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Trust (along with related concepts such as privacy, reputation, security, identity) has become a major 
research topic in computer science. The multiagent community potentially has a lot to offer, but 
several  conceptual  and  technical  problems  must  be  addressed  before  it  can  make  practical 
contributions. Although there is increasing interest in this area within the AAMAS community, this 
area  will  need  continued  support  as  an  affiliated  workshop  so  that  the  AAMAS  community 
maintains a venue for research into trust, reputation, and related topics.

DESCRIPTION OF THE WORKSHOP
The  aim  of  the  workshop  is  to  bring  together  researchers  who  can  contribute  to  a  better 
understanding of trust  and reputation in agent societies.  Most agent models assume trustworthy 
communication to exist between agents. However, this ideal situation is seldom met in reality. In the 
human  societies,  many techniques  (e.g.  contracts,  signatures,  long-term  personal  relationships, 
reputation)  have  been  evolved  over  time  to  detect  and  prevent  deception  and  fraud  in 
communication,  exchanges  and  relations,  and  hence  to  assure  trust  between  agents.  Artificial 
societies will need analogous techniques.

Trust  is  more  than  secure  communication,  e.g.,  via  public  key  cryptography  techniques.  For 
example, the reliability of information about the status of your trade partner has little to do with 
secure communication. With the growing impact of electronic societies, trust and privacy become 
more and more important. Trust is important in applications such as human-computer interaction to 
model  the  relationship  between users  and their  personal  assistants.  Different  kinds  of  trust  are 
needed: trust in the environment and in the infrastructure (the socio-technical system) including 
trust in your personal agent and in other mediating agents; trust in the potential partners; trust in the 
warrantors and authorities (if any). Another growing trend is the use of reputation mechanisms, and 
in particular the interesting link between trust and reputation. Many computational and theoretical 
models and approaches to reputation have been developed in the last few years. In all these cases, 
electronic personas may be created in many different forums (ecommerce, social networks, blogs, 
etc). The identity and associated trustworthiness must be ascertained for reliable interactions and 
transactions.

Trust appears to be foundational for the notion of "agency" and for its defining relation of acting "on 
behalf  of".  It  is  also  critical  for  modeling and supporting groups and teams,  organizations,  co-
ordination, negotiation, with the related trade-off between individual utility and collective interest; 
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or in modeling distributed knowledge and its circulation. In several cases the electronic medium 
seems to weaken the usual bonds in social control: and the disposition to cheat grows stronger. In 
experiments of cooperation supported by computers it has been found that people are more leaning 
to defeat than in face-to-face interaction, and a preliminary direct acquaintance reduces this effect. 
So, computer technology can even break trust relationships already held in human organizations and 
relations, and favor additional problems of deception and trust.

We  encourage  an  interdisciplinary  focus  of  the  workshop  -  although  focused  on  virtual 
environments and artificial agents - as well as presentations of a wide range of models of deception, 
fraud, reputation and trust building.

Just  to  mention  some examples:  AI models,  BDI models,  cognitive  models,  game theory,  and 
organizational science theories. Suggested topics include, but are not restricted to, the following. 
Here "mechanisms" include considerations of architecture, design, and protocols.

• Models of trust and of its functions
• Models of deception and fraud; approaches for detection and prevention
• Models and mechanisms of reputation
• Role of control and guaranties mechanisms
• Models and mechanisms for privacy and access control
• Models and mechanisms for establishing identities in virtual worlds
• Theoretical aspects, e.g., autonomy, delegation, ownership
• Integration of conventional and agent-based mechanisms
• Policies, interoperability, protocols, ontologies, and standards
• Scalability and distribution across multiple domains or within the global domain
• Test-beds and frameworks for computational trust and reputation models
• Legal aspects
• Trust in Organizations and Institutions
• Application studies (e.g., e-commerce, e-health, e-government)
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Suzanne Barber - The University of Texas – USA;
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Modeling ART as a probabilistic planning
problem with rewards

Javier Carbo and Jose Manuel Molina1

Group of Applied AI, Computer Science Dept., Univ. Carlos III of Madrid
{javier.carbo, josemanuel.molina}uc3m.es

Abstract. This paper presents a modeling of trust domain and prob-
lems, inspired in ART testbed terms and communications, using PPDDL,
Probabilistic Planning Domain Definition Language. This language is an
extension of the standard planning domain definition language (PDDL)
that permits defining planning problems in terms of Markov decision
processes in a easy-to-understand syntax. This modeling of the trust
domain into a planner is open enough to define multiple very different
trust models and strategies that could form a plan library to be used by
BDI-like agents. We have applied it into ART testbed domain because
its protocols and agent cycle provides an ordered sequence of actions,
facilitating and justifying the use of planning. ART agents may decide in
advance who to ask for cooperation. The possibility to anticipate these
behaviours allows this approach. Future work will involve the application
of this trust modeling to several cases (defined from ART competition
games) in order to generate and test a collection of plans to build chal-
lenging scenarios for ART competitions.

1 Introduction

The way agents achieve cooperation solving complex tasks is a design key factor
in MultiAgent Systems. However, since Agent Systems intend to be open, agents
have to establish some kind of social control. In many real-world interactions
this social control is decentralized and emergent, and it depends on local and
subjective evaluations shared between partners (reputation). In recent years,
trust/reputation research community has grown a lot, many trust/reputation
models have been proposed [11]. Since it was difficult to compare their respective
performances as many ad-hoc implementations and metrics have been applied,
the Agent Reputation and Trust (ART) Testbed [6] 1 was developed. At least
20 publications used such testbed 2 and three international competitions (with
17, 18 and 11 registered teams) were successfully carried out in 2006, 2007 and
2008. So we can state that during these years the ART testbed has been used
by dozens of researchers 3. Furthermore the ART-testbed development team
1 http://megatron.iiia.csic.es/art-testbed/
2 http://megatron.iiia.csic.es/art-testbed/publications.htm
3 the ART testbed discussion board yahoo group has 129 members,

http://tech.groups.yahoo.com/group/art testbed/
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have discussed, patched and updated the platform using the feedback from the
Competitions (see discussion notes on ART web page) and from the agent trust
community (through the already mentioned discussion Board of ART). These
criticism produced some changes in protocols [12], and outlined new directions of
work [7]. Among them, we can remark two of them which were taken into account
in this paper: the possibility of not considering participating agents as opinion
providers (playing then just the role of opinion consumers), and the desirability of
a set of very different scenarios where other agents were implementing predefined
strategies rather than being participants in competitions.
Both directions of work were already initiated in our previous works:

– First in [1], playing games with two participants of 2007 competition and
other agents defined ad hoc to be the solely opinion providers of the games,
implementing honest and malicious trust behaviours. These games showed
that the differences between both agents were much less than the official
competition stated.

– Other of our previous publications [2] supported the second direction of
work, which outlined the needing of counting on different predefined ad hoc
scenarios rather than direct confrontation of competitor agents. In that paper
we showed repeated games where, following an evolutive inspiration, losing
agent in a game clones the winning trust strategy (replacing losing strategy
by the winner one). Such repeated games has the intention to prove if the
2007 competitor winner implemented a Evolutionarily Stable Strategy (ESS
in advance) and finally its strategy would become the majoritary strategy in
last game. But it showed to be not a ESS, and the dominant strategy was
another competitor agent (the so called ’uno’, from girona univ.).

This paper follows both directions of work, since the motivation of this work is
to facilitate the automated generation of different trust strategies (through the
use of a plan library) to be adopted in competitive scenarios for ART games,
where the correspoding agents do not act as opinion providers, just as opinion
consumers.
On the other hand, the use of plans in BDI-like agents is very important, since
they are assumed to respond to changes in their goals and beliefs, resulting from
perception, by selecting appropriate plans and instantiating them as a collection
of intentions. Although the BDI paradigm has attracted some attention from
trust researchers as in [10], it has been address from the logical foundation in-
stead of focusing in the generation and use of planning. Additionally we can
remark a publication on the cooperative way to select plans in trust domain [8],
but it did not address the problem of how these plans were generated. Plans are
defined through a set of operators (often called actions) that, in trust domain,
would address with several complex, uncertain and dynamic decisions such as
who to ask for reputation and services. For instance, in [9] authors mentioned
the idea of considering concatenation, aggregation and selection of reputation as
operators forming a plan. All of them correspond to epistemic decisions (those
about about updating and generating trust opinions from received reputations).
But, as ART testbed definitions showed and cognitive theories state [3], other
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additional operators have to be defined related to pragmatic and memetic deci-
sions:

– pragmatic-strategic decisions are decisions of how to behave with partners
using these reputation-based trust.

– memetic decisions stand for the decisions of how and when to share reputa-
tion with others.

This becomes an additional motivation of our work: the possibility of encapsu-
lating of pragmatic trust decisions into operators/actions, since it would allow
evaluating actions by it selfs rather than jointly (as ART testbed does). This
classification has been taken into account in models such as Repage [13] and im-
plicitly in [7] when trust model (epistemic decisions) is distinguished from trust
strategy (pragmatic and memetic decisions).

2 ART testbed terminology and protocols

The ART testbed compared different trust/reputation models and strategies
in the art appraisal domain. In this domain, agents are players/competitors

Fig. 1. ART domain outline. Source [6]

that appraise paintings and implement trust strategies. Very close valuations of
paintings to the real value would lead to more future clients, and therefore to
more earnings to win the competition. Each painting belongs to an era among
a finite set of possible artistic eras while agents have different levels of expertise
(ability to appraise) in each artistic eras. An agent may request opinions from
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other appraisers about its paintings. With them, any agent would compute an
aggregated appraisal closer to the real value (specially useful in the eras where
the agent has low expertise). An agent can act also as provider of appraisals in
response to opinion (about paintings) requests from other agents . Additionally,
an agent can similarly request reputation information about the expertise of
other appraisers on an era, and it can receive reputation requests from other
appraisers on an era. All these interactions and the corresponding decisions take
place in sequential order forming the iterative cycle of an appraisal agent that
start after the agent receives paintings to be appraised from the simulation engine
(representing assumed clients), paying a fixed fee for each appraisal request:

1. decides which eras to ask on.
2. decides who to ask for reputation on those eras
3. asks for reputation to given agents on given eras (at a reputation cost).
4. receives reputation requests from other agents
5. decides who to answer reputation requests
6. decides how to answer reputation requests
7. answer reputation requests earning the corresponding reputation cost
8. receives reputation responses
9. aggregates received reputation responses.

10. decides which paintings to ask an opinion on
11. decides who to ask for opinion on the chosen paintings
12. asks for opinion to given agents on given paintings (at a fixed opinion cost).
13. receives opinion requests from other agents
14. decides who to answer opinion requests at the corresponding opinion cost
15. decides how to answer opinion requests (investing as much as it decides)
16. answers opinion requests
17. receives opinion responses
18. appraise its own paintings (investing as much as it decides)
19. aggregates received opinion responses into a final appraisal of each painting

3 Expressing Planning Domains with Probabilities and
Rewards

A standard domain description language, PDDL [4], is extensively used in plan-
ning community for sharing deterministic domain models and problems, enabling
direct comparisons of different planning systems. A similar description language,
PPDDL was proposed in [14] for the evaluation of probabilistic planning systems.
A PDDL planning domain consists of a set of types, a set of objects, a set of
predicates, and a set of actions:

– Objects in PDDL are terms that have some type, where there can be sub
typing relationships.

– PDDL Predicates are a way to encode Boolean state variables, while func-
tions encode numeric state variables. In order to determine the extent of the
state space for planning problems, all functions and predicates take no argu-
ments. Additionally the complete set of objects has to be known in advance.
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– Actions in PDDL represent state transitions, where state stands for a partic-
ular assignment to the set of state variables of a planning problem. Actions
have preconditions and effects. Preconditions characterize the states that
the action is applicable in, while effects specify updates to state variables
(typically increase and decrease). On the opposite way to predicates and
functions, actions often have parameters.

A PDDL planning problem also includes a goal and an optimization metric that
is a function of the state variables evaluated in a goal. PPDDL extends this
language supporting probabilistic effects and rewards.

– Probabilistic effects declare exhaustive sets of probability-weighted outcomes,
they consist of probability-effect pairs that have to sum up 1 (unless empty
effect implicitly has the lacking probability). Probabilities may also appear
associated with the definition of state variables of the initial state. PPDDL
allows arbitrary nesting of conditional and probabilistic effects.

– Rewards in PPDDL are encoded using fluents, where the fluent reward repre-
sents the total accumulated reward since the start of the execution. Rewards
are updated in action effects through the use of increase or decrease followed
by a numerical expression (not involving reward). Action preconditions and
effect conditions can not refer to reward (in other words, reward is not part
of the state space).

Although regular PDDL goals uses an explicit optimization metric for the plan-
ning system, problems using rewards have a default plan objective that consists
of maximizing the expected reward.
Further details on PPDDL syntax, semantics and examples can be found in [5]
Planning in ART testbed games depends upon several conditions (paintings be-
longing to eras, expertise had by own agent, expected expertise had by other
agents, their certainty, ...). Since some of these conditions are expected values,
they can be represented by probabilities. Additionally the goal pursued by the
agent is to maximize the future reward that the agent would receive (in terms
of more paintings from clients to be appraised in the next iteration). So it seems
that PPDDL may be used to represent ART domain and problems.

4 Modeling ART games as planning domain and
problems

4.1 Scope

First we select which steps out of the 19 ones involved in ART iteration cycle
are of our interest. These 19 steps combine the behaviours of a participant agent
as a provider of opinions and as a consumer of opinions. This design decision
is controversial since the final earnings of participant agents come both from
their ability to filter out the untrustfull partners (which is the right goal of trust
models) and from their ability to exploit untrustfull behaviour. This confusion
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may be solved avoiding steps 13, 14, 15 and 16, and even eliminating the earnings
from propagating reputation, steps 5,6 and 7 (this assumption avoids a player
agent providing reputation values to other, assigning recommender role to third
party -nonplaying- agents as clients should be, and opinion providers we decided
to be). Step 18 has to be also eliminated since the agent is acting as a provider
(to itself), and additionally we obtain agents more dependant on knowledge
about the others. Therefore we still have 12 steps to be instantiated as a plan
in the ART testbed domain and games. Additionally steps corresponding to
send/receive messages (step 3, 8 and 12, 13) does not play any role in the plan,
they could be represented as actions belonging to a plan, but their inclusion is
automatic since they depend completely on decisions about asking-for-reputation
and asking-for-opinion steps (1-2 and 10-11) On the other hand, steps 9 and 19
represent aggregation and concatenation operators defined in [9]. As we said
before, they are epistemic actions and furthermore, they depend upon external
events that can not be known in advance (the responses received from other
agents). Therefore they can not be ’planned’ and we did not consider them in
our planning system although they should be there. In conclusion, for us, the
decisions where the sequence of actions to be chosen is relevant, correspond
exclusively to steps 1-2 and steps 10-11, which are the pragmactic actins we
were interested in, and furthermore these steps determine the actions to be
held in advance (asking for reputation and asking for opinions). Then, our goal
of representing (part of) an iteration of an ART player agent as a planning
problem is focused on these steps, which makes sense since almost these steps
may be ’planned’ from the moment we received the painting to be appraised. The
existence of several paintings and providers of the same era opens the problem
to very different ways to act in order to reduce the expected uncertainty of the
painting final appraisal values.

4.2 limitations

There is one important limitation, that consists of the use of reputation into the
decision of selecting the agents who ask for opinion (step 11 of section 2). Since
planning requires all objects and effects to be known, the reputation responses
received from other agents can not be previewed (’known’) and therefore, such
decision may not consider these responses in the given iteration (they will be
taken into account in next iterations). Additionally, first iteration(/s) of an ART
game is special since no agent has any knowledge about opinion providers and
asking for reputation does not make sense at this point 4 We assume agents to be
in an intermediate point of an ART game, forgetting then the specific problems
of the different logic to be followed in the first iteration(/s).

4 In fact this cold start of ART games may be biasing the competition results since the
winning trust strategy in those games may be not so successful when all participating
agents have some ’a priori’ experience-based knowledge about opinion providers
reliability.
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4.3 definition of objects and types

The basic concepts of ART games are eras, agents and paintings 5. We define
the instantiation of these concepts as objects in the definition of the planning
problem:
(:objects era1 era2 ... era5 - era)
(:objects iam argente2 uno2008 connected ... -agent)
(:objects painting1 painting2 ... painting9 -painting)
Each of them with its corresponding type era, agent and painting has to be de-
fined in the domain file:(:types era agent painting)

4.4 definition of predicates and functions

Predicates represent the statements about the objects in the problem that are
assumed to be true. One of them would represent the assignment of eras to
paintings: (requested-appraisal ?painting -painting ?era -era)
The corresponding costs of opinions and reputation are functions opinion-cost
and reputation-cost (since they encode a numeric state variable), defined in the
initial state:
(opinion-cost 10)(reputation-cost 1)
These costs are taken into account in two ways: first, verifying that the agent
can afford the cost, and therefore, we have to represent the bank balance of the
agent (as a function bank-balance). Second, to taking into account the paid
costs in the optimization goal defined implicitly by the rewards. We also need a
predicate meaning how much expertise is needed on that era, computed (out of
the scope of the plan) from the the number of paintings to appraise in that era:
(needed-expertise ?era)
Additionally we have to represent the expertise of an agent about an era, it could
be a function: (has-expertise ?appraiser -agent ?era -era)
The certainty on that expertise is represented also by a function:
(has-certainty ?appraiser -agent ?era -era)
In the same way, the ability of an agent providing useful reputation values could
be represented by the function: (has-knowledge ?appraiser -agent)
While the cooperative intention of the agent is represented by the function:
(is-cooperative ?recommender -agent)
These predicates and functions will appear instantiated in the initial state that
represents a specific iteration of an ART game. But there will be more predicates
that will be added afterwards, as the decisions would be taken in the effects of
the actions. These ones would be:

– the result of decision corresponding to steps 1-2 mentioned in section 2 would
be address jointly by an action. The predicate would take the form of
(to-be-asked-for-reputation ?recommender -agent ?era -era)

5 the own agent is not represented as an object of type agent
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– the result of decision corresponding to step 10-11 mentioned in section 2
would take the form of
(to-be-asked-for-opinions ?appraiser -agent ?painting -painting)

4.5 definition of actions

Actions in PDDL represent state transitions, with conditions and effects. Deci-
sions of step 1-2 can be jointly addressed by an action for asking-for-reputation,
where the parameters are: era, recommender and appraiser. its preconditions are
the next ones:

– that our agent has enough bank-balance. In other words, it should be greater
than reputation cost: (> (bank-balance) (reputation-cost))
And therefore in the effects bank-balance should be decreased in reputation-
cost: (decrease (bank-balance) (reputation-cost))
Additionally the reputation-cost would be considered negatively in the nu-
merical function f that computed the increase of expected reward obtained
by executing this action.

– that we need expertise in that era (how much we need it). It should be
greater than a minimum defined by a given threshold (represented by a
function min-needed-expertise)
(> (min-needed-expertise) (needed-expertise ?era))
Additionally the needed-expertise would be considered positively in the nu-
merical function f that computed the increase of expected reward obtained
by executing this action. The more needed is the expertise in that era, the
more interesting is executing this action.

– that are not very sure of the knowledge I have about a potential appraiser in
an era. This is computed comparing if the certainty of the appraiser in an era
is lees than a given threshold (function max-certainty). The less knowledge
i have about the expertise of a potential appraiser, the more interesting is
executing this action.
(< (max-certainty) (has-certainty ?appraiser ?era))
Additionally the certainty had by would be considered negatively in the nu-
merical functions that computes the increase of expected reward obtained
by executing this action (f). The more certainty has the appraiser, the less
interesting is executing this action. Finally the certainty had by the poten-
tial appraiser would become increased in some level, computed as a function
g of has-knowledge value, and the probability that this increment and the
reward would take place depends upon the how much cooperative is the
recommender (function h). This increment of has-certainty value of the ap-
praiser would avoid an endless repetition of the same instance of this action.

– that the recommender agent is cooperative. It should be greater than a
minimum defined by a given threshold (represented by a function min-
cooperation)
(> (min-cooperation) (is-cooperative ?recommender))
Additionally the level of cooperation of the recommender would be consid-
ered positively in the numerical function f that computed the increase of
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expected reward obtained by executing this action. The more cooperative is
the recommender, the more interesting is executing this action.

– that the recommender agent is often well-informed (has knowledge about
appraisers). It should be greater than a minimum defined by a given thresh-
old (represented by a function min-knowledge)
(> (min-knowledge) (has-knowledge ?recommender))
Additionally the level of knowledge that the recommender probably has,
would be considered positively in the numerical function f that computed
the increase of expected reward obtained by executing this action. The more
informed is the recommender, the more interesting is executing this action.

The effects of action of asking for reputation are:

– the corresponding decrease of bank-balance
– the inclusion of the predicate:

(to-be-asked-for-reputation ?recommender ?era)
which would fire the execution of the step 3, waiting then for the external
event produced in step 8 of section 2.

– the increment of has-certainty value on the appraiser and the era in a func-
tion g dependant of has-knowledge value. A possible definition could be:
(increase (has-certainty ?appraiser ?era) (has-knowledge ?recommender))

– the increment of the reward corresponding to the execution of this action,
would be computed from function f dependant on reputation-cost, needed-
expertise, has-knowledge and has-certainty functions. The most simple im-
plementation could be a sum of all of the positive ones subtracting the neg-
ative ones: (increase (reward) (+ (+ (has-knowledge ?recommender)
(needed-expertise ?era)) - (+ (has-certainty ?appraiser ?era)(reputation-cost))

Finally, to represent the possibility of a non cooperative attitude from recom-
mender agent, these last two effects are considered probabilistic effects, where the
probability associated to them has to be dependant of is-cooperative function.
An example of this probability could be: (probabilistic (is-cooperative
?recommender) (increase (has-certainty ...)) (increase (reward) ...)))
The other action defined in the ART planning domain is asking-for-opinion (steps
10 and 11). The parameters are: era, painting and appraiser. The preconditions
of this action are the next ones:

– that our agent has enough bank-balance. In the same way that the previous
action but with opinion cost rather than reputation cost.

– that our agent has to appraise a painting on the given era:
(requested-appraisal ?painting -painting ?era -era)

– needed-expertise compared with min-needed-expertise
(> (min-needed-expertise) (needed-expertise ?era))
Additionally the needed-expertise would be considered positively in the nu-
merical function f that computed the increase of expected reward obtained
by executing this action. The more needed is the expertise in that era, the
more interesting is executing this action. Finally the needed-expertise in
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an era would become reduced in some level, computed as a function g of
has-expertise value, and the probability that this decrement and the re-
ward would take place depends upon the how much certainty we have in
the expertise of the appraiser in that era (function h). This decrement of
needed-expertise value of the era would avoid an endless repetition of the
same instance of this action.

– that i am very sure of the knowledge I have about a potential appraiser in
an era. This is computed comparing if the certainty of the appraiser in an
era is more than a given threshold (function min-certainty).
(> (min-certainty) (has-certainty ?appraiser ?era))
Additionally the certainty had by would be considered positively in the nu-
merical functions that computes the increase of expected reward obtained by
executing this action (f). The more certainty has the appraiser, the more in-
teresting is executing this action. This is the opposite of what we considered
in asking-for-reputation action. Finally the certainty had by the potential
appraiser would become reduced in some level, computed as a function g,
possibly defined as an uniform function.

– that the potential appraiser has enough expertise on that era. This is com-
puted comparing the expertise of the potential appraiser with a given thresh-
old (function min-expertise). The more expertise the agent is supposed to
have, the more interesting is executing this action.
(> (min-expertise) (has-expertise ?appraiser ?era))
Additionally the expertise had by the appraiser would be considered pos-
itively in the numerical functions that computes the increase of expected
reward obtained by executing this action (f). The more expertise has the
appraiser, the more interesting is executing this action.

The effects of action of asking for opinion are:

– the corresponding decrease of bank-balance
– the inclusion of the predicate:

(to-be-asked-for-opinion ?appraiser ?era)
which would fire the execution of the step 12, waiting then for the external
event produced in step 13 defined in section 2.

– the increment of has-certainty value on the appraiser and the era in a func-
tion g typically uniform. A possible simple definition could be: (increase
(has-certainty ?appraiser ?era) 1)

– the increment of the reward corresponding to the execution of this action,
would be computed from function f dependant on opinion-cost, needed-
expertise, has-expertise and has-certainty functions. The most simple im-
plementation could be a sum of all of the positive ones subtracting the neg-
ative ones: (increase (reward) (+ (+ (has-expertise ?recommender)
(needed-expertise ?era) (has-certainty ?appraiser ?era) - (reputation-cost)

Finally, to represent the possibility of a deceptive result from the opinion of ap-
praiser agent, these last two effects are considered probabilistic effects, where the
probability associated to them has to be dependant of has-certainty function.

10



An example of this probability could be: (probabilistic (has-certainty
?appraiser) (increase (has-certainty ...)) (increase (reward) ...)))
Obviously the definition of functions f, g, and h could be customized introducing
new factors, or weighting them in diferrent ways.

4.6 generated plans

The execution of the defined actions in very simple art game definitions, would
provide an output wich consists of a collection of predicates such as:
to-be-asked-for-reputation iam argente era2
to-be-asked-for-reputation iam uno2008 era3
...
to-be-asked-for-opinion argente painting1
to-be-asked-for-opinion connected painting4
...
Machine readable version of this domain and a couple of example problems can
be found on line at
http://www.giaa.inf.uc3m.es/miembros/jcarbo/art-planner.ppddl

5 Conclusions

Modeling ART games as a planning system can not be done without many lim-
itations. But taking into account such restrictions, part of the basic iteration
of a player agent in such games can be modeled successfully as a planning do-
main and problem. Besides explicitly using a very descriptive language trust
decisions, this planning approach is a step forward in the possibility of using
BDI-like agents in this problem, and it intends to be a way to generate non
trivial challenging agents (current honest and malicious ART predefined agents
are mostly dumb). With them, it would be closer the goal of ART testbed de-
velopment team relative to generating a complete set of artificial societies for
improved competition and experimentation. Although this paper only shows how
ART testbed was modeled as a planning domain and problem, future works in-
volve evaluating the corresponding generated plans in already-played games (for
instance 2006, 2007 and 2008 competitions). These evaluation would allow us to
tune properly the thresholds min-knowledge, min-certainty, min-expertise and
min-needed-expertise.
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Abstract

Trust is often described as an important variable in social interactions. This

has been true not only for disciplines such as sociology, psychology or anthropol-

ogy. Economics scholars have mainly used trust as a background characteristic,

allowing exchanges and potentially in�uencing economic performance. In the last

decades, however, also due to insights coming from other disciplines and to better

available measures, economic research on trust consequences has become more

and more quantitative. Simultaneously, the understanding of trust antecedents

has deepened.

In this paper we present a model integrating some recent insights from ex-

perimental research, and we investigate how agents interactions based on trust

may in�uence both individuals and population performance in terms of learning

e�ciency and quality of the interactions. We use a de�nition of trust based on

economic primitives, such as beliefs and preferences, to evaluate the ability of

agents to learn about the interaction environment as to choose the most fruitful

relationships.

We show that preferences and learning dynamics may play an important role

in shaping individuals performance.

Keywords: trust, preferences, beliefs, learning, social networks.

1 Introduction

Most of the literature on trust deals with dyadic interactions, both in theoretical and

experimental approaches [2, 4, 19]. Instead, in this paper we focus on trust dynamics

in a social environment.
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Interesting network models of trust can be found in computer science. Generally

these models deal with trust in terms of reputational systems, with a particular focus

on the mechanisms for the evaluation of network nodes, whether they are arti�cial

(computers) or human [6, 3, 29, 34, 17, 21].

On another side, economists generally link social environments and trust along three

main di�erent perspectives. A �rst perspective goes under the broad category of social

capital literature [11, 5]. Secondly, managerial literature focuses on the link between

trust in groups and organizational performance [27, 12, 28]. Finally, an increasing

number of studies focuses on the link between macro-economic performance and culture

[23, 30, 15, 31, 18].

We believe there is a missing level of analysis in the literature, linking theoretical

modeling at the dyadic level and empirical research at the social level.

More speci�cally, we are here interested in investigating how trust dynamics evolve

in a social network. On one side trust allows for social interactions to take place; on the

other side, the outcomes of these interactions allow for an update of trust itself. This is

a potentially self-reinforcing mechanism, where trust is needed to generate more trust.

We focus therefore our attention on the dynamics of trust learning and on individual

and social performance.

The rest of the paper is structured as follows. Section 2 gives an overview on trust

related research. Section 3 describes the formalization of the model. Section 4 describes

performance measures and discuss the results. Finally section 5 highlights some possible

conclusions.

2 Trust literature

Trust is central to all transactions and yet economists rarely discuss the notion. It

is treated rather as background environment, present whenever called upon, a sort of

ever-ready lubricant that permits voluntary participation in production and exchange

[11].

Over than this, some authors correctly claim, that most of the research on this

topic simply repeats the same results or implications of studies on transaction costs or

on Prisoners dilemma-like situations [9]. Instead, a cognitive theory of trust is needed

as part of an enriched description of the complex structure of beliefs and goals that

are at the basis of agents choices and actions, being these choices and actions socially

embedded and strongly in�uencing agents also in the economic arena.

In particular, an interesting social aspect of trust is that related to its risk compo-

nent. In fact, trust appears as a solution to speci�c problems of risk, that is the risk of
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being disappointed by others actions and su�ering a damage bigger than the advantage

one was seeking choosing to trust [26].

Some of these aspects are better understood when one looks to recent studies, linking

trust and its mental components in terms of beliefs and preferences. Fehr [13] documents

the accumulation of strong evidence that trusting cannot be captured by beliefs about

other people's trustworthiness and risk preferences alone, but that social preferences

play a key role.

In example, betrayal aversion, that suggests that people are more willing to take

risk when facing a given probability of bad luck than to trust when facing an identical

probability of being cheated, seems to play a particularly important role in trusting

behavior [7]. Kosfeld et al. [24] study the e�ects of oxytocin, an hormone that has

been described as an important enhancer of pro-social and a�liation behavior in many

di�erent non-human mammals. It is shown that this substance may also increase human

pro-social behavior and evidence is given that trust relates to risk generated in a social

environment and in social interactions. Also studies on biology and evolution are also

showing that this behavior might be codi�ed and appear in speci�c ways.

Trust, for instance, is a possible solution to problems arising from uncertainty, risk,

incomplete information, incomplete knowledge, imperfect rationality. As trust di�uses

and is practiced, agents get better and better in understanding and predicting the

environment in which they act.

As Good [16] suggests, the reaction of another agent to one's own action is important

in con�rming prior experience, and this con�rmation (predictability) is necessary to

make the social world intelligible and seemingly knowable. Though some prerequisites

are necessary for these dynamics to be at work. Firstly agents need to interact in an

environment rich of trust and trustworthiness, since trust may be depleted through

not being used [14]. Secondly, agents need some capabilities and rules to discriminate

among their potential counterparts and a su�ciently developed information processing

ability and �exibility [25] as to make it possible to choose the best partners to place

trust in.

Signaling and the ability to decode correctly and pro�tably these signals, are there-

fore two important aspects of social interactions in general, and trust based ones in

particular. Signals may come not just from direct perception and experience of the

environment, but also from third-party experiences di�used along the network. These

informations may generate a public record of every agent that is available to all network

nodes. This individual record is generally de�ned as an agent's reputation.

These aspects have also a strong economic appeal, and they are one of the focus

topics in the research area of markets, products quality and �rm reliability [1, 32].
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However, very interesting insights and results come from computer science, speci�cally

from referral systems studies or trust management studies. The problem at hand is

the possibility to assess the trustworthiness of every node in the network, by means

of scoring from other nodes in the same network, as to create a reputation building

mechanism.

Researchers discuss important questions related to scores generation, discovery and

aggregation [34]. Some underline that a trust model needs to take into account many

sources of information, as to be robust against some possibly missing sources or lying

from other agents. At the same time, every agent should be able to evaluate and pool all

these informations on his own [21]. In these contexts, misbehavior is not only intended

in the sense of not respecting the rules of the interaction, but, more interestingly, not

respecting the rules of a fair scoring mechanism [33].

The presented model in the next section develops on these building block, with some

important additions. Firstly, it is a model of trust in a social environment, considering

more than dyadic and triadic interactions. Secondly, it uses insights from di�erent

disciplines and approaches, both for agents characterization and for the de�nition of

interaction rules. Lastly, its simple implementation might allow extensions for more

speci�c and deeper evaluations.

3 Model

We consider a network of N agents, indexed as i = 1, 2, . . . , N . Time is discrete,

indexed with t = 0, 1, . . . , T . For each agent we de�ne a number of characteristics,

over which we model interaction and learning dynamics.

Own information is embedded in a β-distributed belief pt
ij ∼ β

(
ut

ij, v
t
ij

)
, that rep-

resents the information about the outcomes of past interactions between agents i and

j. In our de�nition of the beta function, ut
ij and vt

ij de�ne respectively successes and

unsuccesses. Based on this function, the expected likelihood of success in a partnership

between i and j is pt
ij = ut

ij/
(
ut

ij + vt
ij

)
.

Every period partnerships are formed based on agents beliefs, just de�ned, and

preferences. We de�ne the social component of individual preferences as a threshold

value θi ∈ [0, 1]. This determines the level of belief over which each agent is willing to

propose or accept an interaction.

As we consider exogenous preferences, these thresholds are given and do not change

over the considered period. However, it may well be the case that preferences evolve

over time, in response to new information and new experience [16, 22]. Moreover,

this formalization resumes two insights from recent research. Firstly, these thresholds
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represent an indicator of the pro-social attitude of each agent [10, 24]. Secondly, they

represent an indicator of agents aversion of socially-embedded risk, such as betrayal

aversion [7].

Once partners are selected and interactions are made, a network gt of all the links

ij for which E [pij] ≥ E [θi] and E [pji] ≥ E [θj], where the former in each inequality

de�nes the expected payo� given agents beliefs, and the latter the threshold payo�

given agents preferences.

The interaction fails with probability depending on the level of trustworthiness of the

counterparts. Trustworthiness wi is also de�ned in the interval [0, 1] and is stable over

time. We recognize that, as for preferences, this is a strong simpli�ed assumption. In

fact, trustworthiness may evolve due to the environmental conditions and the partnering

and success history of each agent. Moreover, an agent's beliefs and preferences might

also have a relation with his own trustworthiness, and placing trust may in�uence

counterparts trustworthiness in ongoing interactions. We will investigate these aspects

in future developments of the model.

Back to the model, the subset ot⊆ gt de�nes the indicator of positive outcomes

for each agent. An interaction is successful if and only if the outcome is positive for

both the interacting agents. Otherwise, if for i, j ∈ ot, ot
ij 6= ot

ji, then the interaction

fails. This may allow for potentially contrasting information to �ow in the network and,

eventually, cheating in evaluation and communication [33].

From one period to the next, the belief pt
ij is updated according to Bayes rule, using

the information embedded in ot. After period t has taken place, positive and negative

outcomes are recorded and used to update individual beliefs about partners. Therefore,

pt+1
ij ∼ β

(
ut

ij + ot
ij, v

t
ij + 1− ot

ij

)
.

The condition for a link to be created at each period t is thus

πgt

i − π
gt−ij
i = E

[
pt

ij | gs, os; s < t
]

> E [θi]

Given the update mechanism described, this condition is only depending on i and

j's interactions. Although we want the model to include other k's experiences. This is

where third party information pooling comes in.

To generate learning from others experiences we use insights from Bayesian model

averaging [20]. This is a way to evaluate the probability of a model being true, given the

realizations and assessing the probability of other models too being true, given the same

realizations. In our use, models are the di�erent beliefs agents hold about someone's

trustworthiness.

In the general BMA framework, if ∆ is the quantity of interest, such an e�ect size,
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a future observable or the utility of a course of action, then its posteriors distribution

given data D is an average of the posterior distributions of each considered model

weighted by their posterior model probability. All the probabilities are conditional on

the set of all models being considered. In our approach, in particular, a �model� Mk

is agent k's belief about another agent (say j), that is pt
kj. When considering also

third-party information, thus, the posterior belief at time t is:

E
[
pt

ij | gs, os; s < t
]

= E
[
pt

ij | gs
ij, o

s
ij; s < t

]
Pr
{
Mi | gs

ij, o
s
ij; s < t

}
+

+
∑

k∈gi,gj

E
[
pt

kj | gs
kj, o

s
kj; s < t

]
Pr
{
Mk | gs

kj, o
s
kj; s < t

}
where the �rst terms are as de�ned above, while the second terms are as de�ned in

Bayesian model averaging.

There are two important assumptions regarding the pooling of informations. Firstly,

own information is weighted against third-party information, through a parameter αi ∈
[0, 1], that is an individual heterogeneous character. Secondly, third-party information

is assumed to be equally weighted over all the sources. Research on reputation systems

underlines that possibly third-party information might be aggregated in a way to re�ect

the con�dence level in the di�erent sources [8]. Therefore a general form for a source

related weight might be

wt
k =

pt
ik∑m

k∈gi,gj
pt

ik

that is, information is weighted proportionally to the belief in each source.

In this paper we anyhow assume all sources to be equally trustworthy. The moti-

vation to this assumption resides in the way we model information di�usion. We allow

only information about individual outcomes to �ow in the network and we assume that

there is no strategic use of information by agents and therefore no possible cheating in

communication.

4 Numerical experiments and results

We run numerical experiments to investigate the e�ects of learning and preferences on

individual and social performance at di�erent levels of population average trustworthi-

ness. Speci�cally, we consider a population of 80 agents that may interact over a time

span of 60 periods. Learning weights, social preferences, beliefs are randomly initialized

and are therefore heterogeneous among agents.
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On one side we investigate learning dynamics. In fact, the faster the learning pro-

cess, the better the chances to interact only with good partners and the more the

information �owing in the network is relevant for the detection of untrustworthy coun-

terparts. On the other side, since social preferences directly in�uence the number of

ongoing interactions, we evaluate how this interacts with learning dynamics and the

ability to choose more successful partners.

The learning performance indicator we use is the average trust prediction error,

de�ned as the average of each agent's beliefs distance to his counterparts real trust-

worthiness levels after each period. We evaluate the correlation with both individual

learning weights and social preferences.
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Figure 1: Prediction error

We found particularly clear patterns in these correlations. In particular, �gure 1a

shows that the closer the average trustworthiness of the population is to intermediate

values (w 0.5), the more relying on indirect experience is important for a better pre-

diction of counterparts trustworthiness. Figure 1b shows instead that for lower and

higher average population trustworthiness, higher preferences imply bigger prediction

errors. On the contrary for intermediate values of population trustworthiness higher

preferences tend to imply smaller prediction errors.

These e�ects appear contrasting. On one side it seems that, since for intermediate

population trustworthiness indirect learning is more important, agents would need more

interactions; on the other side, the negative correlation with preferences implies that the

better predicting agents are those with less interactions. However, since learning is more

ambiguous for intermediate levels of average population trustworthiness, counting on

less interactions may be positive, as well as sharing the information of fewer interactions

with a smaller number of partners. In conclusion, we believe these e�ects combine to

reduce ambiguity.

We also evaluate the evolution of interactions along the considered time span, as well
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as the dynamics of positive versus negative outcomes. If we observe the dynamics of in-

teraction evolution in time (Figure 2a) we clearly see that the percentage of interactions

is always decreasing, though decreasingly for increasing population trustworthiness.
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(b) Positive outcomes

Figure 2: Evolution over time - Di�erence �rst and last period

However, at the same time the percentage of positive outcomes increases (Figure

2b), showing therefore that agents are able to choose and maintain over time generally

more trustworthy counterparts, either this is due to preferences thresholds or learning.

Moreover, we de�ne a measure of the social risk and a measure of the loss due to

individual thresholds. The latter is de�ned as the percentage of potentially fruitful

interactions, those for which a counterpart's trustworthiness is higher than an agent's

belief, that are not exploited due to agents thresholds, over the total of the available

fruitful interactions. The former, somehow symmetrically, is the percentage of accepted

and ongoing interactions for which the counterpart's trustworthiness is lower than an

agent's belief, with respect to the total of ongoing interactions. In this �rst case, pref-

erences are too high to allow fruitful interactions, while in the second case preferences

are too low to protect the agent from misbehaving agents.

Figure 3a shows that over time the percentage of interactions lost due to individual

preferences thresholds increases, though the size of this e�ect is small and slightly higher

for higher population average trustworthiness. However, even this small e�ect means

that agents tend to loose potentially fruitful interactions. For lower trustworthiness

values we observe a decrease, but in this situation the e�ect is positive due to the fact

that preferences protect agents from anyhow generally riskier interactions (being aver-

age trustworthiness really low) and agents apparently learn the correct trustworthiness

values of their counterparts.
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(b) Bad interactions entered

Figure 3: Evolution over time - Di�erence �rst and last period

On the other side, the percentage of interactions with untrustworthy counterparts

over the ongoing interactions tend to diminish, at least for lower values of popula-

tion trustworthiness (Figure 3b). However, for higher values of trustworthiness the

relation is inverted. Since in this situation the number of interactions doesn't change

that much over time, this means that agents tend to overestimate their counterparts

trustworthiness, and this, in turn, implies an increased chance of entering potentially

riskier interactions with agents whom levels of trustworthiness have not been correctly

assessed.

If we analyze the role of preferences on these two last variables in terms of correla-

tions, we observe that preferences appear to be increasingly correlated to the number

of lost chances for increasing population trustworthiness (Figure 4a). The negative

correlation observed for lower trustworthiness values is not really indicative due to the

fact that, at those values, the number of fruitful chances is anyhow really low.
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Figure 4: Preferences role - Correlations

Lastly, �gure 4b shows the role of preferences with respect to the social risk attitude

of agents. For lower population average trustworthiness preferences protect agents
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from entering riskier interactions. For higher values of population trustworthiness,

on the contrary, preferences seem positively correlated with the level of social risk

agents are taking. Even though agents with high preferences tend to be less prone

to accept interactions, what seem to happen here is that these same agents come to

a point where they might interact only with counterparts they more or less strongly

overestimate. Apparently agents with lower preferences are better in diversifying their

chances entering more interactions, and in such way they lower their social risk.

5 Conclusions

To understand trust one needs not only to assess its consequences. Research also

investigates the link of trust with its antecedents, such as preferences and beliefs. It is

exactly this that, in turn, may motivate the impact of trust on agents decision processes

and on their social and economic outcomes.

In this paper we built a social model of trust along these lines. Agents trust has

been de�ned in terms of beliefs and preferences, allowing for the implementation of

recent experimental results.

Our numerical experiments give some interesting insights on trust dynamics. In par-

ticular, we showed that preferences may strongly a�ect individuals performance. Higher

social preferences thresholds imply a lower attitude towards interactions and this, in

turn, may generate lock-in e�ects that prevent both e�cient learning and potential

gains. Our results show in fact that higher preferences imply in general higher pre-

diction errors, for instance not allowing agents to correctly evaluate their environment

and exploit potentially fruitful interactions. Moreover, we also show that, not intu-

itively, higher preferences may even imply an higher social risk in highly trustworthy

environments.

We recognize some simpli�cations of the present model and the need for future

extensions. In particular, we intend to investigate the e�ects of time-varying preferences

and of possible cheating in experiences communication among agents. Also an analysis

of the co-evolution of trust and trustworthiness seems to be needed, due to the various

ways these variables may interact and in�uence each other.
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Abstract. This work is based on our conjecture that agents who make
decisions in scenarios where trust is important, can benefit from the
representation of a social structure, representing the social relationships
that exist between agents. We propose a concrete way of how agents
can gradually build and update such a structure while interacting in the
environment of the Agent ART Testbed. We also implement and vali-
date the use of such a structure in the testbed: we have taken an existing
competitor (Simplet) and compare its behaviour with a copy of that com-
petitor who uses the social structure (SocialSimplet). In our documented
experiments, SocialSimplet does better as regards to the quality of the
interactions, the number of games won, and the total utility gained.

Key words: Trust, multi-agent systems, social structure

1 Introduction

Trust and Reputation are a key issue in the area of multi-agent systems. Like in
human societies, agents have their own objectives; therefore the most rational
strategy for an agent is to maximize its own utility. Like in the prisoner’s dilemma
[1], the rational strategy might be to defect. This leads to the important issues
of trust and reputation.

An important question is what sources agents use to build their trust of others
upon. Agent a can base his trust or reputation of agent b using experience of
previous interactions between the two, or agent a can ask a witness c about his
opinion regarding b. An important third source of trust, we agree with [2], is to
use information about the social relationship (here called the social structure)
between agents. If a and b are competing for the same resources, for instance,
this may negatively affect the way they trust each other. Similarly, if agents a
and b are likely to have complementary resources, and their cooperation would
benefit both, is seems likely that they would be more inclined to trust each other.

Sabater and Sierra extend in [2] the Regret system with a notion of social
structure in its reputation model. They then sketch a scenario demonstrating how
such an enriched system would work. However, as far as we know, implementing
social structures, and hence properly evaluating their added value and validating
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them, has not been done. And, most importantly, [2] does leave the issue of how
a social structure evolves, aside. And these are exactly the issues we address in
this paper.

In order to compare different implementable models (and their possible exten-
sions) for trust in agent communities, and to provide an experimental standard,
the ART testbed [3] was proposed. This testbed models an art appraisal context,
where agents can offer their expertise to rate a painting, or give their opinion
about the expertise and trustworthiness of other agents. ART is now a well
established platform for researchers in trust to benchmark their specific trust
models. We took one of the agents, Simplet ([4]) that participated in the ART
competition, and cloned it to SocialSimplet enhancing it with a way to build and
maintain a representation of a social structure. Then, we ran a number of com-
petitions in which, among others, both Simplet and SocialSimplet participated,
and we evaluated and compared their performance. In particular, we measured
the number of successful interactions for both of them, the gained utility and we
counted the number of games won by them. On all of those measures, Social-
Simplet did beat Simplet, which encourages us to explore our social structures
further, and to extend our experiments to other agents and other scenarios.

In summary, in this paper we (i) describe how agents can gradually build and
update a representation of the social relationships and structure of their society,
(ii) provide an implementation of such concept of social structure and (iii) test
and analysing the result of the use of such a structure in a trust model. The
remaining parts of this paper are organised as follows. Section 2 gives a further
introduction and definition of social structure and describes the scenario used
for the evaluation. Section 3 explains the process used by the agent to build and
update the representation of the social structure. Section 4 shows the evaluation
and provides a discussion about the results. Finally Section 5 presents some
conclusions and future work.

2 Social Structure and Running Example

Autonomous agents use trust and reputation to minimise the uncertainty associ-
ated with agent interactions. In [5], it is argued that a robust trust model should
integrate a number of information sources to produce a comprehensive assess-
ment of an agent’s likely behaviour. Usually agents gather and compute trust
information from the direct interactions they have with each other. Although di-
rect interactions are the most reliable source of information, information about
them may not always be available. Therefore, the agent might not be able to
form an opinion, based just on direct experiences, on every agent in the society
without running the risk of incurring losses.

Information gathered from direct interaction can be complemented with rep-
utation information from third party agents, called witnesses. However, the agent
cannot be sure that the witnesses providing the information are doing so truth-
fully. This could be the case because the other agents are lying or because the
information they have is inaccurate. Also agents could hide information, because
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they might gain an advantage in doing so. In these cases, social information about
the community could be very useful. A number of trust and reputation models
have been proposed for multi-agent systems [2, 6, 5] in an attempt to integrate
the social dimension in the computation of a more complete trust value. However,
these models suffer from some limitations. For example, it is not explained how
agents can build the structure representing the social dimension, it is assumed
they already possess this information. Moreover, the concept of using informa-
tion inferred from the social dimension to enhance a trust model has never been
implemented and validated. Social network analysis is the study of social rela-
tionships between individuals in a society, defined as a set of methods specifically
developed to allow research and analysis of the relational sides of these struc-
tures [7]. These social networks are represented using graphs called sociograms.
A different sociogram is normally built for each type of social relationship exam-
ined, for example kinship or friendship. According to the relationship examined
the graph can be directed or non-directed, with or without weighted edges. How-
ever, for the purpose of this paper, we will use a simplification of these multiple
sociograms. We will use a single sociogram that we call social structure. In the
next section, we will explain how we take into account the different types of
social relationships in the social structure.

In the multi-agent systems context, social structure analysis can assume a
crucial role. The search for relevant information involves finding the right sources,
for instance, the agents who have the required information or expertise. Thus,
social network analysis is an important tool in discovering these relevant infor-
mation sources. The interactions between individuals in the society suggest the
addition of a new link in the social structure. Agents are aware of the presence of
other agents in the society because of their direct interactions, using services or
asking opinions. However, interactions and recommendations are also useful in
predicting the relationships among agents. An agent can infer from an indirect
recommendation that the witness agent has used the target agent, the agent the
recommendation is about, as a service provider. This is because it is assumed
that if the witness agent has an opinion about the target agent, it is because they
have interacted in the past. Although the aim of the recommendation request
is to evaluate the trustworthiness of the target, the agent is also able to draw
a link, in its social structure, between the witness agent and the target agent,
thus building a more complete view of its environment.

The scenario for this running example is the Agent Reputation and Trust
(Art) Testbed [3]. The ART Testbed game enables to compares different strate-
gies of agents as they act in combination. We decided to use the Art Testbed
as an experimental platform because it covers relevant trust research problems
and unites researchers towards solutions via unified experimentation methods,
so it is a versatile experimentation tool. Moreover it provides objective metrics
through which it is possible to compare and validate different trust models.

The context of the testbed is the art appraisal domain in which agents func-
tion as painting appraisers with varying levels of expertise in different artistic
eras. Each appraiser agent works in competition against every other agent in
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the system. Clients request appraisals for paintings from different eras; if an
appraiser agent does not have the expertise to complete the appraisal, it can
request, at a price, opinions from other appraiser agents. Appraiser agents may
also purchase from each other reputation information about other appraisers.
Appraiser agents must decide when, and from whom, to request opinions and
reputation information to generate accurate appraisals for clients. Appraisers re-
ceive more clients, and thus more profit, for producing more accurate appraisals.
The winning appraiser agent is selected as the appraiser with the highest bank
account balance.

3 Building the Social Structure

The concept of using a social structure to enhance a trust model has been initially
proposed in Regret [2]. In Regret the agent owns a set of sociograms that show
the social relations in the society. These sociograms are not necessarily complete
and accurate. However, Regret does not propose a way for the agent to build
the sociograms.

The main contribution of this paper is to show how the social structure can be
built by each agent in the society and show, via evaluation, how using the social
structure in a trust model can improve the performance of the trust model. Using
the Agent Art Testbed, we are able to use one of the agents participating in the
past competition and enhance its internal trust model with the social structure.
As the agent interacts with other agents it gathers information about interactions
and relationships to build the network of agents and to better understand its
social environment.

As in Regret [2], we consider three main types of social relationship

– Competition (comp). This is the type of relation found between two agents
that pursue the same goals and need the same (usually scarce) resources.
This is the kind of relation that could appear between two sellers that sell
the same product or between two buyers that need the same product.

– Cooperation (coop). This relation implies exchange of sincere information
between the agents and some kind of predisposition to help each other if
possible. In other words, we assume that two agents cannot have at the
same time a competitive and a cooperative relation.

– Trade (trd). This type of relation reflects the existence of commercial trans-
actions between two agents and is compatible either with cooperative or
competitive relations.

To identify the type of relationship between two agents, we use the concept of
expertise. The Art Agent Testbed assigns to agents different levels of expertise
for each art era. The agents, during the game, can ask each other information
about their levels of expertise. The agents are providers of a service which is the
evaluation of a painting. However, they are, at the same time, consumers of this
service, when their level of expertise is not good enough to evaluate a particular
painting. This means that agents with similar expertise compete in the society
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for the same market share. Agents with different expertise are more likely to
cooperate because they will need each other’s services.

Therefore, the social structure is defined as a undirected weighted graph
G = (V,E) where

– V = finite set of vertices that represent the agents in the society,
– E ⊆ V ×V , is the set of the edges that correspond to links between agents,

and
– each (x, y) ∈ E has associated with it a weight wxy

To define the weight associated with each edge we introduce the concept of
Expertise Distance. To compute how similar or different the levels of expertise
between two agents are, we use the Euclidean distance. Each era is considered as
a dimension in an N -dimensional Euclidean Space. The number of different eras
are defined in the Art Agent Testbed games setting. The values of the different
levels of expertise mark points in the Euclidean Space. We can, therefore, define
an agent x as a vector v = x1, x2, . . . , xn where xi ∈ [0, 1] is the level of expertise
for era i, i ∈ [1, n] and n, which is the total number of different eras, is set in
the game configuration settings.

The Euclidean distance (d) between two n-dimensional vectors, or agents, is
given by:

d =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2

This distance is called in our model Expertise distance and it is the weight
assigned to the edge linking the agents x, y.

In the case where the agent does not have information about the expertise
of the other agent in a particular era, it is assumed the agents have the same
expertise. If the agent assumes that the unknown value is the low end of the
range of expertise’s value, this might artificially increase the distance measure.
Setting it to the same value will result in the annulment of that dimension in
the distance measure.

Agents who are a small distance apart have similar expertise and are con-
sidered to be in a social relations of competition. The further apart the agents
are in the space, the more they depend and cooperate with each other, finding
themselves in a social cooperation relationship. The trade relationship is consid-
ered to be when the distance value between the agents in the Euclidean Space
is in between a certain range of values. These values will be a parameter in the
evaluation.

The steps used by the agent to build the social structure are the following.
Every time the agent directly interacts with another agent, asking an opinion
about a painting appraisal, an edge is created between the two agents. Every
time the agent receives reputation information from a witness agent, about a
target agent, an edge is created between the witness agent and the target agent.
This is because, as mentioned before, it is assumed that an agent can infer from
an indirect recommendation, or reputation information, that the witness agent
has used the target as a service provider. The edges linking the agent that owns
the social structure and other agents are a result of direct interactions. The
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edges linking the other agents in the social structure are the result of indirect
interaction, or recommendation.

The use of the social structure in the trust model is inspired by Regret [2].
However the aim of the experiments is to analyse the impact of the social struc-
ture on a general trust model. Therefore the trust model of the agent selected is
not modified according to the Regret trust model. Its trust model is integrated
with the use of the social structure as follows. The social structure is used to
find witnesses to ask for reputation information about other agents, to decide
which witnesses will be consulted, and how to weight those witnesses’ opinions.
The first step to calculate a witness reputation is to identify the set of witnesses
(W). The initial set of potential witnesses is the set of all agents that have inter-
acted with the target agent in the past. This set, however, in a large society, can
be very big and agents with frequent interactions are likely to have a consider-
able amount of shared information that tends to unify their way of thinking [8].
Afterwards, this initial set is filtered according to the following steps:

– To identify the components of the graph. A component is defined as a max-
imally connected subgraph.

– To find the set of cut-points (CP) for each component. A cut-point is a node
whose removal would increase the number of components between whom
no communication can travel. Therefore a cut-point can be seen from a
sociological point of view as indicating some kind of local centrality. In our
context it can be considered as the agent centralizing the biggest quantity
of information among the agents in the components it connects.

– For each component that does not have cut-points, to choose as a represen-
tative for that component we take the node with the larger degree. If there is
more than one node with the maximum degree, choose one randomly. This
point is called a central point. The degree can be regarded also as a measure
of local centrality; this set of nodes is named LCP (Local Centrality Points).

– The set of selected nodes is the union between the set of cut-points and the
set of LCP. That is, W = CP ∪ LCP.

The agents in the set of witnesses, W, will be asked for reputation information
about the target agent. If W or the initial set are empty then the agent will
behave the same way as before the use of the Social Structure.

In the Art Agent Testbed, asking for reputation information has a cost. Using
the social structure to select only agents who are more likely to have meaningful
information could translate to a cost saving. Once the information is gathered,
the opinion from the witness agent selected is weighted taking into account the
social relationships linking the agent with the witnesses and the target agent.

This strategy has been integrated in one agent previously competing in the
Art Competition. From an initial screening, we have noticed that many of the
agents participating in the ART Competition, didn’t implement the reputation
module in their trust model. They only relied on direct interactions, because
the total population in the competition was not large, allowing them to interact
directly with almost every other agent. Therefore, the agent we selected is Sim-
plet, whose trust and reputation model took into account witnesses information
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and made it easy to check the performance of the social structure. Simplet trust
model is inspired by the LIAR [9] model. It has a reputation model built from an
agent’s own interactions, from its observations and from recommendations sent
by other agents. It uses a violation detection process working with incomplete
information. Internal rules are set to help in the detection of violation, such as
rules finding contradictory information.

The next section will explain process used for the evaluation, explaining the
parameters and the metrics used and will provide an analysis of the results.

4 Experiments and Analysis

One of the contributions of this paper is to provide a systematic evaluation of
the use of the social structure, implemented as explained in the previous section,
in a trust model.

Nine different configurations have been set up. The parameters of each con-
figurations are shown in Table 1. The configurations contain parameters for the
simulation enviroment, the Agent Art Testbed, and for the configuration of the
social structure in SocialSimplet. For each configuration 50 runs are executed.
All configurations have a constant set of agents consisting of those used by the
2008 Agent Art Competition, excluding Agent Uno [10], plus SocialSimplet. We
felt that exlcuding Agent Uno was necessary because from an analysis of its trust
model we noticed that it uses knowledge of the Agent Art Testbed to tune the
parameters of its trust model. These parameters are known because they are
explained in the documentation of the Agent Art Testbed, however they are not
available for the agents competing to know. In our opinion, even if the parame-
ters are available to the agent designers, they should be deliberately ignored for
the sake of not biasing the trust model. Thus, including this agent might have
affected the result of this evaluation.

The configurations can be grouped in three subcategories. The first category
includes configurations A, B and C. They are the same settings used in the last
Agent Art Testbed Competition 1. Each of them has a different values for the
parameters #era to change and amount of expertise change. These parameters
determine the degree of dynamism in the games. By changing the level of ex-
pertise the agent has to react to variation in the other agents responses which
might be due to different expertise rather than strategy.

The second category has a medium level of dynamism. It includes configu-
rations D, E, F, G, J. Since the agent using the social structure makes a heavy
use of reputation and expertise 2 requests, the costs of these requests may affect
the final performance of the agent. This category of configurations show how
the agent performs when getting this information is free. We test this condition

1 From the Agent Art Testbed Web site.http://megatron.iiia.csic.es/art-
testbed/competition2008.htm

2 The expertise requests are called in the Art Competition setting certainty request be-
cause the agent communicates his level of certainty about an opinion on a particular
era
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with different values of total population, varying from 1 instance of each agent
in the game to 10 instances for each agent.

The last category includes configurations H, I, L, M and N. In this category,
we test the performance of the agent by varying parameters of the social structure
(bottom Section of Table 1), such as the range of values used to identify the social
relationship between two agents in the social structure. This set of configurations
helped, as well, to identify optimal values for this range, in the ART Testbed.
With the term optimal we mean values that allow the agent using the social
structure to perform best.

Parameters
Configurations

A B C D E F G J H I L M N

# games 50 50 50 50 50 50 50 50 50 50 50 50 50
# timesteps 90 90 90 90 90 90 90 200 90 90 90 90 90

# eras 20 20 20 20 20 20 20 20 20 20 20 20 20
avg client/agent 20 20 20 20 20 20 20 20 20 20 20 20 20

client fee 100 100 100 100 100 100 100 100 100 100 100 100 100
opinion cost 10 10 10 10 10 10 10 10 10 10 10 10 10

certainty cost 1 1 1 0 0 0 0 0 0 0 0 0 0
reputation cost 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0
# opinion msg 3 3 3 3 3 3 3 3 3 3 3 3 3

# certainty msg 10 10 10 10 10 10 10 10 10 10 10 10 10
deny self opinion true true true true true true true true true true true true true
# eras to change 1 3 3 3 3 3 3 3 3 3 3 3 3

amount expertise change 0.05 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
# instance of each agent 1 1 1 1 2 5 10 10 1 1 1 1 1

initial reputation discard true true true true true true true true false true true true true
expertise threshold K K K K K K K K K I L M N

K = 15.08, I = 2.08, L = 5.08, M = 10.08, N = 20.08

Table 1. Configurations settings for the evaluation. Top section contains settings for the Agent ART
Testbed and the bottom section contains the settings concerning the social structure of SocialSimplet.

Several metrics are used to evaluate the performance. Each metric is observed
for the Simplet and the corresponding agent using the social structure, which
we will call SocialSimplet. The values are used to evaluate and compare the
performance of the SocialSimplet with Simplet. The metrics considered are:

– the total utility, as in the ART Competition,
– the number of games won, grouped for each configuration settings,
– the number of fulfilled and violated interactions.

Every interaction is intended as an exchange of information between agents.
This information can be an opinion about a painting or reputation informa-
tion about another agent. These two types of information can be considered as
the two services provided by the agents in the environment. This last metric is
particular important in assessing the utility of the use of the social structure be-
cause it reveals how many times the trust model has been successful in selecting
a trustworthy agent. To assess if an interaction has been fulfilled or violated, the
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Fig. 1. % of Fulfilled Interaction for all configurations for Simplet and SocialSimplet.

agent uses the difference between the true value of the painting and the opinion
provided by other agents in the previous interactions. The true value of each
painting is revealed after every interaction, making this evaluation computable.
The difference in the values, together with the expertise of the agent providing
the opinion in the considered painting’s era, allows the agent to decide if the in-
teraction was fulfilled or violated. If the difference is above a certain threshold,
the interaction is considered violated. This threshold is set in the internal trust
model of the agent, therefore it is not considered as parameter of the experi-
ments. However, since Simplet and SocialSimplet have the same trust model,
this threshold will have the same value in both agents, meaning the comparison
is not affected by this.

Fig. 2. % of Total Interaction for all configurations for Simplet and SocialSimplet.

Figure 1 shows the percentage of fulfilled interaction averaged over the fifty
runs for each configuration. Although the chart shows that, overall, there is an
improvement of only the 3.64%, the total number of interaction is considerably
bigger in the SocialSimplet, as shown in the figure 2. This means that the effective
number of fulfilled interactions is substantial. This improvement in the number

37



of fulfilled interactions, clearly, shows that the internal trust model of the agent
benefits from the information inferred from the social structure. This suggests
that the trust model with the social structure can more accurately assess which
agent is more likely to be trustworthy. Since the social structure is updated
after every time step, SocialSimplet is only marginally affected by the change
of dynamism in the configurations A, B and C, going from a 72.6% of fulfilled
interactions in configuration A, to a 70.5% in configuration C. Simplet seems to
suffer slightly more because of this change, loosing a bit more than 5% over the
three set of games.

Fig. 3. % of Games Won for all configurations for Simplet and SocialSimplet.

Configurations F and G show the highest percentage of fulfilled interactions
among the other configurations. This means that the social structure is par-
ticularly useful in those societies with a high number of agents, where direct
interactions are not always possible with every agent in the society. In configu-
ration J SocialSimplet nearly reaches a total of the 80% of fulfilled interactions
against a total of more then 130 thousand interactions, hence having more than
102, 600 successful interactions. This shows also that the accuracy of the social
structure improves over time, because after every interaction the social structure
gains more information about the society . Therefore on very long games, such as
the runs in configuration J, the agent can refine the social structure and obtain
a better perception of the environment it is placed into. In configuration H we
can observe that not discarding the initial reputation information does not seem
to worsen the performance of Social Simplet, also because the social structure is
updated at every time step, this allows the agent to correct any wrong assump-
tion. From the set of games in configurations I, L, M and N, we can learn the
optimal range of values of expertise distance seems to be in the range 10.081 to
15.081. These values are used to assess the types of social relationship linking
the agents. We can also note that in configurations D, E, F and G, where the
reputation and expertise requests have no cost, there is a progressive increment
in the utility gained, in line with the increasing total population.
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Fig. 4. % of Total Utility for all configurations for Simplet and SocialSimplet.

On the other hand, when considering the total utility, SocialSimplet per-
forms better over all the different configurations; Figure 3 and Figure 4 show,
respectively, the number of games in which SocialSimplet wins, and the margin
by which it wins. This shows that SocialSimplet wins very often (almost 100%
of the games), but by a very small margin. This is due to the client allocation
share strategy, which is affected by the accuracy of the final appraisals produced.
The agent chooses a total amount, representing the time taken to examine the
painting, to be spent in generating its own opinion about a painting value. This
amount affects the accuracy of the generated final appraisal; this parameter is a
strategic decision on how the agent manages its money, and it is not affected by
the changes made in SocialSimplet. In other words, the way Simplet administers
its money is not part of the trust model, even if it is affected by it to an extent.
The margin of improvement in accuracy of the appraisals produced is due to
the better selections of other agents who are asked for their opinions, but it is
harder to appraise given that the total utility is determined largely by the client
allocation share strategy, which is the same for Simplet and SocialSimplet in
this evaluation. Considering the only difference in the two models, Simplet and
SocialSimplet, is the use of the social structure, it seems fair to infer that any
improvement in the perfomance is due to the social structure.

These results demonstrate that the use of a social structure can offer benefits
to agents. However, future work is needed to verify the effectiveness of this
approach in different trust models and to improve the process of updating the
social structure after every interaction, possibly including learning techniques.

5 Conclusion and Future Work

In this paper we showed how social structure analysis can be integrated into a
trust model taking into account social relations among agents in the environ-
ment. Although the idea of a social structure has already been presented [2]
in the past, there were no indication of how each agent would build this social
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network representation. The only attempt made is in [6]. However, the proposed
model has never been implemented and validated. We presented a way for agents
to build a social network representation of their local environment. Using inter-
action information such as reputation information, agents can maintain their
own representation of such environments. With this extended perception of the
environments, agents can make more informed decisions. For the first time, we
have shown empirical evidence that a technique to build and maintain a so-
cial network representation of the environment allows a trust model to be more
effective in selecting trustworthy agents.

This paper presents only the results of our initial investigation. Whilst the
positive results have been encouraging, there is still much to explore. Future
work includes a) further experiments to test the use of the social structure in
each trust model, to verify, on a general scale, its effectiveness; b) exploration of
methods for optimizing the maintenance and updating of the social structure,
even with learning techniques; d) testing our model on a larger testbed.
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Abstract. Transitivity in trust is very often considered as a quite simple 
property, trivially inferable from the classical transitivity defined in 
mathematics, logic, or grammar. In fact the complexity of the trust notion 
suggests evaluating the relationships with the transitivity in a more adequate 
way. In this paper, starting from a socio-cognitive model of trust, we analyze 
the different aspects and conceptual frameworks involved in this relation and 
show how different interpretations of these concepts produce different solutions 
and definitions of trust transitivity. 

Keywords: Trust, Transitivity, Degree of Trust, Task definition. 

1 Introduction 

Trust is becoming a research topic of major interest not only in Artificial Intelligence 
(AI) and in Multi-Agent Systems (MAS), but also more in general in Information and 
Communication Technologies (ICT). The main reason of this fact is that the more 
recent developments of the “interaction” paradigm of computation, are driving more 
and more towards the development of computational entities with a strong and well 
defined autonomy. These entities have to cooperate/conflict among them in conditions 
of open world for achieving their own goals. 
In perspective, we are going towards an interaction scenario in which artificial entities 
and humans are indistinguishable from each other. In this view, the probability that 
we have to interact or cooperate with entities we do not have any personal experience 
with, will be growing, and the need of attributing trustworthiness to the potential 
partners becomes a fundamental prerequisite. And to model trust in the way in which 
humans have always done it, being them in the interaction loop, is particularly 
relevant. 
Many different approaches and models of trust were developed in the last 15 years [1, 
2, 3, 4, 5, 6, 7, 8, 9, 10]: they contributed to clarify many aspects and problems about 
trust and trustworthiness, although many issues remain to be addressed and some 
elementary but not so trivial trust properties are left in a contradictory form. 
One of them is the problem of trust transitivity. If X trusts Y, and Y trusts Z: What 
about the trust relationship between X and Z? Different and sometimes diverging 
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answers were given to this problem. The question is not only theoretically relevant; it 
is very relevant form the practical point of view, for the reason we have just 
mentioned: acting in an open world, interacting with new people/agents. 
In this paper we will present an analysis of the trust transitivity in the case in which a 
socio-cognitive model of trust is taken in consideration. Through this kind of model 
we are able to evaluate and partially cope with the complexity that the concept of 
transitivity introduces when applied to the trust relationship. 

2 A socio-cognitive model of trust  

In our socio-cognitive model of trust [11, 12, 13, 14] we consider trust as a layered 
notion, where the various more or less complex meanings are embedded one into the 
other. We analyzed the relevant relationships among these different layers and studied 
the possible transitions among them. 
We developed the analysis of the mental attitude and disposition towards the trustee 
(considering beliefs like evaluations and expectations); the intention and decision 
based on the previous dispositions; the act of relying upon the trustee’s expected 
behaviour; finally the social interaction and relation between trustor and trustee. 
 
In particular we consider trust as a relational construct between the trustor (X), the 
trustee (Y), about a defined (more or less specialized) task (τ): 

Trust (X Y C τ gX) 

where are also explicitly present both the X’s goal (gX, respect to which trust is 
activated) and the role of the context (C) in which the relationship is going to 
happens. In fact, the successful performance of the task τ  will satisfy the goal gX. 
So the X’s mental ingredients of trust are: the goal gX, and a set of main beliefs: 
Bel (X CanY (τ)) 
Bel (X WillY (τ))  
Bel (X ExtFactY (τ)) 
 
where: 
CanY (τ) means that Y is potentially able to do τ (in the sense that, under the given 
conditions, is competent, has the internal powers, skills, know-how, etc) (and this is 
believed by X); 
WillY (τ) means that, under the given conditions, Y potentially has the attributions for 
being willing, persistent, available, etc., on the task τ (and this is believed by X); 
ExtFactY (τ) means that potentially there are a set of external conditions either 
favoring or hindering Y realizing the task τ  (and this is believed by X). 
 
In our model we also consider that trust can be graded: X can have a strong trust that 
Y will realize the task (maybe 0.95 in the range (0,1)); or even just a sufficient trust 
that Y will achieve it (maybe 0.6 with a threshold of 0.55; and so on with other 

44



possible values). For this we have introduced a quantification of the degree of trust 
(DoTXYτ) and, in general, a threshold (σ) to be overcome from this DoTXYτ . 
Given the previous analysis of the main components of the trust attitude (gX, Bel (X 
CanY (τ)), Bel (X WillY (τ)), Bel (X ExtFactY (τ))), we can say that this degree is, on 
its turn, resultant from the several quantifications of these components: 

DoTXYτ = f(DoCX (OppY(τ)), DoCX (AbilityY(τ)), DoCX (WillingnessY(τ))) 

where: f is in general a function that preserves monotonicity; 
DoCX (OppY(τ)) is the X’s degree of credibility about the external opportunities 
(positively or negatively) interfering with Y’s action in realizing the task τ ; 
DoCX (AbilityY(τ)) is the X’s degree of credibility about the Y’s ability/competence to 
perform τ ; 
DoCX (WillingnessY(τ)) is the X’s degree of credibility about the Y’s willingness to 
perform τ . 
 
We are ignoring the subjective certainty of the pertinent beliefs (how much sure is X 
of its evalutative beliefs about that specific Y’s quality, that is a meta-belief; in fact 
we can say that this factor is integrated with the other). At the same time we are 
ignoring for now the value of the goal (gX). 
 
So trivially X will trust Y about the task τ if 
DoTXYτ  > σ  
that means that a set of analogous conditions must be realized about the other 
quantitative elements (DoCX (OppY(τ)), DoCX (AbilityY(τ)), DoCX (WillingnessY(τ))). 
We do not consider in this paper the detailed analysis of how the degree of trust is 
resulting by the more elementary components and we also omit of considering the 
potential positive and negative interferences among the components themselves. 

3 Transitivity in Trust 

Many authors have questioned whether the transitive property can be applied to trust. 
In more specific words many of them have presented this problem in this way: 
If X trusts Y, and Y trusts Z: What about the trust relationship between X and Z? 
Their answers are different and very briefly we will analyze some of them in §4. 
 
We are now interested to translate this problem in our terms of trust. 
 
First of all, we do not consider the unspecified case “X trusts Y” because in our model 
an agent has to trust another agent with respect a task (either very well defined or less 
defined and abstract); this task directly derives from the goal the trustor has to reach 
with the trust attribution. So we have to transform “X trusts Y” in “X trusts Y about 
τ”. And given the graded qualification of trust we have that: 
DoTXYτ  > σ  
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this means in particular that X believes that Y is potentially able and willing to do τ  
and that the external conditions in which Y will perform its task are at least not so 
opposite to the task realization (may be also they are neutral or favorable). 
 
So this Y’s trustworthiness (perceived/believed by X) is based on these specific 
beliefs. 
At the same way “Y trusts Z” becomes “Y trusts Z about τ1” (about the difference 
between τ and τ1, see later) with the same particular Y’s beliefs about Z and the 
external conditions. 
Also in this case we can say that there is a threshold to be overcome and the 
condition: 
DoTYZτ1   > σ1 
successfully satisfied in case of trust attribution. 
 
If we have to consider the trust relationship between “X and Z” as a consequence of 
the previous trust relationships between “X and Y” and between “Y and Z” we have to 
define the task on which this relationship should be based (question of assimilation 
between τ and τ1) and the degree of trust that must be overcome even from X: 
DoTXZτ  > σ2 
with the consideration of the threshold σ2. 
 
The role of the trust threshold is quite complex and can have an overlapping with the 
ingredients of trust. We strongly simplify in this case considering σ  as dependent just 
from the specific intrinsic characteristics of the trustor (those that define an agent 
intrinsically: prudent, reckless, and so on) independently from the external 
circumstances (on the contrary, these factors affect the degree of trust, by affecting 
the more elementary beliefs above showed). 
So, we can say that in this approximation (for the same agent the trust threshold is 
always the same): 
σ   = σ2 
 
In the case in which all the agents are defined as having the same intrinsic 
characteristics (this fact is possible in the case of artificial entities), we can also say 
that: 
σ   = σ1 = σ2 
 
Moreover, as we just saw, not less important in our approach is that trust is an 
expectation and a bet grounded on and justified by certain beliefs about Y. X trusts Y 
on the basis of the evaluation of Y’s "virtues/qualities", not just on the basis of a 
statistical sampling, some probability. 
The evaluation about the needed “qualities” of Y for τ are the mediator for the 
decision to trust Y. This mediation role is fundamental also in trust transitivity. 
 
Let us now consider the case of the differences between the tasks in the different 
relationships. 
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For the trust transitivity the two tasks should be the same (τ = τ1). Is this equality 
enough? 
Suppose for example that there are 3 agents: John, Mary and Peter; and suppose that 
John trusts Mary about “organizing scientific meetings” (task τ), at the same time 
Mary trusts Peter about “organizing scientific meetings” (again task τ). Can we 
deduce that, given the transitivity of trust: John trusts Peter about “organizing 
scientific meetings”? Is in fact transferable that task evaluation? Given the trust model 
defined in §2 the situation is more complex and there are possible pitfalls lurking: 
Mary is the central node for that trust transfer and she plays different roles (and 
functions) in the first case (when her trustworthiness is about to realize the task τ , and 
in the second case (when her trustworthiness is about evaluating the Peter’s 
trustworthiness on the task τ). 
 
The situation is even clearer if we split in the example the two kinds of competences: 
X trusts very much Y as medical doctor; X knows that Y trusts Z as mechanic; will X 
trust Z as mechanic?  Not necessarily at all: if X believes that Y is a good evaluator of 
mechanics he will trust Z; but, if X believes that Y is a very naive in this domain, and 
is frequently swindled by people, he will not trust Z. In the previous example the 
transition looks more plausible, natural, just because the task τ is the same, and it is 
reasonable (but not necessary) that if Y is very skilled and competent in task τ, she 
will also be a good evaluator of other people on the same task. 
 
So for considering transitivity of trust as a valid property (in the classical way in 
which it is defined) in these types of situations, we have to assimilate the task with the 
evaluation of that task itself: 
Bel (X (TrustworthinessY(τ) implies TrustworthinessY(evaluation-of (τ)))) 
In words, X has to believe that if Y is trustworthy on the task τ, it is also trustworthy 
on the meta-task of evaluating τ (in both the situations the X’s mental ingredients 
defining the trust in Y allow to overcome the threshold). 
 
We do not consider in this paper the truthfulness of this hypothesis (and the 
consequent properties both in the more elementary mental ingredients of the 
interacting actors, and in the tasks’ features): in fact, our trust model is apt to analyze 
in detail this problem. However, we want underline the difference of the involved 
tasks in the relationships and the necessity of taking into consideration these 
differences before generally speaking of trust transitivity. 
 
So resuming we have the more basic case of the relationship between trust and 
transitivity so defined: 
if 
i) “X trusts Y about τ” (that means: DoTXYτ  > σX) and 

ii) “Y trusts Z about τ” (that means: DoTYZτ  > σY) and  
iii) “Bel(X (Y trusts Z about τ))” and 
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iv) “σ=σX=σY” (the trust threshold is the same for each agent and for each relation) 
and 
v) “Bel (X (TrustworthinessY(τ) implies TrustworthinessY(evaluation-ofY (τ))))” (Y 
is equally trustworthy in the realization of the task and in evaluating others 
performing that task) 
then 
vi) “X trusts Z about τ” (that means: DoTXZτ  > σ) 
 
The fact that are true: DoTXYτ  > σ  and DoTYZτ   > σ  and DoTXZτ  > σ  

does not mean that necessarily DoTXYτ = DoTYZτ = DoTXZτ . As we have seen in the 
§2 these degrees are dependent from the internal beliefs on the different components, 
and they are resulting from different sources not necessarily all common to the 
involved agents. 
 

3.1 Trust and Transitivity in the delegated subtasks 

Another interesting case of the relationship between trust and transitivity is when we 
have the following situation: 
“X trusts Y about τ” and, in realizing the task (τ), Y delegates parts of the task itself 
to other agents Z, W (for example the delegated subtasks are respectively τ1 and τ2). 
Then if we suppose that X is aware of this delegation; what we can say (on the basis 
of the trust relationship between X and Y) about the trust between X and Z with 
respect to τ1? And between X and W with respect τ2?  
 
Suppose, for example, that John trusts Mary about “organizing a scientific meeting” 
and that Mary delegates Peter to “organize the registration process”, and delegates 
Alice to “organize the sponsoring of the event”. What about the John’s direct trust on 
Peter (as organizing the registration process) and the John’s direct trust on Alice (as 
organizing the sponsoring of the event)? Are these trust relationships the same of the 
Mary’s ones? How are they mediated by the John’s trust on Mary? 

We have that DoTJohn, Mary, τ > σ  and DoTMary, Peter, τ1 > σ  and DoTMary, Alice, τ2 > σ  
But from these assumptions does not necessarily follow that: 

DoTJohn, Peter, τ1 > σ  and DoTJohn, Alice, τ2 > σ  
 
In fact, John should know how exactly the delegation of the subtasks is realized and 
on what basis is founded. In a trust relationship, as we have seen in §2, are involved 
not only qualities about abilities and skills but also qualities about willingness, 
availability, and so on. So these others qualities could be elicited by the specific 
relation with the trustor (delegating agent) and in some cases are strictly related with 
the interaction history among the agents (see §3.2 for a more detailed analysis of this). 
In these cases is more difficult for John to evaluate which could be the Peter’s and 
Alice’s performances (and then their trustworthiness). 
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In addition may be there is a particular interaction among the subtasks and the main 
task in which Mary plays a specific role of integration and substitution (in presence of 
shortcomings of the other agents) that is essential for the success of the complete task. 
Also in this case John trusting Peter and Alice, at the same way of Mary, should be 
aware to be able of playing the same role. 
 
So we can say that for applying the trust transitivity to the cases of subtasks 
delegation, we have to analyze in deep detail: on the one hand the set relationships 
among task and its subtasks (and how they are distributed among the agents in play), 
and, on the other hand, how the executing agents are motivated and activated in the 
task realization by the relationship with the trustor. 
 
Resuming in the case of delegated subtasks we can say that: 
if 
i) “X trusts Y about τ” (that means: DoTXYτ  > σX) and 

ii) “Y trusts Z about τ1” (that means: DoTYZτ1  > σY) and  
iii) “Bel(X (Y trusts Z about τ1))” and 

iv) “Y trusts W about τ2” (that means: DoTYZτ2  > σY) and  
v) “Bel(X (Y trusts W about τ2))” and 
vi) τ1 is a subtask of τ (realizing τ1 are realized part of the results of τ) and  
vii) τ2 is a subtask of τ  (realizing τ2 are realized part of the results of τ) and 
viii) “σ=σX=σY” (the trust threshold is the same for each agent and for each relation) 
and 
ix) X believes that the interactional history between Y and Z is not essential for the 
Z’s performance about τ1 and 
x) X believes that it is able to integrate (as well as Y) the Z’s deficiencies in realizing 
τ1 and  
xi) X believes that the interactional history between Y and W is not essential for the 
W’s performance about τ2 and 
xii) X believes that it is able to integrate (as well as Y) the W’s deficiencies in 
realizing τ2 and 
then 
xiii) “X trusts Z about τ1” (that means: DoTXZτ1  > σ) and 

xiv) “X trusts W about τ2” (that means: DoTXWτ2  > σ). 
 
3.2 Competence and Willingness in Transitivity 
The need for a careful qualitative consideration of the nature of the link between the 
trustor and the trustee, is even more serious. 
Not only it is fundamental (as we have argued) to make explicit and do not forget the 
specific “task” (activity, and thus “qualities”) X is trusting Y or Z about, but it is even 
necessary to consider the different dimensions/components of the trust disposition 
(evaluation), decision, and relation. 
In our model (a part from the basic though and feeling that I have not to worry about 
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Y, that there is no danger from Y's side, that I do not need diffidence and a defensive 
attitude), trust has two basic nucleuses: 
(i) Y’s competence, ability, for correctly performing the delegated task; 
(ii) Y’s willingness to do it, to act as expected. 
 
The two dimensions (and ‘virtues’ of Y) are quite independent on each other: Y might 
be very well disposed and willing to do, but not very competent or unable; Y might be 
very expert and skilled, but not very reliable: unstable, unpredictable, not well 
disposed, insincere, dishonest, etc. 
 
Now, this (at least) double dimensions affect transitivity. In fact, even assuming that 
the competence is rather stable (see below) (and that Y is a good evaluator of Z’s 
competence) not necessarily Z’s willingness is equally stable and transferable from Y 
to X. This is a more relation-based dimension. 
Y was evaluating Z’s willingness to do as expected on the basis of their specific 
relation. Is Z a friend of Y? Is there a specific benevolence, or values sharing, or 
gratitude and reciprocity, or obligation and hierarchical relation, etc.?  Not necessarily 
the reasons that Z would have for satisfying Y’s expectation and delegation would be 
present (or equally important) towards X. X’s relation with Z might be very different. 
Are the reasons/motives motivating Z towards Y, and making him reliable, 
transferable or equally present towards X?  Only in this case it would be reasonable 
for X to adopt Y’s trustful attitude and decision towards Z. 
Only certain kinds of relations will be generalized from Y to X; for example, if Y 
trusts Z only because it is an economic exchange, only for Z’s interest in money, 
reasonably X can become a new client of Z; or if Y relies on Z because Z is a 
charitable person, generously helping (without any prejudice and discrimination) poor 
suffering people, and X is in the same condition of Y, than also X can trust in Z. 
In sum, 

• Y’s expectation about Z’s reliable behavior, in particular about Z’s 
“adoption” of Y’s goal (help, etc.) depends on the relationship between Y 
and Z, and in particular on Z’s attitude towards Y (and reasons for goal-
adoption); if the relation between X and Z, and in particular Z’s attitude 
towards X (and reasons for goal-adoption), would be analogous, then the 
trust “transfer” would be reasonable. 

 

3.3 Trust Dynamics affects Transitivity 
 

Moreover, we have shown ([13], [14]) that Z’s willingness, and even ability, can be 
affected, increased, by Y’s trust and reliance (this can affect Z’s commitment, pride, 
effort,... attention, study,...). Z’s trustworthiness is improved by Y’s trust and 
delegation. And Y might predict and calculate this in her decision to rely on Z. 
However, not necessarily the effect of Y on Z’s trustworthiness will be produced also 
by another trustor. Thus, also this will affect “transitivity”: suppose that Y’s trust and 
delegation to Z makes him more trustworthy, improves Z’s willingness or ability (and 
Y trusts and relies on Z on the basis of such expectation); not necessarily X’s reliance 
on Z would have the same effect. Thus even if X knows that Y reasonably trusts Z (for 
something) and that he is a good evaluator and decision-maker, not necessarily X can 
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have the same trust in Z, since perhaps Z’s trustworthiness would not be equally 
improved by X’s reliance. 
Trust 'dynamics' between Y and Z, is not automatically identical to trust “dynamics” 
between X and Z. 
 
3.4 The paradoxical self-transitivity of Trust 
Our analytical model of trust components and steps allows also a nice reading of trust 
formulation (and then decision) in some sort of internal transitivity. 
Actually, when X arrives to formulate a positive trust judgment of X itself about Y, X 
must necessarily trust X-self as a good evaluator; X has to find reliable its formulation 
of the evaluation about Y (that for us is a necessary first component of trust attitude 
and decision). 
  
Thus in the case of self-transitivity, we can say that: 
if 
(i) X has a good evaluation about Y relative to τ and 
(ii) X (implicitly or explicitly) trusts X as for evaluating Y relatively to τ 
then 
(iii) “X trusts Y about τ” 
 
If (on the basis of previous failures) I cannot trust my-self as a good evaluator of 
people in a given domain, although I would formulate a good judgment of Y and a 
good prediction, my experience says that I cannot rely on my evaluation, and thus on 
Y. The situation is not so different from real transitivity: when I get Y’s evaluative 
judgment about Z and I have to decide whether to trust Z or not, on that basis. First, I 
have to rely on Y’s evaluation (that is on Y as evaluator). 
The only difference is that usually I trust my judgment automatically and by-default, 
without any explicit reasoning; while usually I reflect about trusting or not Y as a 
source of evaluations. But also this is not general: frequently also trusting Y in her/his 
evaluation is or becomes rather non-reflected, automatic: I have learned that Y’s 
judgment are reliable, and I automatically “adopt” them; or I have learned that in this 
context C or that class of people C is reliable, and then I trust Y’s judgment, since Y 
belongs to C.  

4 Transitivity and Trust: Related Work 

The necessity of modeling trust in the social networks is becoming more and more 
important, and a set of new definitions are emerging in different domains of 
computing: computational trust, trust propagation, trust metrics, trust in web-based 
social networks, and so on. Most of these concepts are strictly linked with the goal of 
inferring trust relationships between individuals that are not directly connected in the 
networks. For this reason the concept of trust transitivity is very often considered and 
used in these approaches. 
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A relevant example is given from the Josang’s approach; he introduces the subjective 
logics (an attempt of overcoming the limits of the classical logics) for taking in 
consideration the uncertainty, the ignorance and the subjective characteristics of the 
beliefs [15]. Using this approach Josang addressed the problem of trust transitivity in 
different works [16], till the last developments, see [17], where it is recognized the 
intrinsic cognitive nature of this phenomenon. However, the main limits of this 
approach are that trust is in fact the trust in the information sources; and the 
transitivity regards two different tasks (referred to our formalism: τ ≠  τ1: X has to 
trust the evaluation of Y (task τ) with respect Z as realizing another task (task τ1, for 
example as mechanic).  As we showed before, this difference is really relevant for the 
transitivity phenomenon. In addition, also the first task (Y as evaluator) is just 
analyzed with respect to the property of sincerity (and this is a confirmation of the 
constrained view of trust phenomenon; they write: “A’s disbelief in the 
recommending agent B means that A thinks that B consistently recommends the 
opposite of his real opinion about the truth value of x”; where A, B, and x are, in our 
terms, respectively X, Y and τ1). But in trusting someone as evaluator of another agent 
(with respect to a specific task), I have also to consider his competence as evaluator, 
not just his sincerity. Trust is based on ascribed qualities. Y could be completely 
sincere but at the same time completely inappropriate to evaluate that task. So the 
limits of this approach of a adequate treatment of the trust transitivity are quite clear. 
 
Many other authors [18, 19], developed algorithms for inferring trust among agents 
not directly connected. These algorithms differ from each other in the way they 
compute trust values and propagate those values in the networks. In any case when 
trust transitivity is introduced, this phenomenon is not analyzed with respect the 
complexity it contains and that we tried to explain in the previous paragraphs. 

5 Conclusions 

The relationships between Transitivity and Trust (like transitivity in partial order and 
equivalence relations) represent an important element to well-understand the intimate 
nature of the trust concept. Since trust is considered the glue of social interactions, its 
complex nature has to be deeply investigated if we want realize a careful and precise 
model to be transfered in the artificial societies. The analysis of the trust properties is, 
in this sense, a very useful tool. And transitivity (among the other properties) is one of 
the more interesting one. In this paper we analyzed the relationships between trust and 
transitivity, showing in particular, how this analysis implicates the evaluation of the 
tasks involved in the different relationships, of the qualities of the agents in play in 
those specific tasks and of the particular relationships among the agents (and of their 
interaction histories and contexts). 
We tried to show how a too trivial simplification of the transitive property when 
applied to the trust concept leads to wrong conclusions about the model of the 
phenomenon we are studying. 
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Abstract. This paper explores potential improvements to Zhang’s personalized trust ap-
proach for e-commerce, in particular examining means of optimizing the number of advisors
that each buyer maintains in their social network. We propose three such improvements, two
directly relating to the size of the network (through either the use of a threshold or by setting
a maximum network size), and a third which may indirectly reduce the necessary size by
ensuring that relevant trust information from users outside this network remains available.
We provide examples to illustrate these approaches, and propose future work to optimize
certain aspects of these methods and evaluate their overall effectiveness.

Keywords: user modelling, multi-agent systems, trust modelling, social networks, electronic
commerce

1 Introduction

Zhang [1] has recently proposed a novel trust-based framework primarily developed for use
in agent-oriented electronic commerce. This system relies on a model of the trustworthiness
of a particular buyer’s advisors — that is, other buyers within the system that report on
sellers — which incorporates estimates of the advisor’s private and public reputations.
Users create a social network of trusted advisors, and sellers will offer better rewards in
order to satisfy trusted advisors and thus build their own reputations.

In this paper, we look at one of the open questions regarding the optimal size of a user’s
advisor network. Retaining a large network could be inefficient, and may result in reduced
accuracy in determining trust in a seller: many potential advisors will not have similar tastes
to the current user, so a large network could make predictions less accurate. However, with
a smaller network, there is a greater risk that the advisors will have insufficient experience
[2]. We suggest three modifications to Zhang’s model which may help in this regard, and
demonstrate how the revised approach would operate in each case.

2 Related Work in Selecting Advisors

2.1 Mechanism

The mechanism we examine here [1] uses a multi-stage “personalized” approach for repre-
senting reputation in an e-commerce system, summarized below.
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We note at the outset that the model only considers two possible ratings, positive (1)
or negative (0). A buyer, denoted by b, first constructs a measure of private reputation of
advisors, based on the advisors’ ratings for sellers that b has previously dealt with, and
representing an estimation of the probability that an advisor a will give fair ratings to b.
Each pair of ratings considered is weighted based on the amount of time that separates the
submission of the two ratings using a “forgetting factor”, λ (0 ≤ λ ≤ 1), such that a pair
of ratings will have a greater weight if they are made within close time proximity. This
measure is known as “private” reputation, since this evaluation makes use of the buyer’s
own experiences, and is calculated as shown in equation 1:

α = Np + 1, β = Nall −Np + 1, Rpri(a) = E(Pr(a)) =
α

α+ β
(1)

In Equation 1, Np represents the sum of the weights of all positive rating pairs (that
is, pairs of identical ratings) for all sellers commonly rated by b and a, and Nall is the total
sum of weights of all rating pairs involving b and a. If λ = 0, then Np and Nall will be
simply the counts of the applicable types of rating pairs.

Next, the public reputation of an advisor, or the probability that an advisor will provide
“consistent” ratings, is calculated similarly, using equation 2:

α′ = Nc + 1, β′ = N ′all −Nc + 1, Rpub(a) =
α′

α′ + β′
(2)

Here, Nc represents the number of ratings, provided by an advisor a, that are consistent
with the majority of ratings provided for that seller up to the moment that this additional
rating is submitted, while N ′all is the total number of ratings provided by a.

At this point, given some maximum acceptable level of error ε ∈ (0, 1) and level of
confidence γ ∈ (0, 1), we derive w, the reliability of the private reputation value, which
we then use in our calculation of the overall trustworthiness of a. As can be seen, a more
reliable private reputation will have a greater effect on the overall result:

Nmin = − 1
2ε2

ln
1− γ

2
(3)

w =

{
Nall
Nmin

if Nall < Nmin

1 otherwise
(4)

Tr(a) = wRpri(a) + (1− w)Rpub(a) (5)

Once this value has been calculated for each advisor, a similar approach can be taken
for the trustworthiness of a given seller s. First the buyer b calculates her private reputation
of s, or the probability that s will provide good service, based on b’s past experiences with
s. This makes use of the number of positive ratings, N b

pos,i, and negative ratings, N b
neg,i,

she provided for s in each time window Ti, as well as the forgetting factor λ:
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Rpri(s) =

n∑
i=1

N b
pos,iλ

i−1 + 1

n∑
i=1

(N b
pos,i +N b

neg,i)λ
i−1 + 2

(6)

Next we derive the public reputation of the seller, the probability that the seller will
provide good service given all advisors’ past experiences with s, taking into account b’s own
model of trustworthiness of each advisor aj . We first make use of the following discounting
functions to determine b’s trust of ratings provided by each aj :

D
aj
posi =

2Tr(aj)N
aj

pos,i

(1− Tr(aj))(N
aj

pos,i +N
aj

neg,i) + 2
, D

aj
negi =

2Tr(aj)N
aj

neg,i

(1− Tr(aj))(N
aj

pos,i +N
aj

neg,i) + 2
(7)

The public reputation of s is itself calculated as follows:

Rpub(s) =

[
k∑

j=1

n∑
i=1

D
aj

pos,iλ
i−1] + 1

[
k∑

j=1

n∑
i=1

(Daj

pos,i +D
aj

neg,i)λ
i−1] + 2

(8)

Finally the overall trustworthiness of the seller s may be calculated:

w′ =

{
Nb

all
Nmin

if N b
all < Nmin

1 otherwise

Tr(s) = w′Rpri(s) + (1− w′)Rpub(s) (9)

where Nmin, the minimum number of ratings needed for the buyer b to be confident
about the private reputation value it has of the seller s, is calculated according to equation
3, but is not necessarily the same value used in equation 4.

The model also includes an incentive mechanism, whereby honest advisors are rewarded
by better offers from sellers, and in turn these sellers receive better reputations and ulti-
mately more customers. While interesting in its own right, this mechanism does not directly
affect our current work, and therefore we do not discuss this part of Zhang’s model further.

2.2 Towards a Method for Determining Advisors

The Beta Reputation System (BRS) [3] uses beta population density functions in order to
combine feedback from multiple sources and subsequently derive reputation ratings. The
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initial evaluation gives some broad estimates about the number of ratings required to obtain
an accurate group rating; however, these are at best snapshots of what size network might
be needed to obtain a stable rating under certain conditions. Ultimately, the evaluation
provides little insight into what an optimal network size would be under the BRS.

TRAVOS [4] calculates trust using probability theory, taking into account any past
interactions between agents, or alternatively reputation information provided by third par-
ties. Here, each agent is expected to maintain a trust assessment for every other agent in
the system that it has interacted with in the past. Under the circumstances, it seems that
restricting the size of the advisor network is unrealistic. Indeed, to our knowledge, nothing
of this nature have been explored with respect to the TRAVOS system.

Some potential methods for limiting the number of advisors may be derived from the
work done in [2] to evaluate various design choices in a collaborative filtering algorithm.
The first method, correlation thresholding [5], sets an minimum correlation weight that an
advisor must have in order to be considered part of the user’s “neighbourhood”. However,
if the threshold is set too high, then the neighbourhood may be very small, limiting the
possibilities for predictions. In fact, for the data set examined in [2], correlation thresholding
yielded declines in both coverage and accuracy compared to a non-thresholded algorithm.

The second method discussed, best-n-neighbors, as used in the GroupLens [6] system
among others, picks a maximum number of neighbours to use, max nbors. The neighbours
chosen would be those with the highest correlation to the instant user. In [2], it was shown
that a neighbourhood of 20 to 50 users (out of a population of 943) was found to provide an
acceptable level of accuracy, providing an appropriate balance between sufficient coverage
and eliminating inaccuracies.

A potential supplement to finding the optimal number of advisors is derived from [7],
which discussed reputation management in a social network making use of an advisor
referral mechanism. In this mechanism, a buyer’s agent would consult its “neighbour”
agents, each of which might either provide advice on the question itself, provide references
to other appropriate advisors, or both, depending on the question. As a result, a buyer
would be able to benefit from the information held by the pool of advisors without having
a large number of neighbours [1]. It then stands to reason that this method could be used
in combination with network-size optimization to provide a smaller advisor network size.

3 Analysis

3.1 Limiting the Network Size

The results in [2] would appear to point towards setting a maximum number of advisors
as the preferable method of restricting the advisor network size, as opposed to correlation
(or, in our case, trust) thresholding. However, we cannot overlook the distinction between
correlation for collaborative filtering and reputation. While similarity with a buyer may
indirectly impact on that buyer’s private reputation of an advisor, the private reputation of
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a seller only relates to the buyer’s ratings for that seller, ignoring similarity, while similarity
is not a factor at all in public reputation. Hence we propose that both options, trustwor-
thiness thresholding and maximum number of advisors, should be thoroughly examined.

That said, neither technique could be directly applied to Zhang’s model for advisor
reputation; the trustworthiness values must be calculated for all possible advisors before
the buyer can proceed to calculate seller reputation.

Our application of these techniques in the seller reputation model are formalized as
follows.

Trustworthiness Thresholding Choose some threshold L (0 ≤ L ≤ 1) which represents
the minimum advisor trustworthiness value Tr(a) required to be included in the advisor
network. We then define the set AL,b = {a1, a2, . . . , ak} consisting of all advisors for which
Tr(a) ≥ L for a particular buyer b. We then use the subset AL,b,s, consisting of the advisors
in AL,b that have provided ratings for the seller s, in place of the previously-defined set
{a1, . . . , ak}, the set of all advisors that have provided ratings for s, in Zhang’s Algorithm
2 (the seller reputation algorithm outlined in Equations 7 to 9 in this paper).

Maximum Number of Advisors For a particular buyer b, after having calculated
the personalized trustworthiness of each advisor for b as per the first part of Zhang’s
model, we sort the list of all n advisors from greatest trustworthiness value to least, in
the set {a1, a2, . . . , an}. We choose some maximum number of advisors for each buyer,
max nbors ≤ n, and then truncate this set to the set Ab = {a1, a2, . . . , amax nbors}. We
thus obtain the set of max nbors advisors that have been calculated to be the most trust-
worthy for b. Again, the subset of Ab that has provided ratings for the seller s is used in
place of the larger set {a1, . . . , ak} in Zhang’s Algorithm 2.

3.2 Advisor Referrals

We also wish to consider the possibility of combining one or both of the above methods with
the advisor-referral technique suggested in [7] and discussed above. We diverge somewhat
from the original mechanism insofar as Zhang’s model does not require us to query each
advisor for a recommendation. Rather, the buyer has access to each advisor’s ratings for a
given seller s via a central server, and uses this data to determine the public (or network)
reputation for the seller.

We thus consider that advisors can “advise” by allowing buyers to make use of each ad-
visor’s own private reputation for a certain seller. In this case, an advisor “referral” system
could be implemented using a variant of the measure used to weight private reputation in
the original model. This would work as follows: For each advisor aj in the advisor network
of b, that is, the set {a1, a2, . . . , ak}, b checks whether advisor aj is an acceptable advisor
for the seller s. This will be the case if Naj

all ≥ Nmin, where Naj

all is the number of ratings

61



provided by an advisor aj for s, and Nmin is some minimum number of ratings (which may
be calculated using equation 3).

If aj is not an acceptable advisor (that is, if Naj

all < Nmin), the algorithm will query aj ’s
advisor network, sorted from most trustworthy to least trustworthy from the perspective
of aj , in order to determine, in a similar fashion, which (if any) of these advisors meet the
criteria to be a suitable advisor for s. The first such advisor encountered that is itself not
either (a) already in the set of acceptable advisors; or (b) in Ab — since this would imply
that the recommended advisor would be added in any event at a later stage — will be
accepted.

If none of the advisors of aj meet the above criteria, this step would be repeated at
each subsequent level of the network — that is, the advisors of each member of the set of
advisors just considered — until an acceptable, unduplicated advisor was identified.

Once the full set of acceptable advisors has been determined, the “network” reputation
would be calculated as in Zhang’s model, using the advisor trustworthiness values held by
the buyer b. This, of course, assumes that the seller s has had sufficient past interactions
with the various advisors in the network such that there are at least k buyers that have each
had at least Nmin interactions with s, which is not guaranteed. If only a smaller number of
acceptable advisors can be found, the system will simply use this reduced set to determine
the network reputation.

To ensure broad coverage of the network while preventing infinite recursion, we limit
the number of network “levels” calculated to at most dlogk(|B|)e, where B is the set of
all buyers (advisors) in the system. However, we note that practically, in a large scale
system, the number of levels may need to be smaller in order for this algorithm to be
computationally efficient; we will leave such a decision for later work.

We summarize this mechanism in pseudo-code format as Algorithm 1.

4 Examples

4.1 Using Zhang’s Model

As in [1], we consider the case where a buyer b wishes to assess the trustworthiness of a
particular seller s0 with whom the buyer has had little or no experience. For the purposes
of this simplified example, we assume that there are three available advisors from which s0
may seek advice, namely ax, ay, and az.

We assume initially that, among sellers that b has had past dealings with, each of these
advisors has provided ratings only for the five sellers (s1, s2, s3, s4, s5), and has rated each of
the sellers at most once in each time window in the sequence T , where T1 is the most recent
time window. The ratings may be either positive (1) or negative (0); a dash (-) indicates
that no rating was provided during the indicated time window. The ratings provided by
each advisor for these sellers are listed in Table 1. The buyer b has also provided some
ratings for the sellers, as indicated in the same table; note here that b does not provide
ratings for every seller each time window.
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Algorithm 1 Selecting Advisors to Buyer b for Trustworthiness of Seller s Using Referrals
Ab = {a1, a2, . . . , ak}; {advisors in b’s advisor network}
As = {}; {set of advisors that are suitable for providing advice regarding seller s}
Nmin = minimum number of ratings for a to be a suitable advisor regarding s;
maxnetlevel = dlogk(|B|)e {the maximum number of search iterations}
for j = 1 to k do

N
aj

all = total number of ratings provided by aj for s;
if N

aj

all ≥ Nmin then
append aj to As;

else
netlevel = 2; {the number of connections between b and the advisors being searched}
ax = null; {the desired suitable advisor in place of ak}
Ac = the set of advisors for aj sorted from most to least trustworthy (as per aj);
while ax == null and netlevel ≤ maxnetlevel do

An = {}; {the set of advisors to be considered in the next round, if necessary}
for all ac in Ac do

Nac
all = total number of ratings provided by ac for s;

if Nac
all ≥ Nmin and ac /∈ Ab and ac /∈ As then

ax = ac;
break;

else
add the set of advisors for ac to An;

end if
end for
netlevel + +;
Ac = An

end while
if ax 6= null then

append ax to As;
end if

end if
end for

Table 1. Ratings of Sellers Provided by Advisors and Buyer b

aw ax ay az b

T T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

s1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1
s2 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 -
s3 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 - -
s4 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 - - -
s5 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 - - - -
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We derive the trustworthiness values for each advisor using equations 1 through 5. For
simplicity, in these calculations, we follow the method used in the examples provided in [1].
First, we will only consider pairs of ratings provided during the same time window, and thus
assume that the forgetting factor as defined previously is λ = 0. For the determination of
Nc, we assume for simplicity that any rating of 1 provided by the advisor is a “consistent”
rating. Finally, in equation 3 we use γ = 0.8 and ε = 0.15, leading to Nmin = 51. The
pertinent values are shown in Table 2.

Table 2. Trustworthiness of Advisors aw, ax, ay, and az for Buyer b

aj Np Nall α β Rpri Nc N
′
all α

′ β′ Rpub w Tr(a)

aw 5 15 6 11 0.353 14 25 15 12 0.556 0.294 0.497
ax 15 15 16 1 0.941 25 25 26 1 0.963 0.294 0.957
ay 8 15 19 8 0.529 11 25 12 15 0.444 0.294 0.469
az 0 15 1 16 0.059 0 25 1 26 0.037 0.294 0.0434

We proceed to the calculation the trustworthiness of a seller s0. As a preliminary
matter, we remember that the buyer b has not provided any ratings in the past for s0, and
therefore Rpri(s) = 1

2 . Of our four advisors, only aw, ax and az have provided ratings for
the seller s0, as indicated in Table 3(a). The subsequent Table 3(b) indicates how these
ratings translate into positive and negative amounts, while Table 3(c) shows how these
ratings are discounted based on the advisor trustworthiness values calculated earlier.

Table 3. Ratings of s0 Provided by aw, ax, az

(a) Ratings

Ti T1 T2 T3 T4 T5

aw 1 0 1 0 1
ax 0 0 0 1 1
az 1 1 1 1 1

(b) Amounts of Ratings

Ti T1 T2 T3 T4 T5

Naw
pos,i 1 0 1 0 1

Naw
neg,i 0 1 0 1 0

Nax
pos,i 0 0 0 1 1

Nax
neg,i 1 1 1 0 0

Naz
pos,i 1 1 1 1 1

Naz
neg,i 0 0 0 0 0

(c) Discounted Amounts of Ratings

Ti T1 T2 T3 T4 T5

Daw
pos,i 0.397 0 0.397 0 0.397

Daw
neg,i 0 0.397 0 0.397 0

Dax
pos,i 0 0 0 0.937 0.937

Dax
neg,i 0.937 0.937 0.937 0 0

Daz
pos,i 0.0294 0.0294 0.0294 0.0294 0.0294

Daz
neg,i 0 0 0 0 0
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Using equation 8, we may then find the public reputation of s0. In keeping with the
examples provided in [1], we remove our previously-stated simplification that only compared
ratings in the same time window, and thus set a forgetting factor of λ = 0.9:

Rpub(s0) =

5∑
i=4

0.937 ∗ 0.9i−1 + 0.397 ∗ (0.90 + 0.92 + 0.94) +
5∑

i=1

0.0294 ∗ 0.9i−1 + 1

5∑
i=1

0.937 ∗ 0.9i−1 +
5∑

i=1

0.397 ∗ 0.9i−1
5∑

i=1

0.0294 ∗ 0.9i−1 + 2

= 0.4480

Finally, since the buyer has not dealt with s0 before, the weight for the private reputa-
tion w′ is zero, meaning we can immediately conclude that Tr(s0) = 0.4480.

4.2 Reputation Thresholding

We now turn to exploring the effects of the modifications proposed in this paper by first
examining how setting a minimum reputation threshold would affect the size of our network
and our seller reputation model. We choose several potential values for the threshold L and
indicate, based on the results in the previous section regarding advisor trustworthiness, how
many advisors would be included in the buyer b’s advisor network in this case. The results
are shown in Table 4.

Table 4. Advisor Network Size with a Correlation Threshold

L 0 0.2 0.4 0.6 0.8 1

AL,b {aw, ax, ay, az} {aw, ax, ay} {aw, ax, ay} {ax} {ax} {}
|AL,b| 4 3 3 1 1 0

Trivially, when L = 0, all advisors will be included in the network, and Tr(s0) = 0.4480.
For L = 0.2 and L = 0.4, the advisor network consists of aw, ax, and ay, of which only
aw and ax contribute ratings for s0. We refer to the resulting trustworthiness value as
Trw,x(s0), which we calculate using Equation 8 to be 0.439.

For L = 0.6 and L = 0.8, the advisor network consists solely of ax, and therefore the
seller trustworthiness Trx(s0) (again by Equation 8) would be 0.697. Finally, for L = 1,
the advisor network is the empty set and, trivially, Trempty(s0) = 1

2 .
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4.3 Maximum Number of Advisors

If we instead elect to use a maximum number of advisors, we would have the results shown
in table 5, with the advisor network representing the max nbors advisors most trusted
by the buyer b. For comparison, we indicate the minimum trustworthiness value of the
advisors in the network, to show the maximum threshold L that could be used to get the
same result using thresholding.

Table 5. Trustworthiness of s0 Using a Maximum Number of Advisors

max nbors 0 1 2 3 ≥ 4

Ab {} {ax} {aw, ax} {aw, ax, ay} {aw, ax, ay, az}
min(Tr(a)) undefined 0.957 0.497 0.469 0.0434
Tr(s0) 0.5 0.697 0.439 0.439 0.4480

4.4 Advisor Referrals

We now examine the addition of our advisor referral mechanism to this system. To do so,
we introduce a new advisor into the system, av, as well as another seller, s6. To this point
av has only provided ratings for s6, while b has not provided any ratings for that seller;
therefore there are no commonly-rated sellers for av and b, and thus Tr(av) = 0.5 from the
perspective of b.

We also assume, as in the max nbors = 3 or L = 0.4 cases described above, that the
advisor network for b consists of {aw, ax, ay} — av is too new to have been considered as a
potential advisor in that case, although for purposes of demonstration we assume that av

has somehow been included in the advisor networks of some of the other advisors. Finally
we set Nmin, the minimum number of ratings for an advisor to be considered acceptable
for a given seller, as 3. The ratings that have been given by each advisor, and the resulting
discounted amounts, are as shown in Table 6.

Given this information, the buyer b will examine its advisor network and find that
aw and ax are indeed acceptable advisors for s6, since both have achieved at least Nmin

interactions with s6. However, ay has only had one interaction with s6, and would therefore
not be considered an acceptable advisor. The buyer will then look to ay’s advisor network
to identify an appropriate substitute.

Suppose then that ay also has a three-agent advisor network consisting of av, ax, and az,
with trustworthiness values 0.5, 0.6, and 0.7 respectively. This information will be gathered
by b as the ordered list {az, ax, av}. The buyer will then iterate through the set, discarding
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Table 6. Ratings of s6 Provided by Advisors

(a) Ratings

Ti T1 T2 T3 T4 T5

av 1 1 0 1 1
aw 0 1 1 0 -
ax 1 0 1 - -
ay 0 - - - -
az 1 1 - - -

(b) Amounts of Ratings

Ti T1 T2 T3 T4 T5

Nav
pos,i 1 1 0 1 1

Nav
neg,i 0 0 1 0 0

Naw
pos,i 0 1 1 0 -

Naw
neg,i 1 0 0 1 -

Nax
pos,i 1 0 1 - -

Nax
neg,i 0 1 0 - -

N
ay

pos,i 0 - - - -
N

ay

neg,i 1 - - - -
Naz

pos,i 1 1 - - -
Naz

neg,i 0 0 - - -

(c) Discounted Amounts of Ratings

Ti T1 T2 T3 T4 T5

Dav
pos,i 0.4 0.4 0 0.4 0.4

Dav
neg,i 0 0 0.4 0 0

Daw
pos,i 0 0.397 0.397 0 -

Daw
neg,i 0.397 0 0 0.397 -

Dax
pos,i 0.937 0 0.937 - -

Dax
neg,i 0 0.937 0 - -

D
ay

pos,i 0 - - - -
D

ay

neg,i 0.375 - - - -
Daz

pos,i 0.0294 0.0294 - - -
Daz

neg,i 0 0 - - -

az as an unacceptable advisor (having provided only two ratings for s6), and also ax as it
is already in b’s advisor network. Finally, b would then accept av as the third advisor, as
it has an acceptable level of experience with s6 but is not part of b’s own advisor network.

As in the previous examples, b does not itself have enough experience with s6 to gen-
erate a private reputation. Therefore, using the above information for the set of advisors
{av, aw, ax}, the forgetting factor λ = 0.9, and Equation 8, we find that Tr(s6) = 0.6655.

If b had not used advisor referrals but instead relied solely on its existing advisor
network, namely {aw, ax, ay}, it would have obtained a significantly different result —
Tr(s6) = 0.5549. However, the latter result makes much less use of the experience within
the network for s6 than did the one incorporating advisor referrals.

5 Discussion

In this paper, we have outlined three potential improvements to Zhang’s personalized
trust-modelling approach — trustworthiness thresholding, maximum number of advisors,
and advisor referrals — all of which aim to reduce the computational complexity required
to derive recommendations for trustworthy sellers from its advisors, and to improve the
accuracy of these recommendations.

Again, much work remains to show that any or all of these approaches would be effective
in improving on Zhang’s approach. A more in-depth experiment using a larger set of data
is required in order to verify which of these methods will provide the best performance - if,
indeed, any of them is superior to the results in Zhang’s original model. These will likely
be in similar format to the comparative evaluations provided in [1], including marketplace
simulations involving a number of buyer / seller agents with varying levels of honesty.
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We will first seek to determine optimal parameters, or ranges of parameters, for both
the threshold and max nbors methods. Subsequently we will determine how these optimal
versions compare to each other and to Zhang’s original model. Finally, presuming that at
least one of these modifications provides improved performance, we will attempt to imple-
ment advisor referrals on that system; again, we may need to try a number of parameter
values in order to determine an optimal method.

For each stage of the evaluation, we should consider how well each method performs at
correctly distinguishing between honest and dishonest agents. As in [1], we may compare
performance using the Matthews correlation coefficient [8], which provides a single measure
for the quality of binary classifications, such as for honest and dishonest sellers.

Other open questions remain: we might consider, for example, Zhang’s suggestion to
apply this model to time-sensitive tasks which may require a buyer to make a very quick
decision; here, the buyer would only have time to consult a limited number of advisors.

Finally, we have found very limited work in the past on the effects of the size of the
advisor network, or indeed other characteristics such as advisor referrals, on the usage of
trust-based approaches of this nature. This research, into improvements to a particular
system, may only have limited application to trust in general; it is likely that further work
will be required to generate some more concrete principles in this area.
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Abstract. Trust networks are directed weighted graphs whose nodes
represent agents and edges represent trust between agents. This paper
proposes a trust-based recommendation approach, which can recommend
trustworthy agents to a requester in a trust network. We consider a good
recommendation as one to an agent that the requester’s trusted neigh-
bors trust highly. We relate the recommendation problem to the graph
similarity problem, and define the similarity measurement as a mutu-
ally reinforcing relation. By calculating the vertex similarity between
the trust network and a structure graph (a path graph of length three),
we can produce a recommendation based on similarity scores that reflect
both the link structure and the trust values on the edges.

Key words: Trust, Graph Similarity, Recommendation

1 Introduction

Trust networks are directed weighted graphs whose nodes represent agents, edges
represent trust relations, and weights represent trust values [1, 2]. An edge from
node u to node v with trust value t means u trusts v to the extent of t. A similar
concept is commonly seen in the real world. Examples include Facebook1 where
edges are the friendships between people; citation networks where nodes are
papers and edges are citations; web graphs where nodes are webpages and edges
are hyperlinks; FilmTrust [3] where edges are movie taste similarity between
people; and, Epinions [4] and Advogato [5, 6], where the edges are trust relations.

There are two main challenges in trust networks: (a) trust propagation, and
(b) trust-based recommendation. Trust propagation is about predicting the trust-
worthiness of nonadjacent agents by combining trust values through distinct in-
direct paths. To be more specific, trust propagation defines how trust values
are aggregated and propagated through a trust network. It can help agents esti-
mate a stranger’s trustworthiness without assuming previous experience with the
stranger. The other problem in trust networks is trust-based recommendation.
Given a trust network and a target agent v, how to recommend a trustworthy

1 http://www.facebook.com/
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agent for v to interact with. Trust propagation is widely studied in the literature
[1, 5, 7, 8, 6, 2, 9, 10], whereas trust-based recommendation has not drawn much
attention from the research community.

A possible solution to trust-based recommendation is to apply trust prop-
agation to estimate the trustworthiness of all agents that are not adjacent to
the target v, and recommend the agents with high trust estimates. However,
this solution is not promising because the complexity of the trust propagation
grows quickly as the number of agents increases. Another possible solution is to
recommend agents who share a fair number of common neighbors. For example,
Facebook recommends friends based on the number of mutual friends between
people. However, this approach fails to take the trust values (i.e., edge weights)
into consideration.

Our approach aims to provide a trust-based recommendation approach, which
recommends trustworthy relationships by considering not only the link structure
(e.g., the number of common neighbors), but also the trust values associated
with the links. Instead of considering one single potential neighbor separately,
our trust-based recommendation processes the trust network around the target
(i.e., the agent that requests a recommendation), thereby providing recommenda-
tions more efficiently. The idea behind our approach is based on graph similarity
[11]. We show that by calculating vertex similarity between the trust network
and a structure graph, the trust-based recommendation problem can be trans-
lated into a graph similarity problem, and the similarity scores can be viewed
as a measurement of how many good connections (i.e., with high trust values)
the agents shares with the target. Besides, instead of predicting how the trust
network evolves from a network -level perspective, our approach departs from a
node-level perspective, providing personalized recommendations, especially for
the target.

Note that we can customize trust-based recommendation by using differ-
ent structure graphs. In this paper, we study two basic structure graphs that
facilitate making recommendation based on in-degree and friends of friends, re-
spectively. However, our approach is not limited to these structure graphs. It
can be extended to produce recommendations based on other criteria.

To summarize, our trust-based recommendation takes a trust network and a
target agent (who requests recommendation in the trust network) as inputs, and
outputs a list of trustworthy agents for the target to interact with as recommen-
dation. This paper makes four key contributions. First, our approach provides
personalized recommendations for a particular agent. Second, a recommendation
produced is based not only on the network topology, but also on the trust values
associated with the edges. Third, our approach is efficient because it considers
only a small subgraph of the trust network, and processes potential candidates
all at once. Fourth, our approach allows for customizing recommendation based
on various criteria.

The rest of paper is organized as follows. Section 2 surveys the state of the art
of the related research areas. Section 3 presents our approach by first introducing
the graph similarity measurement used in our approach, and then demonstrating
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how the trust-based recommendation problem can be solved via graph similarity.
Section 4 concludes this paper and identifies possible future directions.

2 Related Work

Here we categorize the literature into four areas: graph similarity, link prediction,
trust propagation, and recommender systems.

Our trust-based recommendation approach is built on a graph similarity
measurement. Graph similarity has been applied in various applications. For
example, Melnik et al. [12] present a graph similarity approach, called similar-

ity flooding, for database schema matching. Their approach takes two graphs
as inputs, measures the vertex similarity between the inputs, and outputs a
mapping—a subgraph consisting of similar nodes. This work differs from ours in
many ways except both apply vertex similarity between two graphs. First, Mel-
nik et al.’s input graphs have no weights, whereas our approach takes the edge
weights into consideration. Second, their approach takes two graphs as input,
and calculates the similarity between them. Our approach takes only one graph
as input. Given that graph, our approach calculates the similarity between the
graph and a structure graph, which reflects the features we care about in the rec-
ommendation. Third, Melnik et al.’s approach requires adjustment by humans,
which ours does not.

Jeh and Widom [13] propose a domain-independent similarity measurement,
SimRank. SimRank measures the similarity between objects. It follows the intu-
ition that “two objects are similar if they are related to similar objects.” Jeh and
Widom first convert the graph to a node-pair graph, where each node represents
a node-pair in the original graph. The node-pair (a, b) is connected to the node-
pair (c, d) if a connects to c and b connects to d in the original graph. Then they
calculate and propagate similarity score in the converted graph iteratively until
convergence. Again, Jeh and Widom only consider graphs with no edge weights,
whereas edge weights (i.e., trust values) play an important role in our approach.

Link prediction for large networks studies how to predict the edges that will
be added in the future, given the current snapshot of a network. Liben-Nowell
and Kleinberg [14] survey various link prediction methods from graph theory and
social-network analysis. These methods measure the similarity between nodes
with respect to the network topology, assign a weight to each pair of nodes, and
generate a list sorted in decreasing order in terms of weights. Liben-Nowell and
Kleinberg evaluate these link prediction methods in five collaboration networks
where edges connect authors who coauthor papers. They indicate that the link
prediction approaches can provide a network evolution model learned from the
observed data. This learned network evolution model can infer how the network
is going to evolve based on the network features. Unfortunately, Liben-Nowell
and Kleinberg’s approach only considers undirected graphs without edge weights.

Kunegis and Lommatzsch [15] propose a general link prediction approach,
which applies machine learning techniques to reduce the learning parameters for
link prediction, and then uses a curve-fitting method to estimate the parame-
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ters. Their approach can be applied to undirected, weighted, or bipartite graphs.
Kunegis and Lommatzsch evaluate the approach on web graphs, trust networks,
social networks, citation networks, and collaboration networks. Note that, in
general, the link prediction methods provide network -level prediction, whereas
our approach focuses on node-level recommendation. In other words, link pre-
diction recommends links for the whole network, but our approach recommends
trustworthy others for a particular node.

Trust propagation provides an alternative solution to trust-based recommen-
dation from a node-level perspective. Recommendations can be made by first
estimating the trustworthiness of all nonadjacent agents, and then listing the
agents with high trust estimates. Hang et al. [10] model trust as a binary event.
They define three operators for concatenating trust along a path, aggregating
trust from distinct paths from the same witness, and selecting the most trust-
worthy path among all witnesses, respectively. Advogato [5] adopts a network
flow algorithm where the flow capacity of edges is determined by the depth along
the path. Appleseed [6] applies spreading activation, where trust energy is spread
across the trust network. The energy is divided when the agent has more than
one successor. All these trust propagation methods provide recommendation for
a particular agent. However, they are not computationally efficient because the
complexity grows quickly as the number of agents increases. Our approach does
not treat each of the nonadjacent agents separately. Instead, it processes all
agents at the same time, yielding better performance.

Now we discuss some related work of recommender systems. In general,
recommender systems suggest items to users. There are two main categories
of recommender systems: content-based and collaborative filtering systems [16].
Content-based approaches produce recommendations based on the similarity be-
tween items. Collaborative filtering approaches recommend the items chosen by
the users with similar tastes. Our approach is closer to a collaborative filtering
approach because some of the collaborative filtering approaches construct a trust
network where nodes are users and edges represent the similarity between users’
taste. For example, FilmTrust [3] is a social network where edges represent the
similarity of movie taste. Ben-Shimon et al. [17] propose a recommendation ap-
proach that is quite similar to ours. They construct a personal social network
containing friends of friends (up to six levels) of a user who needs recommenda-
tion. Ben-Shimon et al. then find the sum of all the ratings of a particular item,
discounted by the distance from the rater to the user. If the sum is high, the
item is recommended. There are no items involved in our case. Thus, rather than
computing the sum of all ratings, our approach considers the link structure and
the trust values on the edges. Fouss et al. [18] present a recommender system
based on a similarity measurement between the nodes of a directed weighted
graph. They compute similarity based on a Markov-chain random walk model,
which assigns a transition probability to each edge. The distance required for
a random walker to travel from one node to another defines the similarity be-
tween these two nodes. Our approach is different from Fouss et al.’s approach
in two ways. First, our approach considers directed graphs rather than undi-
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rected ones. Second, we use the similarity measurement defined by a mutually

reinforcing relation rather than the Markov-chain random walk model.

3 Approach

Now we introduce our approach. In Section 3.1, we briefly overview the graph
similarity measurement applied in our approach. Section 3.1 also shows two
applications of the graph similarity by customizing different structure graphs.
In Section 3.2, we first define a trust network. Next we customize the graph
similarity measurement by devising a structure graph that satisfies our claim
for suggesting recommendations in a trust network. Then we show how trust
values are considered, and how they affect the recommendations produced. We
formalize our approach at the end.

3.1 Background: Vertex Similarity between Graphs

Blondel et al. [11] propose a vertex similarity measurement between graphs.
Given two directed graph GA with nA vertices, and GB with nB vertices, a
similarity matrix S is a nA×nB matrix where sij is the similarity score between
node i in GA and node j in GB . S can be calculated by a convergent iterative
process:

Sk+1 =
BSkAT + BT SkA

‖BSkAT + BT SkA‖F

, (1)

where A and B are the adjacency matrices of GA and GB , respectively, S0 has
all entries equal to 1, and ‖.‖F is the square root of the sum of the squares of all
entries. The denominator normalizes Sk+1 to [0, 1]. The limit of this convergent
process is S. The convergence can be determined by

‖Sk+1 − Sk‖F < ǫ, (2)

where ǫ is the error tolerance.
For example, Figure 1 shows the similarity matrix between two graphs: GA

and GB . GA contains two vertices: A1 has out-degree of one, and A2 has in-
degree of one. After measuring the vertex similarity with GB , one can observe
that B1, which has the largest out-degree, is the most similar vertex to A1. B4,
which has the largest in-degree, has the highest similarity score to A2. Notice
that the greater the out-degree a vertex has, the higher its similarity score to A1.
An analogous observation applies to the in-degree and A2. We can conclude that
by comparing the similarity score to GA, we can find the vertex that connects
to the most others, and is connected by the most others.

The idea behind the similarity measurement is the mutually reinforcing rela-

tion, which is widely applied in web search [19, 20], and reputation management
in peer-to-peer systems [21]. To illustrate the mutually reinforcing relation, we
take GA and GB in Figure 1 as an example. For each vertex Bi in GB , we as-
sociate two similarity scores, say si1 (for A1) and si2 (for A2), each of which
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A1 A2

Graph GA

B1

B2

B3

B4

Graph GB

A1 A2

B1 0.5774 0
B2 0.2887 0.2887
B3 0.2887 0.2887
B4 0 0.5774

Fig. 1. Example of two graphs, GA and GB , and their similarity matrix. The most
similar vertex to A1 is B1, which has the largest out-degree; the most similar vertex to
A2 is B4, which has the largest in-degree.

corresponds to the similarity between one vertex in GA and Bi. Both scores
are initialized to one. Then the scores are updated according to the mutually
reinforcing relation:

{

si1 =
∑

j:(i,j)∈EB
sj2

si2 =
∑

j:(j,i)∈EB
sj1

(3)

This mutually reinforcing relation says a vertex is similar to A1 if it connects
to many vertices that are similar to A2, whereas a vertex is similar to A2 if
it is connected by many vertices that are similar to A1. The update process is
iterated. The scores si1 and si2 mutually reinforce each other. Blondel et al.
show that this update process converges to a state, which corresponds to the
similarity scores between A1 and A2, and Bi.

Now let us extend the similarity scores to all vertices in GB . Suppose s1 and
s2 are the similarity scores to A1 and A2, respectively, for all Bi in GB

Sk+1 =

[

s1

s2

]

k+1

=

[

0 B

BT 0

] [

s1

s2

]

k

= Sk, (4)

where B is the adjacency matrix of GB and k = 0, 1, . . .. Blondel et al. further
extend GA to an arbitrary graph and simplify Equation 4 to Equation 1, where
A is the adjacency matrix of GA.

By using different GA (called the structure graph), we can apply the vertex
similarity to solve different problems and applications. Blondel et al. show that
the web search algorithm, HITS [20], which searches for webpages based on a
query, is an application of vertex similarity. HITS ranks webpages based on an
authority score and a hit score. A webpage is a good authority if there are many
hits that link to it. In contrast, a good hit is a webpage that points to many
good authorities. The HITS algorithm is a special case that compares the vertex
similarity between the cyberspace and GA in Figure 1. Blondel et al. point out
another application, synonym extraction. They construct a directed graph from
a dictionary, where a node represents a word, and an edge from u to v means u is
used in the definition of v. They first create a subgraph of the dictionary graph
by extracting all words connecting to a word x or connected by x. Then they
calculate the similarity score with the graph Gs shown in Figure 2. The vertices
with higher similarity score to A2 are chosen as synonyms of x. The similarity

76



Trust-Based Recommendation Based on Graph Similarity 7

score to A2 of a word y indicates how many common words occur in x and y’s
definitions, and how many definitions use both x and y. Thus, the similarity
score to A2 reflects the definition of a synonym.

A1 A2 A3

Fig. 2. Structure graph GS .

3.2 Trust-based Recommendation Based on Graph Similarity

A trust network is a graph where nodes represent agents and edges represent
trust relations [1, 2]. A trust relation from agent u to agent v indicates how much
trust u places in v. Thus, an edge in a trust network is associated with a trust
value as its weight. Depending on the trust models, a trust value can be a single
scalar, a Beta distribution, or follow another representation. The trust relations
can be obtained from a direct interaction or from a referral via trust propagation
[10]. For example, a social network such as Facebook is a trust network where
all edges are modeled have the same trust values. Here we only consider a trust
value as a single scalar. Other trust representations can be translated into a
scalar, for example, a probability.

Definition 1. A trust network TN is a directed weighted graph TN(V,E), where

V is a finite set of agents {v1, . . . , vn}, and E is a set of trust relations {e1, . . . , em}.

Consider the recommendation problem in trust networks: given a snapshot
of a trust network, how can we recommend (i.e., predict) a trustworthy agent
to an agent v? By intuition, we claim a good recommendation for v is an agent
connected by many of v’s neighbors. Let us start with a simple case where all
edges have the same trust values 1 (i.e., no weights). For example, Figure 3 (left)
shows a trust network TNB , which contains the neighbors of the neighbors of
agent B1. Among all the agents except B1’s neighbors B2 and B3, B4 is the most
possible candidate, because it is connected by two neighbors of B1. Consider the
structure graph GS in Figure 2, which illustrates our claim of producing good
recommendations: a friend (A3) of A1’s friend (A2) is probably A1’s friend (i.e.,
a good recommendation for v is an agent connected by many of v’s neighbors).
Figure 3 (right) shows the similarity matrix between GS and TNB . The similarity
score between A3 and vertices indicates how the link structure of the vertices is
similar to the link structure of A3.

Now we consider the general case where each of the edges in TNB is asso-
ciated with a trust value. Instead of using the adjacency matrix, we define the
adjacency matrix with trust, which is similar to the adjacency matrix for multi-

graphs (permitted to have multiple edges between the same end nodes), except
the entries can be non-integers. The entries in the adjacency matrix with trust
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B1

B2

B3

B4

B5

B6

A1 A2 A3

B1 0.4258 0.0901 0
B2 0.3107 0.3562 0.0458
B3 0.0828 0.4809 0.2270
B4 0 0.1300 0.4258
B5 0 0.0329 0.2940
B6 0.0167 0.0971 0

Fig. 3. Example of a trust network with no edge weights, and its similarity matrix
with the structure graph GS in Figure 2. Among friends of B1’s friends (i.e., B4, B5,
and B6), B4 is the best recommendation with the highest similarity score with A3.

represent the trust values associated to the corresponding edges. One can regard
a trust relation from u to v with a high trust value as there exist many edges
from u to v.

Definition 2. An adjacency matrix with trust A of a trust network TN(V,E)
of n agents is an n× n matrix where the entry aij is the trust value vi places in

vj.

Figure 4 shows an example of a trust network TN ′

B, and the similarity matrix
between the structure graph GS in Figure 2 and TN ′

B . TN ′

B shares the same
topology as TNB in Figure 3, except TN ′

B has trust values as its edge weights
(rather than 1). Unlike the result in Figure 3, although B5 has fewer connections
with B1’s neighbors than B4, B5 has the highest similarity score because the
trust value of its only connection is much stronger than the trust values of B4’s
connections. Note that B3 (not considered as a recommendation because it is
already a neighbor of B1) also has a high similarity score because it is connected
by B2 (B1’s neighbor) with a high trust value.

We formalize our trust-based recommendation approach. Given a trust net-
work TN(V,E), to find recommendations for agent v, we construct a subgraph
TN ′(V ′, E′) where V ′ ⊂ V contains v, all the neighbors of v, and the neighbors
of v’s neighbors, and E′ ⊂ E are all trust relations between any two of v, v’s
neighbors, or the neighbors of v’s neighbors. Then the similarity matrix between
the structure graph GS (Figure 2) and TN ′ is calculated. The nodes that are
not neighbors of v and have high similarity scores to A3 are recommended. The
reason of taking the subgraph is because if the whole TN is considered, the result
will not be a recommendation for the agent v. Instead, the agents with the high
similarity scores are just similar to A3 in GS , i.e., these agents are connected by
many other agents that connected by many others.

We can summarize the main steps of our approach as follows:

1. Given an agent v in a trust network TN(V,E) (v ∈ V ).
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B1

B2

B3

B4

B5

B6

1.0

4.5

2.8

8.6

5.5

4.9

9.0

A1 A2 A3

B1 0.3950 0.1307 0
B2 0.4044 0.3444 0.0669
B3 0.0089 0.4802 0.3478
B4 0 0.0271 0.1571
B5 0 0.0045 0.3550
B6 0.0036 0.1926 0

Fig. 4. Example of a trust network where edge weights represent trust values, and its
similarity matrix with the structure graph GS in Figure 2. Unlike the result in Figure 3,
although B4 is connected by B1’s both friends, B5 is the best recommendation because
of its strong connection with B3.

2. Construct TN ′(V ′, E′), where V ′ ⊂ V contains (a) v, (b) v’s neighbors,
and (c) the neighbors of v’s neighbors; E′ ⊂ E contains all trust relations
between (u′, v′) ∈ V ′.

3. Calculate the similarity matrix S between GS (Figure 2) and TN ′ by Equa-
tion 1.

4. Recommend the vertices that are not neighbors of v with high similarity
scores to A3 in GS .

4 Conclusion

In this paper, we present a trust-based recommendation approach, which pro-
vides recommendations to a requester in a trust network. The approach is built
on a vertex similarity measurement between graphs. The similarity measure-
ment is defined by a mutual reinforcing relation. We show that by calculating
the similarity between the trust network and a structure graph (a path graph of
length three), the similarity score can be viewed as a indicator that the agent is
strongly connected by the strong neighbors of the requester.

To further validate our approach, a possible future direction is to evaluate
on real datasets, for example, FilmTrust [3], Epinions [4], and Advogato [5, 6].
There are three tentative experiment settings. First, we can use cross-validation
by removing some of the edges of the requester from the trust network, applying
the trust-based recommendation, and comparing the recommendation list with
the removed edge list ordered by their trust values. Second, we can trace the
evolution of a trust network over time. We can compute the recommendation
list based on the past snapshot of the network, and then compare it with the
current snapshot to see if the trust network does evolve as predicted. Third,
we can compare the recommendation list with the agent list ordered by the
estimated trust values calculated by trust propagation [10].

Another direction is to study how our approach can be extended to provide
different recommendation. For example, Hang et al. [22] design a trust-based
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service composition model for estimating trustworthiness of the subservices un-
derlying a composition. However, their model fails to provide a mechanism for
selecting the subservices—recommending compositions. Based on our approach,
we can construct a structure graph that satisfies their scenario.
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An Architectural Approach to Combining Trust and
Reputation

Christopher J. Hazard and Munindar P. Singh

North Carolina State University, Raleigh NC 27695-8206, USA

Abstract. Though trust and reputation systems have been extensively studied,
general architectural commonalities between the two have received little atten-
tion. In this paper, we present a life cycle model of reputation and trust systems,
along with accompanying measures of how much effect signaling and sanction-
ing have on a given system. We map reputation attacks within our framework and
apply our framework to an online auction model.

1 Introduction

Throughout the trust and reputation system literature, two techniques that stem from
game theory are commonly applied for designing such systems. Signaling models are
those in which agents attempt to assess private attributes about other agents, whereas
sanctioning models are those in which agents behave strategically in an attempt to max-
imize their utility [4].

In real-world environments where agents must decide whether or not to trust one
another, clean distinctions between signaling and sanctioning are rare. For example,
an agent that allocates its own bandwidth and other resources may have little influ-
ence over the amount of resources it has available. Yet, it may be strategic and rational
within those constraints. A manufacturer can acquire a good reputation for having tight
quality controls, but new management may wish to see larger profit margins and may
strategically slowly cut back on the quality controls as long as it remains ahead of its
competitors.

Despite the complexity of the real world, few reputation systems are specifically de-
signed to address both sanctioning and signaling. Typically, authors of reputation sys-
tems that involve signaling devise a variety of malicious behaviors to test their system
against. Examples of the adversary agents include randomized acts of unfavorable be-
havior [11, 8], building up and spending of reputation [20, 12, 16], Sybil attacks where
an agent creates multiple identities [12, 11, 19], and collusion with other agents [11,
19, 20]. Other systems are designed specifically around strategic agents to ensure good
behavior, but do not attempt to measure attributes of the agents [10, 7]. A minority of
reputation systems, such as that by Smith and DesJardins [18], examine both signaling
and sanctioning explicitly.

Our primary contribution is a model that connects trust and reputation systems both
architecturally and functionally. We examine the trust and reputation life cycle in an
abstract form from which we can systematically determine how much influence signal-
ing and sanctioning have on the particular system. We present a heuristic that indicates
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Fig. 1. Trust and reputation life cycle from an agent’s perspective.

how a system is governed between the signaling and sanctioning, which is prescriptive
in terms of what kind of a reputation or trust model should be used for a given situation.
From this model, we identify and categorize different kinds of attacks against reputation
systems. We use a running example of an online auction.

The general view of this paper is that trust is looking forward in time with respect to
sanctioning and strategy, whereas reputation is looking backward in time with respect
to signaling and determining agents’ types. We discuss this dichotomy in detail. The
focus of this work is on rational agents and e-commerce settings, rather than directly
modeling human behavior. Emotional and cognitive factors of trust are outside of the
scope of this paper.

The remainder of this paper is organized as follows. We first introduce the trust
and reputation life cycle using a logic-based formalism and illustrate it via an online
auction. We then discuss the signaling and sanctioning dichotomy, measuring the effect
of each on a simple online auction model, and then discuss how attacks on reputation
systems can occur at each of the points in our model. We conclude with a discussion of
the benefits and limitations of our model.

2 Trust and Reputation Life Cycle

Although the specifics of particular trust and reputation systems can differ greatly, they
all share some commonalities. In this section, we unify the systems to a common set of
states and actions as outlined in Figure 1.

2.1 Identity States

The following are the different states an agent can go through in a transaction in the
presence of an open reputation or trust system. An agent is not limited to being in one
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state at a time, but can maintain multiple accounts and participate in multiple transac-
tions simultaneously.

No Identity The agent begins without an identity or account in the system. This state is
applicable for open systems where agents may enter or leave. From this state, an agent
may acquire an identity and move to the reputation state. Acquiring an identity may
be as trivial as using a nonvalidated screen name in an open text field where the agent
simply claims to have some identity. Alternatively, the system may require extensive
background checks, verifications from official organizations, or significant payments to
create the account. An agent may asynchronously acquire multiple identities, and may
acquire identities in different contexts or with different populations of agents.

Reputation Each identity that the agent has created will have its own reputation within
the community. An agent may discard an identity, either actively by deleting an account
or passively by simply no longer using an identity. When an agent decides to (or is
forced to) interact with another agent, it must select an agent (or agents) with which to
interact. It may communicate with this target agent, performing extensive negotiations
and setting up a formal contract. Alternatively, the agent may simply rely on norms or
not actively communicate with the target prior to the transaction.

Contract A contract expresses a promise or commitment to engage in some behav-
ior. Contracts may be well-defined and policed by an external system or may be as
ill-defined as the agents’ a priori assumptions. From a contract, the agents involved
undergo some transaction with the other agents involved. The transaction can involve
active participation, such as exchanging money for an item, or a transaction can be
passive, such as all agents timing out and not performing any task.

Resolution After a transaction has taken place, an agent will update its own beliefs
about the agents involved in the interaction. The agent can evaluate, report, and commu-
nicate its new beliefs about another agent based on the results of the transaction, either
directly to other agents or via a centralized reputation reporting mechanism. Concur-
rently, the agent may revisit the results and decide that further transactions are required.
To set up future transactions, the agents may renegotiate to a new contract after having
observed the other agents. A renegotiation can have positive connotations, such as pro-
viding additional services to supplement a previous transaction, or the renegotiation can
have negative connotations, such as an agent demanding reparations from a transaction
that did not fulfill the contract.

2.2 Agent Actions
To formalize our discussions about the life cycle of a reputation for further discussion
and analysis, we use a logic-based framework. We formally describe abstractions of
general interactions of a reputation system where comparisons between values are re-
quired to express agents’ preferences. For example, we can represent an example of
agent Alice’s utility as

Util(Alice, 5) ∧ Util(Alice, 10) → Util(Alice, 15) (1)

given the quasilinearity utility rule

Util(agent, value1) ∧ Util(agent, value2) → Util(agent, value1 + value2). (2)
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Similar such rules can be used to describe the values within reputation systems. We de-
note ground terms as those identifiers beginning with an upper case letter, and variables
as lower case identifiers.

We can write each of the state transitions from Section 2.1 more formally as follows:

discard identity : ID(agent, id) ∧ Util(agent, discardCost)
acquire identity : ¬ID(agent, id) ∧ Util(agent, acquireCost)
select agent, negotiate : Terms(agent, otheragent, contract)
transaction : Transaction(agent, otheragent, Terms(agent, otheragent, contract))
update & communicate beliefs : Transaction(agent, otheragent, Terms(agent,

otheragent, contract)) → Observation(agent, otheragent, terms)

2.3 Example: Online Auction Representation

To illustrate the applicability of our life cycle and formalizations, we create an example
Beta model reputation model with only positive and negative ratings resembling an
online auction as follows.

Because it costs only a small amount of time for an agent to set up an account,
acquiring an identity becomes

ID(agent, id) ∧ Util(agent, acquireCost), (3)

which could be, for example, ID(agent, id)∧Util(agent,−$0.5). Similarly, discard-
ing an identity is easy, represented as

¬ID(agent, id) ∧ Util(agent, discardCost). (4)

The transaction itself becomes

Transaction(agent, otheragent, Terms(agent, otheragent, contract)) →(
Terms(buyer, seller, contract) ↔

(
Pay(buyer, seller, value)

∧Give(seller, buyer, good)
)
∨ (CurrentDate > SellDate + 30)

))
, (5)

with

Pay(buyer, seller, value) → Util(buyer,−value) ∧ Util(seller, value), (6)
Give(a, b, good) → ¬Has(a, good) ∧Has(b, good), and (7)

Has(agent, good) → Util(agent, V alue(agent, good)). (8)

We can represent the ratings mechanism, triggered by the observation of terms as

Terms(agent, otheragent, contract) → Observation(agent, otheragent, contract).
(9)

The buyer can be rated positively using AdditionalPositiveRating and AdditionalRatings
to each increment the respective value via

Pay(buyer, seller, value) ∧ CurrentDate ≤ SellDate + 30
→ AdditionalPositiveRating(buyer, 1) ∧AdditionalRatings(buyer, 1) (10)
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and negatively as

¬Pay(buyer, seller, value) ∧ CurrentDate > SellDate + 30
→ AdditionalRatings(buyer, 1). (11)

The seller may be rated similarly as

Give(seller, buyer, good) ∧ CurrentDate ≤ SellDate + 30
→ AdditionalPositiveRating(seller, 1) ∧AdditionalRating(seller, 1) (12)

and

¬Give(seller, buyer, good) ∧ CurrentDate > SellDate + 30
→ AdditionalRating(seller, 1). (13)

A simple buyer agent might just choose the highest rated seller as

∃s(s ∈ Sellers) ∧ ∀t(t ∈ Sellers)
PositiveRating(s)/NumRatings(s)
≥ PositiveRating(t)/NumRatings(t)

→ Terms(buyer, s, contract). (14)

However, this simplified rating system does not take into account strategy, which we
discuss next.

3 Signaling Versus Sanctioning

The game-theoretic designations of signaling and sanctioning games are relevant to trust
and reputation systems because they address the key mechanism of whether an agent
must decide who to choose or how to act [4, 10]. In this section, we propose a way
of determining the influence of signaling versus sanctioning and how these properties
affect the design of a trust or reputation system, eventually connecting it back to our
life cycle model.

In a signaling setting, agents have private information that they may use to their
advantage. The asymmetric information can be used strategically to cause adverse se-
lection, where agents perform transactions with agents they believe to be desirable but
end up with an undesirable interaction. An example of a signalling situation is where
agents are purchasing mass-produced products and deciding whether to buy the prod-
uct from one manufacturer or another based on quality, price, and features. In this case,
agents signal to each other what they believe about other agents (specifically, the manu-
facturers). Statistical and probabilistic measures are most effective at measuring agents’
behaviors in the signaling setting.

Sanctioning mechanisms are useful in cases of moral hazard. Moral hazard occurs
when agents’ utilities are uncorrelated, meaning that one agent’s gain may yield an-
other’s loss, and one agent can directly exercise control over another’s utility. A pur-
chase where a buyer pays the seller and then the seller has the option of not sending
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the product to the buyer is an example case of moral hazard. If the seller will not be
sanctioned for its behavior and will have no future relations with the buyer, then it has
no incentive to send the product. Sanctioning must be credible for the agents involved
to be successful, and may be performed by the agent affected by refusing future trans-
actions, or by other agents policing the system. Modeling behavior in a sanctioning
environment with rational environments means employing game theory techniques to
find Nash equilibria.

As we remarked above, many real-world situations do not fall cleanly into either
signaling or sanctioning situations. An agent may have some control over the quality of
its products, but it is rarely impossible for an agent to make any changes to quality (pure
adverse selection) or for an agent to have perfect control over quality (pure moral haz-
ard). This distinction is blurred further by agents having differing levels of patience that
influence their strategic behavior [7, 18] and also by the blurred distinction of whether
an observation was intentionally communicated [3]. The amount of sanctioning comes
down to how much explicit control an agent has over its communications, and also
intent, which may be subtle.

In broad terms, we can distinguish two varieties of trust that apply in many computa-
tional settings with intelligent agents. We abstract the terms Competence and Integrity,
as described by Smith and DesJardins [18], into

Capabilities, which are what an agent can do, and
Preferences, which are what an agent will do.

From these definitions, it is clear to see that when agents want to determine which
other agents have capabilities, they need a signaling system which looks into what the
agents have done before. When agents want to determine another agent’s preferences
and ensure that the agent will perform a desirable behavior in the future when it has
the choice, then they need a sanctioning system. This is consistent with the notions of
reactive and anticipatory coordination [2].

To examine the role of signaling versus sanctioning on reputation systems, it is
instructive to consider three interrelated terms—trust, trustworthiness, and reputation—
that are used in nonstandardized ways in the literature. We begin from basic definitions
in order to capture the general intuitions about them.

Trust is an agent’s assessment of another party along some dimension of goodness
leading to expected outcomes.

Trustworthiness is how good a party is in objective terms. In other words, this is a
measure of how worthy it is to be trusted.

Reputation is the general belief (among the agents in a society or community) about
an agent.

Specifically, Alice may or may not trust Bob for possessing desirable attributes
(these could be capabilities, resources, bandwidth, and such). Alternatively, Alice may
or may not trust Bob for having his preferences aligned with hers or rather for having
his preferences aligned with hers under a particular incentive mechanism. Bob may or
may not be worthy of any trust Alice may place in him. Bob may or may not have a
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reputation for being trustworthy in the specified ways. And such a reputation may or
may not be well earned.

Reputation and trust therefore can be fit into our dual categorization. Reputation in-
volves what an agent is, as measured from its past; an agent has a reputation of having
some attribute or capability, and so a reputation system in this sense is a signaling sys-
tem. Trust is concerned with what an agent will do in a future situation, which concerns
the agent’s preferences and must be handled by a sanctioning system. However, as trust
and reputation have other connotations in specific domains, such as emotion, we will
maintain the distinction using the terms signaling and sanctioning.

3.1 Measuring Influence of Signaling and Sanctioning

Consider agents A and B that have strongly typed behavior, meaning that they will al-
ways behave almost the same way regardless of the situation (e.g., by offering products
of some specific quality). An example of such an agent is one that controls a high-
volume web service with specific offerings and finite bandwidth with little autonomy
and business logic. Consider an agent C that is deciding which agent to interact with
between A and B. If C chooses A, then C will receive some benefit (or loss) of utility,
bA. If C chooses B, then C would receive a change in utility of bB . Since the agents are
strongly typed, C’s behavior other than choosing A or B will not make much difference.
To maximize utility, C should use statistics to measure A and B’s attributes.

Conversely, consider that agents A and B are rational, have full and precise control
over each of their actions, and may change their behavior without any switching costs.
An example of these agents would be low-volume reseller agents that have sufficient
supply of substitutable products. In this case, whether C chooses A and B matters little
to C’s utility. Instead, C’s choices in negotiation and behavior with respect to A or B
dominates C’s change in utility. Finding an optimal interaction strategy is how C can
maximize its utility.

If we write the benefit C will gain with behavior x when choosing agent A as
bA,x, then magnitude difference of utility change between these choosing A and B
while C maintains consistent behavior is |bA,x − bB,x|. Using C’s ideal behavior, this
can be written as maxx |bA,x − bB,x|. When evaluated against all agents available for
interaction, S, agent C’s value of the utility difference between two agents, dselection(C),
can be written in terms of the expected rate of interaction between C and another agent
A as rA,C , as

dselection(C) =
1∑

A∈S rA,C + rC,A
·
∑
A∈S

∑
B∈S

max
x∈H

|rA,C · bA,x − rB,C · bB,x|. (15)

The normalizing term 1P
A∈S rA,C+rC,A

represents the reciprocal of the total interaction
rate. Similarly, we may write the expected value of the utility difference between any
two behaviors, dstrategy(C), of the set of all behaviors in H across all agents, as

dstrategy(C) =
1∑

A∈S rA,C
·
∑
A∈S

max
x∈H,y∈H

|rA,C · bA,x − rA,C · bA,y|. (16)
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Seller Agent Refurb. Value Refurb. Market Price Unrefurb. Price Refurb. Cost
A $500 $400 $200 $150
B $490 $350 $250 $80

Table 1. Online auction refurbished laptop example data.

As dselection measures the impact of an agent’s type and dstrategy measures the impact
of an agent’s strategy, we can use these values to determine the impact of signaling
and sanctioning on a multiagent interaction mechanism. In aggregation, we express the
expected value of each of the values across all agents as E(dselection) and E(dstrategy) re-
spectively. The fraction of agents’ total utility in a system that is governed by signaling,
isignaling can be represented as

isignaling =
E(dselection)

E(dselection) + E(dstrategy)
. (17)

The fraction of utility governed by sanctioning, isanctioning, can be represented as

isanctioning =
E(dstrategy)

E(dselection) + E(dstrategy)
, (18)

with isignaling + isanctioning = 1.

3.2 Example: Online Auction Representation

We reuse our general interaction model from Section 2.3 to show an example of ap-
plying our signaling versus sanctioning measure. Suppose agents are participating in
online market for refurbished laptops outlined in Table 1.

A buyer agent, C, values its own utility of the refurbished laptop from A at $500
and the refurbished laptop from B at $490. It needs to decide whether to buy from A
or B for the market price of $400 or $350 respectively. It costs A $150 to refurbish its
laptop that it bought unrefurbished at $200, and costs B $80 to refurbish the laptop it
purchased at $250. Both A and B are claiming that the laptop on sale is refurbished,
but C does not know for sure.

First, we investigate the case of selection. Agent C can select to buy from A or B,
but A and B have no choice in the matter because of the online auction format. The
rates of interaction from A’s perspective are rA,A = 0, rA,B = 0, rA,C = 1, and B is
analogous. The rates from C’s perspective are rC,A = 1, rC,B = 1, rC,C = 0.

First we evaluate dselection(C). Agent A only can interact with C, and the maxi-
mum profit C could make while still providing a laptop is $200. Therefore, dselection(A) =
1
2 · (|($400− $200)− $0|+ |$0− $400− $200)|) = $200. Similarly, dselection(B) =
$100. To compute this value for agent C, we must first evaluate which strategy yields
the greatest difference between choosing A or B. When the seller performs the re-
furbishment, C’s difference in utility between choosing seller A and B is |($500 −
$400) − ($490 − $350)| = $40. When the seller does not perform the refurbish-
ment, the difference becomes |($200 − $400) − ($250 − $350)| = $100. As the rates
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of interaction are symmetric, the larger of these two yields dselection(C) = $100.
The combined expected value of the difference of selection across all three agents is
E(dselection) = ($200 + $100 + $100) ≈ $133.

Next we investigate the case of sanctioning. Beginning with A, we find dstrategy(A) =
1 · |($400− $200− $150)− ($400− $200)| = $150, which is the cost of refurbishing
the laptop, and accordingly dstrategy(B) = $80. To find dstrategy(C), we also examine
the sellers’ behavior. If A does not refurbish the before shipping laptop, but instead
delivers a broken laptop, then C regains only $200 from selling the laptop at the unre-
furbished price and loses its $400 payment. Applying this evaluation with both A and B,
dstrategy(C) = 1

2 ·
(
|($500− $400)− ($200− $400)|+|($490− $350)− ($250− $350)|

)
=

$270. Putting the three of these agents’ results together, we obtain
E(dstrategy) = ($150 + $80 + $270) /3 ≈ $167.

The system has isignaling = $133
$133+$166 ≈ .44 and isanctioning = $166

$133+$166 ≈ .66. An
effective reputation system for this system should emphasize sanctioning mechanisms
slightly over signaling mechanisms.

4 Attacks on Trust and Reputation Systems

Given our logic model to represent a trust or reputation system, we can use these for-
malisms to give systematic treatment of types of attack or exploits for each type of
action.

discard identity: An agent may discard its identity to remove a bad reputation and
potentially acquire a new one [6], which can be expressed as ¬ID(agent, id1)
∧Util(agent, discardCost)∧ID(agent, id2)∧Util(agent, acquireCost). At a higher
level, an agent could discard an identity which is not lost in anonymity, but rather used
to frame another agent as a threat, for blackmail, to remove a competitor, or for other
forms of sanctioning.

acquire identity: Sybil attacks occur when one agent creates multiple identities
in order to manipulate a reputation or other aggregation system [13], expressed as
ID(agent, id2)∧Util(agent, acquireCost). Such attacks may directly influence rep-
utation or flood out other behavior.

select agent, negotiate: An agent may select another agent that is known to be in a
weak position or that is easy to manipulate or exploit, offer terms in negotiation with-
out intent to fulfill them or with intent to deceive or harm the other agent, or demand
a commitment by threatening to harm the other agent if not fulfilled. In subsequent
negotiations, an agent may mislead another agent that a previous transaction was prob-
lematic and that reparations are needed to continue the relationship. Agents can also be
selected against for sanctioning purposes.

transaction: An agent may not fulfill a commitment at all, fulfill it only part way or
of lesser quality than expected, or provide something unexpected [17].

update & communicate beliefs: This transition is particularly rich in terms of the
numbers and types of attacks, and can range from coordination with other transitions
(e.g., acquiring identities in a Sybil attack) to simply communicating [5]. An agent can
lie about another agent’s performance for positive or negative reciprocity.
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Revisiting Figure 1, the different types of attacks can be categorized by whether
or not they can be primarily addressed by signaling or sanctioning matter. Selecting
agents and updating and communicating beliefs are two of the interactions in the life
cycle that can be exploited in the most complex strategic manners, but also map directly
to signalling systems.

5 Discussion

In this paper, we have examine an architectural view of the trust and reputation life
cycle. The motivation of this paper was not to introduce any new mechanisms of trust
and reputation, but rather to take a step toward formalizing the taxonomy and structure
of trust and reputation. Our model aids in the discussion of systems’ mechanisms, as
it presents a broadly applicable view that can be used in conjunction with other tax-
onomies of reputation systems [14, 1, 15, 9] and taxonomies of attacks [12]. Further, we
offer an indication as to the extent that a given interaction system is affected by both
signalling and sanctioning, which is useful in determining what kind of a reputation or
trust system should be deployed. Our work unifies reputation systems, trust systems,
and related game theory under a common architectural framework.

Applying our measure of the effect of signaling versus sanctioning to a live system
requires some judgement. For example, if the strategy which offers the worst utility for
a given situation is something that no rational agent would do, then it is best left out. In
general, only those actions that lie on the Pareto frontier of utility or on a Nash equilib-
rium (or approximate Nash equilibrium) should be considered. The actual attributes of
the agents, including preferences, utilities, and capabilities may also be unknown to a
system designer, so estimates may often need to be substituted.

A key theme in our model is the relative autonomy of the agents involved. If the
agents behave in a fixed manner that is largely independent of the other agents’ strate-
gies, then are best measured by a signaling system. An agent’s autonomy is further
reflected by the level of bounded rationality and information available to an agent in the
system.

Future work involves investigating time preferences of agents and combinations of
actions. Though our model is high level, some strategies require involvement of several
distinct pieces of the model. Further future work involves deepening the connection
between our logic framework with the signaling and sanctioning measures to give more
prescriptive results.
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Abstract. Entities interacting on the web establish their identity by
creating virtual personas. This research models identity using the Entity-
Persona Model which is a semantically annotated social network inferred
from the persistent traces of interaction between personas on the web. A
Persona Mapping Algorithm is proposed which compares the local views
of personas in their social network referred to as their Virtual Signatures,
for structural and semantic similarity. The semantics of the social net-
work of the Entity-Persona Model is modeled by a vector space model of
the text associated with the personas in the network, which allows effi-
cient comparison of their Virtual Signatures. This enables all the publicly
accessible personas of an entity to be identified on the scale of the web.
This research enables an agent to identify a single entity using multiple
personas on different networks. The agent is able to increase the trust-
worthiness of on-line interactions by establishing the identity of entities
operating under multiple personas. Consequently, reputation measures
based on on-line interactions with multiple personas can be aggregated
and resolved to the true singular identity.

Keywords: trust, social networks, identity management, virtual signa-
tures

1 Introduction

The way that an individual’s identity is created and experienced is fundamentally
different in the virtual world. The basic cues used to uniquely identify individuals
in the real world are missing, making the association between an entity and
its identity ambiguous [14]. This research creates a model of the virtual world
which dispels this ambiguity, allowing the virtual personas created by an entity
to be linked together. Informally, a virtual persona is a name and its associated
attributes, which an entity uses to communicate with other personas.

The virtual world in the context of this research refers collectively to the
various explicit or inferred social networks on the web. Examples of explicit
social networks are websites such as Facebook, Orkut, MySpace, and LinkedIn.
Social networks can be inferred from the digital traces of interaction between
entities, or individuals, on the internet, such as in the Blogosphere [9], Online
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Discussion Forums, Knowledge sharing sites, IRC Logs and the co-occurrence
of names in the large amount of textual data on the internet [7]. In an explicit
social network there exists a framework by which entities can specify to whom
they are related and the context of this relationship. Access to explicit networks
is generally controlled [6] because of the privacy concerns of its participants [1].

Inferred social networks lack the privacy mechanisms of explicit networks as
its users assume they are as anonymous as they wish to be. The work in this paper
counters this assumption since users must engage in information rich interactions
in order to provide value to the framework. The establishment of the reputation
of an entity’s virtual persona within the framework is an important motivating
factor for its consistent use, as others use reputation to assess the reliability
of information associated with the persona [5]. Every new persona created will
need to establish its reputation within its social network which requires time
and effort. This penalty associated with creating a persona which is capable of
meaningful interaction makes a persona valuable. Virtual personas with erratic
interactions are not worth detecting as they have little value.

Search engines treat personal names and pseudonyms as keywords, giving
virtual personas the same status as ordinary text. Queries for people’s names
only find occurrences with verbatim matches to the query text while they may
have interacted extensively using various personas. The model proposed in this
paper can be used to find more accurate results for the information associated
with an individual available publicly on the web. Augmenting web search with
the ability to link entities and their personas can be perceived as an attack on
an individual’s privacy, as information which may have been exchanged with the
expectation of anonymity granted by a virtual persona is now linked back to its
progenitor. Conversely this research can also contribute to an individual’s ability
to safeguard their privacy and protect their identity from theft. As the concept
of identity in the virtual world is formalized and an upper bound on the ability
of a determined adversarial agent is found, techniques to remain anonymous in
spite of sophisticated statistical tools can be developed. Further, software agents
who are capable of warning users of the unintended inferences which can be
made with the data they publish may also be possible.

Another application of this research is in the task of anti-aliasing in social net-
works. Anti-aliasing [11] is the task of identifying when a single user has multiple
aliases in a social network. This is important in trust networks, as a distrusted
user or set of users, after being removed from a network (by a moderator, for
example), can insert themselves into a network at a later point in time with a
pseudonym. Agents capable of continuously associating personas with the singu-
lar identity of an entity will offer increased assurance of entity reputations based
on interactions of associated personas. Consequently, agents can assess trust-
worthiness of individual personas and relate those trustworthiness assessments
to the singular identity associated with those personas. This research offers the
groundwork for establishing the connection between the multiple personas and
a singular entity identity.
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2 Related Work

The privacy of individuals, referenced in social network data released to re-
searchers, application developers, and marketing organizations is ostensibly pro-
tected by anonymizing the social graph, as their goal is to make inferences about
the aggregated data not specific individuals. Privacy preserving data mining is a
research area in which data sets are modified and algorithms developed which do
not compromise privacy [16]. Approaches to the reverse task of de-anonymization
are usually based on unique subgraphs in the anonymized social network, and
are classified into active and passive attacks [3]. Active attacks are attacks in
which nodes that form a unique subgraph are inserted into the graph before it
is anonymized (for example, before being released to the public for research of
other purposes). As this subgraph is known a priori it can be used to identify
other nodes in the released graph. Passive attacks [10] are similar, however no
nodes are inserted, instead a small group of nodes collude to generate a subgraph
which is later used to re-identify adjacent nodes. De-anonymization of individu-
als in an anonymized data set is equivalent to linking personas in two different
social networks as the attackers background information is also a social network.
These techniques de-anonymize nodes using structural properties of graphs and
are not designed to target specific nodes. They also rely on the fact that both
networks have many nodes in common. Purely structural equivalence techniques
break down if the neighborhood of an individual node changes drastically. The
work presented here uses structural information in addition to persona content
for de-anonymization.

In contrast to graph-based approaches, Novak et al. [11] use a content-based
approach where they reconcile online personas to unique users by clustering the
content associated with the personas, such that each cluster represents a unique
user. The data is derived from an online discussion board by only considering
text associated with a persona independent of relation information. Similar to
the approach used in this paper, two sets of personas are synthetically created by
random division. Random division allows words from specific topics to appear in
every division which will not occur in real data, making the entity disambiguation
results flawed. Algorithms must be robust with respect to text originating from
very specific topics which are never repeated. Temporal division as used here
addresses this problem.

Jin et al. [7] extract social networks from the web using hypertext data
retrieved from search engine queries. The nodes in the network are named entities
which are known a priori. Edges are inferred using heuristics from co-occurrence
of names, and the type of relationship the edge represents is determined from
the query text. Queries consist of the entity names and the type of relationship.
Staddon et al. [13] have leveraged web search to determine unintended inferences
which can be drawn from data published on the web. Keywords are extracted
from data intended to be published using TF-IDF1 and are used to construct
queries to search engines. New keywords in the results of these queries not present

1 Term Frequency - Inverse Document Frequency
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in the original keyword set represent inferences which can be drawn from the
web. Both these techniques only find information associated with a specific name
i.e. they assume an individual has only one persona on the internet. Although
the results are interesting they bring little insight to the true nature of identity
on the web.

3 Modeling Entities and Personas

Entities communicate on the web using identifiers unique within a framework
making the identifier - framework combination also unique. At internet scope the
identifier can be an IP or email address depending on the protocol, or a username
in the scope of a Web 2.0 application. The identity of an entity possessing an
identifier is characterized by the set of other identifiers it has communicated
with and the content of this communication, collectively referred to as its virtual
signature.

3.1 Model and Definitions

Definition 1. An entity ξ is something capable of independent interaction, which
can be uniquely identified in the real world.

An entity can be an individual or software agent. Individuals by default are
unique as they can have only one instance in the real world. A software agent
may not be unique as it is very easy to create many instances of the same
agent. Therefore, all instances of the same software agent which exhibit the same
behavior are considered collectively a single entity regardless of their physical
location. Entities interact on the web through a framework using a persona,
which is an instantiation of an entity within the framework. An entity can possess
more than one persona within a given framework.

Definition 2. A framework is an implementation of software and associated
protocols which enables entities to interact.

Definition 3. A persona π is a tuple (i, d), where i is an identifier unique within
a framework and d is a n-tuple of associated information and attributes which
an entity uses to establish its identity and interact within a social network. For
every persona there exists exactly one entity

A social network (Definition 4) is used to model the virtual signatures of entities
or personas which are nodes in the network such that two nodes are connected if
they have communicated. Again, the criteria for considering that communication
has occurred depends on the framework.

Definition 4. A social network S is a vertex and edge labeled undirected graph
G = (V,E), where V is a set of either exclusively entities or personas and E
is a subset of the cartesian product V × V such that (v, v) 6⊂ E 2. Every edge
2 No self loops are allowed since they are meaningless in a communication graph.
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(u, v), u, v ∈ V has a label γ and every vertex has a label χ, which is arbitrary
information associated with the edge or vertex.

The Entity-Persona Model consists of a social network of entities SΞ and at least
one social network of personas SΠ . SΞ is a real world social network of entities
whose personas need to be linked. SΠ is a social network of personas inferred
from the records of the framework in which the entities in SΞ communicate. The
label of vertex uπ, χπ in the graph GΠ of SΠ is π(i, T (d)) and the label γπ1π2

of edge (uπ1 , vπ1) between vertex uπ1 labeled by π1 and vertex vπ1 labeled by
π2 is T (dπ1 ∪ dπ2). T is an operation which reduces d to its semantics which is
outlined in section 3.3. Hence, the social network of personas is vertex labeled
by the semantics of information generated by the personas and edge labeled by
the semantics of all the information exchanged by the personas it connects.

Definition 5. The virtual signature of a persona π in the context of the Entity-
Persona Model is the social network SΠ rooted at the node of the persona.

The identity of a persona is defined by the structure of SΠ and the semantics
of the graph labels. SΠ is not unique to a persona as it is a social network of
personas, however its local view can be unique making its virtual signature also
unique.

3.2 Problem Specification

Linking entities and their corresponding personas can be formally expressed as
finding a mapping between a set of n entities Ξ = {ξ1, ξ2, ..., ξn} which are nodes
in a social network SΞ and a set of m personas Π = {π1, π2, ..., πm}. Π may be
partitioned into P = {Π1, Π2, ...,Πl} a collection of l subsets of Π if the per-
sonas exist in l different frameworks. Each framework is expressed as a separate
social network in the model.

Definition 6. A mapping µ is a binary relation on
l⋃
i=1

SE×SΠi
, where (ξ, π) ∈

µ, ξ ∈ SE , π ∈ SΠi ⇐⇒ entity ξ has created persona π.

From the information exchanged within each framework, P can be inferred.
A query on the model is a set of entities Ξ and a mapping µ which maps every
entity in Ξ to at least one persona in P . If no mapping between an entity and
a persona is known, the query algorithm will not have an example to train on
making mapping the personas of the entity impossible. The social network SΞ
and the mapping µ are only partially known. From this information the complete
social network SΞ and µ must be inferred. This can be accomplished by,

1. Selecting a entity ξ ∈ Ξ.
2. For (ξ, πξ) in mapping µ, find a set Πnew which contains all π ∈ P that best

match πξ by some objective criteria.
3. Update mapping µ such that µ = µ

⋃
q∈Πnew

(ξ, q).
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Fig. 1. The entity-persona model as it is initilalized.

4. Update SΞ such that if two mapped personas have an edge between each
other, their corresponding entities have an edge in SΞ .

5. Repeat.

3.3 Semantic Similarity

If the virtual signatures (Definition 5) of personas are to be compared, it follows
that there must be a way to compare their local views of their social network.
Graphs can be compared structurally using combinatorial algorithms [4] or by
comparing their spectra [15]. In a social network however the nodes and edges
are labeled requiring the development of the means to compare these labels.

The edge labels of a social network are the inferred semantics of the rela-
tionship the edges represent. The vertex labels are the inferred semantics of all
the information generated by an entity through the persona associated with the
vertex. These semantics must be short descriptions of the information they are
inferred from, while maintaining as much discriminative information as possible.

The simplest technique to infer the semantics of text associated with a per-
sona is to construct a vector of unique terms in the text and assign it to a
graph element label. Labels can be compared by using the Jaccard index which
measures the similarity between two sets χ1 and χ2.

J(χ1, χ1) =
|χ1 ∩ χ2|
|χ1 ∪ χ2|

(1)

This produces a score between 0 and 1, with 1 being exactly the same. It is good
at using stylometric information such as consistent misspellings to discriminate
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between personas but cannot capture information such as favorite words. It is
particularly weak at discriminating when the number of terms in the original
text is very small.

Term Frequency - Inverse Document frequency is a popular technique in in-
formation retrieval to infer which terms best represent a document in a corpus.
In the case of the Entity-Persona Model, the document is the textual informa-
tion associated with a persona and the corpus is the collection of all personas.
This technique can reduce the dimensionality of the feature space to a greater
extent than the previous approach as only the most important terms can be
considered i.e. terms with the highest tf-idf. To compare labels χj and χk the
cosine similarity between their vectors is computed,

Cosine Similarityχj ,χk
=

∑
∀i
tf − idfχj ,ti × tf − idfχk,ti

||tf − idfχj || × ||tf − idfχk
||

(2)

Cosine similarity results in a score between −1 and 1 with 1 being exactly the
same. Therefore a higher score implies that the labels being compared are similar.

3.4 The Persona Mapping Algorithm

The algorithm takes as input, a source graph GS of a social network of personas
SS , a source vertex s ∈ GS of a persona πs, and a target graph GT of a social
network of personas ST . SS and ST can be the same social network, in this
case we are looking for an entity with multiple personas in the same social
network.It returns a vertex in target graph which has the maximum overlap
between its virtual signature and the signature of s. The algorithm is a modified
simultaneous Breadth First Search of two graphs. It also takes as inputs ε and
∆ which help prune the search space, and σ which is the standard deviation of
a gaussian used to weigh the importance of a semantic or structural information
while producing a score of similarity between two personas.

As the personas of an entity may not have the same neighbors in their social
graphs, the structure of the local view of their social network can vary. Depending
on the framework the personas are inferred from they may exchange information
on very different topics making semantic information unreliable. If both semantic
and structural information change drastically a persona may not be able to be
mapped correctly, but if only one of them change the algorithm can take this
into account by weighing both types of information differently using a zero mean
gaussian to decide on the weight of the scores of vertices in the auxiliary graph.
The larger the path length between the vertex which maps the source vertex to
the candidate vertex and a vertex in the auxiliary graph, the less that vertex
contributes to the score. If si,d is the score of the ith vertex at path length d
then the score of the similarity of the candidate vertex to the source vertex is
given by:

score =
∆∑
d=0

∑
∀i si,d
|si,d|

(
1√
2π
e−

d2
2

)
(3)
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Algorithm 1 Persona Mapping Algorithm.

Map-Node(GS , GT , s, ε, σ,∆)

1 Q← ∅
2 for each vertex v ∈ V [GT ]
3 do Q← Get-Vertex-Score(GS , GT , s, v)
4 while Q 6= ∅
5 do VertexScore ←Maximum(Q)
6 c← Extract-Max(Q)
7 QS ,QT ← Initilize-Queues(s, c)
8 GA ← Initilize-Graph(s, c, V ertexScore)
9 while QS 6= ∅ and Check-Depth(∆)

10 do node1 ← Dequeue(QS )
11 node2 ← Dequeue(QT )
12 AssignedEdges ←Map-Edges(node1, node2)
13 Update-Graph(GA,AssignedEdges)
14 QS ,QT ← Update-Queues(QS ,QT ,AssignedEdges)
15 Score ← Get-Combined-Score(GA, σ)
16 if LastScore −Score ≥ ε
17 then return LastC
18 else LastScore ← Score
19 LastC ← c

Subgraph isomorphism is a NP-complete problem, the Persona Mapping Algo-
rithm avoids this pitfall. It builds an intersection graph between two subgraphs
greedily to check for similarity making the problem tractable. The time com-
plexity of the algorithm is O(n4 + n log n). However, real world social networks
have node degrees which follow a power law distribution [2]. Therefore the edge
mapping routine will take on average O(d2), where d is the average node degree
of the network. The use of ∆ to limit the depth of the breadth first search results
in a further decrease in running time to build the auxiliary graph. Empirically
a depth of 2 or 3 is sufficient to achieve a correct mapping as larger depths will
include the entire graph due to the small world phenomenon [8], which in most
cases is unnecessary.

Percentage of personas mapped correctly is a good measure of performance
on a given data set. It is argued by [10] that this metric is flawed because nodes
which are impossible to map will bias the results. However, this does not matter
while measuring relative performance on a given data set. Finding a mapping
between one entity and its personas is as important as the other, using measures
such as node degree or centrality to give more weight to the successful mapping
of more important nodes is meaningless here. For the same reason doing well
on personas with relatively less information associated with them is also not
considered.
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4 Experiments

4.1 Outline of Experiments

This section presents experiments which validate the Entity-Persona Model and
the Persona Mapping Algorithm against the Enron data set. The experiments
test the robustness of the algorithm and the semantic similarity measures it uses
by artificially partitioning the data set. At least 50% of the entities in the data
set had their personas correctly mapped in every case.

The Enron data set was initially released by the Federal Energy Regulatory
Commission as part of its Western Energy Markets investigation. The particular
version used by this work has been prepared by Shetty and Adibi [12]. This data
set is an appropriate test bed for this research as it is only composed of text and
the link structure is easy to infer. As it is a very mature data set, it required
minimal preprocessing to make it usable. Its size also makes it appropriate for
research while still exhibiting many of the properties of large social networks.

The Enron data set consists of 517,431 emails from the mail accounts of
151 Enron employees between January 1998 to December 2002 with most of the
email volume occurring between January 2000 and December 2001. It contains
emails that originate or are sent to addresses outside those of the employees in
the data set, these have not been considered in these experiments. The Entity-

Jan 2000 June 2000 Jan 2001 June 2001 Dec 2001
Timestamp of Email

0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f E
m

ai
ls

Number of Emails sent in a 24 month period

Fig. 2. Distribution of Enron email volume over a 2 year period.

Persona Model is populated by considering every email address as a node and a
edge between two nodes is added if they have exchanged at least one email. The
vertex labels of the social network are inferred from an unordered collection of
terms in the text of all the emails sent or received by a node. The edge labels
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are inferred from the common emails exchanged. Only the subject and body
of the email is considered. To simulate anonymous interaction personal names
and email addresses are filtered out. No stop words or stemming is used as this
will not allow the stylometric features of the text to be captured. The goal of
the persona mapping algorithm is to map personas unknown to it. A true test
of its capabilities is its ability to map personas attempting to be anonymous.
Although the web is full of this kind of data, it will be impossible to verify if the
algorithm has made a correct mapping as this would require entities to volunteer
this information. The next best approach is to synthetically create data sets to
run the algorithm on, allowing the mappings to be easily verified. This research
uses temporal partitioning on the Enron data set.

The data set is partitioned into eight sets based on when an email is sent as
shown in table 1. The effect of the change in topics of the emails and change
in graph structure can be explored. From table 2 it can be seen that each of
the partitions has a different graph structure. At the local view of a node the
graph changes significantly with some nodes communicating with completely
new neighbors. The partition with the largest email volume is chosen to derive
the source graph, this is the graph which the mapping between an entity and
a persona is known. The seven other partitions are used to derive the target
graphs whose personas need to be mapped.

Partition by Email Date

Graph Type Graph Name Start Date End Date

Source Graph GS 1st October 2001 31st December 2001

Target Graph

GT1 1st July 2001 31st August 2001

GT2 1st April 2001 30th June 2001
GT3 1st January 2001 31st March 2001
GT4 1st October 2000 31st December 2000
GT5 1st July 2000 31st August 2000

GT6 1st April 2000 30th June 2000
GT7 1st January 2000 31st March 2000

Table 1. Partitioning the Enron Data Set.

4.2 Comparison of Semantic Similarity Techniques

The semantic similarity techniques presented in section 3.3 which are used by the
Persona Mapping Algorithm are compared here. The experiment measures the
percentage of personas successfully mapped between the source and seven target
data sets. The success of these techniques depends on term usage by the entities
in the the data sets. An analysis of the dataset showed that the number of unique
words used by an entity is weakly correlated with the volume of communication.
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Statistic GS GT1 GT2 GT3 GT4 GT5 GT6 GT7

Nodes 139 137 140 109 107 93 79 58
Node Degree (Max) 63 54 63 24 22 18 11 14
Node Degree (Avg) 11 8 7 6 5 4 3 2
Edges 825 616 531 345 328 234 127 88
Email Volume (Avg) 531 466 418 457 448 432 306 338
Email Volume (Med) 257 192 116 66 58 24 2 0

Table 2. Graph Statistics

This is the basis of the success of using textual information to find mappings
as an entity does not have to have communicated extensively for there to be
enough information to uniquely identify it.

The algorithm was run with σ set as 0.6, ∆ as 1 and ε as 0.002. These settings
give more weight to the score of the mapping of the candidate vertex to the source
and less to the scores of their common neighbors. This can interpreted as the
algorithm has less confidence in that entities use their personas to communicate
with the same people and more confidence in that exchanging similar information
across all their personas. A smaller ∆ implies the algorithm only looks at the
immediate neighbors of the personas for structural congruence.
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Fig. 3. Comparison of Semantic Similarity Techniques.

The Jaccard index to compare persona vocabulary was the more successful
semantic similarity measure. It was also the least consistent in producing suc-
cessful mappings as the time between which an entity used its persona increased.
This implies it is the least robust to changes in specific topics of communication.
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Semantic Similarity Technique Average Mapping Time

Jaccard Index 2.18s
TF-IDF 25.25s

Table 3. Comparison of Time Required to Map

It is also the least computationally intensive technique to transform raw text
into a representation which can be compared. Only one pass was required to
populate the vocabulary vectors which label the graph.

TF-IDF performs more consistently although with a lower correct mapping
rate. As term frequency is taken into account, it is less sensitive to rarely used
terms. It correctly mapped the same subset of entities through all the data sets.
It requires at least two passes over the email text to form the TF-IDF vector
and is very slow at finding a mapping because the length of its vector is the size
of the vocabulary of all the personas.

5 Conclusions

This research formally defines the problem of identifying the personas of entities
on the web and proposes a solution to identify the two personas of an entity
which exist in two separate social networks. This solution can be easily extended
to the more general problem of multiple social networks and multiple personas.
This research aims to answer the question: “Who am I interacting with?” or in
other words, “Can I trust the identity presented as a true representation of the
entitys identity?” This research takes a first step by offering a measurement of
similarity among digital personas to resolve the true identities. Consequently,
increased assurance of digital identities will allow for increased trustworthiness
for on-line interactions with unknown entities (e.g. email, social networks, e-
commerce, etc.).

The Entity-Persona Model is a formal model of the social graph and the Per-
sona Mapping Algorithm operates on this model to produce mappings between
entities and their personas. The Entity-Persona Model was populated using the
Enron data set and the performance of the proposed algorithm was studied. Al-
though the algorithm was successful in correctly mapping the entities in the data
set to their personas, it was not consistent in its performance. The vocabulary,
TF-IDF, and topic distribution approaches for semantic similarity compared in
this research differ in their robustness to change in topics of information ex-
changed and the ability to capture stylometric information. These approaches
can be improved or combined to perform consistently across all personas.

The question of what information generated by an entity is necessary and
sufficient to uniquely identify it is the hardest to answer. It is apparent that
the relative information entropy between the digital signatures of personas to be
compared must differ by at least one bit in order to discriminate between them,
which gives a definite lower bound for necessary information and can occur in a
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fully connected social network. This lower bound however is not very useful in
a real world situation as every virtual persona will have a unique signature. An
empirical bound on the sufficiency of information can be found if all personas in
the data set have been mapped correctly. However it will be impossible to know
if all the personas have been mapped correctly as the purpose of the algorithm
is to find unknown mappings and there is no ground truth to reference. User
feedback can be used to learn how much information is sufficient by asking
the user if he is satisfied with the results of the mapping, and then adjusting
the amount of information considered based on this feedback. The danger of
additional information adding more noise than signal must be considered while
using such techniques.
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Abstract. In open multi-agent systems trust models are an important
tool for agents to achieve effective interactions. However, in these kinds
of open systems, the agents do not necessarily use the same, or even
similar, trust models, leading to semantic differences between trust eval-
uations in the different agents. Hence, to successfully use communicated
trust evaluations, the agents need to align their trust models. We ex-
plicate that currently proposed solutions, such as common ontologies or
ontology alignment methods, lead to additional problems and propose a
novel approach. We show how the trust alignment can be formed by con-
sidering the interactions agents share. We describe our implementation
of a method, which uses inductive learning algorithms, to accomplish
this alignment and test it in an example scenario.

1 Introduction

In open multi-agent systems, trust and reputation models are considered an
important feature in managing the social environment agents are immersed in.
One of the benefits offered by using trust is that agents can communicate their
trust evaluations to each other, thus warning other agents for fraudulent agents
or helping each other to select good interaction partners. This communication,
however, becomes problematic if the different agents use diverse models of trust,
as is a very real possibility in a heterogeneous environment. In this case, trust
may mean something different to both agents. These agents need to align their
definitions of trust, before the communication becomes meaningful to them.

Trust in computational systems, as in human environments, cannot be seen
as independent from the social interactions on which it is based. Each agent
computes its trust evaluations of the different target agents in the system, based
on some, possibly partial, observation of that agent’s interactions. These trust
evaluations are computed by an agent’s trust model and thus, if the agents use
different trust models, then the trust evaluations may be different, despite being
based on the same interactions. Additionally we argue that this can be the case
even if the agents use the same computational trust model. Some state of the art
trust models are based on cognitive principles [1, 2] and take an agent’s beliefs
and goals into account when computing a trust evaluation. While, in these cases,
the computational model is the same, agents with different beliefs and goals will
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have different trust evaluations given exactly the same information. We see that
also in these cases it is therefore important to align the trust models.

The interactions trust is based on depend largely on the purpose of the multi-
agent system and the types of agents in it. They can be as diverse as air traffic
agents optimizing a landing schedule, personal agents buying a bicycle on eBay
or agents communicating trust evaluations. The developers of the system gen-
erally develop an ontology to facilitate communication about these interactions
and the domain in general. This should facilitate the communication about the
interactions, however the trust evaluations are not based on public information
alone. An agent may have its own personal observations of an interaction. In the
case of an eBay auction, the seller for instance has information about all bids
received, while the bidder only has information about his own bids. Additionally
agents may associate different subjective observations with the interaction. For
instance, the seller may not be satisfied with the transaction, because he had
to sell at a loss. This type of information is private and often just as subjective
as the trust evaluation itself. In the eBay example it is no easier to communi-
cate the meaning of satisfaction than of the trustworthiness supported by that
satisfaction. This difference in observations complicates the matter of aligning
trust models, however we postulate that there is always some amount of shared
information. At the very least, there is shared information that an interaction
took place. Our approach uses these shared interactions as building blocks for a
trust alignment.

So far, communication about trust evaluations has been tackled by defining
common ontologies for trust [3, 4], however in practice these ontologies do not
have the support of many of the different trust methodologies in development.
An ontology alignment service is presented in [5], but it requires a translation
of all specific trust model ontologies into a general ontology. In addition, even if
support were added for all systems and a common ontology emerged, a cognitive
agent will still have its own interpretation of the world on which it bases its trust
evaluations: thus trust must always be considered in the light of why agents trust
each other.

Abdul-Rahman and Hailes’ reputation model [6] approaches the problem of
alignment from another direction, by defining the trust evaluations based on
the actual communications. The interpretation of gossip is based on previous
interactions with the same sender. The problem with this, however, is that it
is incomplete: firstly it assumes all other agents in the system use the same
model, which in a heterogeneous environment cannot be assumed. Secondly, it
uses a heuristic based on prior experiences, to “bias” received messages. This
bias is an average of all previous experiences. They do not differentiate between
recommendations about different agents, which are based on different types of
interactions.

Semantic alignment based on interactions has been studied in [7]. This ap-
proach to semantic alignment is based on the general framework of Channel
Theory [8, 9]. We use this same mathematical theory as a framework for aligning
trust.

112



2 The Algorithm

Channel Theory is a qualitative theory modeling the flow of information in dis-
tributed systems. From our point of view we can use this to describe a channel
in which information about trust can be transferred from one agent to another.
This is described in detail in [10]. The intuition is that both agents can relate
each others’ subjective trust evaluations to the objective descriptions of inter-
actions, communicating about them using the languages LTrust and LDomain,
respectively. By doing so they are able to find the underlying meaning of the
trust evaluations. The computational model based on this approach is described
in [11] and we will summarize it here before explaining our implementation.

Fig. 1. Schematic diagram of the steps in the alignment process

In Figure 1 we give a graphical overview of the algorithm. First, at À the
agents have to communicate their trust evaluations to each other in the form of
gossip messages. For each message, the receiving agent computes its own trust
evaluation, leading to a set of Specific Rules for Alignment (SRAs) at Á, each of
the form αi[Tj ]← βi[Tj ], ψi, which would be the ith SRA about the target agent
Tj . The heads of the rules α are the own trust evaluations, while β in the bodies
are the other agent’s. ψ describes the set of interactions which support both
evaluations. The agent then has to learn the model underlying these SRAs. This
is done, in repeated steps of clustering Â and inductive learning Ã. The output
will be a set of General Rules for Alignment (GRAs), which is the generalization
of the SRAs we give as input. These can then be used to interpret future messages
Ä. We describe the method used in Algorithm 1.

We use three important procedures, the clustering algorithm in line 5 and
the two generalization algorithms we use on the clusters in lines 9 and 11.
– Clustering is used to group those SRAs where the receiving agent’s trust

evaluations are “near each other”, because we want to learn generalizations
that will predict that agent’s trust evaluations, based on the gossip sent. That
means we cluster based on the heads of the SRAs and we have an additional
requirement for LTrust: there must be a distance measure defined on it. An
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Algorithm 1: Generalize SRAs
Input: R, the set of SRAs to be generalized
Input: D(x, y), a distance measure on LT rust
Input: S, a set of increasing distances for clustering
GRAs := ∅1
Clusters := {{r}|r ∈ R}2
Covered := ∅3
foreach Stop criteria s in S do4

Clusters := agglomerative clustering(Clusters, s, D)5
if —Clusters— = 1 then6

break7
foreach C ∈ Clusters do8

H := generalize head(C, R\C)9
if H 6= null then10

G := generalize body(C, R\C)11
if G 6= null then12

GRAs := GRAs ∪ {〈H ← G, s〉}13
Covered := Covered ∪ C14

if Covered = R then15
break16

Output: GRAs17

example of such a distance measure is described in Section 3.3. The clustering
fulfills another role in the algorithm: it allows for the incremental learning
of the alignment. This allows us to stop the algorithm when a suitable align-
ment is found. To this purpose we use a list of stop criteria S. This is a
list of maximum distances for the clustering algorithm. The algorithm goes
through this list from smallest distance to greatest and continues merging
clusters until all the clusters are at a distance greater than the current stop
criterion being evaluated. The resulting set of clusters will serve as input for
the learning algorithms.

– Generalizing the SRAs is the main part of the algorithm. For each stop cri-
terion s we will have a set of clusters of SRAs and for each of these clusters
we shall attempt to generalize a set of GRAs covering it. Our first task is
to learn a generalization of the heads of the SRAs. By definition, all the
αi within a cluster are within distance s of each other and we want to find
some defining quality of these αi which we can use in our final ruleset. We
want to learn the generalization α∗ which θ-subsumes [12] all αi. Afterwards,
when we generalize the body, we are learning the conditions for which the
receiving agent should have trust evaluation α∗. For both these tasks we can
use an inductive learning algorithm, however the specific type of learning
differs. For generalizing the heads of the SRAs we use an algorithm special-
ized in the “learn from example” setting [12], whereas for generalizing the
bodies, we have richer information available and by using the “learn from
interpretation” setting [12] we can use heuristics which take advantage of
this, resulting in a faster algorithm for similar problems.

If we can find a generalization for the body it means we have a GRA which
covers all of the targeted rules in the cluster. We stop the algorithm when all
SRAs are covered, or when the remaining clusters are further apart than the
largest stop criterion. When the algorithm ends we have a list of GRAs. This
list can be used to translate messages from the other agent. Because each GRA
is stored with the stop criteria which allowed it to be generated, we have an
internal distance of the cluster it covers. We use this as the measure of accuracy
of the alignment. We can use this, together with the actual aligned message, in
the trust model.
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3 Implementation and results

Now that we have described the problem and given an explanation of the sys-
tem, we will give a brief description of the tools used to implement it. The
implementation must:
– define a language for LTrust and LDomain.
– implement the incremental clustering algorithm.
– use a “learn from example” ILP algorithm on the heads of SRAs.
– use a “learn from interpretation” ILP algorithm on the bodies of SRAs.

The implementation is predominantly in Java, which allows for flexibility in
the tools used. For logical reasoning we use SWI-Prolog, which provides a JNI
interface, so it can be accessed from Java.

3.1 LT rust and LDomain in OWL

To be able to gossip, the agents need two separate languages. One for the trust
evaluations and one domain dependent language to talk about interactions. Of-
ten agents will be developed for domains where there already is a fairly exten-
sive domain language available, so it makes sense to adopt this language as our
LDomain. If there is no such global language, then agents will need to align their
domain languages first. This is a separate problem and its solution is outside
the scope of this paper. We assume there is a shared LDomain language and
we follow the W3C recommendation for its specification: we use the Web On-
tology Language (OWL) [13]. Statements in LTrust and LDomain are expressed
in a subset of OWL-DL in which we will not allow quantification at this point,
because our learning algorithms are unable to deal with quantified variables in
the examples. This is not a very big restriction, because we are always gossiping
about one specific target agent, based on certain specific interactions and we can
give the specific instance, without using quantification.

A remark about the semantics of LTrust: while we use OWL-DL to specify
the language, we only fix the semantics of the connectives. The meaning of the
predicates themselves is precisely what we want to align.

3.2 Clustering and Learning

As described in Section 2, agglomerative clustering methods best fit our needs.
In this family, complete-link clustering [14] creates balanced clusters without
requiring the computation of some form of centroid or medioid of the cluster.
The calculation of such a centroid in our example is computationally intensive,
as it is equivalent to generalizing the head of the SRAs. We will still need to
compute this generalization, but not when using it as a distance measure, but
only once the cluster is finalized. A drawback of complete-link clustering is that
it deals badly with outliers. However, we are clustering on the agent’s own trust
evaluations. If there are outliers, they will not be in these evaluations, but rather
the SRA itself will be an outlier. We will need to deal with the outliers in the
learning of the body, but we should not encounter them when clustering. Our im-
plementation is based on the algorithm described in [15], sufficiently optimized,
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in Java. The distance measure on the clusters depends on the distance measure
on the elements, which are the statements in LTrust. Our implementation runs
in O(n2) time, where n is the number of SRAs formed from communication.

Aleph and Tilde For the generalization of the heads of all SRAs in the cluster
we use Aleph [16], because it functions well at the “learn from example” set-
ting. For learning the generalization of the bodies we use Tilde [17], which was
designed for “learning from interpretation”. Because the clusters aren’t known
beforehand and both these algorithms run with a specific format of input files,
we generate the files for each cluster at runtime. Then we call the algorithm on
the newly created files. The output is then read and reformatted so the head and
body together form a complete Prolog clause. If both steps succeed, they result
in a GRA, which covers the SRAs in the cluster. The algorithm terminates when
all SRAs are covered in this manner.

3.3 Example environment

So far we have explained the implementation of the algorithm. To test it we
designed an experimentation environment with a specific trust and domain lan-
guage, a way of generating interactions and agents with different trust models.
We base this environment on the following example scenario: Alice is looking
for a keynote speaker for a conference and wants advice from Bob on who is
trustworthy. This forms the basis of our example, with Bob and Alice trust-
ing different agents based on different criteria. We form a random graph of
interactions, which may range from an extremely sparse to a complete network,
depending on the chance agents interact. The number of interactions between
agents is customizable in a configuration file by varying the number of agents
in the system and the chance agents interact. So far we haven’t added support
for varying the topology of the network, because testing the alignment depends
mainly on the quantity of interactions, rather than the shape of the network.
The ontology for LDomain is defined in Figure 2. It is kept deliberatively small
and describes only objective properties of the interactions.

Based on these interactions, the agents compute trust evaluations, which is
communicated using LTrust. In this example LTrust only has one predicate: im-
age(Target, Value)1, with V alue ∈ [1, 10]. The distance between two elements
image(T1, V1) and image(T2, V2) is defined as |V1−V2|

10 . This is the normalized
distance between the two values. We purposefully disregard which agent is evalu-
ated, because we want the clusters to generalize over all similar trust evaluations,
ignoring which agent is being evaluated.

Trust Models We specify the trust models in our environment using Pro-
log programs. The relevant parts of the two models we use in our example are
outlined in pseudocode in Table 1. The interactions are described in LDomain,
which allows for 3 types of interactions: writing an article, a lecture and a per-
sonal interaction. These are observed and the participants in the interactions

1 image is the trust evaluation of the target that the agent believes in
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Fig. 2. The ontology for LDomain, in a UML-like representation

are evaluated in the trust models. We see that there are correspondences be-
tween the trust models, such as an interaction resulting in a high impact article,
supports a high value image in both models. However we also see that Alice’s
model is less general than Bob’s in this aspect: any article with an impact factor
higher than 6 results in Alice evaluating the authors thereof with an image with
value 10 (line A1). Bob’s model splits this into articles with an impact factor
higher than 8 (B1) and an impact factor between 6 and 8 (B4). Vice versa, Bob’s
trust model is quite general regarding lecture interactions where the target to be
evaluated is the lecturer (B9). Any such interaction supports a trust evaluation
with an image of 5. Alice’s trust model considers such interactions in a more
fine-grained manner, using various different rules (A2, A3, etc.). Finally we see
a large difference between the trust models in that Bob’s trust model has quite
a few trust evaluations supported by lecture interactions where the target is a
student (B2, B3, etc.). These simply do not correspond to any trust evaluation in
Alice’s model. These characteristics make these trust models useful for analyz-
ing the running of the algorithm, because they cause the problems we typically
expect to encounter when aligning.

Alice and Bob’s knowledge bases contain the shared interactions between
them. Each agent can therefore, based on these interactions, compute all possible
trust evaluations for all agents in the system. In our experiments we consider
Alice aligning with Bob, so we have Bob compute his trust evaluations and
generate all the messages he can. These are sent to Alice, who uses them as
input for the alignment algorithm. The reverse problem of Bob aligning with
Alice is analogous.

3.4 Experiments and analysis

We run the above environment with stop criteria 0, 0.1, 0.5, 0.8 and 0.9. These
give the increasing internal distance of the clusters we will attempt to learn
generalizations for. The interactions are a randomly generated set, based on
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Alice’s trust model

A1 image(T, 10) ← article(I), author(I, T) impact_factor(I, Imp), Imp > 6.

A2 image(T, 8) ← lectured(I), lecturer(I, T), student_eval(I, excellent).

A3 image(T, 8) ← lectured(I), lecturer(I, T), grade(I, G), G > 6.

A4 image(T, 7) ← personal(I), participant(I, T), activity_type(I, recreational).

A5 image(T, 7) ← lectured(I), lecturer(I, T), student_eval(I, good).

A6 image(T, 7) ← article(I), authors(I, T), impact_factor(I, Imp), Imp > 4, Imp < 7.

A7 image(T, 6) ← lectured(I), lecturer(I, T), student_eval(I medium).

A8 image(T, 6) ← article(I), author(I, T), evaluated(I, accepted).

A9 image(T, 5) ← article(I), author(I, T), evaluated(I, rejected).

A10 image(T, 4) ← personal(I), participant(I, T), activity_class(I, competitive).

A11 image(T, 3) ← lectured(I), lecturer(I, T), student_eval(I, bad).

A12 image(T, 1) ← lectured(I), lecturer(I, T), student_eval(I, awful), !.

Bob’s trust model

B1 image(T, 10) ← article(I), author(I, T), impact_factor(I, Imp), Imp > 8.

B2 image(T, 10) ← lectured(I), studied(I, T), student_eval(I, excellent).

B3 image(T, 10) ← lectured(I), studied(I, T), grade(I, G), G > 8.

B4 image(T, 8) ← article(I), author(I, T), impact_factor(I, Imp), Imp > 6.

B5 image(T, 8) ← personal(I), participant(I, T), activity_type(I, recreational),

activity_class(I, cooperative).

B6 image(T, 7) ← lectured(I), studied(I, T), student_eval(I, good).

B7 image(T, 7) ← personal(I), participant(I, T), activity_class(I, cooperative).

B8 image(T, 7) ← personal(I), participant(I, T), activity_type(I, recreational).

B9 image(T, 5) ← lectured(I), lecturer(I, T).

B10 image(T, 5) ← article(I), author(I, T), evaluated(I, accepted).

B11 image(T, 4) ← lectured(I), studied(I, T), grade(I, G), G < 6.

B12 image(T, 4) ← lectured(I), studied(I, T), student_eval(I, medium).

B13 image(T, 4) ← lectured(I), studied(I, T), student_eval(I, bad).

B14 image(T, 2) ← personal(I), participant(I, T), activity_type(I, professional),

activity_class(I, competitive).

B15 image(T, 2) ← lectured(I), studied(I, T), student_eval(I, awful).

B16 image(T, 1) ← article(I), author(I, T), evaluated(I, rejected).

Table 1. Two sample trust models in Prolog-like syntax

different configuration settings. We use 60% of these interactions as our training
set and 40% as the control set. We run thirty trials at each configuration and
Table 2 shows a summary of the results, where each row is the average over
the trials run. The first two columns describe the configuration and the third
the number of interactions the configuration results in. The other columns we
describe below.

Num. agents Interact chance Interact number Coverage training Coverage control Accuracy
10 10% 14 75% 45% 0.99
10 30% 40 89% 70% 0.97
10 70% 95 99% 95% 0.92
25 1% 7 69% 41% 0.96
25 5% 44 78% 66% 0.95
25 10% 96 96% 93% 0.95
25 30% 275 94% 94% 0.92
25 50% 451 98% 98% 0.87
50 2% 74 76% 65% 0.96
50 10% 373 97% 97% 0.94
50 30% 1096 100% 100% 0.99

Table 2. Summary of results

Coverage of the Alignment Our algorithm always results in a “catch all”
GRA at the highest stop criterion of 0.9. All SRAs are covered by this rule,
however it adds no information. We discuss this further in Section 3.4. The
coverage in Table 2 is calculated as the percentage of SRAs that are covered by
any GRA other than this “catch all” GRA.

We see that even in a fairly small shared network, such as the one with
10 agents and a 30% interaction chance the alignment achieves a fairly high
coverage of 70%. This was based on an average of 40 interactions which led to
an average of 48 SRAs for aligning. The networks smaller than that do not allow
for good alignment. With 10 agents and 10% chance of interacting the coverage
drops below 50% with quite a few instances of runs with 0% coverage of the
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training set. This is based, on average, on 14 interactions. The trials with 25
agents and 1% chance of interaction suffer even more under the network size:
with only around 7 interactions to base the alignment on, 5 of the 30 trials did
not complete. Of course, by using all interactions, and not just 60%, an agent
can improve its learning capacity in small networks, but in this example around
20 interactions is the minimum for a reasonable alignment. This improves fairly
rapidly if agents have more shared interactions, because, as is to be expected, the
quality of the alignment is mainly dependent on the number of interactions. We
see for instance that the trials with 25 agents and a 5% chance of any two agents
interacting on average finds an alignment that covers 66%, a vast improvement
over the network with 1% interaction chance. Number of interactions is not the
only factor influencing the coverage of the alignment. Sometimes the training
set does not allow for a good alignment and the training set has bad coverage.
Luckily, there is a correlation between the coverage of the training set and the
control set: the Pearson’s correlation coefficient is 0.512 and if we do not take
the data from the two smallest sets into account, which do not result in decent
alignments, the correlation is stronger, with a coefficient of 0.723. In Figure 3(a)
we have graphed the coverage of the training and control set for trials with a small
sized network: with 50 agents and a 2% chance of interacting, displaying this
correlation. This correlation is useful, because an agent can know the coverage
of its training set and thus if the training set has low coverage it can expect bad
results when applying the alignment.

The knowledge about the training set is useful. If the training set is small or
has low coverage the agent knows that its alignment probably has a low coverage
for any future messages from the other agent too. Furthermore, it can attempt
to improve the alignment by obtaining information about more interactions and
the other agent’s trust evaluations based on them. We show the improvement
an agent can achieve by ignoring badly covered training sets. In Table 3 we
give the average coverage of the control sets if we leave out all alignments that
cover less than 70% of the training set, showing a marked improvement in the
trials run in smaller networks. In medium networks with over 100 interactions
we can achieve a similar improvement by leaving out all alignments with less
than 100% coverage of the training set. In the largest networks, with over 500
interactions the coverage of both sets is so near perfect that there is no significant
improvement.

Experiment 10, 10% 10, 30% 10, 70% 25, 1% 25, 5%

Coverage 59% 75% 96% 49% 77%

Number ignored 9 5 2 9 12

Experiment 25, 10% 25, 30% 25, 50% 50, 2% 50, 10%

Coverage 97% 98% 100% 81% 100%

Number ignored 3 2 6 12 5

Table 3. Corrected coverage of control set, by removing the trials with bad coverage
of the training set

2 With 95% confidence we know the correlation coefficient is between 0.44 and 0.59
3 With 95% confidence we know the correlation coefficient is between 0.66 and 0.77
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(a) Coverage of training and control sets (b) Coverage vs. accuracy

Fig. 3. Graphs showing various aspects of the coverage

Accuracy of the Alignment As mentioned in Section 2, the accuracy of a
GRA is directly proportional to the maximum distance of the SRAs it covers, in
fact, the accuracy is 1− s, with s the stop criterion used to generate the cluster of
SRAs. We define the accuracy of the alignment as the average of the accuracy of
the GRAs used to translate each message in the control set. Thus any uncovered
message is not taken into account in the accuracy calculation. In most cases
we find an extremely accurate alignment. Often, the highest accuracy is when
coverage is low, while the alignments with higher coverage have a lower overall
accuracy. This can be explained by looking at the way the learning algorithm
works: when we decrease accuracy by moving to a large clustering distance,
any GRAs learned will have a higher coverage. Most alignments in the small
and medium networks with a high coverage have one or two GRAs with lower
accuracy. We have plotted the relation between accuracy and coverage for a few
trials in Figure 3(b), where we see that lower accuracy occurs more often at high
coverage.

Additionally, for our example, we can look at the trust models to see that
an accuracy of 100% is a theoretical impossibility. In some situations, especially
those concerning lecture interactions, Alice’s trust model is far preciser than
Bob’s, leading to messages from Bob necessarily being aligned with a lower
accuracy. We expect this to be a general feature of two different trust models.

If we take coverage into consideration, the average accuracy drops to around
40% for the smallest data sets. Larger networks aren’t influenced as much by
this correction, because coverage tends to be higher and accuracy already lower.
The large networks have similar accuracy before and after the correction: around
90%.

Unaligned messages As described in Section 2, there is another measure of the
coverage of the alignment, which we have so far ignored: the messages Bob sends
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which are based on interactions which support no corresponding trust evaluation
for Alice, for instance in our example Alice cannot use any trust evaluation Bob
bases on lecture interactions in which the student is evaluated. These cases are
not taken into account in the data displayed above, because there are two ways of
considering them. One possibility is to consider any such message as successfully
aligned: the agent knows these messages do not result in a corresponding trust
evaluation. We could therefore use the learner to find a generalization of these
messages in the same manner as we learn the body of messages that do result in
an alignment. In this example these messages can easily be generalized: they are
either the lecture interactions described above, or personal interactions with
a cooperative and professional activity. Learning this generalization results in a
100% coverage for both training and control groups and thus Alice can know
in the future when a message does not correspond to an own trust evaluation.
The other possibility is for an agent to consider such messages unaligned. This
results in an overall lower coverage of both the training and control sets. In this
example 21% of the messages Bob sends do not result in a trust evaluation for
Alice.

We prefer the first way of considering these messages, because knowing in
which situations a trust evaluation of the other agent does not correspond to
any trust evaluation in the own agent is valuable information in and of itself
and can even be considered as a successful alignment: knowing when there is no
information is also information!

4 Conclusion

The problem we address in this paper is that of aligning trust models. We de-
scribe the implementation of an alignment algorithm and have performed a pre-
liminary set of experiments with it. The experiments show that even at low
numbers of interactions the coverage and accuracy of the alignment is quite
high, although for a reliable 100% alignment it requires large amounts of in-
teractions. Luckily, just by analyzing the coverage of the training set, we can
estimate whether the alignment will be effective. This gives the agent an extra
tool in the application of the alignment. Furthermore we see that the average
accuracy is high for aligned messages.

The trust models we used are simple and in the future we will test the
algorithm with actual trust models, used in the community. We will also test it
in a scenario with real data, rather than randomly generated interactions. This
approach will necessitate more robust accuracy checks and outlier detection,
because in these experiments we did not deal with noise or inaccurate trust
evaluations. The ILP algorithms used can be configured to deal with noisy data,
however we did not do this in these experiments: we only use results from Tilde
with a 100% coverage of the examples, by allowing results with less coverage, we
would need to combine the accuracy results from Tilde with our own accuracy
calculations. Because there are various ways of doing this and it was unnecessary
for the example scenario we have not considered this.
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In Sandri, S., Sànchez-Marré, M., Cortes, U., eds.: AI Research and Development.
Proc. of the Twelfth International Congress of the Catalan Association of Artificial
Intelligence (CCIA 2009). Volume 202 of Frontiers in Aritficial Intelligence and
Applications., Cardona, Spain, IOS Press (2009) 169–178

11. Koster, A., Sabater-Mir, J., Schorlemmer, M.: Inductively generated trust align-
ments based on shared interactions (extended abstract). In: Ninth International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2010), Toronto, Canada, IFAAMAS (In Press)

12. De Raedt, L.: Logical and Relational Learning. Springer Verlag (2008)
13. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview.

http://www.w3.org/TR/owl-features/, retrieved July 27, 2009
14. Defays, D.: An efficient algorithm for a complete link method. The Computer

Journal 20(4) (1977) 364–366
15. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3) (September

1967) 241–254
16. Srinivasan, A.: The aleph manual. http://web.comlab.ox.ac.uk/oucl/research/areas/

machlearn/Aleph/, retrieved 9/2/2009 (June 2004)
17. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,

H.: Improving the efficiency of inductive logic programming through the use of
query packs. Journal of Artificial Intelligence Research 16 (2002) 135–166

122



  

123



124



Why does trust need aligning?
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Abstract. In this position paper we explain why the alignment of trust
for computational agents is a problem which requires closer consideration
than it has previously been given. We give a review of related work from
various fields of research and propose a general framework in which a
solution for the alignment of trust should be found.

1 Introduction

de gustibus non est disputandum
— Latin maxim

One of the main problems in open multi-agent systems is how the heterogeneous
agents can interact with one another. Usually an ontology is given by the system
designers for the agents to communicate. If there is no single ontology, but each
agent uses its own, there is a large amount of work done to enable the alignment
of these ontologies [1]. An ontology can be used to describe the environment and
negotiate in objective terms. However, if the objects to be discussed are subject
to semiotic heterogeneity [2], ontological solutions do not suffice. Semiotic, or
pragmatic, heterogeneity is the problem encountered when an ontology can be
interpreted in different manners. The agents agree on the syntax of the ontology
and the content the ontology describes, yet still do not coincide on the meaning
of the concepts. This is the problem we encounter when talking about taste. . .
and also when talking about trust. We do not even have a non-ambiguous def-
inition of what trust itself means. There are various philosophical, sociological,
cognitive and economic theories of what trust means to humans [3–7] and dif-
ferent computational models based on these [8, 9]. Agents within an open MAS
using such diverse models of trust and reputation will therefore run into com-
munication problems if they wish to exchange information about these concepts.
In [10] a strong case is made for why agents need to communicate their trust
information and the manner of reputation formation is solely based on commu-
nication. As an example we can look at eBay’s system [11]: their website does
not include any tools for modeling trust, just an interface for communicating
evaluations. The other users use this information to form their own evaluations.
This simple system is one of the pillars for the website’s tremendous success [12].
One of the reasons it works well is because it allows users to write a comment:
not only do they give a score to the trade partner, but a short explanation why
they give that score.
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When we state opinions, we almost always give the reason for having this
opinion. The same holds true for opinions about trust. Consider the phrase “I
wouldn’t trust Alice”. If uttered sincerely, this is uttered in accordance with
Grice’s maxim of quality [13]: the speaker believes it to be true and the speaker
can justify it based on some evidence. Yet in reality we are not so easily satisfied
and we have the urge to ask for a justification from the speaker. The recognition
that a justification is required, is already present in toddlers [14] and when given,
such as in an utterance “I wouldn’t trust Alice, because the car she sold me was
a lemon”, it is far more likely to be accepted by a listener. Of course, we are
assuming that a “lemon” is the same to both the speaker and the listener. If not,
this is an equally unsatisfactory utterance and a further explanation of what the
speaker considers to be a lemon is required. We therefore continue asking for
justifications of opinions until we are satisfied we understand what the speaker
means (in [14] this is referred to as the justifications being grounded) and there
is no further semiotic heterogeneity. Whether or not the listener agrees with the
speaker is another issue entirely. It may very well be the case, that the listener
is perfectly happy to trust Alice in her role as a car saleswoman, despite the
speaker’s utterance. It might even be the case that the listener disagrees with
the reasoning of the speaker: Alice selling him a lemon is not a good reason to
mistrust her. Perhaps even to the contrary: the listener rather dislikes the speaker
and Alice selling him a lemon is all the more reason to esteem Alice. However,
whatever complex reasoning lies behind the conversation partners’ opinions, for
them to communicate effectively they need to justify their opinions. There is
evidence that this necessity of justifying a statement appears when we first begin
to realize that the communication partner has mental states which may differ
from our own [15]. This same difference in mental states should be assumed
in autonomous computational agents [16] acting in an open MAS. All agents
participate in the MAS to fulfill their own goals, based on their own beliefs,
therefore we should expect communication of opinions, including opinions of
trust, to be accompanied by some justification.

In this paper we discuss the problem further as well as giving a brief de-
scription of a proposed method for aligning trust. In the next section we discuss
methods related to alignment of trust, such as argumentation, ontology align-
ment and dealing with uncertainty. In Section 3 we further expand on the prob-
lem and propose an area in which the solution could be found. We recap the
main points and discuss them at the end of the paper.

2 Related work and similar problems

As mentioned in the previous section, trust alignment falls within the general
area of semiotic heterogeneity, which is recognized as a sub-area of general se-
mantic heterogeneity. While most work done on semantic heterogeneity focuses
on the more traditional forms of ontology alignment, there is some work done on
the problem. The field of semiotics [17] focuses on how humans interpret signs
and how meanings are formed. Some work has been done on applying semiotics
to AI, most notably semiotic dynamics [18] studies how semiotic systems come
into being, both in human societies and in artificial societies. However, so far
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its application to alignment problems has been slim. Most work concentrates
on evolving a semiotic system together, thus reaching a consensus of meaning.
However, this is not possible with all concepts. While allowing agents to evolve
a language to talk about external objects is possible, when they talk about their
own mental states we specifically do not want a consensus. Each agent has their
own way of interpreting the world and it is this interpretation they must try to
communicate.

Communicating trust evaluations is exactly such an issue and some work
has been done in trust modeling for computational systems to address it. Most
trust and reputation models take both the agent’s experiences and other agents’
communications into account, however Abdul-Rahman & Hailes’ model [19] rec-
ognizes differences in mental states to a certain extent: the interpretation of
communicated trust is based on previous interactions with the same sender.
This allows their model to use a heuristic to “bias” received messages depending
on how far apart received trust evaluations from the same sender in the past
have been from the agent’s own trust evaluations. We agree that this setup is
a good approach to the problem. By learning quantification of the dissimilarity
between the agent’s own trust evaluations and the communicated trust evalua-
tions received from the other agent, a form of an alignment is made. However,
their model misses out on some important points:

– Their alignment system only works with other agents using the same trust
model. However, in an open MAS this cannot be assumed. This might be
solvable using regular ontology alignment before the “biasing” of the mes-
sage. Various trust ontologies have been proposed [20, 21] as well as ontology
mapping service for them [22].

– More serious is the fact that they do not take the context of the trust evalua-
tion into account. The reason trust is subjective is because each agent has its
own goals and observations of the environment in which it evaluates trust.
This may cause the bias to vary between trust evaluations. Their model sim-
ply averages the bias into one general numerical bias. This is a simplification
we feel cannot be made.

Dealing with the context in which a trust evaluation is made complicates
matters, because the bias has to be made conditional upon this context, which
needs to be discovered in its own right. The approach we propose in Section 3
is inspired both by this model and the insight that context plays an important
role.

Insofar as we know, this is currently the only model attempting any form of
alignment of incoming trust information. There are models based on cognitive
principles [23, 24] which offer the capability to do similar things, however the
main focus of these models is on the cognitive modeling of trust and they leave
the alignment of incoming messages as an open problem.

Another approach is to not use other agents’ trust evaluations at all and
instead communicate just the information about interactions. This is done in
[25]. While this avoids any subjective terms in the communication, it does not
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work well if the information is asymmetric between the agents or there are pri-
vacy issues in communicating. For communication of just domain information
to be effective, the agents have to communicate everything about an interac-
tion, allowing the other agent to compute its own trust evaluation. A separate
alignment process allows agents more freedom in communication: in this process
agents only talk about interactions they have both observed. The agents both
have different information available to them, which allows them to compute their
own trust evaluations. The agents can then choose which properties of the inter-
actions to communicate, in accordance with any restrictions they have. If similar
situations consistently lead to similar communicated properties, then even if the
other agent does not have knowledge of the interaction, it can approximate its
trust evaluation through the similarity of previous situations.

2.1 Is argumentation about trust the same as aligning?
Some work has been done focusing on ways to build argumentations for trust
[26, 27]. The reasons for argumentation are the same as the ones given above:
agents need to explain their trust evaluations to each other [26] and to the user
[27]. We agree that argumentation is an excellent domain to find a solution to
the problem at hand: it gives a formal framework for building explanations.
However, there are two important issues which are not answered by the work in
argumentation so far. [26] describes an argumentation language in which agents
can form justifications for their trust and communicate these to each other. Such
a justification consists of a trust evaluation to be justified and a phrase in their
justification language. However, their justification language consists of further
predicates about trust, as well as agents’ evaluations of interactions. This allows
agents to build justifications for their ungrounded terms on further ungrounded
terms. Somehow these terms need to be justified in grounded terms. As we saw in
the introduction: the concept of a car being a “lemon” may be equally subjective
as the trust based on that. Agents will need to justify why they evaluated the car
as a lemon. This process should be repeated until the terms of the conversation
are only terms in a shared, objective language describing the domain. The other
problem is that there is no clear description of what agents should do with these
justifications when they receive them. [26] says these can be incorporated into
the trust model, however there is no description of how this should happen. Such
a method of incorporation into the trust model, together with communication in
objective justifications about trust is an alignment. [27] offers a different view:
the justifications are used specifically to communicate to the user why a trust
evaluation is given. The justifications are therefore output of the trust model to
the user and the language can be grounded in the user’s own terms. Furthermore
they use an “opponent modeler”, which learns to distinguish different situations
in which recommendations are to be trusted or not. This opponent modeler could
very well be seen as a method for learning an alignment, however it only takes
the agent’s own past experiences into account. This means it will need a large set
of interactions with the same “opponent” agent to learn an accurate model, as
their experiments seem to corroborate. Due to such interactions being prior to
their modeling, or alignment, the agent runs the risk of such interactions being
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harmful, either due to malintent or simple miscommunication. Rather than only
using the interactions the two agents have had with each other, the agents could
learn an alignment, based on all interactions both agents have information of,
thus reducing the risk from many interactions with an unknown opponent. This
alignment could be formed in a separate communication process. Another facet
of the approach in [27], is that they seem to focus on detecting when an opponent
is dishonest. While an important facet, it is not the only situation in which an
alignment method would be useful, as we will describe in the next section.

2.2 Is taking uncertainty into account sufficient?
There has been quite a lot of work done on discovering dishonesty in commu-
nicating trust evaluations. The main point of such research is to find a way
of detecting when a communicated trust evaluation is inaccurate. In [28] these
methods are divided into endogenous and exogenous methods. The endogenous
methods discover unfair evaluations through statistical analysis of all ratings.
This presumes that the meaning of trust is the same to all agents. Statistical
methods can detect which agents diverge from the norm, but in an open MAS
this doesn’t automatically imply these agents are frauds. They may have differ-
ent trust models. Additionally, if enough different trust models are in use, the
significance of these methods drops considerably. These methods are designed
to work in environments where few agents “lie”, which is taken to mean their
opinion deviates from the average. Thus if many different models are used, this
assumption will not hold. Another assumption underlying these models is that
the communication acts about trust are either public, or passed through a central
unit where such statistical measures can be computed. These methods are there-
fore not very well adapted to use in an open MAS. The exogenous methods are
more diverse and are defined by their use of additional information to determine
unfair evaluations. TRAVOS [29] and BRS [30] for instance predict the relia-
bility of a trade partner by calculating the expected value, given a probability
distribution which is tailored to fit past experiences with that partner. TRAVOS
in specific takes the context of the past experiences used in this calculation into
account, thus discerning between similar and dissimilar situations to assess the
reliability more accurately. POYRAZ [31] was developed as a combination of en-
dogenous and exogenous methods and expands on TRAVOS’ method, by taking
not only the own experiences, but combining this with publicly available infor-
mation, such as reputation. [31] shows experiments in environments with liars,
in which POYRAZ and TRAVOS show a significant improvement over similar
models which do not take contextual information into account. This confirms
our earlier assertion that it is important to distinguish the context in which a
trust evaluation is communicated.

However, there is an important issue which is not considered in the models
discussed above: the question of why the information is unreliable. In the theory
and in the experiments all these models make the assumption that the reason a
communicated evaluation is unreliable is because it is either incompatible with
the own model, or the agent is lying. We argue that these are two very different
cases. In the first situation the agent’s evaluation is different because it is based
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on a different trust model. In the second it is because the agent has malicious
intentions. Models for dealing with unreliable information, however, deal with
both situations in the same manner: the information is discarded. This should
not be necessary in the first case, if only the agents can align their notions, such
communications can be translated and used as reliable information. Furthermore,
because the models don’t distinguish between the two situations this may have
repercussions for the truthful, but badly aligned agents, if it is assumed they
are lying: when this information is propagated it may influence their reputation.
Thus the statistical analysis is very necessary to discover when it might be useful
to align, but it doesn’t replace alignment. That would discard useful information,
as well as negatively impacting the information-giver’s reputation.

3 How to align trust?

One recurring theme, both in the theoretical approaches and in the related work
we have discussed is a clear division between the subjective trust evaluations
and the objective context information on which they are based. In [27] the argu-
mentation is based on how the opponent is modeled, using the experiences the
agent has had with that opponent. Similar experiences are used in TRAVOS and
POYRAZ to discover unreliability in the trust evaluations. This is unsurprising,
because these experiences play a central role in trust. A trust model evaluates
agents based on such experiences. It can take only its own experiences into ac-
count, or also experiences the agent has observed. Furthermore such observations
may be communicated. To be able to communicate about trust evaluations, it is
therefore essential to also allow communication of these experiences. [31] gives
an example ontology allowing for this, however each domain may have its own
unique ontology to describe the interactions. In general a MAS will provide such
an ontology to agents participating. An alternative is that agents have their
own personal domain ontologies. These can be aligned using general ontology
alignment methods [1]. Due to these being grounded ontologies about the envi-
ronment we do not run into the problem of aligning subjective opinions. Once
a shared domain ontology has been established the agents can exchange trust
evaluations and information about the interactions such evaluations are based
on. The receiving agent can use this information to form the alignment. We will
describe the requirements for these parts in more detail, but first give a brief
overview of the mathematical framework, giving more rigour to this idea.

3.1 Theoretical Foundations

Channel Theory [32] has been proposed as a general framework for semantic
alignment [33]. This theory is a qualitative theory modeling the flow of informa-
tion in distributed systems. [34] shows how dynamic situated ontology alignment
can be considered in this framework. While this is a very different problem from
the one we are considering, the article shows how a channel theoretic framework
can aid, not only from a theoretic point of view, but also in considering how an
alignment is formed. We can describe a channel in which information about trust
can be transferred from one agent to another. This framework is described in
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detail in [35] and we give a short summary here. The intuition is that both agents
can relate each others’ subjective trust evaluations to the objective descriptions
of interactions. By doing so they are able to find the underlying meaning of the
trust evaluations.

Interaction-based alignment As we have argued, agents’ interactions in the
environment form the basic building blocks for trust. Such interactions are ob-
served by different agents and each agent has an internal representation of this
interaction. We make no further assumptions about such representations. As
argued in [31], each agent may focus on different aspects of the interaction. Ad-
ditionally agents may not receive the same information about an interaction.
We further suppose that each agent may have its own way of representing such
information.

These observations then lead to trust evaluations of the various agents in-
volved. Any trust model can therefore be described as a binary relation between
an agent’s observations and its trust evaluations. These trust evaluations can be
represented in some language LTrust, which we assume can be represented by all
agents in the system. The meaning of phrases in LTrust to the different agents
is what the alignment process should uncover.

We consider trust alignment as a case-by-case problem. There is no need to
align with agents there is no communication with. Furthermore, we could use
a statistical analysis such as the ones used in POYRAZ or TRAVOS to filter
the cases in which alignment is useful. Only in those cases should agents align.
To do this, the agents need to discuss the interactions they both have observed
and we assume there is a shared language to discuss these interactions. We call
this language LDomain and emphasize that it is a shared language: both the
syntax and the semantics are known by all agents in the system, as opposed
to the semantics of LTrust, which is interpreted differently by the agents. Each
agent can relate its own internal representation of interactions to phrases in
LDomain. Because this is a language about the objective, grounded, properties
of the interaction, not all observations of an interaction can be communicated,
however it allows us to define exactly what it means for two agents to share an
interaction. A set of interactions I is shared by agents A and B if there is some
ϕ ∈ LDomain such that ϕ is in both A and B’s sets of observations of the set I,
or, in other words, ϕ is the information shared between the agents about I. The
information in ϕ could range from a detailed description of the interaction to
only the very basic fact that the interaction took place. This depends on what
both agents know about the interaction and what they are willing to share as
well as what can be represented in LDomain.

For aligning, the agents should only use the trust evaluations based on in-
teractions both agents observed. For this shared core of interactions it is known
that while each agent may have different observations, these come from the same
interactions. By communicating only about the trust evaluations these interac-
tions support, the agents guarantee that they are sharing the “building blocks”
of those trust evaluations and the channel [32] of information flow is established.
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Forming the alignment Note that such trust interactions are not necessarily
the same trust evaluations that either agent actually uses: when functioning
normally, most trust models use all information, and thus interactions, available
to them. This results in “believed” trust evaluations. For alignment purposes,
however, there is no reason to limit the agents to just these “believed” trust
evaluations. To expedite the alignment process it is useful to consider all trust
evaluations that could be supported by the shared interactions, rather than only
those which, in fact, are.

The basis of a trust alignment is a set of messages sent from one agent to
another in the form 〈β, ψ〉, with: β a trust evaluation of a specific target in LTrust

and ψ pinpointing the specific shared interactions this evaluation is based on in
LDomain. We now see the framework for the alignment process arise, because if
one agent B sends such a message, the receiving agent A can compute its own
trust evaluation α, based on observations of the same interactions supporting ψ.
A Specific Rule for Alignment is thus made and is the tuple 〈α, β, ψ〉.

These SRAs must now be generalized to a predictive model, such that, for
example, agent A can know what trust evaluation α′ it should associate with
a certain β′ ∈ LTrust, given a description ψ′ of some interactions, which it
has not observed. It must be able to associate a trust evaluation with only the
communicated information β′ and ψ′.

3.2 Finding predictive rules

Channel theory gives us a theoretically sound manner to define the building
blocks of an alignment, but the actual process of finding a useful set of rules,
which will allow future communications to be translated is not captured by chan-
nel theory. In fact, we propose there are various methods of alignment possible
and choosing which one to use is dependent on both the domain and the agents
aligning. We will discuss some of the options here.

An inductive approach We start with an approach using inductive learning to
find a generalization. There are various different inductive algorithms, but they
all use θ-subsumption at some point or another [36]. If we consider our SRAs
in a slightly different format: α ← β, ψ and restrict the predicates used to first
order logic, it is easy to see how these rules constitute a logic program. By using
ILP [36] we can find generalizations of these, as described in [37]. The induced
rules form a different logic program, which translates the other agent’s trust
evaluations, given a context ψ. A similar approach to modeling other agents is
taken in [27], where a fuzzy rule induction algorithm is used in their “opponent
modeler”. While the focus is different, because the resulting rules are used for
argumentation, the basic principle is the same. However, there is another differ-
ence between the approaches: the former uses induced rules to directly translate
trust evaluations whereas the latter uses such rules as an approximation of the
opponent’s trust model. It would require a further step to translate trust evalua-
tions from the induced model into similar ones for the own model. This approach
of modeling and then translating was taken in [38].
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An ILP-based approach has one major downside, which is that ILP algo-
rithms are very dependent on the language bias. If we do not have enough
information to structure the search space quite rigorously the algorithm will ei-
ther not find the correct generalization or take prohibitively long to search for
it. By giving enough background information the search space can be made far
more accessible, however this task needs to be done manually. Depending on the
domain, the associated ontology and the agents aligning this may or may not
be viable. A method of automatically generating the language bias would be
through analysis of the communicated messages only and not taking the entire
ontology into account. This requires the agents to only communicate the rele-
vant properties of the interactions in LDomain and a method for dynamically
constructing the language bias for the ILP algorithm. Insofar as we know, no
work has been done towards such an approach.

A context-discovery approach Instead of considering the SRAs as a logic
program, we could see them as ψ being an example of the context in which α and
β are aligned. Therefore finding generally predictive alignment rules equates to
the problem of finding a good classification of the contexts. Some work has been
done in automatic context recognition for trust [39, 40] and as mentioned in Sec-
tion 2.2, there are various models to detect unreliable information based on the
context. An intuitive continuation of such approaches would be to apply context
recognition not only to trust evaluations but to the alignment of communication
about the same. One issue with clustering- or classification-based approaches is
to find an appropriate distance measure. In approaches so far, propositional or
attribute-value logics have been used to describe the contexts. If the language
used is more complicated, the distance measure becomes harder to define, or
calculate. An example of a distance measure which could work for first order
logics is [41], however in general this is an open issue.

An argumentation-based approach Another way of considering the SRA is
as an argument. ψ is a justification for the trust evaluations α and β in both
agents respectively. While this justification is given in a domain level language
it is easy to see how this could be extended. The argumentation language pro-
posed in [26] allows agents to communicate their justifications for trusting an
agent, however it misses the link to such a grounded language. By extending
this language the agents could each present their justifications for their trust
evaluations. Such argumentations could either be used to negotiate about trust,
or as cases in a Case-Based-Reasoning [42] algorithm. This could be used as a
predictive method, by retrieving a comparable justification in the past and the
corresponding trust evaluations.

4 Discussion

We have argued that trust alignment is a real problem if multiple trust models
are to be effectively used in an open MAS. So far this issue has superficially been
addressed by various techniques to deal with argumentation of trust or discov-
ering unreliable communications about trust. While giving an indication of the
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area in which a solution must be found, they do not solve the issue themselves.
We feel the general framework of alignment presented in Section 3.1 gives a
good basis to work on the problem and present possible approaches to solve the
alignment problem. Our own work so far has focused on inductively generating
logical rulesets as an alignment, however as mentioned, this approach is very
dependent on the available background information. Whether this approach is
suitable or not therefore depends to a large extent on the type of trust models
used and the available LDomain. In general we expect that the best approach will
be largely context dependent. Some factors which may play a role in deciding
which approach to use are:

– Number of agents. If there are many agents and a large number of interac-
tions the learning-based approaches may be more suitable, while for domains
with a small number of agents, argumentation may be better.

– Expressivity of LDomain. Because ILP-based solutions require a rich lan-
guage, if this is not available, context-discovery may be a more suitable
approach. Similarly argumentation requires an argumentation language.

– Complexity of trust models. If trust models used are very complex, machine-
learning approaches may not be able to handle the task. Argumentation-
based approaches may give better results.

We also do not claim to give a complete overview of methods. There may
very well be other approaches we have not thought of, or combinations of the
ones we have mentioned. We feel there is a lot of work to be done in this domain
and we have only touched the tip of the iceberg.

Methods for discovering dishonesty should play an important role throughout
the process. Not only do we feel the methods proposed could be used to find
when agents could benefit from aligning, but there is a possibility for dishonesty
during the alignment process. One advantage of aligning is that, because the
alignment process relies on objective information, being dishonest is harder.
Furthermore the results are less predictable, because the agents’ trust evaluations
are translated into each others’, rather than being incorporated as “truthful”
information. Lying during the alignment process is therefore harder, however we
do not rule out the possibility and statistical methods to discover liars remain
important.
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Abstract. The splitting of weights into smaller sizes by agents in a
weighted voting game and the distribution of the new weights among
several false identities with the intent of payoff or power increase in a
new game consisting of the original agents as well as the false identities is
called false name manipulation. In this paper, we study false name ma-
nipulations in weighted voting games focusing on the power indices used
in evaluating agents’ payoff in such games. We evaluate the susceptibility
to false name manipulations in weighted voting games of the following
power indices, namely, Shapley-Shubik, Banzhaf and Deegan-Packel in-
dices when an agent splits into several false identities. Our experimental
results suggest that the three power indices are susceptible to false name
manipulations when an agent splits into several false identities. However,
the Deegan-Packel power index is more susceptible than Shapley-Shubik
and Banzhaf indices.
General Terms: Algorithms, Economics, Theory

Key words: Agents, Manipulations, Power indicies, Trust

1 Introduction

Cooperation among self-interested autonomous agents in multiagent environ-
ments is fundamental for agents to successfully achieve goals for which they lack
enough resources and skills. The level of skills and amount of resources of agents
varies, hence the need for agents’ cooperation to complete tasks that are other-
wise difficult for individual agents to achieve or for which better results (than
working independently) can be attained. One way of modelling such cooperation
is via weighted voting games.

Weighted voting games (WVGs) are mathematical abstractions of voting
systems. In a voting system, voters express their opinions through their votes
by electing candidates to represent them or influence the passage of bills. Each
member voters, V , has an associated weight w : V → Q+. A voter’s weight is
the number of votes controlled by the voter, and this is the maximum number of
votes she is permitted to cast. The homogeneous voting system is a special case
in which all voters have unit weight [7]. In our context, a subset of agents, called
the coalition, wins in a WVG, if the sum of the weights of the individual agents
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in the coalition meets or exceeds a certain threshold called the quota. In the
case of the more traditional homogeneous voting system, the winning coalition
(WC) is determined by the majority of the agents. On the other hand, in the
usual WVGs with all agents having different weights, a coalition with sum of the
individual agents’ weights meeting or exceeding the quota determines the WC.

It is natural to naively think that the numerical weight of an agent directly
determines the corresponding strength of the agent in a WVG. The measure of
the strength of an agent is its power. This is the ability of an agent to influence
the decision-making process. Consider, for example, a WVG of three voters,
a1, a2, and a3 with respective weights 6, 3, and 1. Suppose the quota for the
game is 10, then it is clear that a coalition consisting of all the three voters
is needed to win the game. Thus, each of the voters a1, a2, and a3 are of equal
importance in achieving the WC. Hence, they each have equal power irrespective
of their weight distribution in that every voter is necessary for a win.

A strategic agent may alter a game in anticipation of power increase by
splitting its weight among several false agents that are not in the original game.
Bachrach and Elkind [3] refer to this action as false-name manipulation. The
new game consists of all the previous agents and the several false identities into
which the manipulating agent splits. The power of the agent is thus the sum
of the powers of all its false identities. This agent anticipates that the value of
its accumulative power to be at least the value in the original game. Bachrach
and Elkind [3] and Aziz and Paterson [1] show that this anticipation of power
increase due to splitting into exactly two false identities is not achieved at all
times. There are cases when the cumulative power of the false identities remains
the same or even decreases compared with the original power of the agent.

Common measures of agents’ power are the Shapley-Shubik, Banzhaf, and
Deegan-Packel power indices [8]. Bachrach and Elkind [3] and Aziz and Paterson
[1] evaluate the effects of false name manipulation when an agent splits into ex-
actly two false identities using Shapley-Shubik and Banzhaf indices respectively.

To date, there has been practically no work on the effect of false name ma-
nipulations when an agent splits into more than two identities and thus, remains
unexplored [1]. In this paper, we evaluate the susceptibility to false name ma-
nipulations in WVGs of the following power indices, namely, Shapley-Shubik,
Banzhaf, and Deegan-Packel indices for the case when an agent splits into sev-
eral false identities. The more resistant to manipulation a power index is the
better. Hence, agents’ motivation towards manipulation is thus reduced. This
provides some assurance of identity, which is crucial for establishing and main-
taining trustworthy interactions. The remainder of the paper is organized as
follows. Section 2 discusses related work. Section 3 provides the definitions and
notations used in the paper. In Sect. 4, we provide examples to illustrate false
name manipulation when an agent splits into exactly two false identities using
the Deegan-Packel index. In Sect. 5, we provide experimental evaluation of sus-
ceptibility of the three power indices to false name manipulations. We conclude
in Sect. 6 and provide directions for future work.
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2 Related Work

WVGs and power indices are widely studied [1],[3],[4],[8]. WVGs have many
applications, including economics, political science, neuroscience, threshold logic,
reliability theory, distributed systems [2], and multiagent systems [3]. Aziz et
al. provide a brief discussion of some applications of WVGs. Prominent instances
of weighted voting problems are in the United Nations Security Council, the
Electoral College of the United States and the International Monetary Fund [2].

The study of WVGs has also necessitated the need to fairly determine the
strength or power of players in a game. This is because the power of a player
in a game provides information about the relative importance or criticality of
that player in the game compared to other players. To evaluate the power of
the players, power indices such as Shapley-Shubik, Banzhaf, and Deegan-Packel
indices are commonly employed [8]. These power indices satisfy the axioms that
characterize a power index [3], have gained wide usage in political arena, and
are the main power indices found in the literature [6]. Computing the power
indices of players using any of Shapley-Shubik, Banzhaf index, or Deegan-Packel
index is NP-hard [8], and the problem is also #P-complete for Shapley-Shubik
and Banzhaf. However, these values can be computed in pseudo-polynomial time
by dynamic programming [5], [8]. There are also approximation algorithms for
computing the power indices using Shapley-Shubik and Banzhaf indices [4].

These power indices have been defined on the framework of subsets of WCs
in the game they seek to evaluate. A wide variation in the results they provide
can be observed. This is due partly to the different definitions and methods of
computation of the associated subsets of the WCs. Then, comes the question of
which of the power indices is the most resistant to manipulation in a WVG. The
choice of a power index depends on a number of factors, namely, the a priori
properties of the index, the axioms characterizing the power indices, and the
context of decision making process under consideration [6].

False name manipulation has been studied in the context of non-cooperative
games [3] and in open anonymous environments, such as the internet [9]. False
name manipulation is hard to discover and can be effective in such environments.
The menace can take different forms, such as agents providing multiple identities,
two or more agents merging identities to form a single agent, non disclosure of
full status (in the form of hiding skills) by agents or even a combination of these
forms [9]. The maiden study of this behavior in the context of WVG is the
work of Bachrach and Elkind [3]. This action involves an agent splitting into a
number of false agents with the intent that the cumulative power index value of
the false agents exceeds the original value. They use the Shapley-Shubik index
to evaluate agent power and consider the case when agents splits into exactly
two false agents. The extent to which agents increase or decrease their Shapley
power are also bounded. Similar results using the Banzhaf power index were
obtained by Aziz and Paterson [1].
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3 Definitions and Notations

We give the following definitions and notations used throughout the paper.
Weighted Voting Game: Let I = {1, · · · , n} be a set of agents. Let w =

{w1, · · · , wn} be the corresponding positive integer weights of the agents in order.
Let S be a non empty set of agents. S ⊆ I is a coalition. A WVG G with quota q

involving agents I is defined as G = [w1, · · · , wn; q]. Denote by w(S), the weight
of a coalition S derived from the summation of the individual weights of agents in
S i.e. w(S) =

∑
i∈S wi. A coalition, S, wins in the game G if w(S) ≥ q otherwise

it loses. So that simultaneously there can be a single WC, q is constrained as
follows 1

2
w(I) < q ≤ w(I).

Simple Voting Game: Each of the 2|I| coalitions S ⊆ I has an associated
function v : S → {0, 1}. The value 1 implies a win for the coalition and 0 a loss.
In the game G, v(S) = 1 if w(S) ≥ q and 0 otherwise.

Dummy and Critical Agents: An agent i ∈ S is dummy if its weight in
S is not needed for S to be a WC, i.e. w(S −{i}) ≥ q. Otherwise it is critical to
coalition S, i.e. w(S) ≥ q and w(S − {i}) < q.

Unanimity Weighted Voting Game: A WVG in which there is a single
WC and every agent is critical to the coalition is a unanimity weighted voting
game.

Shapley-Shubik Power Index: The Shapley-Shubik power index is one of
the oldest power indices and has been used widely to analyze political power.
The index quantifies the marginal contribution of an agent to the grand coali-
tion. Each agent in a permutation is given credit for the win if the agents pre-
ceding it do not form a WC but by adding the agent in question, a WC is
formed. The power index is dependent on the number of permutations for which
an agent is critical. For the n! permutations of agents used in determining the
Shapley-Shubik index, there exists exactly one critical agent in each of the per-
mutations. Adopting Bachrach and Elkind’s notation [3], we denote by Π the
set of all permutations of n agents in a WVG G. Let π ∈ Π define a one-to-one
mapping where π(i) is the position of the ith agent in the permutation order.
Denote by Sπ(i), the predecessors of agent i in π, i.e., Sπ(i) = {j : π(j) < π(i)}.
The Shapley-Shubik value of the ith agent in G is given by

ϕi(G) =
1

n!

∑

π∈Π

[v(Sπ(i) ∪ {i}) − v(Sπ(i))] (1)

Banzhaf Power Index: Another index that has also gained wide usage in
the political arena is the Banzhaf power index. Unlike the Shapley-Shubik index,
its computation depends on the number of WCs in which an agent is critical.
There can be more than one critical agent in a particular WC. The Banzhaf
index, βi(G), of agent i in the same game, G, as above is given by

βi(G) =
ηi(G)∑
i∈I ηi(G)

(2)

where ηi(G) is the number of coalitions in which i is critical in G.
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Deegan-Packel Power Index: The Deegan-Packel power index is also
found in the literature for computing power indices. The computation of this
power index for an agent i takes into account both the number of all the mini-
mal winning coalitions (MWCs) in the game as well as the sizes of the MWCs
having i as a member [8]. Thus, it is more impressive to be one in three (who
elicited the win) rather than one in ten. A WC C ⊆ I is a MWC if every proper
subset of C is a losing coalition, i.e. w(C) ≥ q and ∀T ⊂ C,w(T ) < q. The
Deegan-Packel power index, γi(G), of an agent i in G is given by

γi(G) =
1

|MWC|

∑

S∈MWCi

1

|S|
(3)

where MWCi are the sets of all MWCs in G that include i.
Susceptibility of Power Index to Manipulation: Let Φ be a power

index. Denote by Φi(G), the power of an agent i in a WVG G. Suppose i alters
G by splitting into k false identities having weights wi1, · · · , wik. Let G′ be the
resulting game such that

∑k

j=1
wij = wi and the weights of all other agents in

G′ remain constant. We say that Φ is susceptible to manipulation if there exists∑k

j=1
Φij(G

′) > Φi(G), and the split is advantageous. If
∑k

j=1
Φij(G

′) < Φi(G),

then the split is disadvantageous while it is neutral when
∑k

j=1
Φij(G

′) = Φi(G).

4 False Name Manipulations with Deegan-Packel Index

In this section, we provide examples to illustrate false name manipulation in
WVGs using the Deegan-Packel power index to compute power. We consider
the case where an agent splits into exactly two false identities in the new game.
Splitting into more than two false identities is considered in the next section.

Example 1. Splitting Advantageous

Let G = [5, 4, 3; 7] be a WVG of three agents 1, 2, and 3 having respective weights
5, 4, and 3 with quota q = 7. The game has three MWCs {{1, 2}, {1, 3}, {2, 3}}.
Consider agent 1. The Deegan-Packel index of this agent computed using (3)
above is γ1(G) = 1

3
. Suppose the agent splits into two new false agents 1a and

1b with respective weights 3 and 2. We have a new game G′ = [3, 2, 4, 3; 7].
The MWCs for this game consist of {{1a, 2}, {1a, 1b, 3}, {2, 3}}. The respective
Deegan-Packel indices for agents 1a and 1b are γ1a

(G′) = 5

18
and γ1b

(G′) = 1

9
.

Clearly, the sum of the values of the two indices, namely γ1a
(G′) + γ1b

(G′) =
7

18
> γ1(G). Thus, the agent benefits from the split action by an increase in

payoff.

Example 2. Splitting Disadvantageous

Let G = [20, 10, 8, 8, 3, 2, 1, 1; 28] be a WVG. The Deegan-Packel index of agent
1 is γ1(G) = 0.2500. Suppose this agent splits into 1a and 1b with weights 14
and 6 respectively in a new game G′ = [14, 6, 10, 8, 8, 3, 2, 1, 1; 28]. The Deegan-
Packel indices of agents 1a and 1b are 0.1339 and 0.1113 respectively. Hence,
γ1a

(G′) + γ1b
(G′) = 0.2452 < γ1(G).
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Example 3. Splitting Neutral

Let G = [5, 4, 3; 7] be the same WVG as example 1. Suppose the agent splits
into 1a and 1b with respective weights 4 and 1 in a new game G′ = [4, 1, 4, 3; 7].
The Deegan-Packel indices of agents 1a and 1b are 1

3
and 0 respectively. Hence,

γ1a
(G′) + γ1b

(G′) = γ1(G), and the agent neither benefited nor incured a de-
crease in payoff.

5 Susceptibility of Power Indices to Manipulations

In this section, we demonstrate the susceptibility to false name manipulations
in WVGs of the following power indices, namely, Shapley-Shubik, Banzhaf and
Deegan-Packel power indices. We consider the more general case of agents split-
ting into more than two identities. For the sake of simplicity in our discussion,
we provide the following assumptions that by no means invalidate the basic
requirements of WVGs:

1. Only one of the agents is engaging in the manipulation at a time. We note
that other agents also have similar motivation to split their weights in antic-
ipation of power increase. In our future work, we intend to consider scenarios
where multiple agents in WVGs simultaneously engage in false name manip-
ulation.

2. All splits of agents’ weights are into integer values. Otherwise we will have
an exponential number of possible new weights to evaluate.

3. The weights of the false identities that an agent splits into are strictly greater
than zero. By the null player axiom [6], assigning a weight of zero to an agent
does not make the agent critical in all WCs.

5.1 Unanimity Weighted Voting Games

We recall that a WVG in which there is a single WC and such that every agent
is critical to the coalition is a unanimity WVG game. Since all the agents in the
WC of unanimity WVGs are critical, the total weights of all agents, w(I) and
the quota, q in such games satisfy the inequality, w(I) ≥ q.

Proposition 1. In a unanimity WVG with q = w(I), if Banzhaf indices are
used as payoffs of agents in a WVG, then it is beneficial for an agent to split up
into several agents. The same holds for Shapley-Shubik power index [1].

Proposition 2. In a unanimity WVG with q = w(I), if the Deegan-Packel
index is used to compute power of agents, then it is advantageous for an agent
to split up into several false agents.

Proof. Let G be a unanimity WVG of n agents with quota q = w(I). It is easy
to see that the Deegan-Packel power index of every agent i in G, γi(G) = 1

n
.

Suppose agent 1 splits into m + 1 false agents, then we have a new unanimity
game, G′ of n + m agents. The Deegan-Packel power index of every agent i

in G′,γi(G
′) = 1

n+m
. Hence, the new Deegan-Packel power index of agent 1 is

γ1(G
′) = m+1

n+m
> 1

n
for n > 1. ⊓⊔
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The following theorem is immediate from propositions 1 and 2.

Theorem 1. Let G be a unanimity WVG of n players with quota q = w(I).
Suppose an agent i splits into k ≥ 3 false agents. The Shapley-Shubik, Banzhaf,
and Deegan-Packel power index of agent i increases as its split size, k, increases.

Corollary 1. Let G be a unanimity WVG with w(I) > q. Let an agent i

split into several false agents in a new game G′. Suppose the new game G′

is also a unanimity WVG, then the splitting is advantageous for i if any of
Shapley-Shubik, Banzhaf, and Deegan-Packel power index is use to compute the
agent’s power.

5.2 General Weighted Voting Games

False name manipulation in the general case of the WVGs is more interesting as
it provides more complex and realistic scenarios that are not well-understood. Of
importance is that the number of WCs and MWCs changes in contrast to being
static as observed with unanimity WVGs with q = w(I). Thus, as the structure
of the WVGs changes, so does the composition of the WCs and MWCs.

As mentioned in the introduction, the more detailed analysis on the effect of
false name manipulations when an agent splits into more than two false agents
remain unexplored [1]. The only closely related research are the NP-hardness
results of finding a beneficial split in WVGs when a manipulating agent splits
into at least two false agents. The hardness results are for the Shapley-Shubik
[3] and Banzhaf [1] power indices. To the best of our knowledge, ours is the first
paper to confirm the existence of beneficial splits when agents split into more
than two false identities for the three power indices we consider.

We perform experiments to simulate the effect of manipulations by agents
using the three power indices. The weights of our agents are chosen so that no
weight is larger than ten. These weights are reflective of realistic voting proce-
dures as the weights of agents in real voting are not too large [3] and as such
are representative of WVGs. In the experiments, we randomly generate WVGs
and assume only the first agent in the game is engaging in the manipulation,
then determine the three power index values of this agent in the game. After
this, we consider splits into at least two false identities by this agent while the
weights of all other agents remain the same in the new games. Suppose the ini-
tial weight of the manipulating agent in the original game is n, we allow the
agent, to split its weight among the false agents in the new games as follows,
{{n−1, 1}, {n−2, 1, 1}, · · · , {1, 1, · · · , 1}}. The values of the power indices of the
several false agents into which the manipulating agent splits are then added and
compared with the power index of the agent in the original game. We generate
20,000 original WVGs for the experiments and allowed the manipulating agent
to split its weight in each of the games. The numbers of the new games gener-
ated by the action of the manipulating agent depends on the initial weight of
the agent in the original games.

Our experiments suggest the existence of beneficial splits when agents engage
in such manipulations for the three power indices. However, the extent to which
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agents gain varies with the indices. The effect of this action is well noticed
with the Deegan-Packel index as we found cases where agents improve their
power index by more than four times the original value. On the other hand, the
maximum gain attained while using any of Shapley-Shubik and Banzhaf index
is less than a factor of two. The result suggests that Deegan-Packel power index
is more susceptible to false name manipulations than the Shapley-Shubik and
the Banzhaf indices. Hence, this may provides some motivation for agents to
engage in manipulation in WVGs when the game is being evaluated with the
Deegan-Packel index. We illustrate three games from the experiments in which
an agent attains high factor splitting into more than two false agents for the
three power indices.

Example 4. Consider the WVG G = [6, 2, 2, 3, 10; 12]. The gains of the manipu-
lating agent (with weight 6) is depicted in Table 1 for the Shapley-Shubik power
index.

Table 1. The splitting agent weight, Shapley-Shubik indices, and the factor of incre-
ment in the game G = [6, 2, 2, 3, 10; 12].

Splitting Agent Weights Shapley-Shubik Index Factor Increment

{6} 0.1000 -
{5, 1} 0.1000 -
{4, 1, 1} 0.1238 1.2
{3, 1, 1, 1} 0.1429 1.4
{2, 1, 1, 1, 1} 0.1548 1.5
{1, 1, 1, 1, 1, 1} 0.1667 1.7

Example 5. Consider the WVG G = [7, 8, 4, 8, 4; 16]. The gains of the manipu-
lating agent (with weight 7) is depicted in Table 2 for the Banzhaf power index.

Table 2. The splitting agent weight, Banzhaf indices, and the factor of increment in
the game G = [7, 8, 4, 8, 4; 16].

Splitting Agent Weights Banzhaf Index Factor Increment

{7} 0.1429 -
{6, 1} 0.1429 -
{5, 1, 1} 0.1429 -
{4, 1, 1, 1} 0.1429 -
{3, 1, 1, 1, 1} 0.1864 1.3
{2, 1, 1, 1, 1, 1} 0.2381 1.7
{1, 1, 1, 1, 1, 1, 1} 0.2672 1.9
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Example 6. Consider the WVG G = [8, 4, 9, 1, 4; 14]. The gains of the manipu-
lating agent (with weight 8) is depicted in Table 3 for the Deegan-Packel power
index.

Table 3. The splitting agent weight, Deegan-Packel indices, the factor of increment,
and the number of MWCs in the game G = [8, 4, 9, 1, 4; 14].

Splitting Agent Weights Deegan-Packel Index Factor Increment # of MWC

{8} 0.1667 - 5
{7, 1} 0.2143 1.3 7
{6, 1, 1} 0.2407 1.4 9
{5, 1, 1, 1} 0.3036 1.8 14
{4, 1, 1, 1, 1} 0.4207 2.5 29
{3, 1, 1, 1, 1, 1} 0.5344 3.2 57
{2, 1, 1, 1, 1, 1, 1} 0.6201 3.7 115
{1, 1, 1, 1, 1, 1, 1, 1} 0.6754 4.1 229

For this example, the number of MWCs in the original game is 5. They are
{3, 4, 5}, {2, 3, 5}, {2, 3, 4}, {1, 3}, and {1, 2, 5}. Although the weight of agent 1,
8 is relatively high compared to some other agents in the game, it belongs to
only two of the MWCs having two and three members. Of particular interest
are agents 2 and 5 with weight 4 each, these agents belong to three MWCs with
each of the coalitions having three members, hence, by (3), their power from the
original game is greater than that of agent 1 with higher weight. Agent 1 thus
has motivation to split its weight. So, as the agent splits its weight, it becomes
active in more MWCs which improves its power index.

5.3 Simulation Results

We present the results of our extensive set of simulations. For our study, we
generate 20, 000 original WVGs and allow manipulation of all the games by the
manipulating agent. When starting a new game, all agents are randomly assigned
weights in the current game and the quota of the game is also generated based
on the weights assumed by the agents. We designate the first agent to be the
manipulating agent. We have five agents in each of the original games. The
maximum weight that can be asssumed by the manipulating agent is eight while
all other agents can be up to ten. The least possible weights for any agent is one.
Obviously, when the manipulating agent assumes a weight of one in a game,
then it is not possible for it to split in such game. We keep the weight of the
manipulating agent to be lower than other agents to limit the number of cases.
Since all weigths are randomly generated, we have a handfull of different types
of games that are representative of the WVGs. For example, we have many cases
where the original weight of the manipulating agent is lower, higher or even the
same as the weights of many or all agents in the original games.
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We first consider how susceptibility to manipulation among the power indices
compares when an agent is allowed to manipulate a game. This is achieved
by comparing the population of the factor of increment attained by agents in
different games for each indices with the split sizes (the number of false agents
the original agent splits). We show a summary of the ease of manipulation by
agents for the three indices in 20, 000 WVGs in Fig. 1. The x-axis indicates the
split size while the y-axis is the average factor of increment achieved by agents in
the 20, 000 WVGs for different split sizes. The high susceptibility of the Deegan-
Packel index to manipulation can be observed from the figure. While the average
factor of increment for manipulation rapidly grows with split size for this index,
the growth for the Shapley-Shubik and Banzhaf does not appear to correlate
with split sizes, and on average does not improve utility. From our experiments,
many of the games are advantageous with the Deegan-Packel index while many
are disadvantageous for both Shapley-Shubik and Banzhaf indices. This result
is indicative of the ease by which each of the power indices is manipulable.
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Fig. 1. Ease of Manipulation among the three Power Indices

The number of games that are advantageous, neutral, and disadvantageous
for the three indices are also analyzed. Figure 2 shows that a larger number of the
games are advantageous for Deegan-Packel index than for Shapley-Shubik and
Banzhaf indices. Consider when 1, 000 games are generated, in more than 800 of
the games are splitting advantageous for Deegan-Packel while we have less than
300 advantageous games for Shapley-Shubik and Banzhaf indices. Similarly, Fig.
3 shows the number of neutral games. We have more neutral games for Shapley-
Shubik and Banzhaf than Deegan-Packel. Virtually none of the games are neutral
for Deegan-Packel while about 90 of the games are neutral for Shapley-Shubik
and Banzhaf indices out of a collection of 1, 000 games. Finally, Fig. 4 shows that
there are fewer disadvantageous games for Deegan-Packel compare with Shapley-
Shubik and Banzhaf indices. Clearly, the Deegan-Packel index is more susceptible
to false name manipulations than Shapley-Shubik and Banzhaf indices.
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6 Conclusions

In this paper, we evaluate the susceptibility to false name manipulations of the
following power indices, namely, Shapley-Shubik, Banzhaf, and Deegan-Packel
indices when an agent splits into several false identities in weighted voting games.
We illustrate the susceptibility of the three indices through simulations of a
large number of weighted voting games with a manipulating agent in each of the
games. Our experimental results suggest that the three indices are susceptible
to false name manipulations when an agent splits into several false identities.
However, the Deegan-Packel index is more susceptible than Shapley-Shubik and
Banzhaf indices, with Shapley-Shubik being the least susceptible. Hence, using
Shapley-Shubik index to evaluate weighted voting games reduces agents’ motiva-
tion towards false name manipulations. This provides some assurance of identity,
which is crucial for establishing and maintaining trustworthy interactions.

Since our experimental results have suggested ideas on the extent to which
each of the three indices are susceptible to false name manipulations, an obvious
direction for future work is to provide theoretical bounds on the extent to which
each of the indices are susceptible to false name manipulations when an agent
splits into several false identities. It will also be interesting to come up with
desirable properties that power indices should satisfy in order to prevent false
name manipulations or prove that such properties are not achievable.
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A Propagation and Aggregation Algorithm
for Inferring Opinions in Structural Graphs
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Abstract. This paper is concerned with the issue of reputation and the
computation of group opinion. We argue that entities may receive both
objective and subjective opinions, and distinguishing between the two is
crucial for achieving more precise measures. Additionally, we argue that
the group opinion about an entity α is not only influenced by the opinions
that α receives (whether objective or subjective), but by the reputation
of other entities that α is related to. As such, we propose a method that
permits the propagation and aggregation of opinions in structural graphs,
allowing the inference of more precise reputation measures through the
description of both objective and subjective group opinion.

Keywords: Trust, reliability, reputation, opinion propagation & aggregation

1 Introduction

There is a common understanding that reputation represents group opinion. Ex-
isting work has mainly focused on the direct opinions an entity (whether a per-
son, a peer, an agent, or even an item) receives. This paper, however, introduces
the concept of inferred opinions, based on relations between entities. Consider
the example of having a poorly reputable football team that just started hiring
well known players. Naturally, one would say that such a move is reasonable
since it increases the team’s chances, or expectations, of winning games, and
hence, increase the team’s reputation. These indirect opinions are highlighted
when the entities are related. In other words, the reputation of different entities
may influence each other when these entities are related. For example, having
one entity being a part of another implies a propagation of opinions between
these two entities. Hence, to consider indirect influential opinions, one should
have a clear definition of the relations that link entities together, since opinions
may only propagate along such relations. For the time being, we focus on the
simple ‘part of’ relation. This results in the construction of a structural graph,
which we define in the following section.

In addition to the introduction of the notion of opinion propagation in struc-
tural graphs, we also introduce the distinction between objective and subjective
opinions. For example, the team being highly rated by some magazine should
not be as influential in comparison with the team’s actual performance, such as
losing major games. We categorise opinions accordingly:
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– Objective opinions. These opinions may not be falsified.1 For example, if
one ping pong player wins against another, then this may be interpreted as
the former player stating that the latter is weaker, and vice versa.

– Subjective opinions. These are divided into two further subclasses.
• Direct subjective opinions. For example, a scientific paper may win an

award, or a scientific paper may receive good reviews from experts in the
field. These may be viewed as direct subjective opinions.
• Influential opinions of related entities. We say opinions may propagate

from a parent node in the structural graph to its children nodes, and
vice versa. For example, the final opinion about a scientific paper may
be influenced by the final opinion about the conference where it has
been accepted. Similarly, the opinion about a conference may also be
influenced by the opinions about the papers it accepted.

The rest of this paper is divided as follows. Section 2 provides the basic
definitions that the proposed algorithm is based on. The main model is then
introduced by Section 3, which illustrates how group opinion may be calculated
and how reputation is defined accordingly. The entire algorithm is summarised by
Section 4. Some preliminary results are presented by Section 5, before Section 6
closes with a brief conclusion.

2 Basic Definitions

In what follows, we provide a clear definition of the structural graph that is
needed for the propagation of opinions (Section 2.1), what direct individual
opinions are (Section 2.2), and what group opinion is (Section 2.3).

2.1 The Structural Graph

We define a graph whose nodes represent entities that may form or receive opin-
ions as follows:

Definition 1.
SG = 〈N,G,O,E,A, T,P,F〉

where

– N is the set of nodes, or entities,
– G is the set of agents, peers, people, or even entities that may form opinions

about α ∈ N (we note that G and N may or may not intersect, depending
on the different fields of application),

– O is the set of direct opinions, whose elements are defined shortly,
– E= {e1, ..., en} is the evaluation space for O, where terms ei account for

terms like ‘bad’, ‘good’, ‘very.good’, etc.,
1 Objective information is not usually referred to as ‘opinions’. However, to compute

reputation, which is generally defined as group opinion, we propose to interpret all
sources of information that could influence reputation as opinions.
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– A is the set of attributes (e.g. {strength, quality, . . . }) that opinions address,
– T represents calendar time,
– P ⊆ N ×N specifies which nodes are part of the structure of which others,
– F : R×N×A×T → O is a relation that links a given agent, node, attribute,

and time to an opinion.

2.2 Individual Opinions

We define an opinion otα(β) ∈ O as follows:

Definition 2.
otα(β) = {e1 7→v1, ..., en 7→vn}

where,

– t ∈ T , α ∈ G, and β ∈ N ,
– {e1, ..., en} = E,
– vi ∈ [0, 1] represents the value assigned to each element ei ∈ E, with the

condition that
∑
vi

vi = 1.

In other words, otα(β) represents the opinion that an entity α may hold
about entity β at time t; and the opinion is specified as a discrete probability
distribution over the evaluation space E.2 We note that the opinion one holds
with respect to another may change with time, hence various instances of otα(β)
may exist for the same α and β but with distinct ts.

2.3 Group Opinion

This paper distinguishes between two different types of group opinion, based on
the categorisation of opinions presented by Section 1:

– Group opinion based on objective opinions: Dtα(ei)
– Group opinion based on subjective opinions: Ptα(ei)

2 We note that this paper only considers a discrete evaluation space E. In our pro-
posed algorithm, as the equations of this paper illustrate, the main operations that
are carried out over the probability distributions are the application of the addition
+, subtraction −, multiplication ×, and division / operators. These operators could
easily be applied to continuous distributions as well. However, Equation 2 requires
entropy measures. While some entropy measures (such as the minimum relative en-
tropy) are usually very hard to calculate, calculating the entropy of a distribution is
feasible for both discrete and continuous cases. Hence, we believe continuous prob-
ability distributions may be used, if necessary. Furthermore, discrete probability
distributions already provide more information than that provided by the ranges of
opinion values of existing methods.
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The first is an aggregation of objective opinions only, while the second is an
aggregation of both objective and subjective opinions resulting in a final sub-
jective measure. Hence, like individual opinions, group opinion is defined as a
probability distribution that represents the probability that entity α is ei at time
t (or has the reputation of being ei at time t).

But why do we distinguish between these two different group opinions? Con-
sider reputation in the field of football. Teams may play against each other. The
results of these games may be viewed as having direct opinions being formed by
one team about the other. For example, Barcelona winning Real Madrid 6−2 may
be interpreted as Barcelona forming an opinion about Real Madrid being very
weak and Real Madrid forming an opinion about Barcelona being very strong.
This is one example of direct opinions in the field of football. Now consider that
Real Madrid is either ranked high by some magazine or starts recruiting highly
reputable players (at least higher than what they already have). In such a case,
we might agree that this should increase the overall expectation of the team’s
performance, which could be viewed as increasing group opinion. Nevertheless,
we believe such opinions are subjective, and their reliability cannot be matched
to that of the objective group opinion (such as having Barcelona winning every
single game for the last couple of years). Hence, we find differentiating between
objective and subjective group opinion to be crucial.

Furthermore, we say subjective group opinion should lose its value with time,
and move towards the objective one. For example, if Real Madrid kept on re-
cruiting highly reputable players but failed to actually win their games, then the
final reputation measure should always move towards the objective group opin-
ion, i.e. the results of their games. Hence, we say, although subjective measures
are important to describe the current group opinion, a purely objective mea-
sure is also needed. With time, and with the lack of new information, subjective
group opinions should move towards objective ones. This is the notion of decay:
everything loses its value with time. Similarly, objective group opinion would
also decay towards the flat probability distribution (the distribution describing
the state of complete ignorance), although at a presumably much slower rate.

The following section illustrates how these different measures may be calcu-
lated, highlights the links between them, and elaborates on the notion of decay.

3 The Proposed Model

This section focuses on the computation of group opinions, both objective (D)
and subjective (P), in Sections 3.1 and 3.2, respectively. Reputation is then
defined by Section 3.3.

3.1 The Default Opinion D

We say the default opinion of an entity α is the group’s opinion about α that is
based on objective opinions only. The group’s opinion is calculated by considering
all the objective opinions expressed in the past, taking into account the certainty
of each of these opinions.
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Assessing an objective opinion. Assume that β at time t gives the following
opinion about α: otβ(α) = {e1/v1, . . . , en/vn}. We need to consider how much
value this opinion has, based on how reliable is β in giving opinions about α.

In this model, we will consider that the overall reliability of any opinion is
the reputation value of the entity expressing the opinion, which changes along
time. This reputation value R is defined later on by Section 3.3. However, in
this section, we use this reputation value (which we view as an indication of the
reliability of the opinion otβ(α)) to modify the opinion value. The basic idea is
that the more reliable an opinion is, the closer the final value is to the original
opinion, and the less reliable an opinion is, the closer the final value is to the
flat (uniform) distribution F (where F = 1

|E| ). Thus, we define the distribution
representing β’s final view about α at time t as follows:

Ot
β(α) = Rtβ × otβ(α) + (1−Rtβ)× F (1)

The certainty of an opinion. The group’s opinion is based on an aggregation
of individual opinions. However, the certainty of each of these individual opinions
is crucial. We say, the more uncertain an opinion is then the smaller its effect
on the final group opinion is. The maximum uncertainty is defined in terms of
the flat distribution F. Hence, we define this certainty measure as follows:

I(Ot
β(α)) = H(Ot

β(α))−H(F) (2)

where H(X) represents the entropy of a probability distribution X. In other
words, the certainty of an opinion is essentially the difference in entropy between
the opinion and the flat distribution.

Calculating D. Again, we note that an entity can give opinions on another
one at different moments in time. So let us define by Tβ(α) ⊆ T the set of time
points in which β has given opinions about α. The default group opinion Dtα
about α at time t is then calculated as follows:

Dtα =

∑
β∈G

∑
t′∈Tβ(α)

Ot′→t
β (α) · I(Ot′→t

β (α))

∑
β∈G

∑
t′∈Tβ(α)

I(Ot→t′
β (α))

(3)

where, Ot′→t
β represents the decayed value of Ot′

β , and is discussed shortly.
This equation essentially states that the default group opinion is an aggre-

gation of all Ot′→t
β (α) that represent the view of every entity β that has formed

an opinion of entity α at time t. However, different views are given different
weights, depending on the certainty I(Ot′→t

β (α)) of these views.

Initialising D. When an entity α is first introduced or created at time t, there
is no information what so ever about this entity yet. Hence, its initial probability
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distribution is the flat distribution F that accounts for the maximum ignorance
(i.e. the maximum entropy): Dtα(ei) = F(ei) = 1

|E| . Along time, and as objective
direct opinions are formed, this probability gets updated following Equation 3.

Decaying D (and O). Like any other type of information, the default group
opinion is expected to lose its value with time. For example, assume that a given
player has played a lot of games and gained a high default opinion; however, for
a very long time, this player has never played again. What can one say about
the player’s default opinion at the present time? Naturally, its glorious history
does not necessarily mean that the player still has those old skills. Hence, we
say that with time, D loses its value (very) slowly by decaying towards the flat
probability distribution F according to the following equation:

Dt
′→t
α = Λ(F,Dt

′

α) (4)

where Λ is the decay function satisfying the property that limt→∞ Dtα = F. In
other words, Λ is a function that makes Dtα converge to F with time. One possible
definition for Λ could be: Dt′→t = (Dt − F)ν∆t + F, where ν ∈ [0, 1] is the decay
rate, and ∆t = 1 + (t− t′)/κ, where κ determines the pace of decay.

Single opinions are pieces of information and as such they also decay along
time. Ot′→t

β , which represents the decayed value of opinion Ot′

β at time t, is then
similarly defined:

Ot′→t
β = Λ(F,Ot′

β ) (5)

3.2 The Inferred Opinion P

While the default opinion Dtα represents the objective direct opinions of group
members, the inferred opinion Ptα represents the final subjective opinion which
is influenced by: objective direct opinions and subjective (both direct and prop-
agated) opinions.

Calculating P. How P is calculated differs with the different types of opinions
triggering this calculation. The different cases are presented below.

1. Subjective opinions. If an entity is influenced by subjective opinions
(whether direct or not), then its Ptα value is calculated accordingly:

Ptα = ζ Pt
′→t
α + (1− ζ) X (6)

where ζ is generally based on the reliability of α and X describes the new
subjective opinion. This equation implies that when α is highly reputable,
the effect of X is minimal, and vice versa. The exact values of ζ and X are
dependent on the type of the subjective opinion, which we outline below:
(a) Direct subjective opinions. In this case, we say ζ=(Rtα)R

t
β and X =otβ(α).

In other words, if an entity β forms an opinion about an entity α, then
X takes the value of β’s new opinion otβ(α). ζ would mainly be based
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on the reliability of α, but is also influenced by the reliability of β since
different entities should have different strength in affecting α. We note
that R ∈ [0, 1], as illustrated by Section 3.3.
In some cases, however, β may be a foreign entity to the structural graph.
Examples of this case are when a paper wins a award, or a magazine
ranks football players. We assume that it is hard to know the reputation
of foreign sources and their effect on α. In such cases, the default value
is Rtβ = 1. Alternatively, the user may be free to assign a different
reliability measure to Rtβ ∈ [0, 1].

(b) Influential opinions of related entities. In this case, we say ζ= (Rtα)f(dα)

and X=Ptβ , where f(dα)=(Rβ+dα−1)/dα. In other words, if a neighbour-
ing node β (whether it was a parent or a child node) had its Ptβ value
modified, then this should affect α’s Ptα value. Again, the more reliable
α is, then the smaller the effect of β should be. Nevertheless, the effect
of β on α should also be influenced by the number of neighbouring nodes
that α has (defined as dα, or the degree of α). The larger this number,
the smaller the effect of one neighbouring node is, and vice versa. We
note that in this case, dα ∈ [1,∞]. And the function f(dα) = Rβ when
dα = 1, and limdα→∞ f(dα) = 1.

2. Objective opinions. Objective opinions should have a stronger effect than
subjective ones. In comparison with Equation 6, Ptα should now be calculated
by giving more weight to the new objective opinion, as illustrated below:

Ptα =
Rtα Pt′→tα +Rtβ otβ(α)

Rtα +Rtβ
(7)

Note that unlike Equation 6, even if α was fully reliable (Rtα = 1), the new
objective opinion of β is still accounted for by taking into consideration the
reliability of β with respect to that of α (and vice versa).

Initialising P. Similar to the default group opinion D, we say Ptα(ei) = F(ei),
where t is the time α is first introduced. Along time, this probability is updated
according to the section above, either as opinions about α are formed by others,
or as neighbouring entities have their Ps updated, influencing that of α.

Decaying P. The value of P is a subjective value, as it is influenced by subjective
opinions. For example, the reputation of a team changes as it changes its team
members, since opinions about new team members influence the opinion about
the team. However, such information is subjective, and what really matters at
the end is whether the team is actually capable of winning with this new group of
team members or not. For this reason, we believe that with time, the subjective
opinion P should decay at a reasonable rate towards a more stable and objective
opinion: the default opinion D. This is expressed by the following equation:

Pt
′→t
α = Λ(Dtα,Pt

′

α) (8)

where Λ is the decay function that has been introduced earlier by Equation 4.
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3.3 Reputation and Reliability

As illustrated earlier, an essential point in evaluating the opinion of a given entity
is how reliable (Rtβ) it is. The idea behind the notion of reliability is very simple:
an entity that is considered very good in a certain field is usually considered to
be very good as well in assessing how others are in that field. This is based
on the ex cathedra argument. An example of a current practice following the
application of this argument is the selection of members of committees, advisory
boards, etc.

But how is reputation calculated? Given an evaluation space E, it is easy to
see what could be the ‘best’ opinion about someone: the ‘ideal’ distribution, or
the ‘target’, which is defined as T = {en 7→1}. Given a ‘target’ distribution T,
the reputation of an entity β may then be defined as the distance between the
current default opinion Dtβ and the ideal distribution T, as follows:

Rtβ = 1− emd(Dtβ ,T) (9)

where emd is the earth movers distance that calculates the distance (whose range
is [1, 0]) between two probability distributions [1]. 34 As time passes and opinions
are formed, the reputation measure evolves along with the default opinion. We
note that at any moment in time, the measure Rtβ can be used to rank the
different entities.

4 The Algorithm

The proposed model of Section 3 illustrates how opinions may be inferred through
the propagation (Equation 6) and aggregation (Equations 3, 6, and 7) of indi-
vidual opinions in structural graphs. Algorithm 1 summarises this model.

We note that this algorithm runs locally for a given node α ∈ N . The algo-
rithm is invoked every time α receives a direct opinion otβ(α), or its neighbouring
node β updates its P value. We assume α saves all its computed O values (the
value of the direct opinions it has received, following Equation 1) as well as its
latest P and D values. The algorithm then proceeds by following the equations
of the previous section in a straight forward manner.

5 Results

As illustrated by Figure 1, real life applications fall into different categories,
based on whether they make use of objective opinions, subjective opinions, or
both; or whether they make use of structural graphs or not. For example, Chess
or Ping Pong are games with individual players, and the scores of the matches
may be interpreted as objective opinions. The Diplomacy game is an example
3 One important aspect to apply emd is to determine what the distance between the

terms in E is. That is the matrix D = {dij}i,j∈[1,n]. The distance is certainly domain
dependent, and can possibly be learned.

4 Naturally, other distance measurements may also be used.
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Algorithm 1 Updating node α’s reputation R and inferred opinions D and P
Require: N to represent the nodes of the structural graph
Require: G = {α, β, . . . } a group of agents that may form opinions about nodes
Require: E = {e1, . . . , en} an evaluation space
Require: t ∈ T to represent calendar time
Require: otβ(α) to represent the direct opinion that β ∈ G holds about α ∈ N
Require: Tβ(α) ⊆ T to represent the set of time points in which β has given opinions

about α
Require: Xt to represent the value of the probability distribution X at time t
Require: Xt

′→t to represent the decayed probability distribution Xt
′

at time t, fol-
lowing Equations 4, 5 and 8

Require: get opinion(otβ(α)) to represent α’s receipt of the direct opinion otβ(α)
Require: get neighbour update(Ptβ) to represent α’s receipt of the neighbouring node
β’s updated P value

Require: obj(otβ(α)) to represent that the direct opinion otβ(α) is an objective one
Require: Rtβ to represent β’s known reputation at time t
Require: I(O) to represent the certainty of the opinion O, following Equation 2
Require: dα to represent the degree of the node α
Require: f(dα,Rβ) = (Rβ + dα − 1)/dα which we simply refer to as f(dα) when β is

obvious
Require: emd : 2P(E) × 2P(E) → [0, 1] which calculates the earth-mover distance be-

tween two probability distributions
F(ei) = 1

n
, ∀ ei ∈ E

T = {en7→1}
when get opinion(otβ(α)) do

if obj(otβ(α)) then
Ot
β(α) = Rtβ × otβ(α) + (1−Rtβ)× F

Dtα =

X
β∈G

X
t′∈Tβ(α)

Ot′→t
β (α) · I(Ot′→t

β (α))X
β∈G

X
t′∈Tβ(α)

I(Ot→t′
β (α))

Rtα = 1− emd(Dtα,T)

Ptα =
RtαPt

′→t
α +Rtβo

t
β(α)

Rtα+Rt
β

else
if β ∈ N then

γ = Rtβ
else

γ = 1
end if
Rtα = 1− emd(Dt

′→t
α ,T)

Ptα = (Rtα)γ · Pt
′→t
α + (1− (Rtα)γ) · otβ(α)

end if
end when
when get neighbour update(Ptβ) do

Rtα = 1− emd(Dt
′→t
α ,T)

Ptα = (Rtα)f(dα) · Pt
′→t
α + (1− (Rtα)f(dα)) · Ptβ

end when
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Fig. 1. Categorised applications

of individual players whose reputation is
based on the subjective opinions of other team
members. In Football, however, one may view
a team as being composed of players and
sometimes one player may play in different
teams (based on the league), giving rise to
the notion of a structural graph. Additionally,
opinions about team players may sometime be
subjective, such as being ranked by some mag-
azine. Scientific publications may be viewed as
an example that uses structural graphs (con-
ference proceedings are composed of papers,
papers are composed of sections, etc.), and
opinions on scientific publications by other re-
searchers in the field are subjective.

We choose the Chess example for experimentation, because there exists an
official ranking and predicting algorithm for Chess (ELO [2]) that we can com-
pare to ours. Hence, for a given dataset that specifies the real outcome of games,
we run the ELO algorithm and our proposed one to compute the reputation
of players and predict the outcome of future games accordingly. We then com-
pare the predicted outcome of each of the algorithms to the real one. Initially,
we ran several experiments over real Chess data. However, we noticed that the
performance of both the ELO mechanism and ours was similar. For instance,
in one experiment, our algorithm performed 2.3% better than ELO. Looking at
the results, it seemed that players in the same tournament are more or less of
the same experience, and hence, reputation. For this reason, the final results of
games were a little bit random, and hence, the performance of both ELO and
this paper’s proposed algorithm was similar.

We then moved on to simulated data. We created two players, A and B,
that played against each other over a number of years. A was initially a ‘bad’
player and it lost around 80% of its games during the years 1992-1998. How-
ever, after 1998, A stopped playing for a while, and it resumed playing in 2004.
Its performance dramatically improved over the years 2004-2010. In general,
our proposed algorithm performed better than ELO by 3.5%. We note that the
results are still preliminary, as they simulate two players who play around 30
matches each. Figure 2 plots the distance between the real results and the pre-
dicted results of both ELO and our algorithm. The distance is measured using
the earth mover’s distance function, emd; hence, the maximum distance possible
is 1, and the minimum is 0. However, as illustrated by Figure 2, the main dif-
ference is highlighted in the year 2004, when the ELO algorithm performs very
poorly compared to ours, since our algorithm’s decay function allows a better
prediction when behaviour changes with time.

As such, we conclude that our proposed algorithm is essentially useful in
applications where the quality being assessed (behaviour of humans, performance
of agents, quality of papers, etc.) could actually change with time.
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6 Conclusion

This paper has proposed a model that allows agents to infer objective and sub-
jective group opinion through the propagation and aggregation of opinions in
structural graphs. It provides a clear distinction between objective and subjective
opinions and their effect on group opinion. Additionally, the paper introduces
the concept of opinion propagation between related entities.

In comparison with existing research, the research carried out by [3–5] studies
the dynamics of opinion formation by focusing on the effect of social relations
on how peoples’ opinions may influence each other in a social network. The
influence that one reviewer agent may have on another’s subjective opinion is
an interesting issue. Aggregation mechanisms, such as those presented by [6],
may help in defining the appropriate aggregation method based on whether
subjective opinions are dependent on each other or not. Repage [7], ReGreT [8],
and SUNNY [9] provide mechanisms for computing the confidence in a reviewer
based on the social relations. In this paper, we follow the ex cathedra argument
which states that an agent’s reputation could be used as an indication of its
reliability in assessing others in its field. This fits perfectly in our equations
that are concerned with objective opinions (Equations 1 and 7). However, again,
when aggregating subjective opinions, social network analysis may be useful in
contributing to the reliability of those opinions.

Concerning the propagation of opinions, we note that numerous research has
addressed similar issues, such as [10–13]. PageRank [12] and Hits [13] calculate
the relevance of web pages by analysing their position in the network and how
they links to each other. Similarly, SARA [10] and CiteRank [11] present algo-
rithms on how reputation may propagate based on who is citing whom. Their
reputation propagates along citation links. This paper, on the other hand, fo-
cuses on the propagation of reputation along the structural links by focusing on
the composition of entities and using the part of relation as an indication to the
flow of opinions from one entity to another. Research work on ontology-based
recommender systems, such as [14, 15], makes use of the clustering or classifi-
cation of information and uses machine learning and data mining techniques
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for ranking and recommending entities. One may draw similarities between the
taxonomies used by such systems and that of the structural graph of this doc-
ument; although the propagation mechanism of this paper is unique in both its
algorithm and semantics.
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Abstract. Multiagent systems often require coordination among the
agents to maximize system utility. Using the notion of favors, we propose
a technique, flexible reciprocal altruism, which determines when one agent
should grant a favor to another agent based on past interactions. The
desired rate of altruism is controllable, and as a result the loss associated
with granting unmatched favors is bounded and amortized over all past
interactions. In flexible reciprocal altruism the desired acceptable loss is
independent of the cost and value of the favors. Experiments show that
our technique performs well with different cost/value tradeoffs, numbers
of agents, and load.

1 Introduction

In a multi-agent system environment, the agents typically have limited resources
(e.g., sensors, communications) that restrict the problems they can solve. If the
agents coordinate, then the system can be made more effective. In particular,
system performance generally improves if the agents can coordinate both locally
and globally. Example applications include cooperative target observation [1],
foraging [2], and peer-to-peer systems [3]. One useful approach to agent coordi-
nation is to consider the agents as providing favors to the other agents.

Most of the existing work on favors has naturally followed from some version
of reciprocal altruism: one agent is willing to incur a cost now to provide a value
to another agent in return for (hopefully) receiving value in the future from the
other agent, who in turn will incur some cost. Existing work in reciprocal altruism
in multiagent systems has focused to date on rational agents, trust, social laws,
and reputation. We instead tackle the issue from the viewpoint of amortized risk:
the degree to which an agent is willing to go out on a limb for another agent is
restricted in such a way that if the second agent never reciprocates again, the
first agent’s loss, amortized over all previous interactions with the second agent,
is bounded.

Why would an agent behave like this? We argue that in many multiagent
systems tasks, a moderate number of agents are essentially working towards
the common good, and have a reasonable expectation of similar behaviors from
other agents. However, the agents do not yet know exactly the nature of the
other agents. The other agents could be dishonest, of course, but often instead
they may have a poor perception of their own abilities; or they may simply
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be swamped with work; or there may be noise in the system. In the latter sit-
uations, an optimistic view of one’s neighbors is called for. We believe there
is a broad array of possible real-world applications which yield this situation:
for example, cooperative “swarm-style” unmanned vehicular foraging and obser-
vation; or peer-to-peer networks; or distributing tasks over heterogeneous grid
computing systems.

Bounded amortized risk yields a very simple, almost simplistic, decision rule
which we call flexible reciprocal altruism. In a nutshell: the sum total degree to
which an agent A is willing to provide help to another agent B is simply a linear
function of the help A has received from B in the past.

As discussed later, this is not Tit-for-Tat. One of the consequences of flexible
reciprocal altruism is that as the agents cooperate back and forth, they begin to
be willing to provide larger and larger favors to one another, and furthermore,
we may control this rate of growth. In Tit-for-Tat the size of favors remains
fixed, as is the version in [4].

2 Related Work

The social science and economic communities have devoted considerable atten-
tion to cooperation, in particular, the nature of altruism and why it evolved
[5, 6]. Continuing the same line of reasoning, several researchers examined how
reciprocity and altruism effect the development of social agents [7–10].

More closely related to our work, Trivers examined how reciprocal altruism
evolved in nature [11]. Using Triver’s work as motivation, Axelrod developed
some of the original theory of cooperation in a game-theoretic setting [12]. He
developed an evolutionary model based on the probability that two agents would
interact again in the future, and showed how stable behavior arrises, when agents
exhibit deterministic reciprocity towards each other. Sen extended this work to
probabilistic reciprocity, using publicly available discount factors to encourage
sharing of resources [4, 13–15]. That work, in various guises, generally bases the
probability of agent A assisting agent B directly on the historical difference in
cost and benefit to A of interacting with B. This is related to our approach,
which will instead increase the degree to which A helps B based on the ratio
of historical cost and benefit; thus as A and B interact more, A is willing to
help B to a larger and larger extent. We elaborate on a portion of this work
[4] in Section 3. Hazard further broadened Sen’s work by using private discount
factors [16].

Altruism is also studied in cooperative game theory [17], which deals with
coalition formation. Coalitions are groups of agents where the benefit received
by an individual agent is higher when acting with the group than when acting
alone. Shapley showed that under certain conditions the core of such a game
is non-empty [18]. In other words, there exists a coalition structure such that
no agent has incentive to change (similar to the idea of Nash equilibria). Fuzzy
coalition theory seeks a middle ground between coalitions and self-interested
agents [19, 20]. Economists have studied reciprocity and favors using cooperative
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game theory and fuzzy coalition theory, focusing on the economy that develops
when favors are associated with a cost and a benefit [21–24]. A similar approach
was used to improve wireless sensor networks between two organizations [25].

Closely related to reciprocity and cooperative game theory is the notion of
trust and its extension in the form of reputation. Since interactions form the
basis of a multi-agent system, the multi-agent community has devoted consid-
erable effort towards understanding trust in large scale systems [26, 27]. Hand
in hand with trust is the idea of reputation [28, 29]. While trust and reputation
are significant research areas within multi-agent systems, our flexible reciprocal
altruism does not use either mechanism per se; instead it relies on historical
pairwise interactions.

3 Model Description

In flexible reciprocal altruism, an agent grants favors by considering the degree
to which it has had favorable interactions with the grantee agent in the past. If
the grantee agent has provided many significant favors in the past to the grantor,
the grantor is willing to offer the grantee more unmatched favors in the future.
Imagine that agent i is determining whether to grant agent j a favor. Let vji be
the sum total value to agent i of the favors which agent j has granted agent i up
to this point. Let cij be the sum total cost to agent i of the favors which agent
i has granted agent j up to this point. Agent i will grant the proposed favor if:

cij − vji + cost(favor) ≤ αvji + β.

The idea here is that the degree to which agent i will go out on a limb for
agent j (that is, cij +cost(favor)− vji) is no more than some constant (α) times
how well agent j has treated agent i in the past (that is, vji). α is essentially
a measure of risk tolerance: highly altruistic agents may have a high value of
α, whereas risk-averse agents will have a low value. An initialization constant,
β > 0, determines the initial level of altruism, i.e., how many favors should an
agent grant initially before requiring the other agent to reciprocate. Without β,
agents would never grant favors to grantees with which they have had no history
(that is, when vji = 0). Rearranging, we get:

β + (1 + α)vji ≥ cij + cost(favor). (1)

This is our decision equation: a favor will be granted so long as it does not
increase cij to greater than β + (1 + α)vji. This decision equation is not based
on rational agents per se: rather, it is based on amortized altruism. Imagine
that agent i and j have had a history of interactions, and then agent j cheats
i and walks away. To agent i this is acceptable if the amortized ratio of cost to
benefit over all interactions with j does not exceed some amount. Clearly from
the previous equation, cij = O(vji), and (rearranging yet again) the augmented
cost to benefit ratio is:

cij + cost(favor)− β

vji
≤ 1 + α. (2)
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(a) 2 agents, 10,000 timesteps
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(b) 2 agents, 50,000 timesteps
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(c) 64 agents, 10,000 timesteps
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(d) 64 agents, 50,000 timesteps

Fig. 1. Average number of completed tasks for 2 and 64 agents and various task queue
lengths (Q).

As the agents gain a transaction history and cij and vji both grow, β becomes
inconsequential and the ratio of cost to benefit approaches 1 + α.

Tit-for-Tat and the Reciprocal Norm It’s worthwhile to compare this rule to
others. Using our rule, if an agent A is being asked by another agent B for a
string of favors, it will provide them up to its level of risk tolerance (α). Initially
the allowed strings will be small, but ultimately they may be very large if needed.
Because we can tune α, the rate of growth of allowed strings is not dependent
on the cost and value of favors.

Now consider a simple variation of Tit-for-Tat which disregards the relative
costs and values of the tasks to the agents. Here, agent A will only grant B a
favor if the number of favors A has granted B in the past is less than or equal
to the number B has granted A. If B needs a string of favors in a row, A will
provide only enough of them to achieve parity plus one favor, and no more

We take liberties with the simple variation of Tit-for-Tat to consider costs
and values in the tasks. In this “Expanded” version, an agent A will grant B a
favor only if the cost to A of the favors A has granted B in the past is less than
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or equal to the value to A of the favors A has received from B. Assuming that
all tasks have the same cost and the same value, this is equivalent to Equation 1
with α = 0. In this model the strings of favors agents offer one another will grow
without bound if the cost of a task is less than the value of the task. However
this growth rate is entirely determined by the ratio of cost to value, since α is
disregarded. Furthermore, if the cost and value are the same, then this model
reduces to the simple Tit-for-Tat scenario earlier.

A more elaborate system described in [4] permits consideration of various
task types with different costs and values, expectation of future distribution of
tasks by type, and a probability model of other agents providing future favors.
The authors suggest a reduced version in which both the future distribution of
tasks and the future favor probability model are estimated using the results from
the immediately previous time step (we may generalize this to some window of
previous time steps). If we employ a single task type with a given cost and
value, as is done in the experiments in this paper, the model may be simplified
to PrA,B

?
< PrB,A, where Pri,j is the recent probability that, when asked, i has

given j a favor. We believe this is a manifestation of the so-called reciprocal norm,
that is, A gives B favors because he feels indebted to B. We would augment this
to PrA,B

?
≤ PrB,A to enable granting when the two are evenly matched. An

approach along these lines, like Tit-for-Tat, fixes the length of favor strings if
the two agents are evenly matched.

We note that our method is also in some sense more robust to noise once the
agents have warmed to one another. Imagine if agent A believes he has given
agent B a favor or two, but B did not receive them due to noise. In the three
systems described above, ultimately the situation may arise where each agent
believes the other owes him, and refuses further interactions. In our approach,
depending on how many interactions A and B have had with one another, this
situation can only arise after a large number of noise-caused failures.

Free Riders Because of its optimism, our approach is susceptible to free-riding
agents (“leeches”) in two ways. First, if an agent A meets an unknown agent B
for the first time, A will always agree to offer B a small initial favor no greater
than β. Were there an infinite number of agents, B could wander about forever,
getting one favor from each agent. Second, a smart agent B could ratchet up the
favors he steals from A by building up a transaction history with A, then asking
for a large number of favors, then walking away.

It’s important to note that, from the perspective of A, the first situation is
in some sense worse. Consider the case where the cost and value of favors are
both 1. For B to prime A to give out an unmatched string of N favors, B would
have had to provide A with some N−1

α favors in turn (and vice versa). But if
some N rogue friends of B’s each asked A for one favor, A would offer it to all
of them without any reciprocation.

In a finite-sized group, free-riders of the first kind are capped automatically:
they’ll run out of people to cheat. Free-riders of the second kind can extract
any single amount they wish from the altruistic agents, but to extract more
they will need to give back more. The total amount they can cheat the system
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(a) α = 0.0, 50,000 timesteps
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(b) α = 1.0, 50,000 timesteps

Fig. 2. Average queue length per agent. Maximum queue length was 10.

is unlimited, but the ratio of loss, with respect to the value they provided the
system, is bounded. Importantly, this ratio may be set by the altruistic agents: if
they are risk averse they may cut α clear to 0, in which their loss is never more
than β (here, 1). Or they can cut α clear even further, down to -1, at which
point they never grant more than a single favor to a requester, and ignore him
after that.

Favor Brokers Though our approach allows agents to warm to one another
relatively quickly regardless of the ratio of cost to value, it also makes possible
extensions which promise even faster warming. We are particularly interested in
the notion of favor brokers which can act as a bridge between two agents who
otherwise know little about one another. Consider two agents A and C who do
not know one another well. A needs a significant favor but C ordinarily would
not provide it because of limited transaction history between the two. However,
broker B has a significant history with both A and C. A asks B for a favor, and
B agrees to broker it by in turn asking C to perform the favor. C agrees to do
the favor for B. A receives the value and C the cost of the favor; but C believes
that C has done B, not A, a favor ; and A likewise believes that B, and not C,
has done A a favor. Note that neither A nor C have changed in opinion about
one another.

The idea behind brokerage is to provide a special channel whereby a popu-
lation may offer favors despite little prior history; or for two alien populations
to offer favors to one another. Though this approach is related to notions of
reputation and trust (for example [29]) it is different in an important way: B is
not introducing A and C to one another. At the end of the day, A and C have
no additional transaction history. B has not used its reputation to convince C
that A is worthwhile; rather B has assumed responsibility as a middle-man for
the transaction.

Though it would be interesting for future study, we do not at this time permit
transitivity in brokerage.
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4 Experiments

Our experimental problem is an abstraction of common basic factory-floor mod-
els. Each agent has a queue of a certain length (how many tasks it can hold),
and each timestep it removes a single task from its queue, if there is any, and
performs it. As time passes, new tasks stochastically arrive for each agent, some-
times many at a time. If the agent’s queue is not yet full, it will put the tasks in
its own queue. Otherwise the agent will ask others for favors: to put the tasks
in their queues instead. If an agent cannot curry a favor, and his queue is full,
the task will be dropped on the floor and be lost.

When an agent places a task into his queue (to perform it in the future) he
immediately incurs a cost, but the task’s owner receives a value. Costs are less
than or equal to values: and in our experiments all tasks have the same cost
and the same value. Thus granting a favor costs the grantor in two ways. First,
when a grantor performs a grantee’s task, the grantor incurs the cost but the
grantee receives the value. Second, by accepting tasks, the grantor runs the risk
of filling his own queue such that newly arriving tasks of his own are dropped
on the floor.

Tasks arrive following a Poisson distribution with mean of 100 timesteps,
and normally round robin selection determines which agent receives the tasks.
When asking for a favor, agent A asks a random agent B, and if B does not
grant the favor, then A chooses another random agent to ask, then another, and
so on. If ultimately no agent grants A’s favor request, then the task is lost. α
usually ranged from -1 to 10 in steps of 0.5. Runtime was set to either 10,000
or 50,000 timesteps. All experiments were done in the MASON simulator [30]
and the results were averaged over 50 independent runs. Except in Experiment
3, task value was set to 3 and task cost to 2.

Our primary statistic was number of tasks performed per agent in the allot-
ted time. We chose this, rather than total value minus total cost, because it is
insensitive to the particular task costs and values chosen (in particular, if task
cost and value are the same, then total value minus total cost will always be
zero). Another statistic was the average number of tasks completed per agent in
a given timeframe.

Experiment 1: Task Load, Number of Agents, and Degree of Altruism We first
set out to examine the dynamics of the system: what happens with increasing
load (shorter queue lengths), more agents, and varying amounts of altruism (α).
Figure 1 shows the results. In the left column we show the results for 10,000
timesteps, which emphasizes the warm-up period until the agents were offering
large favors to one another; and in the right column we show 50,000 timesteps,
which is closer to the steady state of the system.

As would be obvious, smaller queue lengths resulted in more tasks being
dropped on the floor, and thus lower numbers of tasks completed per agent.

Figure 1 also demonstrates that the more altruistic agents (with larger values
of α) are able to warm up to one another more rapidly. Agents with α = −1
(approximately greedy agents who only provide just one favor per grantee for the
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Fig. 3. Total number of tasks per agent (10,000 timesteps), with different ratios of
cost/value for each task. “Expanded Tit-for-Tat” (α = 0) is marked with a vertical
line to distinguish it.
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Fig. 4. Average number of tasks completed per agent per 100 timesteps for round-robin
and random task distribution, α = 1.0, β = 2.0, queue length = 10, 125 agents

entire duration of the run) cannot improve. “Expanded Tit-for-Tat” style agents,
with α = 0, are also able to warm to one another because their decisions are
based on the ratio of value to cost rather than on the specific number of favors
granted. But for agents with larger α values, the rate of warming increases even
more, resulting in more tasks competed per agent.

Last, but most importantly, it would seem intuitive that having more agents
would allow for more favor opportunities, and this in turn should improve the
average number of tasks performed. But in fact this is not the case: as he spreads
his favors over more agents at random, a grantee takes longer to warm up to
any given grantor. As a result, the total number of tasks performed is reduced
until the agents have adequately warmed to one another. Ultimately, however,
the steady state results converge to the same values regardless of the number of
agents.
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Experiment 2: Queue Saturation To verify that larger numbers of agents were
in fact taking longer to warm up, we examined how full agents’ queues were
during the task. Figure 2 shows the number of tasks waiting in a queue, per
agent, for α = 1 (other α values were similar). The maximum queue length was
10. Note that as the number of agents increases, there are fewer interactions,
and so the agents are idle until much longer in the run; however, at the steady
state, eventually all the queues are filled.

Experiment 3: Tit-for-Tat Experiment 1 showed that “Expanded Tit-for-Tat”
(α = 0) would in fact warm to larger and larger favors. However, this is mostly
due to the cost/value ratio involved. By default we had set this ratio to 2

3 . But
if the cost and value of a task were the same, then Tit-for-Tat can do scarcely
better than approximately greedy agents (α = −1). This is shown in Figure 3.
As the cost/value ratio approaches 1, Tit-for-Tat starts performing poorly. In
fact, the more agents involved, the worse Tit-for-Tat performs, since each agent
must make up favors over more agents without a warm-up mechanism. Larger
values of α (that is, more altruistic agents) are much less sensitive to this ratio.

Experiment 4: Task Allocation and Noise Next we studied how changing which
agent receives the tasks effects performance. We examined two methods for
choosing which agent receives tasks: round robin selection (our previous default)
and random selection. In this experiment, we also added noise to the system by
increasing the probability that the grantor does not receive any value. In other
words, the grantee will think it granted a favor while the grantor will think the
favor was not granted.

We set the number of agents to 125, α = 1.0, β = 2, and the queue length to
10. For the noisy experiments, we set the noise level at 0.1 and 0.25 (a noise level
of 0.1 meant that 10% of the time, the grantor would not receive any value).

Figure 4(a) shows that changing how agents receive tasks alters performance.
In the round-robin case, after all the agents have received the tasks once (around
timestep 12,500), all the agents will then grant one another a favor; thus the spike
in the graph. If instead we chose agents at random to receive tasks, the agents
require additional time to build a history, thus resulting in poorer performance.
Figure 4(b) shows how noise effects system performance. As expected, increasing
the noise level caused performance to drop. However, our model formulation
overcomes the noise, although it requires more time to do so.

Experiment 5: Initially Altruistic Societies This experiment studied one pos-
sible method to decrease the warmup period. In flexible reciprocal altruism, β
controls how initially altruistic the society is: as β increases, agents are willing
to grant more initial favors before expecting the other agent to reciprocate. In
other words, increasing β decreases the warmup period.

Figure 5 shows how the length of the warmup period changes with β, given
α = 1.0, maximum queue length of 10, and 125 agents. We ran the experiment
for 50,000 timesteps but truncated the figure to 20,000 timesteps to emphasize
the warmup period; after 20,000 timesteps all the curves are statistically the
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Fig. 5. Average number of tasks completed for different levels of initial altruism. α =
1.0, queue length = 10, and 125 agents.

same. Note that for a very altruistic society (high β) the average throughput is
maximal from the beginning.

Experiment 6: Favor Brokers Finally, we studied how introducing favor bro-
kers influences performance. Recall that a broker is an intermediary who can
ask a favor of one agent on behalf of another, despite possible distrust between
the two. In a society with low altruism, brokers (and their trusted status) offer
a potential way to increase interactions amongst the agents, and thus decrease
the warmup period. Figure 6 shows the average number of tasks completed per
100 timesteps per agent, for α = 1.0, β = 2.0, a maximum queue size of 10 and
50 agents. Increasing the percentage of brokers in the population increases the
number of interactions between agents, thus causing quicker convergence even
in a society that is not very altruistic. Changing α and the number of agents
does not significantly alter the results.

This experiment, along with Experiment 5, suggests that either increasing the
global level of altruism, or increasing the number of brokers within the society,
will decrease the warmup period. While both techniques could be combined, the
problem domains where such an arrangement is sensible may be limited.

5 Conclusions and Future Work

We have presented a simple formula which enables cooperating agents to warm to
one another, offering larger and larger favors based on past experience. Though
at any time an agent can cheat another agent and walk away, the second agent’s
amortized loss is bounded. This optimistic approach, which we have termed flex-
ible reciprocal altruism, allows agents to optimize the collective performance of
the system, and is particularly apropos to environments with moderate num-
bers of agents, significant and highly variable task load, and moderate noise.
Our technique adapts faster and more flexibly than Tit-for-Tat and similar tech-
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niques, and can handle situations they cannot: such as when the cost and value
of a task are the same.

For future work: our existing approach lacks a time-discounting procedure:
agents have perfect memory of all previous favor transactions. We have not yet
examined the effects of different ways of doing this: for example, what would be
the result of having longer memories for costs than for values?

We may also examine possible approaches to transitivity in favor brokerage,
and using brokers to introduce entire disjoint populations to one another. Last,
we have not experimented with per-agent values of α, or different α values on a
pairwise basis. It might also be helpful to consider dynamic α values, producing
nonlinear functions or ones designed to cut off freeloaders more effectively.
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