1

wa
AB

g

i
)δn−2 ≥

3
∑

i=1

wa
AB

g

i
δn−1

If xa
AB

g

1

denotes a’s equilibrium share for AB
g
1 for t = n − 1, then as per Sec-

tion 3.2, we have:

(wa
AB

g

1
xa

AB
g

1
+ wa

AB
g

2
+ wa

AB
g

3
)δn−2

=

3
∑

i=1

wa
AB

g

i
δn−1

Solving the above equation for xa
AB

g

1

, we get:

xa
AB

g

1
= (δwa

AB
g

1
+ δwa

AB
g

2
− wa

AB
g

2
− wa

AB
g

3
(1 − δ))/wa

AB
g

1

Here, xa
AB

g

1

is minimized when AB
g
3 = m − 1.

For C3.1, AB
g
3 = 2, for C3.2 AB

g
3 = 2 or AB

g
3 = m − 1 (depending on Equation 3),

and for C3.3 AB
g
3 = m − 1.

In general, to decide what to choose as AB
g
k (4 ≤ k ≤ g), we find a’s equilibrium

allocation for each of the k issues (chosen thus far) for t = n−1. At stage k,we already

have the optimal agenda of size k − 1, i.e., ∪k−1

i=1
AB

g
i . Also, we know that for stage i,

(1 ≤ i ≤ k − 1) b’s optimal choice is either the issue with highest weight for a or else

the one with the lowest weight from the remaining issues I − {∪i−1

j=1
AB

g
j }. Hence, as

mentioned in the statement of this theorem, we let ∪k−1

i=1
AB

g
i = {1, . . . , p, q, . . . , m}

where (1 ≤ p < q ≤ m) and (p+m− q +1 = k−1). This implies that wa
p < wa

AB
g

k

<

wa
q . Also, as before, the equilibrium allocation for k issues for t = n − 1 must give

a a utility of Y = δn−1
∑k

i=1
wa

AB
g

i

. We find a’s equilibrium shares in this allocation

by considering the following three possible cases (CK.1 that corresponds to Equation 1

being true, CK.2 that corresponds to Equation 1 being false and Equation 2 being true,

or CK.3 that corresponds to Equations 1 and 2 being false) that can arise:
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CK.1 The cumulative utility Y can be given to a just from the pies in {j, . . . , m} (where

q ≤ j ≤ m) so we have5:

δn−2

m
∑

r=j

wa
αr

≥ δn−1

k
∑

i=1

wa
AB

g

i
(11)

If xa
AB

g

k

denotes a’s equilibrium share for AB
g
k for t = n − 1, then as per Sec-

tion 3.2, we have:

xa
j =

(

δ

k
∑

i=1

wa
AB

g

i
−

m
∑

r=j+1

wa
r

)

/wa
j (12)

Here, xa
j is minimized if wa

AB
g

k

is minimized. So b’s optimal choice for AB
g
k is the

issue with lowest weight from the remaining issues I − {∪k−1

i=1
AB

g
i }, i.e., AB

g
k =

p+1. Moreover Equation 11 is true iff AB
g
k = p+1 because, in I −{∪k−1

i=1
AB

g
i },

p + 1 is the issue with least weight.

CK.2 The entire utility Y cannot be given just from the pies in {q, . . . , m} but can be

given from {q, . . . , m} together with AB
g
k , i.e., ∃AB

g
k ∈ I − {∪k−1

i=1
AB

g
i } such

that:

δn−2

m
∑

r=q

wa
r < δn−1

k
∑

i=1

wa
AB

g

i
, and (13)

δn−1
(

wa
AB

g

k
xa

AB
g

k
+

m
∑

r=q

wa
r

)

≥ δn−2

k
∑

i=1

wa
AB

g

i
(14)

If xa
AB

g

k

denotes a’s equilibrium share for AB
g
3 for t = n − 1, then as per Sec-

tion 3.2, we have:

xa
AB

g

k
=

δ
∑k−1

i=1
wa

AB
g

i

−
∑m

r=q wa
r

wa
AB

g

k

+ δ (15)

Here, if Eqn. 3 is true, then xa
AB

g

k

is minimized if xa
AB

g

k

is maximized, i.e., AB
g
k =

p + 1. But if Eqn. 3 is false, xa
AB

g

k

is minimized if wa
AB

g

k

is minimized, i.e., AB
g
k =

q − 1.

CK.3 The cumulative utility Y cannot be given just from the pies in {AB
g
k , q, . . . , m}

but can be given from {j, . . . , r, AB
g
k , q, . . . , m} where 1 ≤ j ≤ p, so we have:

δn−2
(wa

AB
g

k
+

m
∑

r=q

wa
r ) < δn−1

k
∑

i=1

wa
AB

g

i
, and

5 Here, a’s share for each of the pies j + 1, . . . , m is one, for pie j it is xa
j , and for each of the

pies 1, . . . , j − 1, is zero.
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δn−1
(

p
∑

r=j

wa
r + wa

AB
g

k
+

m
∑

r=q

wa
r

)

≥ δn−2

k
∑

i=1

wa
AB

g

i

If xa
AB

g

k

denotes a’s equilibrium share for AB
g
k for t = n − 1, then as per Sec-

tion 3.2, we have:

xa
j =

(

δ

k
∑

i=1

wa
AB

g

i
−

m
∑

r=q

wa
r − wa

AB
g

k
−

p
∑

r=j+1

wa
r

)

/wa
j

Here xa
j is minimized when wa

AB
g

k

is maximized. So AB
g
k must be the issue with

highest weight from the remaining issues I − {∪k−1

i=1
AB

g
i }, i.e., AB

g
k = q − 1.

For CK.1, AB
g
k = p + 1, for CK.2 AB

g
k = p + 1 or AB

g
k = q − 1 (depending on

Eqn. 3), and for CK.3 AB
g
k = q − 1.

In the same way, we can obtain b’s optimal agenda for the case where a is the
offering agent at t = n − 1. �

5 Optimal Agendas: Incomplete Information

We will now show how to find optimal agendas for the incomplete information setting

of Section 3.2. To this end, Theorem 3 gives a’s optimal agenda and Theorem 4 that for

b. Finally, Theorem 5 gives the time complexity of computing these optimal agendas.

Let the m issues {1, . . . ,m} be such that: ewa
1 ≤ ewa

2 ≤ . . . ≤ ewa
m. Here, agent a has

different expected weights for different issues, but b has the same expected weight for

all the m issues.

Theorem 3. In a setting where agent a has different expected weights for different

issues but, for b, the set of possible weights for an issue and the associated proba-

bilities are the same for all the m issues, agent a’s optimal agenda of size g is a

set of g issues that are associated with the g highest expected weights (i.e., AAg =

{m − g + 1, . . . ,m}).

Proof. As Theorem 1, with weights replaced with corresponding expected weights and
utilities with corresponding expected utilities. �

Theorem 4. In a setting where agent a has different expected weights for different is-

sues but, for b, the set of possible weights for an issue and the associated probabilities

are the same for all the m issues, b’s optimal agenda ABg (for g ≥ 2) is obtained as

in Theorem 2 with agent’s weights replaced with corresponding expected weights, and

utilities replaced with corresponding expected utilities.

Proof. As Theorem 2, with weights replaced with corresponding expected weights and
utilities with corresponding expected utilities. �

Theorem 5. For the complete information setting, the time taken to compute AAg is

O(g) and to compute ABg is O(mg2). For the incomplete information setting, the time

to compute AAg is O(Tg) and to compute ABg is O(Tmg2).
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Proof. For the complete information setting, as per Theorem 1, AAg is the set of g is-

sues with highest weight in wa. We therefore need to choose the last g issues from α

which takes time O(g). For ABg , as per Theorem 2, determining AB
g
k (1 ≤ k ≤ g)

requires evaluating the conditions in Eqns. 1, 2, and 3. Consider Equation 2 which

requires one comparison between wa
Z +

∑m

i=q wa
i and δ

∑k−1

i=1
wa

AB
g

i

+ δwa
Z . Compu-

tation of these two terms to compare requires no more than k additions because the

summation variable i varies between 1 and k. Also, Z can vary at most between 1

and m. So finding AB
g
k takes O(mk) time, and to find AB

g
k for 1 ≤ k ≤ g, it takes

∑g

k=1
O(mk) = O(mg2) time. Note that we considered only Eqn. 2 because the time

to evaluate the condition in Eqns. 1 or 3 is no more than the time taken to evaluate the

condition in Eqn. 2.
It follows that, for the incomplete information setting, if there are T possible utility

function pairs, the time to compute AAg is O(Tg) and to compute ABg is O(Tmg2).
�

6 Conclusions and Future Work

This paper presented polynomial time methods for finding each agent’s optimal agenda

for the PDP. The polynomial time complexity of our methods makes it easy for automat-

ing the process of choosing an agent’s optimal agenda, and thereby reducing human

involvement during negotiation.

Possible avenues for future research include extending the current analysis to sce-

narios where both agents have different weights for different issues. Also, this paper

focussed on one specific incomplete information setting. In future, we will extend this

analysis to other possible incomplete information settings.
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A Practical Multiagent Model for Resilience in

Commercial Supply Networks

Andrew Smith1 and José M. Vidal1

University of South Carolina, Columbia, SC 29208, USA

Abstract. As commercial supply chains grow into complex global sup-
ply networks, more and greater risks are introduced for cooperating and
competing companies alike. These networks can be affected by events
such as natural disasters, terrorism, and of late, economic downturn.
Supply industry leaders, such as IBM, have announced a need for meth-
ods to identify and prevent risks in these ever-growing complex net-
works. Multiagent-based simulation lends itself perfectly to supply net-
work modeling due to its autonomous nature. Our research illustrates
a multiagent supply network formation technique using greedy supply
agents and limited resource allocation. Using these formations, the re-
silience of each network is compared with others and assessed so that
we may ascertain the characteristics of risky supply network structure.
Our results show that an increase in relationship resources results in a
more resilient network; however, as the amount of available resources
increases, the risk of the most vulnerable agent in the network decreases
by a smaller margin.

1 Introduction

The need for resilience in supply networks is a concern for many. During combat,
the military is concerned because convoys and supply stations are highly sus-
ceptible to enemy attack and disruption [12, 9]. More recently, with the rough
global economy, we are seeing businesses declaring bankruptcy and going out
of business at an alarming rate; from the end of the year 2007 to the end of
2008, business bankruptcies rose 54%, and are continuing to rise1). These clo-
sures cause disturbances and possible breaks in supply networks, especially as
the world’s leading manufacturers, like in the automotive industry, are starting
to fail. Other global factors such as terrorism and severe weather conditions also
have been known to cause commercial supply networks to come to a halt [4,
9]. As the globalization of supply networks becomes more common, these net-
works also become more complex and thus increase the chances of global factors
affecting larger number of businesses [4].

Methods such as just-in-time (JIT) inventory to improve efficiency in supply
chain management have been geared towards making a company the most profit
with the least amount of inventory on hand. This approach unfortunately creates

1 www.bankruptcyaction.com
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weaknesses in the supply network’s reliability [9]. Since the terrorist attacks of
September 11th, 2001 and the current downturn in the economy, efforts have
shifted to try and improve reliability in supply networks [4].

Our long-term goal is to build dynamic agent-based model of these supply
networks so that we may study how they handle disturbances: missing nodes,
broken routes, order delays, etc. We hope to model both the current human-made
supply networks, where all the decisions about who to buy from and what to
buy are made by humans, as well as the emerging agent/human networks where
some of these decisions are made by automated agents. This paper presents our
first steps towards that goal. We use an agent-based model of human-formed
supply networks, based on [6], to generate supply networks and analyze these
networks to determine their resilience to various types of attacks. Our test results
provide quantitive measures of the resilience of networks formed by humans given
different capacities to form social ties.

1.1 Previous Research

IBM and several other sources have noted the importance of maintaining a re-
liable supply network [2, 9]. Several examples exist of major losses of profit and
business due to supply chain disruptions. Because of this, there is a need to
reconsider how supply networks are setup, as well as the processes involved in
these networks.

Several examples exist of multiagent supply network formations as simulating
the day to day operations of supply networks [13, 10], but neither assess the
reliability of the network as a whole. As recent research has shown, however,
complex networks need to cooperate with other agents in the network, even with
competing agents to some extent [5]. Using the customer lifetime value equation
developed by V. Kumar, Chuan and Yun developed a multiagent market that
models how consumers interact with suppliers [6, 3]. In this paper we will extend
this method to an entire supply network.

A topological method for developing a reliable supply network for military
settings was developed to ensure that suppliers could get goods to troops, even
in the event of random or planned attacks [12]. This model resulted in a high
level of redundancy between suppliers and their consumers. However, as the au-
thors of [12] noted, such large amounts of interconnectivity are not practical
in a commercial market. In order to accrue decent profit and maintain a com-
petitive market, partnerships must be selective. Making such a large amount of
connections and trade agreements takes a considerable amount of management
time, and often decreases the quality of business relationships and profit. Re-
ducing the similar property of interaction costs in auctions was recently studied
[15]. Agents in our model consider these costs in network formation, and the
reduction of these costs will undoubtedly be an incentive in our future work.
This behavior of resource management can also be related to personal social
management [2][13] [10], and will be compared throughout the paper. This pa-
per presents a topological approach similar to that of [12], but geared towards
identifying resilient network structures in a competitive, commercial market.
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Resilience, as opposed to reliability, refers to a network’s ability to respond to
attacks or disabled nodes.

The multiagent community has studied the problem of how automated agents
should make decisions in is supply chain, especially in the context of the Trading
Agent Competition Supply Chain Management (TAC SCM) game2[1, 8]. How-
ever, we are interested in studying the reliability of human-formed networks
which we assume to be static, for now. In our future work we will expand the
model to include dynamically trading agents as well as allow agents to dynami-
cally find new partners when necessary.

2 The Model

We are interested in investigating the resilience of supply networks that are
formed by selfish agents. We start by identifying the various types of agents in
a supply chain (section 2.1). We then explain the various types of ties that can
exist between these agents (section 2.2) and use proven models of supply-chain
tie formation to create our networks (section 2.3). Finally, we formally describe
how we measure resilience in a supply chain network.

2.1 Agent Composition

We model five different types of business agents: suppliers, manufacturers, dis-
tributors, retailers, and consumers. Each agent’s identity determines who they
interact and exchange product with. At any time, an agent has one of two roles:
a local supplier or a local customer. A local supplier is one who is supplying a
product while a local customer is one who is purchasing a product. All agents,
except for the suppliers and the consumer, can take on both of these roles. The
suppliers can only take on the supplier role, and the consumer can only take
on the customer role. A very simple supply chain is shown in figure 1. Along
with their roles, each agent also has a number of properties that describe its
capabilities. Table 1 shows these properties along with their descriptions.

Fig. 1. Organization of a supply network.

Once an agent (except for suppliers) is initialized, their price, profit, relia-
bility, quality, supply and demand are set to zero. The values stay at zero until

2 http://www.sics.se/tac/page.php?id=13
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Table 1. Properties of Business Agents

Price The selling price of this agent’s product
Quality Quality of this agent’s product
Reliability Reliability of this agent’s product
Profit The amount of the selling price that goes towards profit
Customer List A CLV-ordered list of this agent’s customers
Score List An ordered list of desired suppliers
Supply The amount of product coming in to this agent
Demand The amount of product desired by this agent
Relationship Resources Amount of relationship resources available to this agent

(discussed in section 2.2)

relationships are formed. Suppliers’ price is set to the raw good price, and their
profit, quality, reliability, supply and demand are set randomly. Their customer
and score list is set to empty until negotiations begin, which we discuss later
in section 2.3. Relationship resources are set by the user before the model is
initialized. Notice that since supplier and consumer agents only take on one of
the two roles available, they only have the properties necessary to satisfy these
roles. That is, suppliers do not have a score list and consumers do not have a
customer list, price or profit.

The number of agents can vary from run to run, to provide varying network
structures. We only model one consumer agent. The reason for this is that supply
networks usually make relationships based on contracts, whereas consumers often
make one-time purchases. The interaction between an individual consumer and
a market is discussed in [3], and our work could be extended to include that
research. However, the focus of this paper is on resilience of the supply network
so we opted not to model individual customer behavior.

Relationships are formed based on maximization of each agent’s utility. This
utility function differs depending on the current role the agent is playing. If an
agent is in the supplier role the we use Equation (2) as the utility function. If an
agent is in the customer role, the agent with the highest combination of price,
reliability and quality wins. The determination of how strong the relationship
will be, and what this strength implies, is discussed in the next section.

2.2 The Importance of Ties

Managing relationships between business agents can get costly depending on
the number and strength of each tie. In social relationships, on average, the
human brain can manage 150 strong relationships determined by age, frequency
of interaction, emotional attachment, reciprocity, and kinship [11]. This limited
amount of relationship resources can be reflected to supply network management
in different units, like time and money [7]. In commercial networks the proper
distribution of these limited relationship resources among an agent’s strong and
weak ties is critical for maintaining high profitability and reliability.
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The definitions of strong and weak ties are very similar for social and supply
networks [7]. In commercial supply networks, strong ties indicate a day-to-day
relationship. Businesses linked by strong ties engage in frequent orders and ship-
ments, thus undergoing more reliable and predictable transactions as a result.
They can also show a parallel in business practices and ideas. Businesses linked
by weak ties acknowledge each others’ product needs, but are not regularly in-
volved in transactions. These ties exist as bridges for possible future needs. If
a weak tie is made, these transactions will not be as reliable, predictable, or
cheap in price as those between two businesses with a strong tie due to the
unfamiliarity and higher cost in planning.

In our model, business agent relationship resources are a user-controlled vari-
able which allows us to set up different kinds of networks. An agent establishes
relationships with other agents by using these resources. Relationships in the
simulation can run from a range of 0 to 10, where 0 is a nonexistent relation-
ship and 10 is the strongest relationship. Relationships in the range of 0 – 4 are
considered weak ties and are represented by a thin gray directed arrow. Rela-
tionships from 5 – 10 are considered strong and are represented by a thick black
directed arrow, as shown in Figure 2. For example, if an agent has 5 available
relationship resources, it may form one strong relationship of 5 with a customer,
or it could form 5 weak relationships of 1 with 5 customers. These relationships
form during the negotiation stages of network formation.

2.3 Communication and Negotiation

Once the agents are initialized, communication between the different tiers of the
network begins. A weak tie is temporarily established between all the agents to
exchange product and company information, so each agent playing the customer
role can evaluate their potential suppliers. Customers assign each supplier a score
using the formula

quality + reliability + (
mean price− price

price
× 100), (1)

where quality, reliability and price are as defined in Table 1. This formula
was established to ensure that if a price is below the mean price of all suppliers,
a negative score is produced, unless quality and reliability are enough to offset it.
These scores are then translated to desired relationship strengths, in the range
of 1– 10. These desired relationships are stored in the score list agent property.

After the communication stage, negotiations begin. The first stage involves
the customer agents sending their supplier assessment to each supplier. Gen-
erally, this information is not broadcast like this, but since there are no past
interactions to evaluate, suppliers need a way to know how customers assess
their service.

Suppliers then assess the customers using V. Kumar’s [6] customer lifetime
value formula
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CLV =

Ti
∑

y=1

CMi,y

(1 + r)
y
fi

+
n
∑

i=1

∑

m ci,m,l × xi,m,l

(1 + r)i−1
, (2)

where CLV stands for the customer lifetime value of the current agent, Ti

is the predicted number of purchases for customer i in a given time interval,
CMi,y is the contribution margin of customer i during purchase y, r is the
discount rate, fi is the predicted purchase frequency for customer i, n is the
number of years predicted for the relationship, ci,m,l is the marketing cost for
customer i in market m during year l and xi,m,l is the number of other suppliers
customer i is in a relationship with in market m during year l.

This formula is reduced in our experiments, since there is no past purchase
history, the discount rate (r) is zero. Also, since there is only one consumer base,
there is only one channel. The reduced CLV formula is

CLV =

Ti
∑

y=1

CMi,y − (ci × xi). (3)

The number of predicted purchases a customer makes (Ti) is determined
by their desired relationship with the supplier. The marketing cost (ci) is the
maximum possible relationship value (10 for this model) minus the desired re-
lationship with the supplier. The current number of other suppliers (xi) is the
count of all those with higher desired relationships. The corresponding CLVs for
each customer are stored in the supplier’s customer list. Only those with posi-
tive CLV s are kept in this list. Since negative values indicate a predicted profit
loss, they are not beneficial to the supplier. These CLVs are then translated to
desired relationship values based on the mean CLV and the number of resources
available (similar to the customer’s relationship conversion described above).

Once suppliers calculate their desired relationship, they ask their customers
for this relationship. Customers receive the request, and first see if there are
enough relationship resources available to accept the proposed relationship. If
there are, the relationship is accepted and formed. However, if the relationship
would cause the customer to exceed their available relationship resources, a
pruning process ensues. The inquiring suppliers score is compared with the score
of those suppliers who are currently in a relationship with the customer. Those
suppliers who are ranked lower have their relationship reduced until there are
enough relationship resources available for the inquiring supplier, or until the
relationship dies. If there are still not enough relationship resources to include
the inquiring supplier, the proposed relationship is reduced until the relationship
can be made. The weight of this relationship determines how much product, by
percent, is sent to the customer. For example if 50% of a suppliers resources are
allocated to a customer, that customer will get 50% of the supplier’s product.

When the negotiation process has ended, the customers calculate their price,
reliability and quality based on the weighted average of all its suppliers. Their
demand and initial supply are set to the total number of incoming product from
their suppliers. This negotiation process is repeated down to the consumer agent.
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Once the consumer agent is reached, the supply/demand ratio is set to 1 initially,
since the supply is equal to demand. The importance of this value is discussed
section 2.4. The entire negotiation process described is highlighted in Table 2.

Table 2. Steps for Agent Negotiation

Step Task

1 Customers evaluate suppliers
2 Customers send evaluations to suppliers
3 Suppliers evaluate customers using CLV
4 Suppliers request relationship with customers
5 Customers accept, deny, or reduce relationships accordingly

We note that this negotiation process sometimes results in isolated agents
who have no suppliers or customers. This is the result of a saturated market,
and the isolated agents are those unfit for competition. Figure 2 shows the result
of a completely formed network using the methods described above.

Fig. 2. Complete network formation after agent negotiations.

175



2.4 Resilience

After the network is established, it is tested for resilience. Testing for resilience
simulates the attack or disabling of a single agent. We then measure the effect
of its removal on the entire supply network. The method begins by eliminating
an agent and its relationships. The effects of this elimination are then propa-
gated down the network until the consumer is reached. The resulting supply is
compared to the consumer’s demand and measured as the supply/demand ratio.
That is, the supply/demand ratio of agent i in network N is given by

ri(N) =
amount of product arriving to the consumers in N − i

amount of product demanded by the consumers in N
. (4)

The lower the ratio, the harder it will be for the network to recover from
the attack. The agent is then placed back in the network, and the network is
returned to normal. Once all agents have been tested for resilience, the agent
with the lowest ri(N) is saved along with its corresponding ratio value. We define
the resilience of a network as the supply/demand ratio of the agent with the
lowest supply/demand ratio in the network. That is, the resilience of network N
is given by

r(N) = min
i∈N

ri(N). (5)

We also save the the variance of the supply/demand ratio across all
agents, which we denote as σ2(ri(N)). A higher variance in the supply/demand
ratio means that there are some nodes which are much more important to the
well-being of the supply network than others. Thus, these nodes might be more
at risk for an attack by an enemy.

3 Results

The results gathered for this experiment are from over 400,000 different network
structures with varying number of agents, relationship resources, and raw good
price. Agents were varied (1 – 15 of each) to see how different relationships and
market competition would affect resilience. Relationship resources were varied
(5, 10, 20, and 50) to see how selectivity and the number of relationships each
agent has affect resilience. Raw good price was varied to see if more expen-
sive products, where the cost of relative distance is relatively small compared
to product cost, affect network formation and resilience. Figures 3–5 show the
difference in network formation and resource allocation with different variable
settings.

Figure 3 shows two networks with varying numbers of agents. Though the
total number of agents in the network is equal, the networks formed are very dif-
ferent, and undoubtedly result in different resilience factors. Figure 4 illustrates
the critical difference between resource availabilities. The network with 50 re-
sources clearly results in a more connected network, and, in this particular case,
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a more resilient network. Figure 5 shows how the price of the product does not
greatly impact the network structure. This example also suggests that locality
of customers may matter less as product price increases, but it is not significant.

Fig. 3. Varying the number of agents in supply networks

Fig. 4. 5 Relationship Resources vs. 50 Relationship Resources

Our experiments focus on overall network resilience, on the variance of the
individual risks of each agent in a supply network, and on the lowest of the
individual risks of each agent in a supply network. We pay special attention to
the structure with least available resources to each agent since we are interested
in resilience in limited-resource commercial domains.

3.1 Model Validation

Our test results show a clear distinction between the most and least resilient
network structures, which validates the supply network formation methods im-
plemented by our model. The network structure that produced the least resilient
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Fig. 5. Raw good price of 5 vs. 1000

supply network was that of a single, simple supply chain. This is true for all re-
sources and raw good values. Since removing any of the agents from a simple
supply chain results in complete disruption of the network, it is easy to un-
derstand why this is the least resilient network. Intuitively, the most resilient
network is practically 15 separate supply chains directed to one consumer. If an
agent is removed, only one of the supply chains is disrupted, leaving 14 other
paths for goods to flow to the consumer.

Another result that validates our model with the results of [12] is shown
in Figure 6. This chart also confirms that our model complies with the state-
ment that redundancy increases network resilience [9]. This chart will be further
discussed in section 3.2.

3.2 Analysis of Results

The first measure we look at is the variance in supply/demand ratio σ2(ri(N))
for a given network N . A high variance indicates that some agents are far safer
from risk or far more at risk. High variance could leave a supply network more
susceptible to planned attacks. The most imbalanced networks in our test results
occurs when there is a large number of suppliers and only one of each other agent.
In it, the agents that incur the least amount of risk are the suppliers, while
removing any agent from the other tiers would result in a complete disruption.
The least imbalanced network we found is also the most resilient network of 15
supply chains directed to one customer. It is the least imbalanced for the same
reasons that give it high resilience: there are several supply chains, each of which
has close to equal resilience.

We also learned that varying the number of relationships resources affects
network resiliency. Figure 6 shows how as we increase the number of relation-
ship resources the supply/demand ratio of the most vulnerable agent generally
increases. Figure 7 shows how the variance of the supply/demand ratio σ2(ri(N))
decreases as we increase the amount of relationship resources. We note that a
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Fig. 6. Chart illustrating the average resiliences r(N) of the networks formed using
varying relationship resources.

slight anomaly occurs in Figure 6 when agents have 10 available resources. This
could be due to the semi-random generation of the market when the agents are
initialized. In general, however, these charts show how the resilience of a net-
work increases as available relationship resources increases, as expected. This is
because each agent has more opportunity to divide its product and create fewer
dependencies in the supply network. It is also important to note that the most
vulnerable node of a network with 5 relationship resources is only slightly lower
than that of one with 50 relationship resources. Thus demonstrating that while
having unlimited relationship resources may help slightly; it would probably not
be worth the cost of having to manage all of the relationships.

Figure 8 shows that the number of agents involved in a single consumer based
network with only 5 relationship resources available affects the network up to
a certain point as well. Specifically, we see that the variance in supply/demand
ratio is high for small numbers of agents (up to 10) but then drops after that and
stays at nearly the same value for more than 10 agents. This happens because as
more agents are involved in a single network, then more sub-networks are formed,
thus increasing resilience. Another anomaly occurs when the total number of
agents is 10. The variance is considerably higher. This is probably due to the type
of structures that can be formed with 10 agents, or again, the semi-randomness
of the agent initialization.
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Fig. 7. Chart illustrating the average variances in the supply/demand ratio σ2(ri(N))
of the networks N formed as relationship resources vary.
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Fig. 8. Chart illustrating the average variances of the supply/demand ratio as the size
of the network increases.
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4 Conclusion and Future Work

The selfish-agent limited-resources supply network formation implemented by
our model has produced results that are confirmed by previous research [12].
We have shown that the number of relationship resources available to business
agents directly affects the resilience of the network. We have also shown that
as relationship resources increase, the risk of the most vulnerable agents shows
diminishing returns. Though the relationship resources in this experiment can be
interpreted as any combination of time, money or any other overhead needed to
maintain a contractual relationship, there is no doubt these additional relation-
ship resources increase the cost to agents in a commercial supply network. Our
results show that it is not cost effective to increase these relationship resources
past a certain point (in Figure 6, this point is 20 relationship resources). These
factors must be considered when constructing a commercial supply network.

The analysis of all the network topologies identify networks with low and
high resilience. Although available resources seem to have the biggest impact on
resilience, different structures also have a substantial effect on resilience. More
specifically, the more opportunities agents have to form relationships, the more
resilient the network. These observations will be useful in our future work.

While our current model does not fulfill the need of making supply networks
more resilient, it identifies possible weaknesses in commercial supply networks
and illustrates the reasons for these weaknesses. This is a significant step towards
a solution. Our model also implements a new method for forming multiagent
supply networks using current supply network management techniques [9][6][3].
The network formation and results from testing resilience will be improved and
expanded in a number of different ways.

The greedy agent limited resource network formation method implemented
in this paper will be used to create a dynamic market in which agents are actively
trading goods. We will combine this model with our previous study of robust-
ness, responsiveness and dynamism of supply networks during attacks [14]. This
addition will give more intuition as to how the resilience of a particular network
structure affects the way agents trade with each other and how trading agents
will respond to the disruption of their supply network. The next step will be to
offer certain incentives to agents and see if they cause the agents to form resilient
supply networks.

Our research and results presented in this paper are a good foundation for
developing methods that cause competing agents to be cooperative, but still
selfish, as suggested by supply network management research [5].
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Abstract. As popularity of online multimedia content grows, a number
of models of advertising have emerged. Typically, brokers maintain the
balance between content and advertising, their decisions informed by a
significant body of work in psychology and marketing. However, existing
approaches focus primarily on personalizing advertisements for viewer
segments essentially identified by the content they view, with minimal
decision-making capacity for individual viewers.
We take a resource bounded multi-agent view on the problem with an
explicit treatment of viewer attention and its ownership. Particularly,
we treat a multimedia consumer’s attention space as a precious resource
owned by the viewer. Viewers pay for the content they wish to view in
dollars, as well as in terms of their attention. Advertisers pay for viewers’
attention by subsidizing the cost of their content viewing.
Our approach specializes the CyberOrgs model for the attention resource;
CyberOrgs encapsulate distributed computations and owned resources
available for their execution. Particularly, advertisers can trade in view-
ers’ attention just as viewers can buy multimedia content in a market of
content. Key mechanisms are developed to give viewers flexible control
over the display of advertisements in real time through personal agents.
Pluggable customizable policies specify negotiation preferences of differ-
ent parties, scalably automating typical negotiations and relieving the
parties and their agents from actively engaging in explicit negotiations.
This paper presents the rationale, design, implementation, and prelimi-
nary evaluation of our solution, FlexAdSense.

1 Introduction

According to a recent ad spending report from eMarketer [5], spending on Inter-
net advertising will surpass $25 billion in 2009, and will reach up to $42 billion
by 2013, as more money moves away from traditional media like television and
newspapers. For reasons of the rapid expansion of video content availability on
the web, analysts predict a rise in spending on video advertising on the web.
TV ad spending is on the decline because features such as skip-over capability

∗Support from NSERC, CFI, and Government of Saskatchewan is acknowledged.
‡This research was carried out as part of an M.Sc. thesis at the Agents Lab.
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of recorders makes it difficult for advertisers to reach audiences. As traditional
business models are threatened, advertisers and publishers are looking for alter-
natives. Brokers such as cable operators, satellite companies and multimedia web
sites are the intermediaries between content publishers and content consumers.

Currently, there are primarily two models for multimedia brokers. One de-
livers paid high-quality content to viewers without any advertisement, and the
other provides free content viewing but at the cost of embedded advertisements.
Some approaches try to mix these two. In all these cases, the broker makes the
decisions about whether or not to display advertisements, how many and which
types of advertisements to display and when to display them. Viewers only have
limited coarse-grained control. If the TV program or website contains too much
unwanted commercial advertising, the viewer can switch to another channel or
provider. In Figure 1, we compare these various approaches according to the
granularity of control over multimedia content as well as advertising that they
offer viewers. Although fine-grained control over content is often available, a
similar control over advertising is not.

internet TV

(Fine, Coarse)

(Coarse, Coarse)

Terrestrial TV

Cable/Satellite 

TV

Mobile TV

IPTV

VoD (Video on 

Demand)

TV with DVR

(Coarse, Fine)

(Fine, Fine)

Desired

Fig. 1. Granularity of control for existing platforms. Values in the parentheses refer to
the granularities of control over multimedia content and advertising respectively.

A number of advertising models have emerged for supporting digital content
to consumers over the Internet; however, their primary focus is on personalizing
advertisements for viewer segments, with minimal decision making capacity for
individual viewers. Interactive TV mechanisms allow users to voluntarily inter-
act. Currently, the interaction includes directly incorporated polls, questions,
comments, and other forms of audience response back into the show. iMEDIA
[15] business model applies technologies exploring viewers’ interactive data and
empowered viewers with control on their personal information. Yoon et al. [18]
have proposed a system based on the TV-Anytime standard, which provides
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both media library services and targeted advertisement services. Unlike DVR,
TV-Anytime enables remote recording on a personal or network DVR. In the
web domain, personalization techniques are proposed for effective advertising.
They can be roughly classified into four categories [14] according to the math-
ematical techniques adopted: data mining extracts consumers’ behaviour pat-
terns by observing and collecting interaction manners (e.g., [10], [14]); decision

trees allow users to define target variables so as to generate rules for advertise-
ment selection [11]; linear programming makes advertising decisions to maximize
click-through rate and for satisfying advertisers’ incentives in the meantime [12];
nearest-neighbour collaborative filtering algorithms recommend products based
on predictions about consumers’ preferences (e.g., [16], [13]). Viewers typically
have limited control over the advertisements displayed.

The study of Attention has been pioneered by psychologist William James
in 1890 [7]. He identified the two characteristics of attention – focalization and
concentration – which continue to be studied today. Focalization means focus-
ing on some interest or activity. Concentration means devoting mental effort to
understand the information we receive. Attention was first introduced to Com-
puter Science by Simon in 1971 [17]. He highlighted the imbalance between
the “wealth of information” and the “poverty of attention”, which has inspired
a variety of personalization techniques and recommender systems. Bagozzi [3]
proposed a model of complex circular exchange, in which attention is exchanged
for entertainment or product information. Among more recent advances, Sander
et al. [4] proposed a distributed Competitive Attention-space System (CASy),
which treats a consumer’s attention space as a scarce resource and makes use
of adaptive software agents to allocate that resource in an electronic shopping
mall. Suppliers compete with each other in an auction by bidding for the limited
attention space of the consumer.

The remainder of the paper is structured as follows. Section 2 describes our
approach for enabling fine-grained resource trade in viewers’ attention space. In
section 3, our prototype design and implementation are presented. In section 4,
experimental results are presented. Finally, section 5 concludes our work.

2 Trade in Attention Resource

We take a resource ownership view on this problem. We view consumers’ atten-
tion spaces – abstracted as a display screen for an engaged viewer – as precious
resources owned by the viewers. Consumers pay for the content they wish to
view in cash, as well as in terms of their attention. Specifically, advertisers may
make partial payment for a viewer’s content, in return for receiving the viewer’s
attention to their advertising. We build a market of viewers’ attention spaces
in which advertisers can trade, just as viewers can trade in a content market.
We have developed key mechanisms to provide consumers with flexible realtime
control over the advertising embedded in the multimedia content appearing on
their screens. This approach relaxes the exclusivity of the relationship between
advertisers and brokers, and empowers consumers to participate in decision mak-
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ing about advertising. Our approach is modular and allows reusability: specific
policies needed for automated negotiations can be plugged-in.

In order to illustrate the features of our approach, let us consider the following
scenarios involving a fictional user Jack:

Scenario 1: Jack turns on his TV after a long day of work. He browses through
the 100 or so channels, and finally settles on his favorite detective show. During
the show, advertisements interrupt his viewing at intervals. Jack wishes he could
view his favorite content on his own schedule and wishes he could eliminate ads
from this favourite content even if it requires paying extra money. Additionally,
he wishes that he did not have to go through the ever larger number of channels;
he wishes there were better searching and recommendation functionalities.

Scenario 2: Jack prefers high quality videos. However, these expensive tastes
sometimes lead him to a tight budget at the end of the month. He wants to
be able to set a monthly budget for himself, so that the system can automati-
cally schedule content and advertisements for him: relatively more ads when the
budget is tight and fewer ads when the budget is freer.

Scenario 3: Jack does not mind viewing advertisements if the ads fit his
interests. Additionally, he dislikes ads that pop up and overlay at the bottom of
the screen. He wishes to be able to select the types of ads.

Scenario 4: Jack has a 6-year-old daughter. He wants the screen free of adult-
only content/ads, such as tobacco, alcohol and violence, when his daughter is
watching television with him.

It turns out that none of the existing mechanisms satisfy the requirements
identified in these scenarios. Our approach to the problem of making decisions
about embedded advertisements is to enable fine-grained resource trade – in real
time – between the owners of attention resource and the parties interested in
acquiring them. Furthermore, because active participation in trade negotiation
can place significant additional demands on viewer attention – taking away from
the viewing experience – we have separated preferences of the different parties as
pluggable policies, which – in normal situations – enable automated negotiations
on behalf of the parties.

2.1 FlexAdSense

The name of our system, FlexAdSense, is inspired by Google’s AdSense, in the
sense that the system “senses” the most appropriate advertisements for viewers
on the basis of preference data, both explicitly provided by viewers and implicitly
extracted by exploring viewers’ historical behaviours. “Flex” refers to the fine-
grained flexible control available to viewers over the content and advertisements.

Consider the four parties involved in multimedia delivery: content publisher,
content viewer (consumer), broker and advertiser. Each party owns certain re-
sources and seeks to obtain certain resources. Multimedia publishers own mul-
timedia content, which is a type of information resource. They wish to make
profit by selling content resource using brokers’ intermediary service. Viewers
own cash and attention resource, and want to be entertained by viewing multi-
media content. Brokers own delivery resources such as cables, network bandwidth
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and storage servers, and provide services such as the payment mechanisms and
customer support modules. Advertisers own cash and are interested in viewers’
attention. The resources of the greatest interest to us are viewer attention and
multimedia content.

We treat the display screen as an abstraction of a viewer’s attention space and
view attention as a type of resource owned by the viewers, having both spatial
extension and temporal duration. Specifically, we specialize the CyberOrgs model
[6] for trade in these resources. Cyberorgs are distributed resource encapsulations
which use eCash to buy and sell resources from/to each other. eCash is replaced
by real cash. Viewer attention becomes an owned resource; anyone who wants
this resource has to negotiate a contract with its owner. Contracts are negotiated
between cyberorgs; these contracts stipulate the types, quantities and costs at
which resources will be available to a buyer by a seller.

As illustrated in Figure 2, to be entertained, viewers pay for content resource
in cash, as well as in terms of their attention. Brokers earn money by provid-
ing intermediary services: the trading and delivering platform. Publishers make
profits by selling content. Screen real estate is owned by viewers, which means ad-
vertisers may not interrupt programming for displaying advertising without the
viewer’s permission. Advertisers have to purchase viewers’ attention resources
by proposing to partially pay for the viewers’ content.

1

Multimedia Viewer

Broker

(Satellite Company,

Cable Company,

Website Operator…)

Multimedia Publisher

Advertiser

Network

Cash

Attention Resource

Multimedia Content

Intermediary

Service

Fig. 2. Resource trade analysis.

As owners of their attention space, viewers are empowered to decide what is
displayed in their attention space by managing access admission. For example,
if a viewer does not desire paying any attention to advertisers, all attention
resources go to the publisher and the viewer has a screen free of ads, at the cost
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of paying the full price for the viewed multimedia content. At the same time,
because advertisements may also contain entertainment and useful information,
such as upcoming promotions and new products, some viewers may not mind or
may even prefer to view some ads. In such a case, viewers may agree to subtract
the value received from the compensation expected for the ad.

Our approach allows viewers to choose advertisers as well as the schedule
of access to their precious attention. The selected advertisers negotiate with
viewers on how they may consume their attention resource, such as at what
time to display which ads, occupying which parts of the screen and for how long.

Contracts FlexAdSense uses a number of parameters to describe availability
of any type of resources; these descriptions serve as specifications of resources
in contracts. For example, for multimedia content, the quality (DVD quality,
fine quality or poor quality), playback capabilities (fast forward, fast reverse,
or rewind), content category (action, strategy, sports or romance), etc. can be
specified. Viewers can also negotiate the payment mechanism to be used, such as
pay-per-view, periodic payments, or a flat monthly fee for unlimited viewing. For
advertisements, viewers can specify the type (banner, video, text-in), category
(beauty, apparel, travel, sports), and the specific format for each type of ad, such
as font, position, duration and insertion time for text-in ads.

Once the multimedia content to be watched has been selected, a list of ads is
generated. This process can either be carried out automatically after adoption
of viewer preferences as policies, or manually by the viewers themselves; viewers
have the ability to configure ads at a fine grain. Ads generated by this process
become part of a contract.

2.2 Policies

Fine-grained negotiation can require significant user interactions, which can lead
to unwanted additional demands on viewer attention. Therefore, we introduce
policies for automated negotiations that can be used in predictable situations.
Specifically, users may create their own policies, or adopt or customize policies
available in a repository of typical policies. There are default policies in place
for users who have not created customized ones. Policies are also composeable.

We have implemented three types of policies: preference policies, payment
policies and privacy policies, which respectively specify policies for content/ad
selection, payment and privacy.

Preference Policies Preference policies reduce explicit user interaction by
specifying rules for filtering out unwanted or unrelated ad/content. Viewers, ad-
vertisers and publishers can all have preference policies. Viewers’ preference poli-
cies are used to personalize the programming choices displayed on their screens
– both content and ads. Viewer preference policies provide constraints which
are used to create choices of display sequences with advertisements embedded in
multimedia content streams. Policies can be as simple as “no advertisement” or
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as complex as “only sports ads of video clip type, inserted at the beginning of
content.” Recall scenario 1 and 3 involving our viewer Jack: he can now specify
the multimedia content category of his interests, as well as the ad types he dis-
likes. Jack can specify constraints about price, category, date, type, language,
etc., which are used for selecting ads. The price constraint, for example, can
be set so that a price higher, lower or equal to an amount is accepted. The
category and type constraints can be set to specify preference or otherwise for
categories and types. The date constraint specifies before, on or after a given
date. Similarly, for his content preference policy, Jack can specify the category,
language, video quality, and price constraints, in much the same way as he did
for ad preference policies.

Advertisers and publishers can also define preference policies, specifying
ad/content attributes, by which they can target their audience and ease the
ad/content creation process. For example, a lingerie advertiser not interested in
wasting advertising money on men, can set the gender to female.3 At the same
time, these policies can be used to respect viewers’ preferences, such as Jack’s
Scenario 4 preference to exclude adult–only content/ads in his daughter’s pres-
ence. Similarly, local businesses can select to target viewers in specific geographic
locations to avoid expenditure on people who are impossible to purchase their
products. These policies can be used to simplify publishing of ads information:
an advertiser/publisher who deals with only one type of product does not have
to specify the common attribute shared by each product being advertised or
multimedia content being sold. For instance, for a lingerie advertiser whose ads
typically fall under the apparel category, the category can be automatically set
to “apparel” by default, and exceptions can be identified as necessary.

Payment Policies FlexAdSense supports policies to support automated pay-
ment decisions by advertisers and viewers. An advertiser can specify payment
policies by specifying pricing models or setting monthly or daily budgets. Sim-
ilarly, a viewer can set long-term, budget-based or content-based policies which
impact the amount of subsidy received from advertisers, and the amount payable
for the multimedia content viewed.

– Pricing Model: Advertisers can specify static or dynamic pricing. Static pric-
ing is independent of the context in which ads appear; dynamic prices depend
on attributes defining the context. For example, an advertiser may want to
vary the price to be paid to a viewer depending on the point of insertion in
the content, as follows, to give preference to ads shown close to middle of
the content being viewed. Price P paid by advertiser would be:

P = Pmax −

∣

∣

∣

∣

(Tinsert − Dcon/2) ∗ (Pmax − Pmin)

Dcon

∣

∣

∣

∣

(1)

where Pmax and Pmin are the maximum and minimum prices for the ad,
Tinsert is the point of insertion, and Dcon is the duration of the content.

3This would require gender information about viewers, with privacy implications.
Privacy policies are discussed later.
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This linear model can also be used for other attributes: font size of text-in
ads and image size of banner ads.

– Budget: Advertisers can set a daily or monthly budget for advertising spend-
ing. For example, an advertiser can set a daily budget of 20 dollars, so that
when the spending reaches 20 dollars for the day, the ads are no longer
selected for showing to viewers.

Viewers can choose the balance between viewing preferences and the price paid
by specifying policies. Here are some examples:

– Coverage Percentage: A viewer can set a value p between 0 and 100 to specify
the percentage of the content’s price Pcontent that they want to be paid by
watching advertising; 100 would be equivalent to free programming, and 0 to
no ads. Note that the percentage can also be automatically computed from
a dollar amount for a selected content. Price P for watching content is:

P = Pcontent ∗ (1 − p/100) (2)

– Monthly Budget: Recall Scenario 2 in which Jack wishes to view high quality
content within constraints of a monthly budget. This could be represented
using the following policy for determining the current day’s budget:

Pi =
Bi

f ∗ (30 − i)
(3)

where Pi is the budget for the ith day of the month, Bi is the remaining
balance in the monthly budget as of the ith day, and f is the frequency
(between 0 and 1, representing percentage of days) that the viewer watches
content on television. Note that the policy tries to distribute budget evenly
over the month.

– Number of Ads Per Content: A viewer can specify the number of ads to be
viewed during the course of viewing specific content. If a viewer specifies the
number of ads per content, nads, the price paid can be computed as follows:

P = Pcontent −

nads
∑

i=1

Padi
(4)

Privacy Policies Privacy issues have been addressed in the literature [9]. Un-
like the way in which viewer information is typically guessed in existing systems
based on viewer actions, in our approach, personal information is directly con-
trolled by the viewers themselves. Viewers specify privacy policies determining
how their data can be used. Particularly, viewers’ personal information is treated
as a type of resource with commercial value. In a manner similar to how owned
attention resource could be traded, viewers can sell their personal information
to advertisers in a market at a fine grain, rather than have them guess and then
use it unacknowledged or arbitrarily. For example, viewers can set their informa-
tion to be “totally private,” “only used for ad targeting,” “used for automatic
subscription to newsletters,” or “for sale to specific advertisers under particular
conditions and terms,” with a price specified for each type of access.
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3 Implementation

The prototype is implemented over Actor Architecture (AA) [8], which imple-
ments primitive agents called actors [1]. The AA platform provides the asyn-
chronous communication primitive send as well as synchronous communication
primitive call (which is built upon asynchronous communication). Each type of
agent can extend the base class Actor by defining methods which can be invoked
as a result of receiving messages from other agents. Messages received by an ac-
tor are stored in its message queue until it is ready to process them. Actors are
identified by globally unique names called Universal Actor Names (UAN), such
as uan://128.233.104.144:3.

Each party is implemented as an agent. The broker agent acts as a server
maintaining the database, which stores information including users’ profiles, poli-
cies and information of all published content and ads. One special agent named
Directory Manager (DM), offers a Yellow Pages service. Each agent is imple-
mented with the functionality to negotiate resource trade with other parties at
a fine grain. Several example policies are implemented and user interfaces are
designed implementing key mechanisms as required for a functioning system.

3.1 Architecture

The structure of our system is as shown in Figure 3. Agents in FlexAdSense
are designed according to their roles. Brokers are servers providing service, such
as processing database queries and communicating with requesting users. Ad-
vertisers, publishers and viewers are represented by client agents responsible for
interacting with users and sending users’ requests to brokers, trading resources,
displaying response results and so on.

The Directory Manager (DM) maintains the names of all brokers. When a
new client agent is created, DM is responsible for arranging a rendezvous with
a server, which subsequently takes care of requests from the agent. Because
each broker maintains a replication of the database, DM also takes charge of
synchronizing databases on brokers. Specifically, when the database in any broker
is modified, DM has to instruct all brokers to update the database.

A Broker maintains the database which stores information about all users,
including users’ account information, viewers’ profiles, various customized poli-
cies, advertisement information and content information. There can be more
than one brokers. We use a load balancing based scheduling policy: the broker
with the lightest load balance is selected to serve a new client agent. New brokers
have to register with DM and replicate the database before going online.

Advertiser agents represent advertisers in interacting with brokers and DM,
and manages their advertisements, policies and accounts, as well as investigates
viewers’ informations if applicable and necessary. Publisher agents represent pub-
lishers in managing their multimedia content resources and accounts. Viewer
agents represent viewers in managing their attention space by searching for and
selecting content resources, selling attention resources at a fine grain, as well as
managing their profiles, policies and accounts.
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Fig. 3. The distributed structure of FlexAdSense.

3.2 Communication

There are two types of communications between agents: query requests and
modification requests. Query requests refer to requests between users and their
designated brokers. These requests can either be for searching or for subscribing
to content/ad, or retrieving users’ personal information. These types of requests
are implemented by sending a message to the relevant broker. Messages can
either be synchronous or asynchronous. The following examples show how a
viewer’s profile can be obtained using a synchronous message, and content can
be searched for using an asynchronous message.

viewerForm = (ViewerForm)call(myBroker, "searchViewerFormByID", loginID);

send(myBroker, "searchContentByName", conName, getActorName());

Note that searchViewerFormByID and searchContentByName are two meth-
ods defined in the broker actor class and are used to retrieve data from the
database. The former requires a ViewerForm return value; the latter does not
require a return value and sends results back by sending a message, along with
its own name (UAN) obtained through a call to getActorName().

Modification requests refer to requests that change the database. Because
each broker maintains a copy of the database, modification requests trigger an
update procedure on all brokers. These requests include requests to publish a
new ad/content, to register a new user or to change preference information. For
this type of requests, we use attribute–based communication [2] between agents,
which means that an agent does not need to know the recipient agent’s name,
just some characteristics. To enable this, a Directory Manager maintains a public
tuple space, which stores tuples with specific patterns, and offers the “deliverAll”
service, using which a viewer agent can tell DM to send a request to all brokers.

192



If there exists a corresponding method at which the receiver matches the given
arguments, the method is invoked. The following program illustrates registering
of viewer’s profile with brokers. Viewers do not have to know brokers’ UANs

or communicate with them individually. Instead, they simply send messages to
“brokers.”

//Extract all brokers in a tuple.
ActorTuple tuple = new ActorTuple(null, "broker");
send(anDM, "deliverAll", tuple, "addViewer", viewerform);

The user interface is encapsulated into an agent in a way similar to how a
unix shell enables a user to act like a process in interacting with other processes.
Except for the login user interface, all other GUI components are embedded
inside user agents.

4 Evaluation

FlexAdSense can be evaluated along multiple dimensions. Key among these is
the level of flexible fine-grained control afforded all involved parties. Section 4.1
provides this comparison, which is admittedly subjective. Two other interesting
metrics of evaluation are server scalability and the additional demand on viewer
attention resulting from interactions with the system. Among these, we have
focused primarily on the former in Section 4.2; [19] briefly addresses the latter.

4.1 Granularity of Control

Existing multimedia delivery mechanisms afford viewers limited decision making
capability over the advertisements they watch. Table 1 illustrates how FlexAd-
Sense compares with existing approaches.

The flexibility of control available to advertisers and brokers/publishers is
similarly high; more details can be found in [19].

4.2 Server Scalability

FlexAdSense offers mechanisms for viewers to be involved in making advertising
decisions at a fine grain, which existing mechanisms do not. We experimentally
evaluated these mechanisms for server scalability. Experiments were carried out
using six Mac OS X Servers each running an actor platform of AA. Servers had
2 × 2.8 GHz Quad-Core Intel Xeon CPUs with 8 GB memory each; they were
connected using a Gigabit network switch.

Our experiments used simulated load, with a number of viewers concurrently
sending information requests at pre-set rates. These are the more frequent types
of requests in the system; requests to modify schedules would be orders of mag-
nitude less frequent, and thus have relatively insignificant impact on scalability.
The rates at which simulated viewers sent requests (10 per sec) is also orders
of magnitude higher than what would happen in practice: not all viewers would
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Table 1. Comparison with existing mechanisms on control granularity over content
and advertising.

be actively searching at the same time, nor would they search at as high a rate.
In fact, the cumulative rate of generation of requests, not the number of view-
ers, turn out to be the significant determiner of performance. Consequently, our
results about highly demanding viewers are equally applicable to orders of mag-
nitude larger numbers (we expect 106) of actual viewers with typical demands.

Number of Viewers vs. Execution Time A set of experiments measured
the total amount of wall-clock time required to complete serving requests as
the number of viewers (distributed over three machines) grows from 1 to 3000.
The requests were generated by viewers at the rate of 10 per second; the time
required to process a request was set to 10 ms. All brokers were located on
the same (multi-core) server. As Figure 4(a) shows, for the one broker case, as
the number of viewers grows, the execution time increases significantly before
becoming linear. However, there are orders of magnitude improvements when the
load is divided between 2 or 3 brokers (note the logarithmic scale on y-axis). This
shows that relatively few brokers executing in parallel can sufficiently improve
performance.

Number of Brokers and Servers vs. Execution Time Another set of ex-
periments examined the effect of number of brokers and servers on the total
execution time. We simulated 1000 viewers; each viewer sent 100 requests in
total; a request was sent every 100ms and took 100ms of computation. Brokers
were evenly divided among up to 3 servers. As Figure 4(b) shows, when there is
only one server, the system performs the best with close to 10 brokers, following
which the execution time stays the same until it begins to grow linearly. This is
expected because each servers had 8 cores (2 quad-core processors). The over-
head of using multiple servers becomes evident when using two servers: although
16 brokers evenly divided between the two servers resulted in the best perfor-
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Fig. 4. a) Total execution time for different numbers of viewers; b) Total execution
time for 1000 viewers with increasing number of brokers

mance, it was less than twice as good as for one server hosting half as many
brokers. Significantly, when the number of servers was increased to 3, no per-
ceivable improvement can be seen beyond the 2 server case, except that the best
performance is shifted slightly to the right. On the one hand this suggests that a
small number of servers is sufficient for obtaining the best performance; on the
other hand, it is difficult to improve performance by simply adding additional
distributed servers.

5 Conclusion and Future Work

We have presented an owned attention resource based approach to making de-
cisions about advertising embedded in multimedia content, where viewers can
sell their attention (and personal information) resource to advertisers. Different
parties can install pluggable policies which enable their participation in nego-
tiations without explicit interaction requiring attention resource. A distributed
prototype has been designed and implemented. Preliminary evaluation shows
greater flexibility than existing approaches at an acceptable cost. Experimental
results indicate that the approach is scalable to large numbers of viewers and
requests. An obvious opportunity for improving efficiency of our implementation
lies in making updates to the replicated databases lazy.

An interesting direction of future exploration would be to extend the idea for
dynamically changing groups of viewers. Imagine viewers entering a room with
their personal agents carrying their preferences on personal mobile devices. View-
ers’ agents would then negotiate with each other before the group’s preferences
are negotiated with advertisers, not only to select content and ads agreeable to
all parties, but also to allow fair distribution of any costs and leverage between
the parties.

Finally, some broader questions require more thought. For example, advertis-
ers may be interested in targeting new market segments; however, matchmaking
based on stated preferences alone may exclude such matches.
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