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Preface 
 
This volume groups together the papers accepted for the 11th International Workshop on 
Multi-Agent-Based Simulation (MABS 2010), co-located with the 9th International Joint 
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), held in 
Toronto, Canada, May 10-14, 2010. MABS 2010 is the eleventh workshop of a series that 
was started at ICMAS 1998 (Paris, France), and successively continued with ICMAS 
2000 (Boston, USA), followed by nine editions of AAMAS (2002-2010). All information 
on the MABS Workshop Series can be found at http://www.pcs.usp.br/~mabs.  

The meeting of researchers from Multi-Agent Systems (MAS) engineering and the 
social, economic, and organizational sciences is extensively recognized for its role in 
cross-fertilization, and it has undoubtedly been an important source of inspiration for the 
body of knowledge that has been produced in the field of MAS. The MABS workshop 
continues to bring together researchers interested in MAS engineering with researchers 
focused on finding efficient solutions to model complex social systems, in such areas as 
economics, management, organizational and social sciences in general. In all these areas, 
agent theories, metaphors, models, analysis, experimental designs, empirical studies, and 
methodological principles, all converge into simulation as a way of achieving 
explanations and predictions, exploration and testing of hypotheses, better designs and 
systems.  

MABS 2010 attracted a total of 26 submissions from 16 different countries (Canada, 
France, India, Ireland, Israel, Italy, Japan, Luxembourg, the Netherlands, New Zealand, 
Sweden, Switzerland, Taiwan, Tunesia, UK, USA). Every paper was reviewed by three 
anonymous referees. 11 papers were accepted for presentation. This is an acceptance rate 
of 42.3%.  

We are very grateful to every author who submitted a paper, as well as to all the 
members of the Program Committee and the additional reviewers for their hard work. 
Thanks are also due to Kagan Tumer (AAMAS 2010 Workshop Chair), to Michael Luck 
and Sandip Sen (AAMAS 2010 General Chairs), to Wiebe van der Hoek and Gal 
Kaminka (AAMAS 2010 Program Chairs) and to Yves Lespérance (AAMAS 2010 Local 
Arrangement Chair). Finally, we wish to thank Jaime Simão Sichman and all members of 
the MABS Steering Committee for giving us the opportunity to organize this edition of 
the workshop. 
 
March 2010 
 
Tibor Bosse 
Armando Geller 
Catholijn M. Jonker 
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Situational Programming: Agent Behavior

Visual Programming for MABS Novices

Fabien Michel1, Jacques Ferber1, Pierre-Alain Laur2, and Florian Aleman2

1 LIRMM Lab. d’Informatique, Robotique et Micro-électronique de Montpellier
CNRS - Université Montpellier II, 161 rue Ada 34392 Montpellier Cedex 5 - France

2 FEERIK, Inc. 91 rue Font Caude 34080 Montpellier - France
{fmichel,ferber}@lirmm.fr, {pal,florian}@feerik.com

Abstract. This paper presents an agent-oriented visual programming
approach which aims at providing MABS end-users with a means to eas-
ily elaborate artificial autonomous behaviors according to a targeted do-
main, namely situational programming (SP). More specifically, SP defines
design principles which could be used to develop MABS visual program-
ming toolkits suited for non developers and MABS novices. This paper
presents SP and how it is used to build a MABS video game which can
be played by MABS novices, that is any Internet user.

Key words: MABS, Agent-Oriented Programming, Visual Program-
ming, Situational Programming, Video Game

1 Introduction

Multi-Agent Based Simulation (MABS) is used in various research and appli-
cation domains such as social science, ecology, ethology, etc. Considering this
interdisciplinary aspect, one crucial issue is that many MABS end-users are not
professional programmers while most MABS toolkits require computer program-
ming skills [1].

Many MABS toolkits tackle this issue by defining coding primitives that help
to design autonomous behaviors with respect to a targeted domain (e.g. Cor-
mas [2]). Still, even if such approaches may hide to some extent the complexity
of high level programming concepts such as inheritance, one has still to be fa-
miliar with basic programming concepts such as conditional expressions (e.g.
if-then-else statement), looping structures (e.g. for, while, etc.) and variable af-
fectations. Additionally, a textual programming syntax remains to be learned
in every case. Therefore, efforts have been done to provide MABS toolkits with
visual programming (VP) features so that they require few or no programming
knowledge. Indeed, even if VP is naturally not as flexible as textual program-
ming, it represents a very interesting solution considering the use of MABS by
non professional programmers.

This paper introduces and discusses a VP variant for designing artificial be-
haviors, namely Situational Programming (SP). The goal of SP is to focus on
allowing artificial behavior programming without any programming skill nor
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MABS modeling ability. To this end, SP does not intend to allow novice devel-
opers to build a MABS from scratch but rather defines design principles which
could be used to develop MABS VP toolkits fulfilling this requirement. The out-
line of the paper are as follows. The next section discusses the motivations and
advantages of VP approaches for MABS, presents some existing tools and then
highlights the limitations of existing approaches. Section 3 presents the motiva-
tions and underlying ideas of SP. Section 4 details a SP case study which has
been done in the scope of a MABS video game. Section 5 highlights the limita-
tions of the proposed approach. Section 6 discusses some related research works
and Sect. 7 concludes the paper.

2 Visual Behavior Programming for MABS

2.1 Motivations

VP enables MABS end-users to create behaviors by manipulating graphical pro-
gramming elements which eventually represent textual programming blocks. In
most cases, the graphical elements are connected by arrows representing rela-
tions such as actions ordering, condition statements, loops and so on. So, users
have to build a diagram that will represent the agent behavior and do not have
to know about the programming language which is used under the hood.

Another major interest of VP is to disentangle the user from the language
syntax complexity and requirements. Indeed, users cannot do programming syn-
tax errors since graphical elements represent only valid programming statements.
Moreover, VP tools further help users as they usually embed a specific spatial
grammar that does not permit invalid connections between graphical elements
nor invalid states for the components.

The main advantages of VP tools are therefore twofold:

1. K nowing about the programming language which is used in the platform is
not a requirement: N ovice developers can thus use the simulation tool.

2. Syntax correctness could be ensured thanks to the grammar which could
be embedded in the graphical elements and in the manner they could be
defined, combined or connected.

2.2 Examples of Visual Programming for MABS

This section presents three examples of MABS platforms which have VP features:
(1) AgentSheets, (2) SeSAm and (3 ) R epast Simphony.

AgentSheets D eveloped in the early nineties, the seminal idea of the end-user
programming tool AgentSheets relied on building a new kind of computational
media allowing casual computer users to design complex interactive simulation
[3 ]. So, the philosophy of this environment is to hide as much as possible the
complexity of simulation-authoring mechanisms, thus focusing on the idea that
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simulation could be fruitfully used as an interesting cognitive thinking tool in
many domains. E specially, AgentSheets is mainly used for educational purposes.

The VP language of AgentSheets is called Visual AgenTalk (VAT). VAT is a
rule-based language allowing users to express agent behavior as if-then rules con-
taining conditions and actions. Additionally, VAT enables what is called T actile

Programming and adds interactivity on the program representation: Program
fragments can be manipulated through drag and drop operations to compose
behaviors and also help end-users to explore and test agent behaviors thanks
to several operations obtained on mouse clicks. AgentSheets is today an on-
going commercial tool3 which has also been extended to a 3 D version named
AgentCubes [4 ].

SeSAm (Shell for Simulated Multi-Agent Systems) is a Java open source MABS
tool which aims at providing a generic environment for modeling and simulat-
ing MABS [5 ]. SeSAm4 embeds several VP tools that help for different tasks
considering the modeling of agent behavioral processes.

F ig . 1. Screenshot from the SeSAm implementation of a driver agent in [6]

For instance, interactive dialog elements enable to specify (potentially nested)
primitive calls which could be used for specifying behavioral rules, creating ini-
tialization procedures, and so on. These interactive dialogs not only hide the use
of Java but also dynamically check the underlying validity of the primitives (e.g.

3 http:/ / www.agentsheets.com
4 http:/ / www.simsesam.de
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type-consistency). So behaviors can be completely programmed without know-
ing the subtleties of an object oriented language such as Java. In SeSAm, VP
is also used to visualize and specify the behavior of an agent using an activity
diagram (Fig. 1): Activity nodes are linked with arrows describing transition
rules between activities.

R epast Simphony (R S) is an open source generic MABS toolkit which is used
in various application domains. R S extends the basic R epast5 platform to pro-
vide advanced visual modeling and programming features for novice developers
[7 ]. From a technical point of view, R S is a preconfigured E clipse-based ID E
(Integrated D evelopment E nvironment) that notably uses the Flow4 J6 E clipse
plugin which enables to model process flows in a drag and drop manner.

As Fig. 2 shows, the R epast agent editor could be used to create a diagram
using various block types (task, perceptions, condition evaluation, loop, etc.)
which are connected by links defining the agent behavior logic.

F ig . 2. The visual agent behavior editor of Repast

Thanks to this approach, the user does not need to write any line of code:
W hen saved, the diagram is automatically translated in a traditional program-
ming language and the behavior could be directly used within the simulation.

5 http:/ / repast.sourceforge.net
6 http:/ / fl ow4jeclipse.sourceforge.net
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2.3 L imitations of Existing Approaches

Behavior C omplexity As remarked in [8 ], using existing MABS visual tools,
building complex agents’ cognitive models is clearly a tricky and painful task
because they usually allow to manipulate only basic concepts. To overcome
this issue within the scope of social science, the authors have proposed a vi-
sual modeling language relying on the IN G E N IAS methodology [1]. This work
allows to visually model complex behaviors based on intentional and organiza-
tional concepts. Still, the proposed modeling language is rather sophisticated
as it intentionally targets MABS modeling experts, especially social scientists.
N onetheless, this work clearly highlights the complexity issue of existing MABS
VP tools.

Behavior G raphical R epresentation The diffi culty of visually programming
complex behaviors does not only come from the relative simplicity of the concepts
usually used. Indeed, a critical issue which comes with existing MABS VP tools
is to graphically represent complex behaviors. O bviously, a diagram containing
more than about twenty graphical elements could not be really explicit nor intu-
itive and thus hardly understandable at first sight. Moreover, even if one can (1)
reduce the size of each graphical element using explicit iconic symbols or (2) use
nested components, the screen size will still be a limitation in itself. Therefore,
it is crucial to provide end-users with behavioral graphical abstractions which
enable simple and synthetic presentations of the behavior logic.

A Programmer’s Mind set is Still N eed ed H ere, we want to stress and
emphasize on another issue which has been found crucial from our point of view:
E ven when a very high level of abstraction is considered, MABS VP tools still
involve basic programming concepts.

D espite the intuitive aspects of MABS VP tools, one has still to deal with
concepts such as if-then-else statements, loops, variables usage and so on. Thus,
one has to understand the fundamentals of a computer program.

In an educational context, this could be not a problem since the goal may be
precisely to bring these fundamentals, or even agent-based programming con-
cepts, to students. H owever, this remains a serious issue considering novice de-
velopers: U ltimately, they need to understand basic programming concepts.

Therefore, we think that there is room for MABS VP tools that do not
use any traditional programming concepts nor complex modeling features. The
next section presents an approach which has such a goal, namely Situational

Programming (SP).

3 Situational Programming

3 .1 O b jectives and R eq uirements

The main goal of SP is to provide non developers and MABS novices with a
means to easily elaborate and test artificial behaviors with respect to a targeted
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domain. O bviously, such a goal requires to consider a VP approach. Additionally,
we want our approach to overcome as much as possible the limitations discussed
previously. Therefore, SP should also stick to the following requirements:

– E nd-users should not face any traditional programming concepts nor com-
plex modeling tasks.

– The behavior logic representation should not take too much space on the
screen and thus be as synthetic as possible.

– It should be still possible to define complex behavior logics.

So, contrary to the approaches we discussed, our goal is thus not to provide a
tool allowing non developers to build a MABS from scratch. The purpose of SP
is rather to define agent-oriented programming principles which could be used to
develop MABS VP tools which concretelly fulfill these requirements according
to specific targeted domains.

3 .2 Princ iple of the Approach

As we will now explain, inspirations for SP come from passed observations and
experiences about agent-oriented programming in general, not only with respect
to behavior VP. So, let us first consider a synthetic and traditional model of an
agent behavioral process illustrated in Fig. 3 : (1) perception, (2) deliberation,
and then (3 ) action [9 ]. From a technical point of view, programming an agent
behavior relies on (1) parsing perceptions, (2) using the obtained results in the
deliberation, and (3 ) then take a particular decision based on deliberation, that
is an action on the environment.

�����

���������	 
���������	 �����	

������ �����������

F ig . 3. The behavior of an agent: (1) Perception (2) D eliberation (3) Action

O ne has to remark that, considering a set of raw and basic percepts, it could
be very diffi cult to programmatically define a relevant view of the world state. In
other words, one has to first work on the percepts just to build structured data
on which the deliberation could reason on. So, the programming complexity of
this task rapidly grows according to the agent cognition level which is required.
For instance, it is very diffi cult for a soccer robot to catch all the aspects of the
current situation starting from its inputs [10 ].

Similarly, the same observation also holds about complex actions or plans:
They are tricky to program starting from a set of basic actions manipulating
only the effectors of the agent. So, in order to fulfill its objectives, SP is based
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on an approach wherein the perception and action phases are considered as too
complex processes for MABS novices. Consequently, SP relies on preworking
these phases so that end-users can focus on the deliberation part of the agent.

3 .3 Very H igh L evel Perceptions and Actions

The complexity of using raw percepts, and thus building relevant perceptions
on which the agent could reason on, is very interestingly discussed in [11]. This
work proposes a cognitive architecture composed by three layers: (1) R eality , (2)
C oncep t and (3 ) M ind . The concept model layer is particularly of interest as it
is in charge of mapping the physical environment reality to high level concepts
which could be easily and effi ciently used by the agent mind layer to deliberate. In
other words, the goal of the concept layer is to allow agent minds to understand
reality. The main idea underlying SP is related to such a conceptual philosophy.

The idea is to provide end-users with very high level percepts defining domain-
oriented situations. By situation, we mean a combination of the possible states
of high level percepts on which one has only to deliberate to choose an action:
All the percepts compilation work is already done. For instance a percept could
be be ing und er attack or d ribb ling th e ball, and the state within the situation
true, false , or ignored . The end-user thus has only to select the state of each
percept for defining situations.

The same philosophy is also used to define the actions that end-users will
select according to a particular situation. So, instead of basic actions, very high
level plans are defined using a combination of easily tunable domain-oriented ac-
tions which are predefined. For instance, a plan could be patrolling-an-area(main
plan) using a sinusoidal move (plan parameter). Moreover, end-users can of
course define as many situations as they want, but they only focus on one at a
time. W e will discuss how conflicts between situations are resolved by the user
later on. Figure 4 gives an abstract sketch of this approach.

����������	�
�� ����������	�
�� ����������	�
�� 
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F ig . 4 . Situational Programming Sketch
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The basic work of the end-user is thus easy and straightforward: (1) tune
the proposed percepts to define a particular situation and (2) then decide of
a corresponding parameterizable plan. So, by defining several situation/ plan
couple matching, the end-user will define, and thus program, the agent behavior
by reflecting his point of view and thus literally materializ ing his way of thinking.

3 .4 Achieving C omplex Behaviors w ithout G U I C omplexity

At first glance, the number of possible situation/ plan combinations is the only
factor of complexity. So, SP may look quite limited in terms of behavioral com-
plexity since situations and plans are predefined. H owever, SP also includes
additional design principles that allows behavioral complexity at a very low cost
in terms of graphical user interface (G U I) complexity and understandability.

Situation D efi nition As previously mentioned, the state of each percept con-
tributes in defining a situation. The simplest percepts are related to the veracity
of a particular fact and only have three states: (1) true, (2) false or (3 ) ig-
nored (e.g. being under attack). State selection is done by single clicks that
cycle through these three states.

Considering percepts related to a quantitative value such as energy , the state
of the percept (e.g. low energy or h igh energy ) must be defined according to a
threshold (e.g. 5 0 % ). Such a threshold could be internally defined and not visible
to the user. But, when explicitly presented, we give the user the opportunity of
manually choosing this threshold using a usual graphical slider. W e identified
such percepts as th resh old ed and all others as boolean. So, when a thresholded
percept is involved in a situation, this virtually increases the number of poten-
tial situations to infinity, thus introducing more behavior complexity without
increasing G U I complexity. Also very important is the fact that this introduces
singularity and heterogeneity among the programmed behaviors.

Plan Parameterization Plans are defined from a very high level domain-
oriented perspective. For instance, the plan patrolling-an-area may have two
parameters: (1) the location and (2) the type of move (sinusoidal, straight lines,
etc.). Much complexity could result from how plans are parameterizable. Still,
this aspect is fully domain-oriented and not generalizable. H owever, we found an
interesting parameter which could be applied in any domain. Indeed, one prob-
lem we found in the early stages of this research was that, in some cases, agents
were constantly changing of selected plan: O ne situation may disappear and
reappear in a very short period of time. To overcome this problem, we introduce
an additional generic parameter to plans: stubbornness. Stubbornness defines
how much time the agent should stick to the selected plan without reconsider-
ing situation. So, the stubbornness parameter solves the well know problem of
persistence/ commitment in action selection [12]. Stubbornness also introduces
another level of complexity for the behaviors and increases their singularity,
giving agents personality.

MABS 2010 - p.  12 / 157



Situation/ Plan C ouples Priorities An important aspect of SP which has
not been discussed so far is that of situational conflicts. Indeed, it turns out
that according to the way situations are defined by the user, several situations
could simultaneously match the actual world state. Therefore it is important
to provide end-users with a means of prioritiz ing situations against each other
through a simple graphical presentation. In this respect, a column in which
situations are ordered was found as the most appropriate solution. Moreover,
such a presentation allows the user to prioritize the situations using a drag and
drop approach. O nce again, this introduces another behavioral complexity level
without increasing the complexity of the G U I.

4 Ap p ly ing SP: T he W arb ot Video G ame

4 .1 H istory and O b jectives

W arbot7 is a MABS game wherein teams of autonomous bots fight against each
other. H istorically, W arbot was designed ten years ago using the MadK it plat-
form [13 ] to teach high school students agent-oriented programming through a
competition: Students have to program the minds of W arbot agents whose bodies
are predefined so that the best behaviors win the battle.

In collaboration with the Feerik8 company, which is specialized in free-to-play
on-line video games, we are developing a W arbot version that could be played by
anyone, especially non programmers according to the Feerik’s business model: A
Feerik end-user could be any Internet user.

4 .2 W arb ot D omain-O riented Percepts and Plans

As discussed in Sect. 3 , to provide end-users with a SP-based MABS toolkit,
developers have to first identify the related domain-oriented percepts and plans
that will be used to program the behaviors. Based on the experiences we had
with the student version of W arbot, we identified a preliminary set of 5 high
level percepts which were regularly programmed throughout the passed years:
E nergy leve l, number of d etected enemies, be ing und er attack , be ing h e lped by a

teammate , and teammate asking for h e lp .
Similarly, we identified 4 high level plans: G o to point, Patrol, F igh t, and

F lee . H ere, one may wonder why there is not an h e lp teammate plan. In fact,
it has been decided that this would be a parameter of all plans. That is, doing
something, a bot can decide to take into account or not its teammates.

Figure 5 presents portions of the actual version of the W arbot behavior editor.
O ther web pages are used to define which bots compose the team and what are
their equipment in terms of legs, arms, head, and weapon. Figure 5 also shows
that, defining situations in W arbot, it is possible to select different states of the
same percept to associate a particular plan to several situations at once: The
bot will fight whatever the number of enemies if it has more than 5 0 % of energy.

7 www.madkit.net/ warbot
8 www.feerik.com
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F ig . 5 . Situational Programming with the W arbot GUI

The W arbot behavior programming G U I intentionally does not yet include
all the W arbot domain-oriented percepts and plans discussed earlier. Indeed, it
is planned to incrementally introduce each percept to end-users in order to teach
them how to program complex behavior step by step: Simplicity at first glance is
a major requirement for Feerik. Moreover, acquiring progressively new features
is part of Feerik’s business model.

Technically, the W arbot behavior G U I is made in Macromedia Flash. E nd-
user’s inputs are then compiled and used by the TurtleK it MABS platform [14 ]
which in turn produces a game instance rendered by the U nity 3 D web player
in the user’s web browser as shown in Fig. 6 .

4 .3 F irst F eed b ack s and R emaining W ork

Although game designers have not worked on the G U I design, first feedbacks
from novice developers are very encouraging since they do easily find their way
in developing artificial bot behaviors. E specially, they do appreciate that (1)
situations can be defined by single mouse clicks and that (2) plans can be selected
and parameterized using simple forms. Also, they find quite intuitive the use of
a drag and drop approach to define priorities between situations.

The game-play is a major aspect of video game. So, one important work
which remains to be done is to give the end-user statistical feedbacks about how
his bots behaved during a simulation, in order to provide the end-user with a
means to identify the strengths and weaknesses of the defined behaviors. To this
end, it is planned that the game will collect information such as which plans
have been used, how much time, how much energy has been consumed during
each plan, and so on.
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F ig . 6 . The W arbot video game rendered by the Unity 3D web player

5 C urrent L imitations of the Ap p roach

As previously stated, SP does not intend to allow novice developers to build a
MABS from scratch. Therefore, considering each targeted domain, SP of course
requires that a true developer has programmed priorly all the different aspects
of the corresponding SP-based MABS toolkit. E specially, this requires that the
model be developed in close colaboration between the developers, on one hand,
and researchers as well as householders, who know the real system, on the other
hand. Still, one has to admit that this is true to some extent for any MABS
platform. Moreover, we are actually tackling this issue at a software engineering
level so that the underlying simulator software structure could be easily reused
for new application domains.

O utside the scope of our current objectives, another limitation relies on the
fact that end-users cannot add new percepts nor modify how they are defined.
The same remark holds about plan structure. Still, we think that this is not a
definitive limitation, at least considering percepts building. For instance, end-
users may have access to another editor page which would consist in representing
the characteristics of the environment. In such a page, the end-user could select
some properties to define new usable percepts in just a limited number of clicks.

6 R elated W ork s

G lobally considering the issue of programming complex but effi cient artificial
behaviors, an interesting trend of research consists in tracking and learning how
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humans play a game in order to imitate their behaviors programmatically. For
instance, in [10 ], considering the programming of R obosoccer agents, the authors
track how a human controls a R obosoccer agent in order to model his behavior
using machine learning techniques. SP could also be viewed as a means to take
advantage of the human mind to build complex artificial behaviors. In this re-
spect, a very interesting aspect of SP is that the reasoning of the human user
has not to be programmed: It is entirely embedded in the resulting behaviors.
For instance, with many players using the W arbot game, it will be possible to
extract recurrent programming patterns which will be very interesting to study.

O bviously, there is an apparent conceptual link between participatory design
of MABS (e.g. like in [15 ]) and SP since the behavior of the artificial agent partly
remains inside the end-user’s mind. H owever, these two are quite different, in
terms of both objective and design work flow. Indeed, in a participatory mode,
the user plays a role during the simulation, which is for instance incompatible
with the game-play’s objectives of W arbot. Moreover, while role-playing, the
user does not program anything. In SP end-users have to program off-line all the
behavior of the agent and thus cannot control its behavior while the simulation
is in progress. N onetheless, it is clear that SP and participatory design of MABS
certainly share some common concerns which could be fruitfully exhibited.

Finally, the idea of using very high level concepts for simulation programming
purposes is not new. For instance, in [16 ], the authors investigated the suitability
of a very high level language (SE TL [17 ]) for simulation. They said that such a
language is one which incorporates complex structured data objects and global
operations upon them. O bviously, SP relies on a similar philosophy. Therefore,
it would be interesting to study how the design principles related with very high
level language could be translated in our approach.

7 C onclusion

This paper has presented an agent-oriented programming approach which aims
at providing MABS end-users with a means to easily elaborate artificial au-
tonomous behaviors according to a targeted domain, namely Situational Pro-

gramming. More specifically, SP defines design principles which could be used
to develop MABS VP toolkits suited for non developers and MABS novices. So,
following a MABS VP approach, one of the main interests of using a SP-based
approach is to allow behavioral complexity with G U I simplicity.

W e showed how SP is applied in the scope of a SP-based MABS online video
game and, even if some work remains to be done on the W arbot G U I aesthetic,
the first feedbacks we had are promising and showed us that SP is a concrete
solution allowing any computer user to program artificial behaviors.

Among the related research perspectives we discussed in the previous section,
collecting player data to study behavior programming patterns is of particular
interest. Firstly, this will enable us to increase the game play of the W arbot game
by rewarding the best players. Secondly, from a more general perspective, we
think that SP could be a concrete alternative to participatory design or human
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imitation approaches for MABS. SP can be used as a means to translate human
behaviors into computer programs. This in order to (1) study their characteristics
in silico or (2) integrate realistic behaviors into MABS experiments.

R eferences
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Abstract. In this paper, a meta-model called IRM4MLS, that aims
to be a generic ground to specify and execute multi-level agent-based
models is presented. It relies on the influence/reaction principle and more
specifically on IRM4S [1, 2]. Simulation models for IRM4MLS are defined.
The capabilities and possible extensions of the meta-model are discussed.

Keywords: multi-level simulation, influence/reaction model

1 Introduction

The term ”multi-level modeling” refers to the modeling of a system considered
at various levels of organization. E.g., a biological system can be considered at
different levels:

... → molecule → cell → tissue → organ → ... ,

that basically correspond to the segmentation of biological research into special-
ized communities:

... → molecular biology → cell biology → histology → physiology → ... .

Each research area has developed its own ontologies and models to describe
the same reality observed at different levels. However, this reductionist approach
fails when considering complex systems. E.g., it has been shown that living sys-
tems are co-produced by processes at different levels of organization [3]. There-
fore, an explanatory model of such systems should consider the interactions
between levels. Agent-based modeling (ABM) is a paradigm of choice to study
complex systems. But, while it seems more interesting to integrate knowledge
from the different levels studied and their interactions in a single model, ABM
often remains a pure bottom-up approach [4].

Thus, recently4 various research projects have aimed at developing multi-
level agent-based models (MAM) in various fields such as histology, ethology or

4 It has to be noted that the eleven year old model RIVAGE pioneered the field of
MAM [5].
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sociology [6–12]. A good analysis of some of these models, and the motivations
of these works can be found in [13].

Various issues should be addressed when developing a MAM. For instance
one major problem is the automatic detection of emergent phenomena that could
influence other levels [14–16]. Another important problem is the temporal and
spatial mappings of model levels and thus the scheduling of the simulations [17].
More exhaustive presentations of these issues can be found in [10, 13].

In the models found in literature, these issues have been addressed according
to the specificity of the problem. Indeed, they are based on ad-hoc meta-models
and the transferability of ideas from one to another seems diffi cult.

In this paper, a meta-model that aims to be a generic ground to specify
and execute MAM is presented. It is based on IR M4S (an Influence R eaction
Model for Simulation) proposed in [1, 2], itself based on IR M (Influences and
R eaction model) originally presented in [18]. IR M4S is described in section 2
and its multi-level extension, called IR M4MLS (Influence R eaction Model for
Multi-level Simulation), in section 3. Section 4 introduces two simulation models
for IR M4MLS. The first one is very simple and similar to IR M4S but supposes
that all levels have the same temporal dynamics while the second one has a more
general scope but relies on temporal constraints and thus, is more complicated
and time consuming.

2 T he IRM4S meta-model

IR M was developed to address issues raised by the classical vision of action
in Artificial Intelligence as the transform ation of a global state: simultaneous
actions cannot be easily handled, the result of an action depends on the agent
that performs it but not on other actions and the autonomy of agents is not
respected [18].

W hile IR M addresses these issues, its complexity makes it diffi cult to imple-
ment. IR M4S is an adaptation of IR M, dedicated to simulation, that clarifies
some ambiguous points. It is described in the following.

Let δ(t) ∈ ∆ be the dynamic state of the system at time t:

δ(t) =< σ(t), γ(t) >, (1)

where σ(t) ∈ Σ is the set of environmental properties and γ(t) ∈ Γ the set
of influences, representing system dynamics. The state of an agent a ∈ A is
characterized by:

– necessary, its physical state φa ∈ Φa with Φa ∈ Σ (e.g., its position),

– possibly, its internal state sa ∈ Sa (e.g., its beliefs).

Thus, IR M4S distinguishes between the mind and the body of the agents.

The evolution of the system from t to t+ dt is a two-step process:
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1. agents and environment produce a set of influences5 γ′(t) ∈ Γ ′:

γ′(t) = Influence(δ(t)), (2)

2. the reaction to influences produces the new dynamic state of the system:

δ(t+ dt) = R eaction(σ(t), γ′(t)). (3)

As [2] notes, ”the influences [produced by an agent] do not directly change the
environment, but rather represent the desire of an agent to see it changed in
some way”. Thus, R eaction computes the consequences of agent desires and
environment dynamics.

An agent a ∈ A produces influences through a function B ehaviora : ∆ 7→ Γ ′.
This function is decomposed into three functions executed sequentially:

pa(t) = Perceptiona(δ(t)), (4)

sa(t+ dt) = M em orizationa(pa(t), sa(t)), (5)

γ′a(t) = D ecisiona(sa(t+ dt)). (6)

The environment produces influences through a functionNaturalω : ∆ 7→ Γ ′:

γ′ω(t) = Naturalω(δ(t)). (7)

Then the set of influences produced in the system at t is:

γ′(t) = {γ(t) ∪ γ′ω(t) ∪
⋃

a∈A

γ′a(t)}. (8)

After those influences have been produced, the new dynamic state of the
system is computed by a function R eaction : Σ × Γ ′ 7→ ∆ such as:

δ(t+ dt) = R eaction(σ(t), γ′(t)). (9)

Strategies for computing R eaction can be found in [2].

3 T he influence reaction model for multi-level simulation
(IRM4MLS)

3.1 Sp ecification of the levels and their interactions

A multi-level model is defined by a set of levels L and a specification of the
relations between levels. Two kinds of relations are specified in IR M4MLS: an
influence relation (agents in a level l are able to produce influences in a level l′ 6=
l) and a perception relation (agents in a level l are able to perceive the dynamic

5 the sets of producible influence sets and influences produced at t are denoted re-
spectively Γ ′ and γ′(t) to point out that the latter is temporary and w ill be used to
compute the dynamic state of the system at t+ dt.
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state of a level l′ 6= l), represented by directed graphs denoted respectively
< L,EI > and < L,EP >, where EI and EP are two sets of edges, i.e., ordered
pairs of elements of L. Influence and perception relations in a level are systematic
and thus not specified in EI and EP (cf. eq. 10 and 11).

E.g.,∀l, l′ ∈ L2, if EP = {ll′} then the agents of l are able to perceive the
dynamic states of l and l′ while the agents of l′ are able to perceive the dynamic
state of l′.

The perception relation represents the capability, for agents in a level, to be
”conscious” of other levels, e.g., human beings having knowledge in sociology are
conscious of the social structures they are involved in. Thus, in a pure reactive
agent simulation, EP = ∅. EP represents what agents are able to be conscious
of, not what they actually are: this is handled by a perception function, proper
to each agent.

The in and out neighborhood in < L,EI > (respectively < L,EP >) are
denoted N−I and N+

I (resp. N−P and N+
P ) and are defined as follows:

∀l ∈ L,N−I (l) (resp. N−P (l)) = {l} ∪ {l′ ∈ L : l′l ∈ EI (resp. EP )}, (10)

∀l ∈ L,N+
I (l) (resp. N−P (l)) = {l} ∪ {l′ ∈ L : ll′ ∈ EI (resp. EP )}, (11)

E.g., ∀l, l′ ∈ L2 if l′ ∈ N+
I (l) then the environment and the agents of l are

able to produce influences in the level l′;conversely we have l ∈ N−I (l′), i.e., l′

is influenced by l.

3.2 A gent p opulation and environm ents

The set of agents in the system at time t is denoted A(t). ∀l ∈ L, the set of
agents belonging to l at t is denoted Al(t) ⊆ A(t). An agent belongs to a level
iff a subset of its physical state φa belongs to the state of the level:

∀a ∈ A(t), ∀l ∈ L, a ∈ Al(t) iff ∃φl
a(t) ⊆ φa(t)|φ

l
a(t) ⊆ σl(t). (12)

Thus, an agent belongs to zero, one, or more levels. An environment can also
belong to different levels.

3.3 Influence production

The dynamic state of a level l ∈ L at time t, denoted δl(t) ∈ ∆l, is a tuple
< σl(t), γl(t) >, where σl(t) ∈ Σl and γl(t) ∈ Γ l are the sets of environmental
properties and influences of l.

The influence production step of IR M4S is modified to take into account the
influence and perception relations between levels. Thus, the B ehaviorla function
of an agent a ∈ Al is defined as:

B ehaviorla :
∏

lP∈N
+

P
(l)

∆lP 7→
∏

lI∈N
+

I
(l)

Γ lI ′. (13)
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This function is described as a composition of functions. As two types of
agents are considered (tropistic agents, i.e., without memory and hysteretic

agents, i.e., with memory6), two types of behavior functions are defined [19].
An hysteretic agent ha in a level l acts according to its internal state. Thus,

its behavior function is defined as:

B ehaviorlh a = D ecision l
h a ◦ M em orizationh a ◦ Perception

l
h a, (14)

with
Perception l

h a :
∏

lP∈N
+

P
(l)

∆lP 7→
∏

lP∈N
+

P
(l)

P lP
h a , (15)

M em orizationh a :
∏

l∈L|h a∈Al

∏

lP∈N
+

P
(l)

P lP
h a × Sh a 7→ Sh a, (16)

D ecision l
h a : Sh a 7→

∏

lI∈N
+

I
(l)

Γ lI ′. (17)

There is no memorization function specific to a level. L ike in other multi-agent
system meta-models (e.g., MASQ [20]), we consider that an agent can have
multiple bodies but only one mind (i.e., one internal state). Moreover, the co-
herence of the internal state of the agents would have been diffi cult to maintain
with several memorization functions.

A tropistic agent ta in a level l acts according to its percepts:

B ehaviorlta = D ecision l
ta ◦ Perception

l
ta, (18)

with Perception l
ta following the definition of eq. 15 and

D ecision l
ta :

∏

lP∈N
+

P
(l)

P lP
ta 7→

∏

lI∈N
+

I
(l)

Γ lI ′. (19)

The environment ω of a level l produces influences through a function:

Naturallω : ∆l 7→
∏

lI∈N
+

I
(l)

Γ lI ′. (20)

3.4 R eaction to influences

O nce influences have been produced, interactions between levels do not matter
anymore. Thus, the reaction function defined in IR M4S can be re-used:

R eaction l : Σl × Γ l′ 7→ ∆l, (21)

where R eaction l is the reaction function proper to each level.

6 W hile the tropistic/hysteretic distinction is made in IRM, it does not appear clearly
in IRM4S. How ever, in a multi-level context, it is important if multi-level agents are
considered.
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4 Simulation of IRM4MLS models

In this section, two simulation models for IR M4MLS are proposed. The first one
(section 4.1) is directly based on IR M4S. It supposes that all levels have the
same temporal dynamics. The second one (section 4.2) has a more general scope
but is also more complicated and time consuming. These models are compatible
with the different classical time evolution methods (event-to-event or fixed time
step) used in multi-agent simulation. In the following, t0 and T denote the first
and last simulation times.

4.1 A sim ple sim ulation m odel

In this section, a model with single temporal dynamics is introduced. As there is
no synchronization issue, it is very similar to the model of IR M4S. Eq. 22 to 28
describe this simple temporal model. HA(t) and TA(t) denote respectively the
sets of hysteretic and tropistic agents in the system.

F irst, behavior sub-functions are executed for each agent:

∀l ∈ L, pa(t) =< Perception l
a(< δlP (t) : lP ∈ N+

P (l) >) : a ∈ Al(t) >, (22)

∀a ∈ HA(t), sa(t+ dt) = M em orizationa(pa(t)), (23)

∀l ∈ L, ∀a ∈ HAl(t), < γlIa
′(t) : lI ∈ N+

I (l) >= D ecision l
a(sa(t+ dt)), (24)

∀l ∈ L, ∀a ∈ TAl(t), < γlIa
′(t) : lI ∈ N+

I (l) >= D ecision l
a(pa(t)). (25)

Then, environmental influences are produced:

∀l ∈ L,< γlIω (t) : lI ∈ N+
I (l) >= Naturallω(δ

l(t)). (26)

The set of temporary influences in a level l ∈ L at t is defined as:

γl′(t) = {γl(t)
⋃

lI∈N
−

I
(l)

γlIω
′(t)

⋃

a∈AlI

γlIa
′(t)}. (27)

F inally, the new state of the system can be computed:

∀l ∈ L, δl(t+ dt) = R eaction l(σl(t), γl′(t)). (28)

Algorithm 1 summarizes this simulation model.

4.2 A sim ulation m odel w ith level-dep endent tem p oral dynam ics

In this section, a simulation model with level-dependent temporal dynamics is
introduced. In the following, tl and tl + dtl denote respectively the current and
next simulation times of a level l ∈ L. Moreover t =< tl : l ∈ L > and t+ dt =<
tl + dtl : l ∈ L > denote respectively the sets of current and next simulation
times for all levels. It is mandatory to introduce rules that constraint perceptions,
influence production and reaction computation. These rules rely primarily on the
causality principle:
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A lgorithm 1: simple simulation model of IR M4MLS

In p u t: < L,E I,E P >,A(t0),δ(t0)
O u tp u t: δ(T )
t = t0;1

while t ≤ T do2

foreach a ∈ A(t) do3

pa(t) =< P erception l
a(< δlP (t) : lP ∈ N+

P
(l) >) : a ∈ Al >;4

if a ∈ HA(t) th en5

sa(t+ dt) = M em orizationa(pa(t));6

end7

end8

foreach l ∈ L do9

< γ
lI
ω

′(t) : lI ∈ N+
I
(l) >= Naturallω(δ

l(t));10

foreach a ∈ HAl(t) do11

< γ
lI
a

′(t) : lI ∈ N+
I
(l) >= D ecision l

a(sa(t+ dt));12

end13

foreach a ∈ TAl(t) do14

< γ
lI
a

′(t) : lI ∈ N+
I
(l) >= D ecision l

a(pa(t));15

end16

end17

foreach l ∈ L do18

γl′(t) = {γl(t)
⋃

lI∈N
−

I
(l)
γ
lI
ω

′(t)
⋃

a∈AlI

γ
lI
a

′(t)};
19

δl(t+ dt) = R eaction l(σl(t),γl′(t)) ;20

end21

t = t+ dt;22

end23

– an agent cannot perceive the future, i.e.,

∀l ∈ L, lP ∈ N+
P (l) is perceptible from l if tl ≥ tlP , (29)

– an agent or an environment cannot influence the past, i.e.,

∀l ∈ L, lI ∈ N+
I (l) can be influenced by l if tl ≤ tlI . (30)

However, the causality principle is not suffi cient to ensure a good scheduling.
A coherence principle should also guide the conception of the simulation model:

– an agent can only perceive the latest available dynamic states, i.e.,

∀l ∈ L, lP ∈ N+
P (l) is perceptible from l if tl < tlP + dtlP , (31)

– as a hysteretic agent can belong to more than one level, its internal state
must be computed for the next simulation time at which it is considered,
i.e.,

∀l ∈ L, sa(ta + dta) = M em orizationa(pa(t
l)), (32)
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such as
ta + dta = tl + dtl|∀tl′ + dtl′, tl + dtl ≥ tl′ + dtl′

⇒ tl + dtl = tl′ + dtl′ ∧ a ∈ Al,
(33)

– an agent or an environment can influence a level according to its latest state,
i.e.,

∀l ∈ L, lI ∈ N+
I (l) can be influenced by l if tl + dtl > tlI , (34)

– reaction must be computed for the next simulation time, i.e.,

∀l ∈ L, R eaction l is computed if tl + dtl ∈ m in(t+ dt). (35)

Moreover, a utility principle should also be applied:

– perceptions should be computed at once, i.e.,

∀l ∈ L, ∀a ∈ Al, Perception
l
a is computed

if ∀lP ∈ N+
P (l), tl ≥ tlP .

(36)

– as well as influences, i.e.,

∀l ∈ L,Naturallω and ∀a ∈ Al, D ecision
l
a are computed

if ∀lI ∈ N+
I (l), tl ≤ tlI ∨ tl + dtl < tlI + dtlI .

(37)

It is easy to show that the rule defined in eq. 36 subsums the rule defined in
eq. 29. Moreover, the rule defined in eq. 35 implies the rule defined in eq. 31.

According to eq. 37, influences are not necessarily produced at each time from
a level l to a level lI ∈ N+

I (l). Thus, a function cI , defines influence production
from the rules defined by the eq. 34 and 36:

∀l,∈ L, ∀lI ∈ N+
I (l), cI(l, lI) =

{

γlI ′(tlI ) if tl ≤ tlI ∧ tl + dtl > tlI

∅ else.
(38)

The simulation model can then be defined as follows. F irst, if the condition
defined in the eq. 36 is respected, agents construct their percepts and consecu-
tively hysteretic agents compute their next internal state:

∀a ∈ A(t),

pa(t
l) =< Perception l

a(< δlP (tlP ) : lP ∈ N+
P (l) >) : l ∈ LP >, (39)

sa(ta + dta) = M em orizationa(pa(t
l)) if a ∈ HA(t), (40)

with LP = {l ∈ L : a ∈ Al(t) ∧ ∀lP ∈ N+
P (l), tl ≥ tlP }.

Then, if the condition defined in eq. 37 is respected, agents and environments
produce influences:

∀l ∈ LI ,

< cI(l, lI) : lI ∈ N+
I (l) > = Naturallω(δ

l(tl)), (41)

∀a ∈ HAl, < cI(l, lI) : lI ∈ N+
I (l) > = D ecision l

a(sa(ta + dta)), (42)

∀a ∈ TAl, < cI(l, lI) : lI ∈ N+
I (l) > = D ecision l

a(pa(t
l)), (43)
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with LI = {l ∈ L : ∀lI ∈ N+
I (l), tl ≤ tlI ∨ tl + dtl < tlI + dtlI}.

The set of temporary influences in a level l ∈ L at tl is defined as:

γl′(tl) = {γl(tl)
⋃

lI∈N
−

I
(l)

cI(lI , l)}. (44)

F inally, reactions are computed for levels that meet the condition defined in
eq. 35:

∀l ∈ LR,

δl(tl + dtl) = R eaction l(σl(tl), γl′(tl)), (45)

with LR = {l ∈ L : tl + dtl ∈ m in(t+ dt)}.
The algorithm 2 summarizes this simulation model.

5 D iscussion, conclusion and persp ectives

In this paper, a meta-model of MAM, called IR M4MLS, is introduced. It is
designed to handle many situations encountered in MAM: hierarchical or non-
hierarchical multi-level systems with different spatial and temporal dynamics,
multi-level agents or environments and agents that are dynamically introduced
in levels. Moreover, IR M4MLS relies on a general simulation model contrary to
the existing works published in literature. W hile this model is, in general, com-
plicated, its implementation could be simplified to be more effi cient in specific
situations (single perception function, reactive simulation, etc.). Afterwards, ex-
amples of typical MAM situations as well as ideas to treat them in the context
of IR M4MLS are presented.

In some models an agent can belong to different levels:

– in the model of bio-inspired automated guided vehicle (AGV) systems pre-
sented in [10], an AGV (a micro level agent) can become a conflict solver (a
macro level agent) if a dead lock is detected in the system,

– in the SIMP O P 3 multi-level model an agent representing a city plays the
role of interface between two models and then is member of two levels [11].

The simulation of these models has been addressed using different strategies:

– in the first example (a control problem), a top-first approach is used: the
higher level takes precedence over the lower one,

– in the second example (a simulation problem), levels are executed alternately.

These solutions are context-dependent and likely to generate bias. In IR M4MLS,
the multi-level agent situation is handled by a single simulation model that
generalizes the two previous ones without scheduling bias, thanks to the influ-
ence/reaction principle.

In many multi-level agent-based models, interactions between entities in a
level affect the population of agents in another level. E.g., in R IVAGE, a model
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A lgorithm 2: simulation model of IR M4MLS with level-dependent tem-
poral dynamics

In p u t: < L,E I,E P >,A(t0),δ(t0)
O u tp u t: δ(T )
foreach l ∈ L do1

tl = t0;2

end3

while ∃tl ≤ T do4

foreach a ∈ A(t) do5

LP = {l ∈ L : a ∈ Al(t) ∧ ∀lP ∈ N+
P
(l),tl ≥ tlP };6

pa(t
l) =< P erception l

a(< δlP (tlP ) : lP ∈ N+
P
(l) >) : l ∈ LP >;7

if a ∈ HA(t) th en8

sa(ta + dta) = M em orizationa(pa(t
l));9

end10

end11

LI = {l ∈ L : ∀lI ∈ N+
I
(l),tl ≤ tlI ∨ tl + dtl < tlI + dtlI };12

foreach l ∈ LI do13

< cI(l,lI) : lI ∈ N+
I
(l) >= Naturallω(δ

l(tl)) ;14

foreach a ∈ HAl(t) do15

< cI(l,lI) : lI ∈ N+
I
(l) >= D ecision l

a(sa(ta + dta));16

end17

foreach a ∈ TAl(t) do18

< cI(l,lI) : lI ∈ N+
I
(l) >= D ecision l

a(pa(t
l));19

end20

end21

LR = {l ∈ L : tl + dtl ∈ m in (t+ dt)};22

foreach l ∈ LR do23

γl′(tl) = {γl(tl)
⋃

lI∈N
−

I
(l)
cI(lI,l)};24

δl(tl + dtl) = R eaction l(σl(tl),γl′(tl));25

tl = tl + dtl;26

end27

end28

of runoff dynamics, macro level agents (representing water ponds or ravines)
emerge from micro level agents (representing water balls) when conditions are
met [5]. Then, the quantity and the flow of water become properties of macro
level agents: water balls are no longer considered as agents. C onversely, micro
level agents can emerge from macro level agents. Similar situations can be found
in hybrid modeling of traffi c flows [21]. In IR M4MLS, the introduction of an
agent a in a level l is performed by the reaction function of l that introduces
environmental properties representing the physical state of a in σl(t). C onversely,
the reaction function can delete an agent from the level. An agent that does not
belong to any level is inactive but can be reactivated later.

F inally, the definition of IR M4MLS is not closed in order to offer different
possibilities of implementation or extension. E.g., levels could be defined a priori
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or discovered during the simulation [13]. W hile this approach has never been used
in any model so far, it seems particularly promising. In IR M4MLS, only the first
possibility has been handled so far. It would be necessary to consider L and
< L,EI > and < L,EP > as dynamic directed graphs.

The two main perspectives of this work are the design of a modeling and simu-
lation language and a platform that comply to the specifications of IR M4MLS as
well as the re-implementation of existing models to demonstrate the capabilities
of the meta-model and its simulation models.
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Abstract. This paper explores the use of the Myers-Briggs Type In-
dicator (MBTI) as the basis for defining the personality of an agent.
The MBTI is a well-known psychological theory of human personality.
In the MBTI model, four axes are defined to explain how humans per-
ceive their environment, how they interact with others and how they
make decisions based on these traits. The work described here presents
a preliminary model of agent behavior in which two of the axes are im-
plemented, combining to reflect four distinct agent personality types.
Experimental results are shown in which agents of each personality type
perform tasks in a simulated world and produce very different results,
distinct for and characteristic of each personality type.

1 Introduction

We explore the use of the Myers-Briggs Type Indicator (MBTI) as the basis for
defining the personality of an agent. The MBTI is a well-known psychological
theory of human personality developed in the mid 1900’s by Katharine Myers
and Isabel Briggs Myers [1], based on an earlier theory developed by Carl Jung
[2]. Four axes are defined to explain how humans perceive their environment, how
they interact with others and how they make decisions based on these traits.

Jung’s theory states that human mental activity essentially involves receiving
information and processing that information to make decisions. The input of
information (“perceiving”, according to Jung) can be handled in one of two
ways, either by overtly sensing or by using intuition. The process of making
decisions (“judging”, according to Jung) can be driven by logical thinking or by
emotional feelings. Some people derive their energy for these processes from the
influences of the external world around them (extroversion), while others rely
on internal mechanisms such as thoughts or memories (introversion). Briggs
and Myers expanded on these three dichotomies by adding a fourth “lifestyle”
axis which distinguishes between people whose personalities rely more on either
perception or judging.

Typical results of MBTI tests label individuals using one-character abbrevi-
ations for each pole on each axis, as follows:
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– E xtraversion (E) versus Introversion (I)
– S ensing (S) versus iN tuition (N)
– T hinking (T) versus F eeling (F)
– J ud ging (J) versus P erceiving (P)

So, for example, an individual whose personality is labeled ENTJ is someone who
gets their energy from interacting with others, who makes decisions based on ob-
servations of their environment, who solves problems using logical reasoning and
is organized and methodical about what they do. A n ENTJ individual makes a
commitment to complete a certain task in a certain way and sticks with their
plan until the task is complete. In contrast, an individual whose personality is
labeled ISFP is someone who gets their energy from inside, who learns from ex-
perience and focuses on facts, and lets emotions influence their decision-making.
A n ISFP individual commits to a task, but constantly re-evaluates to decide if
there is a better way to complete the task or a better task to address.

The Meyers-Briggs hypothesis is that all combinations of 4 2 = 16 personality
types exist in humans, and knowledge of which personality type corresponds
to an individual can help that individual make life and career decisions. For
example, certain personality types tend to be well-suited to particular types of
jobs; certain pairings of personality types tend to work better than others for
business or life partners. P eople use the MBTI model to influence decisions or
explain how decisions they have made in the past or actions they have taken
have been driven.

We are interested in applying MBTI to agent-based systems by implementing
agents with diff erent personality types. A lthough there exist in the literature a
range of frameworks and some widely accepted methodologies for agent model-
ing (e.g., [3 , 4 ]), most models abstractly describe how an agent processes inputs
and executes outputs, leaving the details to the discretion of the developer. We
speculate that it may be the case that a developer will, subconsciously, encode
in the agents her own personality type. The work presented here demonstrates
that each personality type performs diff erently, even on a simple task in a sim-
plified environment. The resulting observation in our simulated environment is
that some personality types are better suited to the task— the same observation
that psychologists make about humans. The implication in the agent modeling
and agent-based simulation communities is that the success or failure of an ex-
periment could be aff ected by the agents’ inherent personality types, rather than
(necessarily or exclusively) the underlying theory driving the experiment. Thus
the need for a concise model of personality type arises.

In the long term, we envision an additional step in agent modeling in which
personality type plays a factor. When constructing a system, after selecting an
agent’s behavioral model, the agent’s environment, its tasks and goals, the de-
veloper can determine experimentally which (set of) personality type(s) would
best be suited to accomplish those goals. MBTI is generally used to help de-
velop people’s understanding of each other and how diff erences are not flaws but
features, when recognized as such. MBTI is a tool to help people, organizations
and/ or teams learn how best to leverage each other’s personality preferences to
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accomplish their goals together. O ur aim is to bring these ideas, in the context
of agent design, to the agent modeling and agent-based simulation fields. We
believe that MBTI can provide a clear methodology for expressing and applying
agent personality types.

The work described here presents a preliminary model of agent behavior
where the MBTI personality types are employed as the basis for defining diff erent
agent personalities. A s a first step, we focus here on the two axes that do not look
at other agents, namely: sensing (S) versus intuition (N) and judging (J) versus
perceiving (P). We implement agents exhibiting each of the 22 = 4 personality
types: SJ, SP, NJ and NP. The agents are deployed in a simple environment and
given simple tasks to complete. The results show marked diff erences in the way
agents of each personality type address the given task.

The remainder of the paper is organized as follows. Section 2 outlines our
approach, describing the simulated environment used for experimentation and
explaining how each of the four personality types are implemented within this
environment. Section 3 presents experiments in which agents of each personality
type perform tasks in the simulated environment and produce very diff erent
results, distinct for each personality type. Section 4 describes some related work
in the literature. Finally, we close with a summary and discussion of future work.

2 Approach

This section introduces our simulated environment and describes how each of the
personality types are exhibited within that context. The implementation details
for each of the two personality preference axes studied here are explained.

O ur methodology first considers how each personality preference axis (S ver-
sus N and J versus P) applies within the given environment. Then a set of rules is
defined for each axis that modulates the interpretation of input and the produc-
tion of output, according to the characteristic personality preferences of the two
extremes along that axis. R ather than engineering four separate rule sets, one for
each of the four personality types (i.e., SJ, SP, NJ and NP), instead two separate
rule sets are composed: one that distinguishes between S and N, and one that
distinguishes between J and P. Each agent invokes task-dependent functions at
run-time, and the behavior of each function is aff ected by the combined influence
of the agents’ two separate personality preference rule sets. D etails are discussed
below, within the context of our simulated environment.

O ur environment is based on an existing model from the artificial life com-
munity in which termites are simulated [5 ]. The termites’ task is to gather food
from their environment and place it in piles. We modify the baseline termite
model by using pre-determined locations (instead of allowing the number and
locations of piles to emerge as the simulation runs) in order to help illustrate
the distinguishing characteristics of the diff erent agent personality types. The
environment is represented as a two-dimensional grid, where each (x, y) location
in the grid is referred to as a “patch”. The diff erences between the personalities
should be revealed q uantitatively in terms of the amount of food gathered and
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delivered to a pile, the number of diff erent patches visited, and the time interval
between gathering a food particle and delivering it to a pile.

The basic agent behavior employs a classic sense-plan-act model [6 , 7 ]. A t
each time step in the simulation, an agent senses its environment, then decides
what to do, and then does it. The agents can sense the following properties:

– am I holding food?
– am I “at” food (i.e., on the same patch as a piece of food)?
– distance to food
– distance to pile

They can sense the world around them within a specified radius. Their sensing
function sorts the detected locations of food according to the agents’ priority
system and returns the coordinates of a single patch. A sensing (S) agent returns
the closest patch whereas an intuitive (N) agent returns the patch with the largest
surrounding cluster of nearby patches containing food. The agents can perform
the following actions:

– move forward
– turn
– pick up food
– drop off food
– wiggle (turn randomly and move forward)

Personality preference axis: S versus N. A n agent with a sensing (S) per-
sonality preference is concrete. It looks at proximity and focuses on what is
closest. For example, it will move toward the closest food pile, even if it is small.
This agent also looks at the past. It has a short-term (1 timestep) memory of
what it saw in the past. In contrast, an agent with an intuitive (N) personality
preference is more abstract. It looks at density and focuses on what is largest.
For example, it will move toward the largest food pile, even if it is far away. This
agent does not have any memory of the past.

Personality preference axis: J versus P. A n agent with a judging (J) person-
ality preference makes a decision about where to go and commits to its decision
until it reaches its target location. It does not attempt to sense (perceive) the
world again until the target is reached. In contrast, an agent with a perceiving
(P) personality preference makes a decision about where to go and commits to
it, but only for one timestep. A fter moving toward the target for one timestep, it
perceives the world again and potentially changes its target if conditions dictate.

Pseudo code. The simulation is controlled by a main loop that iterates over a
fixed number of timesteps3. Each iteration consists of calls to sense(), plan()
and act() functions, one for each of the agents in the simulation. The diff erences

3 Note that the number of timesteps was fixed only for experimental purposes. O ther
termination conditions could be used.
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function sense() {

if ( not J ) or ( J and plan is empty ) {

holdingFood <- am I holding food?

atFood <- am I at food?

if ( S ) {

locFood <- location of closest food source

locPile <- location of closest pile

}

else { // N

locFood <- location of largest food source

locPile <- location of largest pile

}

}

F ig . 1 . P seudo code for agents’ perception functionality

between agent personality types are evident in the sense() and plan() func-
tions, as detailed below. The plan() function generates a plan and the act()

function executes the plan. The act() function is the same for all agents.
Figure 1 illustrates the perception functionality of the agents. N ote that the

term “perception” is used in the classic sense of agent-based or robotic systems,
meaning that its execution causes the agent to use its sensors to evaluate its
environment. For example, a robot might use its sonar to detect distance to
obstacles. The sense() function correlates very well to N versus S. The intuitive
agent looks at every piece of food in its radius of vision and calculates which
patch is surrounded by the most food. The patch with the largest cluster is sent
to the plan() function. O n the opposite spectrum, the sensing agent calculates
the distance between itself and each patch of food in its radius of vision. The
closest patch to the agent is sent to the plan() function. The only time the
J and P preferences aff ect the sensing function is when a decision has been
committed to and is not yet complete. This is the case when an agent with a
judging preference has already set a path in motion and completely bypasses the
sense() function until it reaches its destination.

Figure 2 illustrates the planning functionality of the agents. The plan()

function takes the inputs from the sense() function and decides how to pro-
ceed. The biggest diff erence in the plan() function is that if sensing agents are
looking for either food or a pile and cannot see one, they rely on their memory
to lead them backwards to where they came from. Intuitive agents do exactly
the opposite: they try to explore new territory. This distinction emphasizes the
exploitation versus exploration trade-off freq uently discussed in the evolutionary
computation and artificial life communities. Similar to the sense() function, if
a judging agent has already made a decision and has yet to complete the task at
hand, the decision step is completely bypassed. O n the other hand, perceiving
agents always re-evaluate their decisions.
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function plan() {

if ( not J ) or ( J and plan is empty ) {

if ( holdingFood )

if ( distance to locPile = 0 )

plan <- put food down

else // not at pile

plan <- go toward locPile

else // not holding food

if ( atFood )

plan <- pick up food

else

if ( I can see food )

plan <- go toward locFood

else

if ( S )

plan <- go toward last location where food was found

else // N

plan <- go toward a new (unexplored) location

}

F ig . 2 . P seudo code for agents’ planning functionality

F ig . 3 . Sample screen shot of “ termite world”
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3 R esults

O ur experimental system was implemented as a prototype in N etL ogo [8 ]. A n
illustration of the “termite world” is shown in Figure 3 . The small dots represent
particles of food. The large circles represent food piles. A single agent is shown
near the center, a very rough visual approximation of an insect.

Experiments were run on five diff erent personality types: random (for com-
parison), SJ, SP, NJ, and NP. Each experimental condition was run for 1000
timesteps. R esults are shown in Table 1, averaged over 10 typical runs. A verage
values and standard deviation (in parenthesis) are listed. The first column in
Table 1 shows the average number of food particles collected and deposited in
piles. A higher number is better. The SJ agent delivered the most food particles.
The second column shows the average interval (number of timesteps) between
two successive deposits. A lower number is better, because the agent should not
spend a lot of time wandering around after picking up a food particle; but rather,
it should deposit a food particle in a pile as soon as it can. A gain, the SJ agent
performed best. The third column shows the number of patches traversed. A
lower number means that the agent did not explore much territory, whereas a
larger number means that the agent explored more. The larger number is better,
because it shows that the agent covered more of its environment; since the food
particles do not move during the simulation (unless the agent moves them), the
agent will only be able to gather more food particles if it also explores more
area. The fourth column shows the “path effi ciency.” This measure divides the
number of patches traversed by the number of food particles delivered, produc-
ing a value that indicates how much the agent was able to accomplish given its
eff ort expended. The SP agent is the most effi cient. This is because it goes to
the closest food location from its current position, so it does not spend a lot of
time wandering around.

type food delivered step interval patches traversed path effi ciency

random 0.5 (0.7 1) 18 3 .5 2 (24 1.7 6) 4 9 6.0 (1.5 6) 9 9 2
SJ 2 4.7 (1.4 9 ) 3 9 .0 7 (2.3 2) 7 9 5 .7 (9 .29 ) 3 2
SP 13 .7 (1.7 7 ) 68 .9 9 (8 .06) 3 14 .3 (2.4 1) 2 3

N J 11.9 (0.8 8 ) 7 7 .9 2 (5 .24 ) 8 9 9 .4 (7 .7 2) 7 5
N P 2.1 (0.9 9 ) 3 5 8 .8 2 (124 .5 4 ) 3 29 .5 (1.3 5 ) 15 7

T able 1 . Experimental results. Average (and standard deviation) over 10 runs.

Figures 4 , 5 and 6 illustrate the diff erences between each of the personality
types visually, in three diff erent ways. Figure 4 shows how much food an agent
brings back to the piles within a fixed amount of time. Since our goal is to
collect food, this shows which personality type most eff ectively collected food
in the allotted time. Figure 5 shows the paths each agent takes while collecting
food and bringing it back to the piles. The agents’ actions create straight or
sq uiggly lines, depending on their approach and commitment.
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(a) random (b) SJ (c) SP

(d) N J (e) N P

F ig . 4. R epresentative performance for each agent personality. D ifferent slopes and
step sizes reflect different rates of collecting food.

(a) random (b) SJ (c) SP

(d) N J (e) N P

F ig . 5 . Typical paths taken by each agent personality. D ifferent path shapes and lengths
reflect different decisions about where to go.
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(a) random (b) SJ (c) SP

(d) N J (e) N P

F ig . 6 . H istogram for each agent personality showing the distribution of patches visited.
Each bar represents the number of patches visited the number of times corresponding
to the x value. F or example, the rand om agent visited many patches only once, and
fewer patches more than once. In general, fewer bars indicate more patches visited, and
therefore a more diverse path; whereas more bars indicate a less diverse path.

Figure 6 contains histograms that represent numerically the diversity of the
agents’ paths taken. Each bar shows a tally of the number of patches that were
visited at various rates. P atches that were never visited are not included. P atches
that were visited only once are counted in the bar at x = 1. So, an agent with a
diverse patch that never retraces its steps has a high bar at x = 1 and few (or no)
bars at higher x values. Similarly, an agent with a path that is repetitious, visiting
fewer patches overall but visiting each patch multiple times, has a histogram of
multiple bars extending along the x axis.

3 .1 A nalysis of results

We analyze the results by first looking at Figure 5 . This figure shows each agent’s
path, and we can understand where each agent’s focus lies. For both sensing
agents, SJ and SP, Figure 5 b and 5 c, respectively, their paths are short and they
do not stray far from their starting point. The graphs illustrate how the focus of
sensing types is based on proximity and that they prefer to concentrate on the
details in front of them.

O n the other hand, intuitive types tend to focus on the bigger picture and
try to look for patterns or clusters. Their paths are typically longer because they
are willing to travel further out to find the largest cluster of food. N otice how
both the NJ and the NP do not stay near their starting points for long. They are
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q uickly pulled towards the largest pile. This again illustrates how the N’s focus
is not defined by proximity, but cluster size.

L ooking at both the NJ’s and NP’s paths side by side and the SJ’s and SP’s
paths side by side, it is also clear that aside from the length of their paths, there
are other diff erences between the types. The other diff erences can be attributed
to the judging and perceiving function. A s explained in Section 1, judging types
prefer to make a decision and commit to it. P erceiving types prefer to continue
researching and are not committed to their decisions.

L ooking at the NJ’s and NP’s paths, we can see that the NJ’s paths taken are
all straight, whereas the NP’s paths are mixed with both straight and sq uiggly
lines. This shows how the NJ senses for food, is able to find the largest cluster
of food within its line of sight and makes a decision of where to go. The agent
continues in a straight line till arriving at its destination. O n the other hand,
the NP re-evaluates its path at every step. Since moving forward may bring new
information about the largest cluster, the old decision is no longer valid. The re-
evaluation and continuous research is illustrated by the sq uiggly path. To think
of it a little diff erently, the NP first tries to find the largest cluster that exists in
its environment. The NJ looks for the local maximum, where “local” is defined
by its line of sight.

To see how the judging and perceiving functions aff ect the SJ’s and SP’s
performance, it is easier to look at how much food they gathered in the allotted
time. Figures 4 b and 4 c, respectively, show both agents’ processes as similar
functions, but there are clear diff erences. The most notable diff erence between
them is the time interval between adding new food to the pile. This time delay is
attributed to the judging and perceiving functions. Since the SJ finds the closest
piece of food in its line of sight and commits to retrieve it, the only time recorded
between seeing the food and picking it up is the time it takes to travel. The SP

does not make the same commitment as the SJ and although they might be
going after the same piece of food, the SP will take longer to get there. This is
because the perceiving preference encourages research, making the SP sense the
environment at every step. Sensing the environment takes time, and this is the
delay illustrated in the graph as well as in the second column of Table 1, where
it can be seen that both types of judging agent (SJ and NJ) have smaller step
intervals than both types of perceiving agent (SP and NP).

H aving explained the diff erences between each of the types, it is not only
understandable but expected that each agent type should perform diff erently.
A ccording to our experiments, the SJs collected the most food with SPs in sec-
ond place, NJs in third, NPs in fourth and the random agent coming in last.
R egardless of which agent came in first and which last, their functions are con-
sistent with their types. A ssuming they can see food, both agents with judging
preferences have regular intervals between each return trip to the pile. The SP’s
time between trips gets increasingly longer as it is forced to travel farther and
sense the world more freq uently. Since the NP is always looking for clusters the
interval is dictated by how far it has to travel between each cluster and when it
decides it has found the largest cluster.
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4 R elated work

There is a fair amount of research into the use of personality types in agent-based
systems. Most approaches focus in one of two directions. The first, more preva-
lent focus is on creating personalities for agents that interact with human users
in social environments. In these cases, the research involves encoding personal-
ity type or temperament to increase social acceptance. D ryer [9] explains that
personality types can be used to enhance human-machine interaction. L in and
McL eod [10] introduce personality into their work, but instead of incorporating
type as the part of the mechanism underlying agents’ actions, they train their
engine to recognize temperaments and information associated with each temper-
ament. They use this training to filter results more eff ectively and provide better
recommendations. A llbeck and Badler [11] use the “Big Five” theory to embody
personality traits and make the motions of each agent flow more realistically and
believably.

L isetti [12] defines a taxonomy for socially intelligent agents, stressing em o-

tion as a strong component of personality. She describes state machines that
illustrate how an agent can shift from one emotion, such as “happy”, to another
emotion, such as “concerned”. These shifts can occur for diff erent reasons in
agents with diff erent personality types. For example, a “determined” agent that
is “frustrated” may shift into an “angry” state and use that anger to work itself
back into a “happy” state; whereas a “meek” agent may shift from “frustrated”
to “discouraged” and never return to “happy”.

The second focus is on modeling complex interactions between agents and
their environment and describing variations in agent behaviors as personalities.
Castelfranchi et al. [13 ] present a simulation framework called “G O L EM” in
which agents of diff erent personality traits are modeled. G O L EM provides an
experimental framework for exploring the eff ect of personality traits on social
actions, such as delegation. A gents develop models of each other, labeled as
personality traits, and use these models to motivate their interactions. Talman
et al [14 ] model personality along two axes: “cooperation” and “reliability”.
These diff erent traits are implemented in a logical framework where agents play
a game and reason about each others’ “helpfulness”, or lack thereof. A gents can
recognize diff erent personality types and respond eff ectively, customizing their
actions appropriately for diff erent personalities.

Both of these last two examples use the notion of personality as a means
for agents to model each other and make decisions about how to eff ect (or not)
cooperative activity with others. A nother approach is given in [15 ] where per-
sonality is closely tied to emotion, as with the first type of focus listed above. In
this work, agents’ internal decision-making processes are guided by personality
types. A gents are deployed in a simulated military combat scenario in which
factors such as “cowardice” and “irritability” are modeled and act as motiva-
tors for certain types of actions. For example, an agent labeled as cowardly may
be driven by fear and run away from threats when attacked; whereas an agent
driven by anger might move forward and face the enemy.
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A ll of the work discussed above is highly context dependent: personality traits
are designed in tandem with the environment in which agents are simulated
and the tasks that agents are addressing. The advantage of the MBTI model
is that it is generic and can, in theory, be adapted to any environment and
task. While the instantiation details of agents’ personalities will necessarily be
tailored to a particular environment, the abstract definition of the personality
traits themselves is not specific.

Campos et al. [16 ] is the most closely aligned with our work, mainly because
of their use of the MBTI model to leverage personality type and test agent
performance in the same environment with diff erent personalities. Similarly, the
authors also started with two axes to illustrate personality, though they chose the
S-N and T-F dichotomies. Even with our implementation of the S-N function we
diff er. Campos et al. implemented the dichotomy as a mechanism for developing
a plan, a hybrid between the S-N and J-P dichotomies. We instead use the S-N

function to weight inputs and allow the J-P function to develop the plan.

5 S um m ary

In the work presented here, we have shown how each personality type functions,
illustrating the diff erences between them and explaining the factors that drive the
diff erences. Since our goal was to see which personality type collected the most
food within a given timeframe, we were able to conclude that the SJ personality
type is the “winner”. In proving that one personality type outshined the others,
we are able to conclude that diff erent personality types are in fact better for
diff erent tasks— at least in this highly simplified example.

O ur next step is to enhance the agent model to include all four MBTI axes,
producing a total of 16 personality types. A s mentioned in Section 1, here we
only looked at the two preferences that did not req uire other agents. O nce we
include the extroverted (E) and introverted (I) preferences, we aim to demon-
strate how some personality types are better suited to working alone and others
are better suited to working with others. Including the thinking (T) and feeling
(F) preferences should illustrate how certain agents are more empathetic than
others and may be better suited for missions that involve helping others, such
as search and rescue (e.g., [17 ]).

Future work involves converting our rule-based model to a formulaic model,
in order to emulate the complexity of all four preference axes. The formulaic
model will have an input function where each input will be weighted by the
S and N preferences. The input function will take into account the diff erences
between food and people and understand how those preferences interact. The
output function will take into account commitment levels, based on the judg-
ing and perceiving functions. A decision function that takes into account the
feeling and thinking function will be developed. O nce the model is expanded to
simulate all sixteen types, diff erent and more complex environments and tasks
will be explored in order to illustrate the diff erences between personality prefer-
ences. G roup dynamics will also be examined, where the interactions of agents
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with diff erent personality types can be shown to bring complexity to coordina-
tion even in groups that have previously been seen as homogeneous— because
personality types were not implemented. We will then be able to test diff erent
combinations of heterogeneous agent groupings to see which groups work most
effi ciently together for which types of tasks.
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Abstract. Most agent-based modeling techniques generate only a single 

trajectory in each run, greatly undersampling the space of possible trajectories. 

Swarming agents can explore many alternative futures in parallel, particularly 

when they interact through digital pheromone fields. This paper shows how 

these fields and other artifacts developed by such a model can be interpreted as 

conditional probabilities. This interpretation not only allows us to derive more 

information from them than swarming models usually yield, but also facilitates 

integrating such models with probability-based AI mechanisms such as HMM’s 

or Bayesian networks.  

Keywords: Polyagent, swarming, probability distributions, agent-based 

modeling. 

1 Introduction 

Agent-based models are widely used for planning and forecasting, as attested by the 

ten-year history of the MABS workshop, the rich literature on the subject at AAMAS, 

and other venues. Such models offer important benefits over other modeling 

techniques, not the least of which is that they can capture nonlinear effects dependent 

on differences between agents, effects that are hidden when population averages are 

used in equation-based models (EBMs) [18, 21]. However, their relatively slow 

execution places them at a disadvantage in highly nonlinear domains, since it is costly 

to sample the space of alternative futures that such a domain supports.  

One family of agent-based modeling constructs, known variously as polyagents 

[14] or delegate MAS [20] and generically as EPU systems [15], uses multiple 

swarming agents to represent each domain entity. Each agent explores a different 

future of its entity concurrently. When these agents interact, not directly but through 

shared quantitative markers that they deposit in the environment, they allow an 

explosion in the space of alternative futures explored, far greater than simply the 

number of agents per entity. If the system is modeling e entities with g agents per 

entity, the number of futures sampled is on the order of g
e
. Analysis of these futures 

can yield probability distributions over a variety of propositions of interest. The wide 

use of such distributions in machine reasoning systems (including HMM’s, Bayesian 
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networks, and fluent graphs) allows the integration of agent-based simulation with 

these techniques. 

This paper discusses the problem of multiple futures and how it is addressed in 

previous modeling technologies (Section 2). Then it summarizes the polyagent 

construct and shows how pheromones can be interpreted as probabilities (Section 3), 

then estimates the number of futures sampled (4). It explains how to analyze the 

artifacts generated by polyagents to yield distributions of interest, and illustrates these 

methods with data from a simulated combat model (Section 5). Section 6 concludes. 

2 The Problem of Multiple Futures 

2.1 Source of the Problem 

Imagine n + 1 entities in discrete time. At each step, each entity interacts with one of 

the other n. Thus at time t its interaction history h(t) is a string in n
t
. Its behavior is a 

function of h(t). This toy model generalizes many domains, including predator-prey, 

combat, innovation, diffusion of ideas, and disease propagation.  

It would be convenient if a few runs of such a system told us all we need to know, 

but this is not likely to be the case. 

  We may have imperfect knowledge of the agents’ internal states or details of the 

environment. If we change our assumptions about these unknown details, we can 

expect the agents’ behaviors to change. 

  The agents may behave non-deterministically, either because of noise in their 

perceptions, or because they use a stochastic decision algorithm.  

  Even if agents’ reasoning and interactions are deterministic and we have accurate 

knowledge of all state variables, nonlinear decision mechanisms or interactions can 

result in overall dynamics that are formally chaotic, so that tiny differences in 

individual state variables can lead to arbitrarily large divergences in agent 

behavior. A nonlinearity can be as simple as a predator’s hunger threshold for 

eating a prey or a prey’s energy threshold for mating. 

An EBM typically deals with aggregate observables across the population. In the 

predator-prey example, such observables might be predator population, prey 

population, average predator energy level, or average prey energy level, all as 

functions of time. No attempt is made to model the trajectory of an individual entity.  

An ABM describes the trajectory of each agent. In a given run of a predator-prey 

model, predator 23 and prey 14 may or may not meet at time 354. If they do meet and 

predator 23 eats prey 14, predator 52 cannot later encounter prey 14, but if they do not 

meet, predator 52 and prey 14 might meet later. If predator 23 meets prey 21 

immediately after eating prey 14, it will not be hungry, and so will not eat prey 21, 

but if it did not first meet prey 14, it will consume prey 21. And so forth. A single run 

of the model can capture only one set of many possible interactions among the agents.  

In our general model, during a run of length !, each entity will experience one of n
!
 

possible histories. (This estimate is of course worst case, since domain constraints 

may make many of these histories inaccessible.) The population of n + 1 entities will 
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sample n + 1 of these possible histories. It is often the case that the length of a run is 

orders of magnitude larger than the number of modeled entities (! >> n).  

Multiple runs with different random seeds is only a partial solution. Each run only 

samples one set of possible interactions. For large populations and scenarios that 

permit multiple interactions by each agent, the number of runs needed to sample the 

possible alternative interactions thoroughly can become prohibitive. In one recent 

application, n ~ 50 and ! ~ 10,000, so the proportion of possible entity histories 

actually sampled by a single run is vanishingly small. We would need on the order of 

n
!
 runs to generate a meaningful sample, and executing that many runs is out of the 

question. 

2.2 Multiple Futures in Conventional Modeling 

For given inputs, a deterministic simulation sees only one future. A stochastic 

simulation can sample alternative futures by repeating the entire simulation with 

different random seeds. This ensemble approach faces several challenges. 

  Replication is a very inefficient way to sample a trajectory space with a size on the 

order of n
 
.  

  This approach considers only alternatives that result from incorrect information, 

and ignores the far richer set of alternatives generated by chaotic interactions of the 

entities as a scenario unfolds. 

  To be useful in estimating the probabilities of alternative futures, each of the 

random starting conditions must lie on the manifold defined by the system’s 

dynamics. If this manifold is sparse in the space from which replications are drawn 

(as is the case with a chaotic system), most replications will not satisfy this 

condition, and as a result probabilities computed from their trajectories will be 

misleading [19]. 

With an EBM, stochastic differential equations can propagate uncertainty through 

the model. However, such approaches are subject to the recognized weaknesses of 

EBM’s resulting from the use of aggregated population characteristics. 

One approach to multitrajectory simulation [5] evaluates possible outcomes at each 

branch point stochastically, selects a few of the most likely alternatives, and 

propagates them. This selection is required by the high cost of following multiple 

paths, but avoiding low-probability paths violates the model’s ergodicity and 

compromises accuracy [6], and random sampling does not satisfy the requirement of 

choosing an ensemble from the system’s attractor [19]. 

3 Pheromones and Probabilities 

3.1 The Polyagent Construct 

In the polyagent modeling construct [13], a persistent avatar manages a stream of 

transient ghosts, each of which explores one alternative future for the entity. As the 

ghosts of different avatars interact, they explore alternative futures for their individual 
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entities, complete with the full range of possible interactions that might result from 

the alternative futures of other entities. These futures are executed in one or more 

virtual environments, such as a book of temporally successive geospatial maps or a 

task network, whose topology reflects that of the problem domain. To ensure that the 

ensemble of ghosts actually fall on the behavioral manifold of the entities being 

modeled [19], we either embed that behavior explicitly in the ghosts when we 

construct them, or evolve their parameters against observed behavior of the entity [9]. 

Ghosts are tropistic. Their behavior responds to a set of fields (“digital 

pheromones”) in their environment. Each field associates a scalar value with each cell 

of the environment. Some fields are emitted by objects of interest (such as roads or 

buildings). Others are deposited by the ghosts as they move about. A ghost’s behavior 

is determined by a weighted sum of the pheromones it senses in its vicinity, where the 

weights define the ghost’s personality and can be either manually coded or learned by 

observation of the entity that the ghost represents.  

In the real world, one entity’s behavior can depend on the presence or absence of 

another entity. A ghost’s behavior depends on the fields of other entities, and thus 

reflects an average response across all of the locations of the other entities that their 

ghosts have explored.  

Each ghost has a strength, which changes to reflect its interaction with the 

environment (such as combat in a battlefield model). The ghost’s strength can be 

interpreted as its degree of health, or more abstractly as the probability that the entity 

that it represents would be at full strength at the ghost’s time and place. A log of each 

ghost’s strength as a function of time is an additional resource, alongside the 

pheromone fields deposited by the ghost, for deriving probabilities. An entity’s avatar 

can estimate the strength of its entity by taking the average of the strengths of its 

ghosts. 

Each ghost increments the field 

corresponding to the entity it 

represents as it moves (Fig. 1). The 

strength of this particular field at a 

location represents how frequently 

ghosts of that entity visit that 

location. The amount of the deposit 

depends on the ghost’s strength, so 

its field takes into account the 

effects of attrition. A ghost can 

increment multiple fields. For 

example, one might correspond to 

its own avatar, one to the entire 

team to which its avatar belongs, 

and one to a unit within the team. A 

field modulated by strength yields an estimate of the probability of encountering a 

unit of force at each location. Fields can also be modulated by a ghost characteristic 

other than strength, such as current preference for a given course of action, yielding a 

field with different semantics that may be useful in some applications. 

Field strength depends not only on entity type and location, but also on time. In 

forecasting applications, we maintain a set of field maps, one for each successive time 

 

Fig. 1. Ghosts deposit pheromones reflecting their 

presence, and sense the presence of ghosts of other 

entities through their pheromones. 
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step from a specified time in the past (the “insertion horizon”) to a specified time in 

the future (the “forecast horizon”). Each page covers the entire area of interest (AOI). 

This set of maps is called the “book of maps.” The number of pages is fixed, and as 

real time advances, we drop the oldest page and add a new page one time step further 

into the future. Pages are indexed by !. ! = 0 corresponds to “now.” ! < 0 indexes 

pages in the past (used to train the ghosts by evolution against observations [9]), and ! 

> 0 indexes pages in the future. Thus if the current real time is t, the real time 

!"#!"$"%&"'()%(*(+,-"%(#*+"(.,&/(,%'"0( (,$( (1(t. 

Polyagents execute on two time scales. 

At the coarsest time scale, avatars dispatch their ghosts, use the results to select a 

course of action, and take that action, advancing the pages in the book of pheromones 

as outlined above. 

At a shorter time interval, each avatar’s ghosts move from one page to the next 

through the book of pheromones. At each step, each ghost 

  Evaluates the fields on its current page; 

  Increments the fields at its location on its current page; 

  Chooses an action based on the field strengths in step 1; 

  Executes the action while moving to the next page. 

Map pages for which   "# 0 have real fields only for relatively persistent 

environmental features such as topography or clan territories. Otherwise, the fields to 

which ghosts respond on these pages are built up by the ghosts themselves as they 

traverse them. The first ghosts to visit each page do not see any ghost-generated 

fields, and their behavior is constrained only by persistent features. To enable ghosts 

to respond to one another, avatars release them in shifts. In one application, each 

avatar releases a total of 200 ghosts over 100 shifts, two per shift. The ghosts in each 

shift respond to the state of the fields as modified by the previous shifts. This 

mechanism is analogous to recursive rationality planning models [4, 7], where the 

number of shifts corresponds to the depth of the recursion: the n
th

 shift makes its 

decision based on the system’s estimate of the decisions of the previous n – 1 shifts.  

Ghosts in early shifts do not have well-defined fields to which to respond, so their 

movements are not as reliable an estimator of entity movement as those in later shifts, 

when the fields have converged. To accommodate this increase in accuracy over time, 

at each simulation step the field strengths on each page are attenuated by a constant 

factor E (a process inspired by pheromone evaporation in insect systems). The effect 

is to weight deposits by later shifts more strongly than those by earlier ones. 

The polyagent model has been applied successfully to manufacturing scheduling 

and control [2], control of robotic vehicles [16, 17], forecasting of urban combat [9], 

and reasoning over hierarchical task networks [3, 11], among other problems. For 

example, in battle forecasting, ghosts are evolved against observations of enemy 

forces, then run into the future to estimate where the adversary may move. 

3.2 Pheromone Fields are Probabilities 

Up to a normalizing constant, the pheromone field incremented by the ghosts of a 

given entity on a given page of the book of maps is the conditional probability 

MABS 2010 - p.  49 / 157



P(e|x,y,t)1 of encountering entity e at location (x,y)2

 

 and time t, estimated over all 

possible futures explored by that entity’s ghosts. This claim is supported by the 

dynamics of pheromone field strength. The strength of the field in a cell is 0 before 

any ghosts visit it, and is augmented by a constant deposit D each time a ghost visits 

the cell, and decremented by a constant fraction E each time step. The strength  (t) 

for a single cell with a single ghost has dynamics.  
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In the continuous time limit,  (t) converges 

exponentially to  . Fig. 2 shows the excellent 

agreement of this limit model even with discrete data. 

This result has two important consequences. 

First, the field converges if enough shifts of ghosts 

visit a page. We determine experimentally how many 

shifts are needed in each application. 

Second, because the evaporation rate E does not 

change over time, the converged strength of a 

pheromone field is proportional to the amount of 

deposit, even in the presence of evaporation. If multiple 

ghosts visit a cell over time and deposit the same 

pheromone flavor, the converged strength of the field in the cell is proportional to the 

average number of deposits experienced by the cell per unit time. In other words, 

pheromone strength measures ghost traffic through a cell. 

To compute the appropriate normalization, observe that all ghosts representing an 

avatar must pass through some cell on a given page as they move through the time 

interval represented by the page. The proportion of the ghosts that visit a given cell is 

equal to the ratio between their pheromone in that cell, and the total amount of 

pheromone deposited on the entire page. But this ratio is just the probability that the 

avatar will visit that cell. 

We can use the field to estimate the probability that 

the entity is in a given region of the page. Let A be the 

total amount of the entity’s pheromone on the entire 

page, and B the amount in a region of interest (Fig. 3). 

Then B/A estimates the probability that the entity is in 

the limited region. The entity’s most likely location is 

given by the center of mass of the field. 

Often we are interested not in the location of an 

individual entity, but in the distribution of a group of 

entities (for example, all members of a team). In this 

case, all ghosts of entities on the same team increment 

the same field, which now reflects the probability of 

1 x,y,t is shorthand for the event of making an observation at the specified location and time. 
2 For simplicity of exposition, we imagine that the polyagents are restricted to a Cartesian 

lattice. The location could have more dimensions, or even be relative to a non-Cartesian 

topology [11]. 
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encountering any team entity over the area of interest. 

In interpreting these probabilities, we must understand ghosts’ movements are 

constrained by environmental influences on earlier pages (represented as pheromones 

of other flavors). The probability that they estimate is thus not simply P(e|x, y, t), but 

P(e|x, y, t, other conditions at t’ < t). That is, the movements of individual ghosts are 

not independent of one another. They are all subject to the same conditions. However, 

those conditions form a Markov blanket for the locations of the ghosts, so given those 

conditions, the ghosts’ locations (and thus the pheromone field that they generate) can 

be treated as independent samples of the avatar’s location in space-time. 

4 Counting Possible Futures 

How many different futures does this approach explore? We develop this value by 

successive refinement. 

Consider a scenario in which, over * shifts, each avatar sends g** ghosts, where g 

is the number of ghosts issued per shift. In one recent application, n = 5 avatars each 

sent out g = 2 ghosts per shift over 2 = 100 shifts into a book of 60 maps. Each ghost 

could in principle follow a distinct path through the book of pheromones. In practice, 

environmental constraints mean that many ghosts follow similar paths, and our 

probability distributions reflect the resulting distribution of trajectories. 

A state of the world consists of the state of all avatars. Because we can capture 

multiple avatar states concurrently, we capture a number of states of the world equal 

to the product of the number of states visible for each avatar. A naive estimate of the 

number of possible futures is (g**)
n
 ~ 3.2*10

11
, but this is an overestimate, for two 

reasons: 

1. The number of ghosts that have visited a given page depends on the page. Pages 

further in the future see fewer ghosts. 

2. A ghost interacts with later ghosts by way of the field that it increments, and this 

field evaporates over time. So we should not count all ghosts equally. 

Assume that we are at shift * and page ! < *, so that the page in question has been 

visited. The oldest deposit on page ! was made by the g ghosts issued at * = !, and a 

fraction g*E
*-!

 remains. The most 

recent deposit, made at *, 

contributes g. So each avatar’s 

“virtual presence” on the page is 

. Fig. 4 shows 

the number of representatives for 

each entity at shift 100 as a function 

of page. For example, in the near 

future (pages 10 and lower), we are 

exploring nearly 40 alternative 

behaviors for each avatar. The 

concave nature of the curve is 

felicitous; it means that the drop-off 

 

Fig. 4. Parallel Futures at shift 100 for five avatars 
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in parallelism is gradual until we 

get to more distant futures, where 

the forecast horizon effect [12] (the 

increasingly random divergence of 

future trajectories under nonlinear 

iteration) makes forecasts less 

reliable anyway. 

The number of states explored 

on each page is this value raised to 

the power of the number of entities. 

Averaging this value over the 60 

pages yields an average number of 

parallel futures of 8.4 x 10
7
. This is 

several orders of magnitude lower 

than the 3.2 x 10
11

 estimate based 

on 200 ghosts per avatar, but still far more than a single-trajectory simulation can 

explore. 

There is an important trade-off in this computation. We could run all of an avatar’s 

ghosts through the system in a few shifts, resulting in less pheromone loss to 

evaporation and thus a higher value for the number of parallel futures that we are 

exploring. However, fewer shifts might not allow the system to converge. We use 100 

shifts because experience shows that the probability distributions will be converged 

by that point, but this value is very conservative. If in fact the distributions are 

converged earlier, we could produce more parallel futures by distributing the same 

total number of ghosts across fewer shifts. Just how much benefit could we realize? 

Fig. 5 plots the number of parallel futures at page 20 against the total number of 

shifts for 200 ghosts, evenly divided across the shifts. As the number of shifts 

increases, the number of parallel futures increases rapidly (due to the larger number of 

ghosts reaching page 20), then drops faster than linearly (due to the evaporation 

effect). For instance, if the probability distributions converged sufficiently by shift 40, 

we could live with 40 shifts of 5 ghosts each and thus increase the number of parallel 

futures by more than order of magnitude. In doing so, we would reduce the number of 

pages T by increasing the time interval between them, so this increase in parallel 

futures would have to be traded against the time resolution that we desire. 

Not all of these futures are distinct. Environmental constraints will cause many of 

them to fall together, so the actual number of meaningful distinct branches in the 

futures will typically be many orders of magnitude less than the upper bounds that we 

have estimated. But a decision-maker can be assured that the branches considered 

result from a much more thorough review of possibilities than would be provided by 

the far fewer replications possible with a single-trajectory simulation. 

This analysis highlights the importance of understanding the convergence of the 

probability distributions that polyagents produce. If we could reduce the number of 

shifts we run without compromising convergence, we would not only speed up 

computation, but also increase the number of parallel futures that we are exploring. 

Our ongoing research includes developing formalisms based on information geometry 

[1, 8] for monitoring the convergence of the fields that polyagents generate. 

 

Fig. 5. Alternative Futures at page 20, as a function 

of the number of shifts across which 200 ghosts are 

distributed. Evaporation factor E = 0.95. 
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5 Analyzing Multiple Futures 

Computational artifacts generated by 

polyagents can yield probability distributions 

that are not only intrinsically useful, but also a 

natural point of interfacing with other 

reasoning technologies. First, we introduce the 

sample data with which we illustrate our 

methods. Then we illustrate how distributions 

can be evaluated. 

5.1 Experimental Data 

Consider a simulated wargame in which one 

force (“Red”) is currently in the north-east of 

the playbox in a region 3, and the other 

(“Blue”) is moving toward Red with the 

objective of +"&&,%+(4"'5$($&!"%+&/(,%(3(6"7).(

25% of its initial strength. Red’s objective is to attack and harass Blue. Fig. 6a shows 

the initial positions of the 16 companies in each force, and the region 3. Fig. 6b shows 

the ghosts generated by both forces, with all 60 pages superimposed. The dispersion 

of the ghosts suggests the breadth of alternative futures that they explore. 

Fig. 7 shows the evolution of the Red pheromone field on pages 0, 30, and 60. As   

increases, the field becomes more diffuse, reflecting the increased uncertainty in unit 

locations as we forecast further into the future. The reduction in overall strength of the 

field reflects Red attrition in encounters with Blue. 

5.2 Evaluating 

Distributions 

The fields generated 

directly by ghosts reflect the 

probability of finding an 

entity at a location. We can 

derive distributions of 

various conditions from 

these fields. Such derivative 

distributions could be used 

(for instance) by an external 

reasoner to forecast when a 

course of action is likely to 

terminate and in what state. 

We illustrate these methods 

 

Fig. 6. Initial laydown of demonstration 

scenario (a) and ghosts on all pages (b) 

 

Fig. 7. Red pheromone field at   = 0 (left), 30 (center), and 

60 (right) 
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with conditions that depend on the number of entities in a defined subregion of the 

AOI. Other conditions are discussed in more depth elsewhere [10], including those 

that depend on the number of forces in the entire AOI, those that depend on distances 

between forces and designated locations or other forces, and conditional distributions. 

Table 1. summarizes our notation. 

Fig. 3 illustrates a page from the book of pheromones, with a gradient representing 

the pheromone field over the entire AOI, and a subregion of particular interest. A 

common class of condition depends on the strength of a given force within the region. 

For example, a Blue attack might terminate when the Red strength within a defended 

region + falls below 25%. 

A naïve approach computes ,(R, !)/-(R, !), which estimates the percentage of Red 

in the region, and reports if this ratio falls below 0.25. Fig. 8 shows this ratio for our 

example as a function of look-ahead. The proportion of pheromone in the region 

drops very low, then actually climbs later in the battle as Red is repulsed by Blue. 

This approach is incomplete for two reasons. 

1. It allows only a Boolean condition. For some purposes we would like to know a 

probability distribution over the 

proposition that Red is below 25% in 

the region. 

2. The simple ratio estimates the 

percentage of Red’s current strength in 

the region. Often we are more interested 

in the percentage of Red’s strength at 

some previous time.  

To address the first issue, note that the 

actual number of Red entities in the region 

follows a binomial distribution. Whether or 

Table 1. Notation for Examples 

Notation Meaning 

E A single entity, represented by a single avatar. Subscripts distinguish distinct 

entities. 

R, B A set of entities (Red or Blue), represented by multiple avatars (with 

subscripts if there are different entities belonging to the same force) 

S(E, !) Strength of entity E on page ! (= average strength of E’s ghosts on that page) 

-(E, !) Total E pheromone deposited by ghosts of entity E on page !. We use the 

same notation with R or B to indicate the total amount of pheromone from all 

the avatars belonging to the designated group. 

,(E, !),  

.(E, !),  

/(E, !), …  

Total E pheromone in named region +, 0, 1, …  Again, we overload the 

function to handle groups of entities. 

(x+, y+) Coordinates of named point + in pheromome map 

2(E, x, y, !) E pheromone strength in cell (x, y) on page ! (with usual overloading for R 

and B) 

p(E, x, y, !) 2(E, x, y, !)/-(E, !) = probability that E (R, B) is at (x, y, !)  

 

Fig. 8. % Red Pheromone in 3 as Function 

of Page 
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not each Red entity is in the region 

is a Bernoulli trial whose probability 

of success is estimated by  (R, 

!)/"(R, !). This interpretation 

depends on the independence of the 

movements of the ghosts that 

generate the fields. At first glance, 

this assumption seems unjustified. 

In our combat example, the ghosts 

are certainly not moving 

independently of one another, but 

represent fighting units subject to 

the same combat forces and thus 

likely to move together. However, 

as discussed in Section 3.2, the probability field does in fact represent the probability 

of ghost location, conditioned on environmental factors. The ghosts’ movements are 

independent, conditional on the environmental factors that the polyagent framework 

takes into account. We can thus use the binomial theorem to estimate the distribution 

of likely avatar locations.  

On this basis, the probability that exactly k   n # |R| Red entities are in $ is just 

 
 (2)  

To address the second condition, S(R, 0) gives us the effective number of Red 

entities on page 0. So we can express k as a fraction of this original strength. Fig. 9 

shows the average strength of the Red ghosts in our scenario as a function of page. 

The error bars are %1!. 

The probability p(C1, !) that Red’s strength in region $ at time "#is below 25% of 

its original strength is then derived by summing the probability from Equation 2 for 

all strengths from 0 up to the lesser of 25% of the original strength or the actual 

strength at ": 
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In our example, this probability is vanishingly small on the first three pages, but 

approaches unity thereafter, due to the rapid movement of Red toward Blue (reflected 

in the precipitous drop of Red pheromone in $ shown in Fig. 8. and the subsequent 

high attrition of Red reflected in Fig. 9. ). 

Sometimes we may want to detect a condition like C2, for which the population in 

region $ exceeds 60% of the original strength. The computation is almost the same, 

except that now we sum from the lower limit (the larger of 60% of the original 

strength, or the actual strength at "%#up to the strength at ". 
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Fig. 9. Average Red Strength as Function of Page 
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6 Conclusion 

Digital pheromones are an effective means of coordination among multiple agents in 

a wide array of domains. In many systems, they summarize the behaviors of many 

similar agents, and so it makes sense to interpret them as probability fields over that 

space of behavior. From this perspective, they are potentially valuable not only 

internally to the stigmergic MAS that generates them, but also externally. In 

particular, when polyagents explore multiple alternative futures of a system, the 

resulting fields are a useful way to communicate the resulting forecasts to other 

applications. By expressing the results in the form of probability distributions, we 

enable the consumers of these forecasts to reason about the uncertainty inherent in 

statements about the future in a commonly understood language. Conversely, when an 

application requires probabilistic estimates, generating these estimates by 

conventional single-trajectory simulation can be prohibitively expensive, while this 

technique can generate them with a single run of a polyagent model. 

There is no free lunch. Polyagent-based exploration of multiple futures achieves its 

great breadth at the expense of detail, as seen in the difficulty in obtaining some joint 

distributions. When ghosts react to one another through probability fields, rather than 

through direct interactions, some of the information that would be gained in a one-on-

one interaction is lost. Nevertheless, this approach offers access to distributional 

information in dynamic, non-stationary environments that would otherwise be 

intractable to probabilistic reasoning. 
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Abstract. While agent-based models (ABMs) are becoming increas-
ingly popular for simulating complex and emergent phenomena in many
fields, understanding and analyzing ABMs poses considerable challenges.
ABM behavior often depends on many model parameters, and the task of
exploring a model’s parameter space and discovering the impact of differ-
ent parameter settings can be difficult and time-consuming. Exhaustively
running the model with all combinations of parameter settings is gener-
ally infeasible, but judging behavior by varying one parameter at a time
risks overlooking complex nonlinear interactions between parameters. Al-
ternatively, we present a case study in computer-aided model exploration,
demonstrating how evolutionary search algorithms can be used to probe
for several qualitative behaviors (convergence, non-convergence, volatil-
ity, and the formation of vee shapes) in two different flocking models. We
also introduce a new software tool (BehaviorSearch) for performing pa-
rameter search on ABMs created in the NetLogo modeling environment.

Key words: parameter search, model exploration, genetic algorithms,
flocking, agent-based modeling, ABM, multi-agent simulation

1 Motivation

Agent-based modeling is a powerful simulation technique in which many agents
interact according to simple rules resulting in the emergence of complex aggregate-
level behavior. This technique is becoming increasingly popular in a wide range
of scientific endeavors, due to the power it has to simulate many different natural
and artificial processes [1–3]. A crucial step in the modeling process is an anal-
ysis of how the system’s behavior is affected by the various model parameters.
However, the number of controlling parameters and range of parameter values
in an agent-based model (ABM) is often large, the computation required to run
a model is often significant, and agent-based models are typically stochastic in
nature, meaning that multiple trials must be performed to assess the model’s
behavior. These factors combine to make a full brute-force exploration of the
parameter space infeasible. Researchers respond to this difficulty in a variety
of ways. One common approach is to run factorial-design experiments that ei-
ther explore model behavior only in a small subspace or explore the full space
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but with very low resolution (which may skip over areas of interest). A second
common approach is to vary only a single parameter at a time, while holding
the other parameters constant, and observe the effect of changing each parame-
ter individually. However, because ABMs often constitute complex systems with
non-linear interactions, these methods risk overlooking parameter settings that
would yield interesting or unexpected behavior from the model.

As an alternative, we argue that many useful model exploration tasks may
instead be productively formulated as search problems by designing appropri-
ate objective functions, as we will demonstrate by example in the domain of
simulated fl ocking behavior. In this paper, we introduce a new software tool
(BehaviorSearch) that we have created for the purpose of searching/ exploring
ABM parameter spaces. Using BehaviorSearch, we offer a case study showing
how search-based exploration can be used to gain insight into the behavior of
two ABMs of fl ocking that have been implemented in the N etL ogo modeling
environment [4 , 5 ]. We also provide a comparison of the performance of three
different search algorithms on several exploratory tasks for these two ABMs.

2 R elated W ork

Rather than using a full factorial experiment design for sampling points in the
space, several more sophisticated sampling algorithms exist (e.g. L atin hyper-
cube sampling, sphere-packing). These algorithms stem from the design of exper-
iments (D oE ) literature or more specifically the more recent design and analysis
of computer experiments (D AC E ) literature (see [6 ] for a discussion of applying
D AC E methodology to ABMs). While appropriate experimental designs provide
efficient sampling of the space in some situations, this is a separate direction
from the search-oriented approach that we are pursuing here. In particular, we
are interested in the use of genetic algorithms [7 ] (G As) to search the ABM pa-
rameter spaces for behaviors of interest. G enetic algorithms have proven to be
quite successful on a wide range of combinatorial search and optimization prob-
lems, and are thus a natural meta-heuristic search technique for this task. There
is prior work on parameter-search and exploration in ABM, and considerably
more on the problem of parameter-search in general.

C alvez and Hutz ler have previously used a genetic algorithm (G A) to tune
parameters of an ant foraging model [8 ], and discuss some of the relevant issues
for applying G As to ABM parameter search. However, in this case, the G A’s
performance was not compared to any other method, and the effectiveness of
G As for the ABM parameter search task has not been thoroughly investigated.
Our present work contributes toward this goal. Specifically, we compare the per-
formance of a genetic algorithm against a stochastic mutation-based hill-climber,
as well as uniform random search, to serve as a baseline for comparison. We also
explore a different domain (i.e. fl ocking models rather than ant foraging), and
thus provide another perspective on the issue of automated model exploration.

G enetic algorithms have also been used to attempt to calibrate agent-based
models with aggregate-level equation-based models as part of the SAD D E method-
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ology [9 ] for designing ABMs. Our research places an emphasis on exploration, as
opposed to calibration or model design. The modeler may pose a question about
the model’s behavior which are potentially interesting, and the distribution of
search results should answer that question, and may give additional insight into
the interaction between parameters as well.

Other methods of exploration (besides genetic algorithms) have previously
been considered. Most notably, Brueckner and P arunak proposed a meta-level
multi-agent system to adaptively select points in the parameter-space to evaluate
[10]. This swarm-based approach resembles particle swarm optimization [11] in
that it uses a population of agents that combine global and local information to
choose a direction to move in the search space, but it also considers whether to
run additional simulations to improve the confidence of results at locations in the
space. Brueckner and P arunak also mention in passing that genetic algorithms
would be an appropriate choice for this type of search problem, but they did not
follow this path, and only offer results from the novel multi-agent optimization
algorithm they proposed. A comparison of genetic algorithms with this, and
other swarm-based approaches, would be an interesting area for future work.

G enetic algorithms have also been employed in parameter-search problems
which are not ABM, but closely related fields. For instance, genetic algorithms
have been applied to search for rules in cellular automata (C A) that will pro-
duce a certain behavior (e.g. density classification) [12 ]. C ellular automata mod-
els could be considered a highly restricted case of agent-based models, and
the cell state transition rules could perhaps be considered the parameters of
such models, in which case this would constitute searching the parameter space.
However, agent-based simulations more typically have numeric parameters, and
whereas C A rules are naturally represented by binary switches, and the density-
classification task is closer to a multi-agent system coordination problem, rather
than an agent-based simulation.

Our present investigation is also inspired by Miller’s work on active non-linear
testing [13], which demonstrated the use of meta-heuristic optimization (genetic
algorithms and hill climbers) for searching the parameter-space of the W orld 3

simulation, a well-known system dynamics model (SD M). Our work departs from
Miller’s in two respects: 1) model stochasticity (which is less frequently present
in SD Ms) as not addressed in those experiments, and 2 ) the characteristics of
search spaces produced by agent-based models likely differ from those which are
produced by aggregate equation-based models.

3 Methods

3.1 Flocking Models Overview

For our case study, we chose two ABMs of bird fl ocking behavior. The first ABM
is the N etL ogo F lockin g model [14 ]. F lockin g closely resembles the seminal ABM
of swarming behavior in artificial birds (playfully dubbed “ boids” ) that was in-
troduced by Reynolds as a way to create life-like cinematic animation of fl ocking
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birds or other fl ying/ swimming/ swarming creatures [15 ]. The behavior of each
“ boid” is infl uenced by three basic rules, which provide impetus toward align-
ment, coherence, and separation. The relative infl uences of each are controlled
by the parameters max-align-turn, max-cohere-turn,, and max-separate-turn, re-
spectively. Additionally there are parameters controlling the distance at which
birds have knowledge of other birds (vision), and the minimum distance of sep-
aration which birds attempt to maintain (minimum-separation). For this first
model, exploratory search tasks include the discovery of parameters that yield
quick directional convergence (Section 4 .1), non-convergence (Section 4 .2 ), and
volatility of the aggregate fl ock’s heading over time (Section 4 .3).

The second model is the N etL ogo Flocking V ee Formations model [16 ], which
we will denote as F lockin g V F throughout this paper. F lockin g V F is based
loosely on an extension of Reynolds’ work that was proposed by N athan and
Barbosa [17 ], attempting to produce the vee-shaped patterns often observed
in large migratory birds, such as C anada geese. F lockin g V F has 8 control-
ling parameters, which account for fine-grained control over bird vision (vision-

distance, vision-cone, obstruction-cone), takes into account benefits of “ updraft”
from nearby birds (updraft-distance, too-close), as well as fl ying speeds and ac-
celeration (base-speed, speed-change-factor, and max-turn). The specific details of
these two models are not the focus of this article, and due to space constraints
we refer interested readers to examine the models themselves, which are avail-
able in the N etL ogo models library. The final exploratory search task is to seek
parameters that best yields V -shaped fl ock formations, in both F lockin g and
F lockin g V F (Section 4 .4 ).

3.2 S ea rch A lgorith m s

For each search task, we tested three different search algorithms: uniform ran-
dom search (RS), a random-mutation hill climber (HC ), and a genetic algorithm
(G A). For all of the search methods, each model parameter’s value was encoded
as a sequence of binary digits (bit string) using a G ray code1, and all the param-
eters’ bit strings were concatenated together, to create a string that represents
one point in the parameter-space. A bit string is evaluated by decoding it into
the parameter settings for the agent-based model, and running the model with
those parameters.

The RS method simply generates one random bit string after another, and
in the end chooses the one that best elicited the desired model behavior. RS
is a naive search techniques, which we included as a baseline for comparison,
to determine whether using more sophisticated meta-heuristics (such as the HC
and G A) were indeed helpful.

Our HC is primarily a local search algorithm. It starts with a random bit
string (s). A new string (s

new
) is generated from s (each bit of s gets fl ipped with

1 In a traditional high-order binary encoding, it requires flipping 4 bits to change
from 7 (01 1 1 2) to 8 (1 0002), whereas in a G ray code, adjacent numbers may always
be reached by a single bit flip. G ray codes thus create a smoother mapping from
numbers into binary search spaces.
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probability 0.05 , which is the mu tation -rate). If s
new

is better than s (generates
behavior that judged closer to the desired target behavior), then the HC chooses
to s

new
as the new s, and the process repeats. If the HC becomes stuck (after

1000 unsuccessful move attempts), it will restart at a new random location in
the search space, which makes this a quasi-local search method.

Our G A is a standard generational genetic algorithm [7 ], with a population
size of 30, a crossover rate of 0.7 , and a mutation rate of 0.05 , using tournament
selection with tournament size 3. The G A is a more sophisticated search mech-
anism than HC or RS, and there are several reasons to believe that it might
perform better. First, the G A is population-based, which allows it to explore
multiple regions of the space simultaneously (more of a global search technique).
Second, genetic algorithms have previously been shown to perform well on a va-
riety of nonlinear and multi-modal search/ optimization problems. Third, genetic
algorithms (like the biological processes of evolution that inspired them) often
have a way of coming up with creative or unexpected solutions to a problem,
which humans would not have considered. However, depending on the how the
search space is structured, simpler approaches may be more effective. For exam-
ple, it was shown that a HC performed better on a problem that was specifically
designed with the expectation that G As would work well on it [18 ]. One impor-
tant consideration, is whether there are so-called bu ild in g blocks in the solution-
space, which the G A is able to discover and combine (via genetic crossover) to
form better solutions. P hrased at the level of the agent-based model, this ques-
tion becomes: are their certain combinations of several parameter settings, each
of which partially produce desired target behavior, and when combined together
produce that behavior even more strongly? If so, the G A may be able to take
advantage of that structure in the search space to efficiently find solutions.

The objective function (or “ fitness function” in the parlance of evolution-
ary computation) was always averaged across 5 model runs (replicates) with
different random seeds, to reduce uncertainty due to model stochasticity. The
uncertainty of objective function values (which is basically “ noise” from the
search algorithm’s perspective) is not necessarily refl ecting uncertainty within
the agent-based simulation itself. Rather, running the simulations results in a
range of behavior depending on the initial placement of the birds. However,
our objective functions is attempting to characterize the presence or absence
of a certain behavior on average, and short of running the simulation with ev-
ery possible initial condition (which is impossible), there will always be some
amount of uncertainty in the objective function measure. However, examining
the results from several replicate runs of the simulation reduces this uncertainty,
and smooths the search landscape.

The objective functions were different for each task, and will be discussed
individually in each of the investigations below (Sections 4 .1-4 .4 ). For efficiency,
objective function values were cached after being computed.2 The search algo-

2 T he goal of caching is to avoid repeating expensive computations, which is accom-
plished here. H owever, because the model is stochastic, re-evaluating points in the
search space could lead to different results than using the cached values, meaning
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rithms were stopped after they had run the ABM 12 000 times. E ach search was
repeated 30 times (except for the volatility exploration in Section 4 .3, which
was repeated 6 0 times for improved statistical confidence), to evaluate search
performance and ensure that search findings were not anomalous.

3.3 B eh aviorS ea rch

To perform these searches, we developed a new tool called BehaviorSearch [2 0],
which was implemented in J ava, and interfaces with the N etL ogo modeling en-
vironment, using N etL ogo’s C on trollin g A P I. BehaviorSearch is an open-source
cross-platform tool that offers several search algorithms and search-space rep-
resentations/ encodings, and can be used to explore the parameter space of any
ABM written in the N etL ogo language. The user specifies the model file, the de-
sired parameters and ranges to explore, the search objective function, the search
method to be used, and the search space encoding, and then BehaviorSearch

runs the search and returns the best results discovered, and optionally the data
collected from all of the simulations run along the way. BehaviorSearch supports
model exploration through both a G UI (see Figure 1), and a command line in-
terface. A beta-release of BehaviorSearch is freely available for download3. The
software design purposefully resembles that of the widely-used BehaviorSpace

[2 1] parameter-sweeping tool that is included with N etL ogo. Our intent is to
make advanced search techniques accessible to a wide range of modelers so that
the methods and ideas discussed in this paper can be put into practice.

F ig . 1 . Screenshot of the BehaviorSearch G UI, displaying search progress.

that the search process is potentially affected by the caching. F or further discussion
of noise/ uncertainty and fitness caching, see [1 9 ]

3 Available at: http://www.behaviorsearch.org/
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4 Ex plorations

4 .1 Investiga tion 1: C onvergence

The convergence of swarm-based systems is one potential property of interest,
and has been been formally studied for some theoretical cases [2 2 ]. Thus, the
first behavior of interest for the F lockin g model was the ability of birds starting
at random locations and headings to converge to be moving in the same direction
(i.e. directional, not positional, convergence). In order to make the search process
effective, we must provide a quantitative measure to capture the rather qualita-
tive notion of convergence. This quantitative measure (the objective function)
will provide the search with information about how good one set of parameters
is, relative to another, at achieving the goal. Specifically, we would like to find
parameters that yield very little variation between birds’ headings. Thus, we will
attempt to minimize the following objective function:

f
no nc o nv er g ed

= std e v({v
x
(b) | b ∈ B}) + std e v({v

y
(b) | b ∈ B}) (1)

where v
x
(b) and v

y
(b) are the horizontal and vertical components of the velocity

of bird b, and B is the set of all birds. The standard deviation (std e v), which
is the square root of the variance, serves as a useful measure of the variation
for velocity, and we must apply it in both the x and y dimensions. A value of
f

no nc o nv er g ed
= 0 would indicate complete alignment of all birds. We measure

f
no nc o nv er g ed

after 7 5 ticks (model time steps). While 7 5 ticks is effective here for
finding parameter settings that cause the fl ock to quickly converge, if we were
instead interested in the long-term behavior of the system, a longer time limit
would be more appropriate.

The plot of search progress (Figure 2 ) shows that on average the HC may
have found better model parameters early in the search, but in the end the G A’s
performance was superior (t-test, p < 0.01). Both G A and HC significantly
outperformed random search. The best parameters found in each run (Figure
3) shows us that it is crucial for birds to have long-range vision, and that even
a small urge to cohere is detrimental to convergence. The wide spread for max-

separate-turn suggests that convergence is not very sensitive to this parameter
(given the other parameter settings). Figure 3 also shows one possible converged
state from running the model using the best parameters found by the G A.

4 .2 Investiga tion 2 : N on-convergence

N ext, we probed for parameter settings that cause the birds not to globally
align. For this task, we simply maximized the same objective function we min-
imized in Section 4 .1. This task turned out to be rather trivial, as all three
search methods (G A, HC , and RS) very quickly found parameter settings that
yielded little or no fl ock alignment. That such behavior is rather common in
the parameter space is illustrated by Figure 4 , which shows a wide distribution
of best parameters. The results suggest that for non-convergence, it is helpful
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F ig . 2 . Search performance for the convergence task, comparing how efficiently the G A
(genetic algorithm), H C (hill climber), and R S (rand om search) can find parameters
that cause the flock to quickly converge to the same heading. (Error bars show 9 5 %
confidence intervals on the mean.)

F ig . 3 . L E F T : D istribution of model parameter settings found to cause quickest con-
vergence in each of the 3 0 G A searches. All box-and-whisker plots presented in this
paper show the median line within the lower-to-upper-quartile box, with whiskers en-
compassing the remainder of the data, apart from outliers which are marked with x’s.
R IG H T : V isualization of the flock (after 7 5 model steps) using the best parameters
the G A discovered.
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F ig . 4 . L E F T : D istribution of model parameter settings found to cause non-
convergence in each of the 3 0 G A searches. R IG H T : V isualization of a non-converged
flock using the best parameters the G A discovered.

for birds to have a low-to-medium vision range, desire a large amount of sepa-
ration from each other (minimum-separation), and act to achieve the separation
(non-zero max-separate-turn). D igging deeper, the results tell us that it is the
relationship between parameters that matters; if minimum-separation is larger
than vision each bird will seek to avoid any other bird as soon as it sees it, as
separation takes precedence over the align/ cohere rules.

4 .3 Investiga tion 3: V ola tility

Our third experiment sought parameters for the F lockin g model that would yield
the most volatility (or changeability) in global fl ock heading, by attempting to
maximize f

v o la tility
, as defined in (4 ).

v
x
(t) = m e a n ({v

x
(b) | b ∈ B} at tick t (2 )

v
y
(t) = m e a n ({v

y
(b) | b ∈ B} at tick t (3)

f
v o la tility

= std e v(v
x
(t) for t = 4 00..5 00) + std e v(v

y
(t) fo r t = 4 00..5 00) (4 )

Again, on average the G A was slightly more successful than the HC in elicit-
ing fl ock heading volatility, and both significantly outperformed random search
(Figure 5 ). Only 5 out of the 6 0 G A searches’ best parameter settings had a non-
zero value for minimum-separation, indicating that birds fl ying close together is a
key factor for maximal volatility. L ong-range vision, and large effects of max-align-

turn and max-cohere-turn are also important (see Figure 6 ). The fl ight pattern
of a fl ock exhibiting considerable volatility is shown in Figure 6 . The single bird
positioned at the left side in the rear is at least partially responsible for shift in
fl ock heading, because of the strong coherence parameter.
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F ig . 5 . Comparison of search algorithm performance for the flock heading volatility
task. T he final mean performance of the G A was better than the H C (t-test, p < 0.05 ),
but not substantially so. (Error bars show 9 5 % confidence intervals on the mean.)

F ig . 6 . L E F T : D istribution of model parameter settings (from each of the 3 0 G A
searches) found to cause the most volatility in flock heading. R IG H T : V isualization of
the flock after 5 00 model steps (also showing each bird’s path over the last 1 00 steps),
using the best parameters found by the G A.
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D espite taking the average of 5 replications, noise due to model stochasticity
was still significant. For example, the search reported finding settings yielding
0.9 9 volatility, but averaging 1000 runs at those settings showed true volatility
of 0.4 1. This fact could bias the search toward parameters that occasionally
yield very high volatility, over those that consistently yield moderately high
volatility. Both goals are potentially interesting for model exploration; however,
appropriate noise reduction methodology is a worthy subject for future research.

4 .4 Investiga tion 4 : V ee Form a tions

The final experiment was to search both the F lockin g and F lockin g V F models
for a more complex behavior, which we shall refer to as veen ess. V een ess measures
the degree to which birds are fl ying in vee, or more generally, echelon formations.
Our specific questions are: 1) D o any parameter settings cause F lockin g to exhibit
veen ess? 2 ) How much better can F lockin g V F do? and 3) what matters most
for the best vee/ echelon creation?

To calculate veen ess, we first cluster all the birds in the world into separate
fl ocks, according to proximity (within 5 distance units of another bird in the
fl ock) and directional similitude (less than 2 0 degrees angular difference in head-
ing). A fl ock with less than 3 birds is assigned a fl ock veeness score 0. Otherwise,
it is calculated by choosing the optimal “ point” bird and right/ left echelon angles
(which must be between 2 5 and 5 0 degrees, comprising a mid-range of echelon
angles observed in nature [2 3]) for the fl ock, to minimize the mean-squared-error
of angles to fl ockmates compared with the desired echelon angle. Flock group-
ings with echelon angles and fl ock veeness scores can be seen in Figure 9 . The
mean-squared-error value for the best “ point” bird is inverted and rescaled so
that a fl ock in perfect echelon/ vee formation has a score of 1.0. Overall veen ess is
a weighted average (by fl ock size) of the veeness scores of individual fl ocks. V ee-

n ess was measured every 100 model ticks, between 1000 and 2 000 ticks. Searches
for both F lockin g and F lockin g V F used 30 birds and the same veeness metric.

Unlike in previous experiments, the HC search method performed slightly
better than the G A (see Figure 7 ), but the difference was not statistically sig-
nificant. For the Flocking model, RS was not far behind the G A and HC , but
was considerably worse than the other methods for the V ee Flocking model.

The results show that F lockin g can create formations that appear only mildly
vee-like at best, but F lockin g V F can (as expected) create much better vees (as
shown in Figure 9 ). For F lockin g V F to produce the best vees (according to our
chosen veen ess metric), the vision-cone angle should be large, perhaps roughly 3
times larger than the obstruction-cone angle, the bird’s base-speed and max-turn

angle should generally be low, but the speed-change-factor should not be too
small. We will not elaborate on specific implications of these findings for the
F lockin g V F model here, but broadly argue that findings such as these can lead
modelers to a better understanding of their model by cognitively linking changes
in model parameters with the qualitative behavior being investigated.
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F ig . 7 . Comparison of search performance for the vee-shapedness task on both the
F locking and F locking V ee F ormation models. (Error bars show 9 5 % confidence inter-
vals on the mean.)
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F ig . 8 . D istribution of model parameter settings found to yield the best vees in the
F locking model (left), and the F locking V ee F ormation model (right), in each of the
3 0 H C searches.
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F ig . 9 . V isualization of a run of the F locking model (left), and the F locking V ee F or-
mation model (right), using the best “ vee-forming” parameters found by the 3 0 H C
searches. Birds are shaded by flock group, dashed lines show average flock heading
relative to the “ point” bird, and gray lines show best-fit angles for right and/ or left
echelons of the vee formation. T he numeric “ veeness” measure for each individual flock
is also shown.

5 C onclusion and Future W ork

Beyond the specific results concerning the behavior of two particular agent-based
models (Flocking and V ee Flocking), there are several more general conclusions
that may be drawn from this case study. First, evolutionary algorithms such as
the G A and HC are indeed effective means of exploring the parameter space of
ABMs. Their performance was vastly superior to RS, except in the cases where
the task was too easy (e.g. nonconvergence) or too hard (veeness in F lockin g ) to
make substantial progress. Second, by running multiple searches on a stochastic
model and looking at the distribution of best-found parameter settings, rather
than just the single best setting for the parameters, we can uncover trends (or at
least postulate relationships) about the interactions between model parameters
and behavior. One interpretation is that we are implicitly performing a type
of sensitivity analysis on the search process for a particular behavior, but that
the results of that analysis can tell us something about the model. N ote that
the trends we find are unlikely to be global (characteriz ing the whole parameter
space), but apply only to a local view that is focused on regions of the parameter
space where the target behavior is expressed mostly strongly.

These results also suggest several important areas for future work. First, it is
unclear what circumstances favor the use of a genetic algorithm over a simpler
hill climbing search mechanism. Second, the performance results presented here
may be dependent on any number of search algorithm parameters (not to be
confused with mod el parameters), such as the population size, mutation rate,
crossover rate, elitism, or chromosomal representation. While we attempted to
choose reasonable values for these search parameters, it is likely that by tuning
these parameters, the algorithms’ efficiency could be improved. It is also possible
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that poor search parameter choices could lead to behavior that is worse than ran-
dom search, and should thus be avoided. Also, in future work, we would like to
compare the performance of other search algorithms (such as simulated anneal-
ing, and particle-swarm optimization). Finally, additional consideration should
be given to the treatment of model stochasticity and noisy objective functions;
while running fewer replicates of model runs takes less time for searching, large
quantities of noise can inhibit search progress. In general, the prospects seem
bright for using meta-heuristic search, such as genetic algorithms, to improve
model exploration and analysis. It is our hope that these promising prospects
will encourage ABM practitioners to fl ock toward, and eventually converge on,
new methodologies for model parameter exploration that take advantage of these
ideas.
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Abstract. The exchange of information is in many multi-agent sys-
tems the essential form of interaction. For this reason, it is crucial to
keep agents from providing unreliable information. However, agents that
provide information have to balance between being highly competent, in
order to achieve a good reputation as information provider, and staying
incompetent, in order to minimize the costs of information acquisition.
In this paper, we use a multi-agent simulation to identify conditions un-
der which it is profitable for agents either to make an investment to
become competent, or to economize and stay incompetent. We focus on
the case where the quality of the acquired information cannot objectively
be assessed in any immediate way and where hence the information end
users have to rely on secondary methods for assessing the quality of the
information itself, as well as the trustworthiness of those who provide it.

Keywords: Social Epistemology, Dishonesty, Formal Argumentation,
Reputation Systems, Incentive Compatibility.

1 Introduction

When purchasing information, one wants to be sure of the quality of the in-
formation in question. However, if one is not an expert oneself in the relevant
domain, assessing the quality of information can be difficult. For the sellers of
information (which we will simply refer to as “the consultants”) this provides an
incentive for dishonesty. After all, gaining real expertise costs significant efforts
as well as time and money. If the consumer of information (which we will refer
to as “the client”) has difficulties assessing the quality of the provided informa-
tion, then why not pretend to have a higher level of expertise than one actually
has? As long as the chance that the client detects this dishonesty is low, and so
the reputation will most probably not be damaged, a consultant can charge the
same price for his advice, yet spend less resources on maintaining up-to-date of
the state of the art.
The issue of low quality information has been studied in [1, 2]. What is new,

however, is that we have now developed a model and a software simulator thereof
that is able to compute the profit for the consultants of either a strategy of hard
work or a strategy of taking it easy when it comes to staying up to date with
the state of the art. In particular, we are able to provide qualitative insight on
which strategy yields the most profitable results under which circumstances.
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2 A rg umentation and Informednes s

The aim of this section is to formaliz e the concept of informedness by means of
formal argumentation. This establishes the background theory for the remaining
practical part of the paper.
In standard epistemic logic (S5 ), informedness is basically a binary phe-

nomenon. O ne either has knowledge about a proposition p or one does not.
It is, however, also possible to provide a more subtle account of the extent to
which one is informed about the validity of proposition p. Suppose Alex thinks
that Hortis B ank is on the brink of bankruptcy because it has massively invested
in mortgage backed securities. Also B ob thinks that Hortis is on the brink of
bankruptcy because of the mortgage backed securities. B ob has also read an in-
terview in which the finance minister promises that the state will support Hortis
if needed. However, B ob also knows that the liabilities of Hortis are so big that
not even the state will be able to provide significant help to avert bankruptcy.
From the perspective of formal argumentation [3 ], B ob has three arguments at
his disposal.

A: Hortis B ank is on the brink of bankruptcy, because of the mortgage backed
securities.

B: The state will save Hortis, because the finance minister promised so.
C: N ot even the state has the financial means to save Hortis.

Here, argument B attacks A, and argument C attacks B (see eq. (1)). In most
approaches to formal argumentation, arguments A and C would be accepted and
argument B would be rejected.

A←− B ←− C (1)

Assume that Alex has only argument A to his disposal. Then it seems reasonable
to regard B ob as more informed with respect to proposition p (“Hortis B ank is on
the brink of bankruptcy”) since he has a better knowledge of the facts relevant
for this proposition and is also in a better position to defend it in the face of
criticism.
The most feasible way to determine whether someone is informed on some

given issue is to evaluate whether he is up to date with the relevant arguments
and is able to defend his position in the face of criticism. O ne can say that agent
X is more informed than agent Y if it has to its disposal a larger set of relevant
arguments.
We will now provide a more formal account of how the concept of informed-

ness could be described using formal argumentation. An argumentation frame-

work [3 ] is a pair (Ar , att) where Ar is a set of arguments and att is a binary
relation on Ar . An argumentation framework can be represented as a directed
graph. For instance, the argumentation framework ({A,B,C}, {(C,B), (B,A)})
is represented in eq. (1).
Arguments can be seen as defeasible derivations of a particular statement.

These defeasible derivations can then be attacked by statements of other defea-
sible derivations, hence the attack relationship. G iven an argumentation frame-
work, an interesting question is what is the set (or sets) of arguments that can
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collectively be accepted. Although this question has traditionally been studied
in terms of the various fixpoints of the characteristic function [3 ], it is equally
well possible to use the approach of argument labelings [4 , 5 ]. The idea is that
each argument gets exactly one label (accepted, rejected, or abstained), such
that the result satisfies the following constraints.

1. If an argument is labeled accepted then all arguments that attack it must
be labeled rejected.

2. If an argument is labeled rejected then there must be at least one argument
that attacks it and is labeled accepted.

3 . If an argument is labeled abstained then it must not be the case that all
arguments that attack it are labeled rejected, and it must not be the case
that there is an argument that attacks it and is labeled accepted.

A labeling is called complete iff it satisfies each of the above three constraints. As
an example, the argumentation framework of eq. (1) has exactly one complete
labeling, in which A and C are labeled accepted and B is labeled rejected. In
general, an argumentation framework has one or more complete labelings. Fur-
thermore, the arguments labeled accepted in a complete labeling form a com-
plete extension in the sense of [3 ]. O ther standard argumentation concepts, like
preferred, grounded and stable extensions can also be expressed in terms of
labelings [4 , 5 ]. Algorithms and proof procedures can be found in [6 – 11].
In essence, one can see a complete labeling as a reasonable position one can

take in the presence of the imperfect and confl icting information expressed in
the argumentation framework [12, 13 ]. An interesting question is whether an
argument c an be accepted (that is, whether the argument is labeled accepted
in at least one complete labeling) and whether an argument h as to b e accepted
(that is, whether the argument is labeled accepted in each complete labeling).
These two questions can be answered using formal discussion games [6 – 8 , 11].
For instance, in the argumentation framework of eq. (1), a possible discussion
would go as follows.

P rop onent: Argument A has to be accepted.
O p p onent: B ut perhaps A’s attacker B does not have to be rejected.
P rop onent: B has to be rejected because B’s attacker C has to be accepted.

The precise rules which such discussions have to follow are described in [6 – 9 ,
11]. We say that argument A can be d efend ed iff the proponent has a winning
strategy for A. We say that argument A can be d enied iff the opponent has a
winning strategy against A.
If informedness is defined as justified belief, and justified is being interpreted

as defensible in a rational discussion, then formal discussion games can serve as
a way to examine whether an agent is informed with respect to proposition p,
even in cases where one cannot directly determine the truth or falsity of p in the
objective world. An agent is informed on p iff it has an argument for p that it is
able to defend in the face of criticism.
The thus described approach also allows for the distinction of various grades

of informedness. That is, an agent X can be perceived to be at least as informed
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as agent Y w.r.t. argument A iff either X and Y originally disagreed on the
status of A but combining their information the position of X is confirmed, or
X and Y originally agreed on the status of A and in every case where Y is able
to maintain its position in the presence of criticism from agent Z, X is also able
to maintain its position in the presence of the same criticism.
When AF1 = (Ar1, att1) and AF2 = (Ar2, att2) are argumentation frame-

works, we write AF1 ó AF2 as a shorthand for (Ar1 ∪ Ar2, att1 ∪ att2), and
AF1 õ AF2 as a shorthand for Ar1 ⊆ Ar2 ∧ att1 ⊆ att2. Formally, agent X is at
least as informed with respect to argument A as agent Y iff:

1. A can be defended using AFX (that is, ifX assumes the role of the proponent
of A then it has a winning strategy using the argumentation framework of
X), A can be denied using AFY (that is, if Y assumes the role of the opponent
than it has a winning strategy using the argumentation framework of Y ),
but A can be defended using AFX óAFY , or

2. A can be denied using AFX , A can be defended using AFY , but A can be
denied AFX óAFY , or

3 . A can be defended using AFX and can be defended using AFY , and for each
AFZ such that A can be defended using AFY óAFZ it holds that A can also
be defended using AFX óAFZ ,

4 . A can be denied using AFX and can be denied using AFY , and for each AFZ
such that A can be denied using AFY ó AFZ it holds that A can be denied
using AFX óAFZ .

N aturally, it follows that if AFY õ AFX then X is at least as informed w.r.t.
each argument in AFY as Y .
In the example mentioned earlier (eq. (1)) Alex has access only to argu-

ment A, and B ob has access to arguments A, B and C. Suppose a third person
(Charles) has access only to arguments A and B. Then we say that B ob is more
informed than Alex w.r.t. argument A because B ob can maintain his position
on A (accepted) while facing criticism from Charles, where Alex cannot. A more
controversial consequence is that Charles is also more informed than Alex w.r.t.
argument A, even though from the global perspective, Charles has the “wrong”
position on argument A (rejected instead of accepted). This is compensated by
the fact that B ob, in his turn, is more informed than Charles w.r.t. argument A.
As an analogy, it would be fair to consider N ewton as more informed than his
predecessors, even though his work has later been attacked by more advanced
theories.
It can be interesting to compare the thus defined notion of argumentation-

based informedness with the notion of knowledge as modeled by traditional
(S5 ) modal logic. K nowledge, from a conceptual point of view, is often defined
as “justified true belief”. U nder using S5 and S4 based modalities, the notion
of knowledge is often simplified as “true belief”, whereas in our argumentation
approach, we take the other way and define informedness as “justified belief”. The
difference between the modal logic approach and the argumentation approach
is an important one, since it has consequences for the domains where these
approaches are applicable. As an example, consider an expert on climate change
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who predicts a global temperature increase of 2o C at by the year 20 5 0 . Whether
or not this claim is true or not cannot immediately be assessed in any objective
way. However, what can be assessed is whether the backing of this claim can
stand a critical assessment using the information that is currently available. That
is, is the expert able to defend his position against possible counterarguments?
Similar observations can be made not only with respect to climate change, but
also with respect to issues like the world’s energy resources, or the viability of the
long-term investment strategy of a pension fund. The reputation of the experts
who work in these fields cannot be purely determined in terms of feedback from
the objective world, since in many occations this feedback will only reveal itself
at the end of one’s professional life. In many cases one cannot determine whether
a statement is true; one can only determine whether it is well-informed .

3 M odel

We consider a client/ consultant-scenario, that is, a scenario where consultants
advise their clients on a certain issue. We model the knowledge on which the
consultants advise their clients by a chain of arguments:

A1 ←− A2 ←− . . .←− ANarg
(2)

Here, any argument Ai (for 1<i ≤ Narg) defeats its predecessor argument Ai−1.
As a consequence, if Narg is even, then all arguments Ai with even indices are
accepted, and all arguments with odd indices are rejected. For odd Narg, it is
the other way around.
At the beginning of a simulation, only argument A1 is known to the consul-

tants and only this argument is known in the whole society, i.e., it represents
the “state of the art”. To model the discovery/ emergence of new information
(e.g., through research), we make a certain number of new arguments available
to the consultants in each round. This represents the evolution of the state of the
art. The number of new arguments per round will be fixed for a simulation and
is denoted by ∆Narg. The simulation is finished when all Narg arguments have
been made available. D uring simulation, the structure of the chain of arguments
looks as follows (k ≤ i must hold):

“state of the art”
︷ ︸︸ ︷

A1 ← · · · ← Ak
︸ ︷︷ ︸

k n ow n to a c ertain
c on su ltan t

← · · · ← Ai ←

ad d ed to the “state of the art”
in the n ex t rou n d

︷ ︸︸ ︷

Ai+1 ← · · · ← Ai+∆Narg
← · · · ← ANarg

(3 )

In each round, consultants can decide how many new arguments they want to
procure. We assume that the consultants extend their already known chain of
arguments with new arguments always in a seamless manner, i.e., without gaps.
This assumption was made in order to be in line with argument games (such
as described in [6 – 8 ]) where each uttered argument is a reaction to a previously
uttered argument, thus satisfying the property of relev anc e [14 ].
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3 .1 E x p e n s e s , T u r n o v e r a n d P r o fi t

For the sake of simplicity, we model the cost of an argument by some con-
stant carg. This means that to get for instance the knowledge about argument
A10 , a consultant has an overall expense of 10·carg (recall that arguments can only
be procured in a row). We write narg to denote the total number of arguments
acquired by a specific consultant (where narg ≤ Narg). Then, the expenses E of
a consultant can be computed as:

E = narg · carg (4 )

The turnover of a consultant is defined as the sum of the money that the consul-
tant has been paid. O f course, the consultant is paid only for those consultations
where he actually is better informed than the client; we call these “successful
consultations”. L et S be the multiset that contains all amounts that have been
paid to a certain consultant. This consultant’s turnover T is defined as:

T =
∑

p∈S

p (5 )

The profit P of a consultant is defined as the difference between his turnover
and his expenses:

P = T − E (6 )

3 .2 C o n s u lt a n c y S t r a t e g ie s

Consultants generally want to provide as little information as necessary, because
this way they can give more consultations. At the same time, consultants want
to give advice that makes them appear knowledgeable – in order to increase their
reputation. Therefore, in our model, a consultant advises a client always with
the argument that has the lowest index above the client’s knowledge and that is
compliant with the consultant’s latest known argument, i.e., that has the same
parity. In other words, provided that a consultant knows enough arguments, he
provides a client with two arguments, if the latest argument known to the client
is of the same parity as the latest argument known to the consultant, and with
one argument otherwise. These arguments become known to the client.
We consider two strategies for how consultants can increase their knowledge:

W e ll- in fo r m e d s t r a t e g y (W E L L ): A consultant procures arguments as soon
as these become available, so as to be always up-to-date with the aim to
achieve a good reputation.

I ll- in fo r m e d (I L L ): A consultant procures arguments only as to appear knowl-
edgeable to the clients. More precisely, only upon encountering a client who
is as informed as the consultant (before or after the consultation), or even
better informed, the consultant procures a number of new arguments, which
we set to 2. Although this strategy could be made much more sophisticated,
we show that under certain conditions it outperforms the W E L L -strategy
already in this form.
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Consultants that follow the W E L L -strategy are always as competent as possible,
whereas consultants that follow the I L L -strategy become increasingly incompe-
tent with increasing ∆Narg. The I L L -strategy allows consultants to offer their
advice at a lower price, because they have to invest less in new information.
However, this comes at the cost of risking a decrease in reputation, because
clients do not want to be advised by a consultant who is not better informed
than they are.

3 .3 S e le c t io n o f C o n s u lt a n t s

In our model, clients rate consultants according to two criteria: the p ric e de-
manded by the consultants, and their rep utation.

P r ic e : Clients prefer relatively cheap consultants. The price is agreed upon by
client and consultant before an interaction takes place.

R e p u t a t io n : A client wants to get advice from consultants with a good reputa-
tion. In this context, reputation refl ects the characteristics of the consultant
that cannot be agreed upon beforehand, because they can generally not be
checked after an interaction. For instance, in our scenario, clients are gener-
ally unable to check provided information for correctness.

We denote a consultant i’s current reputation by ri and represent his price for
the upcoming round in form of “cheapness”, denoted by ci. The details on how
the reputation and cheapness are computed in our model are given later. For
now, it suffices to know that both values are in the interval (0, 1]. A high cheap-
ness and a high reputation make a consultant attractive. A parameter α ∈ [0, 1]
defines which of the two criteria the clients think is more important. The “at-
tractiveness” ai of consultant i is defined as (and is recomputed each round):

ai = α · ci + (1− α) · ri (7 )

A high α favors cheaper consultants, while a low α favors more reputable consul-
tants. In each round, each client selects a new consultant. Attractiveness values
are first centered around a mean of 0.5 (to weaken the impact of extreme out-
liers), and then normaliz ed to [0, 1], giving a′i. Finally, a client selects consultant
i with the following probability:1

Pi =
a′i
∑

j a
′
j

(8 )

If a client meets a consultant who is not better informed than he is, the client
repeats the selection procedure.

1 In the implementation, we reserve for each consultant i a disjoint interval with length
Pi, and generate for each client a uniform random number that selects his consultant:
by the interval it falls on (note that a consultant can be selected by several clients) .
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P r ic e C o m p u t a t io n L et δ be the p rofi t margin of a consultant, with δ ∈ [0,∞),
where δ = 0.5 represents for instance a profit margin of 50% . U sing a certain
profit margin δ, a consultant i computes his current price pi as follows:

pi = (1 + δ)
E

|S|
(9 )

Here, E|S| is a heuristic to provide cost recovery, where E models the expenses (see

eq. (4 )), and |S| is the number of successful consultations so far (see eq. (5 )). Still,
no client would choose a consultant that is more expensive than the acquisition
of the information itself. Hence, we limit the price to the cost of one argument
(see also Sect. 3 .2). We map each price to the interval (0, 1] and transform it
into cheapness ci as follows:

ci =
m in j(pj)

pi
(10 )

In this way, the cheapest consultant has maximal cheapness 1, and the ratios
between the prices are preserved, as can easily be shown:

∀i,j:
ci

cj
=

m in k(pk)

pi
·
pj

m in k(pk)
=
pj

pi
(11)

R e p u t a t io n C o m p u t a t io n In our model, clients use a rep utation s y s tem [15 ]
to share their experiences with consultants. This allows clients to better estimate
the trustworthiness of the consultants and thus to better select their future
consultants. We assume “perfect” conditions for the reputation system, because
this will make it harder for the consultants with the I L L -strategy to hold their
ground. These perfect conditions consist of:

– h ones t rep orting of the clients, i.e., clients do not bias their experience,
– all clients have the same idea of how to fuse the experiences with consultants,
and so a global rep utation s c ore can be computed, and

– total information s h aring, i.e., every client shares all his experiences with
every other client.

To minimiz e the impact of specifics of the reputation system on our results, we
try to keep it as simple as possible. We propose a system that measures the
reputation of a consultant based on the number of bad and good experiences
with that consultant. B ecause clients cannot verify the arguments, they have a
bad experience with a consultant only if the consultant is not better informed
than they are. Such an interaction is evidence for a consultant following the I L L -
strategy; in rare cases, this interaction can also be misleading evidence, namely
in the case where the consultant is actually following the W E L L -strategy and
the client’s knowledge is state of the art. How often the evidence is misleading
depends on how fast new information becomes available (∆Narg); for∆Narg ≥ 3
for instance, the consultants that follow the W E L L -strategy are always ahead

MABS 2010 - p.  82 / 157



of the clients, and so a bad experience implies an encounter with a consultant
following the I L L -strategy. The clients share their experience and maintain for
each consultant i a global counter G of good experiences, and a global counter
B of bad experiences. Then a reputation score is computed as follows (we follow
the trust value computation from [16 ]):

r′i =
G + 1

G + B + 2
(12)

It follows that at the point where no experience with a consultant has been
made yet (G = B = 0), his reputation is 0.5. To make reputation comparable to
cheapness, we map it to (0, 1] as follows:

ri =
r′i

m a x j(r′j)
(13 )

As for cheapness, the most reputable consultant has reputation 1, and ratios
between reputation scores are preserved (proof analogously to eq. (11)).

4 S imulations

We have implemented a simulator for our model. The aim of this simulator
is to reveal the impact of the different model parameters on the profit of the
two consultancy strategies. In other words, we want to identify the parameter
settings for which the I L L -strategy is more profitable than the W E L L -strategy.

4 .1 E x p e r im e n t s

Each experiment was repeated 210 times. Mean profits and corresponding stan-
dard deviations were computed, separately for the two consultancy strategies.
To account for the fact that consultancy makes only sense when a consultant
can advise several clients, we chose a much higher number of clients (210 ) than
consultants (27). The sets of clients and consultants are fixed. At the outset, all
consultants procure 2 initial arguments.2 We varied the following parameters:

– the number of arguments becoming available each round (∆Narg ∈ {2, 4, 6, 8}),

– the fraction of consultants that use the I L L -strategy (fILL ∈ {0.1, 0.5, 0.9}),
where the remaining consultants use the W E L L -strategy,

– the profit margin (δ ∈ {0.1, 0.5}), and

– the factor α that regulates the importance of the consultants’ price and
reputation for the clients (α ∈ [0, 1]).

2 We also run the experiments with all consultants procuring 4 initial arguments. As a
result, the profit of the I L L -consultants increased in all cases. B ecause of the limited
space, these results are not shown here.
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F ig . 1 . Impact of fraction of I L L -consultants (∆Na r g = 2 and δ = 0 .1) .

4 .2 R e s u lt s

In the following, we analyz e the results of selected experiments.3 In all figures,
the x-axis gives α, which defines how clients chose their consultants, i.e., for
α = 0, clients select consultants solely based on their reputation, and attach
more importance to the price for increasing α; for α = 1, clients only look at
the price of the consultants (see also Sect. 3 .3 ). The y-axis gives the profit of the
consultants for both consultancy strategies.

I m p a c t o f F r a c t io n o f I L L - C o n s u lt a n t s At the outset, we look at the im-
pact of fILL on the consultants’ profit. To this end, we first fix the parameters
∆Narg = 2 and δ = 0.1. The results that are shown in Fig. 1 reveal that for
small α, the profit of the two types of consultants converge for increasing fILL,
whereas for large α (with a center roughly around 0.8) they develop in different
directions. The profit of I L L -consultants is in certain areas very low — and even

3 Another set of results was presented in [17 ]. However, the current model is more
reasonable in fundamental points like price and reputation computation, and thus
the results of the old model are not considered here.
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F ig . 2 . Impact of fraction of I L L -consultants (∆Na r g = 4 and δ = 0 .1) .

negative. B y looking at the data, we found that the reason for this is their bad
reputation (due to a high rate of unsuccessful consultations, for which they are
not paid), and their price which is not considerably better in this scenario. For
increasing fILL, these “negative areas” seem to shift to the right: we found in
the data that the average attractiveness of I L L -consultants is increasing for low
α, while for the W E L L -consultants it is increasing for higher α (up to a certain
point of α). This an effect of a complex interplay of price, reputation and selec-
tion, and we currently have no exact explanation for this. For very high α, one
can see a drop in the profit of W E L L -consultants, because the price is becoming
decisive for selection here.

As can be seen from Fig. 2, where ∆Narg is higher, an increase in fILL

causes the drop of the profit of W E L L -consultants for high α to become more
intense. The reason is that now it becomes harder for W E L L -consultants to offer
competitive prices, and so, since they get more competitors for increasing fILL,
it becomes harder for them to make profit, especially when clients care much
about the price. For the same reason the profit of I L L -consultants is (slightly)
decreasing for high α and increasing fILL: a higher number of I L L -consultants
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F ig . 3 . Impact of ∆Na r g (δ = 0 .1, fILL = 0 .1) .

has to share the profit. Still, their profit increases relatively to the profit of the
W E L L -consultants.

N ote that in Figure 1(c) for α = 0.95, both strategies make negative profit.
This is due to the limitation of the price to the price of one argument (see
Sect. 3 .3 ), which is in this case not sufficient to provide cost recovery.

I m p a c t o f ∆Narg We now look at the impact of a higher speed of arguments
becoming available (∆Narg). Figure 3 shows results for varying∆Narg and fixed
δ and fILL. It can be observed that the profit of the I L L -strategy increases in
comparison to the W E L L -strategy for increasing ∆Narg. The reason for this is
that for a higher∆Narg, the W E L L -consultants have to invest more in the argu-
ments to keep up with the state of the art, and thus are more expensive. B eing
selected less often, they have to ask for higher prices to compensate their loss
(they are continually procuring arguments). For ∆Narg = 8, that even goes so
far as to make it in general unprofitable to follow the W E L L -strategy, indepen-
dent of the clients’ preferences α. At the same time, the I L L -consultants have
more successful consultations, and thus are paid more. This is because for in-
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F ig . 5 . Impact of profit margin (∆Na r g = 4, fILL = 0 .5) .

creasing ∆Narg, I L L -consultants are chosen more regularly by the clients, and
so are better informed about the informedness of the clients.

I m p a c t o f P r o fi t M a r g in U p to now, we have looked at a profit margin of
δ = 0.1. Figures 4 , 5 and 6 show what happens when δ is increased; the left
figures show δ = 0.1, the right figures show δ = 0.5. In general, it can be seen
that a higher profit margin increases the maximal profit (e.g., look at the scale of
the y-axis). Apart from that, in Figures 4 and 5 , the profit of the W E L L -strategy
is increased for low α, but not affected much for high α. The point where the
increase ceases to take place, seems to be where the two profit curves intersect.
This holds also for Fig. 6 where the two profit curves move away from each other
(there is no intersection). It is also confirmed by the other results not shown in
this paper. This leads us to the conjecture that the profit margin amplifies the
difference between the profit of the two types of consultants.
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5 C onclus ions & Pers pectiv es

In this paper, we have compared the profit that consultants yield when following
two different strategies: staying as competent as possible, and staying preferably
incompetent. In our model, we found that there are scenarios where it is more
profitable to stay incompetent. In particular, this is increasingly the case when:

– the speed with which the state of the art changes (∆Narg) is high,
– clients prefer cheap to reputable consultants (there are exceptions when both
∆Narg is small and fILL is high), or

– the fraction of incompetent consultants is high (and∆Narg is not too low).

The impact of the profit margin seems to be more complex. However, it appears
to act as an amplifier in that it increases the difference between the profit of the
two consultancy strategies.
There are many ways of how to extend the model, and to make it more real-

istic. First of all, the price computation could be extended with ideas from the
field of economics: instead of caring just about cost recovery, consultants could
proactively reduce their price in order to attract more clients; this would involve
models for market analysis. Also, the possibility of bankruptcy could be consid-
ered. Furthermore, in our model, clients select their consultants autonomously,
but all have the same preference regarding price and reputation. This can be
extended by defining a probability density function (P D F) over the clients’ pref-
erences, and choosing the preference of a client from this distribution. D omain
specific knowledge should be used to define a meaningful P D F. Analogously, the
number of arguments getting available each round to the consultant (∆Narg)
could be described by a P D F. Also, this work did not address the issue of dy-
namics, e.g., clients that adapt their preferences over time. Apart from that, the
reputation system could be extended by letting clients look retrospectively at
what their consultants advised them on: is this old er ad v ic e confl icting with what
a client c urrently b eliev es ? D epending on how much the client believes the real

MABS 2010 - p.  88 / 157



world has changed in between, he can retroactively reduce the reputation of the
respective consultants – which would not be justified if his current believes are
incorrect. Finally, more complex argumentation structures could be explored.
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Abstract. This paper investigates new mechanisms for group self-organization 

in agent societies. The example context of interaction between agents used in 

this work is the sharing of digital goods in electronic societies. We illustrate 

how cooperative sharers and uncooperative free riders can be placed in different 

groups of an electronic society in a decentralized manner. We have simulated a 

decentralized, open P2P system which self-organizes itself to avoid cooperative 

sharers being exploited by uncooperative free riders. Inspired by human society, 

we use social mechanisms such as tags, gossip and ostracism. This system 

encourages sharers to move to better groups and restricts free riders without 

necessitating any centralized control, which makes the system appropriate for 

current open P2P systems. 

Keywords: Multi-agent Based Simulation, Cooperation, Sharing behavior and 

Artificial Societies.  

1   Introduction 

One of the common problems in a P2P network is the problem of free riders. Free 

riders are those agents or nodes that do not contribute to the network but make use of 

the resources of the network [2]. These free riders decrease the overall performance of 

the society by damaging the common good [14] without contributing to the 

community. In a way, they can be considered as parasites.  

Most systems have a centralized mechanism to control free riders, where the 

system eliminates bad behaviour by employing a monitoring or governor agent [13, 

2]. But these centralized mechanisms are computationally expensive for a system and 

can represent a bottleneck. Centralized control systems need a monitor to employ 

punishment or to provide an incentive mechanism, which is not suitable for 

decentralized systems, due to the explosion of state spaces. In an open system it is 

inappropriate to rely on a centralized monitoring authority that monitors all possible 

state spaces that an agent can be in. Modern P2P systems are entirely decentralized 

and open; hence to deal with this dynamic nature of digital societies, there is a need 

for a decentralized solution for dealing with the free riding problem. 
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 In this work we propose a decentralized solution that makes use of social 

mechanisms such as tagging, gossip and ostracism. The inspiration to use social 

mechanisms for our work comes from the human societies. Human societies have an 

innate ability to operate in groups. For human beings group mechanisms provide 

social machinery that supports cooperation and collaboration. In this work, inspired 

by human society, we propose a new mechanism for agents to self organize 

themselves into different groups based on their behavior in a decentralized manner. 

2   Background and Related W ork 

Previous research has shown that tags can improve cooperation among participants 

and can induce “altruistic” behavior [4-7]. For example, some researchers have shown 

that tag-based mechanisms have been successful in the evolution of cooperation using 

the Iterated Prisoner’s Dilemma/ Prisoner’s Dilemma (IPD/PD) games [6-8].  

By playing the donation game, agents employing tagging achieved altruism in the 

model described by Riolo, Cohen and Axelrod [4].  In their model, tag and tolerance 

values are used to form groups, and an agent donates to another when the difference 

between their tag values is within the agent’s tolerance level.  Also an agent could be 

a member of more than one group. In that case, that agent may donate to or receive 

from the group members of all those groups. This mechanism has been shown to 

achieve altruism among peers by making use of tags.  

The knowledge sharing game is about sharing knowledge (information/skill) 

within a society that is composed of sharers and non-sharers. In the context of the 

knowledge sharing game [9, 15, 16], it is shown that tagging can help to increase 

sharing behaviour. The work presented in [16] describes the effect of tag-based 

mechanisms for sustaining knowledge through sharing behavior, and it describes the 

conditions under which sharing behavior spreads through the society, and, as a 

consequence, knowledge is shared and sustained in the society.  

In the work of Purvis, Savarimuthu, Oliveira and Purvis [13], the self-organization 

of peers in different groups based on their performance (cooperativeness) was 

achieved in playing the PD game, by making use of tags and monitoring agents, 

where the population had a mix of cooperators and non-cooperators. By employing a 

monitoring agent for each group, the system evolved into groups partitioned 

according to the performances of their group members.  Each monitoring agent 

employed a voting mechanism within the group to decide the most and least 

cooperative members of the group. Then the most cooperative member was allowed 

to move to a new group, and the least cooperative member was expelled from the 

group. Those peers who left or were expelled from their groups obtained only if the 

local monitor agent of the other group accepted them. Since the local monitor agents 

picked players for their group based on performance, the high performing player had 

a good chance to get entry into the best group, and the reverse conditions applied for 

the worst performing player. As a result, the players entered into groups based on 

their performances. But this approach was still semi-centralized, because it required a 

local monitoring agent for each group. Also it was a closed system model, so it did 

not fully support open, distributed P2P systems. 
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Also in Hales’s work [11], the PD game was played in a P2P network among 

nodes. This work extends his previous work on tags, to networks, where a ‘neighbor 

list of nodes’ is considered as a tag and ‘movement of node in a network’ is modeled 

as a mutation. His results showed that tags work well for P2P systems in achieving 

cooperation, scalability and robustness. 

In our work, instead of PD game [11], we took a realistic approach of sharing 

digital goods in electronic societies. We investigate how we can achieve the 

separation or self-organization of groups based on their behavior  in a decentralized 

manner and in an open society. Such a system would help to protect cooperators from 

being exploited by the non-cooperators. It would also restrict the non-cooperators 

from taking advantage of cooperators and restrict their access to better groups where 

the quality of service/performance is higher. By doing so, the performance of the 

whole system can be improved, because resources can be distributed in greater 

proportion to the better performing groups. Otherwise it will be difficult to shield the 

cooperators from the defectors who hardly or never share their resources. For easy 

understanding, we differentiate our system from the system of Purvis, Savarimuthu, 

Oliveira and Purvis [13], see Table 3. 

3   Experimental Model 

Our experimental model depicts a social dilemma between sharing and non-sharing. 

Sharing costs the donor who shares. But the receiver receives the benefit (b) without 

incurring any cost (c). We set the ratio of cost/benefit to be (1/2). Non-sharing is the 

selfish option which benefits the individual but is not good for the society. Sharing 

benefits the society by improving the performance of the whole system, which leads 

to the overall betterment of the society. Everyone will be better off if everyone shares. 

As the donating agent spends some time and effort (e.g. bandwidth) in the process of 

donating, it incurs some cost in our model. That sharing agent could have decided to 

be selfish and thereby conserve that cost.  Thus free riding becomes a threat to the 

society, causing damage to the common good. This is the issue of the “Tragedy of the 

Commons” [14]. Some of the model properties and mechanisms used in our 

experiments are described below: 

3.1   Tag Groups 

The tags we use are simply markings that are “visible” to other agents and are 

employed for grouping purposes. Some natural biological tagging examples are birds 

flocking together, animals forming herds, and ants forming a colony. They interact 

within their tagged group – they act together, and those small interactions among 

them can lead to the emergence of collective behavior. Thus the tagging mechanism 

that we use is inspired by nature, and it has been widely used to model the behaviour 

of artificial agent societies. 

A simple way to think of these tags is to assume that they represent group 

identifiers for sets of agents: agents having the same tags belong to the same group, 

and agents of the same group have some preference to interact with others within their 
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group. We use this biologically inspired tagging model in our multi-agent based 

simulation of an artificial society. Tagging is thus a straightforward and light-weight 

approach that can  facilitate cooperation [6]. 

3.2   Gossip Mechanism 

Gossip has long been an effective mechanism for passing information in human 

society. Gossip is the public opinion which leads to the social benefit [3, 12]. In our 

work, agents use gossiping to know about other agents [17]. This maintains partial 

(i.e. not complete) information about agents in the society in a distributed fashion 

within the system. This gossip mechanism can be considered as ‘distributed referral’, 

and it is described more fully in the experimental setup. 

3.3   Social Ostracism  

Agents will refuse to interact (share resources) with another agent if that other agent 

is identified as the “worst”, i.e. the least cooperative agent in the group. If the others 

are not interacting with the worst agent, the worst agent will choose to leave the group 

on its own, since it no longer has opportunities to increase its wealth. This is a kind of 

‘ostracism’ [10, 18].  

3.4   Agent Attributes 

In experiments described in this paper the agents have fixed, randomly assigned 

attribute values which represent how they behave on average. One agent attribute 

concerns cooperation: agents have a randomly assigned cooperation value between 0 

and 10 that represents how much they cooperate (share), with 0 representing 

maximally uncooperative and 10 representing maximally cooperative. This value is 

known as the cooperativeness of the agent. Agents also have a tolerance value 

between 1 and 10, which characterizes how much non-cooperation the agent can 

tolerate before it decides to leave the group. A value of 1 identifies the least tolerant, 

and 10 identifies the most tolerant. 

In the following section, we outline our experiment that takes advantage of these 

concepts. 

4   Experimental Setup 

In our model agents are engaged in the sharing of digital goods in a P2P environment 

of a simulated artificial agent society. In the initial setup 100 agents are put into 

random groups out of 5. The group they belong to is called a “tag group”. For easy 

understanding, imagine that each group is represented with a tag (a badge). Agents 

within a group have the same tag. They interact within their group, and they can also 

hop to other groups under certain conditions. In such cases they join the other, 
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jumped-to group, and the tag changes. Here the tag is used as a group identification 

technique. Each agent has a gossip blackboard to store the gossip messages from 

other agents of its group. Each agent also has a memory of any previous groups to 

which it has belonged. Each agent is initialized with a random cooperative value and a 

tolerance value. The experiment was run for 5000 iterations. The procedure of the 

experiment is explained in detail below. 

4.1   Gossiping 

In every iteration, a certain random percentage of the players (agents) may ask for 

files from other players of their group. A player can gossip about the outcome of an 

interaction with another agent in its group (report whether the other agent was 

cooperative or not). In this gossip mechanism we assume that there is no lying.  Since 

this happens within the group, the agent has no motivation to lie. In this fashion, 

every transaction is reported (gossiped about) to one of the other agents in the group. 

Thus the overall system has some partial information about the cooperativeness of 

each agent, maintained in a distributed way. The first 500 iterations (out of 5000) are 

played in this manner to build up a distributed gossip repository among the players. 

For further illustration, the operation of how peers publish gossip is outlined 

schematically in Algorithm 1. Consider 3 random players A, B and C. Assume they 

are in the same group. A is the taking-player, B is the giving-player, and C is the 

gossip holder. 

Each peer has a limited amount of memory space for storing new gossip 

information. After reaching the storage limit, the memory register rolls over, based on 

a First-In-First-Out (FIFO) algorithm.  

After 500 iterations, the agents begin using the received gossip information to 

decide whether or not to play with a taking-player. When a player requests for a file, 

the giving player can check with other random 5agents (asking them what they know 

from the gossip information they have received) whether this asking agent is the worst 

cooperator of their group. Worst player is the one who has not cooperated most of the 

times in its group (according to the available gossip information).  If the taking-player 

is the worst player, the giving player refuses to interact with the taking-player. 

Otherwise this giving player interacts (sharing a file or not based on its own 

cooperativeness). The operation of how peers use gossip is outlined in Algorithm 2. 

Consider D and B, with 5 other random players in a group. Assume here that B is the 

taking-player, D is the giving-player, and D checks with any 5 players in the group in 

order to see whether B is the worst player in their group. 

At times only a few agents (less than 5) have gossip about a taking-player, then the 

available information is taken into consideration. Even it could be the case that none 

of the players has gossip about the taking-player. In such a case the taking-player is 

considered not as a worst player, a privilege similar to what happens when a new 

player joins a group.  
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Algorithm 1. To publish gossip      Algorithm 2. To use gossip within group 

    

4.2   Leaving a group 

A player can leave a group if its tolerance level is surpassed or when its wealth has 

not increased recently. We call this agent a “hopping peer”. If its tolerance limit is 

reached, that means this agent is in a group where others do not cooperate as much as 

this agent's expectation. Thus after a number of such non-sharing events from the 

group members (breaching the agent’s tolerance limit) the agent will decide to leave 

that group and move to another group.  

In addition, making use of gossip information, the agents will stop playing with the 

worst player in their group. Every time they play, the giving-players check with other 

agents about the taking-players whether they are the worst. If an agent is regularly 

rejected from play, then, of course, that agent’s score will not increase. If, over a 

given period of play opportunities (here, 15 iterations), an agent’s  wealth has not 

increased, then it will choose to leave that group and move to another group. Since the 

other players in its current group are not playing with it, it will be better off moving to 

another group, irrespective of that group's cooperativeness/performance. Thus the 

worst player leaves the group on its own accord, without any control applied on him. 

4.3   Joining a group 

The hopping peer collects information about other groups from its group members. 

Then it decides which group to request admission. Every agent has a memory record 

of its most recent groups (in our experiments the memory limit = 4). For example, 

assume agent E has been in 3 other groups before as shown below in table 1. 

The first row of the table 1 explains that, E has left group 1 at the 560
th

 iteration, 

and the cooperation value of that group was 4.5 at that time. E left group 3 at the 700
th

iteration and group 2 at 1200
th

 iteration. Since the composition of groups invariable 

change over time, the cooperativeness of any group will change as time progresses. 

So it is likely that the most recent information will be the most accurate and useful for 

an agent.   Since all agents have a memory of their previous groups, the hopping peer 

can collect this information from all its group members and calculates the latest 

information about other groups. In particular, the agents get to see which agent has 

moved into this group recently from other groups. Considering that as the recent 

information available, the agent decides where to move based on this information.  
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Assume the current iteration is 1400.  The latest information collected from the group 

members is given in table 2. 

Table 1. Previous group history   Table 2. Latest available information  

Assume here that agent L intends leaving group 4, and Group 4’s cooperativeness 

is 6.6 at that moment. From the latest information agent L knows about other groups 

and their cooperation value.  For agent L, groups 5 and 3 are better, since the 

cooperation value in those groups appear to be higher than L’s current group. Groups 

2 and 1 are lower-ranked groups. So agent L chooses to move to the groups in the 

order of their ranking.  

If L is intolerant of its current group (which means it is not happy about the 

cooperativeness of its current group), it will try to enter into the best group that it can 

find. This is the case of an agent being “too good” for its current group and wanting to 

move to a more cooperative group.  But if the better groups on its list don’t allow 

entry into their groups, then the intolerant agent L may determine that there is no 

group available that is better than its current group, and it will remain in its current 

group. In this case its tolerance level is reset to 0. 

On the other hand, an agent may not be good enough for its current group – it is 

being shunned by the other members for being the worst member of its group.  

Because of play rejections, its wealth will not advance, and it will want to leave and 

find some other group in which it can find players. If the better groups do not allow 

entry, it will go to lower and lower groups, since  it is better off moving to any new 

group rather than staying in the current group where it is known as the worst player.  

How a player gets entry to another group is explained in the following section. 

4.4   Calculating the entry value

The hopping peer asks any randomly chosen agent in the group, to which it seeks 

entry for permission to enter. We call this permission-granting agent in the group to 

which entry is sought the “checking peer”. The checking peer will accept agents 

whose cooperativeness value is greater than or equal to a value calculated by a 

formula (given below). This hopping peer will gain permission to enter the group 

whenever its cooperativeness matches the group's entry value calculated by the 

following formula: 

EV = AC - (C1 / (SL - S) 
C2  

) + C3
(S-SU)

The group Entry Value (EV) is calculated considering the given group's Average 

Cooperativeness (AC) and its group Size (S).  AC is the average cooperativeness of 

the group calculated through the gossip mechanism, and S is the size of the group. C1, 

C2, C3 are constants whose values in our experiments are 25, 2, 10, respectively. 

These constants were adjusted to make the EV expression appropriate for two 

Group No Iteration No Cooperativeness 

5 1330 8.1 

3 1170 7.5 

2 1200 6.4 

1 1199 3.8 

Group 

No 

Iteration 

No 
Cooperativeness 

1 560 4.5 

3 700 6.0 

2 1200 6.4 
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“boundary values”, the Upper Size of a group (SU) and the Lower Size of a group 

(SL).  It is inappropriate or inefficient for groups of players or traders to become too 

big or too small.  In our experiments, SU was set to be 25, and SL was set to be 10.   

That means if the size of the group is 10 or below the entry value is set at a low value, 

making entry into the group very easy. If the size is 25 or above the entry value is set 

higher, so that would make it difficult any but the most cooperative agents to join. 

Any values of the EV expression that fall below 0 are set to 0, and entry values above 

10 are set to 10.  Thus a group’s entry value is always between 0 and 10. These values 

used in this formula can be easily changed. 

A simple example explaining the use of this formula is given below. Consider that 

a group’s calculated cooperativeness (AC) is 6. When the group Size (S) is 14 the 

group Entry Value (EV) is 4.43. When the group Size (S) is 25 the Group Entry Value 

(EV) is 6.88.  This can be identified in Figure 1 by examining the line Avg6 for size 

14 and for size 25. The motivation is to relax entry requirements when the group size 

diminishes, and to stiffen entry requirements when the group size gets too large. 

Figure 1 shows entry values for a range in group size for different groups whose 

average cooperativeness lie between 1 and 10.  

Figure 1. Entry value calculated by the formula 

The checking peer needs to get an estimate of the cooperativeness of the hopping 

peer (the agent seeking entry).  So the checking peer asks 5 randomly chosen players 

from the hopping peer’s group about the hopping peer’s cooperation.  It is thus 

inquiring into gossip information from the hopping peer’s group.  Consider a case 

where E and F are in different groups. E is the checking peer and F is the hopping 

peer that wants to enter E’s group. F asks E for entry, and E asks 5 other randomly 

chosen players in F’s group for gossip information about F’s cooperativeness. If F’s 

estimated cooperativeness calculated through this gossip information is greater than 

or equal to the entry value (EV) of its group, the checking peer allows entry for the 

hopping player; otherwise it denies. In that case the hopping peer will try to enter into 

other groups. This process is outlined in Algorithm 3. The hopping peer will 

ultimately get into a group where its cooperativeness is eligible to enter. If no such 

group is available, the hopping peer stays in its current group. 

The entire process is repeated for many iterations, and gradually, some groups will 

emerge as elite groups with many cooperators, and other groups will have less 

cooperative players.  As a consequence, these mechanisms achieve a separation of 

groups based on performance. The overall process is outlined in Algorithm 4. A demo 

video can be seen in this link [1]. 
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Table 3. Differences between the two 

systems.      

Algorithm 3. To use gossip between 

groups 

Algorithm 4. Pseudocode for the overall 

process  

4.5   Results and comparison

To consider the overall performance of our mechanisms, we first explain the results 

from the earlier system [13] for comparative purposes. In their result, all the 5 groups 

started with a similar number of cooperators in each group. Later it is separated into 2 

groups having most of the cooperators, 2 groups having most of the non-cooperators 

and the middle group had mixed population of both. But their work employed 

localized group monitors, and was therefore less scalable and distributed. 

We present our results, using the decentralized approach, in figure 2. Initially all 

the five groups were randomly seeded and started with roughly similar average 

cooperativeness values among their members. They ended up showing a separation 

among the groups with respect to their cooperativeness values. Group4, with mostly 

the best cooperators, groups 2 and 3, with mostly non-cooperators, groups 1 and 5, 

with moderate ones. This result is achieved using social mechanisms without central 

control. 

Existing system Proposed system 

Semi-centralised Decentralised 

Used monitoring 

agents 

No monitoring, 

distributed 

Used voting 

mechanism 

Used gossip 

mechanism 

Closed system Open system 
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Figure 2. Self-organization of groups based on cooperativeness in closed 

society.

���������
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Figure 3. Self-organization of groups based on cooperativeness in open society. 
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4.6   Adding openness

Our main focus is to come up with a self-organizing open and dynamic system, where 

new agents may come into the society and also agents may leave the society at any 

time. New unknown peers are allowed to join the society by gaining entry into the 

lowest ranked group. They can build their way up to higher groups, based on how 

well they perform, in the eyes of their peers. A dynamic system will allow the 

formation of new groups and dismantling of existing groups according to the 

population size. Our aim was to achieve that in a decentralized manner without any 

explicit control at the top level. Forming groups using tags is helpful, since it is 

scalable and robust. For higher numbers of peers, more tag groups can be formed, and 

that process would scale well for any number of peers. In this section we describe 

how we added openness to the society, and the results of our performance 

measurements. Now, in the new arrangement, agents are set to have lifespans, which 

determines how long the agents remain in the society and when they leave (i.e. die). 

At any time a new agent could join the society and an existing agent could leave when 

its lifespan is over. 

4.7   Results and discussion

The self-organization of groups in open society is shown in figure 3. The results from 

a sample run for 5000 iterations are presented in figure 3. Out of 5 initial groups, 

group 4 dismantled. Group 3 which is a most cooperative group split into two most 

cooperative groups, group 6 and 7. Group 5 also split into two groups 8 and 9, of 

which group 9 is the lowest group. Note that the new groups formed by splitting have 

some difference in their cooperativeness since the most cooperative ones form one 

group and the rest form the other group. This is an ongoing process because more 

groups will be formed and dismantled based on the arrival and leaving rates of the 

agents.  

To test the scalability, we ran the experiment for 10000 iterations, by having the 

initial population as 100 in 5 groups and also having hundreds of agents come in 

randomly. Agents also leave the society when their life span is over. This experiment 

has scaled well by forming 23 groups over 10000 iterations, in which 11 of them have 

dismantled or split and the others are operational groups by the end of the iterations. It 

shows the system can scale well for any number of agents just by forming or 

dismantling groups dynamically. In open societies like these, agents cannot have 

global view of all the groups. They have limited view which means they know about 

the groups where the agents and its group members have been before. 

It can also be observed from the results that the system mechanisms lead to the 

filtering out of the worst peers, and they restrict those uncooperative peers from 

gaining access to the good, more cooperative, groups. This also helps to improve the 

performance of the whole system by protecting cooperators from not being exploited 

by free riders. The best players (most cooperative) get to access or/enter into any 

group.  Thus the system has distributed operative mechanisms that lead to the 

following social principle for the individual agents: “the better you are the better your 

chances are”.  
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Using the gossip mechanism, agents share their interaction experience with some 

other agents. Unlike most reputation mechanisms, where agents keep track of all the 

reputation information of other agents, our system distributes a subset of this 

information among the individuals in the group. This mechanism operates and 

converges to satisfactory results in the context of a partial-view of truth about the 

world states, which is a realistic feature of open agent societies. If any peer leaves a 

group, not a lot of information is lost, but a very small proportion, which the system 

can handle. Peers might leave the society (because of bad behavior) and try to re-enter 

again. But our system filters out peers in separate groups, based on their behavior. It 

does not matter how many times an uncooperative agent would enter, it will 

inevitably end up in the worst group. 

5   Conclusion and Future W ork 

The system presented in this paper is more sophisticated for sharing digital goods in 

electronic societies, which makes it more suitable for any kind of open P2P system 

where the aim is to improve societal performance by avoiding free riding. It has 

produced self-organization or the so called self-balancing of P2P systems in a 

distributed and dynamic manner.   

Our system takes advantage of social mechanisms such as tagging to form groups, 

gossip to pass information and ostracism to shun bad behavior. As a result, it shows 

the self-organization of groups based on behavior (cooperativeness). In our future 

work, we intend to examine more sophisticated situations in which peers dynamically 

alter their cooperation strategies. That would mean that a peer could start with a 

certain cooperative value, but later based on the circumstances, it can decide to 

change it accordingly. (It could try to enhance its performance by becoming a “bad 

guy” temporarily and then returning to being a “good guy”). 

In an open society, knowing the reputation of a person is important before 

interacting. One good example is online shopping websites where people rank others 

whom they have interacted with. By seeing the ratings that others have given for a 

particular person, that person’s reputation is judged for his future interactions. This 

approach works well in human society, especially when the interaction is with a 

previously unknown person. What we have modeled in this system is a similar 

approach by sharing gossip information about a person. In the future work we will 

consider misbehavior of agents, by adding lying in the gossip mechanism. 

References 

1. A video demo link in youtube, URL: http://www.youtube.com/watch?v=a_3MOfeUy2Y 

2. Saroiu S., Gummadi P., and Gribbe S., A measurement study of peer-to-peer file-sharing 

systems, Technical report UW-CSE-01-06002, University of Washington (2002) 

3. Stirling B. Rebecca., Some Psychological Mechanisms Operative in Gossip, Social Forces, 

Vol. 34, No. 3 (Mar., 1956), pp. 262-267, Published by: University of North Carolina Press, 

Stable URL: http://www.jstor.org/stable/2574050 

MABS 2010 - p.  102 / 157



4. Riolo, R.L., M.D. Cohen, and R. Axelrod.: Cooperation without Reciprocity. Nature 414, 

2001: pp. 441--443 (2001) 

5. Hales, D.: Evolving Specialisation, Altruism and Group-Level Optimisation Using Tags.  

Multi-Agent-Based Simulation II: Third International Workshop, MABS 2002, Bologna, 

Italy, July 15-16, 2002, Vol. 2581, Lecture notes in computer science, pp. 26--35, Springer 

Berlin / Heidelberg (2003) 

6. Hales, D. Tag Based Co-operation in Artificial Societies. Ph.D. Thesis, Department of 

Computer Science, University of Essex, UK. (2001) 

7. Hales, D. and Edmonds, B. 2003. Evolving social rationality for MAS using "tags". In 

Proceedings of the Second international Joint Conference on Autonomous Agents and 

Multiagent Systems (Melbourne, Australia, July 14 - 18, 2003). AAMAS '03. ACM, New 

York, NY, 497-503. DOI= http://doi.acm.org/10.1145/860575.860655  

8. Riolo, R.L.: The Effects of Tag-Mediated Selection of Partners in Evolving Populations 

Playing the Iterated Prisoner's Dilemma. 1997, Santa Fe Institute. 

9. Savarimuthu, S., Purvis, M., and Purvis, M. 2009. Tag-based model for knowledge sharing 

in agent society. In Proceedings of the 8th international Conference on Autonomous Agents 

and Multiagent Systems - Volume 2 (Budapest, Hungary, May 10 - 15, 2009). International 

Conference on Autonomous Agents. International Foundation for Autonomous Agents and 

Multiagent Systems, Richland, SC, 1299-1300. 

10. Thomsen R., (1972). The Origins of Ostracism, A Synthesis, (Gyldendal: Copenhagen, 

1972).  

11. Hales, D. (2004b). Self-Organising, Open and Cooperative P2P Societies - From Tags to 

Networks. In S. Brueckner, G. D. M. Serugendo, A. Karageorgos, and R. Nagpal (Eds.), 

Engineering Self-Organising Systems, Volume 3464 of Lecture Notes in Computer 

Science, 123-137. Springer. 

12. Eugster, P., Felber, P., and Le Fessant, F. 2007. The "art" of programming gossip-based 

systems. SIGOPS Oper. Syst. Rev. 41, 5 (Oct. 2007), 37-42. 

13. Purvis, M. K., Savarimuthu, S. De Oliveira, M., and Purvis,  M. A., Mechanisms for 

Cooperative Behaviour in Agent Institution”, Proceedings of IEEE/WIC/ACM 

International Conference on Intelligent Agent Technology (IAT 2006), T. Nishida, M. 

Klusch, K. Sycara, M. Yokoo, J. Liu, B. Wah, W. Cheung, and Y-M Cheung (eds.), ISBN 

0-7695-2748-5, IEEE Press, Los Alamitos, CA (2006) 121-124. 

14. Hardin, G. (1968). The Tragedy of the Commons. Science, 162, 1243-1248. 

15. Savarimuthu, S., Purvis, M. A., Purvis, M. K., “Emergence of Sharing Behavior in a Multi-

agent Society using Tags”, Proceedings of IEEE/WIC/ACM International Conference on 

Intelligent Agent Technology, Sydney, Australia, 2008: 527-530. 

16. Savarimuthu, S., Purvis, M. A., Purvis, M. K., “Altruistic Sharing using Tags”, Proceedings 

of the 6th International Workshop on Agents and Peer-to-Peer Computing, Estoril, 

Portugal, May 2008. 

17. Jelasity, M., Montresor, A., and Babaoglu O., “Detection and removal of malicious peers in 

gossip-based protocols”. In FuDiCo II: S.O.S., Bertinoro, Italy, June 2004. 

18. de Pinninck, A. P., Bas., Sierra, C., and Schorlemmer, M."Distributed Norm Enforcement: 

Ostracism in Open Multi-Agent Systems", Lecture Notes in Artificial Intelligence, vol. 

4884: Springer, pp. 275-290, 2008.  

MABS 2010 - p.  103 / 157



    

MABS 2010 - p.  104 / 157



Multigame Dynamics:  Structures and Strategies 

David L. Sallach1 and Michael J. North1

1 Computation Institute, University of Chicago,  

5735 South Ellis Avenue, Chicago, Illinois 60637, USA 

{sallach, north, @ uchicago.edu}

Abstract.  The dominant strategy among game theorists is to pose a problem 

narrowly, formalize that structure, and then pursue analytical solutions.  This 

strategy has achieved a number of stylized insights, but has not produced 

nuanced game-theoretic solutions to larger and more complex issues such as 

extended international historical conflicts, or the detailed assessment of 

variegated policy alternatives.  In order to model more complex historical and 

policy-oriented processes, it has been proposed that a broader computational 

approach to game theory that has the potential to capture richer forms of social 

dynamics be used, namely the ‘multigame.’  In the multigame approach there 

are multiple games each of which is open, prototypical, implicit, reciprocal, 

positional, variegated and historical.  W hen later implemented, the multigame 

approach will offer the potential to rigorously model complex international 

historical conflicts and variegated policy alternatives that, heretofore, typically 

required qualitative analysis. 

Keywords:  Game theory, multigame, requirements, structures, strategies, roles 

1   Introduction 

 The dominant strategy among game theorists is to pose a problem narrowly, 

formalize that structure, and then pursue analytical solutions.  This strategy has 

achieved a number of stylized insights, but has not produced nuanced game-theoretic 

solutions to larger and more complex issues such as extended international historical 

conflicts, or the detailed assessment of variegated policy alternatives.  Nevertheless, 

game theory has supported a breadth of focus, from international strategies to 

economic interactions, that illustrates the potential of mathematical methods in the 

social sciences. 

In order to model more complex historical and policy-oriented processes, a 

broader computational approach to game theory has been proposed which has the 

potential to capture richer forms of social dynamics, specifically, the ‘multigame’ 

model [1], [2].  This is not to say that narrower analytical solutions would or should 

not be pursued but, rather, that there is likely to be an extensive amount of contextual 

and situational definition before an adequately specified game could be formalized.  

However, such contextual and situational definition is necessary in its own right, and 

is an essential part of the game characterization for any particular problem. 
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2   Multigame Requirements 

To achieve this larger role, multigames need to manifest a set of qualitative 

and interrelated characteristics.  These requirements redefine both the nature of the 

game formalism, and the types of representation to which it may be applied. 

2.1   Characteristics  

Multigame models need to be:  1) multiple, 2) open, 3) prototypical, 4) 

implicit, 5) reciprocal, 6) positional, 7) variegated, and 8) historical.  Each of these 

characteristics will be briefly described, including their contributions to the 

multigame framework. 

Multiple Games. The defining characteristic of the broader multigame approach to 

game theory is that actors are permitted to play multiple games simultaneously. 

Communications and actions are often simultaneous moves in multiple concurrent 

games.  This multiplicity means that the actor must take interactions among relevant 

games and players into account.  Such considerations may include competing use of 

resources, and/or divergent objectives, expectations and actor answerabilities [3].   

Actors may enter into a joint game which each actor, nonetheless, defines 

differently.  An effective move in the most salient game may result in relative 

advantages or disadvantages in adjacent games and relationships.  Accordingly, in the 

multigame environment, prioritization, tradeoffs and balance are necessary to shape 

player strategies that are both coherent and effective.  The complexity of the resulting 

process suggests that, in many cases, the rationality of endogenous actors will be 

bounded rather than complete or perfect. 

Agents engaged in game-based interaction cannot be seen as completely 

autonomous.  Often they perform roles that are expressions of larger social and 

institutional structures.  Associated with these roles are a variety of norms and 

expectations that are, themselves, created, maintained and evolved by a continuing 

flow of social interaction.  Roles become defined within, and relative to, a wide range 

of structures, thereby providing a vital linkage between micro and macro social 

processes.

Open.  Multigames are open-ended, in the sense that additional players can join 

games, current players can abandoned them, and new games can be initiated by 

current or prospective players.  Moreover, the focus of a game can change as it 

evolves.  Each of these characteristics makes formalization of the process more 

challenging, but also makes the representation more fluid and more consistent with 

the complexity of empirical games. 
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Prototypical.  Turning to the nature of the games that actors play, the multigame 

paradigm defines three prototypical games:  beneficent, interchangic1 and coercive.  

Together, they define a broad range of available types of social games. 

Beneficent games involve a kind of mutual support that is seen in families and 

tribes, among neighbors, and within communities.  They are organized around 

altruistic and voluntary actions.  Types of support in beneficent games may vary, but 

accounting is not strict.  The game tends to be mutually reinforcing over time, and a 

common dynamic is a virtuous spiral [4].   

Interchangic games are familiar in political and economic forms.  Prototypically, 

they involve arms-length transactions, with strict accounting, among actors with 

coupled dependencies.  They involve complementary benefit and relative advantage 

and, like beneficent games, they are often self-reinforcing [5].   

Coercive games involve the exchange, or threat, of force or violence.  They are 

inherently adversarial, and prone to escalation.  Reciprocity is frequently anticipatory, 

and actors tend to exaggerate comparative accounting toward their own priorities, 

resulting in a vicious spiral [6]. 

Multigames are prototypical in the sense that there is a conceptual core that 

defines the game type, while empirical games vary in their proximity to that core [7], 

[8].  For modeling purposes, these differences can be identified and dimensionalized.  

This form accommodates itself to the representation of an extensive variety of 

empirical games, including the emergence of calibrated strategies. 

Each game prototype produces a resource for the successful actor that can 

accumulate over time.  Beneficent games produce appreciation, respect and, 

ultimately, status.  Interchangic games produce wealth or advantageous position. 

Coercive games produce power.  In this regard, these outcomes correspond to the 

dimensions of social stratification first identified by W eber [9]:  class, status and 

power, respectively.  This mapping provides a clue as to how multigame patterns 

translate into persistent social structures [10], [11]. 

Implicit.  Since game theory is designed for analytical and modeling purposes, rarely 

will endogenous social actors define their activities in game-theoretic terms.  This is 

most clearly demonstrated by the historical reality of intensive social interaction long 

before the development of game theory.  Accordingly, in a multigame paradigm, it 

will be unusual for agents to recognize games in fully articulated form.  On the 

contrary, prospective games will usually present themselves in partial and implicit 

form (cf., [12]).  Games thus take on fuller definition as they emerge, and their 

coevolution is a vital part of the multigame process.  Actor responses to partially 

identified games is an essential aspect of multigame dynamics. 

Reciprocal.  For each game type, there is a reciprocal exchange type in which two 

actors engage in complementary interactions of the same type.  Examples include 

friends exchanging small gifts, businesses exchanging material benefits, and military 

1 This game type could be called ‘economic’, but the characterization would be too narrow.  

There are other forms of interchange-based trade-offs and negotiations, particularly in the 

political and military domains, that are also examples of interchangic games. 
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enemies exchanging armed forays.  Because they are mutually reinforcing, they tend 

to persist [13].   

It is also possible to have exchanges across game types.  Examples include 

providing compensation for coercive resources or acts, using force to abduct children 

to rear, or providing home services in return for payment.  Cross-game exchanges are 

also reciprocal, but may be subject to strains that arise from the admixture of motives.  

As such, they may be less stable and may exhibit a tendency to degenerate into 

complementary exchanges.   

Both types of reciprocity are summarized in Table 1.  Notice that the diagonal in 

Table 1 focuses on reciprocal exchanges of the same type, while non-diagonal cells 

represent exchanges across game types.  To the extent that reciprocal game types are 

more stable than coupled games based solely on complementarity, there may be a 

tendency for off-diagonal games to collapse toward the diagonal. 

Table 1.  Reciprocal Multigames 

Positional.  Standard game theory usually defines payoffs on a single stylized 

dimension and then, where feasible, deduces optimal and/or probable outcomes.  

These focal payoffs arise from the narrow, formalized focus of the model.  As 

described in the discussion of earlier characteristics, the multigame model is 

significantly more open and fluid. Technically, a multigame is not completed until all 

adversarial participants have withdrawn from the game (and no new replacements 

have joined or will join the game).  As a result, outcomes are broader and less 

amenable to formalization.  This requires the articulation of an alternate formalism. 

One such alternate formalism is positional in nature [14]. Representing the 

possible positions within the game, their comparative advantages and disadvantages, 

and the constraints and affordances at each position, allows the state of the game to be 

assessed at each step.  From each position, however assessed, new moves are 

possible.   
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For example, if an insurgent movement captures a capitol, the previous ruler(s) 

have the option of moving to a secure area and resuming the conflict.  If a previous 

leader is captured or killed, the movement can select a replacement.  If the disparity in 

resources is too great, partisans can go underground and operate covertly until open 

conflict becomes more feasible.   

In positional multigames, as O’Brien [15] famously wrote, there are no final 

victories (but also no final defeats). Thus, if a multigame is typified [cf., 16], it will 

not have a distinguished final state.  Rather, it will define the criteria relative to which 

the game is defined as completed, and defines a function to test the current state 

relative to those criteria.  Consistent with this approach, there may be multiple sets of 

criteria that, when met, indicate the conclusion of the multigame in question, either in 

general, or for a specific actor. 

As long as the game is active, positions of participants improve or deteriorate, but 

they remain a location from which relevant games can be furthered.  Depending upon 

the forms of the relevant games, the relative strengths and weaknesses of the game(s) 

have the potential to be formally expressed.  This approach makes the assessment 

process comparable to the one used by endogenous participants. 

Variegated.  There are discrete transitions in a multigame:  an actor may live or die; a 

message may be received or lost; or an actor may have received a college degree or 

not.  However, many aspects of the game are continuous in nature.  Even in the 

examples previously described, the actor might also be wounded or otherwise 

disabled; parts of the message may have been received, or the entire message may 

arrive late; the student might be just six hours short of a degree, or have received a 

degree that is irrelevant to the situation at hand. 

It is the mix of discrete and continuous choice and outcomes that contributes to the 

unique characteristics of the multigame.  However, these mixtures introduce 

complexities beyond those found in a strictly discrete or strictly continuous game.  

Accordingly, multigames must be variegated, i.e., a mix, as appropriate, of binary, 

nominal, ordinal and quantitative types of data [17], [18].  This kind of data 

combination will require that operators associated with one or more data types will 

frequently need to be more sophisticated than those in common use today. 

Historical.  The characteristics of the multigame allow it to provide a much closer 

representation of historical settings and processes than does conventional game 

theory.  Accordingly, the overall result is more relevant to historical interpretations 

and policy-oriented decisions. 

W hile the described set of characteristics is applicable to the multigame paradigm, 

they do not automatically define distinct mechanisms.  On the contrary, they operate 

together as a whole.  W hile the net effect is likely to require richer, more complex 

mechanisms, the characteristics themselves are analytical in nature.  They indicate 

diverse aspects of multigame models, but not how these aspects will be achieved. 
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2.2   Toward a Multidimensional Formalism 

Games that address the characteristics described in the previous section are more 

expressive than conventional games.  However, these advantages do not come without 

cost.  Either the deductive efficacy of the game will be lost, or an analyzable 

formalism will need to be reconstructed.  In fact, either alternative is possible.  It is to 

these issues that the discussion now turns. 

The Price of Expressiveness.  Games cannot address the characteristics described in 

the previous section and still be investigated using tautly woven inferences.  This 

capability is sacrificed to the complexities that allow the needed expressiveness. 

Conventional game theory relies on certain simplifying assumptions.  Preference 

functions to be applied, for example, must meet three requirements:  1) all alternatives 

are represented (completeness), 2) choices are consistently ordered (transitivity), and 

3) omitted alternatives do not influence the ordering (independence) [19].  Multiple, 

open, historical processes do not observe these requirements and, therefore, 

appropriate modeling formalisms cannot avail themselves of these simplifications.  

Multigame modeling, in particular, does not rely upon these assumptions. 

Integrated Multigame Space.  The most straightforward way to represent multigame 

characteristics is to define an inclusive game space that captures and integrates the 

needed features.  The space would include game types, game components, roles of 

those likely to play the game, a representative sample of the dimensions by which the 

game is constituted, as well as the value region within those dimensions that can be 

considered a prototype game of a specific kind.   

3   Complex Multigames 

To this point, multigames have been addressed as if the games in which a social 

actor participates are independent.  However, multigames are often embedded, one 

within another. Some games dominate, and shape secondary, contributory games.  

Broad game structures can thereby be deeply intertwined.  Roles, strategies and 

institutions can be defined in terms of, and dependent upon, many interlocking 

multigames.  As a result, multigames may interlock across multiple scales. 

In many important cases, multiple games are part of a coherent structure for each 

actor. To the extent that this is true, the emergent integral game is a skein of priorities, 

constraints, affordances and tradeoffs.  In a war, for example, a state has coercive 

relations with adversaries, mutually supportive relations with allies (although with the 

potential of strains and tensions regarding the nature and extent of support), and a 

service/support relation with suppliers and trade partners.  Each other party has a set 

of relations that are equally interwoven.  The full assembly of multifaceted relations 

form a rich ecology, providing the backdrop against which all moves are played. 

W hen the actors are large social institutions, populated by hundreds of actors, each 

with their own roles and strategies, issues of representation and analytical strategies 
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must be addressed.  Fine-grain representation will depend upon available data, but it 

will also be influenced by the level of analysis that is required.   

In general, one of the key benefits of the multigame framework is the ability to 

represent games at various scales.  To take advantage of this benefit, it is 

recommended that at least three levels be included in the model.  An example would 

be a study of strategic interaction in which social institutions (such as the economy, 

religion and the state) provide focus, and the higher and lower levels (social systems 

and social movements, respectively) provide coarser and finer-grain contexts.  This 

type of tripartite scaling can be applied at varying levels and, in each such case, the 

cross-tier focus allows for richer and more expressive dynamics.   

In tracking emerging events, it may be necessary to identify, characterize, and 

follow finer-grain actors and actions.  In visualization, this requirement can be 

envisioned as spikes downward from the focal levels, event spikes that may serve as 

inflection points that shape the direction of subsequent development. 

4   Strategies and Roles 

4.1   Strategies  

The prototype games identified in Section 2 can be pursued using different types 

of strategies.  Johnston [20] introduces an ideal type with three types of strategy, each 

manifesting varying assertiveness.  Table 2a shows the forms these strategies would 

take when applied to the different prototype games. 

  Table 2a.  Reciprocal Multigames by Strategy 
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Table 2a illustrates that a game of a particular type can be played using different 

strategies, ranging from compliant to aggressive.2  This diversity of strategies is 

applicable to different game types, although what each strategic level means will 

differ, depending on the game type.  Taking strategy into account means that an actor 

will have expectations, not only of what game types are being played but, also, what 

strategy is being used. 

In the long run, it may be expected that reciprocities of game and strategy will be 

more stable and, thus, more common, than various types of asymmetries.  However, 

since some of these patterns will be persistently path dependent, or context sensitive, 

reciprocal symmetries may be slow to emerge. 

4.2   Roles and Relationships  

Actor orientation will also be influenced by the roles that other players are 

perceived to play.  Indeed, roles such as ‘friend’, ‘enemy’ and ‘competitor’ are 

commonly used by actors in determining the type of orientation that is appropriate.   

This pattern is described in Table 2b, the contents of which are similar to 2a. 

Table 2b.  Multigames by Role 

As shown in Table 2b, affiliative relationships are characterized by compliant or 

soft strategies that tend to move overall the interchange towards the beneficent form. 

Thus we see attempts to relax the strict accounting arise in interchangic games, and 

de-escalation of tensions in coercive games. 

2 For clarity of discussion, strategies are divided into three types.  However, the values ranging 

from extremely compliant to extremely aggressive are best understood as a continuum, and 

are implemented that way in strategic models. 
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Similarly, rival relationships shown in Table 2b tend to move off-diagonal games 

into on-diagonal economic forms characterized by defensive or firm actions. In this 

case we see the introduction of accounting into beneficent games and the limiting of 

positive amplification in feedback loops. W e also see rivals attempting to calibrate 

their reprisals to match, but not exceed, the perceived intensity of previous attacks as 

well as defensive preparations, but not preemptive attacks. 

The adversarial relationships in Table 2b are shown to be aggressive or hard. They 

tend to create or intensify negative feedback loops. Beneficent games are undermined 

by failures to reciprocate, thus increasing the likelihood of inciting grievances in the 

other players. Interchangic games are also destabilized by reductions in reciprocity 

than are likely to threaten other players and cause them to stop seeing interchanges as 

economically valuable. 

Parallel Effects.  The reader will, of course, note that the descriptive cells in 

Table 2a and 2b are identical.  This pattern suggests another potential source of 

efficiency in this representation.  The fact that two sources, actor strategy and 

attributed role, can have similar effects, suggests that each may be defined along the 

same underlying dimension, and should be represented as such. 

If the two effects pull in the same direction, the two sources may be expected to 

jointly deepen the overall effect.  Alternatively, to the extent that their effects act in 

opposite directions, the strength of each will be attenuated.  Such a pattern suggests a 

valuable insight into how multigames aggregate, one that is likely to be analytically 

useful. 

If (and to the extent that) actors’ role expectations are inconsistent with the 

players’ actions, the actor in question may find it necessary to use a different label to 

shift them in semantic space.  This type of relabeling is extensively considered in 

ACT theory [21].  The latter is definitely relevant to multigame dynamics, but is 

beyond the scope of the present discussion. 

4.3   Example of Multigame Interaction  

An sample application of these ideas could consider two allied nations with 

dramatically different resource bases and a powerful common enemy.  The allied 

nations may initially have an interchangic relationship characterized by economic 

trading with strict accounting.  Simultaneously one of the allied nations may have a 

hard coercive relationship with the common enemy in the form of an active war.  The 

other ally may have a reciprocal interchangic relationship with the common enemy 

that is slowly deteriorating due to increasing frequency of coercive interactions.  As 

the war proceeds and the allied states weaken, they may shift to a moderately 

beneficent relationship characterized by soft interactions such as Lend-Lease style 

arrangements. If the struggle against the enemy turns around and the allies are 

victorious, the allies may normalize their relationship and return to an interchangic 

game of mutual economic trade. They may also form a new interchangic game with 

the now defeated adversary. This fluid flow between games shows the openness of the 

multigame approach. 

Throughout the example, there is continual interplay between multiple 

simultaneous games. For example, before deciding to offer Lend-Lease arrangements 
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the initially non-combative ally must consider not only the status of the interchangic 

game with their ally but also the implications of such an action for their separate but 

interrelated interchangic game with the powerful common enemy. 

In this example, we can also see the importance of prototype reasoning. As 

described above, the Lend-Lease arrangement can be understood as a weakly 

beneficent act. However, it can also be understood, and publicly portrayed, as a 

weakly economic (interchangic) act and thus not a formal inducement for the enemy 

to declare war on the initially non-combative ally. The arrangement may, nonetheless, 

ultimately become part of a formal declaration of war.  Of course, the Lend-Lease 

arrangement is both beneficent and interchangic, simultaneously. The resulting Lend-

Lease game is thus well represented by a prototype concept that lies somewhere 

between the beneficent and interchangic game prototypes.  

W e also see the importance of implicitness in multigames in the way the players 

can further their interests by taking strategic advantage of the ambiguity in the 

definition of the game itself. Also, the variegated nature of multigames with discrete 

categories (e.g., formally declared enemy versus treaty ally) and continuous 

categories (e.g., a Lend-Lease arrangement that is at once both beneficent and 

interchangic) intermingling at the levels of both strategic thinking (e.g., sharing 

productive capacity) and discourse (e.g., public speeches on the imperative of 

abandoning accounting and lending a neighbor a garden hose when they have an 

unexpected house fire). 

The example game is positional because the overall multigame never really ends, 

and no ultimate winner can be declared. All that occurs is continual fluid flow 

between games, with some games ending, new games beginning, and old games being 

revisited. In the example, we see a flow between several coercive games (e.g., two-

party war and then three-party war) and interchanging games (e.g., two-party 

economic trade that later becomes three-party trade). However, none of this fluidity 

and open-endedness obviates the outcome and impact of specific games. W inning a 

major war really is different than losing! 

5   Conclusion 

Multigame models have been developed in order to address social complexities. 

The particular objective of multigame modeling is to bring some of the strengths of 

game theory to more complex social domains such as historical interpretation and 

policy-oriented decisions.  More specifically, they are designed to model historical 

discourse and policy-oriented decisions from both an exogenous and endogenous 

perspective.  The present paper has addressed the characteristics a multigame 

requires, their implications for multigame formalisms and structures, and how 

strategic orientations and player roles translate into particular game types.    

W hile multigames will necessarily be integrated with other social modeling 

techniques, most obviously social agent modeling and simulation (SAMS) [22, 23], 

the broader contribution will be to help advance social modeling as an enterprise.  The 

ultimate benefit of multigame analysis will be in the ability to identify higher level 

interaction patterns among strategic actors. 
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This work extends and deepens the multigame concept, illustrating how it might 

be applied, and the analytical advantages of doing so.  The authors hope this 

discussion clarifies that the multigame approach offers the potential to rigorously 

model complex international historical conflicts and variegated policy alternatives 

that, heretofore, typically required qualitative analysis.  The next steps in this research 

program, aspects of which are currently under way, are to design and develop a 

computational implementation of the multigame approach, and then to apply it to 

specific historical scenarios and policy issues.
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Abstract. One of the essential features of the agent-based financial
models is to show how price dynamics is affected by the evolving mi-
crostructure. Empirical work on this microstructure dynamics is, how-
ever, built upon highly simplified and unrealistic behavioral models of
financial agents. Using genetic programming as a rule-inference engine
and self-organizing maps as a clustering machine, we are able to recon-
struct the possible underlying microstructure dynamics corresponding
to the underlying asset. In light of the agent-based financial models,
we further examine the microstructure both in terms of its short-term
dynamics and long-term distribution. The time series of the TAIEX is
employed as an illustration of the implementation of the idea.

1 Introduction and Main Ideas

It comes as no surprise to economists that there is no single strategy which
can persistenly dominate all other strategies in the market. The idea of the
best strategy is simply inconsistent with the intuitive notion of the efficient
market hypothesis. While this feature is well expected among economists, the
result shown by [4], generally known as the overreaction hypothesis, is still very
appealing. They have found that successive portfolios formed by the previous five
years’ 50 most extreme winners considerably underperform the market average,
while portfolios of the previous five years’ 50 worst losers perform better than
the market average.

Recently, a similar phenomenon has been rigorously analyzed and replicated
in the agent-based finance literature, in particular, in the H-type model. In
this literature, markets at any point in time are composed of different clusters
(types) of agents. Agents who follow similar rules are considered to be in the same
cluster. Each cluster is defined by the associated behavioral rules. The market
microstructure is characterized by the fractions (distribution) of individuals over
different clusters. Different distributions (microstructure) over the clusters may
have different impacts on the aggregates, and both the microstructure and the
aggregates are evolving with feedbacks to each other.

Complex dynamic analysis of these models indicates two interesting proper-
ties. First, in the short run, it is likely that the market fractions are constantly
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changing. In particular, for each cluster, the market fraction can swing from
very low to very high, i.e., switching between the majority and the minority.
Second, in the long run, no single strategy can dominate the other, i.e., the mar-
ket fraction converges to 1/ H for each cluster. These two properties provide us
with a basis to study the complex dynamics of microstructure, which we refer
to together as the m arket fraction hypothesis, or as an abbreviation, the MFH.
In fact, a number of empirical studies have already attempted to estimate the
parameters associated with the MFH.

This paper, however, differs from the H-type models in two regards. First,
we do not assume any prefixed behavioral rule (functional form) for any clus-
ter (type) of agents; second, we do not assume that agents of the same type
are homogeneous, while they can be sim ilar. We consider that this departure
will lead us to a more general and realistic im plication of the MFH. Consider
the three-type model as an example. In the fundamentalist-chartist-contrarian
model, traders of the same type at any point in time behave in exactly the sam e

w ay, and their functional forms of behavioral rules, in this case, their forecasts
of the price in the next period, {E

f,t
(p

t+ 1)}, {Ec,t
(p

t+ 1)} and {E
co,t

(p
t+ 1)}, are

all known. Eq uations (1) to (3 ) are typical examples.

E
f,t

[p
t+ 1] = p

t
+ α

f
(pf

t

− p
t
), 0 ≤ α

f
≤ 1., (1)

E
c,t

(p
t+ 1) = p

t
+ α

c
(p

t
− p

t−1), 0 ≤ α
c
. (2)

E
co,t

(p
t+ 1) = p

t
+ α

co
(p

t
− p

t−1), α
co
≤ 0. (3 )

N evertheless, in the real world, the behavioral rules of each trader are expected to
be heterogeneous, and even if they can be clustered into types, the representative
behavior of each type is normally unknown.3

1.1 Genetic Programming as a Rule-Inference Engine

In this paper, we assume that traders’ behavior, including price expectations
and trading strategies, is either not observable or not available. Instead, their
behavioral rules have to be estim ated by the observable market price. U sing
macro data to estimate micro behavior is not new as many H-type empirical
agent-based models have already performed such estimations [3 ]. However, as
mentioned above, such estimations are based on very strict assumptions upon
which a formal econometric model can be built. Since we no longer keep these
assumptions, an alternative must be developed, and in this paper we recommend
genetic program m ing (G P ).

The use of G P as an alternative is motivated by considering the market as an
evolutionary and selective process.4 In this process, traders with different behav-
ioral rules participate to the markets. Those behavioral rules which help traders

3 W hile the ideas of fundamentalists and chartists are the results of field work, ab-
stracting the general observed behavior into a very specific mathematical model is
a big leap.

4 See [1 1 ] for his eloq uent presentation of the adaptive market hypothesis.
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gain lucrative profits will attract more traders to im itate, and rules which result
in losses will attract fewer traders. This evolutionary argument in fact is, intu-
itively, the same as the evolution process considered by the H-type agent-based
financial models. For example, their use of the G ibbs-B oltzman distribution is
a formalization of this process. G enetic programming is another formalization
which, unlike the former, does not rest upon any pre-specified class of behavioral
rules. Instead, in G P , a population of behavioral rules is randomly initiated, and
the survival-of-the-fittest principle drives the entire population to become fitter
and fitter in relation to the environment. In other words, given the non-trivial
financial incentive from trading, traders are aggressively searching for the most
profitable trading rules. Therefore, the rules that are outperformed will be re-
placed, and only those very competitive rules will be sustained in this highly
competitive search process.5

Hence, even though we are not informed of the behavioral rules followed by
traders at any specific time horizon, G P can help us infer what these rules are
approx im ately by simulating the evolution of the microstructure of the market.
Without imposing tight restrictions on the inferred behavioral rules, G P enables
us to go beyond the simple but also unrealistic behavioral rules used in the N -
type agent-based financial models. Traders can then be clustered based on more
realistic, and possibly more complex behavioral rules.6

1.2 S elf-O rganiz ing M ap s as a C lustering M ach ine

O nce a population of rules is inferred from G P , it is desirable to cluster them
based on a chosen similarity criterion so as to provide a concise representation
of the microstructure. The similarity criterion which we choose is based on the
observed trad ing behavior. B ased on this criterion, two rules are similar if they
are observationally equ ivalent or sim ilar, or, alternatively put, they are similar
if they generate the same or similar market timing behavior.

G iven the criterion above, the behavior of each trading rule can be repre-
sented by its series of market timing decisions over the entire trading horizon,
for example, 6 months. Therefore, if we denote the decision “ enter the market”
by “ 1” and “ leave the market” by “ 0” , then the behavior of each rule is a binary
string or a binary vector. The length of these strings or the dimensionality of the
vectors is then determined by the length of the trading horizon. For example, if
the trading horizon is 125 days long, then the dimension of the market timing
vector is 125. O nce each trading rule is concretized into its market timing vec-
tor, we can then easily cluster these rules by applying Kohonen’s self-organizing

m aps (SO Ms) [9 ] to the associated clusters.

5 It does not necessarily mean that the types of traders surviving must be smart
and sophisticated. They can be dumb, naive, randomly behaved or zero-intelligent.
Obviously, the notion of rationality or bounded rationality applying here is ecological

[1 2 , 6 ].
6 [5 ] provides the first illustration of using genetic programming to infer the behavioral

rules of human agents in the context of ultimatum game experiments. Similarly, [7 ]
uses genetic algorithms to infer behavioral rules of agents from market data.
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The main advantage of SO Ms over other clustering techniq ues such as K-
means is that the former can present the result in a visu alizab le manner so that
we can not only identify these types of traders but also locate their 2-dimensional
position on a map, i.e., a distribution of traders over a map. Furthermore, if we
suppose that we do not have dramatic crustal plate movement so that the map
is fixed over time, then the distribution of traders over the map can, in effect,
be comparable over time. This provides us with a rather convenient grasp of the
dynamics of the microstructure directly as if we were watching the population
density on a map over time.

However, the assumption of crustal stability does not hold in general; there-
fore, m aps over tim e are not d irectly com parable. To make them comparable,
some adjustments are needed. The idea of adjustment is also very intuitive. If
the dominant strategy remains unchanged from period A to period B , then when
we apply the dominant trading strategy derived from period A to another pe-
riod B , the strategies should behave in a way that is similar to the dominant
strategy derived from period B , if it is not exactly the same. This motivates us
to em igrate all trading strategies from one map (the home map) to the other
(the host map) in such a way that each emigrant shall find its new cluster on
the host map based on the same similarity metric. In this manner, we can recon-
struct a time-invariant version of the map, and comparison can be made upon
this reconstruction.

The rest of the paper is organized as follows. Section 2 provides a brief
description of the version of genetic programming used in this paper. Section
3 demonstrates the self-organizing map constructed based on the description
in Section 1.2. A time series of these maps is constructed accordingly and the
maps are then analyzed both in their short-term dynamic behavior (Section
3 .1) and long-term distribution behavior (Section 3 .2). The analysis is further
consolidated with the results from multiple runs (Section 3 .3 ). Section 4 examines
the short-term dynamics and long-term distribution behavior of a rather small
self-organizing map. In Section 5, we present our concluding remarks.

2 G enetic P rogramming

In this paper, we use the financial G P system introduced by Edward Tsang at
U niversity of Essex, known as Eddie. Eddie, standing for Evolutionary Dynamic
Data Investment Evaluator, applies genetic programming to evolve a population
of artificial financial advisors or, alternatively, a population of market-timing
strategies, which guide investors on when to buy, to hold, or to sell. These
artificial financial agents (market timing strategies) are formulated as decision
trees in Eddie, which, when combined with the use of G P , are referred to as
G enetic D ecision T rees (G DTs).

Each of these market-timing strategies (G DTs) is syntactically (grammati-
cally) produced by the B ackus N ormal Form (B N F) [2]. Figure 1 presents the
B ackus N ormal Form (B N F) of the G P . As we can see, the root of the tree is an
If-Then-Else statement. Then the first branch is a boolean (testing whether a
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technical indicator is greater than/ less than/ eq ual to a value). The ‘Then’ and
‘Else’ branches can be a new G enetic Decision Tree (G DT), or a decision, to buy
or not-to-buy (denoted by 1 and 0).

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
”Not” <Condition> |
V arConstructor <RelationOperation> Threshold

<V ariable> ::= M A 1 2 | M A 5 0 | TB R 1 2 | TB R 5 0 | F L R 1 2 |
F L R 5 0 | V ol 1 2 | V ol 5 0 | M om 1 2 | M om 5 0 |
M omM A 1 2 | M omM A 5 0

<RelationOperation> ::= “>” | “<” | “= ”
Decision is an integer, P ositive or Negative implemented
Threshold is a real number

F ig . 1 . The B ackus Normal F orm of EDDIE

G iven a set of historical data and the fitness function, G P is then applied
to evolve these market-timing strategies in a standard way. After evolving a
number of generations, what stands (survives) at the end (the last generation)
is, presumably, a population of financial agents whose market-timing strategies
are financially rather successful. For the details, see [13 ] and [10].

3 An Illustration from th e T aiw an S tock Market

Figure 2 gives a concrete illustration of the idea presented above (Sections 1.1 and
1.2). Here, 500 artificial traders are grouped into nine clusters. The parameter
value ‘500’ refers to the popu lation size used in genetic programming, i.e., the
rule-inference stage, whereas the parameter value ‘9 ’ is due to a 3 × 3 two-
dimensional SO M employed in the rule clustering stage. In a sense, this could be
perceived as a snapshot of a nine-type agent-based financial market dynamics.
Traders of the same type indicate that their market timing behavior is very
similar. The market fraction or the size of each cluster can be seen from the
number of traders belonging to that cluster. N ot surprisingly, they are not evenly
distributed. Figure 2 shows that the largest cluster has a market share of 3 7 .6 %
(18 8 / 500), whereas the smallest cluster has a market share of only 0.4% (2/ 500).

O nce we can have a snapshot of the market fraction, we can go further
over a series of snapshots so as to have a picture of the dynamics of the market
fraction or the dynamics of the market microstructure. However, as we mentioned
before, the SO Ms constructed from different periods are not directly comparable;
therefore, to make them all comparable, we have to first choose a base period and
fix the map, i.e., to take the centroid of each cluster as given. In this particular
example, we choose the second half of the year 2007 as the base. O nce the
centroids are given, all points (vectors) in other maps shall im m igrate into this
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F ig . 2 . 3 × 3 Self-Organizing F eature M ap

The SOM is constructed based on the 5 0 0 financial decision trees generated by G P
using the daily data of the TAIEX from J uly 2 0 0 7 to December 2 0 0 7

fixed map, and they are re-clustered based on their similarity to these fixed
centroids. Figure 3 shows the reconstruction of these maps in this manner.

This figure has the m arket fraction m aps from the year 2006 to the year 2007 ,
crossing 4 different periods. These maps were constructed by using the second
half of 2007 as the base period. This figure gives a clear picture of what we mean
by m arket fraction d ynam ics. First of all, we notice that the distribution over
the clusters is uneven over time. In each period of time, some clusters obviously
dominate others, but that dominance changes over time. This can be seen from
the constant renewing of the major blocks. This eye-browsing inspection mo-
tivates us to formulate two hypotheses which we already experienced from the
dynamics of H-type agent-based financial models.

3 .1 S h ort-T erm D y namics

The first hypothesis regards the short-ru n d ynam ics of m arket fraction. Each
type of trader can be a dominant group (majority) for some of the time, but
the duration of its dominance can only be temporal. The q uick turnover of the
dominant cluster or its short duration is consistent with the impression of the
sw inging d ynam ics as we saw in the 2-type agent-based financial models, e.g.,
[8 ]. However, in addition to eye-browsing the swing, it is desirable to have an
objective measure of how persistent a d om inant clu ster can be. To do so, we need
an operational meaning of dominance. Even though there is no uniq ue way of
doing this, we find the following threshold to be q uite general and useful.

q̄ =
1 + p

H + p
, (4)
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F ig . 3 . M arket F raction Dynamics: M ap Dynamics

The four SOM s above are constructed using the daily data of the TAIEX from 2 0 0 6 to
2 0 0 7 . F rom the top-left panel to the bottom-right panel, they correspond to the first
half and seconf half of year 2 0 0 6 (2 0 0 6 a, b) and the first half and second half of the
year 2 0 0 7 (2 0 0 7 a, b). Except for the last one, 2 0 0 7 b, the other three are reconstructed
by using 2 0 0 7 b as the base (see Section 1 .2 ).

where H is the number of clusters, and p, a non-negative integer, is a control
parameter for the d egree of d om inance. Hence, a cluster is dominant if its market
fraction exceeds this threshold. B y varying the parameter p, one can therefore
have an operational meaning that is consistent with our intuition regarding dom-
inance. For example, if H = 2 (a two-type model) and p = 2, a cluster can be
dominant only if its market fraction is greater than a q̄ of 7 5% , a standard much
higher than just breaking the tie (one half). O f course, the higher the p, the
higher the threshold.

Figure 4 presents the d om inance-d u ration statistics of each type of trader.
B asically, we keep track of the persistent time of each dominance. O nce after a
type of trader become dominant, we count how many periods in a row that it
can remain the dominant cluster. Figure 4 gives three statistics regarding du-
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F ig . 4 . Duration of Dominance (p= 2 )

ration, namely, minimum, average and maximum. For example, for Cluster Six,
these three statistics are 1, 3 and 9 , respectively. In other words, the maximum
duration of dominance for Cluster Six is about nine periods, i.e., four and a half
years. For other clusters, the longest duration is no more than three periods,
i.e, one and half years. So, for most of the time, dominant clusters can hardly
continue for long. Hence, we reach the conclusion that, regardless of the types
of traders, we can rarely see the consecutive dominance. In this sense, our data
lend support to the market fraction hypothesis in a weak sense.

3 .2 L ong-T erm D istrib ution

The second hypothesis which we can form regarding the market fraction behavior
is its long-term d istribu tion. Many H-type agent-based financial models can show
us that, under some proper parameter values, the long-term market fraction is
even. In other words, if we have H types of traders, their long-term freq uency
of appearance should be close to 1

H

. L et C a r d
i,t

be the number (cardinality) of
traders in Cluster i in time period t.

H

∑

i= 1

C a r d
i,t

= N, ∀t. (5)

In our current setting, N , the total number of traders, is 500. The long-term
histogram can be derived by simply summing the number of traders over all
periods and dividing it by a total of N × T (# of periods),

w
i
=

∑

T

t= 1
C a r d

i,t

N × T
. (6 )
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F ig . 5 . L ong-Term H istogram

Figure 5 gives the long-term histogram of these clusters, {w
i
}. O bviously,

they are not eq ual so that we present them in descending order from the left to
the right. Cluster Six has the largest market fraction up to almost 6 0% , whereas
Cluster 4 has the smallest market fraction, which is not even up to 1% .

O f course, this distribution is very different from the uniform one. In order to
give a measure of how far it is from the uniform one, we use the familiar entropy

as a metric. L et us denote the empirical distribution presented in Figure 5 as
f

X
, and the uniform distribution as f

Y
. B y definition, f

Y
= 1

H

, where H is the
number of clusters, which in this case is 9 . In order to measure how close f

X
is

to the uniform distribution f
Y

, we calculate the entropy of both distributions.
For the discrete random variable, the entropy is defined as

En tr o py = −

H

∑

i= 1

p
i
ln p

i
, (7 )

where p
i
is the fraction of each cluster. It is well known that for the uniform distri-

bution En tr o py (Y ) = ln H . When H=9 , it is ln 9 ≈ 2.2. The closer En tr o py (X)
is to 2.2, the closer X is to the uniform distribution. After calculating X ’s en-
tropy, we find it eq ual to 1.3 , which is only 41% of the entropy of the uniform
distribution.

S ummary As we have seen in this section and the previous one, both the
short-run and the long-run version of the market fraction hypothesis are not
well supported. The short-run dynamics indicates the appearance of a long-
lasting dominant cluster (up to a maximum of 9 periods). O n the other hand,
the long-run histogram is very far away from the uniform distribution.
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T able 1 . Summary Results over 1 0 runs, for a 3×3 SOM .

Short-Run L ong-Run

M ean M ax E-Ratio
TAIEX (9 Clusters) 2 .0 2 8 .2 5 0 .5 5
TAIEX (3 Clusters) 4 .0 5 8 .1 4 0 .8 0

3 .3 Results from M ultip le Runs

However, so far we have only presented the results of a single run. To consolidate
our results, we further replicate the experiments for an additional nine runs, and
Table 1 gives the results for ten runs together.

The first two numeric columns are related to the short-run dynamics and
present the averages over the 10 runs for both the average duration and the
maximum duration of the 9 clusters. This result is not much different from our
earlier single-run results. The mean dominance duration over these ten runs is
just about 2 (one year). N evertheless, the existence of few long-lasting dominant
clusters is very evident with the mean maximum duration reaching as high as 8 .25
periods (more than 4 years). Hence, the short-run version of the market fraction
hypothesis is only weakly supported. The next column presents the ratio of the
average realized entropy (over the 10 runs) relative to the base entropy under
the null of the uniform distribution, which is 55% , and still q uite far away from
one. Therefore, the long-term version of the market fraction hypothesis is not
well supported.

4 Does th e N umb er of T yp es Matter?

The illustration presented above is based on a 3 by 3 SO M, which automati-
cally generates nine clusters. This analysis has its limitations mainly because
we do not know how many types of agents are really there in the market. In
a rather theoretical analysis, [1] showed that it would be enough to character-
ize the market behavior by a few types, say two to three. O thers are rather
marginal. Therefore, it would be interesting to investigate the microstructure
dynamics based on a smaller SO M corresponding to the few-type agent-based
financial models.7

In this section, we therefore repeat the above experiments by using a rather
small 3 × 1 SO M. We then examine both its short-term dynamics and the long-
term histogram. As before, we have 10 multiple runs. The results are shown in
Table 1. In terms of duration behavior, we can see that there is no significant
difference in the maximum duration between the 9 -cluster case and the 3 -cluster

7 B ased on [3], the 2 -type or the 3-type agent-based financial models are still the most
popularly-used classes in the literature.
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F ig . 6 . Cumulative F ractions of 3 Clusters and 9 Clusters

case, for here the mean maximum duration is consistently a little above eight
(four years). However, a significant difference in mean duration does exist. What
we find here is that when the number of clusters decreases, the mean duration
increases from the original 2.02 periods (one year) to 4.05 periods (two years).
Therefore, it seems that a smaller number of clusters really drives the short-run
dynamics further away from the expectations of the market fraction hypothesis.

O n the other hand, if we look at the long-term distribution behavior, we
find that a smaller number of clusters does help the distribution (histogram)
get closer to the uniform distribution. As shown in Table 1, the realized entropy
ratio now increases up to 8 0% from the original 55% . Hence, the market fraction
hypothesis is better supported from a long-term point of view.

P utting them together, what we have observed here is that, when the number
of clusters gets smaller, the dominant cluster maintains its position longer, but
a different cluster does take the lead in turn, and so, in the long run, they
are eq ually competitive. This observation, of course, is interesting and req uires
further studies using agent-based financial models.

If the number of clusters does matter for the microstructure dynamics, then
it is imperative to know how many clusters we need. To answer this q uestion,
Figure 6 presents the cumulative fraction sum from the largest cluster to the
smallest cluster. For the 3 -cluster case, when the number of clusters (the x axis)
gets to 3 , the cumulative fraction becomes one, and similarly for the 9 -cluster
case when the number of clusters gets to 9 . However, what we can see here is that
when coming to the first five clusters, there is already an accumulation of 9 6 %
of the market share. In fact, if we care only about 9 0% of the market fraction,
then 3 clusters are sufficient.
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5 C oncluding R emarks

After a decade of development, the literature on agent-based financial models
has successfully demonstrated the connection between microstructure dynamics
and asset price dynamics. The next research agenda would be to gain more
understanding of the empirical properties of this microstructure dynamics. In
this paper we have shown that the number of types (clusters) of agents may
be limited, but the durations of dominant groups are larger than what we may
expect from, say, the adaptive market hypothesis [11]. The next step is to explore
other financial markets and to see whether this is a universal phenomenon.
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Abstract. This paper presents an approach to formalize the influence of culture 
on the decision functions of agents in social simulations. The key components 
are (a) a definition of the domain of study in the form of a decision model, (b) 
knowledge acquisition based on a dimensional theory of culture, resulting in 
expert validated computational models of the influence of single dimensions (c) 
a technique for integrating the knowledge about individual dimensions. The 
approach is developed in a line of research, studying the influence of culture on 
trade processes. Trade is an excellent subject for this study because it is 
ubiquitous, relevant both socially and economically, and often cross-cultural in 
a globalized world. 

Keywords: dimensions of culture, computational model, social simulation 

1   Introduction 

Being competent in trading depends on more than economic rationality. To model 
trade as it actually happens, creating agents that compute the most profitable deal is 
therefore not enough. The agents’ incentives could be modeled using Williamson’s  
framework [1] in which four time scales are used: resource allocation (for instance: 
trade) happens continuously, and it is subject to governance rules that may change on 
a time scale of 1 to 10 years. These rules are themselves subject to institutional 
changes, e.g. new legislation, at a time scale of 10 to 100 years. Institutions in their 
turn are based on and attuned  to the hidden rules of the game (culture) that are 
embedded in society and change on a time scale of 100 to 1000 years. So this model 
states that people involved in trade use governance rules, institutions and cultural 
values to guide their behavior, albeit unconsciously. The present article takes this 
position as a basis for modeling the culture’s effects on agent-based social 
simulations. 

Societies around the world differ greatly with respect to the value systems and 
ideas that govern patterns of human interaction.. Hofstede [2], p.9, defines culture as 
“the collective programming of the mind that distinguishes the members of one group 
of people from another”. The behavior of people and their interpretation of the 
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behavior of others are based on their norms for appropriate behavior. These norms 
vary from culture to culture. 

In different cultures, different norms may prevail for behavior in trade; e.g., trade 
partner selection, bargaining style, trust that has to be shown, favor that is given to in-
group relations or high-ranked society members, and opportunistic advantage that 
may be taken from partners. Different systems may be viable in different societies. 
F or example, [3] used multi-agent simulations to show that economic systems based 
on trust and systems based on opportunism may both be viable.  

When traders operate in foreign cultures, the programming of their minds may not 
be efficient. This explains the existence of practical guides for business behavior in 
different countries, e.g. [4] and [5], and the extensive body of scientific literature that 
has been developed. The scientific literature ranges from business oriented studies, 
e.g. K umar [6], and cross-cultural surveys, e.g., K ersten et al. [7], to economic 
models, e.g., Guo [8] and K ónya [9].  

The approach proposed in this paper aims to model culture at the mid-range level 
according to the classification by Gilbert [10], p.42. Mid-range models depend on a 
rich description of processes, but do not in facsimile model a particular situation. F or 
mid-range models, observed trends should be similar to those observed in reality. This 
is important for our long-term research goal of improving the understanding of human 
decision-making in international supply chains with asymmetric information, see, for 
instance, [11]. The research method proposed in [11] combines multi-agent models 
with gaming simulation, but a general multi-agent-based model as proposed in [11] 
does not explain the cultural difference observed in the gaming simulations. 
Therefore, it is important to develop an approach to culturally adapt the models. 

F or the modeling of culture, one must lean on social sciences literature. Two main 
streams of research can be distinguished. F irst, there is the anthropological approach 
of rich description, in which specific cultures are studied by detailed and close 
observation of behaviors during an extensive time-span. Examples are the works of 
Lévi-Strauss [12] and Geertz [13]. Second, there is the comparative approach that 
tries to identify dimensions on which different cultures can be ordered, aiming to 
develop a classification system in which cultures can be typed by a small number of 
qualifications. Examples are the models of culture by G. Hofstede [2], Schwarz [14], 
and Trompenaars and Hampden-Turner [15]. The approach of that type of research 
research is to characterize cultures by their indices on a limited number of 
dimensions. The dimensions and the indices of cultures are typically created by factor 
analyzing massive surveys with standardized questionnaires in many countries. The 
value of such dimensions largely depends on the questionnaires used in combination 
with the sets of respondents that are required. Q uestionnaire studies will be more 
reliable predictors of behavior if they are about the desired (for self) than if they are 
about the desirable (for everyone), and also if they are asked to a broad range of types 
of respondents as opposed to just one type (e.g., students or managers). The resulting 
models provide a linear ordering of cultures along each dimension, where particular 
values and practices are hypothesized (based on empirical evidence) to be stronger or 
weaker or occur more frequently or less frequently according to the index on the 
dimension. F or instance, in cultures on one extreme of a particular dimension 
concerned with asymmetry of power relations, the implicit norm is for parents to treat 
children as equals, while in cultures on the other end parents are supposed to teach 
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children obedience. A s authors of dimensional models stress, these same implicit 
norms carry over to all relationships in society that involve potential power 
differences, whether in school, in politics or in trade. In all social situations, they act 
as filters on perception and on action range. This means that there are no specific 
values for activity x, e.g. ‘trade values’, in a dimensional model. It also means that a 
dimensional model is suited for modeling any process that involves social intercourse, 
including trade and its sub-activities. 

Cultural descriptions of the first type provide rich details about values, norms, 
symbols, beliefs, rituals, social structure, behavioral patterns etc. in a particular 
culture. These will prove very useful for facsimile modeling of specific social 
systems. The model proposed in the present paper aims to compare the influence of a 
great diversity of cultures in the standardized environment of a gaming simulation 
which is by itself an abstraction of social life. F or that purpose we need to posit the 
model at an impartial distance from any single culture. A  dimensional model of 
culture is more suited than a collection of incommensurable rich descriptions. 
Dimensional models are culture-level abstractions. They do not depict individuals, but 
average group characteristics, and therefore the agents in our simulation will be iconic 
for a culture (mid-range, in our term), not specific for any individual (facsimile, in our 
term). 

O f the well-known dimensional models, the most widely used is Hofstede [2]. His 
work is accessible, sparse, and based on a very large, very well stratified sample of 
questions on the desirable for self, asked of people in all professions that continues to 
give it great explanatory value. No other model matches society-level variables so 
well to date [18].  

The hypothesis of this research is that computational models of culturally 
differentiated agents can be deduced from social scientific theories that differentiate 
cultures, including the way members of such a culture interact with other people, 
along a limited number of dimensions. A n agent-based model can be developed to 
incorporate behavior and agent interactions which are realistically differentiated along 
each of the cultural dimensions. Note that the model based on the cultural indices may 
reliably reproduce general trends, but will not differentiate up to the detail of actual 
individuals. F or the long term, a computational model based on a dimensional theory 
of culture in multi-agent-based simulations can provide insights into the functioning 
of social systems and institutions in different cultural contexts. 

To develop computational models of culturally differentiated agents in a specific 
domain of application a general agent-based model for that domain of application can 
be taken as a point of departure. That general model should be based on either a task, 
process, or activity analysis of the domain of application. A  dimensional theory of 
culture can be used to determine the required adaptations to the model to reflect the 
way culture influences behavior trends. Such adaptations also pertain to the way the 
agents perceive their environment and the behavior of other agents. F or instance, if 
the theory describes that in some cultures favor is to be shown to in-group customers, 
while in other cultures the norm is to treat all customers equally, the agents need a 
cognitive model in which they can be aware of what group they belong to and 
maintain models of other agents in which they maintain beliefs about other agents’ 
group memberships (e.g., “I belong to group x and he/she does/does not belong to that 
group”). F or each of the processes of the general model, an adaptation must be 
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developed that models the adaptation of decisions by culture. This paper describes an 
approach to develop computational adaptations of the processes within the agent that 
are based on a dimensional model of culture, and expert knowledge about cultural 
effects on decisions and interpretation of behaviors.  

The case for which the approach described in this paper has been developed is a 
simulation game of trade under asymmetric information [17]. A  multi-agent-based  
simulation of this game has been developed [11], with two purposes: to test 
hypotheses about players’ decision making and to design optimal configurations for 
human games. When playing the game with human participants, differences in 
outcomes were observed that were attributed to differences in cultural background 
[17]. The latter was the rationale for modeling culture into the artificial agents.  

The process model for trading agents acting in the game is given in F ig. 1. The 
plans that the agents execute for process fulfillment are based on validated models 
taken from literature on social sciences and artificial intelligence. 

 

determine

trade goal
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trade p artner

negotiate

deliv er

monitor and 

enforc e

u p date 

b eliefs

determine

trade goal
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b eliefs

 

F ig. 1. Processes and internal information flows of trading agents (adapted from [18]) 

The agent’s decision models implemented in the plans for process fulfillment were 
adapted to include effects of culture, based on Hofstede’s [2] dimensional model. The 
present paper describes the approach taken to incorporate the dimensional model of 
culture into the decision functions. The paper is organized as follows. Section 2 
presents an overview of the method that was followed in knowledge acquisition and 
model formulation. Section 3 formulates the computational model. A  discussion of 
results concludes the paper. 

2   Modeling Meth od 

The exercise of modeling culture in trading agents could be carried out in a 
multitude of ways, using a variety of theories. The present article describes one such 
attempt. It also presents the choices and the line of reasoning behind this method. This 
could enable other researchers to choose which of the principles, choices and 
practices of this approach to adopt and from which ones to deviate. 

In order to model cultural differentiation in agents the following steps were taken, 
once the domain to be modeled had been defined. A gent roles and network, agent 
communications, the environment and entities in it, their observable properties and 
possible actions of agents were defined. F or the agents, a process model had been 
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established. Throughout this paper, specific examples are taken from the domain of 
trading agents, see F ig. 1 for a process model. 

In each process the agents take decisions based on decision rules. F or these rules, 
models were preferred that had in empirical research been validated to simulate actual 
human behavior. F or instance, in the model of culture implemented by the authors, 
the A BMP negotiation architecture is applied. It has been validated in experiments 
with Dutch adolescents and adults [19]. If no validated model can be found in 
literature, a dedicated model has to be formulated based on empirical data or research; 
see, for instance, [20].  

The decision models taken from literature can be implemented as a set of rules (the 
agent’s knowledge base. Typically, the decision rules are parameterized. F or instance, 
parameters in the rules of the A BMP negotiation strategy have names like concession 
factor, negotiation speed, impatience. So, the decision model can be formulated as a 
set of parameterized rules, and the labels of the parameters can be listed. We refer to 
this modeling activity as “decision function analysis”. The results are the decision rule 
base and a list of parameter labels (see F ig.2). 

 

        

F ig. 2. Decision function analysis1 

The decision rule parameters are the point of application for cultural 
differentiation. It is important to start from process models that allow for such 
adaptation. Validations of behavior with subjects from one culture are no guarantee 
for the occurrence of similar behavior in other cultures. This is amply shown by a 
multitude of experimental studies published in journals such as the Journal of Cross-
Cultural Psychology, and in review volumes such as [21]. This fact implies that 
ideally, only models shown to be valid across cultures should be used. This condition 
could not be met for all the models used in this paper. The Hofstede dimensions of 
culture were derived using a sample of people in a broad range of professions from 
over 70 countries on all continents, and explicitly aiming to compare these countries. 
They qualify. F or the A BMP negotiation architecture, however, we had to be content 
with validation in only one culture. F urther validations in other countries of A BMP 
could yield results that necessitate revisions of our agent models. 

F or the cultural differentiation a dimensional model of culture was selected, in this 
case Hofstede’s five-dimensional model [2]. Two criteria were important in the 
selection. F irst, the model had to be applicable for the social processes to be 
simulated, based on the contexts in which it has been developed and validated, and 
the availability of research results that provide rules for decision parameter 

                                                           

1 Legend of F ig. 2…5:           
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adaptation. A s argued in section 1, this condition holds for the Hofstede framework. 
Second, the modelers had to have access to expertise on the cultural model to be 
applied, for knowledge acquisition and expert validation of results.  

K nowledge about the influence of individual dimensions of culture on the decision 
functions of the process model was acquired, using the concept of Synthetic Cultures 
[22] complemented by an expert systems approach. Synthetic Cultures are scripts, 
created by experts on cross-cultural communication,  that catch a single extreme of a 
single dimension of culture in rules of behavior. They have been created for use in 
training counselors [22] and later adapted for use in simulation gaming for a multitude 
of applications [23]. Synthetic Cultures lead to believable behavior by simulation 
participants, and to realistic cross-cultural miscommunication, even though the 
synthetic cultures themselves are obviously unrealistic. Since their publication, a 
number of simulations based on synthetic cultures were created, the synthetic cultures 
were refined based on experience [24] and they have become adopted by cross-
cultural trainers around the world. 

Literature and expert knowledge are mostly based on differentiation along the 
dimensions. It is feasible to acquire knowledge on the differentiation along a single 
dimension, whereas it proved to be impossible in practice to interpret the joint 
influence of multiple dimensions on general rules. A  classical knowledge acquisition 
approach was followed for each dimension: interview experts on the cultural theory, 
read literature, write narratives of expected system behavior, have experts validate the 
narratives, correct until the experts have confidence in the narratives. In addition to 
the narratives, the knowledge acquisition resulted in a list of relevant cultural factors2 
for each dimension. O n the basis of the knowledge gained, the influence of the 
relevant factors for a single dimension on each parameterized decision rule can be 
formalized as a set of rules that modify the parameter values. See F ig. 3 for an 
overview of these steps. 

 
 

 

F ig. 3. K nowledge acquisition and formalization 

 

                                                           
2 Some dimensions adapt the perceived relevance of certain relational attributes. F or instance, 

the salience of common group membership (in-group versus out-group) is adapted by the 
dimension of individualism versus collectivism. O ther such relational attributes are status 
difference and trust. ‘Cultural factors’ combine dimension scores and relational attributes. 
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The next activity in the modeling was to implement the rules in multi-agent-based 
models for each single dimension F ig. 4. The step of the modeling per dimension is 
described for each of Hofstede’s dimensions in [25], [26], [27], [28], and [29]. The 
results of these models can only be validated by expert validation. In reality, cultures 
are composites of all dimensions and interactions with other dimensions distort the 
effect being modeled.  

 

 

F ig. 4. Computational modeling and validation for a single dimension 

F inally, the parameter adaptation rules of the individual dimensions were 
combined into an integrated set of rules, as the basis for a computational model of the 
simultaneous influence of all dimensions (F ig. 5). The integration technique used to 
integrate the adaptation rules is the subject of the present paper. This technique has 
been applied in models for the agent’s processes of partner selection [30], negotiation 
[31], and delivery, monitoring and enforcing, and belief update [20]. 

 

 

F ig. 5. Integration and computational modeling of joint dimensions 

3   Integrated Computational Model 

This section describes the approach taken to integrate the parameter adaptation rules 
for the single dimensions into an agent model that simulates an complete cultural 
“Gestalt”. The approach has been applied to differentiate trading agents in a 
simulation game according to Hofstede’s dimensions, but it is described in a more 
general way. The approach might also be applied for other dimensional models or  to 
other processes where the decisions can be described by parameterized rules and data 
or expertise is available to assess the effects of culture on the parameter values. F rom 
this general perspective, we formulate the approach as follows. 

A ssume for some domain of application that a set of adapted decision rules per 
dimension and accompanying sets of parameters and cultural factors are given (see 
F ig. 2 and F ig. 3). This section discusses an approach to integrating all this knowledge 
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into one integrated computational model that reflects the influence of culture on 
decision making in the domain. The key concepts used in our approach are described 
as follows (see Table 1 for an overview). 

T able 1. A n overview of the key concepts 

D imensions C ultural factors Parameters ranging over 1 ≤ i≤ m 

ranging F actor F actor Label set P: p1 … pm 

over label set value set default value: x1 … xm 

1≤ j≤ n L F  adjusted value: x1′ … xm′ 

1 l11 f11  r111  rm11 

 … …  …  … 

 
11ql  

11qf   
111qr   

11qmr  

…       

n ln1 fn1  r1n1  rmn1 

 … …  …  … 

 
nnql  

nnqf   
nnqr1   

nmnqr  

 
The m parameters used in the domain model are labeled p1 through pm, with 

associated default values x1 through xm, for some reference culture, and values 
adjusted for culture x1′ through xm′.  F or instance, in the A BMP negotiation model 
applied in the trading agents simulation, a parameter k is has label 
pk= “negotiation_ speed”; it has a global default value xk for a particular context, equal 
for all agents; for each individual agent, the value is modified to its cultural adjusted 
value  xk′, so xk′ will probably be different for agents having different cultural profiles. 

F or each culture dimension j, there is a range of qj cultural factor labels lj1 through 

jjql  with associated values fj1 through 
jjqf . Variable i is consistently used in this 

paper to range over parameters (values or labels), whereas j ranges over dimensions, 
and k over cultural factors per dimension j. F or each factor label ljk and each 
parameter pi, there is a function rijk that maps factor value fjk and default value xi to 
adjusted parameter value xi′. Table 1 presents an overview of these key concepts. 

The integrated effect of culture on agent behavior can be modeled as a function h 

that maps a vector of cultural factors f
�

 and a vector of default values of model 

parameters x
�

 to a vector of culturally adjusted parameters x ′
�

: 

( ) xxfh ′=
���

,  . (1) 

The hypothesis of this work entails that, given the set of decision functions, a 
dimensional theory of culture can be used (a) to identify the cultural factors to be 
taken into account and (b) to define the mapping h. If this is possible, the agent 
modeling can benefit from vast bodies of social sciences literature that describe the 
differentiation of many behaviors along the dimensions of the cultural model. This 
literature can be used to define h for the wide range of behaviors described in it, 
assuming that we can formulate parameterized decision functions governing the 
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behaviors. The literature is the basis for finding the attributes of agents and their 
relations which are relevant for moderation of the model parameters. This approach to 
integration of effects of cultural dimensions has been applied in [20], [30], [31]. In 
expert-systems based knowledge acquisition the effect of culture can be formulated in 
statements like: “In hierarchical societies there are differences in selected trade 
strategy . T he higher ranked prefer to trade high quality  valuable commodities to 
underline their status that fits their position in life. T hey  w ill not avoid deals w here 
less pow erful opponents technically  have the opportunity  to defect, because the higher 
ranked rely  on their pow er to enforce cooperation.” [25].  

This example refers to the effect of Hofstede’s power distance dimension. It refers 
to multiple decision processes: partner selection, delivery, and monitoring and 
enforcing. It illustrates that research and experts can explain the differentiation of 
behaviors along a single dimension on the basis of dimensional theory. It also 
illustrates that it is hard to acquire knowledge about the processes in isolation. 
Therefore, the approach is taken to first model individual dimensions and then 
integrate the models process-by-process. 

T able 2. Relevant factors with respect to trust and deceit, adapted from [20]; PDI*, UA I*, IDV*, 
MA S*, and LTO * represent Hofstede’s indices of culture, sa the agent’s own status, sb partner’s 
status, and db group distance between the agent and its partner; all variables were normalized to 
the interval [0,1]; + indicates an increasing effect on the parameter; – indicates a decreasing 
effect 

Effect on Dim-
ens-
ion 
index 

Culture and relational 
characteristics 

Cultural factor  
deceit 
thresh-

old 

inclin- 
ation 

to trace 

negative 
update 
factor 

positive 
update 
factor 

PDI Large power distance PDI*     

 - with higher ranked partn. max{ 0,PDI*(sb–sa)}  + –   

 - with lower ranked partn. max{ 0,PDI*(sa–sb)}   –   

 Small power distance 1– PDI*     

UA I Uncertainty avoiding UA I*   + – 

 - with stranger UA I*⋅db – +   

 Uncertainty tolerant 1– UA I*     

IDV Individualistic IDV*     

 Collectivistic (1–IDV*)   +  

 - with in-group partner (1–IDV*)(1–db)  –   

 - with out-group partner (1–IDV*)db –    

MA S Masculine (competitive) MA S* – + –  

 F eminine (cooperative) 1– MA S*  –   

LTO  Long-term oriented LTO * + – +  

 Short-term oriented (1–LTO *)     

 - with well-respected part. (1–LTO *)sb + –   

 - with other partners  (1–LTO *)(1–sb) –    
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The example also illustrates that not just the values of the dimensional indices are 
relevant for modeling the effect of culture. Relational attributes are relevant as well. 
In this example Hofstede’s power distance index (PDI) is relevant. It orders countries 
on a scale with the most hierarchical culture at the high end and the most egalitarian 
country at the low end. Conditional upon the value of PDI, the status of the agent and 
its partner are relevant: “T he higher ranked” refers to agents that have a high status sa 
in society; “less pow erful opponents” refers to opponents with which the status 
difference sa−sb , where sb refers to opponent’s status, is high. So, in order to model 
cultural effects on decisions, not just the indices on the dimensions have to be taken 
into account as factors, but also relational attributes if their effect is differentiated 
across cultures. Based upon the example given, one can identify PDI⋅sa and 
PDI(sa−sb) as relevant factors in addition to PDI. 

Based on the knowledge acquired for all individual dimensions, all relevant 
cultural, relational and situational factors can be identified. In the example of trade the 
following have been identified as relevant relational attributes: status, in-group versus 
out-group membership, and the trust relation between partners. F or instance, the 
vector of cultural factors influencing the decisions to deceive and to trust identified by 
Jonker et al. [20] can be taken from the column labeled “Cultural factor” in Table 2. 
Such a table is constructed for each process or group of processes, in this case the 
trade processes of delivery, monitoring and enforcing, and belief update. It contains 
the expert knowledge for cultural adaptation of the agents’ decision making. It 
contains the relevant cultural factors (on the rows) and the parameters to be adapted 
(in the columns). The cells describe the effect of culture on the parameters. 

Having identified f
�

 for a particular set of processes, and assuming that the vector 

of parameter values x
�

 follows from the chosen decision functions, it comes to the 
definition of the function h. h can be decomposed into a vector of functions gi , i.e., 
one per parameter, that map h’s arguments to the individual culturally adjusted 
parameter values xi′: 

( ) ( ) ( )( ) ( )( ) ( )xfgxfggxfgxfgxfh mm
�����

�
��

�
����

,,,,,,,,, 11 ===  , (2) 

so that 

( )

( )xfgx

xfgx

mm
��

�

��

,

,11

=′

=′

 . (3) 

The problem now is to find the functions gi for i= 1,…,m. F or this purpose the 
following hypothesis can be formulated: given that dimensional models of culture aim 
to provide for each dimension a linear ordering of the strength or frequency of 
occurrence of phenomena associated with that dimension, the effect of each cultural 
factor may be modeled as a strictly monotonic function rijk that adapts the i-th 
parameter to the k-th factor associated with the j-th dimension. rijk can be seen as a 
member of a set of functions r that can be indexed by the labels of cultural factors and 
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parameters as arguments. rijk maps the value fjk of the cultural factor with label ljk into 
an effect eijk on the parameter with label pi: 

ijkijkijk exfr →×:  , (4) 

( )jkiijk lprr ,≡  , (5) 

and 

( ) ( )( )ijkjkiijkijkijk xflprxfre ,,, ==  , (6) 

where Ppi ∈ , the set of parameter labels, and Ll jk ∈ , the set of  factor labels. 

A s the rijk are strictly monotonic, they can be classified as either increasing or 
decreasing. F or each parameter label pi its set of factors Li

+ that have an increasing 
effect and its set of factors Li

− that have a decreasing effect can be defined: 

}{ increasing is |: ijkjkii rlLPp ≡∈∀
+  , (7) 

}{ decreasing is |: ijkjkii rlLPp ≡∈∀
−  . (8) 

By the knowledge acquisition process taken, the increasing and decreasing effects 
of the cultural factors can be identified, as illustrated in Table 2 [20]: Li

+ is the set of 
factor labels that have a + sign in the column associated with the parameter labeled pi; 
Li

− is the set of factor labels that have a minus sign in the column associated with pi.  
The next problem to solve is the combination of these influences into a single 

effect on each parameter, i.e. to identify the functions gi that moderate the effect of 
culture on the parameters. O n the basis of expert knowledge the following rules can 
be formulated as hypotheses: 

1. In gi there is no interaction between the factors f
�

 and other parameters than xi. 

This assumes that any decision model can be formulated in such a way that any 
parameter can be modified for culture without taking the values of the other 
parameters into account. F or the models we have implemented so far ([20], [30], 
[31])  this assumption is valid. 

2. The joint decreasing and the joint increasing effect can compensate for each other. 
This expertise is confirmed by expert statements, e.g. (in cultures with high power 
distance) “T he pow erful dictate the conditions. T he less pow erful have to accept. In 
feminine or collectivist cultures the pow erful may  exercise restraint, …” [25]. 

3. F or the increasing and for the decreasing effects, the effect with the maximal 
influence is dominant: influences in the same direction do not reinforce each other. 
A ccording to expert knowledge, if several factors influence a parameter in the 
same direction, it is sufficient for one to be maximal in order to sort maximal effect 
(disjunctive factor influence, see e.g. “feminine or collectivist”) under 2 above. 
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4. Cultural factors working in the same direction do not reinforce each other. This 
means that, for instance, in Table 2 three factors are identified to have increasing 
effect on deceit threshold. If two of the factors have effect 0.5 and one has effect 
0.2, their joint effect is 0.5; not 0.4 (the average) or another linear combination (see 
3 above); not 0.8 (probabilistic) or another product combination. 
The first of these three hypotheses implies that the integration can be performed 

column-by-column using factor tables like Table 2, and we can write the functions as: 

( ) ( )iii xfgxfg ,,
���

=  . (9) 

The second hypothesis implies that the functions gi can each be defined as the sum 

of xi and a function 0≥+
ig  that combines the increasing effects and a function 

0≤−
ig that combines the decreasing effects: 

( ) ( ){ }( ) ( ){ }( )−−++
∈+∈+≡ ijkijkijkiijkijkijkiiii LlxfrgLlxfrgxxfg |,|,,

�
 . (10 ) 

F or the functions gi
+ and gi

− a range of function types were experimented with 
(probabilistic and linear combinations, to name the most obvious). However, under 
the third and fourth hypotheses all except weak disjunction proved to be untenable3.  
We found that both gi

+ and gi
− can be written as a weak disjunction: 

( ){ }( ) ( ){ }+++
∈=∈ ijkijkijkijkijkijki LlxfrLlxfrg |,max|,  , (11) 

( ){ }( ) ( ){ }−−−
∈=∈ ijkijkijkijkijkijki LlxfrLlxfrg |,min|,  . (12) 

Equations (11) and (12) enable the integration of the computational models 
constructed for the single dimensions. F or this the form of the functions 

( ) ( )( )ijkjkiijkijk xflprxfr ,,, =  has to be defined. A ll that is known so far about these 

functions is that they are strictly monotonic. A s long as there is no further evidence, a 
first order approach can be taken, i.e., let rijk adjust xi proportionally to fjk from its 

default value in the direction of the extreme values iijk x>
+ε  and iijk x<

−ε  : 

( ) ( ) jkiijkijkijkijki fxxfrLlkjPpi −=∈∀∀∈∀
++ ε,:|:|  , (13) 

( ) ( ) jkiijkijkijkijki fxxfrLlkjPpi −=∈∀∀∈∀
−− ε,:|:|  . (14) 

Under this first order approach, using (11) and (12), (10) becomes: 

                                                           
3 Weak disjunction is consistent with the hypotheses 3 and 4 above. A ny linear or product 

combination of cultural factor is not. 

MABS 2010 - p.  140 / 157



( ) ( ){ } ( ){ }−−++
∈−+∈−+= ijkjkiijkijkjkiijkiii LlfxLlfxxxfg |min|max, εε

�
 . (15) 

In practice, the values of +
ijkε  and −

ijkε  are unknown. However, minimal and 

maximal values can be assumed not to depend on the cultural dimension j, and 

estimates −
iε̂ and +

iε̂ can be determined per model parameter. Under the assumptions 

+++ =∈∀∀∈∀ iijkijki LlkjPpi εε ˆ:|:|  , (16) 

−−− =∈∀∀∈∀ iijkijki LlkjPpi εε ˆ:|:|  , (17) 

(15) can be written (N.B.: 0ˆ >−+
ii xε  and 0ˆ <−−

ii xε ): 

( ) ( ) { } ( ) { }−−++
∈−+∈−+= ijkjkiiijkjkiiiii LlfxLlfxxxfg |maxˆ|maxˆ, εε

�
 . (18) 

Concluding, given default values for a specific context, e.g. trade in biologically 
grown vegetables or trade in second hand cars, and realistic minimal and maximal 
values for each parameter, using knowledge represented as in Table 2, the function in 
equation (18) can be used to estimate parameter values xi′ that are adjusted for culture. 

4   Conclusion 

This paper presents an approach to the modeling of cultural differentiation in 
multi-agent based simulations. It argues that a dimensional theory of culture is a good 
basis for middle-range agent-based models that simulate differentiation over a broad 
range of cultures. The decomposition of cultural phenomena into a set of linear 
orderings on a limited number of dimensions enables dimension-by-dimension 
modeling of cultural effects. The concept of Synthetic Cultures, well tested in 
practice, shows that dimension-by-dimension scripts give rise to believable, if 
unrealistic, behavior. A s the dimensions provide a linear ordering, it is reasonable to 
assume that each dimension (and relational attributes relevant for differentiation of 
behavior associated with it) has a strictly monotonic effect on decision rule 
parameters, if all other factors are kept constant. 

The integration of effects of all dimensions is based on (1) a division of effects in a 
subset of increasing and a subset of decreasing effects per parameter, (2) the use of a 
weak disjunction of the effects per cultural factor, and (3) compensation of increasing 
effects for decreasing effects and vice versa. The approach has been applied in several 
simulations of trade processes and has been validated to produce realistic tendencies 
across cultures in expert-validations. 
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A n approach as followed in this paper aims to reproduce general tendencies of 
behavioral differentiations across cultures at an aggregated level. It can be used as a 
research instrument to generate hypotheses about behavioral differentiation that can 
be validated in experiments, or to validate theories induced from experimental results. 
A s a mid-range model, it cannot be used to predict effects of culture in actual 
situations or at the individual level. 

The approach was applied to simulations of trade processes, on the basis of 
Hofstede's five-dimensional theory of culture (e.g. [23]), but it is not specific for this 
domain and this theory of culture. It could also be applied to other domains, or other 
theories of culture, provided that parameterized decision models are available that 
may be expected to have general validity across cultures, and that sufficient 
knowledge for cultural adaptation can be acquired from social sciences literature and 
experts.  
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Abstract. Phenomena in the housing market can be recreated and analysed 

using the technique of agent-based modelling.  Housing policies, such as urban 

regeneration, seek to address problems of deprivation in segregated 

communities by introducing the concept of mixed communities, that is, 

communities mixed by housing tenure and housing type.  In this paper, a 

framework for the creation of a model of housing choice and regeneration 

policy is presented.  

 
Keywords: agent-based modelling, housing choice, urban regeneration policy 

1 Introduction 

Housing Policy associated with welfare housing is one of the instruments used by 

government to manage the housing sector and includes, as a part of its remit, attempts 

to improve the dwelling conditions of those unable to provide suitable homes for 

themselves.  Deprivation and the state of the poor have played instrumental roles in 

the direction of these policies.   Such policies are often presented under the umbrella 

of Urban Regeneration.  As defined by Bramley et al. [1], regeneration is the process 

of recovering and renewing lost vitality to the physical and social landscape.  Hull [2] 

argues, however, that despite the physical changes in the urban mosaic of most 

regenerated cities, Urban Regeneration Policy does not effect a narrowing of the gap 

between the disadvantaged and those of higher social standing.  On the contrary, Hull 

[2] calls such policies a failure. 

 

These contrasting viewpoints raise many questions.  Is the government’s new goal of 

equipping the less advantaged with the tools to seek market provisions likely to yield 

successful results?  What are the likely results of the recent housing-led regeneration 

policies and will these results fall in line with the goals envisioned by government?  

In this paper, we suggest that agent-based modelling (ABM) is a technique which can 

illuminate the problems associated with Urban Regeneration Policy.   
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Housing market models in the realm of social simulation are discussed.  This 

discussion is the precursor for the introduction of a new housing market model.  An 

original modelling framework is presented which refines conventional notions of 

preference to include a broad range of socio-demographic, economic and 

geographical variables.  The importance of model testing and validation in specific 

local contexts will be emphasized, and an empirical application for the area of East 

and South-East Leeds (EASEL), England, will be developed. 

2 Urban Regeneration Policy and EASEL 

With a population of over 700,000 residents, Leeds is one of the largest metropolitan 

districts in England.  The city is characterised by a booming financial sector and a 

large student population.  Despite this view of the city, it contains some of the most 

deprived communities in the United Kingdom [3].  At least 46,000 Leeds residents 

live in areas rated amongst the 3% most deprived in England [4].  Most of these 

residents live within the EASEL area. 

 

The EASEL area is residence to more than 36,000 households.  According to the 

EASEL Aspiration Needs and Housing Study 2007 [5], 85% of the Super Output 

Areas (SOAs) in EASEL fall within the top 10% most deprived in England while 

91% fall within the top 20% in England.  (An SOA is a census neighbourhood with 

approximately 300 households.)  Issues of deprivation and social disadvantage, high 

unemployment, and above average rates of crime plague these communities. 

 

Of primary interest to this research is the role of housing in the regeneration scheme. 

The central policy objective is the creation of sustainable communities, a term 

strongly linked to mixed communities.  Note that, mixed communities are 

communities diversified by socio economic status and housing tenure.  In the UK 

context, housing tenure can be largely divided into two categories; social housing – 

houses owned and or administered by the Local Council – or Private housing.  Leeds 

City Council [4] believes that the success of this goal hinges on the creation of a 

stable housing market.  The council intends to introduce a greater mix of housing 

tenures in council owned areas by introducing private housing into otherwise state 

owned housing stock areas. This, it argues, reduces movement turnover in 

communities thus providing a gateway for creating sustainable communities.  In order 

to facilitate this, an estimated 7,800 new homes are to be built to create these new 

mixed communities – mixed by housing tenure.  

 
Proponents for this form of tenure diversification argue that mixed communities can 

contribute to a smaller concentration of unemployed people by attracting 

economically active households to previously deprived neighbourhoods [6].  Others 

claim, however, that though this can thin out the problem of deprivation, it still does 

not solve the problem of social disadvantage [7], [8]. 

 

Whether the policy of creating mixed communities will yield the required results is 

questionable - there are not sufficient results on which to base an informed 
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judgement. What is known, however, illustrates that the theory overshadows the 

practicality of the results.  Through computational modelling, the validity of these 

hypotheses can be tested. 

3 Social Simulations in the Housing Market 

Approaches to housing market modelling are not new to the field of computer 

simulation.  However, the dynamics of this market are intricately woven into the 

complex system of the world in which we live.  Its volatility can be seen as house 

prices fluctuate due to activity in the financial market.  These fluctuations affect terms 

of lending, interest rates and general attitudes towards risk, among others.  Merging 

these factors with discriminatory individual level behaviour nevertheless creates an 

environment ripe with modelling opportunities.   

 

Existing research on the dynamics of the housing market is extensive [9], [10], [11], 

[12], [13], [14], [15].  Issues of residential preferences, ethnic segregation within 

communities, residential mobility, housing choices and the impact of government 

policy, continue to generate interest.  Through computer models and simulation, the 

intricacies of this dynamic market can be explored.   

 

The work of Thomas Schelling is noted  as one of the first agent-based models of its 

kind to replicate discriminatory individual level housing behaviour in the form of a 

model [16].  Schelling [17], [12] examined the role of preferences in an artificially 

created community and illustrated how individual behaviour can create significant 

collective results not directly intended by the individual [17].  Schelling proved that 

even with slight preferences, total segregation can be effected if these preferences are 

exercised. 

 
Schelling’s work, though simple, forms the basis for much research on individual 

choice, segregation and integration.  Work by Pancs and Vriend [18] examined the 

role of preferences in relation to integration policy.  They concluded that even when 

individuals preferred integrated neighbourhoods, the impact of preferences led to 

segregated communities.  Furthermore, when public policies were enacted to heighten 

tolerance levels, individuals still gravitated towards others like themselves.   In a 

similar way, Zhang [19], [20], in his mathematical model, concluded that even in 

areas where pure integration is preferred, segregation is likely. 

 

Aguilera and Ugalde [21] attached house prices to each space on a lattice grid.  

Individuals were rated by socioeconomic status and income and moved to match their 

status with the price of their house.  In this case, segregation was observed.  Yin [22] 

increased the dynamics in his model by devising a social simulation to examine the 

issue of race, social class and residential segregation.  He illustrated that factors such 

as race and economic constraints, when exercised as a part of the housing choice 

process, can cause segregation of varying degrees at the aggregate level.  However, 

Yin illustrated that when housing policies were implemented this segregation could be 

reduced once racial sensitivity was low.  Therefore, integration seems likely if people 
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are educated to favour it and/or housing policies are implemented to create integrated 

societies.  However, if communities are left to form naturally with limited 

interference where policy is concerned, segregation is likely to occur. 

 

Models like these tackle various aspects of the problem of segregation and integration 

as they relate to activity in the housing market.  The model outlined in this paper 

encapsulates the design noted in previous, similar social simulations while extending 

the design further to mirror conditions and trends in the EASEL area more closely.  

Such a real world application is aimed at refining Schelling’s notion of preferences to 

include not only ethnicity but also preferences pertaining to the family life cycle; 

housing tenure type; accommodation type; distance to city; accessibility of transport 

routes; distance to schools; cost of housing and knowledge of the new neighbourhood.  

These preferences interact with policy directives and environmental conditions such 

as changes in interest rates, in/out migration and the presence of new facilities such as 

schools.  Not only is there no record of this being done but applying such a model to 

an existing project such as EASEL provides the opportunity to test model outcomes 

against actual outcomes as time progresses. 

 

Research such as this challenges our understanding of causal relationships in the 

housing market and more specifically in the EASEL area.  At the aggregate level, 

policy makers are able to gauge how population profiles change over time, raising a 

need for more services such as schools and healthcare facilities.  In a similar way, 

such research could point out where services would be better placed and lead to 

reassessment of resource planning.  This is important when asset management is 

considered, especially amidst the reality of difficult economic times.  Also, having 

never been implemented in the EASEL area, regeneration policies do not have a 

proven track record.  A model such as this can provide a platform for scenarios to be 

created and tested in an effort to speculate on their performance. 

 

Though other modelling techniques are well established in the housing market 

domain, such as microsimulation [23] and spatial interaction modeling [24], agent-

based modeling allows for the manipulation of individual level behavior at an atomic 

level.  Agent-based systems appear to recreate events in ways more similar to 

activities in the real world.  They are dynamic in nature as agent states continue to 

change due to their interaction with other agents and interaction with the environment 

in which they exist.  Collective resultant behaviour possibly characterised by 

emergence may provide further useful insights beyond conventional results [25].  

Building on this premise, the framework for the EASEL Housing Simulation model is 

discussed. 

4 The Model Defined 

As a replica of activity in the EASEL area, the EASEL Housing Simulation uses 

households and houses to represent individual agents.  For the purpose of this project, 

a household is used to represent a collection of residents living together.  Details of 

the household representative person were derived from the Household Sample of 
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Anonymised Records (SAR) therefore one record is used to represent the entire 

household (see below).  Such a record is deemed sufficient in representing this unit as 

it comes with details on the number of residents in the household, including the 

number of children. 

 

Fundamentally, each household resides in a house for an undetermined time period 

until some push factor influences the decision to move.  These push factors may range 

from changes in household size, to changes in disposable income or forced moves of  

state-owned housing tenants as initiated by the City Council.  In general, household 

agents are inputted into the simulation and initially assigned to houses.  As the model 

advances from one time step to the other, environmental variables are updated to 

simulate changing economic and social conditions in the market.  While this happens, 

households wishing to move are identified and attempts to find a suitable new 

dwelling are made.   

 
The underlying framework of this model is presented in the sections to follow.  We 

examine the key stages in this process, beginning with the derivation of the input data, 

and the assignation of households to housing.    Time stepping in the model and the 

determination of movers is explained.  Then the location decisions of households are 

examined along with the background modelling of environmental variables.  

4.1 Derivation of the Input Data 

In demographic terms, the starting point for the simulation is a complete 

representation of households in the EASEL area.  Starting with a large anonymised 

sample from the UK population, households are selected to match the characteristics 

of EASEL (for example, high levels of council-owned housing, significant 

deprivation) using a reweighting process which is well-known in the spatial 

microsimulation literature [26].  Household data is generated from this Household 

Sample of Anonymised Records for England and Wales (www.ccsr.ac.uk), and output 

area data is drawn from the Census Area Statistics.  This method provides a complete 

representation for individual households of attributes collected in the UK Census, 

including ethnicity, age, family composition, health status, accommodation type and 

housing tenure.  This range of attributes provides the basis for implementing a rich set 

of rules for household movement and destination choice.  Shapefiles representing 

houses and roads are derived from data provided through the Ordnance Survey, while 

Output Area boundaries are downloaded through Edina UK Borders 

(www.edina.ac.uk).  

4.2 Assignation of Households to Houses 

Attached to each census Output Area (OA) is a set of attributes describing it.  

Average house prices, crime rates and levels of deprivation are noted.  When 

households are initially read into the model, each household is assigned to a house 

using the OA field in the household record generated by the microsimulation.  This 

matching of OA and households ensures that households are placed in areas which 
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Level 1 Age 

match their socio economic status.  Note that this process is necessary as data 

produced during the microsimulation only contains OA references and not exact 

house codes.  This is important in order to ensure that actual individuals cannot be 

identified in the Census data. 

4.3 Time Stepping 

The technique of time stepping is used in the simulation project to recreate an 

environment where events are measured in actual time.  In this way, the simulation 

can mimic time driven events in the real world.  We choose to increment the time step 

counter on a monthly basis as environmental variables, such as interest rates, are often 

recorded in this time unit. 

4.4 Determination of Household Movers 

The probability that a household wishes to move in a specific time interval is derived 

through an analysis of the Household SAR, which includes the variable ‘moved in the 

last year’ alongside other social, demographic and household characteristics.  In order 

to determine different movement probabilities for different socio-demographic 

groups, we built a decision-tree using the SPSS AnswerTree extension 

(www.spss.org).  The Household SAR contains several categorical variables, 

AnswerTree allows for the building of behavioural trees using chi-squared 

significance testing. 

 

The decision tree is shown schematically in Figure 1.  At each level in the tree, a 

household attribute is identified which differentiates by levels of movement.  For 

example, at the first level in the tree, Branch 1 represents household heads aged 25-44 

(high movement), branch 2 is ages 45-64 (moderate movement), and branch 4 is ages 

65+ (low movement).  Branch 3 represents young adults (under the age of 25), with 

very high levels of movement.  At the next level of the tree, each branch is further 

sub-divided by the next differentiating attribute.  In the case of young adults, there is a 

further three-way split which is based on housing tenure (e.g. private renters have the 

highest rates of movement).  The process continues for as long as significant factors 

can be identified to differentiate migration probabilities between households. 

Fig. 1 Decision Tree 
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At the bottom of the tree this leads to clusters of households with discrete 

characteristics and an associated rate of movement.  When the simulation is 

implemented, the characteristics of a household are parsed in order to allocate the 

household to an appropriate cluster.  Thus a household with a head aged between 25 

and 44, renting privately with less than 6 rooms would be allocated to cluster 14, with 

a migration probability of 0.53.  A random number is generated in the simulation, and 

if that number is lower than 0.53 then this household will be directed to the movement 

pool in the simulation. 

 

A full list of 22 clusters from the decision tree is shown in Table 1.  It can be seen that 

age and household composition; housing tenure, size, and accommodation type; and 

the occupation of householders are all important drivers of the movement process.  

Observe that notable attributes such as ethnicity (and others) were considered in the 

decision tree but not found to be significant.  We conclude that any variations in 

movement between ethnic groups are proxied by other variables such as household 

size and tenure, but also note that ethnicity can still be important in the choice of 

destination, which is a separate process (see below).  Note that significance is tested 

at each node of the decision tree through a comparison between the movership rates in 

each branch using a chi-squared statistic.  If the difference is not significant with 99% 

confidence then the node becomes a terminal; otherwise the branching process 

continues.  Branches are automatically terminated when there are less than 1000 cases 

available for examination. 
 

Table 1 Tabular list of decision tree clusters 
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4.5 Selection of Destinations 

When it is determined that a household will move, a new home must be found.  

Research generally identifies behaviours contributing to residential segregation as 

centering on selecting a location at which to live [10], [13], [14].  Segregation is often 

attributed to issues such as culture, religion, language, ethnicity groups, economic 

advantage and school searches [14].  Forces for segregation and dispersal are 

complex, dynamic and contextual in that they are experienced in different ways in 

different places by different types of households [14], nevertheless, some broad rules 

can be identified.  

 

The choice of where to move to is a combination of dwelling alternatives. One of the 

most important factors in this decision is the financial budget of the household [27], 

[28]. This is integral to the decision to be made, as across the housing market, houses 

are grouped according to price.  Even when limited by a budget, neighbourhood 

characteristics are important factors as they influence where households move. The 

physical conditions of the neighbourhood, amenities such as shops, school quality, 

security and transport connections are characteristics which can determine whether a 

household chooses to live in an area or not.  Importantly, the significance of each of 

these variables hinges not only on the preferences of the household but also on the 

household’s ability to afford the new dwelling as noted earlier.  

 

In a similar way, dwelling characteristics are important.  Dwelling characteristics such 

as dwelling size, type, age and quality must be included because at various stages of 

the family life cycle there are different dwelling requirements [29]. The choice to live 

in a house as opposed to a flat could be the result of a household with children 

desiring a garden for children to play. Similarly, the number of rooms may be linked 

to the size of the family.  Behaviours such as these can be further extended as 

represented in the literature.  We opt to implement nine main rules to represent the 

process adopted by households of choosing a new dwelling.  The rules have been 

derived from the existing literature as well as information given during informal talks 

with personnel from the Leeds City Council.  It is our intention to validate the rules 

against post-census migration data from pupil records and commercial surveys.  The 

rules will be implemented, individually in the first instance, in order to reduce the 

complexity of interpreting the results.  Following this, rules will be weighted 

according to the scenarios chosen, for example, a poor household, facing 

unemployment is likely to sacrifice living near to a community where ‘better’ schools 

can be found because such a household may not be in a position to afford the homes 

found in such an area.  Thus in satisfying the conditions for Rule 8, Rule 9 becomes 

less important.   

 

The rules are presented as follows: 

1. Households take the proximity of the City Centre into consideration when 

choosing a new house [29]. 

2. Households first tend to look for a new house within known areas [30]. 

3. Households will move to houses where the size of the house is adequate [30]. 

MABS 2010 - p.  152 / 157



4. Households will move to houses where the tenure type of the house is desired [29].  

Here tenure is linked to the ownership of the house; public rented, private rented or 

owned outright. 

5. Households will move to houses where the accommodation type is suitable [29]. 

Here accommodation type refers to the type of house; terrace, semi-detached, 

detached etc. 

6. Households will move to areas where the ethnic makeup is tolerable [10], [13], 

[14], [15], [31]. 

7. Households will move to areas where transport routes are accessible [29], [32]. 

8. Households will move to houses they can afford [28], [33], [34]. 

9. Households containing school-aged children will try to move to areas where better 

schools are accessible [35], [36], [37]. 

4.6 W hat are the Environmental Variables? 

As in the real world, the dynamics of the housing market will continually change in 

the model: interest rates, monetary policies, mortality and fertility rates.  Each of 

these variables has an effect on residential mobility.  For example, the birth of a child 

may lead to a young couple purchasing a new home to accommodate the growing 

family, whereas the death of an elderly person may result in a spouse opting to buy a 

smaller home.  Changes in interest rates affect house prices in the form of increased 

or decreased mortgage rates and or rental rates.  Such changes may cause the 

household to find a cheaper home or it may encourage the household to move 

opportunistically to a better home.  Each of these factors can encourage or discourage 

a household choice of a new home. 

5 Results 

In order to generate initial results, five experiments were created and executed.  The 

experiments are presented below with a brief discussion and a view of the way 

forward presented in Sections 5.1 and 5.2 respectively. 

5.1 Brief Review and Discussion of Results 

Using a sample population of 559 households, 606 houses distributed across 6 Output 

Area zones, various combinations of assumptions were applied in the model and the 

results observed.  Households are assigned to houses using the process as detailed in 

Section 4.2. 

MABS 2010 - p.  153 / 157



Table 2 Description of Experiments 

 
 

Exp1 is our starting point and represents the original Schelling model.  Here an ethnic 

push is assumed; individuals are motivated to move based on a dislike for the current 

ethnic mix in their community and opt to move to any other vacant home.  Clustering 

and equilibrium are realised very quickly with the average number of moves per 

household recorded at 9.  Note that equilibrium refers to a stable state where a 

negligible number of households are observed to be moving.  Every iteration of the 

model represents a time step of unspecified duration in which movement decisions are 

evaluated.   

 
Exp2 is an augmentation of Exp1.  Both an ethnic push and ethnic pull are assumed 

here; households leave neighbourhoods where the ethnic mixed is not tolerable and 

find homes in areas where the ethnic mix is tolerable (Section 4.5; Rule 6).  Again 

segregation is realised though after almost twice the number of iterations as previous. 

 

Exp3, 4 and 5 adopt the mover model as discussed in Section 4.4.  In Exp3, the 

combination of the mover model as the push factor and ethnic tolerance as the pull 

factor resulted in limited clustering.  Adding ethnicity to the push factors result in 

strong clustering after ~300 iterations as observed in Exp4.  Exp5 extended from 

Exp4 by searching for houses with the required amount of rooms (Rule 3, Section 

4.5).  As Table 2 notes, equilibrium is limited with only few clusters observed. 

 

These observations highlight the contributions of the mover model in limiting the 

number of times households move but also point out the importance of coupling this 

model with more subjective preferences such as ethnicity.  Though the ethnicity 

attribute was not highlighted in the above model, these experiments show that it is 
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important that provisions be made for its inclusion.  This can be seen in the fact that 

the results in Exp4 appear to be closer to reality. 

 

Adding more pull factors, as in Exp5, appear to  move the model to equilibrium very 

quickly while a negligible number of clusters appear.  This is likely to be the case as a 

result of the limited availability of the required house size, accommodation type and 

tenure type.  This restricted market is similar to reality as oftentimes a household may 

compromise on their housing requirements because of limitations in the available 

housing stock. 

5.2 W here to Next? 

As model development advances, the challenge will be to continue to recreate housing 

choice behaviours to mirror reality.  In a similar way, background processes which 

influence house prices must be created.  Such processes were discussed briefly in 

Section 4.6.  In order to alter the static nature of the housing stock, Regeneration 

Policy will be introduced by way of scenarios, for example, by introducing more 

houses in particular areas.  By merging housing choice behaviour, the background 

process of environmental variables and Regeneration Policy scenarios, a better 

understanding of future events can be gained.  In a similar way, we can gain more 

insight on the way housing choices are made in reality. 

6 Conclusion 

The housing market is stratified, so without policies which support mixed 

communities, households in the UK and elsewhere will cluster according to socio 

economic status and ethnicity.  In this paper, we have established a policy modeling 

framework for housing market behavior with urban regeneration.  A rich basis for the 

creation of agents and their movement patterns has been introduced.  We set out rules 

for location decisions based on a diverse set of characteristics and migration 

behaviours.  From our early experiments to explore the effect of agent rules, further 

results and policy simulations are now awaited which can begin to support the policy 

process and provide real insights into the establishment and maintenance of socially 

mixed communities. 
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