
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 27

The Eighth International
Workshop on Programming

Multi-Agent Systems

ProMAS 2010

The Eighth International Workshop on

Programming Multi-Agent Systems

11th May 2010, Toronto, Canada

Rem Collier
(University College Dublin)

Jürgen Dix
(Clausthal University of Technology)

Peter Novák
(Czech Technical University in Prague)

i

Preface

These are the proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS2010), the eighth of a series of workshops that
is aimed at discussing and providing an overview of the current state-of-the-art
technology for programming multi-agent systems.

The aim of the ProMAS workshop series is to promote research on program-
ming technologies and tools that can effectively contribute to the development
and deployment of multi-agent systems, with a particular focus on promoting
the discussion and exchange of ideas concerning the techniques, concepts, and
principles that are important for establishing multi-agent programming platform
that are useful in practice and have a theoretically sound basis. Topics typically
addressed include: the theory and application of agent programming languages;
the verification and analysis of agent systems; and the implementation of so-
cial scaffolding to support organisation, coordination and communication within
agent-based systems.

In its previous editions, which took place during AAMAS 2003 (Melbourne,
Australia), AAMAS2004 (New York, USA), AAMAS 2005 (Utrech, Nether-
lands), AAMAS 2006 (Hakodate, Japan), AAMAS 2007 (Honolulu, Hawaii),
AAMAS 2008 (Estoril, Portugal), and AAMAS 2009 (Budapest, Hungary), Pro-
MAS constituted an invaluable occasion to bring together leading researchers
from both academia and industry to discuss issues on the design of program-
ming languages and tools for multi-agent systems. We are very please to be able
to continue this tradition with this years edition, to be held on May 11th as part
of AAMAS 2010, which is being held in Toronto, Canada, and have accepted 6
papers for presentation.

At the workshop, in addition to the regular papers, two invited talks will be
given. The first, by Gregory O’Hare (University College Dublin, Ireland), focuses
on the issue of programming intelligent agents for Ubiquitous Sensing Devices.
Ubiquitous Systems, and in particular, Wireless Sensor Networks (WSN) rep-
resent an important potential application domain for multi-agent systems due
to their high levels of distribution, and their ad-hoc nature. The sheer scale of
the expected deployments raises a number of significant number of challenges
both in terms of managing the well-being of the network, and also in terms of
mediating the demands of heterogeneous applications that are competing for
use of a shared set of sensor resources. From a programming multi-agent sys-
tems perspective, this requires the availability of agent technologies that: offer
minimized footprints for BDI style agents; effective support for agent mobility;
and utility-based resource aware reasoning. In his talk, O’Hare outlines recent
work on addressing these challenges via the use of Agent Factory Micro Edition
(AFME) a shrink wrapped BDI software framework, that has been utilized with
the latest genre of sensor and its use within SIXTH, a WSN middleware that
incorporates an agent based programming metaphor which supports effective
(re)programming of WSNs.

The second talk, by Sarit Kraus (University of Maryland, USA/Bar Ilan Uni-
versity, Israel) focuses on the issue of Human-Computer Negotiation. Negotiation

ii

is a core issue in multi-agent systems research. While it has been well studied in
terms of agent-agent interaction, the continuing trend towards the dissemination
of applications such as the Internet across geographical and ethnic borders has
opened up opportunities for computer agents to negotiate with people of diverse
cultural and organizational affiliation. Designing automated negotiators that are
able to proficiently interact and collaborate with their human partners is a sig-
nificant challenge as people often follow suboptimal decision strategies due to
irrationalities attributed to lack of knowledge of own preferences, the effects of
task complexity, framing effects, the interplay between emotion and cognition,
and the problem of self control. In her talk, Kraus describes a new agent for
bilateral negotiation in repeated interactions, known as PURB, that is specially
designed to adapt to the particular behavioural traits of its negotiation partner
and outlines the results of an extensive study that evaluated the performance of
PURB when interacting with people in three different cultures.

As in previous editions, the themes addressed in the accepted papers in-
cluded in this Volume range from technical topics related to, for example, agent-
environment interaction to conceptual issues related to, for example, reasoning
about partial goals or action-rule preference heuristics.

Agents and Environments/Organisations

The paper by Carr et al., describes a new multi-agent programming environment,
known as PreSage-MS, which provides a rapid prototyping and animation tool
that is designed to facilitate experiments with organised adaptation in teams of
agents that are imbued with complex reasoning abilities. The goal of the work
is to provide tool support that would allow multi-agent system developers to
develop agents that are based on dynamic protocol specifications and to evaluate
how teams of agents adapt via a simulation environment.

The paper by Behrens et al., explores the interface between agents and their
environments and in particular, the lack of consistency that currently pervades
the development of environments and the impact of that lack of consistency on
the complexity of integrating disparate agent systems with an environment. The
main focus of the work is to propose a standard for the interface between an
agent and its environment that is based on previous experiences gained from in-
tegrating heterogeneous agent systems as part of the annual Agent Contest. The
proposed standard is evaluated through a reference implementation (the Agent
Contest Server) and its integration with four well-know agent programming lan-
guages: 2APL, GOAL, Jadex, and Jason. The same integration was then used
with two environment implementations: the Agent Contest cow herding scenario,
and an elevator environment.

The paper by Ricci et al. discusses the limitations of the traditional model
of perception and action utilized in agent programming languages when applied
to endogenous environments. Further, in light of these limitations, the paper
proposes a new model of perception and action that is better suited to such en-
vironments. The model is then evaluated through a combination of CArtAgO as

iii

the environment technology and three reference agent programming languages:

Jason, 2APL, and GOAL.

Agent Programming

The paper by Jordan and Collier describes early work that aims to investigate

multi-paradigm metrics that can be used to evaluate agent-oriented programs.

Metrics are an important tool in a modern software engineers armory as they can

be highlight software defects or identify code that will be difficult to maintain.

Multi-paradigm metrics aim to measure the structural complexity of software

that has been implemented using more than one programming paradigm. The

paper proposes a basic meta model and process for evaluating cohesion and

coupling within a programming language. The approach is applied to a simple

Jason program.

Agent Reasoning

The paper by van Riemsdijk and Yorke-Smith outlines proposes a new model

for representing goals that allows for partial goal satisfaction with respect to

achievement goals. The work is motivated by an example problem involving an

accident at a chemical plant and is formalised by a higher-level framework based

on metric functions that support the representation of concepts such as progress

towards the achievement of a goal.

The paper by Broekens et al., presents an approach to prioritising action-

rule selection based on reinforcement learning. The main objective of the work

is to overcome the problem of underspecified agent programs by introducing

a reinforcement learning component that allows that agent to prioritise action-

rules based on experience. The approach adopted employs a domain independent

heuristic that offers a significant improvement in the behaviour of the agent. This

is demonstrated through an experimental analysis based on blocks world.

March 2010 Rem Collier

Jürgen Dix

Peter Novák

iv

Conference Organization

Programme Chairs

Rem Collier Jürgen Dix Peter Novák

Programme Committee

Matteo Baldoni Guido Boella Juan Botia Lars Braubach Louise Dennis Ian Dick-
inson Mauro Dragone Berndt Farwer Michael Fisher Jorge Gomez-Sanz Vladimir
Gorodetsky James Harland Koen Hindriks Benjamin Hirsch Jomi Fred Hubner
Joao Leite Viviana Mascardi John-Jules Meyer Joerg Mueller Andrea Omicini
Frederic Peschanski Michele Piunti Agostino Poggi Alexander Pokahr Alessan-
dro Ricci Ralph Ronnquist Sebastian Sardina Ichiro Satoh Munindar P. Singh
Tran Cao Son Kostas Stathis Paolo Torroni Gerhard Weiss Wayne Wobcke Neil
Yorke-Smith Yingqian Zhang boissier olivier M. Birna van Riemsdijk Leon van
der Torre

External Reviewers

Stefano Bromuri

v

Table of Contents

Invited talks.

Programming Agents for Ubiquitous Sensing Devices (invited talk) 1

Gregory O’Hare

Human-Computer Negotiation: Learning from Different Cultures

(invited talk) . 3

Sarit Kraus

Session 1. Agents and Environments/Organisations

Software Support for Organised Adaptation . 5

Hugo Carr, Alexander Artikis, Jeremy Pitt

Action and Perception in Multi-Agent Programming Languages: From

Exogenous to Endogenous Environments . 21

Alessandro Ricci, Andrea Santi, Michele Piunti

An Interface for Agent-Environment Interaction . 37

Tristan Behrens, Jürgen Dix, Koen Hindriks, Mehdi Dastani, Rafael
Bordini, Jomi Hübner, Alexander Pokahr, Lars Braubach

Session 2. Agent Programming

Evaluating Agent-Oriented Programs: Towards Multi-Paradigm Metrics . . 53

Howell Jordan, Rem Collier

Session 3. Agent Reasoning

Towards Reasoning with Partial Goal Satisfaction in Intelligent Agents . . 69

M. Birna van Riemsdijk, Neil Yorke-Smith

Reinforcement Learning as Heuristic for Action-Rule Preferences 85

Joost Broekens, Koen Hindriks, Pascal Wiggers

vi

1

Programming Agents for Ubiquitous Sensing Devices

G. M. P. O’Hare

CLARITY: Centre for Sensor Web Technologies
School of Computer Science and Informatics, University College Dublin (UCD), Ireland

�������������	
����

Abstract

Ubiquitous sensing envisages a world which is saturated with sensing devices, a
world in which traditional boundaries between the digital world, and the physical
world which we inhabit, will be systematically deconstructed producing a data
reservoir which is seamless, vast, streamed, heterogeneous, noisy, incomplete and
contradictory. Such ubiquitous sensing devices (motes) are typified by their resource-
bounded nature. They are computationally challenged in terms of processing
capabiliti es, memory and power, the later due to their battery powered operation.
Motes afford three key roles those of sensing, actuation and routing.

By virtue of wireless communications individual sensing devices can function in
concert with a typology of sensors forming a Wireless Sensor Network (WSN). It is
recognized that decisions taken by an individual sensing node necessarily have
implications for neighbouring sensors. Consequently decisions by an individual
sensor to, for example degrade sampling frequency or increase hibernate cycle, ought
to be taken in a collaborative manner with fellow adjoining sensors. The deliberation
associated with such behavioural changes together with the collaborative nature of the
decision making have suggested the appropriateness of a Multi-Agent Systems
(MAS) approach [1], [2]. Numerous research have already explored the use of
reactive style agents in WSNs for example Agilla [3] while the eff icacy of
deliberative, specifically Belief Desire Intention (BDI), have been demonstrated in
network power management [4].

The challenge of (re)programming such sensor devices should however not be
underestimated. This new generation of pervasive computing device represents a new
frontier for the programming of multi-agent systems and, one which presents a
number of key challenges. These include:

• Minimizing the software footprint for BDI style agents;
• Effective support for agent mobility;
• Utilit y-based resource-aware reasoning;
• A middleware for supporting (re)programming of WSN;

This paper addresses these challenges and demonstrates efforts that have been
advanced in each of these areas. In particular it utili zes Agent Factory Micro Edition
(AFME) [5] a shrink wrapped BDI software framework, which has been utili zed with
the latest genre of sensor. This new generation of sensor platform is more powerful
typically offering a powerful RISC processor together with a Java Virtual Machine

2

(JVM) like Squawk. Sunspot or Stargate typify such devices. In such java based
environments clearly only weak migration may be supported. However reliable and
robust migration must be supported which like other agent activity is ever aware of
the cost of deliberation in terms of available battery power. To this ends it is
necessary to introduce regimes which take due cognizance of computation cost and
thus provide utilit y-based resource-aware reasoning [6].

Finally this paper introduces SIXTH a WSN middleware that incorporates an agent
based programming metaphor which supports effective (re)programming of WSNs.

Keywords

Ubiquitous Sensing, Multi-Agent Systems (MAS), Embedded Systems, Wireless
Sensor Networks, Agent Factory, Wireless Sensor Network Middleware.

Acknowledgements

Gregory O'Hare gratefully acknowledges the support of Science Foundation Ireland
under Grant No. 03/IN.3/1361.

References

��� ���
!���"��#��$����%������
&�!'��(���)��������� **$��!�����+� �!+��$�,�!�$$������-�
���$��.�$��/��&���/��**�
/0�1/02��)$��3���%�������4550��

�4� �����������
$������6�������������������������������-���6������!���,�!�$$���!���'���
������"��!�����!�����!��������
��%������6�3���������7$�"������6�"*
!���-�
���$�
8%*���$�,��
����� ���!�������$�����+���!���%������&�!'��(�9���:+����;�3���!���������
45�5�8,�������9��

�<� =�(��6�����"������������>
��6��455?�� �$$�@� �"�7$������!�"��$�'����+�����$+1
���*!3��'��$�������������!'��(��� 6���������
!���� ��*!��%��!��0��<�8-
$��455?9��**��1
4A�

�0� ��3��������������$��B�����������������B������ ���!��+���#��$����%������&�!'��(�
��'���������"��!��������������+�!���455C�,�!����!���$�6��+��������������$$�$�
����������#��(���*���*�0�<10�2��-
����01�/��455C�

�C� �
$������6�������������������������������-��� =�)@� �� ���!��$�!+��"�+�������
����
6���!��������3�����,��������������+�/!��,�!����!���$�#��(���*��)���������
%���!�����!��� ���!��#��$��.,,��)% #�455A����������������������� ������������
��-�����(���$$�����8)���9��;�3���!��6�$$�����
7$����
7$���,��$����A!�1�2!��%�*!��
455A��

�A� %�����%�����������������������������-��=
DD�����������(���!���
���)�����1�'����
����;!$!�� ���!��'!���#��$����%������&�!'��(��� �!+��$�,�!�$$��������3�'��.�$��
4/��&���4E<��%*�������455/�

3

Human-Computer Negotiation: Learning from
Different Cultures⋆

Sarit Kraus

Dept. of Computer Science

Bar-Ilan University Ramat Gan 52900 Israel and

Institute for Advanced Computer Studies

University of Maryland, College Park MD 20742 USA

Abstract. Negotiation is a process by which interested parties confer

with the aim of reaching agreements. The ability to negotiate success-

fully is critical for many social interactions, The dissemination of ap-

plications such as the Internet across geographical and ethnic borders

are opening up opportunities for computer agents to negotiate with peo-

ple of diverse cultural and organizational affiliation. These automated

negotiators should be able to proficiently interact and collaborate with

their human partners. However, people often follow suboptimal decision

strategies due to irrationalities attributed to lack of knowledge of own

preferences, the effects of the task complexity, framing effects, the in-

terplay between emotion and cognition, and the problem of self control.

Furthermore, culture plays an important role in their decision making

and people of varying cultures differ in the way make offers and fulfil their

commitments in negotiation. In this talk we will describe a new agent for

bilateral negotiation in repeated interactions that allow players to renege

on agreements. PURB was especially designed to adapt to the particular

behavioural traits of its negotiation partner. Its strategy is composed of

a utility function that depends on the extent to which the other player

is reliable and helpful, as well as rule-based mechanism that uses this

utility for generating and replying to offers, and for deciding whether

to fulfil its agreements. I will present an extensive study that evaluated

the performance of PURB when interacting with people in three differ-

ent cultures. Our results show that the performance of the PURB agent

directly depended on the cultural affiliation of its negotiation partners:

People’s negotiation behaviour, in particular the extent to which they

fulfil agreements, varies widely across cultures, and this had a crucial

effect on PURB’s performance. I will also present additional results that

compare the performance of PURB when playing Peer-Designed-Agents

— agents that were designed by non-experts to represent themselves dur-

ing negotiation. I will conclude by demonstrating how the PURB agent

could be improved using the collected data.

⋆ This research is a joint work with Ya’akov Gal and Michele Gelfand. It is based

upon work supported in part by the U.S. Army Research Laboratory and the U.S.

Army Re- search Office under grant number W911NF-08-1-0144 and under NSF

grant 0705587.

4

5

Software Support for Organised Adaptation

Hugo Carr1, Alexander Artikis21, Jeremy Pitt1

1 Electrical & Electronic Engineering Department,

Imperial College London, SW7 2BT
2 Institute of Informatics and Telecommunications,

National Centre for Scientific Research “Demokritos”, Athens 15310

Abstract. Coordination of agent teams depends on the scale of the

team. Teams comprising hundreds of agents tend to perform better with

local computation and interactions (i.e. swarm intelligence, evolutionary

computing, etc.) Teams comprising tens of agents tend to perform better

with more sophisticated agents (e.g. BDI agents) with complex reason-

ing abilities. In the long term, our objective is to achieve agent teams

comprising hundreds of sophisticated agents: then, a key aspect of coor-

dination and control is the idea of organised adaptation. In this paper we

present a new multi-agent programming environment, PreSage-MS, a

rapid prototyping and animation tool designed to facilitate experiments

with organised adaptation in ‘sophisticated’ agent teams. We describe

the system architecture and functionality, and give a walkthrough of

experimental design. We conclude with a discussion of several issues, in-

cluding the migration from design-time tools for human users to run-time

services for software agents.

Categories and subject descriptors: I.2.5 [Artificial Intelligence]:

Programming Languages and Software; I.2.11 [Artificial Intelligence]:

Distributed Artificial Intelligence—Intelligent Agents

General terms: Design, Experimentation

Keywords: Agent-oriented programming, organised adaptation, dynamic

specification, temporal logic

1 Introduction

Coordination of agent teams depends on the scale of the team. To date, teams
comprising hundreds of agents tend to perform better with local computations
and interactions, with each other (swarm intelligence [12]) or with their physical
environment (stigmergy [10]). Teams comprising tens of agents tend to perform
better with more sophisticated agents with complex reasoning abilities (e.g. BDI
agents [11]). In the long term, our ultimate objective is to deploy agent teams
comprising hundreds of sophisticated agents: then, a key aspect of coordination
and control will then be the idea of organised adaptation.

Organised adaptation, as opposed to emergent behaviour, is the conscious,
deliberate and targeted adaptation of a specification and/or configuration of a

6

multi-agent system, in response to systemic requirements or environmental con-
ditions. Emergent behaviour produces unintended or unknown global outcomes
derived from hard-wired local computations, with respect to the environment
and/or physical rules. Instead, we are concerned with the introspective applica-
tion of soft-wired local computations, with respect to the environment, physical
rules and conventional rules (what some philosophers of language would call
‘constitutive rules’), to produce intended and coordinated global outcomes.

The complexity of modern software systems demands that organised adap-
tation be an on-line mechanism, that proceeds without human intervention or
supervision (cf. autonomic computing [13]); in other words, to make the me-
chanics for organised adaptation available to software agents at run-time. In
this paper we present a new multi-agent programming environment, PreSage-
MS, which converges the multi-agent programming environment PreSage [15]
with the analytic tool of [1]. The result is a rapid prototyping and animation tool
designed to facilitate experiments with organised adaptation of dynamic specifi-
cations at run-time, for ‘sophisticated’ agents (i.e. agents with complex reasoning
capability wrt. adaptation, goals, other agents, etc.), operating (eventually) in
‘large’ teams.

In this paper, we present the PreSage-MS system architecture and func-
tionality, and give a walkthrough of system design. Accordingly, this paper is
organised as follows. The next section outlines how a dynamic specification can
be defined, and pre-existing tools for evaluating such specifications. Section 3
describes the architecture of, and functionality supported by, the new system. A
walkthrough of experimental design in PreSage-MS is given in Section 4. We
conclude with a discussion of the current, related and future work; in particular
we discuss the role of institutional agents in the migration from design-time tools
for human users to run-time services for software agents.

2 Background Work

In this section, we present the background to the current work. First we discuss
dynamic protocol specifications, then we present two existing software tools used
for experimenting with different aspects of dynamic protocols. This is the basis
for the system description of PreSage-MS in Section 3, which is a convergence
and enhancement of both these tools.

2.1 Dynamic Protocol Specification

Consider the two following examples:

Example 1: Resource-sharing protocol: There is a set of agents S, a subset of
which occupies the role of subjects who are entitled to access a resource, and a
designated agent in S occupying the role of chair. The subjects are empowered
to request access to the resource, the chair is empowered to grant or revoke
access. The protocol stipulates that one or more subjects request access to the

7

Fig. 1. A k-level Infrastructure for Dynamic Specifications.

resource, the chair grants access to only one; that agent uses the resource until
it is released it or access is revoked, and the cycle repeats.

Example 2: Voting protocol: There is a set of agents S, a subset of which
occupy the role of voters who are entitled to vote, and a designated agent in S

occupying the role of returning officer, who declares the result of a vote. The
protocol stipulates that the officer calls for a ballot on a specific motion, the
voters cast their votes (express their preference), the officer counts the votes and
declares the result according to the standing rules.

In both examples, there are values which may be changed, even during exe-
cution of the protocol. In the first example, which agent occupies which role or
roles, the rule by which access is granted, the period until the chair has permis-
sion to revoke access, etc., may all be changed. Similarly, in the second example,
role assignment again is mutable, and there are many parameters to a vote: single
or multiple winner, standing rules for winner determination (plurality, run-off,
borda count, etc.), votes required to be quorate, and so on.

One key aspect of organised adaptation are dynamic specifications, which
allow agents to alter the rules of a protocol P , even during the protocol execution.
P is considered an ‘object’ protocol, if at any point in time the participants may
start a ‘meta’ protocol in order to decide whether the object protocol rules
should be modified to P

′ (say). Moreover, the participants of the meta-protocol
may initiate a meta-meta-protocol to decide whether to modify the rules of the
meta-protocol, and so on. Figure 1 shows an infrastructure for dynamic resource-
sharing protocols, that is, the object protocol is a resource-sharing protocol, and
every {meta+}-protocol is (some type of) a voting protocol.

Apart from object and meta protocols, the infrastructure for dynamic speci-
fications includes ‘transition’ protocols (again, see Figure 1) that is, procedures
that express, among other things, the conditions under which an agent may
validly initiate a meta-protocol, the roles that each meta-protocol participant
will occupy, and the ways in which an object protocol is modified as a result of
the meta-protocol interactions.

8

2.2 System Support for Adaptive Specifications

Adaptive Behaviour. PreSage is a simulation platform for agent animation
and rapid prototyping of societies of agents. It offers a multi agent systems
programmer a flexible and generic set of Java classes, interfaces and tools with
which key aspects of agent societies can be designed and simulated.

To develop a prototype in PreSage, it is necessary to define agent participant
types: this can be done by extending the abstract class supplied with standard
environment (to guarantee compatibility with the simulation calls and provide
core functionality like message handling etc.) or by defining a new class. The
PreSage environment is in fact neutral with respect to the internal architecture
of its agents: thus agents can be of arbitrary complexity. Agents can then either
be animated (i.e. a ‘sophisticated’ agent with complex reasoning capability is
actually embedded in an artificial environment) or simulated (complex behaviour
is approximated by simulation rather than actually computed).

Then the network properties and physical world are defined, using or ex-
tending the given base classes. Finally, additional plugins can be written for
visualisation, connection to other components (e.g. a database for logging re-
sults, etc.), or generation of exogeneous events.

We have used PreSage for initial experiments in organised adaptation. We set
up a simple iterated ‘tragedy of the commons’ scenario, with partial knowledge,
no central control, and self-interested agents, and allowed the agents two votes:
one for whom to allocate resources, and one to decide how many votes should
be received in order to be allocated resources. The idea was that co-operative
agents should manage the system by voting ‘fairly’. Initial experiments showed
that ‘responsible’ agents performed better than selfish or cautious ones (indeed
approximated the outcomes achieved with a ‘benevolent dictator’) [5], and that
social networking (gossiping) algorithms can be used on an individual and group
basis to protect the system from self-interested behaviour [6].

Metric Space Analysis. Given an adaptable specification, the protocol rules
and parameters that may be modified at run-time are called Degrees of Freedom
(DoF). Each DoF can take one value from a specific set of possible values; we
map each of the possible values onto a rank order. A specification with m DoFs
can then be represented as an m-tuple, where each tuple element defines the rank
order of the value for the corresponding DoF. The set S of all possible tuples is
given by all the possible instantiations of every DoF with the rank order of each
of its possible values. Clearly there are:

|v1| × |v2| × . . . × |vm|

members of this set, where |vi| is the maximum rank value of the ith DoF
vi(1 ≤ i ≤ m) can take. This set is the basis of a metric space M =< S, d > if
we define a metric d on the set which defines a ‘distance’ between any pair of
set members (subject to the usual constraints [16]).

9

We can use this representation of an m-dimensional specification as a metric
space by measuring the ‘distance’ between members of the set, or rather, spec-
ification points in the metric space. A designer can then define an adaptable
specification with its degrees of freedom, and additional constraints on run-time
modification. For example, the designer could specify a ‘desired’ specification
point, and proposed modifications could be evaluated on the ‘distances’ of the
proposed specification point from the ‘current’ point and the ‘desired point. The
designer could also specify that some points are ‘forbidden’, if for example they
were normatively inconsistent [2].

The metric space representation was the basis of automated support for
design-time analysis of a dynamic protocol specification, that is, an off-line,
static analysis of a protocol that could be adapted at run-time [16]. This tool
allowed the designer to analyse a narrative of events (actions taken by agents to
modify the specification) and determine, at each time point, the distance to the
desired specification point for a range of different metrics (euclidean, manhattan,
weighted manhattan, etc.) This allowed the designer to evaluate comparatively
the effects of different metrics on different instances of a dynamic specification.

3 PreSage-MS

Both of the tools described in the previous section are useful for investigating
certain aspects of organised adaptation but are ultimately limited. PreSage al-
lowed mixed agent strategies and populations, but the agents did not have an
explicit representation of metric spaces; while the second tool is restricted to
a retrospective, design-time analysis of a given narrative of events. Ultimately,
we want to perform an introspective, run-time analysis as the narrative unfolds.
Therefore, we have developed a new system, PreSage-MS, which retains and in-
tegrates the agent-level granularity of PreSage with the metric space analysis of
[2], but extends both by equipping the agents themselves with the functionality
to represent and reason about metric spaces and specification points.

In this section, we present the architecture and functionality of the PreSage-
MS programming environment.

3.1 PreSage-MS Architecture

The core PreSage System is conceptually composed of three layers: the base
simulation layer, the services layer, and the instances layer.

The base simulation layer performs parameter initialisation, manages the
simulation execution, and provides generic functions to higher level modules
and classes. PreSage uses a multi-agent discrete-time-driven simulation model.
In this model, each loop of the simulator control thread equates to a time-slice
of the simulated multi-agent system. In each time-slice, the agent participants
are given a turn to perform physical and communicative actions, the state of
the network(s) and physical world is updated, scripted events are executed, and
plugins perform their specified operations.

10

The services layer provides the skeleton models that designers use to imple-

ment a simulation. The agents and their environment are implemented through

the provided interfaces, simulating network(s), and a physical world. The man-

agers handle scripted events and other user plugins as well as providing a dedi-

cated Event Calculus tool to improve latency in rule unification.

The third layer comprises the user-specified instances of these components.

PreSage-MS extends PreSage by implementing the Event Calculus (EC)

[14] as a universal language for communication and specification. Using the EC,

the agents can establish a narrative of speech acts, whose consequences can be

calculated as a normative state; ie. the set of permissions, powers and obligations

of agents according to which roles they occupy. These norms can be derived by

unifying the narrative with the object and meta-level rules can also be written

in the EC.

To integrate the EC with PreSage, we have implemented a new manager

at the interface level which handles the EC requests and keeps track of the

EC fluents. A fluent is a value which varies over time, so the EC manager keeps

track of its current value to prevent unnecessary queries to the temporal calculus

engine. This manager uses JPL, an interface to Prolog from Java, by keeping a

Prolog implementation of the EC and the implementation specific rules.

At the instance level, we have included

– An environment in which agents may navigate a centrally managed metric

space

– An extendable agent which can send and interpret EC messages

– An EC plugin which displays the object and meta level protocol read by the

EC manager, and the fluents which ‘hold’ at the current time point.

– A metric space plugin which allows a system designer to rank the DoF values

and alter the metric space of the system

Both plugins act as run-time services for participants, providing live information

about the EC fluents and metric space.

The final architecture of PreSage-MS is illustrated in Figure 2. Next, we

will look at the functionality of the PreSage extensions in more detail.

3.2 Agents and Environment

Simulation design in PreSage-MS has been divided into the environment, and

the agents which act therein. At its simplest, an environment may act only as

a communication link between the agents, but it is often convenient to keep

a central representation of the object and meta-level rules. For example, when

designing systems which have dynamic specifications, it is usually desirable to

include the system’s specification space in the environment. This serves as a cen-

tral reference for newly registered agents, and ensures that there is no confusion

about where in the metric space the system lies.

Environments in PreSage-MS go further than the basic message passing

paradigm and handle actions made by agents by broadcasting the appropriate

11

Interfaces & Abstract Classes Managers

Agent World Plugins
Event

Calculus
Event Script

-
A

ge
n
ts

 a
w

ar
e

of

 -
 R

ol
e

 -
 N

or
m

s

-
N

or
m

-G
ov

er
n
ed

 W
or

ld

 -
 M

et
a

L
ev

el
 R

u
le

s

 -
 O

b
je

ct
 L

ev
el

 R
u
le

s

-
E

ve
n
t

C
al

cu
lu

s
P

lu
gi

n

-
M

et
ri

c
S
p
ac

e
P

lu
gi

n

-
S
im

u
la

ti
on

 l
og

-
A

ct
iv

at
e/

D
ea

ct
iv

at
e

ag
en

ts

-
E

ff
ec

t
p
h
y
si

ca
l
ac

ti
on

s

-
F
lu

en
t

m
an

ag
er

-
N

or
m

 m
an

ag
er

Fig. 2. Architecture of the PreSage-MS system

speech act to the agents affected. These speech acts are similarly sent to the
Event Calculus manager to update the narrative (ie. the action history). The
EC Manager maintains the metric space and object level rules in Prolog, and
with a minimal number of queries, sends back the new set of norms effected by
the speech act. In order for agents in PreSage-MS can understand messages
from the environment, we have tools for parsing event calculus messages and
a set of fluent and norm handlers which are invoked when an update message
relating to a fluent or norm is received from the environment.

3.3 Event Calculus Manager

The event calculus manager acts as a buffer between PreSage-MS and the
declarative implementation of the Event Calculus (Figure 3). The EC derives
the norms at a timepoint T by unifying the history of speech acts with the
predicates describing the rules of the system. However, as the action history
increases the computation time becomes prohibitively slow. The EC manager
has therefore been optimised to reduce the number of queries to the Prolog
knowledgebase by implementing a caching mechanism to bound the size of the
action history.

We have included an interface to the event calculus manager, which monitors
the current states of the event calculus fluents and norms. This front end receives
updates from the manager with respect to speech acts and their consequences.
Agents who for whatever reason are not able to receive messages from the envi-
ronment, can register with this service to check that their local representation
of system norms is consistent. Designers may also use this inspector to view the
history of all fluent and norm changes throughout the life cycle of the system.

12

holdsAt(

pow(Chair) :-

 status = ballotOpen)

 Te3 is T1 + 5.

pow(Voter) :-

 status = ballot

Speaker

Environment

Listeners

EC Manager

S
p
ee

ch
 A

ct

S
p
eech

 A
ct / N

orm
ative C

on
seq

u
en

ces

JPL

Meta Level:

Metric Space

Object Level:

Interaction Rules

Fig. 3. The relationship between the Agents of a system, the environment and the

event calculus specification of the object and meta-level rules. Calls to the Prolog

implementation of the event calculus, through the JPL library, are minimised by the

EC Manager.

3.4 Metric Space Plugin

The metric space plugin in Figure 4 represents an extension of the analytic tool
in [1]. The plugin implements much of the same functionality as the original, but
includes a graphical visualisation of the metric space based on a selected metric;
run-time services to supply participants metric space specific information in real
time; and a generalisation of the ranking process for DoF values.

As demonstrated in section 2.2, DoFs can be ranked using a one dimensional
number for each of the DoF values. We have generalised this model by ranking
each value with a more general fixed size vector.

In a specification of m DoFs, each DoF still takes one value from specific
set of possible values but we map each of the possible values onto the domain
R

nk where 0 ≤ k < m. Rank order no longer exists, as the relationship between
the DoF values becomes more sophisticated and vectors cannot be compared in
terms of higher versus lower. However, a metric space is still formed provided
that the metrics used within the vectors are the same as those for the space
which they form.

The metric space visualisation draws a graph of specification points based
on a selected metric (Euclidean, Manhattan etc.) and threshold distance. This
threshold represents the furthest distance value that an edge can take between
two specification points, and may be used to represent several things. For exam-
ple, it may relate to the furthest distance that an agent may travel away from
the current point. This may be due to the cost of adaptation being too high, or
an attempt to limit the volatility of the system by making incremental changes.
This results in an agent having to choose the shortest path along the edges of
the graph to reach a desired specification point.

13

Fig. 4. Interface to the metric space: The degrees of freedom of the metric space are

resized and ranked in the lefthand column. The bottom panel selects which metric the

system is using to form the space, and the graph is drawn according to the threshold

value which represents the maximum value that an edge may take.

4 PreSage Experimental Design

System designers operate PreSage-MS in three inter-related stages: Agent de-

sign, protocol design and metric space design. On completion of these stages,

experiments exploring the metric space can be designed.

A system lifecycle begins offline with the Java and Prolog implementation

of the agents and protocol. The designer goes on to choose how the agents are

to reason about the DoFs by formulating a metric space which represents a set

of measurements agents may use to compare different specifications. The metric

can be defined in conjunction with further permissions, powers and obligations

which constrain how the system may adapt.

To demonstrate the experimental design in PreSage-MS we have provided

a walkthrough of the resource allocation example outlined in section 2 with four

object level DoFs and a static meta level protocol. Based on this architecture

we outline a set of experiments which we intend to address investigating when

agents should adapt.

4.1 Agent Design

The agent design process results in a test population which recreates the con-

ditions of an open system. Agents, along with their EC handlers, are designed

offline in Java with extendable PreSage-MS interfaces. They must then be en-

dowed with the capacities required to approximate independent decision making.

14

At the most basic level agents require a complete set of norm and fluent han-

dlers for the parts of the protocol which they are involved in. For example in the

resource allocation scenario we have a set of basic speech acts which all agents

must be able to interpret (openSession, callForProposals, propose). A propose

handler must be able to read the proposal made by an agent and store the offer

and request for use during the voting protocol:

protected class ProposeHappensHandler extends HappensHandler {
public void handle (ProposeHappens happens) {

St r ing [] arguments = happens . getArguments () ;
r eque s t s . put (arguments [0] , new I n t eg e r (arguments [1])) ;
o f f e r s . put (arguments [0] , new I n t eg e r (arguments [2])) ;
t o ta lReques t s+=Int eg e r . pa r s e In t (arguments [1]) ;

}
}

Agents require the means to reason about the dynamic protocol, this may

require specific knowledge about the protocol. There are however, general ways of

navigating a specification space which can be used in conjunction with machine

learning techniques and heuristics to find optimal points.

4.2 Protocol Design

The logical implementation of the resource allocation protocol is developed of-

fline in Prolog using the programming environment included in the Event Cal-

culus plugin.

The protocol begins with the participants offering resources to be centrally

pooled and allocated by the chair of the session. These offers may or may not

be verified for authenticity before allocating the resources according to either a

vote between the participants of the system, or a random selection by the chair.

There are four degrees of freedom used to form this dynamic protocol:

– MinimumRequired - Places a limit on the least amount of resources that an

agent must offer each time cycle in order to participate in the allocation.

– OfferAudit - Whether we verify the authenticity of the resource offers made

by participants before the distribution. This is important if there is an ele-

ment of agents which misrepresent their contributions.

– AllocationMethod - Whether we submit the allocation to a plurality vote, or

if the chair simply assigns resources randomly to participants.

– VotingRights - This DoF is only valid if a vote occurs in the first place and

refers to how long agents must have been members of the system, before

they are granted voting rights.

dofs = {votingRights, allocationMethod ,minRequired , offerAudit}

votingRights = {trialVote, defaultVote},

offerAudit = {auditOffers,noAudit},

allocationMethod = {plurality , random},

minRequired = {minOffer ,noMin}.

15

By selecting a value for each DoF, we form a complete specification instance
which is referred to as a specification point (SP). Here each DoF can take one
of two values, resulting in sixteen possible SPs. If we consider the specification
as a state transition system, these points represent all possible states and the
adaptations correspond to the transitions between them.

These DoFs must be defined in conjunction with the event calculus implemen-
tation of the object level protocol. We present the predicates from the resource
allocation example representing how the allocationMethod degree of freedom is
implemented. The following can be translated directly into Prolog and represents
the part of the protocol where the chair is permitted to distribute the pooled
resources. R1a refers to a plurality distribution, R1b random allocation. The
conditions in bold refer to which of the DoF values is currently active, to ensure
that the correct rule is used.

R1a : holdsAt(permission(Chair , distribute(Chair ,Agent)) = true,T) : −

holdsAt(roleof (Chair , chair) = true,T),

selectPluralityResult(Result),

holdsAt(ballot = closed),

holdsAt(dof(votingProtocol) = plurality, T).

R1b : holdsAt(permission(Chair , distribute(Chair ,Agent)) = true,T) : −

holdsAt(roleof (Chair , chair) = true,T),

selectRandom(Result),

holdsAt(ballot = closed),

holdsAt(dof(votingProtocol) = random, T).

The meta level protocol is defined alongside the object protocol in the EC
and can be invoked at any time by the agents to initiate a discussion about which
DoFs to change in the next session. Note that we have not included any DoFs at
this level as we would need another discussion protocol at the meta-meta level
to adapt it.

4.3 Metric Space Design

Once the DoFs and their respective values have been set for the protocol a
system designer can move from the Event Calculus Plugin to the Metric Space
Plugin where the DoF values can be formed into a specification space. Given
the set of specification points T determined by the number and value-ranges of
the DoFs, a metric space on this set is defined by a distance function d such for
any x, y, z ∈ T , d obeys symmetry (d(x, y) = d(y, x)), identity of indiscernibles
(d(x, y) = 0 ↔ x = y), and the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)),
from which it follows that for all x and y, d(x, y) ≥ 0.

To use the PreSage-MS plug-in, the programmer must assign the DoF val-
ues, and encode the function d. The topology of the space is therefore determined

16

by the values and d, which are dependent on what the distance between spec-
ification points actually represents. If, for example, the distance was a simple
similarity measure, we could assign DoF values as follows:

AllocationMethod : {plurality , random} → {0, 1}

VotingRights : {defaultVote, trialVote} → {0, 1}

AuditOffers : {offerAudit ,noAudit} → {0, 1}

MinimumRequired : {minOffer ,noMin} → {0, 1}

and a metric d1 simply implemented as the hamming distance between points
represented as strings in (0|1)4, or the Manhattan distance between cells in a
Karnaugh map of the points.

Alternatively, we could define the metric space to represent the cost of im-
plementing a (move to a) new specification point. If, in order to change to the
new SP, a DoF value must be changed, we define a cost to remove the current
value and a further cost to install the new value. Each value must therefore have
a cost of installation orthogonal to the cost of removal (resp. installation) of the
alternative DoF value. To preserve symmetry, let us assume the cost to install a
value to be the same as that to remove it.

Then we could assign values as follows (based on an estimate of the number of
lines of code and predicates that have to be changed from the previous section):

AllocationMethod : {plurality , random} → {(0.5, 0), (0, 0.6)}

VotingRights : {defaultVote, trialVote} → {(0.4, 0), (0, 0.9165)}

AuditOffers : {offerAudit ,noAudit} → {(1, 0), (0, 2)}

MinimumRequired : {minOffer ,noMin} → {(1, 0), (0, 1)}

The two specification points in Figure 4 can therefore be encoded as follows:

(random, offerAudit , trialVote,noMin)

(
︷ ︸︸ ︷

0, 0.6,
︷ ︸︸ ︷

1, 0,
︷ ︸︸ ︷

0, 0.9165,
︷ ︸︸ ︷

0, 1)

(plurality , offerAudit , trialVote,noMin)

(
︷ ︸︸ ︷

0.5, 0,
︷ ︸︸ ︷

1, 0,
︷ ︸︸ ︷

0, 0.9165,
︷ ︸︸ ︷

0, 1)

Then we need to define a metric d2 on this space which is the summation
of the manhattan distances moved in each of the four dimensions (illustrated
in Figure 5). Since we have assigned a cost of 0.5 to implement or remove a
plurality allocation method and a cost of 0.6 to implement or remove a random
allocation method, then to move from one method to the other the complete
removal and installation cost is 0.5 + 0.6 = 1.1. Similarly to change the voting
rights DoF costs 0.4 + 0.9165 = 1.3165.

Figure 4 shows the formulated metric space given this configuration. The dis-
tance between the current specification point (the square node) and the selected
circular node in bold is 1.1. This is because the current specification point uses
a plurality allocation method and the other vertex is identical except for the
random allocation method.

17

y
1

x1

y
2

x2

y
3

x3

y
4

x4
0.9165

0.40.5

0.6

1

2

1

1
uninstall Random

in
st

al
l
P

lu
ra

li
ty

0.6 + 0.5 = 1.1 + + +0 0 0

Fig. 5. The distance between the specification points (trialVote, offerAudit, random,

noMin) and (trialVote, offerAudit, plurality, noMin). Note that we are only changing

the allocationMethod degree of freedom from random to plurality

4.4 Experimental Design and Example

Once the protocol specifications are given and the metric space functions de-
fined, a programmer can experiment with effect of the metric on this space for
organised adaptation under different agent populations. Given the experimental
arrangement described in this paper, we intend to investigate when a system
should adapt. Agents performing adaptation must be capable of trading off the
costs of adaptation versus the expected benefit. This requires that agents can
take two measurements: the average utility per timecycle of a specification point
under a particular environmental state and an estimate of the amount of time
the system will remain in that state. If the cost to adapt consistently outweighs
the incentives then the participants must know to refrain from adaptation.

To begin this process we must first limit the environmental measurements
to a finite state space. For the resource allocation scenario we have chosen four
environmental states, based on the supply and demand of resources and the
proportion of agents in the system behaving selfishly:

Env1: Supply > Demand, Few agents behaving selfishly
Env2: Supply < Demand, Few agents behaving selfishly
Env3: Supply > Demand, Many agents behaving selfishly
Env4: Supply < Demand, Many agents behaving selfishly

We can then run non-adaptive simulations for each environmental state under
each of the twelve specification points to get the expected utilities:

sp1 sp2 . . . sp12

env1 µ1,1 µ1,2 . . . µ1,16

env2 µ2,1 µ2,2 . . . µ2,16

env3 µ3,1 µ3,2 . . . µ3,16

env4 µ4,1 µ4,2 . . . µ4,16

18

If we assume that the utility is only dependent on the current state we can
calculate the total expected benefit by estimating the time the system will remain
in an environmental state. For the preliminary experiments we can take a simple
geometric distribution of rate λ to predict the number of timecycles between
state changes. The expected utility of sp1 in under env1 then becomes:

Eenv1(sp1) =
µ1,1

λ

Given these values we can form a decision function based by amending each
of the utility values with their associated cost. This cost is calculated from the
second metric space formulated in section 4.3. Based on this decision function,
we intend to look at different movement policies through specification spaces in
order to find which ones contribute to a more desirable distribution of resources.

5 Discussion, Related and Further Research

PreSage-MS is proving useful for experimenting with dynamic specifications in
terms of the three parameters: agent internals, protocol and DoF specification,
and metric space design. However, it has also thrown into relief a number of
inter-linked issues concerning organised adaption, namely:

– the role of institutional agents and the migration from design-time tools to
run-time services;

– scalability to ‘large’ agent teams and the transition from organised adapta-
tion to organizational adaptation; and

– the relationship between formal models of norm change and compliance per-
vasion amongst the affected population of agents.

We briefly consider these issues here.
Open systems, following Hewitt [9], assume independently developed sub-

systems without global objects or objectives, but with a commonly understood
communication language. However, it is possible to relax the assumption that
there are no global objects, and consider the status of the EC plug-in and the
Metric Space plug-in. These plug-ins are providing computationally-intensive
services; they are also computing a storing a global state (the set of norms and
normative positions, and the current/desired specification points). In these cases,
we may wrap such services in institutional agents of the kind envisaged by Lopez
et al [4]. As such, this move represents a step in the migration from design-time
tools for human user to run-time services for software agents.

The presence of institutional agents also suggests a possible repository for the
functionality required to affect the transition from organised adaptation to or-
ganizational adaptation. Recall that a design objective was adaptation in ‘large’
agent teams: the question then is whether it is possible (necessary, desirable) to
have a single flat hierarchy, or whether some kind of structure is required, e.g.
[8]. In organizational adaptation, it is needed to extend a dynamic specification
to the creation, modification and deletion of roles, and the creation, remit, mod-
ification and deletion of sub-structures (in the way that human institutions are

19

often structured into departments, committees, etc.) This opens up an inquiry
into the scale and effective size of ‘sophisticated’ agent teams, and whether some
form of Dunbar’s number can be derived for agents (i.e. a computational rather
than a cognitive limit on the size of a stable group).

Many other issues are raised by stable groups in organizational adaptation,
which includes the impact of an underlying social network on the ‘observable’ in-
stitutional structure (cf. [3]). This includes: how an arbitrary collection of agents
can self-organise into an organisational structure; how an arbitrary collection of
agents can self-organise its social network (which is structurally distinct from
the organizational structure); and, what is the interplay between the explicit
formal organization and the implicit social network.

The consideration of social networks as a parameter influencing adaption
raises additional concerns with respect to the relationship between formal models
of norm change and compliance pervasion amongst the affected population of
agents. There is a growing body of work on formal models of explicit norm
change in legal systems [7]. A particular question for future research is how to use
PreSage-MS to experiment with modifiable legal systems and synthetic micro-
populations of agents and the interaction between the two: i.e. how does (‘top
down’) norm change impact population behaviour, and how does population
behaviour influence (‘bottom up’) changes to norms.

6 Summary and Conclusions

The system represents a novel design framework for open systems performing
organisational adaptation. The rules and protocols are entirely specified in the
Event Calculus providing foreign agents with a transparent description of how
the system functions and as such can decide whether their interests will be served.
Metric Spaces are used in conjunction with a variety of plugins to manage which
aspects of the system may be adapted in order to prevent an adaptation which
could irreparably harm the system. It is in this way that we ensure the level
of control required by a system designer while at the same time maintaining a
publicly accessible specification.

PreSage-MS is an extended agent programming environment which offers a
flexible and open solution to implementing organised adaptation in multi agent
systems using dynamic specifications. We intend to explore the question of when
to adapt in the context of a self adapting resource allocation scenario in which
the agents stockpile and allocate a shared resource. Periodically the system will
need to adapt to deal with invasions by a selfish population who try to divert
the flow of resources to themselves. We intend to explore movement policies in
specification spaces, which trade off the cost of making an adaptation versus the
benefit of moving to a different specification point.

References

1. Michael Apostolou and Alexander Artikis. Evaluating dynamic protocols for open

agent systems. AAMAS’09: Proceedings of The 8th International Conference on

20

Autonomous Agents and Multiagent Systems, pages 1419–1420, May 2009.

2. Alexander Artikis. Dynamic protocols for open agent systems. AAMAS’09: Pro-

ceedings of The 8th International Conference on Autonomous Agents and Multia-

gent Systems, pages 97–104, 2009.

3. Michael Ashworth and Kathleen Carley. Who you know vs. what you know: The

impact of social position and knowledge on team performance. Journal of Mathe-

matical Sociology: Journal of Mathematical Sociology, 30:43–75, Jan 2006.

4. Eva Bou, Maite Lopez-Sanchez, and Juan Rodriguez-Aguilar. Adaptation of au-

tonomic electronic institutions through norms and institutional agents. ESAW’06:

Proceedings of the seventh annual international workshop on engineering societies

in the agents world, LNCS 4457:300–319, 2007.

5. Hugo Carr and Jeremy Pitt. Adaptation of voting rules in agent societies. OA-

MAS@AAMAS’08: Proceedings from the AAMAS Workshop on Organised Adap-

tation in Multi-Agent Systems, pages 36–53, 2008.

6. Hugo Carr, Jeremy Pitt, and Alexander Artikis. Peer pressure as a driver of adap-

tation in agent societies. ESAW’08: Proceedings of the ninth annual international

workshop Engineering Societies in the Agents World, LNCS 5485:191–207, 2008.

7. Guido Governatori, Antonino Rotolo, Régis Riveret, Monica Palmirani, and Gio-

vanni Sartor. Variants of temporal defeasible logics for modelling norm modifi-

cations. ICAIL’07: Proceedings of the 11th international conference on Artificial

intelligence and law, pages 155–159, Jun 2007.

8. Zahia Guessoum, Mikal Ziane, and Nora Faci. Monitoring and organizational-level

adaptation of multi-agent systems. AAMAS’04: Proceedings of the third interna-

tional joint conference on autonomous agents and multiagent systems, 2:514 – 521,

Jul 2004.

9. Carl Hewitt. Offices are open systems. ACM TOIS: ACM Transactions on Infor-

mation Systems, 4(3):271–287, Jul 1986.

10. Owen Holland and Chris Melhuish. Stigmergy, self-organization, and sorting in

collective robotics. Artificial Life, 5(2):173–202, Jan 1999.

11. Bevan Jarvis, Dennis Jarvis, and Lakhmi Jain. Teams in multi-agent systems. In-

ternational Federation for Information Processing (Springer), 228:1–10, Jan 2007.

12. James Kennedy, Russell C Eberhart, and Yuhui Shi. Swarm intelligence. Springer,

Jan 2001.

13. Jeffrey Kephart. Research challenges of autonomic computing. ICSE’05: Proceed-

ings of the 27th international conference on Software engineering, pages 15–22,

May 2005.

14. Robert Kowalski and Marek Sergot. A logic-based calculus of events. New gener-

ation computing, 4(1):67–95, 1986.

15. Brendan Neville and Jeremy Pitt. Presage: A programming environment for the

simulation of agent societies. volume LNCS 5442, pages 88–103, 2008.

16. Mı́cheál Ó Searcóid. Metric spaces. Springer, Jan 2006.

21

Action and Perception in Multi-Agent

Programming Languages: From Exogenous to

Endogenous Environments

Alessandro Ricci, Andrea Santi, and Michele Piunti

DEIS, Alma Mater Studiorum – Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,a.santi,michele.piunti}@unibo.it

Abstract. The action and perception model adopted by current multi-
agent programming languages has been conceived to work with exogenous

environments, i.e. physical or even computational environments com-
pletely external to the multi-agent system (MAS) and then out of MAS
design and programming. In this paper we discuss the limits of adopt-
ing such models when endogenous environments are considered, i.e. fully
computational (software) environments that are used by MAS developers
as first-class abstraction in MAS engineering to encapsulate functional-
ities useful for, e.g., agent coordination, agent computational activities
and agent access to the external environment. In the paper we describe
an action and perception model for agent programming languages specif-
ically conceived to be effective for endogenous environments and we dis-
cuss its evaluation using CArtAgO environment technology. On the agent
side, we take Jason, 2APL and GOAL as reference agent programming
languages.

Categories and subject descriptors: I.2.5 [Artificial Intelligence]:
Programming Languages and Software; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents

General terms: Agent programming languages; Methodologies and Lan-
guages

Keywords: Environment programming, Action/perception models

1 Introduction

The context of this paper is the action and perception model adopted in agent
programming languages (APL). Here we refer in particular to programming lan-
guages for (multi-) intelligent agent systems, based on practical reasoning: in
this paper in particular we will consider Jason [3], 2APL [4], and GOAL [7] as
concrete cases. The action and perception model in such abstract architecture
(and concrete languages) have been originally devised to be effective for agents
situated in physical environments, or computational but – in any case – external

22

to the multi-agent systems (MAS), not part of MAS design and engineering.
This is also the main perspective adopted in AI (see Russel and Norvig [13]).
We refer to environments of this kind as exogenous.

Besides this exogenous characterization, a further notion of environment has
been introduced, more oriented to MAS engineering: environment as first-class

abstraction [14], that is a computational layer which is meant to be designed by
MAS engineers to encapsulate functionalities that agents can exploit and adapt
at runtime, for their purposes. Functionalities range from – simply – providing
an interface to exogenous environments, to making it available computational
resources and services that are useful for agents individual activities, up to pro-
viding functionalities that can make agents communication, coordination and
organization more effective [10, 9]. In literature such a kind of environments take
different names (e.g. application environment, working environment): here we
refer to environments of this kind as endogenous, since they are part of MAS. In
this perspective, agent programming languages on the one side and technologies
for programming endogenous environments on the other side, can be suitably in-
tegrated to develop intelligent software systems [11], keeping a strong separation
of concerns by using the former to program pro-active, goal-oriented parts of the
system and the latter to program the passive resources and facilities shared and
co-used by the goal/task oriented parts.

Clearly the action/perception model adopted plays a key role in such in-
tegration, being the interface between the agent and environment dimensions.
Actually, almost every APL includes some kind of API to define the interface to
the environment. In this context, the EIS (Environment Interface Standard) ini-
tiative [1] aims at defining a standard interface to allow agents developed using
different programming languages to share the same environment, independently
of the specific model and technology adopted for it. Furthermore, languages like
2APL, Jason and GOAL provides a basic Object-Oriented model to define the
environment itself (besides the interface), which can be programmed using the
Java language. In this paper e argue that the action and perception model cur-
rently adopted by APL, which is suitable for exogenous environments, is not fully
satisfactory when endogenous environments are of concerns. The weaknesses –
that will be discussed in detail in Section 2 – concern both the approach used
in agent architectures to keep track of the actual state of the environment and
the semantics adopted for actions and action execution, which are not expressive
enough to effectively exploit endogenous environment mechanisms, such as syn-
chronization. Such problems can have a significant impact on both agents and
environment programming, as well as on systems scalability. Accordingly, in or-
der to solve the problems encountered with current approaches here we propose
a model for perceptions and actions specifically conceived for agents working
in endogenous environments. To evaluate the approach, we implemented it in a
new version of CArtAgO, which is a technology for programming and executing
endogenous environments in MAS based on the artifact abstraction [12, 8].

The remainder of the paper is organized as follows. In Section 2 we ana-
lyze the different kind of action/perception models in current APL, taking as

23

references Jason, 2APL and GOAL, and we describe what are the issues when
adopting such models in endogenous environments. In Section 3 we describe the
main concepts underlying a revised action/perception model and in Section 4
we evaluate its implementation by discussing some examples developed using
the new version CArtAgO and Jason as reference APL. Finally, conclusions and
future works are provided in Section 5.

2 Action and Perception in Agent Programming

Languages

In this section we analyze and discuss the action and perception model and
related architectures adopted in current agent programming languages, taking
Jason, 2APL and GOAL as reference case studies.

By referring to existing formalizations, all these languages follow more or less
the abstract reference architecture for intelligent agents and the practical reason-
ing agent cycle reported by Wooldrige in [15]. Essentially such a control loop can
be sumarized as a sense-plan-act cycle where the agent repeatedly (i) observes
the environment and update its beliefs, (ii) uses practical reasoning to deliberate
what intention achieve and how, and (iii) executes a proper plan for fulfilling the
selected intention. The environment (software or hardware) here is considered
fully exogenous. It’s worth noting that, moving from formal models to concrete
architectures and implementations, current APL adopt richer approaches and
semantics, which are explicitly oriented toward the integration with forms of en-
dogenous environments, typically developed using a mainstream language such
as Java. A comprehensive survey of the environment interface models adopted
by mainstream APL and the API for interact with them are discussed in the
EIS initiative report [1]: here we focus on the semantics underlying the action
and perception model.

2.1 The action model

In the abstract architecture, the action chosen by agent’s action selection func-
tion is dispatched to effectors which will eventually execute it (act stage, or
execute command in the practical reasoning cycle) and the control cycle can
start again (sense stage). Actions are considered as options in agents repertoire
which can be translated by moves enabled by the environment. The success or
failure of the action executed by effectors is meant to be determined by an agent
by analyzing the percepts that will eventually be observed from the environment.
From the execution model point of view, action execution is modelled then as
an atomic event, which corresponds to dispatching the action to effectors. This
semantics is the basic one adopted by almost all APLs formal models. Not sur-
prisingly, concrete implementations of APLs adopt more complex solutions than
the one just presented.

In AgentSpeak(L) and Jason operational semantics [2], action execution is
modelled by a transition inserting the action selected by previous stages of the

24

agent cycle into a particular set of actions, i.e. a set of actions to be performed
in the environment. The formal model does not provide any further informa-
tion: the selected action is scheduled to be executed – sooner or later – by other
components (i.e. effectors) of the agent architecture [2]. Actually, in the concrete
architecture and implementation of the Jason interpreter1, the action execution
model is more articulated and expressive than the one described in the oper-
ational semantics. Action execution is done by calling a special method of the
Java class representing the environment—the action to be performed is a pa-
rameter of this method. As a key aspect, the method is executed asynchronously

with respect to the agent cycle: current agent intention – i.e. the plan in exe-
cution – is suspended until the action execution is terminated, so the agent can
carry on other plans and react to percepts. So, in practice, the action execution
model is not atomic. The environment method can return – as action feedback
– a boolean value, indicating if the requested action has been executed at all.
A false value means it was not, so the plan fails. A true value means that the
action as been executed (accepted), however it does not mean that the expected
changes will necessarily take place ([2], p. 50).

Also GOAL adopts the basic action semantics found in the abstract practi-
cal reasoning agent cycle, so executing the actions atomically and establishing
their outcomes only by sensing the environment. Analogously to Jason, action
execution is done by calling a special execute-action method of the Java class
representing the environment, with the action to be performed as a parameter
of this method. As reported in [1], in GOAL invoking the execute-action method
might have tree outcomes: either the return value true indicating success, false
indicating that the action has not been recognized, or an exception indicating
that the action has failed. In this case the meaning of success is more subtle: it
triggers the application of the action post-conditions that can be specified in the
agent program, to update the belief base. In the examples described in [7] – the
blocks-world in particular – such updates seem to refer not simply to an action
(e.g. move) that has been recognized by the environment, but to an action whose
execution has been fully executed with success and the environment has been
changed accordingly.

So, this action semantics appears a natural choice when exogenous environ-
ments are considered – even if also in this case some criticisms have been raised
in literature [5]. Conversely, we argue that it is not the most effective seman-
tics when considering endogenous environments. The reason is that endogenous
environments are meant to be specifically designed and programmed by MAS
developers to support agent activities; so, it is natural to devise a stronger se-
mantics for action execution where – for instance – action success, and so the
success of the execute-action method if we consider the environment interface
model adopted by Jason2 and GOAL – means not only that the action has been
accepted or recognized by the environment, but that it has completed and its

1 http://jason.sourceforge.net
2 Actually Jason makes it possible to implement a different semantics by customizing

some part of the agent architecture.

25

Fig. 1. (left) 2APL example for an agent blocked on a long term activity. (right) A

simple 2APL environment in Java.

effects and changes took place, relieving the agent from the burden of checking
this by analyzing the percepts.

2APL apparently goes in this direction, by adopting a strong semantics for
action success and failure, not only at the implementation level but also in the
formal model, explicitly assuming to work with computational environments,
represented by Java objects. In the formal model, an external action is modeled
as an atomic transition involving changes in the configuration of both the agent
and the environment [4]. Action execution is done by calling methods of the
Java class(es) representing the environment(s), which directly implement the
actions behaviour. Following [1], executing an action-method in 2APL can have
two outcomes: either a return-value (an object) indicating success is returned,
that might be non-trivial (e.g. list of percepts in the case of an sense-action) or
terminate with an exception indicating action-failure. In this case success means
that the action completed with success—and so the effects of the action execution
took place, so a stronger semantics with respect to Jason and GOAL. However,
analogously to Jason and GOAL formal model, action execution is modelled and
finally implemented as an atomic transition (so an event) coupling the agent
and the environment. This means that by executing an action, the agent cycle
is blocked until the completion of the action with success or failure occurs, and
this can have some drawbacks for agent reactivity. We clarify the point with an
example shown in Fig. 1, a 2APL program composed by two agents, Tom and
Alice, interacting in the same environment, represented by the TestEnv Java class
(only Tom’s source code is shown). The actions provided by the environment –
i.e. the methods implemented by the class – are compute, which is meant to
execute a long-term computation returning finally a result – and update, which
is meant to update the state of the environment generating percepts—that are

26

events in the case of 2APL. To achieve its goal, the agent Tom must perform
the compute action; however Tom is also interested to perceive events generated
by the environment to react accordingly—in this case simply logging in output
the percepts. Alice simply acts on the environment performing an update, so
generating percepts that are relevant also for Tom. However Tom is not able

to react to percepts generated by the environment until the compute action has

completed. So if one want to save agent reactivity, it cannot perform long-term
actions, or rather: every long term action must be implemented by environments
in terms of multiple sub-actions.

2.2 The perception model

In the abstract intelligent agent architecture [15], agent perception is modeled
by a see function: E → Per. This function encapsulates agent’s ability to obtain
information from the environment E in which it is situated. The output produced
by this function is a percept Per, which typically contains information about
the actual state of the environment. Percepts are then elaborated by the agent
through appropriate belief-update/revision functions, to keep its mental state
consistent with the actual state of the environment. This model is adopted both
in Jason and GOAL.

A GOAL agent implements a simple SPA cycle during which (i) it receives
percept from the environment (containing the whole state of interest) through
its perceptual interface and (ii) it updates its mental state through the percepts
rules included by the agent programmer to specify how the agent belief base
should be updated when certain percepts are received (see [7] for more details).
In Jason, at each cycle an agent perceives the actual state of the environment
and updates its mental state, in particular automatically removing / updating /
adding beliefs related to percepts. Actually this is the default behaviour of the
belief-update and belief-revision function: the highly customizable architecture
of the Jason interpreter allows for changing this semantics, customizing both the
perceive stage (implementing the see function) and the belief update/revision
stage.

So both in the case of GOAL and Jason, percepts represent actual information
regarding the environment—typically a snapshot of the environment state which
is observable to the agent. This is the natural choice when considering exogenous
environments. However, it suffers of some problems that are particularly impor-
tant when applying the approach to endogenous environments. A first problem
concerns the possibility for an agent of losing (not perceiving) environment states
that could be relevant for agent reasoning and course of action. This can occur
because of environment dynamics, related to internal processes and also actions
performed by other agents, changing asynchronously the environment multiple
times between two subsequent perceive stages. We clarify the problem with a
simple example written in Jason, shown in Fig. 2. The example includes a simple
endogenous environment that provides a generic shared resource bounded by ca-
pacity limit, i.e. the resource can be used concurrently only by a limited number
of agents. Then, a set of worker agents – with a cardinality greater than the

27

Fig. 2. (left) Jason source code of the worker and observer agents. (right) Java imple-

mentation of the resource environment where the workers and observer are situated. .

(bottom) A screenshot of the Jason console during a run of a MAS composed by three

workers and an observer.

resource capacity – cyclically try to use the resource, first attempting to acquire
tit by means of an acquire_resource action, then using it and finally releasing it
by means of a release_resource action, making it available for further usages.
The single kind of percept generated by environment – max_use(N) – represent
the actual number of times that the resource reached its max capacity—so it
starts from zero and is incremented each time the limit is achieved. The scenario
is completed by an observer agent, whose goal is to observe the shared resource
and to log in output a message each time max_use changes. The agent moni-
tors the number of times the resource reached its max capacity and, also, does
a check for detecting lost states, by executing the check_state_lost plan each
time it perceives a new value for the max use – represented by the belief-update
event related to max_use(N). The check_state_lost plan checks if the difference

28

between the current observed max_use occurrence and the previous one (stored
by the observer into the last_occurence belief) is greater than one unit. If that
is the case, it means that some max_use percepts have been lost and a message is
printed in standard output. By running the example it is possible to verify that
the observer loses states (Fig. 2 shows a screenshot) and that the frequency of
the losses increases with the number of worker agents concurrently working in
the same environment.

A second problem is that retrieving perceptual information at each cycle
regarding the current observable state of the environment can be a task that re-
quires high computational complexity, in particular when considering non-naive
environments, being either centralized or, worst, distributed. Then, given the list
of percepts representing the current state, the belief update must be updated ac-
cordingly: in the case of a direct mapping between beliefs and environment state
as in the case of Jason adopting the default belief-update and belief-revision
semantics, this typically involves iterating both the percept list and the whole
belief-base to remove belief that does not hold anymore, to add new ones and
update existing ones.

Differently from Jason, 2APL models percepts as events. This in principle
makes it possible to avoid the previous problem—as will be shown in next sec-
tion. However in 2APL – analogously to GOAL – in order to keep track of the
observable state of the environment in terms of beliefs, the programmer is forced
to explicitly define the rules that specify how to change the belief-base when a
percept is detected. This is a indeed very important capability when dealing with
exogenous environments; when adopting endogenous environments – in particu-
lar complex ones – this can become burdensome. Actually – as will be detailed
in next section – being specifically designed by MAS engineers, endogenous en-
vironments allow for stronger assumption on the relationships between percepts
generated by the environment and related beliefs. Such assumption can be used
then to define a mapping percepts-beliefs to be applied by default by the ar-
chitecture, so, on the one side, avoiding the burden to the agent programmers
of necessarily specifying the percept rules, and on the other side automatically
keeping consistency between the actual state of the environment and the belief
base.

3 From Exogenous to Endogenous Environments

3.1 Action side

As mentioned in the previous sections, endogenous environments allow for a
stronger semantics for action success/failure, which finally simplifies agent pro-
gramming and make multi-agent programs more efficient. In an endogenous en-
vironment the success (or failure) of an action on the agent side can be directly
related to the successful (or failed) completion of an operation or process exe-
cuted on the environment side – which has been designed by the MAS engineers
– as a consequence of the agent action request. So, differently from exogenous
environments, where action success or failure can be established by an agent

29

only by interpreting the percepts generated by the environment after the action
execution, in endogenous environments action success/failure can be represented
by an explicit action completion event generated by the environment, thereby
an explicit information related to operation execution completion (with success
or failure). Accordingly, from the APL point of view the execution of an action
does not mean that the action has been simply accepted or recognized by the
environment, but that the related environment operation has been executed up
to completion. This means seeing the set of actions as a sort of contract provided
by the environment. The contract includes both the effects that can be assumed
with action completion, and the action feedbacks, including further information
(results) related to action success or failure. By assuming this semantics, agent
programs become – generally speaking – more compact and efficient, since there
is no need for agents to check asynchronously percepts value to determine action
effects.

From the action execution model point of view, this approach promotes an
action-as-a-process semantics, where actions are not modeled as single atomic
events but as processes that can be long-term, whose completion is notified by
action completion events. When adopted in APL, this semantics have two main
benefits: First, it makes it possible to effectively program agents that execute
(long-term) actions without hampering their reactivity (see the example using
2APL in Section 2): the action-as-process semantics makes it possible then for an
agent to start the execution of action and then go on perceiving, reacting to per-
cepts that are generated by the action itself or other actions, possibly carrying
on other pro-activities by choosing other actions to execute. Second, the action-
as-process semantics makes it possible to implement efficient coordination mech-

anisms simply based on action synchronization, designing environments which
provide operations for that purpose. This because the action completion event of
an action performed by a certain agent can be generated as a consequence of the
execution of the action(s) of other agents in the same environment. This is actu-
ally not possible with an action-as-event semantics. The coordination semantics
in this case is encapsulated in the the environment providing the operations.
As a well-known example, we mention here tuple space coordination model and
Linda coordination language [6]. Blocking actions like in or read cannot be im-
plemented by adopting an action-as-event semantics: conversely their implemen-
tation is quite straightforward by considering an action-as-process semantics. A
concrete example about this will be given in next section, using CArtAgO.

3.2 Perception side

On the perception side, in endogenous environments modeling percepts as events

– carrying on information about changes occurred in the environment – is more
effective and efficient than modeling percepts as facts about the actual state

of the environment itself, as in the case of exogenous environments. At a first
glance this makes it possible to solve a main problem that has been described
in Section 2, i.e. the possibility for agents not to perceive environment states
– so loosing relevant environment configurations – due to the different update

30

frequencies carried on by agents perceptive activities and environment internal
processes. Referring to the abstract model mentioned in Section 2, the set of
percepts returned by the see function represent a list of changes occurred in the
environment during the last agent execution cycle and which are relevant for the
observing agent. Accordingly, the next function can update the current internal
state of the agent with respect to the whole set of changes occurred inside the
environment, thus eventually reconstructing all the intermediate states that the
environment assumed between a couple of see activities .

Then, to support the automated reconstruction of such states it is useful
to identify the basic set of possible kinds of event that can occur inside an
endogenous environment: (i) an observable part of the environment has changed;
(ii) an observable part of the environment has been added or removed; (iii)

a signal has been generated to acknowledge agents with some information. In
the latter case, signals are meant as information explicitly generated by the
environment – as designed by the environment programmer – to carry on some
data which can be purposefully processed by agents situated in the environment
and focusing that part of the environment which is the source of the signals.

By explicitly defining a model to represent environment observable parts – for
instance observable properties, in the case of artifact-based environments used in
next section – it is possible then at the agent architecture level to automatically
reconstruct a consistent snapshot of the current observable state of the environ-
ment by processing a list of events updating the previous snapshot. In the APL
considered here this means introducing in the basic architecture a support for (i)

representing the observable part of the endogenous environments as beliefs, and
(ii) automatically updating such beliefs as soon as such events are processed.
In this perspective, there is no more the need for an agent programmer to ex-
plicitly define belief updates function (such as in 2APL) or percept rules and
post-condition in action specification: the belief base is automatically updated
reflecting the perceived/reconstructed state of the observed environment.

3.3 The importance of defining localities

Actually, due to concurrency and distribution, the correct and efficient recon-
struction of the observable state of the environment from the individual agent
architecture perspective is an issue, both from the theoretical and practical point
of view. First, by working with multi-agent systems, we must assume that multi-
ple agents can concurrently work in the same environment and then events gen-
erated concern concurrent processes; Second, environments can be distributed,
which means that it is not feasible to consider a priori the availability of a unique
notion of time – either physical or logical – and then a total order among events.

In order to cope with these two aspects, first it is useful to conceive a dis-
tributed endogenous environment as a set of non-distributed sub-environments,
eventually connected in some way, and assume that each sub-environment de-
fines a spatial-temporal locality. For each sub-environment it is feasible then to
assume that (i) a local logical notion of time can be defined, and (ii) observable
events occurring the in the sub-environment can be totally ordered using logical

31

timestamps, even if they are generated by concurrent processes. Given this as-
sumption, agents perceive chains of events, which are totally ordered if the source
is a single sub-environment, partially ordered if more sub-environments are in-
volved. Then, some modularization strategy should be considered for structuring
individual sub-environments, so as to (i) allow multiple agents to work concur-
rently to different parts of the overall structure, promoting as far as possible
decentralization and parallelism; (ii) make it possible to easily change struc-
ture at runtime, eventually changing/extending dynamically the set of actions
available, so to better support openness, adaptation, etc.

4 Evaluation using CArtAgO

The idea presented in previous section has been implemented in the new ver-
sion CArtAgO [12], a platform for developing endogenous environments in multi-
agent systems. Before discussing in detail some examples evaluating the new
action/perception model, few words about CArtAgO are provided – a complete
description is outside the scope of this paper, the interested reader can find it
here [12]. CArtAgO makes it possible to design and program endogenous envi-
ronments as set of workspaces – playing the roles of sub-environments – where
agents can share and use artifacts, which is the basic abstraction used to modu-
larize the environment. Artifacts are programmed by MAS developers – a Java
API is provided to this end – and instantiated, used, adapted by agents at run-
time as first-class resources and tools composing their endogenous environment,
to be exploited to accomplish their tasks. To be used, an artifact provides a us-
age interface containing a set of operations that agents can execute to get some
functionality. To be perceived, an artifact can have one or multiple observable

properties, as data items that can be perceived by agents as environment state
variables, whose value can change dynamically because of operation execution.
Operations are computational processes occurring inside the artifact, possibly
changing the observable properties and generating observable events, as environ-
ment signals that can be relevant for agents using/observing the artifact.

By integrating CArtAgO with existing APL, agents written in different agent
programming languages can cooperatively work inside the same workspaces,
sharing and co-using the same artifacts [11]. The new action and perception
model described in this paper essentially improves the way in which agents can
exploit artifact-based environments. In the remainder of the section we will con-
sider as APL Jason, whose highly customizable architecture made it possible
to adapt quite straightforwardly the agent architecture to implement the new
action and perception semantics.

4.1 The action model at work

Following the new model, artifacts operations are now conceived directly as ex-
ternal actions that the environment makes it available. So, by performing an
action act(P) where P are action parameters, a corresponding operation op(P)

32

Fig. 3. A Jason agent executing some actions to exploit the functionalities of the arti-

facts of a workspace, reacting to percepts related to the environment observable state

and events.

Fig. 4. (left) Snipped of a plan of Jason agent to achieve a meeting point with other

agents, exploiting a RendezVous artifact; (right) Source code of the RendezVous artifact.

33

provided by some artifact currently available in the workspace is executed—
where act and op matches. Then, the action succeeds or fails when (if) the
corresponding operation has completed with success or failure. Action feedbacks
eventually resulting from action execution are made available to the agent per-
forming the action (operation) as output parameters of the action itself. By
executing an action, the agent plan (activity) including such action is suspended
until the corresponding operation has completed (i.e. the action completed). In
the meanwhile, the agent control cycle can go on, making it possible for the
agent to get percepts and select and perform other actions. So by adopting this
semantics the use of artifact-based environments by agents becomes more agile
and agent programs more concise.

As a simple example, Fig. 4 shows a Jason agent working in a workspace
containing some artifacts, in particular: an instance of Calc artifact, an instance
of SharedData artifact, one of Stream and one Console. Calc provides an opera-
tion compute which does a long term computation returning finally a result as
feedback. SharedData has a value observable property and provides an operation,
update, to update such value. Stream has an operation generate which results in
the generation of a stream of observable events (signals in this case) which can
be perceived by agents focussing the artifact. Finally Console (whose source code
is not reported) provides an operation println to print messages on standard
output. At a first glance, the agent sees the workspace as an environment provid-
ing four kind of external actions: compute, update, generate and println, and an
observable property value(X), besides the specific artifacts where the operations
and observable properties are stored. Accordingly, in main_plan plan, which is
triggered by a new work_todo goal, the agent interacts with the environment di-
rectly performing compute and then println to show the computed result on stan-
dard output. Actually, to avoid ambiguities when performing actions in the case
of multiple instances of artifacts providing operations with the same names, it is
possible to specify the artifact target of the action by means of proper annota-
tions, such as artifact_name: compute(X,Result) [artifact_name("calc")

]. By triggering the execution of compute – which is carried on asynchronously in
the environment – my_plan is suspended until the action has completed, report-
ing the result as feedback (second parameter). Even if this plan is suspended,
the agent is free to carry on other plans and react to percepts. In the example
the agent – by executing a focus at the beginning of the plan3 – is observing the
shared_data artifact, whose observable properties (value) are mapped then onto
the agent belief base. So, as soon as the value of the property changes (because
some other agents perform an update), the belief is automatically updated and
a new belief update event is generated, triggering a plan that simply prints (by
exploiting the console) the value on standard output. Finally, after using the
calc artifact, the agent uses the stream artifact by doing a generate. Then, by
observing the stream, the agent processes the events generated by the artifact –

3 focus is a basic primitive of CArtAgO which makes it possible for an agent to select

the parts (artifacts) of the workspace to be aware of, perceiving their observable

properties and events

34

by updating a belief related to the sum of the values generated by the stream
– before the generate action completes. After the action completion, the agent
then prints on standard output the final sum.

It’s worth noting that by mapping external actions onto artifact operations
we have a further important outcome for what concerns openness and dynamism:
the set of external actions available to an agent is dynamic, it depends on the cur-
rent shape of the environment – the actual set of artifacts available in workspaces
– and it can be then extended or specialized by agents themselves creating new
artifacts or replacing existing ones.

The effectiveness of the action model for implementing coordination mecha-
nisms – which was a second main outcome remarked in Section 3 – should be
clear from the example shown in Fig. 4. The example shows a RendezVous ar-
tifact which can be used by N agents to achieve a synchronization point and
an agent plan meeting_plan in which the artifact is used. From the agent point
of view, this is done by simply performing the ready action, which is mapped
onto the related operation of the artifact. The artifact is programmed so that
the operation completes with success only when N agents have executed the
same operation. The approach is more efficient compared to any other possible
solutions based on pure message passing. For instance, a purely decentralized
solution based on an interaction protocol among the N agents would require the
exchange of 2(N − 1) messages and a proper plan – in the agent program – to
track and manage the arrival of messages, updating a local belief about the num-
ber of agents that reached the meeting point. Conversely, a centralised solution
based on an external agent coordinator would require 2N messages ((N − 1)2

using one of the N agents as the coordinator). In our solution a single action
is executed by an agent, so N actions are necessarily in the overall to achieve
synchronization.

4.2 Exploiting the perception model

By applying the new perception model, percepts received by an agent who is
focussing an artifact are events that concern signals and observable properties
updates; such events are used then to automatically update the beliefs in the
belief-base of the agent that keep tracks of the current value of the observable
properties of the artifact focussed by the agent. By adopting this model we
have the guarantee that no states are lost for an agent who is observing the
environment (or a part of it). Here we show this in practice by revisiting the
shared resource example used in Section 2. In particular the objective of the
example is the same, as well as the source code of the agents, but in this case the
environment is implemented in CArtAgO by an artifact called ResourceArtifact4.
The artifact – whose source code is reported in Fig. 5 – provides the same
functionalities of the Jason environment developed in the previous example. In
this case, the underlying perception model ensures that every change to the

4 The example is included in CArtAgO 2.0 distribution, available at http://cartago.

sourceforge.net

35

Fig. 5. The resource environment example introduced in Section 2 implemented here

by means of a ResourceArtifact. The source code of the workers and of the observer

(on the right) is almost the same.

max_use observable property is perceived by the observer agent, which, differently
from the one in Section 2, never prints to standard out any log message about
loss of states. Is worth noting that the source code of both worker and observer

agent is almost the same used in the previous example, with minor differences,
such as the explicit creation of the ResourceArtifact by the observer agent.

5 Conclusion

As remarked by the EIS initiative [1], the definition of a general-purpose and
standard environment interface is a relevant issue of current APL. This is even
more important when developing multi-agent programs that aims at exploiting
endogenous environments, as first-class abstraction to encapsulate functional-
ities. Accordingly, in this paper we discussed the main features of an action
and perception model that effectively exploit key properties of endogenous en-
vironments, simplifying and making it more efficient agent and environment
programming.

Then, we evaluated the approach by implementing it in the new version of
CArtAgO, which aims at providing a general-purpose and standard model to
conceive, design and program endogenous environments in MAS. In order to
achieve this objective, future works include: (i) the evaluation of the approach

36

using other APL besides Jason, starting from GOAL and 2APL; (ii) analyzing how
the semantics devised in this model and the one proposed in the EIS initiative [1]
can be suitably integrated; (iii) a formalization of the model and the analysis of
its impact on existing agent programming language formalizations.

References

1. T. Behrens, D. Jürgen, and K. V. Hindriks. Towards an environment interface stan-
dard for agent-oriented programming. Tech. rep. IfI-09-09. Dept. of Informatics,
Clausthal University of Technology.

2. R. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

3. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the golden fleece of agent-
oriented programming. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and
Applications, pages 3–37. Springer-Verlag, 2005.

4. M. Dastani. 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

5. J. Ferber and J.-P. Müller. Influences and reaction: a model of situated multi-
agent systems. In Proc. of the 2nd Int. Conf. on Multi-Agent Systems (ICMAS’96).
AAAI, 1996.

6. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, January 1985.

7. K. V. Hindriks. Programming rational agents in GOAL. In R. H. Bordini, M. Das-
tani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications (2nd volume), pages 3–37. Springer-Verlag,
2009.

8. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 17 (3), Dec. 2008.

9. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In AAMAS’04,
volume 1, pages 286–293, New York, USA, 19–23July 2004. ACM.

10. E. Platon, M. Mamei, N. Sabouret, S. Honiden, and H. V. D. Parunak. Mechanisms
for environments in multi-agent systems: Survey and opportunities. Autonomous
Agents and Multi-Agent Systems, 14(1):31–47, 2007.

11. A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Dastani. Integrating
Artifact-Based Environments with Heterogeneous Agent-Programming Platforms.
In AAMAS’08, pages 225–232, 2008.

12. A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment programming with
CArtAgO. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors,
Multi-Agent Programming: Languages, Tools and Applications. Springer, 2009.

13. S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach. Prentice
Hall, 2003.

14. D. Weyns, A. Omicini, and J. J. Odell. Environment as a first-class abstraction
in multi-agent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30,
Feb. 2007.

15. M. Wooldridge. An Introduction to Multi-Agent Systems, chapter Intelligent
Agents. John Wiley & Sons, Ltd, 2009.

37

An Interface for Agent-Environment Interaction

Tristan M. Behrens1, Koen V. Hindriks2, Rafael H. Bordini3, Lars Braubach4,
Mehdi Dastani5, Jürgen Dix1, and Jomi F. Hübner6 Alexander Pokahr4

1 Clausthal University of Technology, Germany {behrens,dix}@in.tu-clausthal.de
2 Delft University of Technology, The Netherlands k.v.hindriks@tudelft.nl
3 Federal University of Rio Grande do Sul, Brazil r.bordini@inf.ufrgs.br

4 Hamburg University, Germany {braubach,pokahr}@informatik.uni-hamburg.de
5 Utrecht University, Utrecht, The Netherlands mehdi@cs.uu.nl
6 Federal University of Santa Catarina, Brazil jomi@das.ufsc.br

Categories and subject descriptors: I.2.5 [Artificial Intelligence]: Pro-
gramming Languages and Software; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent Agents; I.6.3 [Simulation and Modeling]:
Applications; I.6.7 [Simulation Support Systems]: Environments

General terms: Standardization

Keywords: Agent development techniques, tools and environments, and Case
studies and implemented systems

Abstract. Agents act and perceive in shared environments. Although

there are many environments for agents – ranging from testbeds to com-

mercial applications – such environments have not been widely used be-

cause of the difficulty of interfacing agents with those environments. A

more generic approach for connecting agents to environments would be

beneficial for several reasons. It would facilitate reuse, comparison, the

development of truly heterogeneous agent systems, and increase our un-

derstanding of the issues involved in the design of agent-environment

interaction. To this end, we have designed and developed a generic envi-

ronment interface standard. Our design has been guided by existing agent

programming platforms. These platforms are not only suitable for devel-

oping agents but also already provide some support for connecting agents

to environments. The interface standard itself is generic, however, and

does not commit to any specific platform features. The interface proposal

has been implemented and evaluated in a number of agent platforms.

1 Introduction

Agents are situated in environments in which they perceive and act. From an
engineering point of view, an issue that repeatedly has to be dealt with is how to
connect agents to environments. Sometimes this issue is (partially) solved by the
physical sensors and actuators provided (e.g. in the case of a robot). But even if
sensor and actuator specifications are available, the design and implementation of

38

the interaction between the agents and the environment still require substantial
effort. This is due in part to the fact that each environment is different but
also because the platforms to build agents provide different support for agent-
environment interaction.

By now, there exist many interesting environments which range from spe-
cialized testbeds for agent systems to industrial applications based on agent
technology. In each of these applications, the interaction between agents and
environments has to be addressed. This is particularly true in application areas
for agent technology such as multi-agent based simulation and the use of agents
in (serious) gaming [10,19,20]. In the former, agents need to be connected to
computational models of real-world scenarios whereas in the latter agents are
used to control virtual characters that are part of a game. The design of agent-
environment interaction raises many interesting issues such as who is in control of
particular features of the system and what would be the right level of abstraction
of the interface that supports the interaction. Technically, there are also many
challenges as witnessed by [9] who discuss an interface for connecting agents to
the game Unreal Tournament 2004. This gaming environment has been identi-
fied as a potentially interesting testbed for multi-agent systems [6]. But without
a suitable, generic interface that supports flexible agent-environment interaction
such a testbed is unlikely to be widely used.

The availability of many interesting environments for applying agents does
not mean that they are easily accessed by agents that are built using different
platforms. To the contrary, in practice, it is often the case that agent developers
rebuild very similar environments such as grid-like environments from scratch
(one well-known toy example is the Wumpus environment [26] of which many
implementations exist). Apart from the duplicate work of developing these envi-
ronments, this also means that dedicated interfaces for agent-environment inter-
action are built: this makes it difficult to reuse existing environments. Instead,
it would be much better to work with an environment interface standard which
provides all the required functionality for connecting agents to an environment in
a standardized way. If environments were developed using such a standard, they
could be exchanged freely between agent platforms that support the standard
and thus would make already existing environments widely available.

In this paper, we propose an environment interface standard that facilitates
the sharing and easy exchange of environments for agents. Such a standard will
facilitate the reuse of environments between agent platforms; it will support the
easy distribution of environments such as the Multi-Agent Contest [13], Unreal
Tournament, and many others. There are, however, many other benefits. An
environment interface standard will provide a standardized and general approach
for designing agent-environment interaction: this is important for the comparison
of agent platforms as it would ensure that the same interface is used by each
platform. Moreover, a generic interface will support the development of truly
heterogeneous MAS, consisting of agents from several platforms. From a more
abstract point of view, the design of an interface standard will also increase
insight and conceptual understanding of agent-environment interaction.

39

Our approach is to design an interface that is as generic as possible, and that
facilitates reuse as much as possible from existing interfaces. Clearly, there is
a trade-off between these two goals. Our strategy for designing a generic envi-
ronment interface is (1) to start with what is currently “out there” in existing
platforms, and (2) to try to merge this into a generic interface which is sufficiently
close to these approaches. As agent-oriented programming platforms seem par-
ticularly suitable for developing agents, we have chosen to use four of the more
well-known agent programming languages (APLs) as our starting point.

The paper is organized as follows. The design of an environment interface re-
quires a meta model of environments, agents, and agent platforms. In Section 2,
the principles and requirements such a meta-model should satisfy are identified
and the basic components of the model, their interrelations, and the functional-
ities provided are described. The meta model is used in Section 3 to define the
proposed environment interface standard, the main contribution of this paper.
Section 4 discusses related work and Section 5 evaluates the proposed standard.

2 Requirements and Meta-Model

In this section we will explain the requirements and the meta-model for a general
environment interface standard, called EIS.

2.1 Principles

Two of the main motivations for introducing a generic environment interface are
to facilitate the easy exchange of environments between agent platforms and to
gain a more thorough understanding of the issues related to agent-environment
interaction. The environment interface should allow for: (1) wrapping already
existing environments, (2) creating new environments by connecting already ex-
isting applications, and (3) creating new environments from scratch. To this end,
in this section we discuss and present requirements such an interface should sat-
isfy. We do so by introducing various principles the interface should adhere to. We
have analyzed the agent-environment support provided by four well-known agent
programming languages: 2APL [12], GOAL [15], Jadex [8], and Jason [18].
Based on the principles, we then present a meta-model for an agent-environment
interface that is able to provide at least the support for agent-environment in-
teraction already provided by existing agent platforms (Section 2.2).

In order to guide the design of the interface, and to ensure that the inter-
face meets our objectives, we have identified a number of principles we believe
a generic environment interface should meet. First, as we aim for a generic in-
terface, the interface should impose as few restrictions on agent platforms and
environments as possible. More specifically, we believe that an environment in-
terface should not impose: (1) scheduling restrictions on the execution of actions
(actions can be scheduled by the agent platform and/or by the environment), (2)
restrictions on agent communication or organization structure (communication
facilities may be provided by the agent platform as well as by the environment),

40

(3) restrictions on what is controlled in an environment or how this control is im-
plemented, and (4) restrictions on how various components of the model should
be implemented; for example, the interface should allow for different types of
agent-environment connection (e.g. TCP/IP, RMI, JNI).

Second, as the interface is aimed at facilitating comparison of agent platforms,
a strict separation of concerns is advocated: the interface should not make any
assumptions about either the agent platform or the environments such platforms
are connected to, except for the type of connection that is established and as-
sociated functionalities. In our meta-model, this will be represented by a clear
distinction between agents and what we call controllable entities (i.e. “agents’
bodies situated in the environment”). Technically, this means the environment
interface must abstract from all implementation details concerning both agents
as well as environment objects. Instead, the environment interface may only
store identifiers to agents and entities and should administrate which agents
are associated with which entities (i.e. “who controls which body”). This level
of abstraction is required to ensure that no additional implementation effort is
required once the agent platform has been adapted.

Finally, as a more technical requirement, the interface should support porta-
bility, i.e., the easy exchange of environments from one agent platform to another.

2.2 Meta-Model

We have identified five components that are part of the meta-model on which
we base the design of the proposed environment interface. This meta-model is
illustrated in Fig. 1, and includes an environment model, an environment inter-
face that consists of an environment management system and an environment
interface component, an agent platform and agents.

APL Side Environment Side

Environment

Management

System

Platform

Agents

Environment

Interface

Environment

Model

Fig. 1. The components of our environment meta-model.

Our environment model assumes the presence of a specific kind of entity. [7]
defines an entity as “any object or component that requires explicit representa-
tion in the model.” In the context of agent-environment interaction, the entities

41

that we are interested in may be controlled by an agent. This means that the
behavior generated by the entity can be controlled by an agent if the agent is
properly connected to the entity. It is the task of the interface to establish such
a connection. Entities in an environment that can be so controlled are called
controllable entities.

Controllable entities facilitate the connection between the agents running
on an agent platform and an environment by providing identifiers, effecting ca-
pabilities, and sensory capabilities to agents. An agent’s identifier allows the
environment to send percepts or events to agents by means of the interface.
Moreover, the effecting and sensory capabilities specified by controllable entities
allow the environment to contextualize an agent’s action repertoire, the actions’
effects, and which part of the environment can be sensed, thus establishing the
situatedness of the agents.

The objective of defining an environment interface standard is to provide a
generic approach for connecting agents to environments. Agents may refer to
almost any kind of software entity but the stance taken here is that agents are
able to perform actions in the environment, sense the state of the environment
and process such sensorial input, and receive and process events that are gener-
ated by the environment. We use the following very generic definition taken from
[26] that includes precisely these two aspects: An agent is anything that can be
viewed as perceiving its environment through sensors and acting upon that
environment through effectors. We do not intend to restrict our proposal to any
specific kind of agent program, although we are primarily motivated by existing
agent-oriented programming languages.

An agent platform is the infrastructure that facilitates the instantiation and
execution of individual agents. It is also assumed to facilitate connecting agents
with environments and associating agents to controllable entities by means of
the environment interface functionality. Other than that, nothing else is assumed
about an agent platform.

The environment interface consists of two components: the agent-environment
interaction component and the environment management component. The agent-
environment interaction component manages the mapping and interaction be-
tween individual agents and the agent platform on one hand, and the environ-
ment and controllable entities on the other hand. The interaction between an
agent platform and the agent-environment interaction component allows agents
to act in an environment, sense its state, and receive events from it. We allow
two ways of sensing: (1) active sensing through specific sense actions, and (2)
passive sensing through a generic sense action embedded in the control cycle of
the agents. Using the agent-environment interaction component, the platform
can process different types of actions by calling different methods of this com-
ponent and possibly wait for the return values which are subsequently passed
on to the platform. The values returned can be either success/failure notifica-
tions or sense information if actions were (passive or active) sense actions. The
environment interface can also interact with a platform by sending an event to

42

a specified agent. The platform is then responsible to pass the event on to the
specified agent (e.g., by adding the event to the agent’s event base).

3 The Proposed Interface

In this section, we explain our ideas for a generic environment interface. First,
we define an interface intermediate language that facilitates data-exchange (per-
cepts, actions, events) between different components. Second, we assume a func-
tional point-of-view of the interface architecture. The interface provides functions
for: (1) attaching, detaching, and notifying observers (software design pattern);
(2) registering and unregistering agents; (3) adding and removing entities; (4)
managing the agents-entities-relation; (5) performing actions and retrieving per-
cepts; and (6) managing the environment.

3.1 Running Example: Multi-Agent Contest

The Multi-Agent Programming Contest 2010 tournament consists of a series
of simulations. In each simulation two teams of agents compete in a grid-like
world. There are virtual cowboys that can be controlled by agents. Agents have
access to incomplete information, because the cowboys have a fixed sensor-range.
Acting means moving a cowboy to a neighboring cell on the grid. There are no
further actions. The environment contains obstacles: some cells can be blocked
and thus are unreachable. The grid is also populated by virtual cows, that behave
according to a simple flocking-algorithm. To win a simulation, an agent team
has to herd more cows, and take them to their own corral, than the opponent
team. The simulation proceeds through discrete time steps. In each step, agents
can perceive, have a fixed amount of time to deliberate, and are then allowed to
act. After a number of steps the simulation is finished. The tournament is run by
the MASSim-server, which schedules and runs simulations. Agents are supposed
to connect to the server as clients. Communication between clients and server is
facilitated by exchanging XML-messages via the TCP/IP protocol.

3.2 Interface Intermediate Language

An important design decision has been to define, as part of the environment
interface, a convention for representing actions and percepts. This convention is
called the interface intermediate language, and supports the exchange of percepts
and actions from/to environments. A conventional representation for actions and
percepts is required to be able to meet the second principle aimed at facilitating
comparison of platforms and the fourth principle that aims at easy exchange of
environments and portability. To meet these principles, the interface should be
agnostic to any implementation details of either agent platform or environment;
this can be achieved by an abstract intermediate language. The convention pro-
posed here, however, imposes almost no restrictions (which is in line with our
first principle of generality).

43

The language consists of: (1) data containers (e.g. actions and percepts),
and (2) parameters for those containers. Parameters are identifiers and numer-
als (both represent constant values), functions over parameters, and lists of
parameters. Data containers are: actions that are performed by agents, results
of such actions, and percepts that are received by agents.

Here is an example for a set of percepts that informs an agent about the
beginning of a simulation, including the position of the corral, the size of the
grid, the visual range of the agents, the name of the opponent team and the
number of steps of the simulation:

corral(0,0,20,20) grid(100,100) id(1)

opponent(uglydozen) lineOfSight(8) steps(1400)

The action that establishes a connection to a server at a given location
is connect(agentcontest1,goodbadugly1,hh564kh), where agentcontest1 is
the hostname, goodbadugly1 is the username, and hh564kh is the password. An
example for an action that contains a list and functions, but is not related to the
agent contest is followPath(entity1,[pos(1.0,0.0),pos(1.0,1.0)]); this is
a high-level action that makes an entity follow a path.

3.3 Functional Point-of-View

What exactly is the correspondence between an environment-interface and the
components (platform, agents, etc.)? We allow for a two-way connection via
interactions that are performed by the components and notifications that are
performed by the environment-interface.

Interactions are facilitated by function calls to the environment-interface that
can yield a return value. For notifications we employ the observer design pattern
(call-back methods, known as listeners in Java). The observer pattern defines
that a subject maintains a list of observers. The subject informs the observers
of any state change by calling one of their methods. The observer pattern is
usually employed when a state-change in one object requires changes in another
one. This is the reason why we made that choice. The subject in the observer
pattern usually provides functionality for attaching and detaching observers, and
for notifying all attached observers. The observer, on the other hand, defines an
updating interface to receive update notifications from the subject.

We allow for both interactions and notifications, because this approach is the
least restrictive one. This clearly corresponds to the notions of polling (an agent
performs an action to query the state of the environment) and interrupts (the
environment sends percepts to the agents as in the AgentContest example).

Agents and Entities: We make three assumptions: (1) there is a set of
agents on the agent platform side (we do not know anything about them), (2)
there is a set of controllable entities on the environments side (again we do not
know anything about them), and (3) agents can control entities through the
environment-interface. An important design decision that we had to make is to
store in the environment-interface only identifiers to the agents, identifiers to the
entities, and a mapping between these two sets. The reason for that decision is,

44

45

Adding and Removing entities: Entities are added and removed in a
similar fashion to agents. Again identifiers representing entities are stored instead
of the entities themselves. There are two methods: the first (addEntity) adds,
and the second one (deleteEntity) removes an entity. Again this is necessary
to facilitate the connection between agents and entities. Once an entity is added
or removed, any observing components (platform and/or agents depending on
the design of the platform) are notified about the respective events. This is done
in order to allow components to react to changes in the set of entities in an
appropriate manner.

Managing the Agents-Entities Relation: Associating an agent with one
or several entities is the second and final step of establishing the situatedness of
agents by connecting them to entities that provide effectory and sensorial capa-
bilities. The agents-entities relation is manipulated by means of three methods.
The first method (called associateEntity) associates an agent with an entity,
the second one (freeEntity) frees an entity from the relation, and the third one
(freeAgent), frees an agent. This can be done by the interface internally and
by other components that have access to it as well. Restrictions on the struc-
ture of the relation can be established by the interface. In the AgentContest, for
example, one agent is supposed to control at most one virtual cowboy.

Performing Actions and Retrieving Percepts: The agents-entities re-
lation is a connection between agents and the sensors and effectors of the asso-
ciated entities. We establish two directions of information flow. Each direction
corresponds to a typical step in common agent deliberation cycles. We have fa-
cilitated the management of the two directions of flow by following a unified
approach whereby two methods are provided by the interface. The first one
(performAction) allows an agent to act in the environment through the effec-
tors of its associated entities. The second method (getAllPercepts) allows an
agent to sense the state of the environment through the sensors of the associated
entities. In the “cows and cowboys” scenario, nine actions are available. One for
connecting to the server at a given IP address with valid username and pass-
word, and the other eight for moving the cowboy in each possible direction. The
method getAllPercepts retrieves the last percept sent by the server.

Managing the Environment: Although different environments provide
different support to manage the initialization, configuration, and execution of
the environment itself, it is useful to include support for environment manage-
ment in the environment interface. For example, it is often useful to be able
to “freeze” a running MAS simultaneously with the environment to which the
MAS is connected by means of pause functionalities provided by the platform
and the environment. As there is no common functionality supported by each
and every environment, we have chosen to provide support for environment man-
agement by introducing a convention for labeling a set of environment commands
and environment events. The commands that are part of the proposed environ-
ment management convention include starting, pausing, initializing, resetting,
and killing the environment.

46

3.4 Implementation Details

The goal of developing an environment interface standard is to facilitate the easy
exchange of environments. The interface would reduce the implementation effort
of connecting agent platforms to environments. Of course, the effort of connecting
to the environment through an environment interface should not substantially
increase the effort needed for directly connecting agents to an environment.
Below, we report on the experience we gained with adapting four agent platforms
so that they support the environment interface as well as the experience gained
with two environments that were adapted to support the environment interface.

In order to create an environment interface for a given environment, dedicated
code that is specific to the environment is necessary. To that end, a particular
Java interface has to be implemented. That interface enforces the functional con-
tract introduced in subsection 3.3. Alternatively, the developer can inherit from
a class that contains a default implementation for all of the contract’s methods.
Whatever path the developers follow, they need to establish a connection to the
environment.

Supported Agent Platforms To evaluate the ease of use and generality of the
developed EIS concepts and components, we have connected four different APLs
to example environments developed with the EIS. For 2APL, GOAL, Jadex,
and Jason, a connection has been established with less than one day of coding
effort each.

2APL proved to be compatible with EIS. In order to establish a connection a
two-way converter for the interface intermediate language had to be developed.
Furthermore, the environment loading mechanism of 2APL had to be replaced
with the environment-interface loading mechanism provided by EIS. Percepts
sent by EIS using the observer functionality are translated into 2APL events and
handed over to the event-handling mechanism of the interpreter. Finally, special
external actions have been added to facilitate the manipulation of the agents-
entities relationship: (1) retrieving all entities, (2) retrieving all free entities, (3)
associating with one or several entities, and (4) disassociating with one or several
entities.

The original environment interface of GOAL did not fit with everything
provided by the environment interface. It nevertheless proved quite easy to con-
nect the interface to GOAL as most functionality provided by the interface is
straightforwardly matched to that provided by the GOAL agent platform. Sim-
ilar to 2APL, a two-way converter for the interface intermediate language had
to be developed with little effort required. There were no percepts as notifica-
tions (like events in 2APL), prior to the adaptation to EIS. GOAL only allowed
for retrieving all percepts in a distinct step of the deliberation cycle. Percepts
as notifications are now collected and processed together in the step where all
percepts are processed. Also, the MAS file specification of GOAL has been ex-
tended. Now one can use launch rules to connect specific agents with specific
entities. This allows for instantiating agents even during runtime.

47

For connecting Jadex agents to EIS, it is sufficient to make all agents of one
application aware of the concrete EIS object, implementing the current environ-
ment. In order to do this in a systematic way, the Jadex concept of space was
used. A space may represent an arbitrary underlying structure of a MAS that is
known by all agents. To support the EIS, a special EISSpace has been provided,
which implements the required interfacing code for connecting to an EIS-based
environment. Therefore, the participation in such an environment can now sim-
ply be specified in the Jadex application descriptor (“.application.xml”). When
such a defined application is started, the initial agents as well as the EIS environ-
ment will be created. Agents can then access EIS by fetching the corresponding
space from their application context and use the EIS Java API directly for, e.g.,
performing actions or retrieving percepts.

Jason’s integration with EIS was straightforward since almost all concepts
used in the EIS are also available in Jason. The integration consists essentially
of: (1) the conversion of data types, and (2) the development of a class that
adapts EIS environments to Jason environments. In regards to (1), all EIS data
types have an equivalent in Jason. Although some data types in Jason (e.g.,
Strings) do not have a corresponding type in EIS, they can be translated to EIS

identifiers. In regards to (2), the adaptor is a normal Jason Environment class
extension that delegates perception and action to the EIS. The adaptor class is
also responsible for registering the agents with the EIS as they join a Jason

multi-agent system and wake them up when the environment changes (using the
observer mechanism available in EIS). From all the concepts used in EIS, only
that of “entities” is not supported by Jason as all actions and perceptions are
relative to an agent and the overall environment rather than a particular entity
therein. For sensing, the chosen solution was to add annotations to percepts that
indicate the entity of origin. For actions, in case the agent is associated with
exactly one entity, the action is simply dispatched to that entity. Otherwise, a
special action that receives the relevant entity as a parameter must be used.

Implemented Environments The environment interface comes with several
very simple examples of environments for illustrative purposes. These examples
are mainly provided for clarifying some of the basic concepts related to the
interface. We briefly discuss here two EIS-enabled environments, that may be
used by any agent platform that supports EIS.

The elevator environment is a good example of an environment that was not
built specifically with agents in mind, and is available from [1]. The environment
is a simulator of arbitrary multi-elevator environments where the elevators are
the controllable entities and the people using the elevators are controlled by the
simulator. It comes with a graphical user interface (GUI) and a set of tools for
statistical analysis. The environment had been originally adapted for the GOAL

platform. The additional effort required to re-interface that environment to EIS

was very little. The main issue was the event handling related to the initial
creation of elevators, a functionality provided and supported by the environment
interface which required some additional effort for adapting the environment to

48

provide such events. The environment provides actions that take time (durative
actions) instead of discrete one-step actions, which illustrates that the interface
does not impose any restrictions on the types of actions that are supported.
Similarly, elevators only perceive certain events but not, for example, whether
buttons are pressed in other elevators. We have successfully used the elevator
environment with GOAL and 2APL.

Connecting to the MASSim-server turned out to be easy. As already men-
tioned, the entities in the AgentContest-environment are cowboys that herd
cows. From the implementation point-of-view each connection to an entity is a
TCP/IP connection. Acting is facilitated by wrapping the respective action into
an XML-message and sending it to the server. Perceiving is done by receiving
XML-messages from the server and notifying possible agent-listeners. Further-
more, for the sake of convenience, percepts are stored internally for a possible
active retrieval. Much effort had to be invested in mappings from the interface
intermediate language to the XML-protocol of the AgentContest and vice versa.
We have shown that the interface does indeed not pose any restrictions on the
connection between itself and environments.

Finally, it is worth mentioning that an interface to Unreal Tournament 2004
[16] is under developmentGrown out of the need for a more extensive evalua-
tion of the application of logic-based BDI agents to challenging, dynamic, and
potentially real-time environments, this EIS interface might help putting agent
programming platforms to the test.

Evaluation Summary The relative ease with which the interface has been
connected to four agent platforms and various environments already indicates
that the interface has been designed at the right abstraction level for agent-
environment interaction. The four agent platforms differ in various dimensions,
regarding, for example, the functionality provided for handling percepts and ac-
tions (is the platform more logic-oriented or Java-based?) and how environments
were connected to these platforms before using the interface. The environment
interface nevertheless could be connected to each of the platforms easily, thus
providing evidence of its generality and as well. Of course, we need more agent
platforms to use the environment interface, and we have invited other platform
developers to do so, but we do not expect this will pose any fundamental new
issues. Initial experience with various environments has also shown that little to
no restrictions are imposed on the types of environments that can be connected
to an agent platform using the interface. The interface, for example, can support
both real-time or turn-based environments, as well as environments that differ in
other respects. Although we have mainly discussed software environments, there
is no principled restriction imposed by EIS that would make it only applicable
to such environments. It has been shown already in the past that it is possible
to connect agent platforms to embedded platforms such as robots. EIS just pro-
vides another, more principled approach for doing so. In fact, it is planned to
use EIS to connect to a robotic platform in the near future.

49

4 Related Work

The EIS was designed as a building block for an agent application, providing a
standardized way of interfacing the agents with environmental components. In
the context of agent applications, at least the following forms of environments
can be distinguished: (1) environments in agent-based simulation models, (2)
virtual environments such as testbeds or computer games, (3) real application
components such as enterprise information systems, and (4) coordination infras-
tructures.

Agent-based simulation models can be used for performing experiments and
analyzing the obtained result data. Agent simulation toolkits are specifically
designed for this purpose and often employ custom agent models (e.g. simple
task-based agents) and a proprietary form of defining the environment behavior.
Usually, there is a tight coupling between agents and the environment that is
designed to support these toolkit-specific models. Therefore, simulation toolkits
are closed in the sense that they do not support (and are not meant to) connect-
ing external agents to simulated environments or simulated agents to external
environments.

Agent programming testbeds and contests, such as TAC, [5], RoboCup, [4]
and the Multi Agent Contest [3], are specifically designed to offer open inter-
faces for connecting different types of agents to the provided test environment.
Moreover, some network-based computer games with remote playing capabili-
ties (e.g. Unreal Tournament) offer interfaces for controlling entities in the game
environment which have been adapted to connect to software agents instead of
human players [9]. All of these interfaces are quite specific with regards to the
testbed or game they were created for, and therefore agent platform developers
have to repeat the implementation effort of connecting their agents to each of
these interfaces.

To connect agents to an environment composed of real application compo-
nents, different options are available. Application-centered approaches would
directly use available component interfaces or domain specific standards (such
as HL7 in the healthcare domain) for the connection. Depending on the severity
of the “impedance mismatch” between the component interface and the agent
platform, this can become quite laborious and additionally has to be repeated for
each platform and each application. Agent-centered approaches try to “agentify”
the environment components, leading to a more seamless and straightforward
connection. For example WSIG (Jade) [2] is an infrastructure that allows agents
to interact with web services as if they were agents and vice-versa.

One well known approach for coordinating agents is by using blackboard ap-
proaches, which offer agents a possibility to decouple their interactions in terms
of time and potential receivers. Besides passive blackboards acting as informa-
tion stores only, also more advanced tuple spaces such as ReSeCT [22] have been
devised with which one can also capture domain logic in terms of rules. The Open
Agent Architecture (OAA) [11] is another form of coordination environment, in
which the cooperation among agents and also humans is facilitated by automatic
task delegation and execution. In contrast to EIS, these approaches focus on in-

50

formation exchange and problem solving and do not tackle the question of how
environments could be generically interfaced.

Organizational or institutional approaches such as Islander [14] and Moise [17]
regulate agent behavior at high-level allowing designers and/or agents to define,
monitor, and enforce certain kinds of organizational constraints (e.g. norms and
group membership). The latest platform for Moise is founded on the notion of
organizational environment where agents can perceive and act on their organi-
zation. This kind of environment can also contain artifacts specially developed
to enforce some norms (e.g. a surgical room’s door that forbids agents to enter
if they do not play the role of doctor). Other approaches affect more directly
agent behavior, for example biologically inspired approaches such as pheromone-
based techniques to guide agent movement. While these approaches make use
of the notion of environment, they are quite domain specific and do not allow
for arbitrary environment development. In contrast, the A&A model [23] has
been proposed as a generic paradigm for modeling environments. In the A&A
paradigm, an application is composed of agents as well as so called artifacts.
While the model makes no restricting assumptions with respect to the agents,
the interface and operation of an artifact is intentionally quite rigidly defined.
An implementation of the A&A model is available in form of the distributed
middleware infrastructure CArtAgO [25].

We see EIS not as a competitor, but rather as a desirable complement to
the above mentioned approaches. For example, one possible use of the EIS stan-
dard is reducing the required implementation effort for connecting agent to, say,
virtual environments, as once an EIS-based interface has been developed for a
contest or game, it can easily be reused by different agent platforms. Unlike
FIPA-compliant approaches such as the WSIG, the focus of the EIS is providing
a lean interface, i.e., when FIPA-compliant communication is not necessary, the
EIS allows achieving similar openness and portability with much less effort. In
particular, we see much potential in a combination of EIS and CArtAgO. Cur-
rently, there are specific bridges available for connecting agent platforms such
as Jadex, Jason and 2APL to CArtAgO [24]. Implementing an EIS bridge for
CArtAgO could lead to a universal implementation that could be used to con-
nect CArtAgO to any agent platform (if it is already EIS-enabled). In general,
the EIS standard will facilitate connecting any agent platform to all sorts of
environments (A&A based as well as others).

5 Conclusion

The design and implementation of our proposal for an environment interface
standard (see [?] for a more detailed exposition and more technical details) is
motivated by the fact that it has been difficult to connect arbitrary agent plat-
forms to many of the available environments. The design of the interface provides
additional insight into the general problem of agent-environment interaction. At
a conceptual level, the development of the environment interface has yielded
insight, for example, into some of the distinguishing features of existing agent

51

platforms. For example, where some platforms expect events initiated by the en-

vironment other platforms are based on a polling model for retrieving percepts.

The initial results of applying the interface to various agent platforms and

environments have been very encouraging: they demonstrate the generality and

usability of our interface. The environment interface standard allows the porta-

bility and reuse of application and testing environments across existing and newly

developed agent platforms. Furthermore, it provides a basis for heterogeneous

agent applications composed of agents implemented in different agent platforms.

The experience so far has also shown that connecting to and using the interface

requires minimal effort and can be implemented easily.

Although the environment interface proposed here provides a solid basis for

agent-environment interaction, there are some topics that require additional

work. One of these topics involves the environment management system which

has only been partly supported by most agent platforms; it facilitates combina-

tions of agent platform and environment functionalities such as combined reset-

ting of MAS and environment, but this requires additional investigation. We also

need to gain more experience with the dynamic addition and removal of entities

and the handling of such events by platforms. Related to the previous point,

there is the issue of managing various types of entities. For example, how can

the interface be extended to support the identification of these different types?

Finally, we need to get more agent platforms, including platforms from multi-

agent based simulation and other areas, involved and support the environment

interface to establish our proposal as a genuine (de facto) standard.

References

1. Elevator simulator homepage. http://sourceforge.net/projects/

elevatorsim/.

2. Java Agent DEvelopment Framework homepage. http://jade.tilab.com/.

3. Multi Agent Contest homepage. http://www.multiagentcontest.org/.

4. RoboCup official site. http://www.robocup.org/.

5. Trading Agent Competition homepage. http://www.sics.se/tac/.

6. R. Adobbati, A. Marshall, A. Scholer, S. Tejada, G. Kaminka, S. Schaffer, and

C. Sollitto. Gamebots: A 3d virtual world test-bed for multi-agent research. In

Proceedings of the 2nd Int. Workshop on Infrastructure for Agents, MAS, and
Scalable MAS, 2001.

7. J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System
Simulation. Prentice Hall, 2009.

8. T. M. Behrens, J. Dix, and K. V. Hindriks. Towards an environment interface

standard for agent-oriented programming. Technical Report IfI-09-09, Clausthal

University of Technology, Sept. 2009.

9. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Sys-
tems in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley

& Sons, 2007.

10. O. Burkert, R. Kadlec, J. Gemrot, M. Bda, J. Havlcek, M. Drfler, and C. Brom.

Towards fast prototyping of IVAs behavior: Pogamut 2. In Proceedings of 7th
International Conference on Inteligent Virtual Humans, 2007.

52

11. M. Buro. Call for AI Research in RTS Games. In AAAI-04 AI in Games Workshop,

2004.

12. A. Cheyer and D. Martin. The open agent architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1):143–148, March 2001. OAA.

13. M. Dastani. 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

14. M. Dastani, J. Dix, and P. Novák. Agent Contest Competition - 3rd edition. In

M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors, Proceed-
ings of ProMAS ’07, Revised Selected and Invited Papers. Springer, 2008.

15. M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions edi-

tor. In AAMAS ’02: Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 1045–1052, New York, NY, USA,

2002. ACM.

16. K. V. Hindriks and T. Roberti. Goal as a planning formalism. In MATES 2009
Proceedings, pages 29–40, 2009.

17. K. V. Hindriks, B. van Riemsdijk, T. Behrens, R. Korstanje, N. Kraaijenbrink,

W. Pasman, , and L. de Rijk and. Unreal GOAL bots. In Preproceedings of The
AAMAS-2010 Workshop on Agents for Games and Simulations, to appear.

18. J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organ-

isations with organisational artifacts and agents: “giving the organisational power

back to the agents”. Journal of Autonomous Agents and Multi-Agent Systems,
2009.

19. B. Lars, P. Alexander, and L. Winfried. Jadex: A BDI-agent system combining

middleware and reasoning. In V. R. Unland, M. Klusch, and M. Calisti, editors,

Software agent-based applications, platforms and development kits, 2005.

20. R. Z. Mili and R. Steiner. Modeling Agent-Environment Interactions in Adaptive

MAS. In EEMMAS 2007, pages 135–147. Springer-Verlag, 2008.

21. J. Müller. Towards a Formal Semantics of Event-Based Multi-Agent Simulations.

In MABS 2008, pages 110–126. Springer-Verlag, 2009.

22. A. Omicini. Formal respect in the a&a perspective. Electron. Notes Theor. Comput.
Sci., 175(2):97–117, 2007.

23. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-

agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

24. A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Dastani. Integrating

artifact-based environments with heterogeneous agent-programming platforms. In

7th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-08), pages 225–232. IFAAMAS, 2008.

25. A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A framework for prototyp-

ing artifact-based environments in MAS. In D. Weyns, H. V. D. Parunak,

and F. Michel, editors, Environments for MultiAgent Systems III, pages 67–86.

Springer, 2007.

26. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 2nd edition, 2003.

53

Evaluating Agent-Oriented Programs: Towards

Multi-Paradigm Metrics

Howell R. Jordan, Rem Collier

Lero @ University College Dublin, Ireland

Abstract. Metrics are increasingly seen as important tools for soft-

ware engineering and quantitative research, but little attention has so

far been devoted to metrics for agent programming languages. This pa-

per presents the first steps towards multi-paradigm structural metrics,

which can be applied seamlessly to both agents and the object-oriented

environments in which they are situated - thus enabling the designs of

complete multi-agent systems to be quantitatively evaluated. Concrete

paradigm-independent metrics for coupling and cohesion are proposed,

and their use is demonstrated on an example Jason program, written in

AgentSpeak and Java.

Categories and subject descriptors: D.2.8 [Software Engineer-

ing]: Metrics—Product Metrics; I.2.5 [Artificial Intelligence]: Pro-

gramming Languages and Software

General terms: Measurement, Design, Languages

Keywords: Design metrics, structural metrics, agent programming lan-

guages

1 Introduction

Software design metrics, or structural metrics, are an important part of the pro-

fessional software engineer’s toolkit. Beyond their traditional roles in managerial

oversight, metrics are increasingly used in iterative development processes to

quickly highlight areas which may be vulnerable to defects or resistant to future

change [20]. Metrics for object-oriented programming are well-established, and

automated collection tools for the best-known metrics suites [9][21] are available

for several popular object-oriented programming languages (OOPL).

Agent orientation is an emerging paradigm for software construction, in which

software is composed of autonomous, proactive agents situated in some envi-

ronment. Like other high-level software abstractions - such as components and

aspects - agents complement, rather than replace, existing object technology.

Agent-oriented software is often implemented using objects, for example by

building directly on the popular JADE platform [4], in which case it can be

evaluated directly using existing metrics (see for example [14]).

Many researchers have argued that the benefits of agent orientation are best

realised using a dedicated agent programming language (APL), thus “fixing the

54

state of the modules to consist of components such as beliefs, capabilities, and
decisions, each of which enjoys a precisely defined syntax” [30]. However, the
performance cost of agents is much greater than that of passive objects, and
attempting to write an industrial-strength ‘pure agent’ program has become a
recognised pitfall of agent-oriented software development [35]. Many of the cur-
rent generation of agent programming languages [6] resolve this dilemma by
deferring the environment implementation [34] and any lower-level agent pro-
cessing activities to object technologies such as Java.

To our knowledge, no metrics for agent programming languages have yet
been proposed. Furthermore, if software designs are to be evaluated quantita-
tively, consistently, and comparably across the APL-OOPL divide, there is a
clear need for a single metrics suite that is applicable to both domains. But
let’s not stop there. Inspired by recent research which integrates agents with
software components [12], we expect the path towards wider adoption of agent
programming languages to be through their integration with other paradigms.
In this paper, we present the first steps towards a metrics suite which could,
in principle, be used to evaluate software designs expressed in many different
text-based programming languages.

The structure of this paper is as follows. In the next section, we discuss
how the application of structural metrics to agent programming languages could
benefit both practice and research. Section 3 outlines some of the wide literature
of related work, and section 4 introduces an example Jason program. In section 5
we propose two structural metrics for agent programming, and apply them to
the motivating example. Finally, we conclude by offering some tentative advice
to the creators of agent programming languages, and some suggestions for future
work in this area.

2 Why Metrics?

Metrics are used in software engineering to measure the quality of a software
process or product. In this paper we focus on the product. A software product
consists of many linked artifacts, such as code, tests, and documentation; here we
focus specifically on the product’s design, and the design information contained
implicitly in its source code.

2.1 Measures of product quality

Software product quality is typically defined as a combination of factors, char-
acteristics, or attributes [17] [15]. The primary quality factors are often given
as functionality, reliability, usability, efficiency, maintainability, and portability.
These factors are usually structured as a hierarchy, whereby each primary factor
is itself defined as a combination of subfactors.

The depth and complexity of this hierarchy presents a measurement chal-
lenge. For a quantity to be measurable it must first be completely defined; un-
fortunately, there is no universally-agreed definition of software quality. The

55

relative influence of quality attributes is also highly sensitive to context. For
example, in mission-critical applications, reliability is obviously dominant; yet
in others, reliability need be no better than ‘good enough’, and other quality
attributes assume greater importance [2]. Attempts to combine multiple metrics
into a general-purpose quality measure are therefore fraught with difficulty, and
most software product metrics aim to measure a single, specific quality attribute
[18].

Maintainability metrics are an important general software engineering topic
[25]. However, in this paper, we focus on maintainability as an interesting po-
tential benefit of agent oriented software engineering. Agent programming is
thought to aid the design and development of complex software, chiefly by en-
abling the developer to take full advantage of the intentional stance [30]; but little
is currently known about the effects of agent orientation on maintainability.

Maintainability consists of at least three major subfactors: algorithmic com-
plexity, structural or design complexity, and size. Efforts to define multi-paradigm
size and algorithmic complexity measures are already well advanced (see sec-
tion 3), and the rest of this paper will focus on structural metrics. Structural
complexity is itself a compound attribute, and among its subfactors, coupling
and cohesion are thought to be dominant [11].

We take the view that structural metrics essentially predict how difficult
it will be to modify a system in future; and thus they indirectly predict the
likelihood of bugs, both in the present and in the immediate aftermath of any
future change. In object-oriented systems, this view is supported by a large body
of experimental evidence [32]. If the same is true for agents, the development
of structural metrics for agent programming languages will help professional
software engineers to deliver agent-oriented software of higher quality.

2.2 Tools for software research

Aside from their importance to professional software engineers, product metrics
have an important role to play in software research.

Metrics can be used as powerful tools for technology comparison, as demon-
strated by Garcia et al. [14]. The research method employed in this study is based
on the ‘Goal Question Metric’ approach [3] and can be summarised roughly as
follows: implement functionally-identical solutions to a given problem using two
or more different technologies; then compare those solutions using a suitable
metric. If suitable multi-paradigm metrics were available, this method could be
employed much more widely.

Studies of the above type could also help facilitate adoption of agent tech-
nologies by industry. It is widely thought that agent technologies provide greater
benefits when used in certain application areas, but little experimental data is
currently available to support these opinions. We argue that, given more quan-
titative evidence of the maintainability of agent oriented solutions, some of the
business risks of agent adoption would be mitigated.

Finally, we hope that a focus on maintainability metrics - and on the related
topics of software evolution, refactoring, coupling, and cohesion - will lead to

56

innovations in agent programming language design. In section 6, we tentatively
suggest some additions to the AgentSpeak language that might improve the
maintainability of AgentSpeak code, based on experiences gained in this study.

3 Related Work

We have been unable to identify any metrics specifically for agent programming
languages. Aside from the large literature on object oriented metrics [15], struc-
tural metrics have been proposed for rule-based programs [27], concurrent logic
programs [36], and knowledge based systems [19]. More recently, several metrics
suites for aspect-oriented programming have also been devised [23].

We now turn our attention to other work in the field of multi-paradigm
metrics.

Sipos et al. have proposed a multi-paradigm metric for algorithmic (as op-
posed to structural) complexity [31]. This metric is directly related to the number
of independent paths through a given program, and high values therefore have
negative implications for program testability. Given the importance of testing
(and automated testing in particular) to refactoring and software evolution, we
believe this metric is complimentary to ours.

Allen et al. model a program as a hypergraph, from which metrics for pro-
gram size, algorithmic complexity, and coupling, can be derived [1]. Each metric
is defined in detail using arguments from information theory; but no paradigm-
independent method for extracting the hypergraph model from source code is
offered. The hypergraph model is also insensitive to the strength and direction-
ality of connections between nodes.

The PIMETA approach [7] leads to multi-paradigm structural metrics like
ours, but it is restricted by several practical difficulties. PIMETA requires a
detailed meta-model to be instantiated for each evaluation, and as the authors
note, for many real programs the resulting models are large and difficult to
visualise. No precise definition of coupling between PIMETA abstractions is
offered, with coupling apparently defined on a case-by-case basis; it is therefore
not clear how the meta-model instantiation process might be automated.

The ‘separation of concerns’ metrics suite of Sant’Anna et al. [29] is also,
in part, applicable to agent programming languages. Though it is intended for
use in the component-based and aspect-oriented paradigms, some of its metrics
(Concern Diffusion over Architectural Components, Component-level Interlacing
Between Concerns, Afferent Coupling Between Components, Efferent Coupling
Between Components, and Lack of Concern-based Cohesion) could also be ap-
plied to agents. However the automated collection of these measures would be
problematic, since the concepts of ‘architectural concerns’ and ‘coupling between
components’ are not precisely defined. The remaining metrics in the suite make
use of abstractions not defined for agents, such as distinct interfaces and opera-
tions.

57

4 Motivating Example

We illustrate the need for multi-paradigm software maintainability metrics with
a simple example. Figure 4 shows a grid based on the ‘vacuum world’ of Russell
and Norvig, populated by four cleaning robots. The environment, implemented
in Java, allows each vacuum cleaner to move north, south, east, and west; to
sense its immediate surroundings with a small field of vision; and to clean its
current square. The simulation is further enriched by fixed obstacles (shown in
a darker colour) and realistic robot movement.

Fig. 1. A grid world of robotic vacuum cleaners and brightly-coloured dust.

In this environment, we pose a simple problem: to clean the grid of dust, as
quickly as possible. Without excluding other technologies, this problem’s charac-
teristics point towards an agent-oriented solution: the environment is dynamic,
with partial, local visibility; and its four independent robots suggest at least
four concurrent processes. For this example, we have chosen to implement a so-
lution using Jason, an implementation of the AgentSpeak agent programming
language.

Complete source code for the example can be downloaded from http://www.

agentfactory.com.

4.1 Solution architecture

Our example solution consists of two types of agent: ‘vacAgent’ and ‘bossAgent’.
Four instances of vacAgent directly control each of the four vacuum robots. Only
one bossAgent is instantiated, and is not situated in the environment; instead,
it receives reports from the other agents about the world’s state, from which
it builds a mental map of the environment, and directs the exploration and
cleaning activities of the vacAgents. For simplicity, we consider the environment

58

as a third-party library with a stable interface - in other words, the actuators
and perceptors are not part of our ‘solution’, and are guaranteed not to change.
Each vacAgent relies on object-oriented ‘internal actions’ to implement some of
its functionality, as shown in Figure 4.1.

Fig. 2. Outline architecture of an example Jason program, showing AgentSpeak agents

with Java internal actions.

4.2 Preliminary evaluation

Of the many possible designs that would solve this problem, ours is just one. We
motivate the rest of this paper by asking the question: how maintainable is the
example design? Existing object-oriented metrics could of course be applied to
the internal actions; but these metrics would not capture any information about
the design of the agents themselves, the links between those agents, or the links
between agents and their internal actions.

The design could also be evaluated using one of the paradigm-independent
techniques discussed in section 3. However, these metrics must be collected man-
ually, which is impractical for large designs and rapid iterative development
processes, and likely to result in errors.

To address these shortcomings, we aim to develop a metrics suite for agent
programs which operates directly on source code and is amenable to automation.

5 Paradigm-independent metrics

In this section, we present the first steps towards a paradigm-independent suite
of metrics, based on a simple theory of software change. To discuss software
change precisely, we adopt the terminology of Buckley et al. [8].

59

5.1 A simple paradigm-independent meta-model

Many programming languages facilitate high-level design, understanding, and
re-use by offering the programmer a toolbox of interrelated abstractions. For
example, in Java, the available abstractions include packages, classes, interfaces,
fields, and methods. During the development process, these abstractions are
realized as program text, then processed (for example, by compiling) to form an
executable software system.

We define an abstraction as any programming language construct that, when
realized as a software artifact:

1. Acts as a container for other software artifacts, such as data, code, and whole
or partial realizations of other abstractions.

2. Is named with a textual identifier: a string which has no semantic effect on
the program’s functionality 1.

In support of this definition, we offer the following definition of containment:
if the compile-time deletion of realized abstraction A would also delete part or
all of software artifact B, A contains B. To illustrate how these definitions may
be applied to real programming languages, figure 5.1 shows the abstractions
available in Jason, and their possible containment relationships.

In our current model, artifacts which do not meet the above definition are
considered part of their enclosing abstractions. For example, an anonymous Java
inner class would be considered part of the named class in which it is defined;
and a nameless AgentSpeak plan would be considered part of its enclosing agent.
As will be shown in section 5.2, this is a necessary model feature, because an
anonymous entity cannot be renamed. Providing fine-grained support for anony-
mous entities, perhaps by referring to them by source code file name and line
number, would add significant complexity to the model and dependency discov-
ery method. Since the principal benefit of this enhancement would be a small
gain in the precision of dependency locations, we leave this for future work.

When this model is realized, the resulting containment (or ‘aggregation’)
hierarchy is an acyclic digraph, with the current program as root. We now apply
the model to our example Jason program. We use subscripts as follows to denote
the type of each abstraction:

– Java: package K, class C, field F , method M

– AgentSpeak: agent A, rule R, belief B, goal G, plan P

A sample of this containment hierarchy is shown in figure 5.1. Note that all the
information required for this step was found in, and could easily be program-
matically extracted from, the program’s source code.

An interesting practical issue was encountered while compiling this contain-
ment hierarchy. AgentSpeak agents can give beliefs to other agents, without prior
declaration; in our example, two of the vacAgent’s possible beliefs (‘cleaning’ and
‘target’) are given to it by the bossAgent. This lack of explicit declaration makes
it difficult to manually determine the full set of an agent’s possible beliefs.

1 We do not require abstractions to be uniquely named. This allows run-time plan

selection in AgentSpeak, and method overloading in Java, to be supported.

60

Fig. 3. The abstract containment hierarchy for Jason programs. An arrow from A to

B indicates that A may contain B.

61

- vacAgentA

- blockedR

- cleaningB

- targetB

- squareArrivedP

- cleanSquareG

- cleanHereP

- cleanNotRequiredP

- ...

- bossAgentA

- targetArrivedP

- ...

- gridMathK

- GridMathC

- anglesF

- toAngleM

- ...

- RandomLeftRightC

- directionsF

- randomLeftRightM

- executeM

- TowardsLeftRightC

- executeM

- ...

Fig. 4. An extract from a realized containment hierarchy, for an example Jason pro-

gram.

62

5.2 Discovering dependencies by refactoring

We now discuss the ripple effects of changes to software, in terms of the above
model. Successful software will probably undergo many changes during its life-
time; in devising a suite of structural maintainability metrics, our ideal goal
would be to predict, given an existing software design, how much effort and risk
will be incurred in making those changes. While acknowledging that changes to
software may be radical and unanticipated, in this paper we focus on incremen-
tal, evolutionary changes to existing source code, such as the modification of
existing program features.

The difficulty of evolving existing code might ideally be estimated by per-
forming example code changes, that are considered representative of the most
likely feature modifications. However, for all but the most trivial programs, the
list of plausible feature modifications would be vast. Even if program behaviour
modifications are excluded, the list of all possible refactorings [13] is considered
infinite [26].

Instead of attempting to define a set of representative changes, we propose
that useful insight into the ‘evolvability’ of a code segment could be gained by
repeatedly applying a very simple refactoring. Keeping our goal of paradigm-
independence in mind, we suggest that just one refactoring is applicable to
all conceivable text-based programming languages: the ‘rename’ refactoring [13,
p.273]. This refactoring has the appealing property that it is a semantics-preserving
change with no structural effects, which leads to two benefits: for most program-
ming languages it can be easily automated; and the number of distinct modifica-
tions required to accommodate a rename refactoring could be said to represent
the minimum ripple effect of future modifications.

We propose the following general method to discover the dependencies present
within a program:

1. Create a backup copy of the program code

2. For each abstraction realized in a program:

(a) Rename that abstraction, carefully avoiding new names which are used
elsewhere in the program, or have special meaning in the current pro-
gramming language

(b) By text replacement only, modify the minimum set of other abstractions,
so that the program’s original external behaviour is exactly restored

(c) Note the type and name of the renamed abstraction, and of all other
abstractions modified

(d) Revert all modifications, by restoring from the backup copy

Applying this method reveals a set of dependency mappings between abstrac-
tions.

Sample abstraction dependency mappings for our example Jason program
are shown in table 5.2. For simplicity, only abstractions directly affected by a
modification are shown; a full list of all abstractions affected by a given modifi-
cation can easily be obtained by propagating upwards through the containment

63

Abstraction Set of other abstractions directly affected by rename operation

cleanSquareG squareArrivedP , cleanHereP , cleanNotRequiredP

cleaningB cleanHereP , cleanNotRequiredP , targetArrivedP

RandomLeftRightC vacAgentA, TowardsLeftRightC

randomLeftRight()M RandomLeftRightC .executeM , TowardsLeftRightC .executeM

... ...

Table 1. Partial abstraction dependency mappings for an example Jason program

hierarchy. We use the familiar dot notation to fully-qualify names for clarity
where necessary.

Our example results illustrate dependencies

1. within a single agent;

2. within an agent and between two agents;

3. between an internal action and the agent that uses it;

4. within an internal action and between two internal actions.

Of particular interest is the result of the rename operation on the Random-
LeftRight class. Two plans within the vacAgent refer to this internal action, and
therefore required modification; however, as those plans were not named, they
did not appear in our containment hierarchy, and the resulting dependencies
were therefore credited to the vacAgent itself. This illustrates a simple benefit of
naming AgentSpeak plans: naming allows the location of modification points to
be more precisely specified. The TowardsLeftRight class depends on Random-
LeftRight by use of the ‘extends’ Java keyword; thus the object-specific concept
of inheritance has been captured in a paradigm-independent way.

5.3 From dependencies to metrics

From dependency mappings such as those described above, a very large number
of potentially-useful coupling and cohesion metrics could be devised. However,
it is highly desirable that any such metrics should be validated experimentally
[18], which is beyond the scope of the current study. Instead, in this section we
devise metrics which are generalizations of the well-validated ‘Coupling Between
Object classes’ (CBO) and ‘Lack of Cohesion Of Methods’ (LCOM) measures
[9], returning to the earlier notion of ‘coupling between abstractions’ [22] and its
cohesiveness equivalent.

A central problem in generalizing object-oriented metrics is determining the
paradigm-independent equivalents of classes, fields, and methods. Our solution is
to adopt the mereological perspective [33], numbering the abstract containment
hierarchy of figure 5.1, starting from zero at the most fine-grained level; thus
methods, fields, plans, and beliefs all appear at level 0, while classes and agents

64

both occupy level 1 2. This theoretical approach accords with the widely-held

view that agents are specializations of objects [30].

Coupling Between Abstractions (CBA) The definition of CBO states that

“an object is coupled to another object if one of them acts on the other”. We

generalize this definition as follows: a level-1 abstraction is coupled to another

level-1 abstraction if any dependency exists between those abstractions or their

parts. CBA for a level-1 abstraction is thus a count of the number of other level-1

abstractions to which it is coupled.

Lack of Cohesion of Abstractions (LCA) LCOM is defined in terms of the

instance variables used by the methods in a class. Since the definition of LCOM

has been criticized for its ambiguity regarding dependencies between methods

[21], we generalize this definition to include dependencies between all the level-

0 abstractions contained within a given level-1 abstraction. LCA for a level-1

abstraction is thus defined as the number of disjoint (i.e. uncoupled) sets of

level-0 abstractions it contains, including any dependencies via the enclosing

abstraction itself.

To conclude our example, the values of CBA and LCA for all the level-1

abstractions (classes and agents) in our Jason program are shown in table 5.3.

Level-1 abstraction CBA LCA

vacAgent 5 1

bossAgent 1 1

GridMath 1 3

RandomLeftRight 2 1

TowardsLeftRight 2 1

DirectionToXY 2 1

XYToDirection 1 1

Table 2. Values of the paradigm-independent metrics CBA and LCA for level-1 ab-

stractions in an example Jason program.

The full benefit of metrics is difficult to demonstrate using only a small ex-

ample; metrics are most useful when comparing similar programs, or evaluating

parts of a large software design. However, the results for CBA closely match the

connections shown in figure 4.1, thus illustrating how important architectural

features can be captured quantitatively with this metric. Had no architectural

descriptions been available, this information would have been invaluable.

2 In many situations, this numbering scheme leads to conflicts towards the root of

the hierarchy; in our case, the ‘program’ abstraction could be numbered either 2 or

3. Many languages, including Java, also offer the possibility of nested higher-level

abstractions. These issues lead to difficulty in defining specific, theoretically-sound

higher-level metrics; in practice, high-level metrics are often calculated simply by

taking averages of lower-level values.

65

The results for LCA are also of interest. GridMap has an LCA value of three,
indicating that its three methods have no common dependencies, and it could
easily be split into three separate classes. Both agents have the minimum LCA
value of one, but this is due to couplings made via anonymous plans, which in
our model are indistinguishable from the agent itself. Had all these plans been
named, the LCA values for vacAgent and bossAgent would have been three and
two respectively. In both cases, the absence of names hid non-obvious design
issues, which the LCA metric would otherwise have uncovered.

6 Conclusions

Metrics are increasingly seen as valuable tools which help researchers to com-
pare technologies, and software engineers to understand where future problems
may arise. To our knowledge, no metrics for agent-oriented programming lan-
guages have yet been proposed. Furthermore, agent programs written in lan-
guages such as Jason are often inherently multi-paradigm, with substantial func-
tionality deferred to object-oriented elements. There is thus a clear need for a
multi-paradigm metrics suite.

In this paper, we proposed the paradigm-independent coupling and cohesion
metrics CBA and LCA, and demonstrated their application to an example Jason
program. The theoretical validity of these metrics as predictors of maintainability
rests on the hypothesis that the ‘rename’ refactoring is representative of general
software maintenance - which is currently unproven. However, the Chidamber
and Kemerer (CK) metrics CBO and LCOM, from which they are generalized,
are both well-validated and theoretically grounded. Validation of CBA and LCA
would require a large dataset of Jason programs, and access to Jason program-
ming experts, neither of which was available at the time of writing; independent
experimental validation is therefore left for future work.

While deriving our proposed metrics, we uncovered a number of issues relat-
ing to AgentSpeak programming. The need to discover and locate dependencies
in software is not limited to toolmakers; human programmers must do the same
when trying to comprehend any unfamiliar code. We therefore make the follow-
ing suggestions:

1. Plan naming is optional in AgentSpeak. We advocate that plans should be
named where possible, arguing that it helps to precisely locate dependencies
and other code issues.

2. Explicit declaration of beliefs and goals in AgentSpeak would make it easier
to determine an agent’s possible mental states. A similar feature is already
provided in the Agent Factory AFAPL2 agent programming language by an
‘ontology’ construct [10].

3. The addition of a higher-level abstraction capability to AgentSpeak, analo-
gous to packages in Java, would solve the mereological difficulty caused by
the different depths of the Java and AgentSpeak abstract containment hi-
erarchies, and permit package-specific metrics to be defined and calculated
for Jason programs. Though our perspective is one of measurement rather

66

than agent decomposition and re-use, our results accord with recent work
on agent programming language modularity [24] [16].

Our next steps will be to automate the collection of the CBA and LCA
metrics, and validate their use experimentally. More generally, the underlying
model also needs to be validated, by applying the metrics to other programming
languages, both in the agent paradigm and beyond. As noted in section 5.1, our
model could also be extended by providing fine-grained support for dependency
locations and anonymous artifacts.

Our use of the ‘rename’ refactoring as a basis for metrics raised some in-
teresting questions. Can other refactorings be defined for agent programming
languages? Would their application reveal any further dependencies?

The measures we have derived reflect only a small proportion of the depen-
dency information gathered. Could any other useful predictors of maintainability
be derived from it? A large body of literature exists on the relative contribu-
tions of different dependency types to coupling and cohesion [15]. A second
debate concerns the issue of whether metrics for software maintainability should
be applied at a coarse [28] or fine [5] level of granularity. We speculate that
the relative locations of dependencies may also be important; intuitively, two
multiply-interdependent abstractions will require less future maintenance effort
if those dependencies are closely co-located. New multi-paradigm metrics based
on our dependency data could shed light on these issues. If links between these
metrics and real-world maintainability can be established, this may in turn lead
to new recommendations for multi-paradigm programming practices and lan-
guage design.

Instead of devising new metrics, one interesting alternative would be to pro-
vide a flexible means of visualising and summarising the raw dependency data.
Such a tool could allow engineers and researchers to focus on the dependency
types appropriate to the current context, and aggregate results at an abstraction
level of their choosing.

7 Acknowledgements

The authors would like to thank Jim Buckley, Mike Hinchey, and Rebecca Yates
for their help in drafting this manuscript.

This work was supported, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero - the Irish Software Engineering Research Centre.

References

1. E.B. Allen, S. Gottipati, and R. Govindarajan. Measuring size, complexity, and

coupling of hypergraph abstractions of software: an information-theory approach.

Software Quality Journal, 15(2):179–212, 2007.

2. J. Bach. Good enough quality: Beyond the buzzword. Computer, 30(8):96–98,

1997.

67

3. V.R. Basili, G. Caldiera, and H.D. Rombach. The goal question metric approach.

Encyclopedia of software engineering, 1:528–532, 1994.

4. F. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent systems with
JADE. Springer, 2008.

5. A.B. Binkley and S.R. Schach. Validation of the coupling dependency metric as a

predictor of run-time failures and maintenance measures. In Proceedings of the 20th
international conference on software engineering, pages 452–455. IEEE Computer

Society Washington, DC, USA, 1998.

6. R.H. Bordini, L. Braubach, M. Dastani, A.E.F. Seghrouchni, J.J. Gomez-Sanz,

J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages

and platforms for multi-agent systems. Special Issue: Hot Topics in European Agent
Research II Guest Editors: Andrea Omicini, 30:33–44, 2006.

7. S. Bryton and F.B. e Abreu. Towards Paradigm-Independent Software Assessment.

Proc. of QUATIC’2007, 2007.

8. J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy of

software change. Journal of Software Maintenance and Evolution, 17(5):309–332,

2005.

9. S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.

IEEE Transactions on software engineering, 20(6):476–493, 1994.

10. R.W. Collier and G.M.P. O’Hare. Modelling and Programming with Commitment

Rules in Agent Factory. Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches, 2009.

11. D.P. Darcy, C.F. Kemerer, S.A. Slaughter, and J.E. Tomayko. The structural

complexity of software: an experimental test. IEEE Transactions on Software
Engineering, 31(11):982–995, 2005.

12. M. Dragone, D. Lillis, R. Collier, and G.M.P. O’Hare. SoSAA: a framework for

integrating components & agents. In Proceedings of the 2009 ACM symposium on
Applied Computing, pages 722–728. ACM New York, NY, USA, 2009.

13. M Fowler. Refactoring: improving the design of existing code. Addison-Wesley

Professional, 1999.

14. A. Garcia, C. Sant Anna, C. Chavez, V.T. da Silva, C.J.P. de Lucena, and A. von

Staa. Separation of concerns in multi-agent systems: An empirical study. Lecture
notes in computer science, pages 49–72, 2004.

15. Brian Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

16. K. Hindriks. Modules as policy-based intentions: modular agent programming in

GOAL. Lecture Notes in Computer Science, 4908:156–171, 2008.

17. B. Kitchenham and S.L. Pfleeger. Software quality: The elusive target. IEEE
Software, 13(1):12–21, 1996.

18. B. Kitchenham, S.L. Pfleeger, and N. Fenton. Towards a framework for software

measurement validation. IEEE Transactions on Software Engineering, 21(12):929–

944, 1995.

19. S. Kramer and H. Kaindl. Coupling and cohesion metrics for knowledge-based

systems using frames and rules. ACM Transactions on Software Engineering and
Methodology (TOSEM), 13(3):332–358, 2004.

20. M. Lanza, R. Marinescu, and S. Ducasse. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer-Verlag New York Inc, 2006.

21. W. Li. Another metric suite for object-oriented programming. The Journal of
Systems & Software, 44(2):155–162, 1998.

68

22. K. Lieberherr, I. Holland, and A. Riel. Object-oriented programming: an objective

sense of style. ACM SIGPLAN Notices, 23(11):323–334, 1988.

23. R.E. Lopez-Herrejon and S. Apel. Measuring and Characterizing Crosscutting

in Aspect-Based Programs: Basic Metrics and Case Studies. Lecture Notes in
Computer Science, 4422:423, 2007.

24. N. Madden and B. Logan. Modularity and compositionality in Jason. In Proceed-
ings of the Seventh International Workshop on Programming Multi-Agent Systems
(ProMAS 2009), 2009.

25. T. Mens and S. Demeyer. Future trends in software evolution metrics. In Proceed-
ings of the 4th international workshop on principles of software evolution, pages

83–86. ACM New York, NY, USA, 2001.

26. T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formalizing refactor-

ings with graph transformations. Journal of Software Maintenance and Evolution,

17(4):247–276, 2005.

27. MB O’Neal and WR Edwards. Complexity measures for rule-based programs.

IEEE Transactions on Knowledge and Data Engineering, 6(5):669–680, 1994.

28. J.F. Ramil and M.M. Lehman. Metrics of software evolution as effort predictors -

a case study. In Proc. Int. Conf. Software Maintenance, pages 163–172, 2000.

29. C. SantAnna, E. Figueiredo, A. Garcia, and C. Lucena. On the Modularity As-

sessment of Software Architectures: Do my architectural concerns count? In Proc.
International Workshop on Aspects in Architecture Descriptions (AARCH. 07),
AOSD, volume 7. Citeseer, 2007.

30. Y. Shoham. Agent-oriented programming. Artificial intelligence, 60(1):51–92, 1993.

31. A. Sipos, N. Pataki, and Z. Porkoláb. On Multiparadigm Software Complexity

Metrics. In MaCS06 6th Joint Conference on Mathematics and Computer Science,
page 85, 2006.

32. R. Subramanyam and M.S. Krishnan. Empirical analysis of CK metrics for object-

oriented design complexity: implications for software defects. IEEE Transactions
on Software Engineering, 29(4):297–310, 2003.

33. V.K. Vaishnavi, S. Purao, and J. Liegle. Object-oriented product metrics: A generic

framework. Information Sciences, 177(2):587–606, 2007.

34. D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstraction

in multiagent systems. Autonomous agents and multi-agent systems, 14(1):5–30,

2007.

35. M. Wooldridge and N.R. Jennings. Pitfalls of agent-oriented development. In

Proceedings of the second international conference on autonomous agents, pages

385–391. ACM New York, NY, USA, 1998.

36. J. Zhao, J. Cheng, and K. Ushijima. A Metrics Suite for Concurrent Logic Pro-

grams. In Proc. 2nd Euromicro Working Conference on Software Maintenance and
Reengineering, pages 172–178. Citeseer, 1998.

69

Towards Reasoning with Partial Goal

Satisfaction in Intelligent Agents

M. Birna van Riemsdijk1 and Neil Yorke-Smith2,3

1 EEMCS, Delft University of Technology, Delft, The Netherlands.
m.b.vanriemsdijk@tudelft.nl

2 SRI International, Menlo Park, CA, USA.
3 American University of Beirut, Lebanon. nysmith@aub.edu.lb

Abstract. A model of agency that supposes goals are either achieved
fully or not achieved at all can be a poor approximation of scenarios aris-
ing from the real world. In real domains of application, goals are achieved
over time. At any point, a goal has reached a certain level of satisfaction,
from nothing to full (completely achieved). This paper presents a frame-
work for representing partial goal satisfaction in an intelligent agent. The
richer representation enables agents to reason about partial satisfaction
of the goals they are pursuing or that they are considering. In contrast
to prior work on partial satisfaction in the agents literature which in-
vestigates partiality from a logical perspective, we propose a higher-level
framework based on metric functions that represent, among other things,
the progress that has been made towards achieving a goal. We present
an example to illustrate the kinds of reasoning enabled on the basis of
our framework for partial goal satisfaction.

Categories and subject descriptors: I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents

General terms: Design; Theory

Keywords: goal reasoning, partial satisfaction, agent programming

1 Introduction and Motivation

This work starts from the observation that existing cognitive agent programming
frameworks (e.g., [30, 4, 10]), i.e., programming frameworks in which agents
are endowed with high-level mental attitudes such as beliefs and goals, take a
‘boolean’ perspective on goals: unless achieved completely, the agents have failed
to achieve them. Following Zhou et al. [32], we argue that many scenarios would
benefit from a more flexible framework in which agents can reason about partial
goal satisfaction. As others have recognized, it is important that agents can be
programmed with this reasoning ability, because often it is not possible for an
agent to achieve a goal completely, in the context of all its commitments situated
in the resource-bounded real world. A notion of partiality allows to express that

70

only part of the goal is achieved, and it facilitates, among other possibilities,
changing goals such that only a part has to be achieved.

While prior work proposes a logic-based characterization of partiality, in this
paper we aim for a general framework for partial goal satisfaction that also allows
quantitative notions of partiality. In particular, we propose a framework based
on metric functions that represent, among other things, the progress that has
been made towards achieving a goal. Agents rescuing civilians from a dangerous
area, for example, may have cleared none, some, or all of the area. Progress may
be expressed in terms of different kinds of metrics, such as utility, or in terms of a
logical characterization. This richer representation enables an agent or group of
agents to reason about partial satisfaction of the goals they are pursuing or that
they are considering. The more sophisticated behaviour that can result not only
reflects the behaviour expected in real scenarios, but can enable a greater total
level of goal achievement. For example, an agent might realize that it cannot
completely clear a sub-area and inform teammates of the situation; in turn, they
adjust their behaviour appropriately, e.g., by coming to assist.

This paper aims to further establish partial goal satisfaction as an important
topic of research, and to provide a step towards a metric-based approach that
also allows for quantitative notions of partial achievement. This represents a step
towards enhancing the capabilities of cognitive agent programming frameworks.
Accordingly, we develop an abstract framework for partial goal satisfaction and
discuss the concept using an example scenario. We identify progress appraisal

(the capability of an agent to assess how far along it is in achieving a goal [6])
and goal adaptation (the modification of a goal [17, 23, 32]) as the basic types
of reasoning that the framework should support. We illustrate how reasoning
using partial goal satisfaction can be embedded into a concrete computational
framework for the metrics.

The foremost challenge of the work in this paper is conceptual: we identify the
main ingredients we believe should be part of an abstract framework for partial
goal satisfaction. Through this, we lay foundations for future work, which will
address the important technical challenges that have to be faced to concretize
the framework and render it suitable for programming a cognitive agent.

2 Background and Related Work

Goal representation. In cognitive agent programming, the concept of a goal
has received increasing attention in the past years. Different goal types have been
distinguished (see, e.g., [29, 2] for a discussion), including achievement goals and
maintenance goals. The former, which have received the most attention in the
literature, form the focus of this paper. In the literature, goals have been viewed
as declarative and thus as properties of states (i.e., goals-to-be); we take the
same perspective [30, 4, 10].

Achievement goals in logic-based cognitive agent programming languages are
often represented as a logical formula, expressing a property of the state of the
multi-agent system that the agent should try to achieve [30, 31, 4, 29, 10]. The

71

72

Zhou and Chen adopt instead a logical approach, defining a semantics for
partial implication of desirable propositions from a symbolic point of view [31].
Zhou et al. [32] investigate partial goal satisfaction on the basis of this logical
semantics, viewing a goal as achieved when a (possibly disjunctive) proposition
is achieved according to the logic. They examine in particular application of
different notions of partial implication to goal modification in the context of belief
change. Although recognizing its value, we do not approach partial satisfaction
viewing goals as logical formulas to be achieved. We discuss the relationship
between the approaches later.

While van der Hoek et al. [28] explore a related concept, in their logical
analysis of BDI intention revision, we aim for more a fine-grained and broader
concept. Morley et al. [18] investigate dynamic computation of resource estimates
as a partially-complete goal is executed. Again, the representation of a generic
concept of partial achievement is not the focus of their work.

Partial plans and goal/plan adaptation. There is a fair amount of work
on reasoning with partial plans, for instance in plan formation or negotiation
(e.g., [17, 8, 15]), as well as in the AI planning literature (e.g., [26]). In the area
of multi-agent planning and negotiation, researchers have examined inter-agent
communication (e.g., about problems in goal achievement). Kamar et al., for
instance, investigate helpful assistance of teammates in pursuit of a plan that
could be partially complete [15]. Goal adaptation has received less attention than
the concept of goal or plan selection (e.g., [17]), or plan adaptation, the benefits
of which are well established [19].

3 Example Scenario

We illustrate by means of an extended example the benefits that a framework
for partial goal satisfaction may bring. The scenario is from the domain of cri-
sis management. An accident has occurred in a chemical plant and hazardous
chemicals have leaked into the area. The emergency response team must pre-
vent anyone from entering the vicinity of the plant, and evacuate those who are
currently in the area. A team of agents will execute a joint plan according to
their training. Securing the area is done by setting up road blocks on the three
main roads leading to the plant; the third road block can be installed in one of
two different places. The two houses within a 3 km radius of the plant must be
evacuated. The forest within the range of the chemical leak must be searched
and any people brought to safety.

Fig. 1 depicts a goal-plan tree (GPT) [27, 3, 18] for the emergency response
team in the scenario. A goal-plan tree consists of alternating layers of goal nodes
and plan nodes. Goals are depicted in rounded boxes, and plans in square boxes.
Goals descending from a plan node are conjunctive: all must be achieved for the
plan to be successful. An OR node indicates disjunctive subgoals: achievement
of any one renders the plan successful. Thus, the plan EstablishRoadblocks is
successful when goals rb1 and rb2 and at least one of rb3a and rb3b are achieved.

73

Primitive actions (leaf goal nodes) are depicted in italicized rounded boxes. The
numerical attributes on leaf nodes will be discussed later.

This scenario would benefit from agents being able to reason with partial goal
satisfaction. A basic type of reasoning is progress appraisal [6]. Progress appraisal
is the capability of an agent to assess how far along it is in achieving a goal, i.e.,
which part of a goal it has already achieved. In the scenario, for example, it
may be important for the commander to keep headquarters up-to-date on her
progress in setting up the road blocks.

Another, more advanced, type of reasoning with partial goal satisfaction is
goal negotiation, which has been identified as a key challenge for agents research
[16]. Assume, for example, that the team does not have enough members to
secure the area and evacuate the forest. The commander may engage in goal
negotiation with headquarters, to try to adapt the publicSafety goal so only the
part that is achievable for the team will have to be pursued. Note that the ability
to do goal adaptation is thus necessary in order to engage in goal negotiation. The
commander suggests to set up only road blocks 2 and 3. However, neglecting road
block 1 is not an option according to headquarters, since people may (re-)enter
the area, which would lead to a hazardous situation and further evacuation
duties. The latter decision is based on an analysis of the importance of achieving
the various subgoals. The commander agrees with headquarters that another
team will be sent to set up road block 1. Both goal negotiation and adaptation
thus require agents to reason about the parts of which a goal is composed.

These kinds of reasoning may occur not only before a goal is adopted, but
also during pursuit of a goal. For example, the commander may notice that
searching the forest is taking more time than expected, and the team will not be
able to search the entire forest before darkness sets in. Rather than abandoning
evacuateForest entirely because the goal cannot be achieved completely, the team
can perform an inferior search of it and achieve it only partially. A decision of
whether this is acceptable, or whether it would be better to abandon the forest
altogether, depends on an analysis the gains made by achieving the goal only
partially—which in this case might be substantial since any person brought to
safety is an accomplishment.

This paper provides a high-level framework for partial goal satisfaction that
allows a quantitative instantiation, aimed at enabling the kinds of reasoning such
as discussed above. After introducing the framework, we mention several other
kinds of reasoning that benefit from such a framework for partial satisfaction.

4 Partial Goal Satisfaction and Progress Appraisal

At the heart of conceptualizing partial goal satisfaction is identifying how to de-
fine partiality. For this, it is essential to define when a goal is achieved (satisfied
completely): we cannot define partiality without knowing what complete satis-
faction means. In pursuit of our interest in a quantitative framework, moreover,
one needs a metric in terms of which (complete) satisfaction is expressed. This
metric will be endowed with a partial ordering, to allow an agent to determine

74

whether a goal is getting closer to completion. We call such a metric the progress
metric of a goal, and denote it as a set A with partial order ≤.4 A goal then
specifies a minimum value amin ∈ A (called the completion value) that should
be reached in order to consider the goal to have been completely satisfied. For
example, the progress metric for the goal evacuateForest might be defined in
terms of time, where complete satisfaction is achieved when the forest has been
searched for two hours (until it gets dark); or the metric may be defined of a
(boolean) proposition such as isSearched(forest); or it may be defined in terms
of the number of subgoals achieved (e.g., searching tracks 1, 2, and 3), where
complete satisfaction means that all tracks have been searched, etc.

One may consider a wide range of domain-independent metrics, such as time,
utility, number of subgoals, besides domain-dependent metrics such as
number of road blocks, number of people brought to safety. Be-
sides the metric chosen as the progress metric, the agent (or designer) might
have interest in others: e.g., progress may be defined in terms of tracks searched,
but time taken could be an additional relevant factor in the team’s decisions.

As seen earlier, a fundamental reasoning concerning partial goal satisfaction
is progress appraisal [6]. An agent should thus be able to determine in a given
situation where it is with respect to a progress metric (A,≤). For example, if
time is the metric, the agent needs to be able to determine how long it has
spent so far. In the case of time, the computation from the current state to the
time spent is relatively direct. The computation may be more involved for other
metrics. In the case of utility, for example, more computation might be needed
to determine the current appraised value of utility in terms of other, measurable
quantities (i.e., other metrics besides the progress metric). However, in all cases,
an agent should be able to determine, given its beliefs about current state, at
least an estimation of the value of the progress metric for a goal.

Formally, for a goal with progress metric (A,≤), we require an agent to
have a progress appraisal function φ : S → A, where S is the set of states
(i.e., world state and multi-agent system state). In addition, in order to allow
determination of whether the completion value amin ∈ A is reachable given the
current state, we normally require the agent to have a progress upper bound

function φ̂ : S ×M → A that takes a state s ∈ S, and the means m ∈ M that
will be used for pursuing the goal, and yields (an estimation of) the maximum
value in A reachable from state s with means m. The upper bound will enable
reasoning about the achievability of a goal.

In the abstract framework, we do not further detail the content of the set
of possible means M . The content of M will depend on the domain and the
concrete agent (programming) framework that is used. Typically, we envisage
that M will contain a description of plans and/or resources that can be used to
pursue the goal. Sect. 6 contains an example in which we use the goal-plan tree.

4
Combinations of metrics might be considered, but for simplicity, here we assume quantities are

defined in terms of a single metric.

75

The functions φ and φ̂ now allow us to define a goal template. The intuition
is that each type of goal, such as secureArea or evacuateForest, has an associated
template. On the basis of a goal template, goal instances can be created.

Definition 1 (goal template). Consider a multi-agent system (MAS) for which

the set of possible states is defined as S. Let A be a nonempty set with a partial

ordering ≤ (the progress metric), and let M be a set representing means that

can be used for achieving a goal. A goal template T is then defined as a tuple

〈A,M, φ : S → A, φ̂ : S ×M → A〉, where φ is the progress appraisal function,

and φ̂ is the progress upper bound function.

This notion of goal template may be simplified to consist of only A and φ,
if φ̂ cannot be provided in a certain case, i.e., when no sensible upper bound
can be specified for a goal. Alternatively, it may be extended in various ways.
First, the goal template itself may be parameterized to account for variants of
the template. For example, depending on the area that has to be secured, the
number of road blocks that have to be set up will differ, and this may influence
the definition of φ and φ̂. Second, one may want to define a goal template for
a single goal based on different progress metrics, allowing the agent to choose a
progress metric depending on circumstances. We can capture this most simply
by having two separate goal templates. Formally relating these templates (for
instance by making them siblings in a hierarchy of goal types) is an extension of
our basic framework. For reasons of simplicity and space, we leave the pursuit
of these extensions for future work.

As noted, in order to simplify definition and computation of φ and φ̂, these
functions may yield estimated values for progress appraisal and the upper bound.
In environments that are not fully observable or that are open or dynamic, the
agent may not be able to compute precisely the functions. However, an agent
must be mindful of the potential adverse effects of estimation. In over-estimation
of φ̂ or under-estimation of φ, the agent would try to achieve a goal even though
it may be impossible to fully satisfy it, or it is already completely satisfied. On
the other hand, in under-estimation of φ̂ or over-estimation of φ the agent would
stop too soon. Thus, while φ and φ̂ may yield estimated values, intuitively the
agent should estimate the progress upper bound in a state s ∈ S to be at least
the current progress in that state. We call this coherency of a goal template, and
formally define it as ∀s ∈ S,m ∈ M : φ̂(s,m) ≥ φ(s).

To illustrate Def. 1, consider the goal secureArea of the example scenario.
In the scenario, the main resource (leaving aside time) is the number of police
officers P = {0, . . . , 10}. We base the progress metric for the goal on the number
of subgoals achieved.

Example 1. The goal template for secureArea is: Tsa = 〈R, P, φsa, φ̂sa〉. Thus,
the progress metric is A = R with its standard ≤ ordering. Arbitrarily, we
define φsa(s) to be 20 if all subgoals have been fully achieved in s (assuming
the agent can determine this in each state s), which means that road blocks
have been set up and at least one police officer guards each road block, 10 if all
road blocks have been set up but not all of them have at least one officer, and 0

76

otherwise. Let the means include p, the number of officers allocated. We define
φ̂sa(s, p) to be 20 iff the plan EstablishRoadblocks can be executed in s and it
is executed with at least 6 police officers, i.e., p ≥ 6, 10 if 1 ≤ p < 6 and the
plan can be executed successfully, and 0 otherwise. Computation of the upper
bound thus requires determining whether EstablishRoadblocks can be executed
successfully. This may be done by checking simply the precondition of the plan,
or by performing planning or lookahead (compare [3, 12]).

A goal template specifies the progress appraisal and progress upper bound
functions. As already addressed above, we need to specify the completion value

for a goal to specify when it is completely satisfied. In addition, the agent should
determine the means that will be allocated for pursuing the goal. The completion
value and means together form a goal instance.

Definition 2 (goal instance). Let T = 〈A,M, φ : S → A, φ̂ : S × M → A〉
be a goal template. A goal instance of T is specified as (amin ,m) : T , where

amin ∈ A is the completion value, and m ∈ M specifies the means that will be

used for achieving the instance.

Example 2. In the scenario, one goal instance of the goal template Tsa for se-

cureArea is gsa = (20, {0, . . . , 6}) : Tsa, expressing that the commander would
like to achieve a progress metric value of 20 with no more than six police officers.

Achievement. Using this notion of goal instance, we can easily define when a
goal is achieved (completely satisfied) in a certain state s ∈ S, namely, when the
appraised value of the progress metric in s is at least the completion value.

We will assume that each progress metric (A,≤) has a (totally ordered)
bottom element ⊥a ∈ A for which ∀a ∈ A with a 6= ⊥a, we have ⊥a < a. The
bottom element represents a ‘zero’ achievement level. When a goal instance g is
created, it may start partially completed, i.e., φ(s) > ⊥A where s is the state
in which g is created. For example, the road block on road 1 may already be in
place, when an instance of secureArea is created, because the road was closed
for construction.

We can now formally define goal achievement. In addition, we use the progress
upper bound function and the means of the goal instance to define a kind of goal
consistency. In logic-based frameworks for goals [30, 31, 10], an inconsistent goal
is not reachable by definition. Achievement in our framework for partial goal
satisfaction is similar. We say that a goal instance is achieved in a state s if the
maximum attainable value of the progress metric from s, given the means of the
goal instance, is at least the completion value.

Definition 3 (goal achievement and achievability). Let T be a goal tem-

plate, let (amin ,m) : T be an instance of T , and let s ∈ S be the current state.

The goal instance (amin ,m) : T is completely unachieved iff φ(s) = ⊥A, (com-
pletely) achieved (or satisfied) iff φ(s) ≥ amin , and partially achieved otherwise,

i.e., iff ⊥A < φ(s) < amin . The goal instance is achievable w.r.t. m (or simply

achievable, where the context is clear) iff φ̂(s,m) ≥ amin .

77

For example, the goal instance gsa of Example 2 above is achieved if all road
blocks have been set up and each remains guarded by at least one police officer
(since in that case the achieved φsa value is 20). It is achievable in any state
s ∈ S since six police officers are allocated for achieving the instance, whence
the progress upper bound is 20, equalling the completion value. If less than six
officers were allocated, the goal instance would not be achievable since then the
agent could maximally attain a φsa value of 10.

4.1 Binary Goal Achievement

We now discuss how our framework relates to logic-based frameworks for (achieve-
ment) goals. In the latter, as noted in Sect. 2, the success condition of a goal is
usually defined as a logical formula s, which is achieved in a state s ∈ S if the
agent believes s to hold in that state. We show how our definition for partial goal
achievement can be instantiated such that it yields the usual binary definition
of goal. We abstract from means M .

Definition 4 (binary goal instance). Let ψ be a logical formula, for which

the truth value can be determined in the current MAS state s (denoted as s |= ψ

iff ψ is entailed). Let A = {false, true} with true > false. Let M = {ǫ} where

ǫ is a dummy element. Let φ(s) = true if s |= ψ and false otherwise, and let

φ̂(s, ǫ) = true if ψ 6|= ⊥ and false otherwise. Let Tbin(ψ) = 〈A,M, φ, φ̂〉. Then we

define a binary goal instance ψ = (true, ǫ) : Tbin(ψ).

Proposition 1 (correspondence). The instantiation of the partial goal frame-

work as specified in Def. 4, corresponds to the binary definition of goal (Sect. 2)

with respect to achievement and consistency.

Proof. We have to show that achievement and consistency hold in the binary definition
of goal, iff achievement and achievability hold in the instantiated partial definition of
goal. The goal ψ is achieved in the partial case in some state s iff φ(s) ≥ amin , i.e.,
iff φ(s) ≥ true, i.e., iff φ(s) = true, i.e., if s |= ψ. This is exactly the definition
of achievement in the binary case. The goal ψ is achievable in the partial case iff
φ̂(s, ǫ) ≥ amin , i.e., iff φ̂(s, ǫ) = true, which is precisely the case iff ψ is consistent. ⊓⊔

We envisage an instantiation of our framework with the logic-based char-
acterization of partiality of Zhou et al. [32], where in particular the ordering
relation of the progress metric will have to be defined. That is, consider a se-
mantics of partial implication and an alphabet of atoms. Intuitively, we must
specify a metric on a set such as propositions over the alphabet, that gives rise
to a partial order of the propositions w.r.t. the semantics of implication. Mak-
ing this instantiation precise will be future research. Indeed, the role of partial
implication in connection with subgoals and plans—which we account for in our
framework through the computation of metrics in the GPT—has already been
noted as a research topic [32].

The instantiation of our framework with a binary goal definition emphasizes
that progress metrics need not be numeric. However, if φg is numeric, the agent

78

can compute how far it is in achieving a goal as a ratio with the completion value.
That is, if T is a goal template with progress appraisal function φ : S → A and
g = (amin,m) : T is a goal instance of T , and if quotients in A are defined (e.g.,
if A = R), then a measure of progress of goal instance g when the agent is in

state s is the ratio φ(s)

amin

. This metric of % complete corresponds to the intuitive
notion of progress as the percentage of the completion value attained.

5 Goal Adaptation

The previous section outlined an abstract framework for partial goal satisfac-
tion. We have taken progress appraisal as the most basic form of reasoning that
such a framework should support. In the motivating scenario, we argued that
the framework should support more advanced kinds of reasoning, such as goal
negotiation. In this section, we highlight a type of reasoning that we suggest
underlies many of these more advanced kinds of reasoning, namely reasoning

about goal adaptation. Given a goal instance g = (amin,m) : T where T is a goal
template, we define goal adaptation as modifying amin or m (or both). Note that
modifying the plan for g is included in the scope of modifying m.

The reasoning question is how to determine which goals to adapt and how
to adapt them. While this is a question that we cannot fully answer here, we
analyze the kinds of adaptation and possible reasons for adapting. One important
factor that may influence the decision on how, and particularly when, to adapt
is the evolution of the agent’s beliefs. This aspect is a focus of prior works [22,
32]. Another important factor is the consideration of a cost/benefit analysis. We
develop our basic framework to support this kind of reasoning.

5.1 Reasons for and Uses of Adaptation

We begin by distinguishing internal and external reasons for goal adaptation.
By internal reasons for we mean those that arise from issues with respect to the
goal itself, while external reasons are those that arise from other factors.

More specifically, we see a lack of achievability as a main internal reason
for goal adaptation. If a goal instance g is not achievable, it means that its
completion value cannot be attained from the current state with the means that
are currently allocated. The options without a concept of partial satisfaction
are to drop/abort g, to attempt a different plan for g (if possible), to suspend
g until it becomes achievable (for example, waiting for more officers to arrive),
or to abort or suspend another goal in favour of g. In our framework, the goal
instance can be adapted to make it achievable by lowering the completion value,
which we call goal weakening, as well as by the alternative of choosing different
means that allows the achievement of the current completion value, e.g., by
investing additional resources. Depending on the circumstances, the latter may
not always be possible. For example, if the goal is to evacuate people from their
houses but it is physically not possible to get to these houses, e.g., because of
flooding, it does not matter whether the officers devote more time or personnel.

79

Several external reasons may lead to goal adaptation. First, a goal instance g
may in itself be achievable, but (collective) unachievability of other goal instances
may be a reason for adapting g. That is, in practice an agent has only limited
resources and it has to choose how it will invest them to achieve a set of current
and future goal instances [1, 27]. For example, the agent may decide that another
goal instance is more important and needs resources, leading to adaptation of
the means of g. In our framework, goal adaptation provides the agent with
the option of partially suspending, replanning, or abandoning goals. Moreover,
progress appraisal helps the agent determine which goals to adapt. For example,
it does not seem sensible to drop a goal instance that has a plan that is almost
completed and that yields zero utility unless it is completely satisfied.

There are further external reasons for goal adaptation. Second, a particular
case is consideration of a new candidate goal instance g′: the question of goal
adoption. Partial satisfaction allows an agent to consider adapting an existing
goal instance, or adopting the new instance g′ in a weakened form. Third, an
agent might be requested by another agent to increase the completion value of
a goal instance, which we call goal strengthening. For example, the team leader
may decide that more time should be spent searching the forest.

Together, progress appraisal and goal adaptation form a basis for higher-
level reasoning tasks. We have already discussed goal negotiation (Sect. 3), goal
adoption, and avoiding and resolving goal achievement inconsistencies. We now
briefly discuss several other kinds of reasoning. First, in order to coordinate their
actions, agents should communicate about how far they are in achieving certain
goals [7, 17, 15]. Progress appraisal provides a principled approach. Second, an
agent might realize it cannot achieve a goal completely. Allowing itself to weaken
a goal, it can delegate part of the goal to other agents. Similarly, delegation may
be another option for an agent finding it has achievement difficulties. Related,
third, is reasoning about other agents and their ability to complete tasks. For
example, one agent realizing that another agent is unlikely to fully complete its
task(s), irrespective of whether the other agent has acknowledged this.

5.2 Cost/Benefit Analysis

When deciding which goals to adapt and how, we suggest that a cost/benefit
analysis can be an important consideration (see also, e.g., [1, 21]). We have al-
ready noted the example of an agent pursuing a goal that yields zero utility
unless completely satisfied, for which only a small additional amount of effort is
required. On the other hand, if an agent has obtained much utility from a goal
instance g, compared to that expected when the progress metric of g reaches
the completion value, and if much more effort would have to be invested to fully
achieve g, it may be sensible to stop pursuit of the goal if resources are needed
elsewhere. These kinds of cost/benefit analyses to obtain an optimal division of
resources over goals essentially form an optimization problem. While it is be-
yond the scope of this paper to investigate how optimization techniques can be
applied in this context, we do analyze how our framework supports it.

80

In order to weight up costs and benefits, one needs to know how much it would
cost to achieve a certain benefit. The benefit obtained through progress on a goal
can be derived in our framework by means of a utility metric ug : S → U , where
U is a set.4 Note that the progress metric of a goal template might be defined in
terms of ug (as is the case for publicSafety), in which case φg ≡ ug and A ≡ U ;
or ug might be a different metric (as in the case of secureArea).

The incremental benefit obtained when achieving a goal completely is the
difference between the benefit at a state s∗ for which φ(s∗) ≥ amin (i.e., upon
completion of the goal) and the benefit in the current state snow. That is, for
a goal instance (amin,m) : T , the incremental benefit is ∆u = u(s∗) − u(snow).
Note that ∆u can only be calculated in this way if differences are defined on U ,
which will be the case if U is numeric.

The cost associated with obtaining amin can be computed by a cost function
κ : S ×M ×S → C, where C is a set and κ(s,m, s′) = c implies that the cost of
going from state s with means m to state s′ is estimated to be c. Then we can
calculate the estimated minimal incremental cost to move from the current state
snow to a completion state s∗ with means m as min

s
′:φ(s′)≥amin

κ(snow,m, s′).
Supposing that the set that measures benefit, U , and the set that measures

cost, C, are mutually comparable—for instance, if both are subsets of R—then
the estimates for utility achieved so far, utility expected upon completion, cost
so far, and cost to completion can be compared.

6 Towards an Embedding within a Goal Framework

In this section, we illustrate how our metric-based framework for partial goal
satisfaction can be applied to a concrete goal representation framework, namely
the GPT as introduced earlier. This is a step towards rendering the capabilities
within a cognitive agent programming framework. An attraction of the GPT is
its representation of goals, subgoals, and plans—which is pertinent for reasoning
about the means and the progress in execution of a goal—combined with the
annotation of and aggregation of quantities on the tree nodes—which we will
use for computation of metrics. Fig. 1 depicted a goal-plan tree for the evacu-
ation scenario. The goal and action nodes correspond to goal instances in our
framework; the tree structure gives the plan aspect of their means.

For the reasons just given, we posit that the concept of partially satisfied
goals fits naturally into this kind of representation framework for goals. We
augment annotations of tree nodes to include metrics about goal (and, where
relevant, plan) satisfaction. In the simplest case, this comprises annotating each
goal node with values from its progress metric A, as we will explain. The %

complete metric allows normalization of the values.

Progress appraisal. Inference over the tree structure computes and updates
metrics by propagation upwards from descendant nodes, in a similar fashion as
resource estimates and other information are propagated [3, 24]. For example,
the current value of % complete of a parent plan node may be aggregated

81

from the values of its child goal nodes. Metrics are aggregated according to their
nature and the type of the node. For example, by default, a conjunctive plan
node will aggregate% complete as the arithmetic mean of the children’s values,
while a disjunctive plan node will aggregate it as the maximum of their values.
Mechanisms for aggregation have been explored in the cited literature. Since the
algorithms are already parameterizable according to the nature of the quantity
(in our case, the metric) and the type of the node, we need not repeat them.

The computation is to be made dynamically as the current situation evolves
[18, 15]. We assume agents can assess the progress of leaf nodes. For instance,
the police officers should believe they know when they have finished clearing
a house (and so achieve the utility depicted on each leaf node). Hence, there
are two types of metric values attributed onto nodes. The first type are static,
initial, a priori values before execution (as depicted in Fig. 1). These correspond
to expected, estimated, or required values, such as the utility expected upon full
satisfaction of a goal (i.e., u(s∗)), and the resources expected to achieve this. The
second type of metric values are dynamic estimates computed during execution,
such as the utility achieved so far from a goal. For the progress metric of each
goal instance g, the static value corresponds to the completion value amin of g,
while the dynamic value corresponds to the appraised value φg(snow).

5

6.1 Reasoning in the Example Scenario

The response team commander is given the goal publicSafety. The doctrinal plan,
SecureAndClearArea, involves the two subgoals, secureArea and evacuatePeople;
the two may be achieved concurrently, although the team must be mindful that
the public may (re-)enter the incident area until it is secured.

Goal templates, metrics, and goal instances. Recall from Example 1 that
the goal template for secureArea is Tsa = 〈R, P, φsa, φ̂sa〉, where the progress
metric for Tsa is the achievement of its subgoals. The utility metric of Tsa can
be seen from Fig. 1 to be usa = 5∗ (# achieved subgoals). usa may be of interest
as a measure of progress, even though this metric does not define the progress
(according to police doctrine) nor therefore the completion of the goal.

By contrast to secureArea, the progress metric of the initial goal public-

Safety in the scenario is defined in terms of utility. Its goal template is Tps =
〈R, P, uΣ , ûΣ〉 where φps ≡ uΣ specifies the cumulative utility from the subgoals
in the current plan for a goal instance of Tps. This progress metric is computed
in the obvious manner by recursively transversing the subtree below the goal
instance, summing up the current utility estimates for each goal node. Like-
wise, the progress upper bound function, ûΣ , can be computed by a recursive
descent through the GPT. An a priori estimate can be computed, based on
the upper bounds of the static, a priori utility attributions on leaf nodes [27, 3,

5
An agent may be capable of directly computing the value of a metric at a (non-leaf) node. In
that case, if the reasoning is consistent and the static values on leaf notes are reliable estimates,
then the directly-computed and aggregated values should agree. Where they do not, the agent
may resolve the conflict according to which of the two computations it believes is most reliable.

82

24]. For example, an a priori upper bound on EstablishRoadblocks, relaxing re-
source considerations, is 4+4+max(2, 5) = 13. Tighter bounds can be obtained
by considering resource limitations and the resulting goal interaction and plan
scheduling [27, 24].

Goal adoption. The police commander and her team are tasked with the initial
goal publicSafety ; its goal instance is (40, 10) : Tps. The team of 10, including
the commander, has too few officers to meet the expected requirements for the
full completion of the three roadblock actions (rbi) and the two house-clearance
actions (hi), let alone the forest. That is, the goal instance is unachievable (i.e.,

φ̂ps < amin), as can be seen to be the case by examination of the GPT.

Negotiation, delegation, and requesting help. At first, the commander
considers allocating six officers for secureArea and weakening the evacuatePeople
goal by omitting the evacuateForest subgoal. This is unacceptable to incident
control. After further negotiation, control agrees to send urgently a second team
to perform rb1. The commander thus allocates four officers for secureArea. Hence,
the goal instances are (20, 4) : Tsa and (25, 6) : Tep. Two officers will search each
house; when done, they will join the forest search.

Appraisal and sharing information. As execution proceeds, updated metric
values are computed on the leaf nodes of the GPT and aggregated to parent
nodes. This provides a situational assessment for the commander. Searching
house 2 is taking longer than anticipated. Should the two officers continue with
h2, or join those searching the forest? Utility of 4 is estimated achieved from h2

after 25 minutes have elapsed. The original estimate of utility for completion of
the goal was 7; but this was only an a priori estimate based on typical experience.
The commander appraises that the rate of achieving utility is outweighed by the
resources employed, and so calls off the officers from house 2.

This extract from the scenario illustrates the more sophisticated reasoning
enabled by and founded on a metric-based notion of partial goal satisfaction that
is embedded into a concrete computational framework for the metrics.

7 Conclusion and Next Steps

The contribution of this line of work stems from the recognition of the need for
a concept of partial goal satisfaction in cognitive agent frameworks, manifest
in terms of the proposal of an abstract framework for partial goal satisfaction
that identifies the main necessary ingredients for reasoning based on partial goal
satisfaction. Our objective is a representation of partial satisfaction integrated
into a reasoning framework, and allowing for a quantitative instantiation, in
order that cognitive agent programming frameworks might be enhanced. The
benefit of the topic and our approach is more sophisticated reasoning about
goals, impacting reasoning about selection, adoption, and pursuit; goal progress
appraisal; goal interaction; and inter-agent communication and collaboration.

83

Although we have indicated how our framework may be concretized in the
context of GPTs, more work is needed to flesh out the details and investigate
how advanced types of reasoning can be built on top of this basis and integrated
into a programming framework. The modifications necessary to the semantics of
a language such as GOAL [10] must be established and their correctness proved.
To be investigated is how the various functions of our framework can be defined
in concrete settings, and how existing work on, e.g., reasoning about resources
can be used in this context. Also, while our framework provides the basis for
reasoning about goal adaptation, it does not provide algorithms that allow the
agent to decide how to adapt, weighing costs and benefits. This is an important
area for future research, with just one relevant aspect being how to estimate
cost and benefit projection into the future. Lastly, possible extensions are ripe
for investigation, such as a logical instantiation with reasoning between goal
outcomes, following Zhou et al. [32], inclusion of parameters in goal templates,
and relation of templates in a hierarchy.

Acknowledgments

We thank David Martin for discussions and the reviewers for their helpful com-
ments.

References

1. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 14:349–355, 1988.

2. L. Braubach and A. Pokahr. Representing long-term and interest BDI goals. In
Proc. of ProMAS’09, 2009.

3. B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract reasoning for planning
and coordination. JAIR, 28:453–515, 2007.

4. M. Dastani. 2APL: A practical agent programming language. JAAMAS, 16(3):214–
248, 2008.

5. M. B. Do, J. Benton, M. van den Briel, and S. Kambhampati. Planning with goal
utility dependencies. In Proc. of IJCAI’07, 2007.

6. P. J. Feltovich, J. M. Bradshaw, W. J. Clancey, M. Johnson, and L. Bunch. Progress
appraisal as a challenging element of coordination in human and machine joint
activity. In Proc. of ESAW’07, 2007.

7. B. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial

Intelligence, 86(2):269–357, 1996.
8. B. J. Grosz and L. Hunsberger. The dynamics of intention in collaborative activity.

Cognitive Systems Research, 7(2–3):259–272, 2006.
9. P. Haddawy and S. Hanks. Representations for decision theoretic planning: Utility

functions for deadline goals. In Proc. of KR’92, 1992.
10. K. V. Hindriks. Programming rational agents in GOAL. In Multi-Agent Program-

ming: Languages, Tools and Applications. Springer, Berlin, 2009.
11. K. V. Hindriks, C. Jonker, and W. Pasman. Exploring heuristic action selection

in agent programming. In Proc. of ProMAS’08, 2008.

84

12. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent programming
with temporally extended goals. In Proc. of AAMAS’09, 2009.

13. R. Holton. Partial belief, partial intention. Mind, 117:27–58, 2008.
14. Z. Huang and J. Bell. Dynamic goal hierarchies. In Proc. of the 1997 AAAI Spring

Symp. on Qualitative Preferences in Deliberation and Practical Reasoning, 1997.
15. E. Kamar, Y. Gal, and B. J. Grosz. Incorporating helpful behavior into collabo-

rative planning. In Proc. of AAMAS’09, 2009.
16. G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J. Feltovich. Ten

challenges for making automation a “team player” in joint human-agent activity.
IEEE Intelligent Systems, 19(6):91–95, 2004.

17. V. Lesser and et al. Evolution of the GPGP/TAEMS Domain-Independent Coor-
dination Framework. JAAMAS, 9(1):87–143, 2004.

18. D. Morley, K. L. Myers, and N. Yorke-Smith. Continuous refinement of agent
resource estimates. In Proc. of AAMAS’06, 2006.

19. B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoretical and
empirical analysis. Artificial Intelligence, 76(1–2):427–454, 1995.

20. A. S. Rao and M. P. Georgeff. Modeling agents within a BDI-architecture. In Proc.

of KR’91, 1991.
21. M. Schut, M. Wooldridge, and S. Parsons. The theory and practice of intention

reconsideration. JETAI, 16(4):261–293, 2004.
22. S. Shapiro and G. Brewka. Dynamic interactions between goals and beliefs. In

Proc. of IJCAI’07, 2007.
23. S. Shapiro, Y. Lespérance, and H. J. Levesque. Goal change. In Proc. of IJCAI’05.
24. P. H. Shaw, B. Farwer, and R. H. Bordini. Theoretical and experimental results

on the goal-plan tree problem. In Proc. of AAMAS’08, 2008.
25. M. P. Singh. A critical examination of use Cohen-Levesque theory of intentions.

In Proc. of ECAI-92.
26. D. E. Smith. Choosing objectives in over-subscription planning. In Proc. of

ICAPS’04, 2004.
27. J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding resource

conflicts in intelligent agents. In Proc. of ECAI-02, 2002.
28. W. van der Hoek, W. Jamroga, and M. Wooldridge. Towards a theory of intention

revision. Synthese, 155(2):265–290, 2007.
29. M. B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals in agent systems: A

unifying framework. In Proc. of AAMAS’08, 2008.
30. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and pro-

cedural goals in intelligent agent systems. In Proc. of KR’02, 2002.
31. Y. Zhou and X. Chen. Partial implication semantics for desirable propositions. In

Proc. of KR’04, 2004.
32. Y. Zhou, L. van der Torre, and Y. Zhang. Partial goal satisfaction and goal change:

Weak and strong partial implication, logical properties, complexity. In Proc. of

AAMAS’08, 2008.

85

Reinforcement Learning as Heuristic for

Action-Rule Preferences

Joost Broekens, Koen Hindriks, Pascal Wiggers

Man-Machine Interaction department (MMI)

Delft University of Technology

Abstract. A common action selection mechanism used in agent-oriented

programming is to base action selection on a set of rules. Since rules need

not be mutually exclusive, agents are often underspecified. This means

that the decision-making of such agents leaves room for multiple choices

of actions. Underspecification implies there is potential for improvement

or optimalization of the agent’s behavior. Such optimalization, however,

is not always naturally coded using BDI-like agent concepts. In this pa-

per, we propose an approach to exploit this potential for improvement

using reinforcement learning. This approach is based on learning rule pri-

orities to solve the rule-selection problem, and we show that using this

approach the behavior of an agent is significantly improved. Key here is

the use of a state representation that combines the set of rules of the

agent with a domain-independent heuristic based on the number of ac-

tive goals. Our experiments show that this provides a useful generic base

for learning while avoiding the state-explosion problem or overfitting.

Categories and subject descriptors: I.2.5 [Artificial Intelligence]:

Programming Languages and Software; I.2.11 [Artificial Intelligence]:

Distributed Artificial Intelligence—Intelligent Agents

General terms: Agent programming languages; Robotics; AI; Method-

ologies and Languages

Keywords: Agent-oriented programming, rule preferences, reinforce-

ment learning

1 Introduction

Agent platforms, whether agent programming languages or architectures, that

are rule-based and use rules to generate the actions that an agent performs intro-

duce the problem of how to select rules that generate the most effective choice

of action. Such agent programming languages and architectures are based on

concepts such as rules, beliefs, and goals to generate agent behavior. Here, rules

specify the agent’s behavior. A planning or reasoning engine tries to resolve all

rules by matching the conditions and actions with the current mental state of the

agent. Multiple instantiations of each rule can therefore be possible. An agent

can select any one of these instantiations, resulting in a particular action. So,

86

the rule-selection problem is analogous to but different from the action-selection
problem [13]. Rule selection is about which uninstantiated rule to chose; action
selection, in the context of rule-based agent frameworks, is about which instan-
tiated rule to chose. In this paper, when we refer to rule we mean uninstantiated
rule, i.e, rules that still contain free variables.

Rule-based agent languages or architectures typically underspecify the be-
havior of an agent, leaving room for multiple choices of actions. The reason is
that multiple rules are applicable in a particular situation and, as a result, mul-
tiple actions may be selected by the agent to perform next. In practice, it is often
hard to specify rule conditions that are mutually exclusive. Moreover, doing so
is undesirable as the BDI concepts used to develop agents often are not the most
suitable for optimizing agent behavior. An alternative approach is to optimize
agent behavior based on learning techniques.

In this paper we address the following question: how to automatically prior-
itize rules in such a way that the prioritization reflects the utility of a rule given
a certain goal. Our aim is a generic approach to learning such preferences, that
can be integrated in rule-based agent languages or architectures. The overall
goal is to optimize the agent’s behavior given a predefined set of rules by an
agent programmer, but our approach can also be used by agent programmers to
gain insight into the rule preferences and use these to further specify the agent
program. As such, we focus on a useful heuristic for rule preferences. We have
chosen reinforcement learning (RL) as heuristic as it can cope with delayed re-
wards and state dependency. These are important aspects in agent behavior as
getting to a goal state typically involves a chain of multiple actions, and rules
can have different utility depending on the state of the agent/environment.

We present experimental evidence that reinforcement learning can be used
to learn rule priorities that can subsequently be used for rule selection. This
heuristic for rule priorities works very well, and results in sometimes optimal
agent behavior. We demonstrate this with a set of experiments using the Goal

agent programming language [5]. Key in our approach is that the RL mechanism
uses a state representation based on a combination of the set of rules of the
agent and the number of active goals. Our state representation is as abstract as
possible while still being a useful base for learning. We take this approach for
two main reasons: (1) we aim for a generic learning mechanism; RL should be
a useful addition to all programs, and the programmer should not be bothered
by the state representation or state-space explosions; (2) an abstract state helps
generalization of the learning result as a concrete state representation runs the
risk of over fitting on a particular problem instance.

It is important to immediately explain one aspect of our approach that is dif-
ferent from the usual setup for reinforcement learning. In reinforcement learning
it is common to learn the action that has to be selected from a set of possible
actions. In our approach, however, we will apply reinforcement learning to select
an uninstantiated rule from a set of rules in an agent program. An uninstantiated
rule (called action rule in Goal, see also Listing 1) is a generic rule defined by
the agent programmer.

87

if goal(tower([X|T])), not(bel(T=[])) then move(X,table)

is an example of such a rule. We refer to an instantiated rule as a completely
resolved (grounded) version of an action rule generated by the reasoning engine
responsible for matching rules to the agent’s current state. This also means that
the action in an instantiated rule may be selected for execution, as the conditions
of the rule have been verified by the engine.

if goal(tower([a,b])), not(bel([b]=[])) then move(a,table)

is an example of an instantiated rule and the action move(a,table) is the corre-
sponding action that may be selected. One instantiated rule thus is the equivalent
of one action (as it is completely filled in). Many different instantiated rules may
be derived from one and the same program rule, depending on the state. An
uninstantiated rule is more generic as it defines many possible actions. We focus
on learning preferences for uninstantiated rules.

The paper is organized as follows. Section 2 discusses some related work and
discusses how our approach differs from earlier work. In Section 3 we briefly
introduce the agent language Goal and use it to illustrate the rule selection
problem. Section 4 presents our approach to this problem based on reinforce-
ment learning and presents an extension of Goal with a reinforcement learning
mechanism. In Section 5 experimental results are presented that show the effec-
tiveness of this mechanism. Finally, Section 6 concludes the paper and discusses
future work.

2 Related Work

There is almost no work on incorporating learning mechanisms into agent pro-
gramming. More generally, BDI agents typically lack learning capabilities to
modify their behavior [1], although several related approaches do exist.

With regards to related work, several studies attempt to learn rule sets that
produce a policy for solving a problem in a particular domain. Key in these
approaches is that the rules themselves are learned, or more specific, rule in-
stantiations are generated and evaluated with respect to a utility function. The
best performing rule instantiations are kept and result in a policy for the agent.
The evaluation mechanism can be different, for example genetic programming [9]
or supervised machine learning [7]. In any case, the main difference is that our
approach tries to learn rule preferences, i.e., a priority for pre-existing rules given
that multiple rules can be active, while the previously mentioned approaches try
to learn rule instantiations that solve a problem.

Other studies attempt to learn rule preferences like we do. However, these
approaches are based on learning preferences for instantiated rules [10][4], not
preferences for the uninstantiated, generic, rules. Further, the state used for
learning is often represented in a much more detailed way [10][4]. Finally, as the
state representation strongly depends on the environment, the use of learning
mechanisms often involves effort and understanding of the programmer [10].

88

Reinforcement learning has recently been added to cognitive architectures
such as Soar [8] and Act-R [2]. In various respects these cognitive architectures
are related to agent programming and architectures. They use similar concepts
to generate behavior, using mental constructs such as knowledge, beliefs and
goals, are also based on an sense-plan-act cycle, and generate behavior using
these mental constructs as input for a reasoning- or planning-based interpreter.
Most importantly, cognitive architectures typically are rule-based, and therefore
also need to solve the rule (and action) selection problem. For example, Soar-
RL has been explicitly used to study action selection in the context of RL [6].
Soar-RL [10] is the approach that comes closest to ours in the sense that it uses
a similar reinforcement learning mechanism (Sarsa) to learn rule preferences.
As explained above, the key difference is that we attempt to learn uninstan-
tiated rule preferences, while Soar-RL learns preferences for instantiated rules
[10]. Another key difference is that we use an abstract rule-activity based state
representation complemented with a ‘goals left to fulfill’ counter, as explained
in section 4.2.

Finally, [1] present a learning technique based on decision trees to learn
the context conditions of plan rules. The focus of their work is to make agents
adaptive in order to avoid failures. Learning a context condition refers to learning
when to select a particular plan/action, while learning a rule preference refers to
attaching a value to a particular plan/action. Our work is thus complementary in
the sense that we do not learn context conditions, but instead propose a learning
mechanism that is able to guide the rule selection mechanism itself.

3 The Agent Language GOAL

In this Section we briefly present the agent programming language Goal and use
it to illustrate the rule selection problem in agent languages and architectures.
For a more extensive discussion of Goal we refer the reader to [5]. The approach
to the rule selection problem introduced in this paper is not specific to Goal and
may be applied to other similar BDI-based platforms. As our approach involves
a domain-independent heuristic based on counting the number of goals that need
to be achieved, the language Goal is however particularly suitable to illustrate
the approach as declarative goals are a key concept in the language.

Goal, for Goal-Oriented Agent Language, is a programming language for
programming rational agents. Goal agents derive their choice of action from
their beliefs and goals. A Goal agent program consists of five sections: (1) a
knowledge section, called the knowledge base, (2) a set of beliefs, collectively
called the belief base, (3) a set of declarative goals, called the goal base, (4) a
program section which consists of a set of action rules, and (5) an action speci-
fication section that consists of a specification of the pre- and postconditions of
actions of the agent. Listing 1 presents an example Goal agent that manipulates
blocks on a table.

The knowledge, beliefs and goals of a GOAL agent are represented using a
knowledge representation language. Together, these make up the mental state of

89

1 main stackBuilder {
2 knowledge{
3 block(a), block(b), block(c).
4 clear(table).
5 clear(X) :- block(X), not(on(Y,X)).
6 tower([X]) :- on(X,table).
7 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
8 }
9 beliefs{

10 on(a,table), on(b,table), on(c,a), on(d,c).
11 }
12 goals{
13 on(a,d), on(b,c), on(c,table), on(d,b).
14 }
15 program{
16 if goal(tower([X|T])),
17 bel((T=[Y|T1], tower(T)); (T=[], Y=table))
18 then move(X,Y).
19 if goal(tower([X|T])), not(bel(T=[]))
20 then move(X,table).
21 }
22 actionspec{
23 move(X,Y) {
24 pre{ clear(X), clear(Y), on(X,Z) }
25 post{ not(on(X,Z)), on(X,Y) }
26 }
27 }
28 }

Table 1. Agent for Solving a Blocks World Problem

an agent. Here, we use Prolog to represent mental states. An agent’s knowledge
represents general conceptual and domain knowledge, and does not change. An
example is the definition of the concept tower in Listing 1. In contrast, the beliefs
of an agent represent the current state of affairs in the environment of an agent.
By performing actions and possibly by events in the environment, the environ-
ment changes, and it is up to the agent to make sure its beliefs stay up to date.
Finally, the goals of an agent represent what the agent wants the environment to
be like. For example, the agent of Listing 1 wants to realise a state where block
a is on top of block b. Goals are to be interpreted as achievement goals, that is
as a goal the agent wants to achieve at some future moment in time and does
not believe to be the case yet. This requirement is implemented by imposing a
rationality constraint such that any goal in the goal base must not believed to
be the case. Upon achieving the complete goal, an agent will drop the goal. The
agent in Listing 1 will drop the goal on(a,b), on(b,c), on(c,table) if this
configuration of blocks has been achieved, and only if the complete configuration
has been achieved.

As Goal agents derive their choice of action from their knowledge, beliefs and
goals, they need a way to inspect their mental state. Goal agents do so by means
of mental state conditions. Mental state conditions are Boolean combinations
of so-called basic mental atoms of the form bel(φ) or goal(φ). For example,
bel(tower([c,a])) is a mental state condition which is true in the initial mental
state specified in the agent program of Listing 1.

90

A Goal agent uses so-called action rules to generate possible actions it may
select for execution. This provides for a rule-based action selection mechanism,
where rules are of the form if ψ then a(t) with ψ a mental state condition and
a(t) an action. A mental state condition part of an action rule thus determines
the states in which the action a(t) may be executed. Action rules are located in
the program section of a Goal agent. The first action rule in this section of our
example agent generates so-called constructive moves, whereas the second rule
generates actions to move a misplaced block to the table. Informally, the first
rule reads as follows: if the agent wants to construct a tower with X on top of
a tower that has Y on top and the agent believes that the tower with Y on top
already exists, or believes Y should be equal to the table, then it may consider
moving X on top of Y; in this case the move would put the block Y in position,
and it will never have to be moved again. The second rule reads as follows: if the
agent finds that a block is misplaced, i.e. believes it to be in a position that does
not match the (achievement) goal condition, then it may consider moving the
block to the table. These rules code a strategy for solving blocks world problems
that can be proven to always achieve a goal configuration. As such, they already
specify a correct strategy for solving blocks world problems. However, they do
not necessarily determine a unique choice of action. For example, the agent in
Listing 1 may either move block d on top of block b using the first action rule,
or move the same block to the table using the second action rule. In such a
case, a Goal agent will nondeterministically select either of these actions. It is
important for our purposes to note here that the choice of rule is at stake here,
and not a particular instantiation of a rule. Moreover, as in the blocks world it is
a good strategy to prefer making constructive moves rather than other types of
moves, the behavior of the agent can be improved by preferring the application
of the first rule over the second whenever both are applicable. It is exactly this
type of preference that we aim to learn automatically.

Finally, to complete our discussion of Goal agents, actions are specified in
the action specification section of such an agent using a STRIPS-like specifica-
tion. When the preconditions of the action are true, the action is executed and
the agent updates its beliefs (and subsequently its goals) based on the postcon-
dition. Details can be found in [5].

As illustrated by our simple example agent for the blocks world, rule-based
agent programs or architectures may leave room for applying multiple rules,
and, as a consequence, for selecting multiple actions for execution. Rule-based
agents thus typically are underspecified. Such underspecification is perfectly fine,
as long as the agent achieves its goals, but may also indicate there is room for
improvement of the agent’s behavior (though not necessarily so). The problem
of optimizing the behavior of a rule-based agent thus can be summarized as fol-
lows, and consists of two components: First, solving a particular task efficiently
depends on using the appropriate rule to produce actions (the rule selection
problem) and, second, to select one of these actions for execution (the action
selection problem). The latter problem is actually identical to selecting an in-
stantiated rule where all variables have been grounded, as instantiated rules

91

that are applicable yield unique actions that may be executed. Uninstantiated
rules only yield action templates that need to be instantiated before they can be
executed.

In this paper we explore a generic and fully automated approach to this
optimization problem based on learning, and we propose to use reinforcement
learning. Although reinforcement learning is typically applied to solve the ac-
tion selection problem, here instead we propose to use this learning technique
to (partially) solve the rule selection problem. The reason is that we want to
incorporate a generic learning technique into a rule-based agent that does not
require domain-specific knowledge to be inserted by a programmer. As we will
show below, applying learning to the rule selection problem in combination with
a domain-independent heuristic based on the number of goals still to be achieved
provides just such a mechanism.

4 Learning to Solve the Rule Selection Problem

In this Section, we first briefly review some of the basic concepts of reinforcement
learning, and then introduce our approach to the rule selection problem based
on learning and discuss how we apply reinforcement learning to this problem.
We use the agent language Goal to illustrate and motivate our choices.

4.1 Reinforcement Learning

Reinforcement Learning is a mechanism that enables machines to learn solutions
to problems based on experience. The main idea is that by specifying what to
learn, RL will figure out how to do it. An approach based on reinforcement
learning assumes there is an environment with a set of possible states, S, a
reward function R(S) that defines the reward the agent receives for each state
in the environment, and a set of actions A that enable to effect changes to the
environment (or an agent in that environment) and move the environment from
one state to another according to the state transition function T (S, A) → S.
An RL mechanism then learns a value function, V (S, A), that maps actions in
states to values of those actions in that state. It does so by propagating back
the reinforcement (reward) received in later states to earlier states and actions,
called value propagation. RL should do this in such a way that the result of always
picking the action with the highest value will lead to the best solution to the
problem (the best sequence of actions to solve the problem is the sequence with
the highest cumulative reward). Therefore, RL is especially suited for problems
in which the solution follows only after a sequence of actions and in which the
information available for learning takes the form of a reward (e.g. pass/fail or
some utility value).

In order for RL to learn a good value function, it must explore the state space
sufficiently, by more or less randomly selecting actions. Exploration is needed to
gather a representative sample of interactions so that the transition function T

(in case the model of the world is not known) and the reward function R can be

92

learned. Based on T and R, the value function V is calculated. After sufficient
exploration, the learning agent switches to an exploitation scheme. Now the value
function is used to select the action with highest predicted cumulative reward
(the action with the highest V (s, a)). For more information on RL see [12].

4.2 GOAL-RL

The idea is to use RL to learn values for the rules in an agent program or archi-
tecture, so that a priority of rules can be given at any point during the execution
of the agent. Here, we use Goal to illustrate and implement these ideas, and we
call this RL-enabled version Goal-RL. The basic idea of our contribution is that
the Goal interpreter determines which rules are applicable in a state, while RL
learns what the values for applying these same rules are in that state. Goal will
then again be responsible for using these values in the context of rule selection.
Various selection mechanisms may be used, e.g., selecting the best rule greedy,
or selecting a rule based on a Boltzmann distribution, etc. This setup combines
the strenghts of a qualitative, logic-based agent platform such as Goal with the
strengths of a learning mechanism such as reinforcement learning.

RL needs a state representation for learning. Unfortunately, using the agent’s
mental state or the world state, as is typically done in RL, quickly leads to
intractably large state spaces and makes the solutions (if they can be learned
at all) domain and even problem-instance specific. Still, our goal is to create
a domain-independent mechanism that takes the burden of finding a good rule
selection mechanism away from the programmer.

We propose the following approach. Instead of starting to train with a state
representation that is as close as possible to the actual agent state, and make that
representation more abstract in case of state explosion problems, as is common
in RL, we start with a representation that is very abstract, while still being
meaningful and specific enough to be useful for learning rule preferences. The
benefits of this choice are twofold. First, a trained RL model based on such an
abstract state and action representations is potentially more suitable for reuse
in different domains and problem instances (learning transfer). Second, by using
an abstract state our approach is less vulnerable to large state-spaces and the
state-space explosion problem, and, consequently, will learn faster.

The state representation we propose is composed of the following two ele-
ments. First, our state representation contains the set of rule-activation pairs
itself (i.e. the list of rules and whether a rule is applicable or not). However,
for many environments this representation does not contain enough information
for the RL algorithm to learn a good value function. Essentially, what is miss-
ing is information that guides the RL algorithm towards the end goal. A state
representation that only keeps track of the set of rules that are and are not ap-
plicable does not contain any information about the approriateness of rules in a
particular situation. We add such information by including a second element in
the state representation: a version of a well-known progress heuristic used also
in planning. The heuristic, which is easily implemented in an agent language or
architecture that keeps track of the goals of an agent explicitly, is to count the

93

number of subgoals that still need to be achieved. This is a particularly easy
way to compute the so-called sum cost heuristic introduced in [3]. Due to its
simplicity this heuristic causes almost no overhead in the learning algorithm.
This heuristic information is added to the state used by the reinforcement learn-
ing mechanism in order to guide the learning. Adding a heuristic like this will
keep the mechanism domain independent, but gives useful information to the
RL mechanism to differentiate between states.

Even with this heuristic many states differentiated by the agent itself are
conflated in the limited number of states used by the reinforcement learner.
Such a state space reduction will sometimes prevent the algorithm from finding
optimal solutions (as many RL mechanisms, including the one we use, assume a
Markovian state transition). It should be noted, though, that we are not aiming
for a perfect learning approach that is always able to find optimal solutions.
Instead, we aim for an approach that provides two benefits: it is generic and
therefore poses no burden on the programmer, and the approach is able to pro-
vide a significant improvement of the agent’s behavior, even though this may
still not be optimal (optimal being the smallest number of steps possible to
solve a problem). The approach to learn rule preferences thus should result in
significantly better behavior than that generated by agents that do not learn
rule preferences. In the remainder of this paper, we will study and demonstrate
how well the domain-independent approach is able to improve the behavior of
agents acting in different domains.

In more detail, the approach introduced here consists of the following ele-
ments. A state s is a combination of the number of subgoals the agent still has
to achieve and the set of rule states. A rule state is either 0, 1 or 2, where 0
means the rule is not active, 1 means there is an instantiation of the rule in which
the rule’s preconditions are true and 2 means there is an instantiation in which
also the preconditions for the action the rule proposes are true meaning the rule
fires. For example, if a program has a list of 3 rules, of which the last two in the
program fire while the agent still has 4 subgoals to achieve, the state equals to
s = 022 : 4. An action is represented by a hash based on the rule (in our case sim-
ply the index of the rule in the program list; so the action uses the same hash as
the rule in the rule-activation pairs used for the state). For example, if the agent
would execute an action coming from the first rule in the list, the action equals
to a = 0, indicating that the agent has picked the first rule for action generation.
In our setup, the reward function R is simple. It defines a reward r = 1 when all
goals are met (the goal list is empty) and r = 0 otherwise. The current and next
state-action pairs (s, a) and (s′, a′) are used together with the received reward
r′ as input for the value function V . A transition function T is learned based
on the observed state-action pairs (s, a) and (s′, a′). The transition function is
used to update the value function according to standard RL assumptions, with
one exception: the value for a state-action pair (s, a) is updated according to the
probabilistically correct estimate of the occurance of (s′, a′), not the maximum.
In order to construct the probabilities, the agent counts state occurrences, N(s),
and uses this count in a standard weighting mechanism. Values of states are

94

updated as follows:

RL(s, a)← RL(s, a) + α · (r −RL(s, a)) (1)

V (s, a)← RL(s, a) + γ ·
∑

i

V (sai
, ai)

N(sai
, ai)

∑

j
N(saj

, aj)
(2)

So, a state-action pair (s, a) has a learned reward RL(s, a) and a value V (s, a)
that incorporates predicted future reward. RL(s, a) converges to the reward
function R(s, a) with a speed proportional to the learning rate α (set to 1 in our
experiments). V (s, a) is updated based on RL(s, a) and the weighted average
over the values of the next state-action pairs reachable by action a1...i (with
a discount factor of γ, set to 0.9 in our experiments). So, we use a standard
model-based RL approach [12], with an update function comparable to Sarsa
[11].

5 Experiments

In order to assess if rule preferences can be learned using RL with a state rep-
resentation as described, we have conducted a series of experiments. The goal
of these experiments was to find out the sensitivity of our mechanism with re-
spect to (a) the problem domain (we tested two different domains), (b) different
problem instantiations within a domain (e.g. random problems), (c) rules used
in the agent program (different rule sets fire differently and thus result in both
a different state representation and different agent behavior), (d) different goals
(a different goal implies a different reward function because R(s) = 1 only when
all goals are met).

In total we tested 8 different setups. Five setups are in an environment called
the blocks world, in which the agent has to construct a goal state consisting of a
predefined set of stacks of numbered blocks from a start state following standard
physics rules (block cannot be removed from underneath other blocks). The agent
can grab a block from and drop a block at a particular stack. In principle, it can
build infinitely many stacks (the table has no bounds). The agent program lists
two rules.

Three setups were in the logistics domain in which the agent has to deliver
two orders each consisting of two different packages to two clients at different
locations. In total there are three locations, with all packages at the starting
location and each client at a different location. A location can be reached directly
in one action. The agent can load and unload a package as well as goto a different
location. The agent program lists five rules.

5.1 Setup

Each experiment consisted of a classic learning experiment in which a training
phase of 250 trials (random rule selection) was followed by a exploitation phase of
30 trials (greedy rule selection based on learned values). For each experiment we

95

present a bar graph showing the average number of actions needed to solve the
problem during the training phase (reflecting the goal agent as it would perform
on average without learning ability) and during the exploitation phase (reflecting
the solution including the trained rule preferences). As a measure of optimality
we also show the minimum number of actions needed in one trial to get to a goal
state as observed during the first 250 trials (which equals the minimum number
of steps to reach a solution, except in Figure 3 as explained later). This number
is shown in the bar graphs as reference number for the optimality of the learned
solution.

5.2 Blocks world experiments

Five experiments were done using the blocks world. As described in section 3,
there are two rules for the GOAL agent, one rule designed to correctly stack
blocks on goal stacks (constructive rule) and the other designed to put ill-placed
blocks on the table (deconstructive move). Given these two rules, it is easy to
see (and prove) that given a choice between the constructive and deconstructive
move, the constructive move is always as good as the deconstructive one. It
involves putting blocks at their correct position. These blocks do not need to
be touched anymore. A deconstructive move involves freeing underlying blocks.
This might be necessary to solve the problem, but the removed blocks might
also need to be moved again from the table to their correct place at a goal stack.

The first experiment is a test, constructed to find out if the GOAL-RL agent
can learn the correct rule preferences for a fundamental three-blocks problem.
In this problem, three blocks need to be put on one stack starting with C, BA

ending with the goal stack ABC. The agent should learn a preference for the
constructive move, as this allows a solution of the problem in two moves (B > C

and A > BC), while the deconstructive move needs three (A > Table then
B > C and A > BC). Indeed, the agent learns this preference, as shown in
Figure 1.

The reward in the last experiment comes rather quickly, and the state tran-
sitions are provably Markovian, so the positive learning result presented here
is not surprising. In the second experiment, we tested if a reward given at a
later stage together with a more complex state-space would also give similar re-
sults. We constructed a problem of which it is clear that constructive moves are
better than deconstructive moves: the inverse-tower problem. Here, the agent is
to inverse a tower IHGFEDCBA to ABCDEFGHI. Obviously, constructive
moves are to be preferred as they build a correct tower, while deconstructive
moves only delay building the tower. The rules used by the agent are the same
as in the previous experiment. As can be seen in Figure 1, the GOAL-RL agent
is able to learn the correct rule preferences and thereby produce the optimal
solution.

As one of the reasons for choosing an abstract state representation is to find
out if this helps learning a solution to multiple problem instances with a problem
domain, not just the one trained for, we set up a third experiment based on tower
building problem in which the starting configuration is random. This means

96

that at each trial the agent is confronted with a different starting configuration
but always has ABCDEFGHI as goal stack. Being able to learn the correct
preferences for the rules in this case involves coping with a large amount of
environment states that are mapped to a much smaller amount of rule-based
states. We have kept the goal static to be able to interpret the result. If the
goal is to build a high tower, constructive moves should be clearly preferred over
deconstructive ones. Therefore we know that in this experiment the constructive
move is clearly favorite and the learning mechanism should be able to learn this.
As shown in Figure 2 the agent can indeed learn to generalize over the training
samples and learn rule preferences. Note that if we would have taken a state
representation more directly based on the actual world (e.g., the current blocks
configuration), this generalization is difficult as each new configuration is a new
state, and in RL unseen states cannot be used to predict values (unless a RL
mechanism is used that uses some form of state feature extraction). Therefore,
this result that shows that our approach is able to optimize rule selection in a
generic way.

Up until now, the two rules of the agent are relatively smart. Each rule helps
solving the problem, i.e., each rule moves forward towards the goal, as even the
deconstructive rule never removes a block from a goal stack. In the next experi-
ment we changed the deconstructive move to one that always enables the agent
to remove a block form any stack. This results in a dumb tower building agent
as it can deconstruct correct towers. For this agent to learn correct preferences,
it needs to cope with much longer action sequences before the goal is reached
as well as many cycles in the state transitions (e.g., when the agent undoes a
constructive move). As shown in Figure 2, left and middle, the agent can learn
the correct rule preferences and converge to the optimal solution. This is an
important result as it shows that the mechanism can cope with different rule
sets solving the same problem, as well as optimize agent behavior given a rule
set that is clearly sub-optimal (the dumb deconstructive move).

In our last experiment with the blocks world, we evaluated whether the learn-
ing mechanism is sensitive to the goal itself. It is based on the inverse tower
problem, with one variation: instead of having one high tower as goal, we now
have three short towers ABC, DEF, GHI as goal stacks as well as a random
starting configuration. This variation thus de-emphasizes the merit of construc-
tive moves for the following reason. In order to solve the problem from any
random starting configuration, the agent also has to cope with those situations
in which one or two long towers are present at the start. These towers need
to be deconstructed. As such, even though constructive moves are never worse
than deconstructive moves, deconstructive moves become relatively more valu-
able. As shown in Figure 2, right, the agent still improves the agent behavior
significantly, but is not able to always learn the optimal solution. As such our
learning approach provides a useful heuristic for rule preferences. The decrease
in learning effectiveness is due to the abstractness of the state representation. In
the previous experiments, the agent’s RL mechanisms could know where it was
building the tower, as the number of active subgoals (incorrectly placed blocks)

97

decreases with each well-placed block. In this experiment, however, the number
of active subgoals does not map to the environment state in the same fashion
(all three towers contribute to this number, but it is impossible to deduce the
environment state based on the number of subgoals: e.g., the number 6 does not
reflect that tower one and two are build and we are busy with tower three). This
means that there is more state-overloading in the last experiment, more risk at
non Markovian state transitions, hence the RL mechanism will perform worse.

Fig. 1. Left: three-block test. Right: inverse tower.

Fig. 2. Left: random start tower. Middle: random start tower dumb. Right random

start 3 towers.

5.3 Logistics domain experiments

In this set of three experiments we test the behavior of our mechanism in a
different domain. The domain is called the logistics domain. As explained above,
this domain involves a truck that needs to distribute from a central location two
different orders containing two different items to two clients, making it a total
of four items to be delivered. A truck can move between three locations (client
1, client 2 and the distribution center). The agent has two goals: deliver order
1, and deliver order 2. It can pick up and drop an item. When two items are
delivered, a subgoal is reached. The agent has five rules, two of which handle
pickup, one handles dropping, 1 handles moving to a client, and one handles
moving to the distribution center.

98

In the first experiment, we tested if the agent can learn useful preferences in
this domain. As Figure 3, left and middle, shows, it can. This suggests that our
results are not specific to a single domain.

In the second experiment, we modified the rule that controls moving to clients
such that it also allows the truck to move to clients when empty (the dumb

delivery truck). This mirrors the dumb tower builder in the blocksworld as it
significantly increases the average path to the goal state and it introduces much
more variation in the observed states (more random moves). As shown in Figure
3, left and middle, the agent can also learn rule preferences that enable it to
converge to the optimal solution. We would like to note that the average learning
result is better than the minimum result observed during exploration. This shows
that the learned rule preferences perform a strategy that is better than any
solution tried in the 250 exploration trials. In other words, learning based on rule-
based representations can generalize to a better solution than observed during
training.

In the last experiment we manipulated a last important factor: the reward
function R(s). In the previous two experiments, the agent was positively rein-
forced when the last item had been delivered. In this experiment, the agent is
reinforced when it returns to the distribution center after having delivered the
last item. As shown in Figure 3, right, this results in a suboptimal strategy,
although still far better a strategy than the standard GOAL agent. This shows
that the mechanism is influenced by the moment the reward is given, even if
from a logical point of view this should not matter. The reason for this is sim-
ple (and resembles the one proposed for the slightly worse performance in the
last blocksworld experiment). Due to our abstract state representation, the RL
mechanism of the agent cannot differentiate between a state in which it just
returned to the distribution center after delivering the last item of the last or-
der versus the first item of the last order. This means that both environment
states are mapped to the same RL state. This RL state receives a reward, and
therefore returning to the distribution center gets rewarded. As such, the agent
emphasizes returning to the distribution center and learns the suboptimal solu-
tion in which it picks up an item and brings it to the client as soon as possible
in order to get to the center ASAP because that is where the reward is. The
best strategy is of course to pick both items for a client and then move to the
client. However, as the RL mechanism cannot differentiate between two impor-
tant states, it cannot learn this solution. This clearly shows a drawback of a too
abstract state representation. However, the drawback is relative, as the agent
still performs much better than the standard GOAL agent, showing that even
in this case our mechanism is useful as a rule preference heuristic.

6 Conclusion

In this paper we have focused on the question of how to automatically prioritize
rules in an agent program. We have proposed an approach to exploit the potential
for improvement in rule-selection using reinforcement learning. This approach

99

Fig. 3. Left: delivery world. Middle: delivery world dumb. Right: delivery world ma-

nipulated R(s)

is based on learning state-dependent rule priorities to solve the rule-selection
problem, and we have shown that using this approach the behavior of an agent
is significantly improved. We demonstrate this with a set of experiments using
the GOAL agent programming language, extended with a reinforcement learning
mechanism. Key in our approach, called GOAL-RL, is that the RL mechanism
uses a state representation based on a combination of the set of rules of the
agent and the number of active goals. This state representation, though very
abstract, still provides a useful base for learning. Moreover, this approach has
two important benefits: (1) it provides for a generic learning mechanism; RL
should be a useful addition to all programs, and the programmer should not be
bothered by the state representation or state-space explosions; (2) an abstract
state helps generalizing the learning result as a concrete state representation runs
the risk of over fitting on a particular problem instance. One of the advantages
is that it does not involve the agent programmer or the need to think about
state representations, models, rewards and learning mechanisms. In the cases
explored in our experiments the approach often finds rule preferences that result
in optimal problem solving behavior. In some case the resulting behavior is not
optimal, but is still significantly better than the non-learning agent.

Given that we have implemented a very generic, heuristic approach there
is still room for further improvement. Two topics are particularly interesting
for future research. First, we want to investigate whether adding other domain-
independent features and making the state space in this sense more specific may
improve the learning even more. Second, we want to investigate whether the use
of different learning mechanisms that are better able to cope with non Markovian
worlds and state overloading such as methods based on a partially observable
Markov assumption (POMDP) will improve the performance.

7 Acknowledgments

This research is supported by the Dutch Technology Foundation STW, applied
science division of NWO and the Technology Program of the Ministry of Eco-
nomic Affairs. It is part of the Pocket Negotiator project with grant number
VIVI-project 08075.

100

References

1. S. Airiau, L. Padham, S. Sardina, and S. Sen. Enhancing adaptation in bdi agents

using learning techniques. International Journal of Agent Technologies and Sys-
tems, 1(2):1–18, 2009.

2. J. R. Anderson and C. Lebiere. The atomic components of thought. Lawrence

Erlbaum, Mahwah, NY, 1998.

3. B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mecha-

nism for planning. In Proceedings of AAAI-97, pages 714–719, 1997.

4. S. Deroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.

Machine Learning, 43(1):7–52, 2001.

5. K. V. Hindriks. Programming Rational Agents in GOAL. In Multi-Agent Pro-
gramming: Languages, Tools and Applications, chapter 4, pages 119–157. Springer,

2009.

6. E. Hogewoning, J. Broekens, J. Eggermont, and E. Bovenkamp. Strategies for

Affect-Controlled Action-Selection in Soar-RL. In Nature Inspired Problem-Solving
Methods in Knowledge Engineering, pages 501–510. 2007.

7. R. Khardon. Learning action strategies for planning domains. Artificial Intelli-
gence, 113:125–148, 1999.

8. J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: an architecture for general

intelligence. Artif. Intell., 33(1):1–64, 1987.

9. J. Levine and D. Humphreys. Learning action strategies for planning domains

using genetic programming. In Applications of Evolutionary Computing, pages

50–55. 2003.

10. S. Nason and J. E. Laird. Soar-rl: integrating reinforcement learning with soar.

Cognitive Systems Research, 6(1):51–59, 2005.

11. G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems.

Technical report, Cambridge University Engineering Department., 1994.

12. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, 1998.

13. T. Tyrrell. Computational Mechanisms for Action Selection. Phd, University of

Edinburgh, 1993.

101

102

Author Index

Artikis, Alexander5

Behrens, Tristan 37

Bordini, Rafael .37

Braubach, Lars .37

Broekens, Joost 85

Carr, Hugo . 5

Collier, Rem . 53

Dastani, Mehdi 37

Dix, Jürgen . 37

Hübner, Jomi . 37

Hindriks, Koen 37, 85

Jordan, Howell . 53

Kraus, Sarit . 3

O’Hare, Gregory 1

Pitt, Jeremy . 5

Piunti, Michele .21

Pokahr, Alexander 37

Ricci, Alessandro21

Santi, Andrea . 21

van Riemsdijk, M. Birna 69

Wiggers, Pascal 85

Yorke-Smith, Neil 69

