
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 20

The First International Workshop
on Infrastructure and Tools

for Multiagent Systems

ITMAS 2010

FIRST INTERNATIONAL WORKSHOP
ON INFRASTRUCTURES AND TOOLS

FOR MULTIAGENT SYSTEMS

ITMAS2010

Workshop Notes

Vicent Botti

Ana Garcia-Fornés

Jomi F. Hübner

Andrea Omicini

Juan A. Rodriguez-Aguilar

May, 10 2010

at AAMAS 2010
Toronto, Canada

i

Workshop Organization

Programme Chairs

Vicent Botti
Ana Garcia-Fornes
Jomi F. Hubner
Andrea Omicini
Juan A. Rodriguez-Aguilar

Programme Committee

Juan M. Alberola
Makoto Amamiya
Matteo Baldoni
Fabio Bellifemine
Juan A. Botia
Frances Brazier
Nadia Erdogan
Agustin Espinosa
Kamalakar Karlapalem
Yasuhiko Kitamura
Abder Koukam
Michal Laclavik

Pavlos Moraitis
Sascha Ossowski
Marcin Paprzycki
Michal Pechoucek
Murat Sensoy
Michael Shumacher
Carles Sierra
Jose Such
Pavel Vrba
Danny Weyns

External Reviewers

Antonio Barella
Estefania Argente
Nancy Ruiz

Nikolaos Spanoudakis
Ruben Ortiz

ii

iii

Prologue

Vicent Botti1, Ana Garcia-Fornes1, Jomi F. Hübner2,
Andrea Omicini3, and Juan A. Rodriguez-Aguilar4

1 Departament de Sistemes Informàtics i Computació, Universidat Politècnica de
València Camı́ de Vera s/n. 46022 València, Spain

{vbotti,agarcia}@dsic.upv.es
2 Department of Automation and Systems Engineering Federal University of Santa

Catarina PO Box 476 Florianópolis, SC 88040-900 Brasil
jomi@das.ufsc.br

3 Department of Electronics, Informatics and Systems (DEIS), Alma Mater
Studiorum-Università di Bologna Viale Risorgimento, 2 40136 Bologna, Italy

andrea.omicini@unibo.it
4 IIIA-CSIC, Campus de la UAB, E-08193 Bellaterra, Catalonia, Spain

jar@iiia.csic.es

INTRODUCTION

ITMAS aims at bringing together leading researchers from both academia and
industry to discuss issues on the design and implementation of infrastructures
and tools for Multiagent Systems. When developing applications based on Mul-
tiagent Systems, developers and users demand infrastructures and tools which
support essential features in Multiagent Systems (such as agent organizations,
mobility, etc.) and facilitate the system design, management, execution and eval-
uation. Agent infrastructures are usually built using other technologies such as
grid systems, service-oriented architectures, P2P networks, etc. In this sense,
the integration and interoperability of such technologies in Multiagent Systems
is also a challenging issue in the area of both tools and infrastructures for Multi-
agent Systems. A long term goal is the industrial development of infrastructures
for building highly scalable applications comprising pre-existing agents that must
be organized or orchestrated.

In order for Multiagent Systems to be included in real domains such as indus-
try, infrastructures and tools for Multiagent Systems should provide efficiency,
scalability, security, management, monitorization and other features related to
building real applications.

iv

Table of Contents

Invited Talk: A Middleware Architecture for Dynamic Agent Organizations 1
Danny Weyns

A Multi-agent Simulation Framework on Small Hadoop Clouds 2
Kamalakar Karlapalem, Prashant Sethia

An agent-based signal processing in-node environment for real-time
human activity monitoring based on wireless body sensor networks 10

Francesco Aiello, Fabio Luigi Bellifemine, Giancarlo Fortino, Raffaele
Gravina, Antonio Guerrieri

Trust and Reputation Through Partial Identities . 18
Jose M. Such, Agust́ın Espinosa, Vicent Botti, Ana Garcia-Fornes

Dispatching Agents in Electronic Institutions . 26
Hector G. Ceballos, Pablo Noriega, Francisco Cantu

Agents with cognitive capabilities for social simulation 34
Alberto Caballero, Juan Bot́ıa, Antonio Skarmeta

TRAMMAS: A Tracing Model for Multiagent Systems 42
Luis Burdalo, Andres Terrasa, Vicente Julian, Ana Garcia-Fornes

Drag-and-Drop Migration: An Example of Mapping User Actions to
Agent Infrastructures . 50

Silvan Kaiser, Michael Burkhardt, Jakob Tonn

AGRID - Agent Based Grid System . 57
Uygar Gumus, Nadia Erdogan

The Development of a middleware tool for Extending a MAS to a
Normative MAS . 63

Farnaz Derakhshan

Author Index . 71

v

vi

Invited Talk:

A Middleware Architecture for Dynamic

Agent Organizations

Danny Weyns

Katholieke Universiteit Leuven
Departement Computerwetenschappen

Celestijnenlaan 200 A
B-3001 Leuven, Belgium

danny.weyns@cs.kuleuven.be

ABSTRACT

Middleware is the software layer that lies between the operating system and the
application components. Middleware provides high-level abstractions to support
the coordination of distributed software components. Since multi-agent systems
are particularly useful for problem domains characterized an inherent distribu-
tion of resources, it is clear that any real-world multi-agent system application
should deal with the distribution concern. The dynamic interactions and collab-
orations among agents are usually structured and managed by means of roles
and organizations. In existing approaches agents typically have a dual respon-
sibility: on the one hand playing roles within the organization, on the other
hand managing the life-cycle of the organization itself, e.g. setting up the orga-
nization and managing organization dynamics. Engineering realistic multi-agent
systems in which agents encapsulate this dual responsibility is a complex task.
In this talk, I present MACODO: Middleware Architecture for COntext-driven
Dynamic agent Organizations. The MACODO middleware offers the life-cycle
management of dynamic organizations as a reusable service separated from the
agents, which makes it easier to understand, design and manage dynamic organi-
zations in multi-agent systems. To conclude, I put forward a number of research
challenges in the area of middleware for multi-agent systems.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

1

A Multi-agent Simulation Framework on Small Hadoop
Clouds

Kamalakar Karlapalem
Centre for Data Engineering

International Institute of Information Technology
Hyderabad, India

kamal@iiit.ac.in

Prashant Sethia
Centre for Data Engineering

International Institute of Information Technology
Hyderabad, India

prashant.sethia@research.iiit.ac.in

ABSTRACT
In this paper, we explore the benefits and possibilities about
the implementation of multi-agents simulation framework on
a Hadoop cloud. Scalability, fault tolerance and failure re-
covery has always been a challenge for a distributed systems
application developer . The highly efficient fault tolerant na-
ture of Hadoop, flexibility to include more systems on the fly,
efficient load balancing and the platform-independent Java
are useful features for development of any distributed sim-
ulation. In this paper, we propose a framework for agent
simulation environment built on Hadoop cloud. Specifi-
cally, we show how agents can be represented, how agent
do their computation and communication, and how agents
are mapped to data nodes. Further, we demonstrate that
even if some of the systems fail in the distributed setup,
Hadoop automatically rebalances the work load on remain-
ing systems and the simulation continues. We present some
performance results on this environment for few example
scenarios.

Keywords
Design, Experimentation, Reliability, Cloud Computing, Fault-
tolerance, Failure-resilience

1. INTRODUCTION
Multi-agent simulation is an important research field in

today’s scenario and analyzing emergent behaviors in such
simulations largely depend on the number of agents involved.
More the number of agents involved, closer is the result ob-
tained to the real world. Due to large number of agents,
time involved in such simulations becomes huge and so we
resort to a distributed computing solution. In order to run
such simulations, we require a fault-tolerant, fast and eas-
ily extensible agent-based simulation framework which can
handle a large number of processors. Further, separating
implementation of an agent-based framework from the code
which tackles hardware failures, will allow a framework de-
veloper to concentrate more on synchronization of processes
and their run-time optimization rather than their failures.

Hadoop is a promising option in this respect. It takes
care of non-functional requirements, like scalability, fault-
tolerance, load-balancing, and leaves the framework devel-
oper with the problem of framing a solution for the func-
tional requirements of a multi-agent simulation framework.
If some systems in the distributed environment fail, sim-
ulation does not stop. Hadoop autmomatically rebalances
the work load on remaining systems and continues to run
the simulation. Further, Hadoop facilitates dynamic addi-
tion of new nodes in a running simulation. In this paper, we

present a design of an agent-based simulation framework im-
plemented on hadoop cloud. To the best of our knowledge,
no multi-agent simulation framework provides the capabil-
ities of rebalancing work load on systems’ failures or dy-
namic addition of new nodes. Our framework, implemented
on Hadoop, provides these new features.

2. RELATED WORK
Developing tools for multi-agent simulations has always

been an active area of research, with emphasis being laid on
different aspects - architecture, scalability, efficiency, fault-
tolerance, effectiveness in modelling. A number of frame-
works have been developed - Netlogo [11], JADE [12], ZASE
[13], DMASF [14], MASON [15] - to name a few. The pro-
posed framework developed on Hadoop provides three major
advancements to the current state of art - (i) Dynamic ad-
dition of new computing nodes while the simulation is run-
ning; (ii) Handling node failures without affecting the ongo-
ing simulation by redistributing the failed tasks on working
systems; (iii) Allowing simulations to run on machines run-
ning different operating systems. Further, the framework in-
corporates several optimization techniques [clustering of fre-
quently communicating agents (for reducing inter-processor
communication) and caching of results (for improving per-
formance)] that are run on Hadoop cloud.

3. HADOOP ARCHITECTURE AND MAP-
REDUCE MODEL

Hadoop is an Apache project which develops open-source
software for reliable and scalable distributed computing. It
maintains a distributed file system, Hadoop Distributed File
System (HDFS) for data storage and processing. Hadoop
uses classic Map-Reduce programming paradigm to process
data. This paradigm easily fits a large number of problems.
Hadoop consists of a single master system (known as namen-
ode) along with several slave systems (known as datanodes).
For failure resilience purposes, it has a secondary namenode
which replicates the data of namenode at regular intervals.

3.1 Hadoop Distributed File System (HDFS)
HDFS is a block-structured file system: individual files

are broken into blocks of a fixed size (default size is 64MB).
These blocks are stored across a cluster of one or more ma-
chines (datanodes). A file can be made of several blocks, and
they are not necessarily stored on the same machine; the tar-
get machines which hold each block are chosen randomly on
a block-by-block basis. Thus, access to a file may require
the cooperation of multiple machines. If several machines
must be involved in the serving of a file, then a file could

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

2

be rendered unavailable by the loss of any one of those ma-
chines. HDFS solves this problem by replicating each block
across a number of machines (3, by default). The meta-
data information consists of division of the files into blocks
and the distribution of these blocks on different datanodes.
This metadata information is stored on namenode. Further-
more, the metadata structures (e.g., the names of files and
directories) can be modified by a large number of clients
concurrently. It is important that this information is never
desynchronized. It is for this reason that all the metadata
information is handled by a single machine (namenode).

3.2 Map-Reduce Paradigm
The MapReduce paradigm transforms a list of (key, value)

pairs into a list of values. The transformation is done using
two functions: Map and Reduce. Map function takes an
input (key, value) pair and produces a set of intermediate
(key, value) pairs.

map(key1,value1) -> list<(key2,value2)>

That is, for an input it returns a list containing zero or more
(key, value) pairs. The Map output can have a different key
from the input and it can even have multiple entries with
the same key. The MapReduce framework sorts the Map
output according to intermediate key and groups together
all intermediate values associated with the same intermedi-
ate key. If the amount of intermediate data is too large to
fit in memory, an external sort is used. The Reduce func-
tion accepts an intermediate key and a set of corresponding
values for that key. Typically just zero or one output value
is produced per Reduce invocation.

reduce(key2, list<value2>) -> list<value3>

The intermediate values are supplied to the Reduce func-
tion via an iterator. This allows handling lists of values that
are too large to fit in memory. The MapReduce framework
calls the Reduce function once for each unique key in sorted
order. Due to this the final output list generated by the
framework is sorted according to the key of Reduce func-
tion.

For example, consider the standard problem of counting
the number of occurrences of each word in a large collection
of documents. This problem can be solved by using the Map
and Reduce function in following form:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

The Map function emits each word along with an associ-
ated count of occurrences (just ‘1’ in this simple example).
The Reduce function sums together all counts emitted for a
particular word.

3.3 MapReduce Job Execution by Hadoop
In Hadoop terminology, by ‘job’ we mean execution of a

Mapper and Reducer across a data set and by ‘task’ we mean
an execution of a Mapper or a Reducer on a slice of data.
Hadoop distributes the Map invocations across multiple ma-
chines by automatically partitioning the input data into a
set of M independent splits. These input splits are pro-
cessed in parallel by M Mapper tasks on different machines.
Hadoop invokes a RecordReader method on the input split
to read one record per line until the entire input split has
been consumed. Each invocation of the RecordReader leads
to another call to the Map function of the Mapper. Reduce
invocations are distributed by partitioning the intermediate
key space into R pieces using a partitioning function. One
more thing to mention here is that some problems require a
series of MapReduce steps to accomplish their goals.

Map1 -> Reduce1 -> Map2 -> Reduce2 -> Map3...

Hadoop supports this by allowing us to chain MapReduce
jobs by writing multiple driver methods, one for each job,
using ChainMapper classes.

The namenode is responsible for scheduling various MapRe-
duce tasks on different datanodes. First the Map tasks are
scheduled and then the Reduce tasks. It gets periodic up-
dates from the datanodes about the work-load on each. It
computes the average time taken by MapReduce tasks on
each datanode and then does the distribution of tasks in
a way that the faster datanodes get more number of tasks
to execute and the slower ones get less number of tasks to
execute.

4. MULTI-AGENT SIMULATION
FRAMEWORK ON HADOOP

Each agent has three essential properties: a unique iden-
tifier, a time-stamp associated with the state of that agent
and type of agent, where identifiers and time-stamps (cur-
rent time) are generated by the framework itself, whereas
agent-type is provided by the user. User can specify addi-
tional properties. State of an agent at a particular times-
tamp refers to the set of its property-values at that times-
tamp. Likewise, an update in the state of an agent refers to
changes in these property-values. User needs to provide an
update-agent-state function for each type of agent, which is
a programmatic model for incorporating agent strategy.

Hadoop requires problems to be solved using MapReduce
model. This constraint is required in order to make the
scheduling of MapReduce tasks (done by Hadoop) indepen-
dent of the problem being solved. Further, by default Hadoop
invokes one Map task for each input file. Therefore, we
model a multi-agent simulation as a series of MapReduce
jobs with each job representing one iteration in the simu-
lation and we model each agent as a separate input file to
these jobs. This leads a particular job to invoke multiple
Map tasks, one for each agent, executing in parallel. The
function for updating the state of each agent, update-agent-
state, is written as Map task. Reduce tasks are responsible
for writing the data back into the file associated with each
agent.

Each agent-state is modelled as a separate flat file on
HDFS with file name being the agent identifier. This file
contains t most recent states of the agent, where t is a user
specified parameter (specified through getIterationParame-
ters() in CreateEnviron class desribed later), each state be-
ing distinguished by a timestamp. This file is the input for

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

3

map task initiated to update the state of an agent (one map
task for each input file/agent). Current state of an agent is
the one having most recent timestamp. A separate message
file is associated with each agent that stores recent messages
received from other agents.

One MapReduce task is invoked for each agent.
The framework implements two classes Agent and Agen-

tAPI. Class Agent contains two classes: Map and Reduce
corresponding to the MapReduce task.

Framework Supplied Code Classes

public class Agent {

public static class Map extends MapReduceBase

implements Mapper {

public void map(key, value,

OutputCollector<key, value>);
}

public static class Reduce extends MapReduceBase

implements Reducer {

public void reduce(key, Iterator<value>,

OutputCollector<key, value>);
}

public static void main(String [] args) {

//Create the simulation world.

CreateEnviron ce = new CreateEnviron();

iterparams = ce.getIterationParameters();

ce.createWorld();

//Configure map-reduce jobs.

//Invoke map-reduce task.

}

}

public class AgentAPI {

public void createAgent(map <object,

object> agent_data);
map<String,String> getAgents(map<object,

object> filters);
void sendMessage(String from_agent_identifier,

String to_agent_identifier, String message);
}

Each iteration in the simulation corresponds to one MapRe-
duce job invoked with one MapReduce task corresponding
to every single agent. In the map method of class Map, data
is read from associated input file of the agent into a Java
map<object, object>, say agent data, mapping agent prop-
erties to their values. Agent state is updated by execution of
user-supplied Update method (in the AgentUserCode class
described later). Timestamp is also updated to the current
time. All the properties are concatenated as a string, and
it is passed as a value in the (key, value) tuple to the Re-
ducer, key being the agent identifier. In the reduce method
of Reduce class, the input properties-concatenated string is
written in the corresponding agent flat-file. Main() function
creates the simulation world with the help of class CreateEn-
viron for which the code is supplied by user. The method
getIterationParameters() gets the user specified inputs such
as number of iterations the simulation is intended to run and
the number of most recent timestamps for which the agent
data is retained in the flat files. Method createWorld() is
also supplied by user. It creates agents and initializes the
world.

The framework supplies code for the AgentAPI class. Method
createAgent(map <object,object>) creates a flat file in HDFS
with name as agent identifier and writes the initial state of
agent. Method getAgents(map <object,object> filters) re-

turns all those agents which satisfy the given set of filters.
Several keywords help in this respect, for example, if all the
agents are required, then user can pass agent-identifier as
‘ALL’ in filters map. sendMessage() function sends a mes-
sage to another agent. It writes the current timestamp and
identifiers of the two agents involved in communication in
message files associated with them. Finally the user needs
to supply the code for strategy of different types of agents.

Classes for which code is supplied by user

public class CreateEnviron {

public map<object,object> getIterationParameters();

void createWorld() {

//map <object, object> agent_data initialized.

AgentAPI crobj=new AgentAPI();

crobj.createAgent(agent_data);

//And so on for any number of agents.

}

}

public class AgentUserCode {

map<object, object> Update(map<object,
object> agent_data) {

switch (agent_data["type"]):

case "type1":

//User code for update.

case "type2":

....

}

void Shape(String agent_identifier) {

switch (agent_identifier):

case "type1":

//User code for rendering shape.

case "type2":

....

}

}

5. HANDLING FAILURES
System failures are a common case when number of sys-

tems involved are large. Information about the namenode
and secondary namenode is present on all the datanodes.
The namenode sends a heart-beat message to datanodes at
regular intervals (by default 600 seconds; can be configured
by user). Each datanode sends an acknowledgement message
along with the information regarding the status of various
tasks running on it. This information includes the number
of completed MapReduce tasks (for the current MapReduce
job) after the last heart-beat message received and the total
time taken to complete them. It also includes number of
active MapReduce tasks and number of MapReduce tasks in
queue, waiting to be scheduled.

When a particular Map (or Reduce) task fails (and in cases
when a slower Map task is becoming a bottleneck for rest of
the processes), Hadoop spawns a new process to carry out
its job, and may also use idle processes to do its task (the
ones which have completed their Map/Reduce task). When
one of the several processes spawned to complete the failed
task finishes it, rest of them are aborted (Speculative execu-
tion). Thus, the simulation enters into next iteration only
when all Map tasks in the current iteration are completed.
Hence Map tasks is used for updating an agent’s state in a
particular iteration. We address the common failure cases
and how they are being handled.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

4

5.1 Namenode Failure
If the datanodes do not receive heartbeat message from

the namenode for more than two time intervals (1200 sec-
onds), then the namenode is considered to be failed. The
namenode data has already been replicated on secondary na-
menode at regular intervals. Therefore, failure of namenode
does not cause any loss of data. Datanodes (on detecting
namenode failure) at once declare the secondary namenode
as the new namenode. All the responsibilities of namenode
like job scheduling are now taken up by this new namen-
ode. Further, the datanode which is physically nearest to
the new namenode (for faster namenode data replication)
is selected as the new secondary namenode. A special case
occurs when the secondary namenode turns out to be failed
at the instant when namenode is detected as failed. In this
case, the simulation is aborted.

5.2 Secondary Namenode Failure
The namenode detects secondary namenode failure if it

does not receive any acknowledgement for the heart-beat
message. Since, secondary namenode only had replica of na-
menode data, therefore its failure is handled simply by elect-
ing a new secondary namenode from the current datanodes
(datanode physically nearest to the namenode is selected).

5.3 Datanode Failure
Namenode detects a datanode failure if it does not re-

ceive an acknowledgement of the heart-beat message from
the datanode. Data of each node is replicated on three other
nodes in the distributed system. As such, when a datanode
fails its data can be recovered easily using its replica. How-
ever, it might be running several MapReduce tasks when it
failed. These MapReduce tasks need to be rescheduled on
some other datanode. Two cases arise for a failed MapRe-
duce task: (i) failure occurred while running the Map task;
(ii) failure occurred while running the Reduce task. When
the datanode fails while running its Map task, the entire
MapReduce task needs to rescheduled on some other datan-
ode and the complete task needs to be done again. If a
datanode failure occurs while running a Reduce task, then
optimally the Map task should not be redone. For achiev-
ing this, output of Map task is replicated (as soon as it is
finished) on those datanodes which contain the data replicas
for the failed datanode. Thus, if a datanode fails when it is
running Reduce task, then only the Reduce task is resched-
uled and redone on some other node.

Thus, even if some of the machines fail in the Hadoop
cluster, the simulation does not stop and carries on.

6. DYNAMIC ADDITION OF NEW NODES
Namenode maintains a file containing the details of IP

addresses of different machines (datanodes). It sends heart-
beat messages to the systems mentioned in this file. If a
new system needs to be added in the Hadoop cluster, then
information about it simply needs to be added in this file.
When the namenode finds a new entry in this file, it im-
mediately grants access to HDFS to the new datanode and
invokes MapReduce tasks on this system, rebalancing the
total work-load. Since, heart-beat messages are sent every
600 seconds, therefore the newly added datanode can be idle
at most for this period. Further, the simulation need not be
stopped for achieving this addition. This feature of dynam-
ically adding new nodes is not provided by any other multi-
agent simulation framework to the best of our knowledge.

7. IMPLEMENTATION ISSUES
The above model faces run-time challenges which needs

to be addressed. When number of agents becomes large
(of the order 107 agents on 100 machines), overhead due
to generation of large number of MapReduce tasks becomes
huge. Further, the way in which the agents are distributed
on different datanodes may affect the run-time adversely.
We present below the challenges faced with above model
and workarounds for the same.

7.1 Agent Communication
Agent simulation requires communication between differ-

ent agents. In the present model, agent communication oc-
curs by fetching the state of other agent from their cor-
responding agent files which reside on different datanodes.
This can be a time consuming factor in such simulations.
Hence, the number of accesses to files residing on remote
datanodes need to be reduced. This is achieved by placing
the agents which communicate with each other frequently
on the same data node. We framed the following algorithm
for achieving this purpose.

7.1.1 Agent Clustering algorithm based on
agent-communication

Given K sites, agents a1, a2, ..., aN , and communica-
tion statistics between these agents, the problem is to re-
distribute the agents on these sites in such a manner that
communication between agents on same site (intra-site com-
munication) is maximized and that between agents on dif-
ferent sites (inter-site communication) is minimized. Order
of the solution needs to be O(N) as the number of agents
involved is very large.

ALGORITHM : Greedy Agent-Redistribution.

1. Distribute the N agents randomly on K sites, and
carry out one iteration of the simulation.

2. For every agent ai, on each site j,

(a) Compute the list of agents with which ai commu-
nicated using the message file associated with ai.
Call ai as the representative agent.

(b) Map each agent ak in ai’s list to ai only if id-
value(ai) <= id-value(ak). Denote this map table
as Rj . Also, map agent ai to itself.

3. Combine map-tables Rj’s from different sites into a
single map table R using the following update rule :

if (Rm(ak) < Rn(ak))

then, R(ak)=Rm(ak)

else,

R(ak)=Rn(ak)

4. Let R(ak) = al. Then, do R(ak) = R(al). Do this
update for all the entries in table-map R.

5. Form groups of agents in such a way that, all agents
ai in the same group have the same value for R(ai).

Step 3 in the algorithm is required, because same agent
ai may communicate with several agents on different sites
and hence having different values for Rj(ai). Next, consider
a case when agent ai is occuring on two sites m and n. On

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

5

site m, ai is a representative agent and having Rm(ai) = ai.
On site n, it is not a representative agent and has Rn(ai)
lower than ai. In such a case, R(ai) = Rn(ai). All the
elements which initially mapped to ai on site m have to
be re-mapped to Rn(ai). This justifies Step 4 of the above
algorithm.

As an example, let the distribution of agents and commu-
nication links between them be as shown in figure below.

Step 2 (corresponding to the algorithm) : R1(a1)
= a1; R1(a3) = a3; R1(a7) = a1; R2(a2) = a1; R2(a6) =
a3; R3(a6) = a5; R3(a4) = a3; R3(a5) = a4

Step 3 : R(a1) = a1; R(a3) = a3; R(a7) = a1; R(a2) =
a1; R(a6) = a3; R(a4) = a3; R(a5) = a4

Step 4 : R(a1) = a1; R(a3) = a3; R(a7) = a1; R(a2) =
a1; R(a6) = a3; R(a4) = a3; R(a5) = a3

Step 5:-
Group 1 : a1, a2, a7

Group 2 : a3, a4, a5, a6

7.1.2 Execution of Greedy Agent-Redistribution Al-
gorithm on Hadoop

Above algorithm has O(M/S) complexity, where M is the
number of unique communication links between different
agents and S is the number of sites. Since we already have a
Hadoop cloud setup, we use this cloud to run this algorithm
too (apart from the agent simulation code) and compute
the clusters. So, we reframed the algorithm into a Chained
MapReduce model and executed it on Hadoop. Execution is
carried out in two chained MapReduce jobs. Output of first
MapReduce job becomes the input to the Map phase of sec-
ond MapReduce job. Finally, clusters of agents are obtained
as output from the second MapReduce job. Step 1 in the
above algorithm corresponds to MAP-1, Step 2 corresponds
to REDUCE-1. Further, Step 3 is executed as MAP-2 and
Step 4 as REDUCE-2.

In MAP-1 phase:.
Input - Agent and the list of agents, it communicated

with. This is represented as a single line of numbers : x1,
x2,..., and xk, where x1 represents the identifier of current
agent under consideration, and the following numbers are
identifiers of agents who communicated with the current
agent. The input consists of several such lines, one for each
agent in the simulation. The input split and load balancing
is done by hadoop itself.

Output - (Key, Value) pairs (xi, x1) if x1 <= xi.

In REDUCE-1 phase:.
Input - The output from MAP-1.
Output - Different values corresponding to the same key

are brought together in a list by Hadoop. Let V almin de-
note minimum of these values. Reduce this list of values
to a single value, V almin. Therefore, output of this phase
is the reduced set of (Key, Value) pairs. Further, if a pair
with same value for Key and Value occurs (e.g. (2,2)) then

(2, V almin) is written in a separate file. This is useful for
phase MAP-2. Refer the file containing the latter tuples as
Representative Maps.

In MAP-2 phase:.
Input - (Key, Value) pairs from REDUCE-1 output and

the file Representative Maps.
Output - For each Key, the corresponding Value is mapped

to R(Value) using the Representative Maps, which contains
(Value, R(Value)) pairs. Finally, the pair is reversed. There-
fore, the output of the phase is (R(Value), Key).

In REDUCE-2 phase:.
Input - (Key, Value) pairs from MAP-2.
Output - Values corresponding to same key are grouped

together in a list by Hadoop itself. Therefore the final output
of the phase is (Key, List of Values). e.g. : If (k1, v1), (k1,
v2), (k1, v3) were present in the output of MAP-2. Then
the corresponding output pair will be (k1, [v1, v2, v3]).

These are the required clusters.

7.1.3 Allocating Sites to the Agents
Finally the clusters obtained are allocated on different

sites such that all agents belonging to the same cluster occur
together on same site as far as possible. We follow the below
procedure for site allocation.

ALGORITHM : Agent-Allocation.

site = 1

for each cluster c

if (size(c) + allocation(site) < capacity(site))

then,

Allocate this site to all agents in cluster c.

else,

Allocate this site to maximum possible number

of agents in cluster c.

site = site + 1

Reduce cluster c to unallocated agents.

Repeat the loop for this c.

Update allocation(site) appropriately.

where, size(c) denote the size of cluster c, allocation(site)
gives the current number of agents being allocated to this
site, and capacity(site) gives the maximum number of agents
which this site can hold.

7.2 Small-Files-Problem
Every file, directory and block in HDFS is represented as

an object in the namenode’s memory, each of which occupies
about 150 bytes. So if we have 10 million agents running
then we need about 3GB (assuming each file has one block)
of memory for the namenode. Furthermore, HDFS is not
geared up to efficiently accessing small files: it is primarily
designed for streaming access of large files. Reading through
small files normally causes lots of seeks and lots of hopping
from datanode to datanode to retrieve each small file, all of
which is inefficient. Moreover, map tasks usually process a
block of input at a time. If the file is very small and there
are lots of them, then each map task processes very little
input, and there are a lot more map tasks running, each of
which imposes extra book-keeping overhead.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

6

An alternative for storing agent data in small flat files, is
to store them in an Hbase table.

7.2.1 Hbase Model for Representing Agents
In Hbase, data is logically organized into tables, rows and

columns. HBase can be reduced to a 5-tuple model (Row-
Key, Column-Family, Column-Key, Time-stamp, Value). Each
row-key maps to a set of column-families, which in turn con-
tains a set of column-keys. For each column-key, there are
several versions of the value stored, distinguished by differ-
ent time-stamps. The keys are typically strings, the times-
tamp is a long and the value is an uninterpreted array of
bytes. The column-key is always preceded by its family and
is represented like: family:key. Therefore, in this model, to
retrieve a single value, the user needs to specify a row-key,
a column-key and a timestamp.

When using Hbase, each agent is represented as a row.
Row-keys are generated by framework. Each row has col-
umn familes corresponding to each data type in Java. At-
tributes of agents are modelled as column-keys, with each
key belonging to the corresponding data-type column family.
Timestamp is also associated with each column-key. Agent
identifier is constant throughout, so one can configure to
store only one instance of this attribute. An example is
shown below.

RowKey Col.Family Col.Key TimeStamp Value
1 int x t1 40

t2 50
y t1 20

t2 20
z t1 30

t2 25
String agent id t2 1232

agent type t1 Good
t2 Bad

2 int x t1 40
t2 40

....

....
Java APIs for Hbase enables one to query it directly.

Framework code thus becomes simpler because of this. Also,
Hbase can be configured to maintain values in the table for
a fixed number of timestamps and hence the framework de-
veloper need not code for maintaining flat files.

In Hbase, physically, tables are broken up into row ranges
called regions. Each row range contains rows from start-key
(inclusive) to end-key (exclusive). A set of regions, sorted
appropriately, forms an entire table. Row range is identified
by the table name and start-key. A separate MapReduce task
is invoked for a single Hbase region. Now, the problem of
optimizing communication between agents reduces to bring-
ing frequently communicating agents in the same region or
in regions on same datanode. For this, the developer just
needs to change the row-key of that agent who is frequently
communicating to agents in other regions, and set the value
of row-key such that the value lies within the row-range of
the new destined region. Physical re-location of the agent
tuple is done by Hbase itself.

7.3 Queries in Agent-State Updates
An agent, to decide its next state, needs to know about

the state of other agents. For achieving this we implemented
the method getAgents(filters) in class AgentAPI. Execution
of this method is significantly time consuming as it needs to
access a large number of files and most of them residing on

different datanodes. For overcoming this time consumption,
we cache results of recent queries in the HDFS.

It is common that same type of agents issue similar queries.
So, if another agent issues a query whose result has already
been computed and cached, then we return the cached result
to it. Another improvement in this respect would be to find
out intersection of the filters specified by different agents,
and compute and cache the result of this set (intersection
set) of filters. This cached result is then used to find out
result for the superset query filters. For example, for the
queries x > 60, x > 40 and x = 90, the superset would be x
> 40. Another example would be, for the queries x < 40 and
y < 50, x > 30 and y < 60 and z > 40, the superset would
be y < 60. Hbase is really useful in this respect as it allows
us to store various attributes along with their data types
in a more structured manner. This makes the semantics of
queries more clear.

The cached result files are physically replicated on each
datanode with the help of DistributedCache class of Hadoop.
This provides a rapid access of the cached results to the
datanodes. Name of the cache file indicates the query, along
with the iteration number and timestamp during which it
was created. Cache files older than a predefined threshold
are regularly deleted.

Adding to the solution for the above problem, we built
an index of agents based on the frequent query fields (at-
tributes), and updated this index at regular intervals. This
allowed a faster lookup for the potential candidate agents
for the query.

8. RESULTS
In our experiments, we took various multi-agent simula-

tion problems of diverse nature, so as to test thoroughly the
overhead of execution of the two optimization algorithms
- clustering of agents and caching of intermediate results -
running on top of Hadoop framework. We had set up a
Hadoop cloud with three Unix machines, each having 1.67
GHz processor with 1GB RAM. Our experiments involved
20,000 agents distributed on these three machines and in-
teracting with each other for 150 iterations. Some of the
interesting results obtained are presented here.

(i) Circle Simulation.
In this problem, agents are scattered randomly on a 2-D

plane. Their goal is to position themselves in a circle, and
then move around it. The strategy involed computation of
arithmetic mean of locations of all the agents. A frequent
query is executed to compute this mean to get the locations
of all agents. Accessing the agent files on different systems,
everytime (once in each agent update function) an agent
requested, was avoided by caching locations of all the agents
once and then using this cached value for future reference.
This cache was updated in every iteration.

(ii) Standing Ovation Problem.
The basic SOP can be stated as: A brilliant economics

lecture ends and the audience begins to applaud. The ap-
plause builds and tentatively, a few audience members may
or may not decide to stand. Does a standing ovation ensue
or does the enthusiasm fizzle? The authors present a simu-
lation model for the above problem in [7]. We modelled the
auditorium as a 100 X 200 grid, and agents were randomly
assigned a seat. Agents in this simulation communicated
with almost a constant set of neighbouring agents. Hence

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

7

Figure 1: Results Figure 2: Results

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

8

the clustering algorithm proposed earlier showed marked re-
duction in number of inter-site messages and showed major
improvements in run-time. Time for each iteration was al-
most halved.

(iii) Sand-pile Simulation.
In this problem, grain particles are dropped from a height

into a beaker through a funnel, and they finally settle down
in the beaker after colliding with each other and with the
walls of beaker and funnel. A detailed description and so-
lution of the problem is given in [8] and for visualization of
the problem refer to the link [9].

The queries generated in this problem were not generic
enough to give good results on caching intermediate results.
Also, the set of agents with which a particular agent inter-
acted, changed too frequently. Hence, movement of agents
from one machine to another was also frequent. The results
show that even if the inherent nature of a problem did not
match the clustering and caching optimizations, execution
overhead of such algorithms did not worsen the runtime.

(iv) KP Simulation.
This simulation is done to test messaging efficiency of the

framework. Agents are divided into groups with K agents in
each group. P is the number of messages sent by each agent
on receiving P messages from other agents in the group.
Results obtained for different values of K and P are shown.

(v) Dynamic Nodes Addition.
In this simulation, we tested the ability of Hadoop to redis-

tribute agents when new datanodes are dynamically added
to the Hadoop cluster. We ran sand-pile simulation with
Hadoop cloud consisting of only one datanode. After fifty
iterations, we added another datanode. Finally we added a
third datanode after 100 iterations. Results obtained show
that run-time decreased to half between iteration numbers
50-100 and to almost one-third in the last set of fifty itera-
tions.

9. CONCLUSION
Cloud computing is a recent advancement in the field

of solving larger problems. Multi-agent simulations when
scaled up to a large number of agents require a potential
framework to run them. Hadoop provides a novel frame-
work for running applications involving thousands of nodes
and petabytes of data. It allows a developer to focus on
agent model and their optimization without getting involved
in fault tolerance issues. Extensibility of hardware on which
framework is running is made easy by Hadoop, by allowing
dynamic addition of new nodes and by allowing heterogene-
ity between operating systems which the different nodes are
running. Therefore, it provides a strong backbone for im-
plementing large scale agent-based simulation framework.

Using cached results is a major optimization in the frame-
work. Developing better heuristics for caching results and
to determine appropriate cache sites for faster access of the
results are some of the challenging tasks and work is going
on in this direction. A faster lookup for agents is achieved
by indexing them on frequently queried agent attributes.

Hadoop (in version 0.21.0) is planning to provide an API
in which the users can embed their own algorithm for distri-
bution of files on datanodes in the hadoop framework. This
will allow us to try several strategies for optimizing inter-
node communication.

10. REFERENCES

1. Jeffrey Dean and Sanjay Ghemawat - MapReduce: Sim-
plified Data Processing on Large Clusters. Proceedings
of the 6th conference on Symposium on Opearting Sys-
tems Design and Implementation - Volume 6, 2004.

2. Steven F. Railsback, Steven L. Lytinen, Stephen K.
Jackson - Agent-based Simulation Platforms: Review
and Development Recommendations - Society for Com-
puter Simulation International, 2006.

3. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson
C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber - Bigtable:
A Distributed Storage System for Structured Data.
Seventh Symposium on Operating System Design and
Implementation, Seattle, WA, 2006.

4. Hadoop wiki page : [http://wiki.apache.org/hadoop]

5. Some information about Hadoop 0.21 version release :
[http://issues.apache.org/jira/browse/HDFS-385]

6. Nuannuan Zong, Feng Gui, Malek Adjouadi - A New
Clustering Algorithm of Large Datasets with O(N) Com-
putational Complexity : Proceedings of the 5th Inter-
national Conference on Intelligent Systems Design and
Applications, 2005.

7. John H. Miller, Scott E. Page - The Standing Ova-
tion Problem : Computational modeling in the social
sciences, 2004.

8. Laurent Breton, Jean Daniel Zucker, Eric Clement - A
multi-agent based simulation of sand piles in a static
equilibrium : MABS, Boston, 2001.

9. Visualization of sand piles problem :

[http://grmat.imi.pcz.pl]

10. Cloud-computing Wikipedia-page:

[http://en.wikipedia.org/wiki/Cloud computing]

11. Seth Tisue - NetLogo: Design and implementation of
a multi-agent modeling environment - International
Conference on Complex Systems, Boston, 2004.

12. F Bellifemine, A Poggi, G Rimassa - JADE : A FIPA
compliant agent Framework. - PAAM (1999)

13. Gaku Yamamoto, Hideki Tai, Hideyuki Mizuta - A
Platform for Massive Agent-Based Simulation and Its
Evaluation - AAMAS, 2007.

14. IVA Rao, M Jain, K Karlapalem - Towards Simulating
Billions of Agents in Thousands of Seconds - AAMAS,
2007.

15. Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan
G. - MASON: a multiagent simulation environment -
Society for Computer Simulation International, 2005.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

9

An agent-based signal processing in-node environment
for real-time human activity monitoring based on wireless

body sensor networks
F. Aiello1, F.L. Bellifemine2, G. Fortino1, R. Gravina1,3, A. Guerrieri1

1 Department of Electronics, Informatics and Systems (DEIS), University of Calabria, Rende (CS), Italy
2 Telecom Italia, Turin, Italy

3 Telecom WSN Lab, Berkeley, CA, USA
faiello@si.deis.unical.it, fabioluigi.bellifemine@telecomitalia.it, g.fortino@unical.it, {rgravina,aguerrieri}@deis.unical.it

ABSTRACT
Nowadays wireless body sensor networks (WBSNs) have great
potential to enable a broad variety of assisted living applications
such as human biophysical/biochemical control and activity
monitoring for health care, e-fitness and emergency detection, and
emotional recognition for social networking, security and highly-
interactive games. It is therefore important to define design
methodologies and programming frameworks which enable rapid
prototyping of WBSN applications. Several effective application
development frameworks have been already proposed for WBSNs
based on TinyOS-based sensor platforms, e.g. CodeBlue, SPINE,
and Titan. In this paper we present an application of MAPS, an
agent framework for wireless sensor networks based on the Java-
programmable Sun SPOT sensor platform, for the development of
a real-time WBSN-based system for human activity monitoring.
The agent-oriented programming abstractions provided by MAPS
allow effective and rapid prototyping of the sensor software. In
particular, the architecture of the developed system is a typical
star-based WBSN composed of a coordinator node and two sensor
nodes located respectively on the waist and the thigh of the
monitored assisted living. The coordinator is based on an ad-hoc
enhancement of the Java-based SPINE coordinator and allows
configuring the sensors, receiving their data, and recognizing pre-
defined human activities. On the other hand, each sensor node
runs a MAPS-based agent that performs sensing of the 3-axial
accelerometer sensor, computation of significant features on the
acquired data, feature aggregation and transmission to the
coordinator. Finally, the experimentation phase of the prototype is
also described; it allows evaluating the obtainable monitoring
performances and activity recognition accuracy.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures.
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multiagent systems. C.3 [Special-purpose and application-
based-systems]: Real-time and embedded systems.

General Terms
Algorithms, Design, Experimentation.

Keywords
Wireless body sensor networks, software agents, real-time human
activity monitoring.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are currently emerging as

one of the most disruptive technologies enabling and supporting
next generation ubiquitous and pervasive computing scenarios
[18]. WSNs are capable of supporting a broad array of high-
impact applications in several domains such as disaster/crime
prevention, military, environment, logistics, health care, and
building/home automation. WSNs applied to the human body are
usually called Wireless Body Sensor Networks (WBSNs) [21].
WBSNs are conveying notable attention as real-world
applications of WBSNs aim at improving the quality of life of
human beings by enabling continuous and real-time non-invasive
medical assistance at low cost. Health-care applications where
WBSNs could be greatly useful include early detection or
prevention of diseases, elderly assistance at home, e-fitness,
rehabilitation after surgeries, motion and gestures detection,
cognitive and emotional recognition, medical assistance in
disaster events, etc.

However, programming WBSN applications is a complex
task due to the hard constraints of the wearable devices in terms of
limited resources (computing power, memory, and
communications) and to the lack of proper and effective software
abstractions. To deal with these issues, several software
frameworks have been developed such as CodeBlue [12], Titan
[10], and SPINE [7]. They aims at decreasing development time
and improving interoperability among signal processing intensive
applications based on WBSNs. In particular, they basically rely on
a star-based network architecture, which is organized into a
coordinator node and a set of sensor nodes. Moreover, they are
developed in TinyOS at the sensor node side and in Java at the
coordinator node.

However, apart from the adoption of effective frameworks,
we believe that the exploitation of the agent-oriented
programming paradigm to develop WBSN applications could
provide more effectiveness as demonstrated by the application of
agent technology in several key application domains [6, 11]. In
this paper, we therefore propose an agent-oriented approach to
develop WBSN applications based on the MAPS framework [1, 2]
which enables agent-oriented programming by offering powerful
abstractions which allows rapid prototyping of WSN applications
on the Sun SPOT sensor platform. The proposed approach is
exemplified through the implementation of an agent-based real-
time human activity monitoring system. In particular, its
architecture is a typical star-based WBSN composed of a

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

10

coordinator node and two sensor nodes which are located on the
waist and the thigh of the monitored human being, respectively.
The coordinator is based on an ad-hoc developed enhancement of
the Java-based SPINE coordinator [7, 17] and allows configuring
the sensing process, receiving sensed data features, and
recognizing pre-defined human activities through a KNN
classifier. Each sensor node executes a MAPS-based agent that
performs sensing of the 3-axial accelerometer sensor, computation
of significant features on the acquired data, feature aggregation
and transmission to the coordinator. Finally, the experimentation
phase of the developed prototype allows evaluating the obtainable
monitoring performances and activity recognition accuracy.

The rest of this paper is organized as follows. Section 2
discusses related work ranging from monolithic WBSN
applications to domain-specific frameworks. Section 3 describes
the reference architecture for WBSN application from network
and functional perspectives. Section 4 presents the proposed
agent-oriented approach and the agent-based development of the
real-time human activity monitoring system. In Section 5 an
evaluation of the developed system is reported. Finally
conclusions are drawn and on-going research delineated.

2. RELATED WORK
Most of previous research on WBSN applications has

focused on proof-of-concept applications with the aim of
demonstrating the feasibility of new context-aware algorithms and
techniques, e.g. for the recognition of physical activity through
accelerometer sensors or prompt detection of hearth diseases [16,
3, 21]. Moreover such research has considered issues related to
power consumption and radio channel usage but taking scarcely
into account code reusability and modularity. One of the most
relevant attempts to define a general platform able to support
various WBSN applications is CodeBlue [12]. CodeBlue is a
framework based on TinyOS [20] specifically designed for
integrating wireless medical sensor nodes and other devices that
could be involved in a disaster response setting. CodeBlue allows
such devices to discover each other, report events, and establish
communications. CodeBlue relies on a publish/subscribe-based
data routing framework in which sensors publish relevant data to a
specific channel and end-user devices subscribe to channels of
interest. It provides end-user devices with a query interface to
retrieve data from previously discovered sensor nodes. While it is
possible to select sensor types or physical node identifiers as data
sources, configure the data rate and define in-node threshold-
based filters to avoid unnecessary data to be transmitted, more
sophisticated in-node processing on the sensor data is not
supported. A different approach is proposed by Titan [10], which
is also implemented in TinyOS. Titan is a middleware for
distributed signal processing in WSNs that supports
implementation and execution of context recognition algorithms
in dynamic WSN environments. Titan represents data processing
by a data flow from sensors to recognition result. The data is
processed by tasks which implement elementary computations.
Tasks and their data flow interconnections define a task network,
which runs on the sensor network as a whole. Tasks are mapped
onto each sensor node according to the sensors and the processing
resources it provides. Titan dynamically reprograms the WSN to
exchange context recognition algorithms, handle defective nodes,
variations in available processing power, or broken
communication links. The architecture of Titan is composed of
several software components, which enhance modularity.

Although CodeBlue and Titan raise the programming abstraction
level by offering general-purpose platforms and middlewares for
effectively developing signal processing applications in WBSNs,
they are sometimes too general for providing efficient solutions in
specific application domains. Thus, domain-specific frameworks
[3, 30] have been proposed which are positioned in the middle
between application-specific code and middleware approaches.
They specifically address and standardize the core challenges of
WSN design within a particular application domain. While
providing high efficiency, such frameworks allow for a more
effective development of customized applications with little or no
additional hardware configuration and with the provision of high-
level programming abstractions tailored for the reference
application domain. An example of such approach is represented
by the SPINE framework [7, 17]. SPINE provides libraries of
protocols, utilities and processing functions, and a lightweight
Java API that can be used by local and remote applications to
manage the sensor nodes or issue service requests. By providing
these abstractions and libraries, that are common to most signal
processing algorithms used in WBSNs for sensor data analysis
and classification, SPINE also provides flexibility in the
allocation of tasks among the WBSN nodes and allows the
exploitation of implementation tradeoffs. Currently SPINE is
implemented for several sensor platforms based on TinyOS [20]
and Z-Stack [22] by using the programming paradigms offered by
such platforms (event and component-based programming in
TinyOS and C programming in Z-Stack) and is being effectively
applied to the development of applications in the health care
domain [8]. In this paper we propose an agent-oriented approach
which borrows the basic features characterizing the domain
specific framework approach, particularly SPINE, with the aim to
provide more programming effectiveness as demonstrated by the
application of agent technology in several key application
domains [6, 11].

3. A REFERENCE SYSTEM FOR WBSN-
BASED SIGNAL PROCESSING
The network architecture of the reference WBSN system for
signal processing is organized into multiple sensor nodes and one
coordinator node (see Figure 1). The coordinator manages the
network, collects, stores and analyzes the data received from the
sensor nodes, and also can act as a gateway to connect the WBSN
with wide area networks (e.g. Internet) for remote data access.
Sensor nodes measure local physical parameters and send raw or
pre-processed data to the coordinator. In this system, sensor nodes
only communicate with the coordinator according to the star
network topology. However, the system could be easily extended
to support also direct and multi-hop communications among
sensor nodes. In the reference architecture a sensor node is
associated with a single coordinator; a possible extension is to
allow sensor nodes to be associated and communicate with
multiple coordinators. A scenario where such architecture could
be used is when a human wearing sensor nodes moves across
locations; in this case such sensors should connect to a different
coordinator at each different location. The software architecture of
the system consists of two main components, implemented,
respectively, on the coordinator (e.g. a PC or a smart-phone) and
on the WBSN sensor nodes. Figure 2 shows a schema of the
architecture from a functional point of view.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

11

Figure 1: Reference system network architecture

Figure 2: Software architecture layers of the system from the
functional perspective

At the coordinator side, an interface to the BSN which is
placed between user applications and the hardware and software
host platform is made available. User applications manage the
WBSN through a system API. The top level of the software
architecture at the coordinator allows registered applications being
notified of the following events generated by the WBSN:
discovery of new nodes, sensor data communication, node alarms,
and system messages such as low battery warnings. Commands
issued by the user application and network-generated events are
both coded in lower-level messages and decoded in higher-level
information by the Host Communication Manager according to a
specific over-the-air protocol. This component handles packets
generation and retrieval and is interfaced with specific software
components of the host platform to access the physical radio
module to transmit/receive packets to/from the WBSN.

At the sensor node side, the software framework provides
abstractions of hardware resources such as sensors and the radio, a
default set of ready-to-use common signal processing functions
and, most importantly, a flexible and modular architecture to be
customized and extended to support new physical platforms and
sensors and introduce new signal processing services. In
particular, the Node Communication Manager acts as the
counterpart of the Host Communication Manager. The Sensor
Controller manages and abstracts the sensors on the node
platform, providing a standard interface to the diverse sensor
drivers. It is responsible of sampling the sensors and storing the
sensed data in properly defined Buffers. The Node Manager is the
central component, responsible for recognizing the remote
requests and dispatching them to the proper components. Finally,
the Processing Manager consists of a dispatcher for the actual
processing services and a standard interface for user-defined
services integration. It is worth noting that the SPINE framework
[7, 17] is designed according to such an architecture.

4. AGENT-BASED SIGNAL-PROCESSING
IN-NODE ENVIRONMENT
In this section we propose an agent-based approach to design and
implement the system architecture described in section 3; in
particular, the system is specialized for real-time human activity
monitoring based on sensor nodes equipped with a 3-axial
accelerometer. First, an overview of MAPS (Mobile Agent
Platform for Sun SPOTs) architecture and programming model is
provided; then, the MAPS-based development of the system is
detailed.

4.1 An overview of MAPS
MAPS is a novel Java-based framework for wireless sensor
networks based on Sun SPOT technology [1, 2, 14] which enables
agent-oriented programming of WSN applications. Other few
agent-oriented frameworks [6, 9, 4] for WSNs have been
proposed; however, they are all based on TinyOS but one, the
AFME framework [15], which is being ported to Sun SPOT.
MAPS has been appositely defined for resource-constrained
sensor nodes according to the following requirements:

- Component-based lightweight agent server architecture to
avoid heavy concurrency models and, therefore, exploit
cooperative concurrency to execute agents;

- Lightweight agent architecture to efficiently execute and
migrate agents;

- Minimal core services involving agent migration, sensor
resources capability access (actuators, input signalers, flash
memory, and battery), agent naming, agent communication,
and timing.

- Plug-in-based architecture extensions through which any
other service should be defined in terms of one or more
dynamically installable components implemented as single or
cooperating (mobile) agent/s.

- Java as programming language for the agent system and
(mobile) agents.

The MAPS architecture, which is shown in Figure 3, consists of
the following basic components:

- The mobile agent (MA) is the high-level components of each
agent-based application. It is implemented as a single-
threaded Isolate according to the Java Sun SPOT libraries.

- The mobile agent execution engine (MAEE) supports the
execution of agents by means of an event-based scheduler
enabling lightweight concurrency. It handles each event
emitted by or to be delivered at an MA through decoupling
event queues. The MAEE interacts with the other core
components to fulfill service requests (message transmission,
sensor reading, timer setting, etc) issued by MAs.

- The mobile agent migration manager (MAMM) supports the
migration of agents from one sensor node to another. In
particular, the MAMM is based on the feature of Isolate
(de)hibernation provided by the Sun SPOT environment [19]
and is therefore able to stop and hibernate an MA, serialize it
into a byte array and transmit it to the target sensor node. On
the migration target sensor node, the MAMM can receive a
message containing a serialized MA, deserialize, dehibernate
and resume it. The agent serialization format includes data
and execution state whereas the code should already reside at

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

12

the destination node (this is a current limitation of the Sun
SPOTs which do not support dynamic class loading and code
migration).

- The mobile agent communication channel (MACC) enables
inter-agent communications based on asynchronous
messages supported by the Radiogram protocol. Messages
can be unicast or broadcast.

- The mobile agent naming (MAN) provides agent naming
based on proxies to support the MAMM and MACC
components in their operations. The MAN also manages the
(dynamic) list of the neighbor sensor nodes which is updated
through a beaconing mechanism based on broadcast
messages.

- The timer manager (TM) provides the timer service which
allows for the management of timers to be used for timing
MA operations.

- The resource manager (RM) provides access to the resources
of the Sun SPOT node: sensors (3-axial accelerometer,
temperature, light), switches, leds, battery, and flash
memory.

Figure 3: Architecture of MAPS.

The main programming abstractions of MAPS are Agents and
Events. While events formalize interaction among components
and agents, agents are the active entities whose behavior is
modeled as a multi-plane state machine (MPSM). The MPSM
consists of a set of planes, global variables and global functions.
Each plane may represent the behavior of the MA in a specific
role so also enabling role-based programming. In particular a
plane is composed of local variables, local functions, and an
Event-Condition-Action (ECA) ruled automaton that represents
the dynamic behavior of the MA in that plane. The automaton is
composed of states and mutually exclusive transitions among
states. Transitions are labeled by ECA rules: E[C]/A, where E is
the event name, [C] is a boolean expression based on the global
and local variables, and A is the atomic action. A transition t is
triggered if t originates from the current state (i.e. the state in
which the ECAA is), the event with the event name E occurs and
[C] holds. If the transition fires, A is executed and the state
transition finally takes place. In particular, the atomic action can
contain global/local variable and functions to carry out
computation, and, particularly, the core primitives (see Figure 4)
to request specific services. As agents interact through events, the
delivery of an event at agents is asynchronous and carried out by
the event dispatcher (a component of the MAEE) which inserts

the event in the agent queue. Once the ECAA is idle (i.e. the
handling of the last delivered event is completed), a new event is
fetched out from the queue and handled. It is worth noting that the
MPSM-based agent behavior programming allows exploiting the
benefits deriving from three main paradigms for WSN
programming: event-driven programming, state-based
programming and mobile agent-based programming.

Figure 4: The MAPS core primitives.

4.2 Design and implementation
The developed prototype aims at monitoring human activities

in real-time by recognizing their postures (e.g. lying down, sitting
and standing still) and movements (e.g. walking). The architecture
of the system, shown in Figure 5, is organized into a coordinator
and two sensor nodes according to the reference WBSN system
described in section 3.

The coordinator side (see Figure 5) is based on the Java-
based SPINE coordinator [7], developed in the context of the
SPINE project [17]. In particular, the SPINE Manager is used by
end-user applications (e.g. real-time activity monitoring
application) for sending commands to the sensor nodes.
Moreover, the SPINE Manager is responsible of capturing low-
level messages and node events through the SPINE Listener,
which integrate several sensor platform-specific SPINE
communication modules (e.g. TinyOS, Z-Stack, etc), to notify
registered applications with higher-level events and message
content. A SPINE communication module is composed of a
send/receive interface and some components that implement such
interface according to the specific sensor platform and that
formalize the high-level SPINE messages in sensor platform-

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

13

specific messages. In this work, the SPINE Listener has been
enhanced with a new MAPS/Sun SPOT communication module to
configure and communicate with MAPS-based sensor nodes. Such
module translates high-level SPINE messages formatted
according to the SPINE OTA (Over-The-Air) protocol [17] into
lower-level MAPS/Sun SPOT messages through its transmitter
component and vice versa through its receiver component. The
latter also integrates an application-specific logic for the
synchronization of the two sensors (see below and §5.2). The
SPINE-based real-time activity monitoring application was thus
completely reused as well as the SPINE Manager, only the SPINE
Listener was modified to account for such enhancement.

Figure 5: Architecture of the real-time activity monitoring

system.
The sensor node side (see Figure 5) is based on two Java Sun

SPOTs sensors respectively positioned on the waist and the thigh
of the monitored person. In particular, MAPS is resident on the
sensor nodes and supports the execution of the WaistSensorAgent
and the ThighSensorAgent. Such sensor agents have the following
similar step-wise cyclic behavior:

1. Sensing the 3-axial accelerometer sensor according to a
given sampling time (ST);

2. Computation of specific features (Mean, Max and Min
functions) on the acquired raw data according to the
window (W) and shift (S) parameters. In particular, W is
the sample size on which features are computed whereas
S is the percentage of sliding on W (usually S is set to
50%);

3. Features aggregation and transmission to the
coordinator;

4. Go to 1.
The agents differ in the specific computed features even though
the W and S parameters are equally set. In particular, while the
WaistSensorAgent computes the mean values for data sensed on
the XYZ axes, the min and max values for data sensed on the X
axis, the ThighSensorAgent calculates the min value for data
sensed on the X axis. The behavior of the WaistSensorAgent is
specified through the 1-plane reported in Figure 6 (the behavior of
the ThighSensorAgent has the same structure but the computed
features are different as discussed above). In particular, after an
initialization action (A0) driven by the occurrence of the
AGN_START event, the sensing plane goes into the
WAIT4SENSING state. The MSG.START event allow starting
the sensing process by the execution of action A1; in particular:

(i) sensing parameters (W, S, ST), data acquisition buffers for
XYZ channels of the accelerometer sensor (windowX, windowY,
windowZ), and data buffers for feature calculation (windowFE4X,
windowFE4Y, windowFE4Z) are initialized (see
initSensingParamsAndBuffers function); (ii) the timer is set for
timing the data acquisition according to the ST parameter (see
timerSetForSensing function; in particular the highly precise Sun
SPOT timer is used); (iii) a data acquisition is requested by
submitting the ACC_CURRENT_ALL_AXES event by the sense
primitive (see doSensing function). Once the data sample is
acquired, the ACC_CURRENT_ALL_AXES event is sent back
with the acquired data and the action A2 is executed; in particular:
(i) the buffers are circularly filled with the proper values (see
bufferFilling function); (ii) the sampleCounter is incremented and
the nextSampleIndex is incremented module W for the next data
acquisition; (iii) if S samples have been acquired, features are to
be calculated, thus sampleCounter is reset, samples in the buffers
are copied into the buffers for computing features, calculation of
the features is carried out through the meanMaxMin function, and
the aggregated results are sent to the base station by means of the
MSG_TO_BASESTATION event appropriately constructed; (iv)
the timer is reset; (v) data acquisition is finally requested. In the
ACC_SENSED&FEAT_COMPUTED state the MSG.RESYNCH
might be received for resynchronization purposes (see below); it
brings the sensing plane into the WAIT4SENSING state. The
MSG.RESTART brings the sensing plane back into the
ACC_SENSED&FEAT_COMPUTED state for (reconfiguring
and) continuing the sensing process. The MSG.STOP eventually
terminates the sensing process.

Variables
byte bodyPos;
String bsAddr;
int W, S, ST;
byte timestamp, sampleCounter;
int nextSampleIndex;
IAT91_TC timer;
double [] windowX4FE, windowY4FE, windowZ4FE;
double [] windowX, windowY, windowZ;
double [] resultsX, resultsY, resultsZ;
Actions
A0: initVars();
A1: initSensingParamsAndBuffers(event);
 timerSetForSensing();
 doSensing();
A2: bufferFilling(event);
 sampleCounter++;
 nextSampleIndex=(nextSampleIndex+1)%W;
 if (sampleCounter==S){
 sampleCounter==0;
 copySensingBuffersIntoBuffersForComputingFeatures();
 computeFeatures();
 transmitFeaturesComputed();
 }
 timerReset();
 doSensing();
A3: timerDisabling();
 initVars();
 A1;
A4: timerDisabling();

Functions
initVars():
 sampleCounter=0; nextSampleIndex=0; agent.timestamp=0;

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

14

initSensingParamsAndBuffers(Event event):
 bodyPos=Byte.parseByte(event.getParam("BODY_POSITION"));
 bsAddr=event.getParam("BASESTATION_ADDRESS");
 W=Integer.parseInt(event.getParam("WINDOW_SIZE"));
 S=Integer.parseInt(event.getParam("SHIFT_SIZE"));
 ST=Integer.parseInt(event.getParam("SAMPLE_RATE_MS"));
 windowX = new double[W]; windowY = new double[W];
 windowZ = new double[W]; windowX4FE = new double[W];
 windowY4FE = new double[W]; windowZ4FE = new double[W];

timerSetForSensing():
 timer = Spot.getInstance().getAT91_TC(0);
 int cnt = (int)(ST * 1000 / 2.1368);
 timer.configure(TimerCounterBits.TC_CAPT |
 TimerCounterBits.TC_CPCTRG |
 TimerCounterBits.TC_CLKS_MCK128);
 timer.setRegC(cnt); timer.enableAndReset();
 timerReset();

doSensing():
 Event accel = new Event(agent.getId(), agent.getId(),
 Event.ACC_CURRENT_ALL_AXES, Event.NOW);
 agent.sense(accel);

bufferFilling(Event event):
 windowX[nextSampleIndex] = Double.parseDouble(
 event.getParam(ParamsLabel.ACC_ACCEL_X_VALUE));
 windowY[nextSampleIndex] = Double.parseDouble(
 event.getParam(ParamsLabel.ACC_ACCEL_Y_VALUE));
 windowZ[nextSampleIndex] = Double.parseDouble(
 event.getParam(ParamsLabel.ACC_ACCEL_Z_VALUE));

timerReset():
 timer.enableIrq(TimerCounterBits.TC_CPCS);
 timer.waitForIrq();
 timer.status();

timerDisabling():
 timer.disable();
 timer.shutDown();

computeFeatures():
 resultsX = meanMaxMin(windowX4FE);
 resultsY = meanMaxMin(windowY4FE);
 resultsZ = meanMaxMin(windowZ4FE);

trasmitFeaturesComputed():
 Event msgToServer = new Event(this.agent.getId(),
 Constants.MSG_TO_BASESTATION,Event.MSG_TO_BASESTATION,
 Event.NOW);
 msgToServer.setParam(ParamsLabel.AGT_BS_ADDR, bsAddr);
 msgToServer.setParam("BodyPosition", "Waist");
 msgToServer.setParam("MeanX","" + resultsX[0]);
 msgToServer.setParam("MeanY","" + resultsY[0]);
 msgToServer.setParam("MeanZ","" + resultsZ[0]);
 msgToServer.setParam("MaxY", "" + resultsY[1]);
 msgToServer.setParam("MinY", "" + resultsX[2]);
 timestamp =(timestamp+1)%128;
 msgToServer.setParam("Timestamp", ""+timestamp);
 agent.send(agent.getId(), Constants.MSG_TO_BASESTATION,
 msgToServer, false);

double [] meanMaxMin(double []): //omissis

Figure 6: 1-plane behavior of the WaistSensorAgent

5. PROTOTYPE EVALUATION
The evaluation of the developed prototype involves the following
two aspects (which are respectively detailed in the next two
subsections):

- The timing and synchronization of the real-time monitoring
which respectively refer to (i) how fine grain the sensing
activity at the sensor node can be and (ii) how to keep the
activities of the two sensor agents synchronized.

- The recognition accuracy which shows how well the human
postures/movements are recognized by the system.

5.1 Timing and synchronization
Two important issues to deal with are the timing of the sensing
process in terms of admissible sampling rate and the
synchronization between the operations of the two agents which is
to be maintained within a maximum skew for not affecting the
real-time monitoring. If such skew is overtaken, the two agents
are to be re-synchronized. Indeed such two aspects are strictly
correlated. In particular, as the sensor agents compute a different
number of features, when the sampling rate is high, the agent
computing more features (i.e. the WaistSensorAgent) takes more
time to complete its operations for each S sample acquisition than
the ThighSensorAgent. Re-synchronization is driven by the
synchronization logic included in the developed MAPS/SunSpot
comm module (see §4.2), which sends a resynchronization
message (see Figure 6) as soon as it detects that the
synchronization skew is greater than a given threshold. Detection
is based on the skew time between the receptions of two messages
sent by the agents that contain features referring to the same
interval of S sample acquisition: if skew >= P * S * ST, where P
is a percentage, S=0.5W, and ST is the sampling time. Thus, the
evaluation aimed at analyzing the synchronization of the sensor
agents and their monitoring continuity. The defined measurements
are:
- The Packet Pair Average Time (PPAT), which is the average

reception time between two consecutive pairs of
synchronized packets (same logical timestamp, see
timestamp variable in Figure 6) containing the computed
features (see MSG_TO_BASESTATION event in Figure 6)
sent by the sensor agents. PPAT should be ideally equals to
ST*S, i.e. the packet pair arrives each monitoring period and
so there is no de-synchronization in the average.

- The Synchronization Packet Percentage (SPP), which is the
percentage of resynchronization packets (see RESYNCH
event in Figure 6), which are sent by the coordinator for re-
synchronizing the sensor agents, calculated with respect to
the total number of received feature packets. SPP should be
as much as possible close to 0, i.e. a few or no
resynchronizations are carried out and so the monitoring can
be continuous as a resynch operation usually takes 600 ms.

In particular, the experiments were carried out by fixing ST (ms)
= [25, 50, 100], W (samples) = [100, 80, 40, 20, 10], and P (%) =
[5, 10, 25]. Figure 7 shows the obtained results for P=25% and
P=5%. As can be noticed, the system cannot support an ST=25ms
because PPAT is always greater than the ideal value and SPP is
too high. This lead to a non continuous monitoring due to the very
frequent resynchronization (SPP>=15%). An ST=50ms can be
supported for P=25% and W>=40 as SPP is maximum 8% so
slightly impacting the monitoring continuity. The best results are
obtained with ST=100ms, P=25% and W>=20; they guarantee
monitoring continuity due to an SPP≈0% and regularity as
experimented PPAT ≈ ideal PPAT for W>=20. If P=5% and
W=[10, 20] or P=25% and W=10 an ST=100 ms is not a good
value too because an out-of-limits skew frequently occurs. It is
worth noting that even though a lower ST would allow a more
accurate monitoring, the considered human activities can be well
captured by an ST=100ms as demonstrated by the experimental
results obtained from the carried-out real-time human activity
monitoring (see §5.2).

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

15

Figure 7: Analysis of the synchronization of the sensor agents:

PPAT and SPP for P=25% and P=5% by varying W.

5.2 Recognition accuracy
The activity monitoring system integrates a classifier based on the
K-Nearest Neighbor algorithm [5] that is capable of recognizing
postures and movements defined in a training phase. The classifier
was setup through a training phase and tested considering the
following parameter setting: ST=100ms, W=20 (S=10), P=25%.
Accordingly, the features (Min, Max and Mean) are computed on
20 sampled data every new 10 samples acquired by the sensors.
The training phase used a KNN-based classifier parameterized
with K=1 and the Manhattan distance which performs quite well
as classes (lying down, sitting, standing still and walking) are
rather separate and scarcely affected by noise. The test phase is
carried out by considering the pre-defined sequence of
postures/movements represented by the state machine reported in
Figure 8.

Accordingly, the obtained classification accuracy results are
reported in Figure 9. As can be noted after a transitory period of 5
sec from one state to another all the postures/movements are
recognized with an accuracy of 100%. The state transitions more
difficult to recognize are STASIT, WLKSTA, and

SITLYG, whereas the transition STAWLK is recognized as
soon as it occurs. The obtained results are good and encouraging
if compared with other works in the literature which use more
than two sensors on the human body [13].

Figure 8: State machine of the pre-defined sequence of

postures/movements.

Figure 9: Percentage of mismatches vs. transitory time.

6. CONCLUSIONS
Programming WBSN applications is a complex task which

requires suitable programming paradigms and frameworks coping
with the WBSN specific characteristics. Several kinds of
frameworks and approaches have been to date proposed. Among
them, domain specific frameworks have the potential to provide
both rapid development of WBSN applications and also good
performances. In this paper we have proposed an agent-oriented
approach, which relies on the basic features characterizing the
domain specific frameworks and on the agent-oriented MAPS
framework, aiming to offer more programming effectiveness
while providing the required efficiency. In fact, MAPS has been
purposely defined for resource-constrained environments and is
based on (i) lightweight agents so avoiding conventional
heavyweight agent architectures; (ii) run-time architecture formed
of components efficiently handling the low-level sensor node
functions and providing higher-level services to agents. In
particular, by using MAPS, a WBSN application can be structured
as a set of agents distributed on sensor nodes supported by a
component-based agent execution engine which provides basic
services such as message transmission, agent creation, timer
handling, easy access to the sensor node resources, and agent
migration if needed.

A complete case study concerning the development and
testing of a real-time human activity monitoring system based on
wireless body sensor networks has been described. It is
emblematic of the effectiveness and suitability of MAPS to deal
with the programming of WBSN applications. The carried out

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

16

performance evaluation of the developed prototype shows fine
synchronization of the sensor nodes, continuous real-time
monitoring, and good recognition accuracy, once parameters are
carefully set. However, the MAPS-based development of new
applications having stringent requirements (sensing rate,
computing speed, message transmission latency) must be carefully
analyzed case by case.

Future research efforts are devoted to: (i) introducing the fall
detection, which allows arising an alarm when detecting the
monitored person has fallen, in the developed agent-based system;
(ii) porting MAPS onto the Sentilla JCreate pervasive computers
which are compliant to Java ME CLDC 1.1; (iii) developing a
full-fledged agent-based version of SPINE (named ASpine)
through MAPS and the JADE framework to enable agent-oriented
development of pervasive applications for ambient assisted living
(such as emergency medical care) based on heterogeneous
computing platforms: PCs/workstations (JADE),
PDAs/smartphones (JADE Leap), and sensor nodes (MAPS).

7. ACKNOWLEDGMENTS
Authors wish to thank Roberta Giannantonio and Marco Sgroi for
their precious contributions in terms of ideas and discussions, and
Alessio Carbone for his on-going implementation efforts on
ASpine. This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number FP7-
2007-2-224053.

REFERENCES
[1] F. Aiello, G. Fortino, A. Guerrieri, “Using mobile agents as
an effective technology for wireless sensor networks,” In Proc. of
the 2nd IEEE/IARIA Int’l Conference on Sensor Technologies
and Applications (SENSORCOMM 2008), Aug 25-31, Cap
Esterel, France, 2008.
[2] F. Aiello, G. Fortino, R. Gravina, A. Guerrieri, “MAPS: a
Mobile Agent Platform for Java Sun SPOTs,” In Proceedings of
the 3rd International Workshop on Agent Technology for Sensor
Networks (ATSN-09), jointly held with the 8th International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-09), 12th May, Budapest, Hungary, 2009.
[3] Ling Bao, Stephen S. Intille, “Activity Recognition from
User-Annotated Acceleration Data”, In Proc. of the 2nd Int.
Conference on Pervasive Computing (PERVASIVE), pp. 1–17,
2004.
[4] M. Chen, S. Gonzalez, V. C. M. Leung, “Applications and
Design Issues for Mobile Agents in Wireless Sensor Networks,”
IEEE Wireless Communications (see also IEEE Personal
Communications) 14 (6) (2007) 20–26.
[5] T. Cover, P. Hart, “Nearest neighbor pattern classification”,
In IEEE Trans. Inform. Theory Vol. 13, pp. 21-27, January 1967.
[6] C-L Fok, G-C Roman, C Lu, “Rapid Development and
Flexible Deployment of Adaptive Wireless Sensor Network
Applications,” In Proc. of the 24th Int’l Conference on Distributed
Computing Systems (ICDCS'05), Columbus, Ohio, June 6-10,
2005, pp. 653-662.
[7] R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R.
Giannantonio, M. Sgroi, “Development of Body Sensor Network

Applications using SPINE,” In Proc. of. IEEE Int’l Conference on
Systems, Man, and Cybernetics (SMC 2008), Singapore, Oct. 12-
15, 2008.
[8] S. Iyengar, F. Tempia Bonda, R. Gravina, A. Guerrieri, G.
Fortino, A. Sangiovanni-Vincentelli, “A Framework for Creating
Healthcare Monitoring Applications Using Wireless Body Sensor
Networks”, In the Proc. of the 3rd International Conference on
Body Area Networks (BodyNets’08), Tempe (AZ), USA, Mar.
13-15, 2008.
[9] Y Kwon, S. Sundresh, K. Mechitov, G. Agha, "ActorNet: An
Actor Platform for Wireless Sensor Networks," In Proc. of the 5th
Int’l Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1297-1300, 2006.
[10] C. Lombriser, D. Roggen, M. Stager, G. Troster, “Titan: A
Tiny Task Network for Dynamically Reconfigurable
Heterogeneous Sensor Networks”, In Verteilten Systemen (KiVS
2007), Bern, Switzerland, Feb 26–Mar 2, 2007.
[11] M. Luck, P. McBurney and C. Preist, “A manifesto for agent
technology: towards next generation computing,” Autonomous
Agents and Multi-Agent Systems 9(3), pp. 203–252, 2004.
[12] David Malan, Thaddeus Fulford-Jones, Matt Welsh, Steve
Moulton, “CodeBlue: An Ad Hoc Sensor Network Infrastructure
for Emergency Medical Care”, In MobiSys 2004 Workshop on
Applications of Mobile Embedded Systems (WAMES 2004),
June, 2004.
[13] U. Maurer, A. Smailagic, D.P. Siewiorek, M. Deisher,
“Activity recognition and monitoring using multiple sensors on
different body positions”, In Proc. of the 3rd Int. Workshop on
Wearable and Implantable Body Sensor Networks (BSN 2006),
MIT, Boston (MA), USA.
[14] Mobile Agent Platform for Sun SPOT (MAPS),
documentation and software release 1.1 at http://maps.deis.unical.it
(2010).
[15] C. Muldoon, G.M.P. O'Hare, M. J. O'Grady, R. Tynan,
“Agent Migration and Communication in WSNs,” in 1st
International Workshop on Sensor Networks and Ambient
Intelligence, held in conjunction with the 9th International
Conference on Parallel and Distributed Computing, Applications
and Technologies, pp. 425-430, IEEE Computer Society Press,
Dec. 2008.
[16] B. Najafi, K. Aminian, A. Ionescu, F. Loew, C. J. Büla, P.
Robert, “Ambulatory System for Human Motion Analysis Using a
Kinematic Sensor: Monitoring of Daily Physical Activity in the
Elderly”, In IEEE Transactions on Biomedical Engineering, Vol.
50, Issue 6, pp. 711–723, June 2003.
[17] Signal Processing In-Node Environment (SPINE),
documentation and software at http://spine.tilab.com (2009).
[18] K. Sohraby, D. Minoli, T. Znati, “Wireless Sensor Networks:
technology, protocols, and applications”, Wiley, 2007.
[19] Sun™ Small Programmable Object Technology (Sun SPOT),
documentation and software at http://www.sunspotworld.com/
(2009).
[20] TinyOS, documentation and software, http://www.tinyos.net
(2009).
[21] G-Z. Yang, “Body Sensor Networks”, Springer, 2006.
[22] Z-Stack (ZigBee Protocol Stack), Texas Instruments,
documentation and software,
http://focus.ti.com/docs/toolsw/folders/print/z-stack.html (2009).

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

17

Trust and Reputation Through Partial Identities

Jose M. Such
Departament de Sistemes
Informàtics i Computació
Universitat Politècnica de

València
Camí de Vera s/n, València,

Spain
jsuch@dsic.upv.es

Agustin Espinosa
Departament de Sistemes
Informàtics i Computació
Universitat Politècnica de

València
Camí de Vera s/n, València,

Spain
aespinos@dsic.upv.es

Vicent Botti
Departament de Sistemes
Informàtics i Computació
Universitat Politècnica de

València
Camí de Vera s/n, València,

Spain
vbotti@dsic.upv.es

Ana Garcia-Fornes
Departament de Sistemes
Informàtics i Computació
Universitat Politècnica de

València
Camí de Vera s/n, València,

Spain
agarcia@dsic.upv.es

ABSTRACT
This paper explores the relationships between the hard se-
curity concepts of identity and privacy on the one hand,
and the soft security concepts of trust and reputation on
the other hand. We specifically focus on two vulnerabilities
that current trust and reputation systems have: the change
of identity and multiple identities problems. As a result, we
provide a privacy-preserving solution to these vulnerabilities
which integrates the explored relationships among identity,
privacy, trust and reputation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Security, Management

Keywords
Trust, Reputation, Privacy, Security

1. INTRODUCTION
Security related studies in the Multiagent Systems (MAS)

research field have been increasing over the last few years, as
have intelligent autonomous agents and MAS based applica-
tions. This is mainly due to the fact that an understanding
of the actual risk when using these sorts of applications is
needed, since an agent’s incorrect or inappropriate behavior
may cause non-desired effects such as money and data loss.

Rasmusson and Jansson [11] first introduced the differ-
ence between two approaches to security in information sys-
tems, i.e., what they called hard and soft security. On the
one hand, the term hard security is used for traditional
security mechanisms like authentication, authorization, in-
tegrity, confidentiality, etc. On the other hand, the term soft
security is used for social control mechanisms in general.

A major difference between these two approaches is re-
lated to how they deal with intruders in a system. Hard
security mechanisms - such as identity management - aim to
prevent intruders from joining the system so that the sys-
tem is supposedly intruder free. Soft security mechanisms
- such as trust and reputation - expect, and even accept,
the presence of intruders in the system, so they attempt to
identify the intruders and prevent them from harming the
other actors in the system.

We strongly encourage research transversal to these two
approaches to security. This is due to the fact that when
relationships between these two approaches are not taken
into account, some vulnerabilities can emerge which other-
wise would not. The agent community in particular has not
been taking the relationships between these two approaches
into account.

Current Trust and Reputation systems are based on the
assumption that identities are long-lived, so that ratings
about a particular entity from the past are related to the
same entity in the future. However, when such systems are
actually used in real domains this assumption is no longer
valid. For instance, an entity which has a low reputation due
to its cheating behavior may be really interested in chang-
ing her identity and restarting her reputation from scratch.
This is what Jøsang et al. [7] called the change of identities
problem.

This problem has also been identified by other researchers
under different names. The work of Kerr and Cohen [8]
shows that Trust and Reputation Systems exhibit multiple
vulnerabilities that can be exploited by attacks performed by
cheating agents. Among these vulnerabilities, the re-entry
vulnerability exactly matches the change of identities prob-
lem exposed by Jøsang et al. They propose a simple attack
that takes advantage of this vulnerability: An agent opens
an account (identity) in a marketplace, uses her account to
cheat for a period, then abandons it to open another.

Kerr and Cohen [8] also point out the fact that entities
could create new accounts (identity in the system) at will,

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

18

not only after abandoning their previous identity but also
holding multiple identities at once. This can lead to other
attacks such as what they called the proliferation attack. An
example of this attack could be an agent that holds multiple
identities in a marketplace and attempts to sell the same
product through each of them.

It is worth mentioning that this is not an authenticity
problem. Interactions among entities are assured, i.e, an
agent holding an identity is sure of being able to interact
with the agent that holds the other identity. However, there
is nothing which could have prevented the agent behind that
identity from holding another identity previously or holding
multiple identities at once. For instance, let us take a buyer
agent and a seller agent in an e-marketplace. The buyer
has an identity in the e-marketplace under the name of buy1
and the seller two identities in the e-marketplace seller1 and
seller2. Authentication in this case means that if buy1 is
interacting with seller1 she is sure that she is interacting
with who she wants. However, buy1 has no idea that seller1
and seller2 are the same entity.

These vulnerabilities can be more or less harmful depend-
ing on the final domain of the application using trust and
reputation models. For instance, in a social network like
Last.fm1 these vulnerabilities are not so important. Last.fm
users can recommend music to each other. Therefore, a user
who always fails to recommend good music to other users
may gain a very bad reputation. If this user creates a new ac-
count in Last.fm (a new identity in Last.fm) her reputation
starts from scratch, and she is able to keep on recommending
bad music. The point is that other users are not seriously
damaged by getting bad music recommendations. However,
in systems where users can be seriously damaged (e.g. in an
e-marketplace by losing money) these vulnerabilities need,
at least, to be considered.

As far as we are concerned, the two vulnerabilities pre-
sented are due to the lack of a clear definition of identity
and its relationship to trust and reputation. In this sense,
we introduce in the next section the concept of partial iden-
tity and relate this concept to trust and reputation later
on in sections 3 and 4. In section 5 we introduce what
we call the Partial Identity Unlinkability Problem (PIUP)
which includes these two vulnerabilities. As a result, a pri-
vacy preserving solution to PIUP is proposed in section 6,
taking into consideration partial identities and their relation
to trust and reputation.

2. IDENTITY AND PARTIAL IDENTITIES
The identity and partial identity terms are broadly used

in identity management literature such as [2], [9] and [10].
However, there is a lack of clear and formal definitions of
these two terms. In this section, we propose formal defini-
tions of both identity and partial identity.

We assume that an entity can be: a legal person (a human
being, a company, etc.) and a software entity (an intelligent
agent, a virtual organization, etc.).

We also assume that entities are described by attributes
attached to them. Attributes are defined as pairs a = 〈name,
value〉. We denote the set of all attributes describing an
entity e as Ae. Attributes can describe a great range of
topics. For instance, entity names, biological characteris-
tics (only for human beings), location (permanent address,

1Last.fm http://www.last.fm

geo-location at a given time), competences (diploma, skills),
social characteristics (affiliation to groups, friends), and even
behaviors (personality or mood).

Definition 1. A partial identity PIe is any subset of at-
tributes of an entity which sufficiently identifies this entity
within a given set of entities.

e ∈ E ∧ PIe ⊆ Ae ∧ identify(PIe, E) = {e}

Where e is the entity which holds the partial identity, E
is the set of entities taken into consideration, Ae is the set of
attributes that describes e and identify is defined as follows
identify: P(A)×P(E)→ P(E) such that identify(A,E) =
{e | e ∈ E ∧ ∀ a ∈ A, a ∈ Ae} where A is the set of all
of the attributes describing entities and E is the set of all of
the existing entities.

Definition 2. The identity Ie of an entity e is the union
of all of the attributes from all of the partial identities of e.

Ie =
N[

j=1

PIj
e

Where PIj
e is a partial identity of the entity e, and N is

the number of all of the partial identities that e holds.
An identity of an entity is composed of many partial iden-

tities. Moreover, an identity potentially identifies an entity
within any set of entities, while a partial identity may not.
For instance, let a human being be registered with a given
profile in the Last.fm social network. This profile is a partial
identity because it does sufficiently identify the human be-
ing among all of the different entities registered in Last.fm.
However, this profile may not sufficiently identify this hu-
man being among all of the possible entities.

Although each partial identity usually represents the en-
tity in a specific context or role, the same partial indentity
can represent the entity in different contexts. For instance,
a driver license represents an entity in the context of oper-
ating a motorized vehicle but it also represents an entity in
the context of accessing a disco only for adults.

In order for the reader to better understand the identity
and partial identity concepts, Figure 1 shows the identity
and some of the partial identities of an individual person
called Bob. Four partial identities are shown regarding four
contexts: government, work, health care and social network-
ing (Last.fm). For the sake of clarity, we only show some
attributes that make up each of the partial identities repre-
sented. It is easily observed that the name and address of
Bob are shared by three partial identities but are not used
in the partial identity he uses in Last.fm.

Following the previous definitions, we consider a real iden-
tity as a partial identity of an entity with respect to the set
of all of the legal persons. Formally:

Definition 3. A real identity RIe is any subset of attributes
of an entity which sufficiently identifies this entity within the
set of all of the legal persons.

e ∈ E ∧ RIe ⊆ Ae ∧ identify(RIe,L) = {e}
Where e is the entity which holds the identity, L is the

set of all of the legal persons, Ae is the set of attributes that
describes e and identify is the same function previously
defined. As described later on in section 6, we use real iden-
tities for accountability concerns such as law enforcement.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

19

Figure 1: Identity and Partial Identities of Bob

For this reason, real identities are restricted to legal persons
(human beings, companies, ect.) that can be considered in
front of the law. A real identity would be for example: Bob
Andrew Miller, born in Los Angeles, CA, USA on July 7,
1975.

A broad misunderstanding regarding identities is related
to the concept of identifier and how it relates to an iden-
tity or a partial identity. The identity term is usually used
instead of that of identifier.

Definition 4. An identifier ide is an attribute which suf-
ficiently identifies an entity within a set of entities.

e ∈ E ∧ ide ∈ Ae ∧ identify({ide}, E) = {e}
Where e is the entity which holds the identity, E is a set

of entities, Ae is the set of attributes that describes e and
identify is the same function previously defined.

Examples of identifiers include names, driving license num-
bers, usernames, nicknames, e-mail addresses, agent identi-
fiers (AID), Universal Resource Identifier (URI), etc.

An identifier can also be defined as a partial identity PIe

so that |PIe| = 1. However, partial identities are usually
composed of not only identifiers but also more attributes
describing the entity thoroughly in a given context. For
instance, a partial identity in Last.fm (a Last.fm account)
includes a username (identifier), an e-mail address and fa-
vorite artists.

3. TRUSTING ENTITIES THROUGH
PARTIAL IDENTITIES

In this section, we propose the building of trust relation-
ships through partial identities. In this sense, we first intro-
duce the concept of trust.

According to Gambetta [5], trust is ”the subjective prob-
ability by which an individual, A, expects that another in-
dividual, B, performs a given action on which its welfare
depends“.

Most of the trust models proposed by the agent commu-
nity are based on Gambetta’s definition and treat trust as

a probability. Different grounding theories are used to build
these models. Although most of them are based on Game
Theory (for a survey refer to [15]) there are other probabilis-
tic approaches like [17], in which Sierra and Debenham use
Information Theory.

Agent community has also developed cognitive models
which treat trust as more than a probability. For instance,
Castelfranchi and Falcone [1] define trust as ”a mental state,
a complex attitude of an agent x towards another agent y
about the behaviour/action relevant for the result (goal) g“.

Both probabilistic and cognitive models share that trust is
established from a trustor (the one who trusts) to a trustee
(the one who is trusted). Thus, we focus on trust as a di-
rected relationship between two entities. In this sense, a
primary requirement is that the trustor is able to recognize
the trustee when interacting with each other.

In the real world, an individual can recognize other indi-
viduals by means of identity documents such as a passport.
However, inter-personal meetings are also carried out with-
out the needing for such documents. For instance, let Alice
be an individual who always goes to the same supermarket.
Alice always chooses the same checkout to pay for the items
she buys. The checkout she chooses is the one where the
fastest cashier (according to Alice’s criterion) in the super-
market is (the cashier is at a different checkout each time).
Alice recognizes the face of the supermarket cashier that she
trusts as being the fastest in the supermarket. In this ex-
ample, no identity document is needed because the trustor
recognizes the face of the trustee from past interactions.

In the digital world there is no physical contact, all of the
interactions between entities are carried out through online
networks and most of them across the Internet. The in-
crease in global connectivity is increasing the number of en-
tities taking part in the digital world and also the number
of interactions they carry out. In this scenario, recognizing
an entity in an interaction usually means authenticating it
using technologies like Kerberos2, OpenID3, and so on. En-

2Kerberos http://web.mit.edu/Kerberos/
3OpenID http://openid.net/

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

20

Figure 2: Trust Through Partial Identities

tities are authenticated using such technologies according to
a partial identity that they hold.

We consider trust relationships to be established between
two entities through some of their partial identities. More-
over, these partial identities represent part of the context
where the trust relationship is established. We assume that
the context C of a trust relationship can be described by
means of pairs a = 〈name, value〉 of attributes. Thus, the
partial identity of the trustor (PItrustor) and the partial
identity of the trustee (PItrustee) are part of such attributes
that describe the context C. Formally:

PItrustor ∪ PItrustee ⊆ C

Partial identities are key parts when building trust rela-
tionships. There are attributes of a partial identity of an
entity that clearly describe important features of an entity.
For instance, a corporate title (such as chief executive offi-
cer) is an attribute which is part of the partial identity of an
employee of a company. When this employee is interacting
with other entities in a business context, his corporate title
is an important attribute that the rest of the entities in that
context will consider valuable when trusting him.

Figure 2 shows an example of a trust relationship estab-
lished between two entities through partial identities. There
are two entities: the real identity of the entity on the left
is not known while the entity on the right is Adam John
Wilkes. Both entities have a partial identity when they in-
teract in the Last.fm social network. In this sense, the en-
tity with the username antoine is trusting (represented as
a directed arrow) the entity with the username JohnyFM
(Adam John Wilkes). This trust relationship is contextual-
ized in Last.fm. Moreover the favorite artist of both partial
identities plays a crucial role in the trust relationship. In
this sense, both antoine and JohnyFM have trumpet play-
ers (Clifford Brown and Arturo Sandoval) as favorite artists.
Therefore, music recommendations from JohnyFM to an-
toine may be relevant to antoine.

4. REPUTATION THROUGH PARTIAL
IDENTITIES

In the previous section, we stated how trust relationships
can be built through partial identities. In this section, we
state how partial identities relate to reputation.

We understand reputation in the same way as Sabater et
al. in their Repage Model [16]. In this sense, reputation is a
social evaluation of a target entity attitude towards socially
desirable behavior which is circulating in the society (and

can be agreed on or not by each one of the entities in the
society).

Reputation, just like trust, is known to be context depen-
dent [15]. For instance, a lawyer can have a great reputation
defending digital criminals while having a bad reputation
making cakes.

Unlike trust, reputation also relates to anonymity. The
anonymity concept is defined by Pfitzmann and Hansen in
[9] as: ”Anonymity of a subject means that the subject is
not identifiable within a set of subjects“. Reputation, as a
social evaluation circulating in the society, is anonymously
assigned to an entity. Therefore, the social evaluation any
entity has about other entities remains private (whenever
she does not communicate her social evaluation to others in
a non-anonymous fashion).

The anonymous nature of reputation is sometimes not
taken into account, which leads to some problems. For in-
stance, the eBay reputation system is not anonymous which
leads to an average 99% of positive ratings[13]. This is due
to the fact that entities in eBay do not negatively rate other
entities for fear of retaliations which could damage their own
reputation and welfare.

We consider reputation as an anonymous social evaluation
of an entity in a given context through one of its partial
identities. In this sense, the partial identity of the entity
reputed is needed when defining the context of a reputation.

Assuming that the context C of a reputation is described
by a = 〈name, value〉 pairs of attributes, e is the entity
evaluated and PIe is her partial identity:

PIe ⊆ C

Therefore, if an entity has a reputation in a given context,
all of the entities interacting with this entity in the same
context can be aware of her reputation through her partial
identity.

5. THE PARTIAL IDENTITY
UNLINKABILITY PROBLEM

After the definition of the partial identity concept and its
relationships to trust and reputation has been given, we are
now in a position to define what we call the partial identity
unlinkability problem (PIUP).

In section 1, we described two vulnerabilities affecting
trust and reputation systems: the multiple identities and
the change of identities problems. As far as we are con-
cerned, these two vulnerabilities are closely related to the
unlinkability concept described by Pfitzmann and Hansen
in [9]. They define unlinkability as ”Unlinkability of two or

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

21

more items of interest (IOIs, e.g., subjects, messages, ac-
tions, ...) from an attacker’s perspective means that within
the system (comprising these and possibly other items), the
attacker cannot sufficiently distinguish whether these IOIs
are related or not“.

We use this definition of unlinkability made by Pfitzmann
and Hansen and our definition of partial identity to formu-
late the PIUP:

Definition 5. The partial identity unlinkability problem
(PIUP) states the impossibility that an entity, which is tak-
ing part in a system, is able to sufficiently distinguish whether
two partial identities in that system are related or not.

It is easily observed that the change of identities problem
is an instantiation of PIUP, i.e., an entity with an identity
by which she is known to have a bad reputation, acquires
another identity with a fresh new reputation so that other
entities are unable to relate the entity to its former reputa-
tion. In a similar way, if an entity does not trust another
entity, the latter can change her identity. Therefore, the for-
mer entity is unable to notice that the same entity which he
used to trust (distrust) is behind the new identity, so the
trust relationship is restarted.

Regarding multiple identities, a similar instantiation can
be made, so that an entity holds several identities and has
different reputations with each of them. Thus, another en-
tity is unable to relate the different reputations that the
entity has because it is unaware of all of the identities the
entity has. PIUP relates to trust in the same way when mul-
tiple identities are considered. An entity can believe that she
is trusting multiple entities in a given system (such as a spe-
cific marketplace), but she may be trusting the same entity
with different identities without being aware of it.

5.1 The Straightforward Solution
PIUP is obviously solved by forcing the entities taking

part in a system to use their real identity. Historically, a
real identity has been used to uniquely identify persons [10].

If an entity is not allowed to change its identity, then
trust and reputation assessments of this identity cannot be
removed. Although the changing of real identities has always
been possible as a way of erasing reputation, these changes
are not cost-free and do not completely erase the reputation.
For instance, there are some companies that change their
name in order to erase their previous reputation. However, a
link with the previous reputation can be made (e.g. looking
at its employees in order to find employees of the former
company).

Due to the impossibility of completely erasing reputation,
new online services are emerging related to the management
of the online reputation of an entity with a real identity.
For instance, ReputationDefender4 and Mamba IQ5 provide
services to report the online reputation of an entity with a
real identity (individuals or companies). These services usu-
ally find information related to an entity searching in blogs,
social networks, and audio and video pages. These services
also give the entities advice on improving their online repu-
tation.

However, the solution of forcing entities to use their real
world identities exposes a great disadvantage: privacy loss.

4http://www.reputationdefender.com/
5http://www.mambaiq.com

Fisher-Hübner and Hedbom in [3] define privacy as ”the right
to informational self-determination, i.e. the right of individ-
uals to determine for themselves when, how, to what extent
and for what purposes information about them is communi-
cated to others“.

Nowadays, in the era of global connectivity (everything is
inter-connected anytime and everywhere) privacy is a great
concern regarding identity management in the digital world.
While in the real world everyone decides (at least implicitly)
what to tell other people about themselves (after consider-
ing the situational context and the role each person plays),
in the digital world users have more or less lost effective
control over their personal data. Users are therfore exposed
to constant personal data collection and processing without
being aware of it.

6. A PRIVACY PRESERVING SOLUTION
FOR PIUP

After the definition of PIUP and the privacy issues of the
straightforward solution, we provide a privacy preserving
solution to PIUP so that trust and reputation systems can
be used without PIUP and preserving users’ privacy.

The architecture we propose is based on supporting the
building of trust and reputation through partial identities.
Entities are forced to use only one partial identity in a given
system. Therefore, an entity cannot get rid of trust and
reputation assessments in that system. The real identities
of the entities taking part in that system are not disclosed,
except under special circumstances such as law enforcement.
What is more, an entity is able to control what attributes
of her partial identity are disclosed to other entities in the
system (whenever the resulting attributes are still a partial
identity, i.e., the resulting attributes can sufficiently identify
this entity among the rest of the entities in the system, as
explained in section 2).

We have defined some requirements to be fulfilled by our
proposal for the solution of PIUP while preserving privacy.
These requirements relate to functionality, privacy and se-
curity.

Regarding functional requirements, the following are es-
tablished:

• The building of trust and reputation. The proposed
solution must support the building of trust and repu-
tation relationships among the entities in the system.

• Trust and Reputation Model Independence. The pro-
posed solution must be independent of the trust and
reputation models that the entities in the system are
using.

• Heterogeneous Trust and Reputation Models. The pro-
posed solution must allow different entities to use dif-
ferent trust and reputation models in the same system.

Regarding privacy requirements, the following are estab-
lished:

• Unlinkability of partial identities to real identities. The
proposed solution must ensure that the real identities
of the members of the system are unlinkable to their
partial identities by any other member of the system
(except for special circumstances such as law enforce-
ment).

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

22

• Entity control over partial identity attributes. The pro-
posed solution must allow entities to have control over
the attributes of their partial identities which are dis-
closed to other entities in a concrete system.

Finally, the security requirements established are:

• PIUP avoidance. The proposed solution must avoid
the PIUP problem by forcing entities to use only one
partial identity in a given system

• Entity accountability. Entities must be liable for their
acts without affecting the privacy requirements ex-
plained before.

• Authentication of Partial Identities. Entities in a given
system must be able to recognize to each other as a pre-
requirement for the establishment of trust and reputa-
tion among them.

Our proposed solution fulfills all of these requirements by
defining a two-layer architecture for trust and reputation
systems. There are two layers that make up the architec-
ture: the identity management layer and the trust and rep-
utation model layer. The identity management layer is in
charge of providing the entities taking part in a trust and
reputation system with partial identity management. It ful-
fills the requirements stated regarding privacy and security.
This layer acts as a foundation for building trust and rep-
utation models. The trust and reputation model layer is in
charge of providing the actual trust and reputation mod-
els being deployed in the system. Trust and reputation are
established through partial identities, following the defini-
tions and relationships among partial identities, trust and
reputation proposed in sections 2, 3 and 4.

We assume that entities communicate to each other fol-
lowing a secure connection (such as TLS), so that the data
they exchange in their interactions is provided with basic
security features such as integrity and confidentiality.

6.1 Identity Management Layer
The technical systems supporting the process of manage-

ment of partial identities are known as Identity Manage-
ment Systems (IMS) [10]. User-centric privacy-enhancing
IMS are supposed to enable a user to control the nature and
amount of personal information disclosed [2]. These systems
are aimed at firstly providing the controlled pseudonymity
of the users; and secondly, the reliability of the users.

Controlled pseudonymity implies unlinkability between the
partial identity and the real identity of the entity behind the
partial identity. Controlled pseudonymity also implies that
partial identities of the same entity are unlinkable if they
are used in different contexts.

The reliability of the users implies that at first, there is
unlinkability between partial identities and the real identity
of the entities behind them, but under special circumstances
the issuer of the partial identity can make a partial identity
and the real identity of an entity linkable.

Our solution to PIUP assumes that a user-centric privacy-
enhancing IMS is running at the infrastructure level. In
order to assure the feasibility of the solution we provide,
we especially assume that the underlying infrastructure is
Higgins2, but any other user-centric privacy-enhancing IMS

2Higgins Open Source Identity Framework http://www.
eclipse.org/higgins/

would be valid, such as CardSpace3 and Bandit4.
Higgins is an open source identity framework composed of

three main parts described bellow.

• The Higgins Selector provides a simple way to manage
partial identities and choose which partial identity to
be used in a given context.

• Identity Services is composed of two kinds of services:
Identity Providers (IdPs), that issue partial identities
and validate these identities to the RPs; and Relying
Parties (RPs), that are a set of APIs that allows ser-
vices to check the identity of the entities that interact
with them.

• Identity Attribute Services (IdAS) include services that
allow an entity to determine the access control rights
of every other entity when accessing each attribute of
each partial identity she holds.

We propose a fixed scheme for using Higgins in order for
our proposed architecture to fulfill the requirements previ-
ously stated relating to security and privacy. This fixed
scheme for Higgins is the identity management layer for our
proposed two-layer architecture. In this scheme, there are
two main parties:

Higgins IdP. We assume only one intermediary, a third
party trusted by all of the entities and the trust and reputa-
tion system they are taking part in. This intermediary is a
Higgins IdP (or a federation of Higgins IdPs). In this sense,
there is only one Higgins IdP in each trust and reputation
system. The IdP provides partial identities to the entities
taking part in the specific system. Entities must register
using a real identity which the IdP will not reveal to others.
The IdP is also in charge of forcing one entity to only hold
a partial identity in this specific system.

Entities. Entities, which are in a given trust and repu-
tation system, select and manage their own partial identi-
ties using the Higgins Selector. Moreover, entities also act
as RPs that validate the partial identities of other entities
through the IdP. Entities use Higgins IdAS to access at-
tributes of other entities’ partial identities. Entities also use
the Higgins IdAS to set access control policies to their own
partial identity attributes.

This fixed scheme provides the overall two-layer architec-
ture with the fulfillment of the following privacy and security
requirements:

• Unlinkability of partial identities to real identities. The
Higgins IdP acts as an independent third party that
must be trusted by the entities taking part in the trust
and reputation system. Although entities register to
using a real identity, the Higgins IdP does not make
real identities publicly available. Therefore, the rest of
the entities in the trust and reputation system are not
able to link a partial identity used in the system to the
corresponding real identity.

• Entity control over partial identity attributes is achieved
by means of the Higgins IdAS service. The IdAS ser-
vice allows entities to determine the access control
rights over each attribute of a partial identity they

3CardSpace http://msdn.microsoft.com/CardSpace
4Bandit http://www.bandit-project.org/

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

23

hold. Entities are able to choose to hide some of the
attributes of a partial identity in a system as long as
the resulting set of attributes is still a partial identity,
i.e., it sufficiently identifies the entity among the set of
entities in that system.

• PIUP avoidance. Only one Higgins IdP is allowed to
issue partial identities in a trust and reputation sys-
tem. The Higgins IdP avoids that a previously reg-
istered entity (using a real identity) is able to obtain
a new partial identity. Therefore, there is no chance
for an entity in a trust and reputation system to not
be able to sufficiently distinguish whether two partial
identities in that system are related or not.

• Entity accountability. Under special circumstances,
such as law enforcement, the Higgins IdP can disclose
the real identity of a misbehaving entity. Therefore,
accountability is assured and entities can be punished
if necessary. This leads entities to be liable for their
acts and they will take this into consideration before
misbehaving.

• Authentication of Partial Identities. Entities use the
Higgins RP in order to authenticate the partial iden-
tities of the other entities taking part in the trust and
reputation system. Therefore, entities are allowed to
recognize to each other from interaction to interaction.

The solution exposed needs a trusted third party (the Hig-
gins IdP) so that it is inherently centralized. However, in
scenarios where PIUP cannot cause important issues such
as money loss, user-centric privacy-enhancing IMS can also
be used without a centralizing point. This can be achieved
in scenarios where partial identities issued by different IdPs
can co-exist in order to improve the overall privacy of the
system by hiding real identities. Therefore, this centralized
solution is only needed in scenarios such as electronic mar-
kets where PIUP is actually a serious problem which can
lead to money loss.

Finally, the identity management layer can be classified as
a hard security approach. This means that the solution tries
to combat intruders (in this case entities that take advantage
of PIUP) so that there are none in the system.

6.2 Trust and Reputation Model Layer
On the top of the identity management layer, we find the

trust and reputation model layer. This layer is the one which
implements the actual trust and reputation models being
used in the system.

Trust and reputation models in this layer are based on
the definitions of identity and partial identity and their re-
lationship with trust and reputation detailed in sections 2, 3
and 4. In this sense, partial identities act as a foundation for
the establishment of trust and reputation among the entities
taking part in the system. Therefore, this layer fulfills The
building of trust and reputation functional requirement.

The concept of partial identity is totally independent from
the trust and reputation model being used. Therefore, Trust
and Reputation Model Independence is also assured. In this
sense, a privacy preserving solution to PIUP is provided
without the needing of re-designing the trust and reputation
models. However, as explained in sections 3 and 4, partial
identities are part of the context in which trust and repu-
tation take place. Therefore, trust and reputation models

must be aware of partial identities in order to extract the
information they need to compute trust and reputation.

In this sense, partial identities can be used by trust and
reputation systems for identifying an interaction partner
from interaction to interaction and building trust based on
past interactions with her. For instance, Wang and Singh
propose a formal model for trust in [18]. This model is
based on past experiences (successful or not) which are con-
verted into trust, distrust and an statistical measure of the
certainty of both trust and distrust. They recognize entities
from interaction to interaction by using an identifier for each
entity. Therefore, the only adaptation needed by this model
is to use partial identities as sets of only one attribute: the
identifier for each entity.

Another example of a trust and reputation model which
can be built using our two-layer architecture is the REGRET
system [14] developed by Sabater and Sierra. This model
takes into account not only past experiences but also other
sources of information to assess trust and reputation. Con-
cretely, REGRET uses the role that an entity is playing in
an institutional structure as a mechanism to assign default
reputation to the entities. In this sense, the role of the en-
tities can be extracted from their partial identity (whenever
entities decide to make it accessible to other entities).

These two examples clearly show that our solution could
be used by existing trust and reputation models without re-
quiring a new design of the model itself. Therefore, our so-
lution fulfills the Trust and Reputation Model Independence
functional requirement.

The trust and reputation model layer also fulfills the Het-
erogeneous Trust and Reputation Systems functional require-
ment. In this sense, there is nothing that prevents differ-
ent entities from using different trust and reputation mod-
els in the same trust and reputation system. Entities are
not forced to use a concrete particular trust and reputation
model in a system. They could choose the trust and rep-
utation model they prefer for a given system. Indeed, this
fact opens the possibility of having multiple vendors of trust
and reputation models to be used for different entities in the
same system.

Finally, as explained previously, the identity management
layer is centralized. It needs a trusted third party (the Hig-
gins IdP). However, the trust and reputation model layer al-
lows both centralized and distributed trust and reputation
models. Furthermore, the identity management layer can
be classified as a hard security mechanism while the trust
and reputation model layer can be classified as a soft secu-
rity mechanism, i.e., the identity management layer avoids
the presence of entities taking advantage of PIUP, while the
trust and reputation model layer acts as a social control
mechanism that isolates misbehaving entities.

7. RELATED WORK
Rehák and Pěchouček [12] relate trust and identity by

modeling trust context and identity representation. They
mainly focus on scenarios with scarce resources such as sen-
sor networks, in which an underlying identity infrastructure
cannot be assumed. Jennings and Finkelstein [6] propose
a unified identity for social software in business processes.
They propose building this unified identity by mining data
from different social silos. Once this unified identity is built,
it can be used as a foundation for trust and reputation.
These two approaches obviate privacy concerns related to

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

24

identity attributes.
Friedman and Resnick [4] propose a mechanism for pre-

venting name changes in a social arena. They assume an
intermediary, trusted by all of the entities in the specific so-
cial arena without revealing one’s real identity. However,
they simplify the concept of partial identity solely to iden-
tifiers. Other attributes that can play a crucial role when
assessing the trust and reputation of an entity are omitted.
Moreover, they do not consider that real identities should
be revealed in special situations such as law enforcement.

8. CONCLUSIONS
In this paper, we propose formalized definitions of par-

tial identities and their relationship to trust and reputation.
Partial identities are a key concept for identifying entities.
Moreover, they play a crucial role in trust and reputation,
modeling part of the context where trust and reputation
take place. In this sense, both trust and reputation are es-
tablished through partial identities.

We also define the partial identity unklinkability problem
(PIUP) based on partial identities. PIUP can be more or less
harmful depending on the final domain of the application
using trust and reputation models. In domains where users
can be seriously harmed (e.g. in an e-marketplace by losing
money) PIUP needs, at least, to be considered.

We finally propose a privacy preserving solution to PIUP
which takes into account privacy concerns. It allows the
building of trust and reputation through partial identities
while preventing entities from getting rid of trust and rep-
utation assessments in a given system. The real identities
of the entities in a system are not disclosed except under
special circumstances such as law enforcement.

9. ACKNOWLEDGMENTS
This work has been partially supported by CONSOLIDER-

INGENIO 2010 under grant CSD2007-00022, and projects
TIN2008-04446 and PROMETEO/2008/051. Jose M. Such
has received a grant from Conselleria d’Empresa, Universi-
tat i Ciència de la Generalitat Valenciana (BFPI06/096).

10. REFERENCES
[1] C. Castelfranchi and R. Falcone. Principles of trust for

mas: Cognitive anatomy, social importance, and
quantification. In ICMAS ’98: Proceedings of the 3rd
International Conference on Multi Agent Systems,
page 72, Washington, DC, USA, 1998.

[2] S. Clauβ, D. Kesdogan, and T. Kölsch. Privacy
enhancing identity management: protection against
re-identification and profiling. In DIM ’05: Proceedings
of the 2005 workshop on Digital identity management,
pages 84–93, New York, NY, USA, 2005. ACM.

[3] S. Fischer-Hübner and H. Hedbom. Benefits of
privacy-enhancing identity management. Asia-Pacific
Business Review, 10(4):36–52, 2008.

[4] E. J. Friedman and P. Resnick. The social cost of
cheap pseudonyms. Journal of Economics and
Management Strategy, 10:173–199, 1998.

[5] D. Gambetta, editor. Trust: Making and Breaking
Cooperative Relations. Basil Blackwell, 1990.

[6] B. Jennings and A. Finkelstein. Digital identity and
reputation in the context of a bounded social

ecosystem. In Business Process Management
Workshops, pages 687–697. Springer, 2008.

[7] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decis. Support Syst., 43(2):618–644, 2007.

[8] R. Kerr and R. Cohen. Smart cheaters do prosper:
defeating trust and reputation systems. In Proc. of
The 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), pages 993–1000,
2009.

[9] A. Pfitzmann and M. Hansen. Anonymity,
unlinkability, undetectability, unobservability,
pseudonymity, and identity management – a
consolidated proposal for terminology, Feb. 2008.
v0.31.

[10] K. Rannenberg, D. Royer, and A. Deuker, editors. The
Future of Identity in the Information Society:
Challenges and Opportunities. Springer Publishing
Company, Incorporated, 2009.

[11] L. Rasmusson and S. Jansson. Simulated social control
for secure internet commerce. In NSPW ’96:
Proceedings of the 1996 workshop on New security
paradigms, pages 18–25, New York, NY, USA, 1996.
ACM.

[12] M. Rehák and M. Pěchouček. Trust modeling with
context representation and generalized identities. In
CIA ’07: Proceedings of the 11th international
workshop on Cooperative Information Agents XI,
pages 298–312, Berlin, Heidelberg, 2007.

[13] P. Resnick and R. Zeckhauser. Trust among strangers
in Internet transactions: Empirical analysis of eBay’s
reputation system. In M. R. Baye, editor, The
Economics of the Internet and E-Commerce,
volume 11 of Advances in Applied Microeconomics,
pages 127–157. Elsevier Science, 2002.

[14] J. Sabater and C. Sierra. Social regret, a reputation
model based on social relations. SIGecom Exch.,
3(1):44–56, 2002.

[15] J. Sabater and C. Sierra. Review on computational
trust and reputation models. Artificial Intelligence
Review, 24(1):33–60, 2005.

[16] J. Sabater-Mir, M. Paolucci, and R. Conte. Repage:
REPutation and imAGE among limited autonomous
partners. JASSS - Journal of Artificial Societies and
Social Simulation, 9(2), 2006.

[17] C. Sierra and J. Debenham. An information-based
model for trust. In Proc. of the fourth int. joint conf.
on Autonomous agents and multiagent systems
(AAMAS 2005), pages 497–504, New York, NY, USA,
2005. ACM.

[18] Y. Wang and M. P. Singh. Formal trust model for
multiagent systems. In IJCAI’07: Proceedings of the
20th international joint conference on Artifical
intelligence, pages 1551–1556, San Francisco, CA,
USA, 2007. Morgan Kaufmann Publishers Inc.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

25

Dispatching Agents in Electronic Institutions

Hector G. Ceballos
Tecnologico de Monterrey
Ave. E. Garza Sada 2501

Monterrey, Mexico
ceballos@itesm.mx

Pablo Noriega
IIIA-CSIC

UAB Campus
Bellaterra, Spain

pablo@iiia.csic.es

Francisco J. Cantu
Tecnologico de Monterrey
Ave. E. Garza Sada 2501

Monterrey, Mexico
fcantu@itesm.mx

ABSTRACT
In Electronic Institutions [1], agents may be prevented from
achieving their goals if other participants are not present in
a given scene. In order to overcome this situation we propose
the addition of an institutional agent in charge of dispatch-
ing agents to scenes through a participation request proto-
col. We further propose to endow this agent with the ca-
pability of instantiating new agents, thus providing grounds
for a self-optimization of the system. Advantages of our
proposal are illustrated with the implementation of an in-
formation auditing process.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

Keywords
Multiagent systems development environments. Electronic
institutions. EIDE.

1. INTRODUCTION
The Electronic Institutions framework [1] developed in the

Artificial Intelligence Institute of the Spanish National Sci-
entific Research Council, (IIIA-CSIC), is a means to design
and implement regulated open multiagent systems. The
current framework is the outcome of more than a decade
of developments and has been used to implement regulated
MAS in several domains. For example, to support electronic
auctions, to establish supply-chain virtual organizations, to
agentify hotel and hospital management systems, to sup-
port participative experimentation, to model policy-making
or to simulate human activity in archaeological sites. The
framework has also served as a model-building environment
for the discussion of topics like agent-based simulation, ma-
chine readable normative languages or autonomic comput-
ing. But in spite of this considerable variety of modes of use
there have been very few published references to the under-
lying technology and, in particular, seldom any discussion of
its expressive limitations and ways to circumvent them [2,
4].

This paper is one such discussion. We address the prob-
lem of deadlocks induced by improper institutional support
in the follow-through of processes whose “most natural” rep-
resentation may be as goal-directed workflows. In fact, we
frame that problem in slightly more general terms: as the
breakdowns produced by stalling or absent agents; and we
advance a solution whose schema —an institutional agent

with particular functionalities— may be reused mutatis mu-
tandis to address similar problems and may also be coded
as a standard functionality in the framework infrastructure.
We believe that our solution should facilitate the adoption
of the electronic institutions metaphor for the design of con-
ventional MAS.

The structure of the paper is straightforward. The next
subsections provide terminological and conceptual background.
In Sec. 2 we present our proposal and in Sec 3 we describe a
case study on information auditing to illustrate our proposal
and present simple experimental results to back our claims.
We finish with a brief discussion and comments on future
work.

1.1 Electronic Institutions
For the purpose of this paper the EI framework may be

described in terms of a conceptual model, a computational
model and a software platform, EIDE, to specify and run
electronic institutions [1, 5].

The conceptual model for electronic institutions as-
sumes that the electronic institution determines a virtual
space where agents interact subject to explicit conventions,
so that institutional interactions and their effects count as
facts in the real world. Because of this virtuality, it is as-
sumed that all interactions within the electronic institution
are speech acts expressed as illocutionary formulae. The
electronic institution defines an open MAS in the sense that
(i) it makes no assumption about the architecture and goals
of participating agents (who may be human or software en-
tities); and (ii) agents may enter and leave the institution
at will, as long as the regimented conventions of the insti-
tution are met. Participating agents are subject to role-
based regulations whose specification is given in terms of
illocutions, norms and protocols. There are two classes of
agents, internal and external. Internal agents act on behalf
of the institution itself who is responsible for their behav-
ior. External agents act on their own behalf and their in-
ternal state is inaccessible to the institution. Interactions
are organized as repetitive activities called scenes. Scenes
establish interaction protocols describing agent group meet-
ings as transition diagrams whose arcs are labeled by valid
illocutions. The performative structure captures the rela-
tionships among scenes describing those transitions agents
playing certain role can make. Finally, normative rules de-
scribe the obligations an agent contracts while it participates
in the institution. Agents may move from one scene to an-
other, they may be active in more than one scene at a given
time and they may perform different roles in different scenes.

The computational model for EIs defines a social (in-

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

26

stitutional) software layer between an agent communication
platform (e.g. JADE) and participating agents. All in-
stitutional communications among agents are mediated by
this platform. That institutional middleware is composed
by three types of infrastructure “agents”: (i) An institution
manager who centralizes valid communications and keeps
track of the state of the institution, which is a data struc-
ture that contains the current values of all variables involved
in the enactment of the institution. (ii) There are scene and
transition managers for each, scene and transition, who han-
dle the activation and persistence of scenes and transitions,
and give access and exit to participants according to the
local conventions; these managers mediate between the in-
stitution manager and the agent governors and keep track
of the state of the institution as it applies to their partic-
ular context. (iii) One governor is attached to each agent
and filters all communications between that agent and the
institution; in particular, it directs valid illocutions to the
corresponding scene managers and the institutional man-
ager. The governor keeps a copy of the evolving state of the
institution in order to apply regimented conventions on all
speech acts its agent utters, and communicates to other in-
frastructure agents only those speech acts that comply with
those conventions; thus the governor enables a change of the
institutional state if and only if it admits a valid illocution
from its agent.

The Electronic Institutions Development Environ-
ment, EIDE [5], consists of a graphical specification lan-
guage, ISLANDER, whose output is an XML specification of
an institution; a middleware AMELI [6], that takes an XML
specification and enacts a runtime version of the institution
with agents who run on a FIPA-compatible agent communi-
cation platform; a debugging and monitoring tool, SIMDEI,
that registers all communications to and fro AMELI and
displays and traces the evolution of the institutional state;
finally an agent-shell builder, ABuilder, that from the XML
specification produces an agent “skeleton” for each agent
role. The skeleton satisfies all the (uninstantiated) navi-
gation and communication requirements of the specification
thus leaving the agent programmer to deal only with the
implementation of the agent’s decision-making logic at com-
munication points.

The way these ideas are made operational in EIDE makes
it possible to build complex regulated MAS. However, that
operationalization corresponds more naturally to some types
of MAS functionalities than to others. In this paper we pro-
pose one mechanism to deal with a type of situation that
is currently difficult to handle in EIDE. Namely, the dead-
lock caused by the unavailability of an internal agent in a
scene. Such deadlocks may happen in processes (perfor-
mative structures) that require dedicated internal agents to
follow-through subprocesses that involve single agents. For
instance, the supervision of a patient’s treatment through a
medical protocol or, as exemplified in this paper, the audit-
ing of the dossier of an individual as part of the academic
evaluation process of a university. In general, this type of
individual follow-through processes tends to appear when-
ever institutional interactions are organized in terms of in-
dividual agents’ goals (e.g. each dossier has one agent who
“pushes” the dossier through the steps of a pre-established
workflow). Because in EIDE all agents that are present in
a given scene share the state of the scene, when there is a
process that involves private attention from the institution

to one agent, an internal agent that enforces institutional
conventions may be needed in all the scenes involved in the
process. Moreover, currently there is no standard way of cre-
ating new internal agents in a running EI and furthermore,
the current version of EIDE does not have the functionality
of forcing an agent to act at any point, in particular, thus, it
cannot force an agent to move from one scene to another, nor
to terminate an agent. Consequently, deadlocks may arise
when all available internal agents are already busy and also
when no available internal agent enters the stalled scene.

To overcome this hurdle, the current solution in EIDE
is to instantiate a new (sub) performative structure that
corresponds to the private process each time that process
needs to happen. In this solution, all the required internal
agents are created automatically for every scene or transition
in the process. However, the creation of substructures is
expensive and in most cases involve having agents active
in multiple scenes simultaneously, situation that is rather
complex to program. Furthermore, this mechanism does
not necessarily solve the deadlock induced by an available
agent who stalls.

In this paper we propose another way of addressing that
problem. It consists in the definition of a new internal Dis-
patcher agent, that keeps track of the need of internal agents
(of those roles that may become necessary) and when re-
quested by a scene manager, dispatches those that are avail-
able to the scenes that may need them, spawning new ones
whenever necessary.

1.2 Agent Platform Services
Multi-agent frameworks have solved the problem of man-

aging agent participation in several ways. For instance,
FIPA has proposed a low-level solution for peer-to-peer com-
munication based on services. On the other hand, multi-
agent frameworks like Moise+ [8], MadKit [7] and Electronic
Institutions have proposed upper-level solutions.1

The FIPA organization recommends a series of low-level
services that any agent platform must implement to pro-
vide peer-to-peer communication: Agent Management Sys-
tem (AMS), Message Transport System (MTS) and Direc-
tory Facilitator (DF). The main role of an AMS is managing
agent creation, deletion and migration on the agent plat-
form, as well as maintaining the index of all agents identifiers
in the platform. The MTS enables communication between
agents internally or across different agent platforms. On
the other hand, the DF functions as a yellow pages service
on the agent platform. The DF considers agents as service
providers and publishes the service descriptions provided by
them. Even when the DF is an optional component of the
agent platform, it is essential for finding the location of ser-
vices in the multi-agent system. JADE and FIPA-OS are
examples of frameworks that fulfill such recommendation.

In MOISE+ (ORA4MAS), organizations are modeled along
three dimensions: structural, functional and deontic. Agents
organize themselves in groups adopting roles that determine
those missions they can or must perform in order to achieve
the groupal goal. Social schemata allow to organize those
missions and partial goals that must be performed/achieved

1A thorough review of how stalling and deadlocks are ad-
dressed in other platforms is beyond the scope of this paper,
here we merely point towards the grounds that are common
to most approaches and two environments that use a notion
of interaction context assimilable to EI scenes.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

27

in order to reach a common goal. Similarly, in AGR (Mad-
kit) agents organize themselves in groups adopting one role
and are limited to communicate only with other agents in
the same group. Nevertheless, an agent can join multiple
groups simultaneously. In Electronic Institutions, once in-
side a scene, agents are allowed to exchange messages only
with other agents in that scene.

The three approaches propose a common space or context
on which agents interact in order to achieve a single common
goal, or multiple individual ones. Coordination requires con-
trolling the entrance and exit of participants as well as the
minimum/maximal number of agents playing certain role.
Agents are free to decide which space(s) to join as their own
goals dictate. However, none of the three approaches pro-
vides a solution for those cases when there are not enough
agents for starting a group or scene, or when a group or
scene is stalled waiting for one or more agents to continue.
Agents in the stalled group need to communicate with other
agents in order to invite them to join.

Our approach proposes the existence of a Dispatcher Agent
in charge of directing the invitations made by agents in
stalled groups/scenes. This agent optimizes the allocation
of resources instantiating new agents when necessary and
negotiating with available agents their participation.

2. REQUESTING AGENT PARTICIPATION
The context established by a scene in Electronic Institu-

tions makes it difficult for agents in the scene to reach other
agents. Such confinement creates a challenge: to warrant
that all required agents be present in the scene. We formal-
ize this problematic situation and propose a solution. We
propose to institute an agent in charge of dispatching agents
to scenes through a participation request protocol. This
agent makes use of the low-level services recommended by
FIPA and is coherent with the EI model and implementable
in the current EIDE version.

2.1 Missing agents in scenes
Assuming that agents decide freely to enter or not in a

scene, we may find two problematic situations in which par-
ticipants would not achieve their individual goals: 1) not
all the agents required for the scene are available, or 2) an
agent in the institution is not aware that its participation
is required in a particular scene. Both conditions can ap-
pear before the creation of the scene or during its execution.
In the following we will only deal with the case of ongoing
scenes.

Formally, the problematic situation would be defined as
follows. There is an agent A1 pursuing a goal G1 that is
currently playing role R1 in scene S. Scene S is in state W1

and the achievement of G1 requires reaching state Wn. To
do so, there is a sequence of illocutions (M1, ...,Mn) that
must be issued by A1 or by some other agent (A2, ..., An)
playing roles (R2, ..., Rn) in S. Nevertheless, at state Wj the
outgoing illocution Mj , 1 ≤ j ≤ n, has for sender or receiver
an agent playing role Rj for which there is no agent in the
scene. We assume that there exists a state Wk, 1 ≤ k ≤ j,
at which the entrance of agents playing role Rj is allowed
and in which A1 is capable of keeping the scene on hold.

In order to reach Wn, agent A1 sets meansFor(G3, G2)
and meansFor(G2, G1), where G3 = {holdAt(S,Wk)} and
G2 = {agentsP layingRole(Rj , S,Q)}. meansFor(G2, G1)
denotes that goal G1 is in stand-by until G2 is achieved.

Likewise, holdAt(S,W) is a goal that is satisfied when scene
S reaches state W . Similarly, agsP layingRole(R,S,Q) is
satisfied once there are Q agents playing role R on scene
S, where the quantifier Q ∈ {ONE, ALL, N=n}, represents only
one agent, any available agent, or exactly n agents, respec-
tively.

In order to achieve the goal agsP layingRole(R,S,Q), the
agent A1 must request the participation of other agents
through some protocol P . Such protocol P must achieve
the agreement of Q agents to participate in S with role R.
Protocol P might include agent selection and negotiation,
that may be performed by A1 itself or by another agent.

2.2 A Dispatcher Agent
We introduce the notion of Dispatcher agent as an in-

termediary agent that facilitates the achievement of those
agsP layingRole(R,S,Q) goals owned by other agents. Let
us represent the Dispatcher agent with the symbol AD and
denote its attributions with the role RD. This agent keeps
track of all agents on the institution through the Agents
relation. Besides, AD maintains the three following rela-
tions: AgClasses, hasType and canP lay. The set of agent
classes AgClasses = {C1, ..., Cn} represent the software im-
plementation of any participant, denoted by a source code
class. Through hasType ⊂ Agents× AgClasses, AD keeps
track of the agent class of every agent in the institution; it is
assumed that every agent belongs to a single agent class. Fi-
nally, canP lay ⊂ AgClasses×Roles is used to know which
roles may be played by an agent according to its agent class.
The canP lay set may be built and updated by keeping track
of participants in the institution, or may be known a priori.
AD is capable of creating new instances of the agent class

Ci through the action Instantiate(Ci), which creates and
enters an agent Ai in the institution. The configuration
of AD specifies, for each agent class, a maximum number of
agents it can manage, denotedMaxAgs(Ci). IfMaxAgs(Ci)
is 0, AD cannot instantiate agents of type Ci. The func-
tion CurrAgs(Ci) counts the number of tuples (AGj , Ci) ∈
hasType.
AD implements two primitive operations for updating these

relations. RegisterAgent(Ai, Ci) inserts Ai in Agents and
introduces the tuple (Ai, Ci) in hasType. On the other
hand, UnregisterAgent(Ai) removes Ai from Agents and
the tuple (Ai, Ci) from hasType.

2.3 Processing Agent Participation Requests
We can assume that the dispatcher agent becomes aware

of the agsP layingRole(R,S,Q) goal owned by the agent
X through a protocol PReq. In this way, AD generates an
agent participation request APR(X,R, S,Q) whose purpose
is committing Q agents to participate in S with role R.
Given the previous definitions, AD must determine if it can
satisfy the request with the current set of agents.

Definition 1. An apr = APR(X,R, S,Q) is satisfiable w.r.t.
Agents if an only if, there is a set
AGS = {AGi|hasType(AGi, C) ∧ canP lay(C,R) for 0 ≤
i ≤ m}, such that m ≥ 1 for a quantifier Q ∈ {ONE, ALL}, or
m ≥ n for a quantifier Q = N=n. Similarly, APR(X,R, S,Q)
is unsatisfiable w.r.t. Agents if m = 0 for Q ∈ {ONE, ALL},
or if m < n for Q = N=n

Given the set of agents AGS that can satisfy apr and us-
ing a protocol PInv, agent AD invites every agent in AGS

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

28

to participate in S playing role R.The acceptance of AGi is
represented by Agree(AGi, S,R), while its refusal is repre-
sented by Refuse(AGi, S,R). Once all agents in AGS have
given a response, AD proceeds to select the best agents for
the scene.

The set of agents accepting the invitation, denotedAccAgs,
is partially ordered by an operator � that calculates how
suitable is an agent AGi of type C for playing role R in
scene S, denoted AccAgs�. Hence, AGi � AGj means that
AGi is better or at least as good as AGj for the given sce-
nario.

The ordered set SelAgs ⊆ AccAgs� is constituted by the
first n agents of AccAgs�, where n = 1 for q =ONE, n =
|AGS| for q =ALL, and n ≤ n for Q = N=n.

Definition 2. An apr = APR(X,R, S,Q) is satisfied, de-
noted satisfied(apr), if |SelAgs(apr)| ≥ 1 for Q ∈ {ONE,
ALL} or |SelAgs(apr)| = n for Q = N=n.

If apr is not satisfied w.r.t. Agents, the introduction of
new agents in the system would solve the problem. This is
possible if there exists at least one agent class Ci such that
canP lay(Ci, R) and MaxAgs(Ci) > 0. If there is no Ci

with these properties, AD will have to wait for new agents
for a fixed period of time τ , after which it will declare the
request unsatisfied.

Given that there may be more than one agent class ca-
pable of playing role R, AD can use the same partial order
criteria � for selecting the best class for the role R required
in an apr. If apr is an agent participation request and
AgClss(apr) a partially ordered set {Ci|canP lay(Ci, R)}
w.r.t. �, then AD will choose the first Ci ∈ AgClss(apr)
for which CurrAgs(Ci) < MaxAgs(Ci). If no Ci satisfies
this requisite, the instantiation is not performed.
AD determines the number of agents that should be in-

stantiated to satisfy the request, denoted NMissing. If Q =
N=n, NMissing = n−|SelAgs|, meanwhile ifQ ∈ {ONE, ALL}
then NMissing = 1. If NMissing > 0, AD can instantiate
and enter in the institution a missing agent through the ex-
ecution of the primitive Instantiate(Ci) : Ai for some Ci ∈
AgClss(apr). These primitives make use of the Agent Man-
agement System (AMS) provided by any FIPA-compliant
agent platform.

Agents entering the institution are invited to scenes held
in stand-by due to an unsatisfied apr. Thus, if an agent
AGi of type Ci is created by AD in order to satisfy apr =
APR(X,R, S,Q) and AGi doesn’t accept the corresponding
invitation to S, Ci is removed from AgClss(apr). If an agent
created by AD refuses all the invitations made during its
logging in the institution, its access is denied. Agents exiting
from the institution produce a revision of unsatisfied agent
participation requests that might require the instantiation
of new agents.

We distinguish between permanent and transient partic-
ipants according to their patterns of entry and exit in the
institution. Let’s call permanent participants those agents
that remain in the institution continuously while it is alive.
On the other hand, transient participants are agents that
enter the institution pursuing certain goals and exit once
they have reached them. Agent classes representing perma-
nent participants are identified by the set PermAgCls ⊂
AgClasses; similarly transient participants are denoted by
TranAgCls ⊆ AgClasses.

Now we can establish necessary conditions to determine

when an unsatisfied agent participation request justifies an
agent instantiation.

Theorem 1. An unsatisfied apr = APR(X,R, S,Q) can
be satisfied through the instantiation of NMissing agents
if there is a subset (Ci ∪ Cj) ⊆ AgClss(apr) such that
NMissing ≤ FSlots(apr), where

FSlots(apr) =
∑

i

MaxAgs(Ci)− CurrAgs(Ci, S) +

∑

j

MaxAgs(Cj)− CurrAgs(Cj)

for Ci ∈ (AgClss(apr)∩TranAgCls) and Cj ∈ (AgClss(apr)∩
PermAgCls). CurrAgs(Ci, S) returns the number of agents
with type Ci currently in scene S.

Proof. Eventually, transient agents will leave the in-
stitution releasing slots that AD can use for creating new
instances, hence in the worst case where MaxAgs(C) =
CurrAgs(C) and a single C ∈ AgClss(apr) ∩ TranAgCls
exists, the exit of all agents of type C will make CurrAgs(C) =
0 allowing the instantiation of the required agents.
CurrAgs(C, S) allows to consider those agents of class

C that will remain in S. For permanent agents, we can-
not assume that they will exit from the institution, hence
we can only count with the instantiation of MaxAgs(C) −
CurrAgs(C) agents of type C.

The order in which invitations are issued is important
when incoming agents have a limited capacity for attend-
ing invitations. Suppose that AD is processing two agent
participation requests apr1 and apr2 for the same role R,
where AgClss(apr1) = AgClss(apr2), and the maximum
number of invitations an agent of type C ∈ AgClss(apr1)
can take is one. If an agent is instantiated for class C and
the invitation for apr2 is sent earlier than the invitation for
apr1, the new agent will only attend the scene in apr2. Simi-
lar instantiations and invitations might satisfy apr2 and left
apr1 in hold if NMissingapr1 < FSlots(apr2).

On the other hand, the refusal of agents for participat-
ing in an apr might produce an empty AgClss(apr) set.
This condition would allow AD to consider apr unsatisfi-
able discarding it from its queue. Otherwise, an unsatisfi-
able apr1 might block a subsequent apr2 if AgClss(apr2) ⊆
AgClss(apr1).

2.4 Request and Invitation Protocols
Agent participation is negotiated through two protocols,

one for requesting agent participation (PReq) and another
for inviting agents (PInv). Both protocols must be executed
in parallel with the scene that originated the request for
agent participation.

Let us use the DAgent name for denoting the RD role,
call ReqAgent the role played by an agent requesting the
participation of other agents and call InvAgent the role that
an invited agent plays. Every agent in the institution must
be able to play ReqAgent and InvAgent roles, meanwhile
only one agent, AD, is allowed to play the role DAgent.

Figure 1 shows the sequence diagram for PReq between
DAgent and ReqAgent. Figure 2 depicts the automata de-
scribing the request protocol where letters on arrows rep-
resent valid sequences of illocutions taken from figure 1, as
well as the nested call to PInv.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

29

Figure 1: Sequence diagram for the request proto-
col.

Figure 2: Automata for the request protocol.

Figure 3 shows a sequence diagram with segments of PInv.
Figure 4 illustrates the automata describing the request pro-
tocol where letters on the arrows represent sequences of il-
locutions shown in Figure 3. PInv distinguishes between
invitations to current agents and the instantiation and invi-
tation of new agents. Figures are discussed below.

3. CASE STUDY
We used the Electronic Institution formalism for the au-

tomation of the auditing of an information repository. Sev-
eral kinds of autonomous agents and human users partici-
pate in this auditing process. The process is initiated by
external events and during its execution human interven-
tion might be required. Rather than waiting for human
users entry to the system, our approach enables autonomous
agents to request human participation in order to achieve
their goals.

A multiagent system for performing this auditing process
was implemented with the tools developed in the IIIA [5].
Experiments and the results obtained are described at the
end of this section.

3.1 Information Auditing
The information repository is managed by a RepGuardian

agent that monitors changes on the repository and initiates
the auditing process. The auditing process is driven by a
specialized agent Carrier, and with the participation of other
autonomous agents, Auditor and Corrector, as well as user
agents representing human experts and information authors.
A Carrier agent receives a notification about a record that
has been added or modified in the information repository.
The Carrier requests every available Auditor agent to check
the internal consistency of the repository with respect to the

Figure 3: Sequence diagram for the invitation pro-
tocol.

Figure 4: Automata for the invitation protocol.

auditing rules it knows. The Auditor agent responds to the
Carrier whether informing that the record and the reposi-
tory are consistent or returning a set of the inconsistencies
detected. The type of inconsistencies are either internal in-
consistencies of the record, or violations of rules defined for
the entire repository; for instance, duplicity of records.

The Carrier agent chooses between sending the record to
automatic correction with a Corrector agent, asking for ex-
pert assessment from a human expert, or notifying the au-
thor of the record of the possible inconsistency. The Cor-
rector agent can apply the correction procedure or ask for
expert assessment instead. In turn, the Expert user can
modify the record or notify to its author. At the end, the
decision made by the author is final. This decision model is
depicted on Figure 5.

In this scenario we can detect some cases where human

Figure 5: Decision model during information correc-
tion.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

30

users are not present in the system when their participation
is required. For instance, the user registering or modify-
ing the record might have left the system by the time an
inconsistency needs a final decision. Similarly, the expert
user may not be logged in the system when an inconsistency
is detected. A new auditing rule evaluated throughout the
repository might require the assessment of expert users or
users responsible for inconsistent records.

3.2 Implementing the auditing process
The process described above was specified with a per-

formative structure AuditingPS that contains protocols for:
triggering the auditing (NewInfo), detecting inconsistencies
(Auditing), performing the corrections (Correction) and in-
tegrating results on the repository (Audited). AuditingPS
and its protocols use the roles defined above: RepGuardian,
Carrier, Auditor, Corrector, Expert and Author. Using the
ABuilder tool [5], agent classes were generated for each role,
except for Expert and Author roles which shared the same
agent class, named UserAgent. Only the RepGuardianAgent
was classified as permanent; the rest of the agent classes
were considered transient.

It was possible to simulate the auditing of new pieces of
information registered in the repository with this implemen-
tation. The simulation required to have a fixed set of user
agents playing the roles of experts and authors for every
possible human user that could be required in the process.
Besides, every expert or author user participated in each
Correction scene.

Given that human users responses to a request made when
he/she was off-line might take entire days, the duration of
Correction scenes was limited by a timeout after which the
correction is considered to have failed. A User agent repre-
senting an expert or an author is not allowed to participate
on multiple scenes simultaneously; nevertheless it can ac-
cept invitations to other scenes until reaching a given limit
of invitations.

3.3 Implementing Agent Participation Request
The request for agent participation was implemented by

developing: 1) an additional performative structure con-
taining the protocols proposed in our approach, 2) the dis-
patcher agent, 3) an institutional service for instantiating
new agents, and 4) new functionality for previously defined
agent classes.

The new performative structure is assembled with four
protocols that enable agents to: 1) log in, 2) request agent
participation, 3) receive and answer invitations to scenes,
and 4) log out. AuditingPS was inserted in this performa-
tive structure indicating that every agent should pass by
the first three protocols before entering AuditingPS, hence
remaining active in request and invitation protocols. Fi-
nally, after leaving AuditingPS they should pass by the log
out scene. Protocols and roles specified in this performative
structure are defined in section 2.4.

The RepGuardian agent implemented the functionality of
the DAgent role with the characteristics described in section
2.2, the algorithm outlined on section 2.3 and the primitives
described in both sections.

Agents developed for AuditingPS were augmented with
the functionality of ReqAgent and InvAgent roles. A pa-
rameter on each agent class C denoted MaxInv(C) was set
to limit the maximum number of simultaneous invitations

Parameter Low High Critical
Feeding rate 40 sec. 10 sec. 10 sec.
Expert revision 2-5 sec. 2-5 sec. 2-5 sec.
Author revision 20-25 sec. 20-25 sec. 20-25 sec.
MaxAgs(Carrier) 10 10 10
MaxAgs(User) 10 10 5

Table 1: Experiment configurations.

an agent of this class can accept.

3.4 Experiments
To demonstrate the capabilities of the Dispatcher agent we

prepared a test-bed with the system described above. We
want to observe the capabilities of the DAgent for dispatch-
ing agents to scenes where human intervention is requested
and for detecting unsatisfiable requests. In order to do so,
we simulated different demand patterns on the system and
manipulated the maximum number of agents permitted. An
overloaded system is that in which information is fed faster
than users are able to revise it. Thus we provoked that cer-
tain scenes stalled due to the lack of enough agents for all of
them. Next we manipulated the maximal number of agents
in order to generate unsatisfiable requests.

We defined a single RepGuardian and constant popula-
tions of auditor and corrector agents. One Carrier agent was
instantiated for each information piece fed into the system.
User agents playing the role of Expert or Author are created
on demand up to a maximum of MaxAgs(User). The same
User agent representing a human user must participate in
all the scenes where the user intervention is requested and
it must wait to finish its work in a scene before proceeding
to the next.

Our focus was on the Correction protocol, whose deci-
sion model is shown in Figure 5 and is explained in section
3.2. In our experiments, the power for instantiating Cor-
rector agents was disabled, i.e. MaxAgs(Corrector) = 0.
In consequence, the dispatcher informs the Carrier of the
unfeasibility of requests for Corrector agents. Hence the
Carrier requests an expert who in turn calls one author for
correcting the record. In conclusion, every Correction scene
is initiated by one Carrier and requires the participation of
one expert and one author. All the agents remain in the
scene until this finishes. User agents were limited to accept
up to three invitations, i.e. MaxInv(User) = 3.

We prepared three system configurations. The first config-
uration gives us a reference of how the system would behave
under low demand. In the second we have an information
feeding rate higher than revision time, which we expect to
generate several stalled scenes. And the last configuration
has a reduced number of User agents for detecting unsatisfi-
ability of requests. Parameters for the three configurations,
labeled Low, High and Critical respectively, are shown in
Table 1.

3.5 Results
Using the configurations given above we ran experiment

rounds auditing 50 new information pieces in order to mea-
sure the behavior of agents and measure the performance
in the Correction scene. We observed the maximal number
of simultaneously stalled scenes, i.e. scenes in hold due to
a request for agents, and calculated the average conclusion
time for these scenes. Aditionaly, we observed the maximum

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

31

Observation Low High Critical
Max. stalled scenes 2 7 10
Avg. scene time 30 sec. 61 sec. 197 sec.
Max. active Carriers 2 10 10
Max. active Users 2 10 5
Max. active Experts 1 5 4
Max. active Authors 1 6 2

Table 2: Experimental results.

number of concurrent Carrier and Users agents, as well as
the maximum simultaneous number of User agents playing
the Expert or Author role; recall that experts and authors
use the User agent class for participating in the system. Re-
sults for the three configurations are shown in Table 2.

The first configuration showed only one Correction scene
most of the time, and reached the maximum of two at some
point of the simulation. The number of simultaneously stalled
Correction scenes and Carrier agents is the same as long as
Carrier agents are in charge of creating the Correction scene.
Only one expert and one author were active in the system
at the same time, authors and expert were released once the
correction scene finished and were instantiated again when
a new Correction scene was generated.

In the second configuration the reduction on the feeding
rate produced more stalled scenes and a higher utilization
of agents. The maximal number of Carrier and User agents
was reached. This time the maximum number of stalled
scenes didn’t match the maximal number of Carriers agents
because they were busy participating in other scenes of the
auditing process. The average conclusion time for scenes
was doubled as long as busy experts kept in hold at most
two scenes meanwhile they were attending another scene.
Figure 6 shows the behavior of the population of Carrier
and User agents, broke down on Expert and Author roles,
for this configuration.

In the third configuration, after approximately twelve suc-
cessful evaluations the entire system stalled. At this point
we observed the five user agents playing the role of Expert
leaving no space for authors. Ten scenes were stalled, five
of which had an Expert agent and the other five had a sin-
gle Carrier agent waiting. In this case the dispatcher agent
was not capable of determining the unsatisfiability of the
requests for authors as long as it was expecting that some
User agent left the institution for instantiating an agent to
play the author role. The rest of the scenes made use of the
five available Expert agents not allowing the instantiation of
a new User agent for playing the role of Author. All these
scenes finished thanks to the timeout of 200 seconds, as can
be observed in the average termination time for these scenes.

This last scenario make us conclude that it was necessary
to reserve agent slots for authors in order to conclude the
scenes satisfactorily. Even when the participation of experts
and authors is not assured in all the scenes, we should be
capable of indicating it to the dispatcher agent in order to
prevent the deadlock.

4. DISCUSSION
Low-level services like the Directory Facilitator only an-

swer questions about the current set of agents in the system.
On agent platforms implementing this kind of services an
agent must search agents in term of the services they can

provide. For Electronic Institutions such service could rep-
resent playing a role at certain type of scene. Nevertheless,
the agent should be capable of negotiating the participation
of other agents directly with them. In our approach this ne-
gotiation is centralized and organized in the DAgent which
allows to detect unsatisfiable requests at some extent.

Another advantage of our approach is that populations
of agents can be adjusted on line according to the current
demand. This is possible thanks to the ability of transient
agents for leaving the institution when they are idle and to
the DAgent’s ability for instantiating agents when they are
required.

Another way of optimizing the system performance is us-
ing a well known protocol for resource allocation, the Con-
tractNet protocol [9]. ContractNet can be adapted for be-
ing used as agent request protocol. This can be done by
narrowing the signal task announcement to agents of class
C ∈ AgClss(apr) and making an analogy between invitation
acceptance and task assignment, where the task abstraction
would be expressed as playRoleIn(AG,R, S). The bid spec-
ification can include information about the time that would
take a bidder to get to the scene. Finally, every agent AGi

chosen from AccAgs(apr) receives an AWARD message for
playRoleIn(AG,R, S), and AGi is added to SelAgs(apr).
Agents making a bid for a task of this type commits since
that moment to attend to the scene if it is awarded.

5. CONCLUSIONS
We presented an approach for facilitating goal achieve-

ment by agents on an Electronic Institution. The type of
situations prevented are those where a missing agent pre-
vents the on-going execution of a protocol. Our approach
consists in introducing an agent that dispatches available or
new agents to those scenes.

We proposed necessary conditions for the instantiation of
agents to satisfy an agent participation request. Neverthe-
less, experiments showed that such conditions are not suffi-
cient when the scene requires the simultaneous participation
of further agents of the same class. More work on this direc-
tion is needed. Even though, agent instantiation controlled
by the DAgent showed its potential for optimizing dynami-
cally the populations of agents in the system.

Advantages of our approach were illustrated in an audit-
ing scenario with particular characteristics. For example,
the interaction was not initiated by human users but by au-
tonomous agents. As it was shown, our approach allowed
the participation of just the necessary agents on each scene
and avoided having idle agents in the system.

5.1 Future Work
The request protocol can be extended to deal with fu-

ture agent invitation and not just current invitations. By so
doing, we could prevent the deadlock of concurrent scenes.
Another option would be developing an algorithm for prun-
ing the directed cyclic graph representing an EI protocol or
scene. That would produce a reduced version of the protocol
when agents for certain role are missing. A pruned protocol
that doesn’t reach the final state would indicate an unsatis-
fiable scene execution. For instance, a Correction protocol
on which the participation of Corrector, Expert and Author
agents is pruned, could be detected a priori as unsuccessful.

An institutional model of public information for scenes
and agents can be used to improve our proposal. Public

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

32

Figure 6: Agent populations on the high-demand configuration.

information of the scene and the participants may be used
by the DAgent to narrow the announcement task, and by
invited agents to calculate their bids for participating in a
scene. For example, a Corrector agent that knows a rule for
correcting inconsistencies of a single type, should be directed
only to scenes where an inconsistency of that type is being
corrected.

Agent descriptions formalized through a Description Log-
ics [3] system would allow the generation of agent profiles
describing the properties that potential participant agents
should have. For instance, knowing that there are three
auditing rules for the repository and that every Auditor
agent can only handle one single rule, the request for au-
ditor agents for all the type of auditing rules would generate
three agent profiles, one for each rule. An instance of each
profile would be enough for assuring a complete auditing of
each new record.

6. ACKNOWLEDGMENTS
This paper was partially funded by the Spanish Ministry

of Science and Innovation AT (CSD2007-0022, INGENIO
2010) and EVE (TIN2009-14702-C02-01), by the Generali-
tat de Catalunya 2009-SGR-1434, by the Mexican Council
for Science and Technology and by the Tecnologico de Mon-
terrey.

7. REFERENCES
[1] J. Arcos, M. Esteva, P. Noriega, J. Rodriguez-Aguilar,

and C. Sierra. Engineering open environments with
electronic institutions. Engineering Applications of
Artificial Intelligence, (18):191–204, March 2005.

[2] J. L. Arcos, P. Noriega, J. A. Rodŕıguez-Aguilar, and
C. Sierra. E4Mas through Electronic Institutions., pages
184–202. Number 4389. Springer, Berlin / Heidelberg,
08/05/2006 2007.

[3] F. Baader. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge
University Press, September 2007.

[4] J. Campos, M. López-Sánchez, J. A. Rodŕıguez-Aguilar,
and M. Esteva. Formalising situatedness and adaptation

in Electronic Institutions., volume LNCS 5428, pages
126–139. Springer-Verlag, 2009.

[5] M. Esteva, J. A. Rodŕıguez-Aguilar, J. L. Arcos,
C. Sierra, P. Noriega, and B. Rosell. Electronic
institutions development environment. In Proceedings of
the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems. AAMAS-08, pages
1657–1658, Estoril, Portugal, 12/05/2008 2008.
International Foundation for Autonomous Agents and
Multiagent Systems, International Foundation for
Autonomous Agents and Multiagent Systems.

[6] M. Esteva, J. A. Rodŕıguez-Aguilar, B. Rosell, and J. L.
Arcos. Ameli: An agent-based middleware for electronic
institutions. In Third International Joint Conference on
Autonomous Agents and Multi-agent Systems
(AAMAS’04), New York, USA, July 19-23 2004.

[7] O. Gutknecht and J. Ferber. MadKit: Organizing
heterogeneity with groups in a platform for multiple
multi-agent systems. Technical Report R.R.LIRMM
9718, LIRM, December 1997.

[8] R. Kitio, O. Boissier, J. F. Hubner, and A. Ricci.
Organisational artifacts and agents for open
multi-agent organisations. In Coordination,
Organizations, Institutions, and Norms in Agent
Systems III, pages 171–186, 2008.

[9] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transactions on Computers, C-29(12),
December 1980.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

33

Agents with cognitive capabilities for social simulation

A. Caballero
∗

Facultad de Informática
Universidad de Murcia

30100 Murcia
acaballero@um.es

J.A. Botía
Facultad de Informática
Universidad de Murcia

30100 Murcia
juanbot@um.es

A. Skarmeta
Facultad de Informática
Universidad de Murcia

30100 Murcia
skarmeta@um.es

ABSTRACT
Multi-Agent Based Social Simulation (MABS) is a paradigm
devoted to use agents as the modeling metaphor to simulate
autonomous entities in a social world composed by a num-
ber of independent and interacting entities. Such models
try to reproduce real environments and situations of inter-
est within such environments. Most MABS platforms used
today (e.g. MASON, Repast, NetLogo) see agents as very
simple entities. However, there are situations in which a
more intelligent kind of agent is needed. For example, when
a society of persons with different roles and high level be-
haviours must be model. In this paper, we address how to
incorporate agents with cognitive skills into MABS.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation

Keywords
agent based simulation, social simulation, cognitive model-
ing

1. INTRODUCTION
Social simulation is a research field that applies compu-

tational methods to study issues in the social sciences. The
explored issues include problems in sociology, political sci-
ence, economics, anthropology, geography, archeology and
linguistics [16]. Nowadays, several social simulation plat-
forms are used (e.g. MASON, Repast1, Netlogo2, etc). All
of them are based on the concept of a very simple agent,
totally reactive, without any cognitive capability. However,
in a great amount of systems, developed under the artificial
intelligence branch which attempt to reproduce intelligent
human behaviours, the agents used in the modeling process
show autonomy, proactivity, adaptability, reasoning, planing
capabilities, and so on [8]. Nowadays, this is accomplished
by the so called cognitive architectures. Such systems man-
age decision making , memory, learning, among others (e.g.

∗This research work is supported by the Research Projects
TSI-020302-2009-43, TIN2008-06441-C02-02 and by the
Fundación Seneca within the Program ”Generación del
Conocimiento Cient́ıfico de Excelencia” (04552/GERM/06).
1http://repast.sourceforge.net/
2http://ccl.northwestern.edu/netlogo/

SOAR[10], ICARUS [11], ACT-R[2], etc.) [15]. They are
both conceptually heavy models and intensive CPU con-
suming approaches. This last fact makes them unfeasible
for social simulations with a high number of agents in the
society. Then, other approaches, using a society of agents
that executes cognitive architectures, are needed.

Our application domain is Ambient Intelligence. Ambient
Intelligence (AmI) is a new vision in which people are sur-
rounded by embedded intelligent objects within an environ-
ment that is able to recognize and to respond to different
individuals [13]. From an ambient intelligence simulation
perspective, where it is required to reproduce intelligent be-
haviours simulating humans like as possible and necessary,
it is very important to provide higher-level intelligent be-
haviours. Moreover, on the development of Ambient Intel-
ligence [1] application and services, one important aspect is
their validation by final users. AmI systems require of a sub-
tle and intelligent interaction with final users. As such, the
assessment of a correct system functionality is not trivial.

Living labs are, nowadays, the approach to choose when
a small AmI system is considered. Systems of this type are
those which may be find in Smart homes for example [7],
when users are from one to five (i.e. a family). The main
idea behind living labs is that user satisfaction is studied by
reproducing artificially the real environment in which the
AmI system and the user will interact (i.e. the smart home)
and studying user reactions meanwhile she is living in such
environment. The kind of AmI systems we are concerned
with are large-scale AmI systems (i.e. those located within
an intelligent building or a hospital). Obviously, it is nos
feasible to artificially reproduce such huge living lab. In this
case, the approach we follow to test functionality of services
and applications within AmI systems is simulation. And the
simulation paradigm we use is MABS (MultiAgent based
Simulation). With this approach, we simulate the physical
environment, the hardware of the AmI system (i.e. mainly
sensors and actuators), and the users inside. The only thing
which is real is the software we want to validate, which is
connected to the simulation in real time.

Two simple examples of simulation scenarios we are de-
veloping in our lab are Ubik [14] and Cardinea3. In Ubik,
we are interested on studying AmI systems on the intel-
ligent building physical scenario, the simulation model in-
corporates workers on the building with different behaviour
patterns depending on their role in the organization. There
we investigate, as an example, the effect of intelligent mech-
anisms to guide people in situations like a fire by means of

3http://cardinea.grupogesfor.es

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

34

audio or visual signals (e.g. an electronic message panel).
In Cardinea, the situation is different, but the dimensions
of the physical environment are similar. Here, physical hos-
pitals with personal (care givers, doctors, assistants) and
patients are simulated.

Both examples have in common that some users (agents
in this case) are distinguished from the rest in terms of their
skills. In the intelligent building example, some of the users
may have received special instruction in order to coordinate
evacuations. In the hospital example, some of the doctors
may be in charge of rearranging personnel at the hospital to
cope with a peak in the number of incoming patients. Both
kind of users, when simulated in a MABS platform, need in-
telligent capabilities (i.e. coordination skills and intelligent
decision making abilities in this case). These are cognitive
capabilities. Such users may be modeled by means of cog-
nitive agents, computational processes that act like certain
cognitive systems or act intelligently according to a cogni-
tive definition. Actions of cognitive agents can be the result
of processes concerning to deliberative, coordination, learn-
ing, adaptation, planning, etc. capabilities of the entities.
MABS based platforms like MASON do not support these
cognitive capabilities. At least, mechanisms to reason and
to communicate are required.

Adding cognitive capabilities to current social simulation
platforms seems the intuitive way to obtain cognitive be-
haviours in social simulations. Several interesting scenarios,
like Ubik and Cardinea, are implemented in MASON. Mi-
gration to other social simulation technologies implies losing
all implementations and many interesting MASON function-
alities oriented to control the simulation and to monitor the
results. For that reason, the objective of the present work is
to provide cognitive (and communicative) capabilities, with
low computational cost, to some agents into the social sim-
ulations given by MASON.

In order to provide cognitive capabilities, it is possible to
choose traditional style architectures like SOAR, ICARUS,
ACT-R, or others that use BDI agents like Jason or 3APL4.
BDI architecture is one of the best known approaches to
develop cognitive agents. But, it is necessary to emphasize
that it is not designed for that. As an agent-based compu-
tational model, it matches with the metaphor of agent, over
which MASON is based on. Obtaining a social simulation
system to support cognitive BDI agents, seems a very in-
teresting idea. This way, [3] shows how Jason can be used
to carry out BDI agent-based simulations. Jason is imple-
mented in Java and is available as Open Source, distributed
under GNU LGPL [4].

According to social scenarios defined by Ubik and Car-
dinea, and from a practical point of view, Jason has two
important disadvantages: (1) it is not capable to support a
high number of agents: each agent is running over a Java
thread, and JVM imposes rigid restrictions in this way (MA-
SON can simulate hundreds of thousands of agents), and
(2) it is not possible to replicate the same simulation (in
MASON the simulation can be replicated using the same
random seed in different simulations). These are two very
important elements for experimentation.

It is necessary to clarify that Ubik and Cardinea scenar-
ios consider wide agent populations, with a high number
of agents, but not all of them exhibit cognitive behaviours.

4http://www.cs.uu.nl/3apl/

The simulated scenarios consist of a high number of reactive
agents and a reduced number of cognitive ones. This idea
is discussed also by other authors like Kennedy et al. by
means of RebeLand model [9, 5].

Then, the proposal of this paper is based on the integra-
tion of MASON and Jason to give cognitive capabilities to
some agents into the current developed social simulations,
with a great amount of social agents and a reduced number
of cognitive ones, and where the replication of experiments
is very important.

The rest of the paper is structured as follows. Section 2
highlights the main characteristics of MASON as an agent-
based social simulation architecture. Section 3 presents the
interesting features of Jason to social simulation and under
the point of view of the integration with MASON. Following,
in section 4, the paper gives some alternatives to integrate
these two technologies. It proposes one of them to develop
a concrete implementation to show the utilization of this
approach. Section 5 discusses an implementation of an il-
lustrative situation where a high number of simple reactive
agents are guided by a reduced number of cognitive agents.
The performance and behaviour of two types of agents are
resumed using MASON simulation toolkits. Section 6, com-
ments the relationships between the given approach and pre-
vious works of other authors. Finally, section 7 gives con-
clusions and shows some ideas for future work.

2. MASON
MASON is a single-process, discrete event simulation core

and visualization library written in Java, designed to be
flexible enough to be used for a wide range of simple sim-
ulations, but with a special emphasis on swarm multiagent
simulations of many agents (up to millions). But, it does not
support the representation of communicative and cognitive
capabilities of the agents [12].

It is structured in two layers: model and visualization.
In simulation model layer, it provides, among others, (1) a
discrete-event scheduler, (2) a high-quality random number
generator, and (3) a variety of fields which hold objects and
associate them with locations. The visualization layer al-
lows for display of fields and user control of the simulation.
It separates the model features from the visualization and
control functionalities. From this layer, a model defined in
the previous layer can be treated as a self-contained entity.

2.1 Model layer: the environment
A MASON model is entirely contained within a single in-

stance of a user-defined subclass of SimState. This class rep-
resents the environment and contains a discrete-event sched-
ule (given by class Schedule). The schedule controls the sim-
ulation, providing a variety of breakpoint to agents running
in the environment. Such breakpoints provide a single point
to include own programming code used to customize their
behaviours. Through executing these breakpoints, agents
can sense the environment, other agents, or act, modifying
the environment of it own status.

Two interesting simulation breakpoints are offered by Step-
pable and Stoppable interfaces. These interfaces can be im-
plemented by the agents in order to run and stop into the
MASON environment. Steppable defines the abstract method
step, invoked when agent receives one tick from the Sched-
ule. Besides, Stoppable defines the method stop, invoked
when Schedule stops the agent.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

35

The order in which the Schedule arranges the execution
of agents depends on the sequence of numbers given by the
random number generator. The seed, used to generate ran-
dom numbers sequence, can be specified. This way, a given
MASON simulation can be replicated several times, using
the same seed into different simulations. Besides, Schedule
allows the environment to invoke the beginning of the next
step of the simulation, providing the method nextStep.

Fields in MASON relate arbitrary objects or values of
them with a location within a virtual space. Many of these
fields are simple wrappers from simple 2D and 3D arrays.
Also, these structure can provide sparse relationships be-
tween objects. The use of these structures is optional.

2.2 Visualization
Objects, developed in this layer, may examine model-layer

objects, using an appropriated reference to the environment
SimState given by class GUISimState. MASON visualizes
the objects through displays: GUI windows which provide
2D and 3D views on the underlying fields. Also, it is possible
to define some customized displays. It is very interesting for
experimentation, because it allows for inspect to underlying
model objects. It is a way to monitor the simulation step by
step. For example, some real time charts can be provided,
or data about simulation can be stored by a logger agent.

3. JASON
In Jason, the agent definition can be given in two com-

plementary ways: (1) by means of its BDI representation,
allowing the achievement of its cognitive capabilities, and
(2) through its Java-code representation, allowing, on the
one hand, its inclusion in Java-based social environments
and, on the other hand, the maintenance of its own knowl-
edge schemes, perceiving the environment and other agents,
execution of the actions, among others. The cognitive rep-
resentation of agents is managed by an interpreter for an ex-
tended version of AgentSpeak programming language (based
on the BDI agent architecture), including also speech acts
based inter-agent communication. Using Saci5 or Jade6 (for
example), a Jason multi-agent system can be distributed
over a network effortlessly [4]

Implementation of a BDI agent can include instances of
certain data structures. The most relevant structures are
(1) beliefs base, where agent stores all current beliefs, (2) set
of events, which might trigger the execution plans, (3) plan
library, where agent know-how is stored, (4) set of intentions,
where agent stores their focus-of-attention, and (5) a queue
of messages received from other agents [3].

However, from the point of view of social simulation, other
components are needed. Jason gives an environment over
which the agents run. The environment, and the agents
running in it, can be controlled in two different predefined
ways. Also, Jason gives the possibility to select the under-
lying agent architecture, that provides communication facil-
ities among agents. Jason provides some predefined agent
architecture but also permits to define a custom one.

3.1 Jason environment
The environment in Jason is a representation of the real

environment in which the agents are running. In implemen-

5http://www.lti.pcs.usp.br/saci/
6http://jade.tilab.com/

tation terms, the life-cycle of each agent in Jason is executed
over one independent thread in the JVM. For that reason,
the number of agents running is limited by the characteris-
tics of the JVM. The theoretical limit of threads in a JVM
is about 1000. However, experimentally, this number is re-
duced to few hundreds, depending on the complexity of the
reasoning processes of the agents.

The representation of the environment is supplied by En-
vironment class. It is responsible (1) to maintain the state
of the environment, (2) to simulate the execution of actions
required by the agents, and (3) to give a symbolic representa-
tion of the state of the environment to the agents running in
it. Jason environment is a passive entity. Only when agents
sense the environment, its state is perceived by them. It
never sends notifications to agents when its state changes.

This class has, among others, two methods to update the
perception of the agents and to execute their actions. The
first, getPercepts, is called by agents when they want to up-
date their BDI perceptions taking into account their own
knowledge representation, environment characteristics, etc.
The second one, executeAction, is invoked by agents when
they want to execute any action. Generally, actions can re-
sult from a BDI deliberative process.

3.2 Execution modes
In a MABS, several mechanisms are necessary to synchro-

nize the reasoning cycle of agents and the actions that they
take. Environment can be used to perform some kind of syn-
chronization in this way. Jason offers two ways to manage
synchronization of reasoning life-cycle of running agents: (1)
asynchronous, where all agents continue the next reasoning
cycle as soon as it has finished the previous one, and (2)
synchronous, that defines steps to control the simulation, in
the way that the next step will not begin until all agents
finish the previous one.

The customization of the agent can be obtained by writ-
ing code in each breakpoint of the reasoning-cycle that syn-
chronous execution controller gives. The synchronous con-
troller is offered by the TimeSteppedEnvironment class.

In the synchronous execution mode, the end of the rea-
soning cycle of each agent can be captured in the method
receiveFinishedCycle. This method is invoked by any agent
when it finishes its cycle, obtaining a copy of the agent state.
In terms of integration with MASON, this method can be
used to carry out updating and revising processes of inten-
tions and goals bases. Maybe, this is the most important
breakpoint, using a synchronous Jason execution mode, into
which cognitive features may be included, at the end of each
step.

3.3 Support to communicative actions
Jason gives the possibility to send perceptions, from one

agent to another, using AgentSpeak methods. It includes
predefined predicates such as .send [4]. Communication acts
are supported by the message transport mechanism imple-
mented by agent architecture that it uses. Using agent archi-
tectures provided by Jason (Centralized, Saci, Jade), trans-
porting of the messages is transparent to the programmer:
it is given by the architecture. However, if the programmer
does not use any architecture, or customizes the owner ar-
chitecture, he must implement the required mechanisms to
offer communication between agents, according to the com-
municative requirements of the system.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

36

3.4 Customized agent architectures
In Jason, every agent has an architecture, responsible for

the execution of actions and maintaining agent perceptions
up to date. This architecture can be customized by any
agent, extending the class AgArch supplied by Jason. Writ-
ing a new subclass is done by refine several methods, such as:
perceive, act, sendMsg, broadcast, and checkMail [4]. These
are the most interesting breakpoints, invoked by by the sim-
ulator controller, from the point of view of social simulation
and possible integration with MASON.

By designing a customized agent architecture, it is pos-
sible to use only the BDI interpreter in standalone agents.
Of course, communicative functionalities are not available
by default. It should be added from a third party or reusing
SACI or Jade.

4. SOMEALTERNATIVES TO INTEGRATE
MASON AND JASON

There are several alternatives to integrate MASON and
Jason in order to provide cognitive behaviours in social agent
simulations. The most important ones, depending on the
role played by each platform, are the following:

1. The simulation is controlled by MASON environment,
where Jason environment (and the execution of cog-
nitive agents supported by them) is executed like any
other MASON agent. The tick is given by MASON
environment, and each element (reactive agents and
Jason environment) executes a step of its simulation.

2. The simulation is controlled by Jason environment,
where MASON environment (and the agents supported
by them) receives the tick simulation after all Jason
agents. The tick is given by Jason environment, and
each element (cognitive agents and MASON environ-
ment) executes a step of its simulation.

3. The simulation is controlled by MASON environment,
without using Jason environment. All agents are MA-
SON agents and only those with cognitive capabilities
use functionalities of the BDI interpreter and, possibly,
others supplied by a customized agent architecture.

Alternatives 1 and 2 require that a representation of all
agents is available at both environments. There are two rea-
sons for this requirement: (1) attributes of reactive MASON
agents must be known by cognitive Jason agents, because
they are used in their deliberative process, and (2) attributes
of cognitive Jason agents must be mapped in non-real MA-
SON agents because monitoring tools inspect agents run-
ning in the same environment, and Jason environment does
not support a high number of agents, as it is required in this
work. Also, it is interesting to keep monitoring facilities and
tools given by MASON. In both cases, mapping some agents
attributes into entities of the other environment seems to
produce significant overload to the simulation at the end of
each time step. Also, in both cases, a reduced number of
cognitive agents with reasoning capabilities is used, given
by Jason BDI interpreter.

However, from the point of view of implementation, the
first alternative is not achievable because Jason environ-
ment, represented by class TimeSteppedEnvironment, does
not permit to invoke the beginning of the next step of the
simulation. (It does not offer any public functionality for

that.) Besides, MASON environment provides also the method
nextStep to begin the next step.

On the other hand, alternative 3 is based on an interest-
ing yet simple idea. It considers that any cognitive agent is
implemented like any other MASON agent but it is capable
to commit an entire Jason reasoning-cycle using BDI inter-
preter. This approach does not use the Jason environment.
Consequently, many functionalities delivered by Jason plat-
form are not available in this case. Specially, communication
features must be implemented by means of a customized ar-
chitecture. It is not an easy task.

In this point, it should be pointed out that alternative 2
is capable to support reasoning and communicative capa-
bilities for a reduced number of cognitive agents coexisting
with thousands of reactive agents. But, programming efforts
(and skills required) and overload produced in a large social
simulation generate some preliminary doubts about its suit-
ability in some scenarios. On the other hand, it seems that
alternative 3 gives an inexpensive way to combine both tech-
nologies but it does not support any communicative action
by default. It corresponds to the programmer to address
this issue.

The following subsections comment on the implementa-
tion details of alternatives 2 and 3.

4.1 Jason controls the simulation
In this alternative, the simulation is controlled by Jason

environment. The functionality of synchronous execution
mode of the environment is obtained by an extension of
the class TimeSteppedEnvironment. Cognitive agents spec-
ify their behaviours using AgentSpeak code. Reactive agents
implement some interfaces like Steppable and Stoppable in
order to run and stop in MASON environment.

This environment maintains (1) cognitive agents, that use
a BDI interpreter and communicative primitives of Jason,
(2) a reference to a MASON environment, that receives
one tick when one Jason step terminates (using stepFin-
ished method), and (3) a data structure to maintain mirrors
of (references to) all reactive agents in MASON environ-
ment. This is necessary because cognitive agents need to
know some attributes of reactive agents in all steps of the
simulation. References to reactive agents must be accessible
in all Jason simulation steps. In the same way, mirrors of
cognitive agents, maintained in MASON environment, need
to be updated from state of cognitive agents in each step.
The mirrors updating process can be carried out at the end
of the global step, captured by stepFinished method, once
the MASON environment finishes the launching step.

The beginning of the reasoning cycle is captured by method
getPercepts where the cognitive agents update their own
base of perceptions (i.e. the interesting knowledge used in
deliberative process in this step). From this breakpoint, an
agent can sense the state of the environment and/or can re-
quest the knowledge structures in order to update its BDI
percepts. This alternative requires to obtain any data com-
ing from the reactive agents located at mirrors maintained
in the Jason environment. This data is eventually required
for a correct reasoning process on cognitive agents.

When BDI reasoning terminates, method executeAction is
invoked. It is possible to put some code in this breakpoint
to execute the action resulting from the BDI reasoning (i.e.
conclusions of the deliberative process). Generally, conclu-
sions of deliberative process can be (1) execution of internal

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

37

actions to change its own state or the state of the envi-
ronment, or (2) messages to other agents. The receiver of
such messages can be a cognitive agent (running in the same
Jason environment) or a reactive one (running in MASON
Environment). If the target agent is a cognitive one, it can
use communicative capabilities offered by Jason. But, if the
target is a reactive MASON agent, it needs an auxiliary data
structure to communicate with it. This structure must be
maintained in MASON environment, for example, and must
be accessible by cognitive agents. In each simulation step,
reactive agents sense the MASON environment and read this
shared data structure.

The logic of reactive agents is encoded in the method step
of the interface Steppable given by MASON. In this alterna-
tive, coordination between agents is supported by commu-
nicative capabilities given by Jason environment.

4.2 MASON controls the simulation
In this alternative, simulation is controlled by MASON en-

vironment. This environment maintains, at the same func-
tional level, cognitive and reactive agents, without any du-
plicity of attributes of the agent state. All of these agents
must implement some interfaces such as Steppable and Stop-
pable in order to run and to stop. The logic of them is en-
coded in the method step of the interface Steppable given
by MASON. Cognitive agents do not use any Jason environ-
ment to reason and communicate. Only the BDI interpreter
is used into each cognitive agent. To orchestrate the reason-
ing cycle and deliver some basics communicative functions,
into each cognitive agent, an owner agent architecture is
customized by extension of AgArch class of Jason. This cus-
tomization defines method such as perceive, act, sendMsg
and checkMail. (please, see 3.4).

In order to guarantee communication between cognitive
and reactive agents (in a simple or in a complex way), the
two types of agents must extend a common basic agent ar-
chitecture. Reactive ones do not need to redefine its be-
haviour for methods perceive and act. Cognitive agents re-
define these methods to customize its own reasoning cycle.

Both types of agents need to launch a reasoning cycle in
each simulation step. The invocation of the new reasoning
cycle can be made from the breakpoint given by the step
method at the interface Steppable of MASON. The method
getTS().reasoningCycle() given by AgArch class is the re-
sponsible to execute a reasoning cycle into a given agent.

Also, similar to previous alternative, cognitive agents need
to update their percepts at the beginning of the reasoning
cycle (supported by method perceive). Then, when BDI rea-
soning concludes, method act is invoked. Finally, checkMail
breakpoint is activated to read messages that other agents
have sent. In contrast, method sendMsg is executed when
BDI interpreter finds .send primitive in the code of BDI cog-
nitive agent. The functionality of the last two methods must
be implemented by the customized agent architecture, ac-
cording to the communicative requirements of the scenario.

4.2.1 Communication of agents without using Jason
Since any Jason environment is not used in this alterna-

tive, communicative capabilities must be under the respon-
sibility of the programmer of the new agent architecture.
Developing a complex, robust, and reliable message trans-
porting system or reusing an existing one can be a very hard
task. But, there are a number of scenarios when communica-

tive requirements are very simple [14].
There are several available mechanisms to provide com-

munications support (e.g. ACL, based on blackboard, tuple-
spaces[6], shared memory, etc.). A simple mechanism can be
suitable to give communicative capabilities to several kind
of scenarios (like Ubik and Cardinea), where communication
between agents is very simple too. For these scenarios, this
alternative proposes a shared memory based mechanism.

4.3 Discussion
This section pretends to clarify under which circumstances,

one approach (either alternative 2 or 3, alternative 1 is out
of the discussion) prevails in front of the other. The crite-
ria we have used to articulate this brief discussion are the
following: (1) efficiency of the simulation, (2) communica-
tive requirements of the scenario, (3) capabilities to monitor
agents, system behaviour during the social simulation, and
(4) programming skills needed in order to maintain a good
model productivity.

According to efficiency requirements (i.e. criteria 1), al-
ternative 2 is clearly the worst. Mapping cognitive agents
into Jason environment can produce a significant overload
in the interchanged information between the two environ-
ments. At each time step, cognitive agents must update
their corresponding mirror in the Jason environment data
structure. This is an important reason if we consider the
high number of reactive agents used in the social simulation
scenarios commented before.

Following the necessities of interaction among agents (i.e.
criteria 2), solution number 2 is good when the cognitive
agents need advanced coordination mechanisms (e.g. decen-
tralized planning or flexible coordination within teams of
agents). Approach 3 is suitable for scenarios with simple
communication requirements.

On the other hand, if the needed training is taken into
account, it is considerably harder to reach a good practice
on using solution 2. In such case, mastering the Jason envi-
ronment and AgentSpeak language is a must. Besides, MA-
SON programming is also required as an additional skill.
However, option number 3 only requires mastering MASON
and AgentSpeak. Details about Jason architecture are not
needed as it is not used.

5. USING ALTERNATIVE 3
We have just discused that alternative 3 is specially suit-

able for a high number of agents, a few of them needed
of cognitive capabilities, and with no necessity of a sophis-
ticated communication scheme. Such features are exactly
those which will be used in Ubik and Cardinea scenarios.
This section will be devoted to illustrate, with a middle level
complexity example, how to use such alternative.

5.1 Sheeps and Shepherds example
The example used here is based on the metaphor of the

shepherds of sheeps. We have a physical space in the coun-
try, which is populated by a number of sheeps (i.e. reac-
tive agents) belonging to different shepherds (i.e. cogni-
tive agents). Both sheeps and shepherds continuously move
in eight directions (N, NE, E, SE, S, SW, W, NW). Each
sheeps move in a randomly assigned and fixed direction. It
only changes its direction when a shepherd reach them and
obligues it to move out to the stable (in such case, the sheep
dissapear from the yard). Sheeps only obey to their corre-

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

38

sponding shepherds. Thus, they will only go to the stable
when reached by its own shepherd.

As we have just mention, during the simulation of this
scenario, sheeps and shepherds encounter with each other.
Four types of encounters may occur: (A) a shepherd with
another shepherd, (B) a sheep with another sheep, (C) a
shepherd with a sheep of his flock, and (D) a shepherd with
a sheep of another shepherd’s flock.

Encounters of types A and B do not require any reasoning
from shepherds, but C and D need it in order to determine
what the shepherds does. If the encounter is of C type, the
shepherd orders the sheep to go to the stable, changing the
moving direction of the sheep. If the encounter is type D,
the sheep is stopped and the shepherd informs the sheep’s
owner of the presence and location of the sheep. If the sheep
is rather going to the stable than moving normally (because
of a previous encounter with his shepherd), he does not stop,
and the shepherd does not inform about its location.

Each shepherd can follow his own strategy to move to-
wards the stopped sheeps of his flock (i.e. those which were
previously reached by a different sheperd). For example, a
shepherd can maintain a list of stopped sheeps locations so,
when the list size is greater than a certain threshold T, the
shepherd goes to their encounter.

This is a suitable example to show how, in a social envi-
ronment, some agents could carry out cognitive processing
while the others (a great majority of them), behave in a
reactive way. This example includes a large number of reac-
tive agents (sheeps) moving in given directions, and a small
number of cognitive agents (shepherd) supervising them.

Each shepherd needs to carry out some deliberative pro-
cessing in order to decide what action to execute. In this
case, the BDI interpreter, as offered by Jason, is a suitable
way to obtain the action corresponding to the percepts of
the shepherd. Communicative requirements of this scenario
are very simple: shepherds only need to inform, in some
(not all) steps, the location of sheeps. For these reasons, ap-
proach 3, presented in section 4.2, seems useful at providing
cognitive behaviours to agents in wide social simulations.

5.2 Cognitive shepherd agent
Shepherds are represented by cognitive agents, using the

ideas given in section 4.2. It is necessary to provide agents
with an architecture to execute a reasoning cycle and to per-
form basic communicative functions. Shepherds are coded
in Java, extending the class AgArch given by Jason and
redefining the methods perceive, act, sendMsg and check-
Mail. Strategical behaviour of the shepherds is written using
AgentSpeak code, executable by the Jason BDI interpreter.
But, this is not enough for agents to run within the MASON
environment. For that, by extending the ArArch class, and
implementing the interfaces Steppable and Stoppable given
by MASON, the agent implementation is finished. Cognitive
shepherds have to execute a reasoning cycle from the step
method in order to perceive (the state of the environment
and the other agents), to act (giving orders to the sheeps)
and to communicate with other shepherds (reporting the
locations of the sheeps).

The BDI code of cognitive shepherd agents, representing
strategies D, is shown below:

//strategy D: finds a sheep of other flock

+step(_)

: isShepherd(A) &

foundSheep(B,S,DirX,DirY,PosX,PosY) &

not (S == Escaping) &

not (S == Stopped) &

not inFlock(A,B) &

inFlock(L,B) &

not (A == B) &

not (A == L) &

not (L== B)

<- .send(L,tell,localizacion(PosX,PosY));

toStop(B).

When a shepherd agent receives the simulation tick, the
method step is executed. From this method, the agent
launches a reasoning cycle (one cycle per simulation step).
First, the method perceive needs to update the base of per-
ceptions adding the percept foundSheep(B,S, DirX, DirY,
PosX, PosY). This percept indicates that sheep B was found
in the position PosX,PosY, its state is S, and its moving di-
rection is DirX,DirY. It is worth to indicate that, when a
shepherd initializes its base of perceptions, it needs to add
possible new knowledge related to his flock: inFlock(L,B)7.
These perceptions are shared by all shepherds in the system.

In the next phase of the reasoning cycle, the BDI inter-
preter executes BDI code and, eventually, produces actions.
These actions must be interpreted by handlers supplied by
the method act. The Java code in charge of adding these
handlers sets up the state of sheep agents, according to the
specific case.

Notice that strategy D implies sending one message to an-
other shepherd. The predefined primitive .send triggers the
execution of the method sendMsg in the sender agent. This
method writes in the shared memory dedicated to guarantee
the communication between shepherd agents. The receiver
agents need to inspect the shared memory to receive mes-
sages. The shared memory is accessible to all agents in the
MASON environment.

5.3 Evaluation of alternative 3 through exper-
imentation

Experimental evaluations are focused on the study of the
scalability of the approach, but not on the appropriateness
of the strategies of the shepherds (this is not relevant in the
context of this paper). In this way, two types of experiments
were carried out: (1) evaluating the performance of the sim-
ulation for several sizes of populations of reactive agents,
and (2) evaluating the performance for several numbers of
cognitive agents.

These evaluations are based on the analysis of time vari-
ables (i.e. both real execution time and simulation time
steps) when shepherds achieve that sheeps escape from the
yard.

Simulation parameters are the following: d : dimension of
the yard where sheeps and shepherds move; p: density of
agents (including sheeps and shepherds) per unit of area of
the yard; n: number of sheeps in the yard (they are obtained
by using the density parameter and the area of the yard); nl :
number of shepherds in the yard; and T : minimal number
of stopped sheeps needed to the shepherd looking for them.

Some configurations of the simulation are compared in the
next subsections. Experimentation parameters were set up
according to the real requirements of Ubik and Cardinea.

7This percept indicates that sheep B is in the flock of shep-
herd L

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

39

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000

t
i
m
e

(
m
i
n
)

number of sheeps

Real time

90% of sheeps are escaping

 0

 10000

 20000

 30000

 40000

 50000

 0 2000 4000 6000 8000 10000

t
i
m
e
s
t
e
p
s

number of sheeps

Simulation time

90% of sheeps are escaping

(a) (b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

t
i
m
e

(
m
i
n
)

number of shephers

Real time

90% of sheeps are escaping

 0

 10000

 20000

 30000

 40000

 50000

 0 2 4 6 8 10

t
i
m
e
s
t
e
p
s

number of shephers

Simulation time

90% of sheeps are escaping

(c) (d)

Figure 1: Real and simulation times when the 90% of sheeps escape from the yard, (a) and (b) for different
numbers of sheeps n = 1000, 2000, ..., 10000, and the number of shepherds nl = 4 ; (c) and (d) for different
numbers of shepherds nl = 2, 3, ..., 10, and the number of sheeps n = 5000.

This data was obtained keeping the density of agents in the
yard d = 0.3, the minimal number of stopped sheeps needed
to the shepherd looking for them T = 0.02 n. The experi-
ments are carried out on a simple laptop, with WindowsXP,
an Intel Core 2 Duo Processor 1.66GHz and 1GB of memory.

5.3.1 Several number of reactive sheeps
Some simulations are carried out to compare the perfor-

mance of the system when the number of reactive sheeps
changes. Figures 1.a and 1.b show the real time and the
simulation one when the 90% of sheeps were already put in
the stable, for different numbers of sheeps n = 1000, 2000,
..., 10000, and nl = 4 shepherds.

These simulations evidence the capability of this approach
to simulate large social simulations in a finite and short time.
It suggest a linear relationship between times and the num-
ber of sheeps (social agents) in the simulation. Increasing of
the real time seems non only related with reasoning process
carried out into cognitives shepherd. It is logical that these
times are increased when number of social agents and the
dimensions of the yard are increased too. Simulation time
is increased linearly when the number of sheeps and the size
of the yard grows.

5.3.2 Varying the number of shepherds
Other experimental conditions are simulated, in order to

study the performance of the approach when the number
of cognitive agents is increased. The numbers of shepherds
in these experiments correspond to the most usual numbers
of cognitive agents in Ubik or Cardinea scenarios. 1.c and

1.d show the real time and the simulation one when the
90% of sheeps escape from the yard, for different numbers
of shepherds nl = 2, 3, ..., 10, and n = 5000 sheeps.

These new experiments show the capability of this ap-
proach to simulate various cognitive agents into large social
simulations in a finite and short time. The real execution
time is increased when the number of cognitives shepherds
grows, because a greater number of reasoning processes and
communicative acts are carried out. Besides, the simula-
tion time is kept around to the same value, independently
of the number of shepherds in the yard. It this problem,
the defined strategy of the shepherds does not improve the
performance when a greater number of shepherds are in the
yard. In these configurations (where the number of sheeps
is the same), when the number of shepherds is increased,
consequently, the number of sheeps per each shepherd is de-
creased. There is a greater number of cognitive agents but
with a minor number of reactive ones per each of them. This
is interesting to Ubik and Cardinea in order to describe the
suitable number of agents performing cognitive tasks such
as decision making, reasoning, coordination, planning.

In Sheeps and Shepherds scenario, coordination advan-
tages do not reduce simulation time because a shepherd
travels large distances to find his sheeps.

6. RELATED WORKS
Part of our work was to emulate cognitive behaviours into

social simulations. Kennedy et al. suggest that some cogni-
tive architectures such as SOAR or ACT-R are not suitable
for representing a social human society [9]. All agents do

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

40

not need to perform cognitive actions. They propose three
cognitive levels to classify agents according to their cogni-
tive capabilities: simple, rule-based, and cognitive agents.
These ideas are used in RebeLand [5] where agents are very
simple.

Sun distinguishes between two types of cognitives archi-
tectures: software- (cognitive) and psychology-oriented. He
proposes to use software-oriented ones in social simulation in
order to understand human social behaviours. He illustrates
his ideas by means of the architecture CLARION. Also, he
points out the challenges facing cognitive social simulation.
Most agent models in social simulation have been extremely
simple. Using cognitive models (incorporating realistic ten-
dencies, inclinations and capabilities of individual cognitive
agents) can help to understand, in a realistic way, the in-
teraction between individuals [15]. He suggests that more
realistic and cognitive agent model, incorporating realistic
tendencies, inclinations and capabilities of individual cog-
nitive agents can serve as a more realistic basis for under-
standing the interaction between individuals

Bordini y Hubner [3] show how Jason can be used to simu-
late BDI agents. However, ideas offered in the present work
suggest that Jason has limitations in the field of social sim-
ulations. In terms of implementation features, the number
of agents running in Jason is limited by JVM (usually, so-
cial simulations involve a large number of agents). Also,
distribution agent architectures (such as JADE or SCAI)
impose a significant overload to Jason-based social simula-
tions. Moreover, this approach requires more programming
efforts than other typical agent-based simulation toolkits.

7. CONCLUSIONS AND FUTUREWORK
The integration approach presented in this paper is based

on the idea of supporting cognitive behaviour of certain
agents into wide social agent simulations. It proposes using
Jason to provide cognitive capabilities to a reduced number
of agents, running into a wide social simulation supported
by MASON.

The paper compares two alternatives to combine Jason
and MASON and proposes the most suitable types of scenar-
ios for each of them, depending on communicative require-
ments. It uses the simplest one as an illustrative scenario
where communicative requirements are reduced. It shows
the guidelines to achieve cognitive behaviours in some real-
scenario agents, such as Ubik or Cardinea.

Obviously, if communicative/cooperative requirements are
increased, the alternative we use could not be as suitable
as presented here. One solution is to improve the com-
munication mechanism based on shared memory. It can
be made better in two ways: (1) to use a more sophisti-
cated method, like LINDA [6], where agent’s communication
achieves global coordination -for example, it may be inter-
esting to considers tuple spaces (or any other type of asso-
ciative memory) to ensuring mutual exclusion-, and (2) to
give support to some high level human communicative social
activities such as produce/hear an audible signal, write/read
an informative panel, send/receive an email, etc.

Also, communicative/cooperative requirements in the sim-
ulation can be complex so, it can be necessary to adopt other
alternatives (not used in the example). In this case, one of
the agent architectures provided by Jason could be used at
the risk of a significant overload to the simulation. On the
other hand, this alternative needs an efficient mechanism

to manage duplication of agent’s information into environ-
ments of two different technologies. In this direction there
is plenty of interesting work to be done.

8. REFERENCES
[1] E. Aarts and S. Marzano. The New Everyday. Views

on Ambient Intelligence. 010 Publishers, Rotterdam,
2003.

[2] J. R. Anderson. Act: A simple theory of complex
cognition. American Psychologist, 51:355–365, 1996.

[3] R. H. Bordini and J. F. Hübner. Agent-based
simulation using bdi programming in jason. 2009.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
using Jason. Addison-Wesley, 2007.

[5] C. Cioffi-Revilla and M. Rouleau. Rebeland: An
agent-based model of politics, environment, and
insurgency in mason. In The annual meeting of the
ISA’s 50th Annual Convention Exploring the past,
anticipating the future, February 2009.

[6] G. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems: Concepts and Design. 3th
edition. Addison-Wesley, 2001.

[7] M. Friedewald, O. D. Costa, Y. Punie, P. Alahuhta,
and S. Heinonen. Perspectives of ambient intelligence
in the home environment. Telemat. Inf.,
22(3):221–238, 2005.

[8] N. R. Jennings and M. J. Wooldridge. Agent
Technology: Foundations, Applications and Markets.
Berlin: Springer Verlag, 1998.

[9] W. G. Kennedy, M. Rouleau, and J. K. Bassett.
Multiple levels of cognitive modeling within
agent-based modeling. In Proceedings of the 18th
Conference on Behavior Representation in Modeling
and Simulation. Sundance, UT, pages 143–144, April
2009.

[10] J. E. Laird. Extending the soar cognitive architecture.
In Proceeding of the 2008 conference on Artificial
General Intelligence 2008, pages 224–235, Amsterdam,
The Netherlands, The Netherlands, 2008. IOS Press.

[11] P. Langley and D. Choi. A unified cognitive
architecture for physical agents. In AAAI’06:
Proceedings of the 21st National Conference on
Artificial Intelligence, pages 1469–1474. AAAI Press,
2006.

[12] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. Mason: A multi-agent simulation
environment. Simulation, 81(7):517–527, 2005.

[13] F. Scapolo, J. Leijten, K. Ducatel, M. Bogdanowicz,
and J. C. Burgelman. Scenarios for ambient
intelligence in 2010. Technical report, ISTAG, The
Information Society Technology Advisory Group,
2001.

[14] E. Serrano, J. A. Botia, and J. M. Cadenas. Ubik: a
multi-agent based simulator for ubiquitous computing
applications. Journal of Physical Agents, 3(2), 2009.

[15] R. Sun. Cognitive architectures and multi-agent social
simulation.

[16] S. Takahashi, D. Sallach, and J. Rouchier. Advancing
Social Simulation: the First World Congress.
Springer-Verlag: Berlin, 2007.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

41

TRAMMAS: A Tracing Model for Multiagent Systems

Luis Búrdalo
Universidad Politécnica de

Valencia
cno/ de Vera SN

46022 Valencia, Spain
lburdalo@dsic.upv.es

Andrés Terrasa
Universidad Politécnica de

Valencia
cno/ de Vera SN

46022 Valencia, Spain
aterrasa@dsic.upv.es

Vicente Julián
Universidad Politécnica de

Valencia
cno/ de Vera SN

46022 Valencia, Spain
vinglada@dsic.upv.es

Ana García-Fornés
Universidad Politécnica de

Valencia
cno/ de Vera SN

46022 Valencia, Spain
agarcia@dsic.upv.es

ABSTRACT
Agent’s flexibility and autonomy, as well as their capacity
to coordinate and cooperate, are some of the features which
make multiagent systems useful to work in dynamic and
distributed environments. These key features are directly
related with the way in which agents communicate and per-
ceive each other, as well their environment and surrounding
conditions. Traditionally, this has been accomplished by
means of message exchange or by using blackboard systems.
These traditional methods have the advantages of being easy
to implement and well supported by multiagent platforms;
however, their main disadvantage is that the amount of so-
cial knowledge in the system directly depends on every agent
actively informing of what it is doing, thinking, perceiv-
ing, etc. There are domains, for example those where social
knowledge depends on highly distributed pieces of data pro-
vided by many different agents, in which such traditional
methods can produce a great deal of overhead, hence reduc-
ing the scalability, efficiency and flexibility of the multiagent
system. Alternatively, this work proposes the use of event
tracing in multiagent systems, as an specific communication
mechanism to improve the amount and quality of the in-
formation that agents can perceive from both their physical
and social environment, in order to fulfil their goals more
efficiently. In order to do so, this work presents an abstract
model of a tracing system and an architectural design of
such model, which can be incorporated in a typical multia-
gent platform.

1. INTRODUCTION
Due to their flexible and adaptative behavior, multiagent

systems are commonly applied to solve complex problems
in dynamic and distributed environments. This is not only
due to agents’ individual features (like autonomy, reactivity
or reasoning power), but also to their capability to commu-
nicate, cooperate and coordinate with other agents in the
multiagent system in order to fulfil their goals. In fact, it is
this social behavior, more than their individual capabilities
as agents, what makes multiagent systems so powerful. So-
cial abstractions such as teams, norms, social commitments
or trust are the key to face complex situations using multi-
agent systems.

Mařik et al in [19] refer to the necessary knowledge, to
give support to all these social abstractions as social knowl-
edge and they also point that it plays an important role in
increasing the efficiency in highly decentralized multiagent
systems. Traditionally, these social abstractions are mostly
incorporated to the multiagent system at user level; this is,
from the multiagent application itself, by means of messages
among agents or blackboard systems, without any specific
support from the multiagent platform. These traditional
methods may be easy to implement; however, each agent’s
social knowledge depends almost completely on the rest of
the agents in the multiagent system actively informing of
what they are doing, which has some major problems. First,
it can lead to excesive overhead in some agents, specially in
those situations where agents have to send their information
to many agents because of not being able to determine which
of them are really interested in receiving it. Second, it can
also be difficult to trust the information provided directly
by other agents using messages in open multiagent system
where there is no way to know if an agent is well-meaning.
This weak integration of high level social abstractions is also
mentioned as an important flaw by Bordini et al in [4].

Apart from the mentioned social abstractions, another
component of multiagent systems which is usually neglected
or simply not considered to be important is the environment.
Authors in [29] reivindicate the environment as a first class
abstraction, since it provides the surrounding conditions for
agents to exist, as well as an exploitable design abstraction
for building multiagent system applications. The environ-
ment is also specially important in self adapting multiagent
systems [28], which have to modify/adapt their structure
and behavior, by adding, removing or substituting compo-
nents while the system is running and without bringing it all
down. In these cases, as pointed out by Dignum et al in [14],
changes in the environment are the ones which trigger mul-
tiagent system reorganization and thus, this dynamic adap-
tation demands that systems can evaluate their own health.
However, detecting these changes in the environment is not
trivial.

Applications which extract information from the system
at run time are already considered in the field of event driven
architectures [18] and in the fields of overhearing [13] and

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

42

oversensing [23]. Also, the idea of an standard tracing sys-
tem available for processes in a system already existed in the
field of operating systems (and at present it is contemplated
by the POSIX standard[15]). This work proposes the appli-
cation of these concepts to the field of multiagent systems,
where event tracing is still considered a mere facility to help
multiagent system developers in the verification and valida-
tion processes. In order to do so, this document introduces
TRAMMAS, an abstract event TRAce Model for MultiAgent
Systems which lets all the components in the multiagent sys-
tem share trace information among them, both at run time
or by means of historic information (trace log files).

The proposed tracing model is based on the vision of mul-
tiagent systems by Omicini et al [21], which models multia-
gent systems on the basis of two main abstractions: agents
and artifacts. On the one hand agents are autonomous,
proactive entities that encapsulate control and are in charge
of the goals/tasks that altogether define and determine the
whole multiagent system behaviour. On the other hand, ar-
tifacts are those passive, reactive entities in charge of the
services and functions that make individual agents work to-
gether in a multiagent system. The event tracing model
proposed in this paper also considers aggregations of agents
or agents and artifacs, as well as the multiagent platform
itself are also susceptible of generating trace events and, as
a consequence, it is rich enough to represent changes coming
from any entity in the multiagent system.

This work also presents an architecture design, compatible
with the TRAMMAS model. This architecture design offers
all this tracing information as tracing services which enti-
ties in the multiagent system have to request when they are
interested in receiving tracing information. Taking into ac-
count efficiency and scalability of multiagent systems which
may use this tracing system, this architecture is designed to
be integrated within the multiagent platform.

The rest of this paper is structured as follows: First of
all, Section 2 reviews previous work carried out by differ-
ent authors in the field of event tracing in multiagent sys-
tems. Later, Section 3 presents the trace model and Section
4 presents an architectural design to incorporate concepts
in the model to a multiagent system. Section 5 presents an
example of an agent market with certain information needs
where event tracing is compared with other techniques. Fi-
nally, Section 6 will comment the conclusions of this work,
as well as the future lines of work.

2. RELATED WORK
Tracing facilities in multiagent systems are usually con-

ceived as debugging tools to help in the validation and veri-
fication processes. It is also usual to use these tracing tools
as a help for those users which have to understand how the
multiagent system works. Thus, generated events are mostly
destined to be understood by human observers, who would
probably use them to debug or to validate the multiagent
system, and tracing facilities are mostly human-oriented in
order to let multiagent system users work in a more efficient
and also convenient way.

Some multiagent platforms provide their own tracing fa-
cilities. This is the case of the Sniffer Agent or the Intro-
spector Agent provided by JADE[3], as well as the Conver-
sation Center, the BDI Tracer or the DF Browser provided
by JADEX[24]. Other multiagent platforms which provide
their own tracing facilities are JACK[26] (Agent Interaction

Diagramas, Design Tracing Tool, Plan Tracing Tool, etc.),
ZEUS[12] (Society Viewer and Agent Viewer) and JASON[6]
(Mind Inspector Tool).

Apart from those tools provided by multiagent platforms
themselves, there are also many tracing facilities provided
by third party developers. This is the case of Java Snif-
fer[27], developed by Rockwell Automation, a stand alone
java application based on JADE’s Sniffer Agent which is
able to connect to a running JADE system in order to track
messages among agents. Another third party tool based
on JADE’s Sniffer Agent is ACLAnalyser[10], which inter-
cepts and stores for later inspection messages interchanged
by agents during the execution of the application in order to
detect social pathologies. Later work by the same authors
[9] combines results obtained with ACLAnalyser with data
mining techniques to help in the multiagent system debug-
ging process. Tracking messages has also been used in [22]
to extend the Prometheus methodology and the related de-
sign tool to help in detecting protocol violations and plan
selection inconsistencies by means of tracing conversations
among agents in the system.

Beyond tracing messages among agents, there are also
more complex tool suites. This is the case of MAMSY, the
management tool presented in [25], which lets the system
administrator monitorize and manage a multiagent system
running over the Magentix multiagent platform [1]. In [20],
the authors describe an advanced visualisation tools suite
for multiagent systems developed with ZEUS, although the
authors also claim these tools could be used with other plat-
forms (more precisely, with CommonKADS).

Lam et al present in [17] an iterative method based on
tracing multiagent applications and a Tracer Tool to help
the user understanding the way those applications inter-
nally work. The Tracer Tool can be applied to any agent
system implementation, regardless of agent or system archi-
tecture, providing it is able to interface with Java’s logging
API (directly or via a CORBA interface). Results obtained
with this method were presented in [16]. Bosse et al present
in [8] a combination of this Tracer Tool with a Temporal
Trace Language (TTL) Checker presented in [7]. This TTL
Checker enables the automated verification of complex dy-
namic properties against execution traces.

As it has been shown, event tracing in multiagent systems
is mostly conceived as a way to help developers in the debug-
ging and validation processes, instead of a way to commu-
nicate and coordinate agents. That is why trace events are
more human-focused than agent-focused tools. Also, most
of the work on tracing multiagent systems has been carried
out by multiagent platform designer teams and, as a conse-
quence of that, most of existing tracing facilities are designed
for a specific multiagent platform. In fact, even tracing facil-
ities and tool suites developed by third party developers are
usually not only implemented, but also designed, to work
with a specific platform. As far as we know, there is not a
standard, general tracing mechanism which lets agents and
other entities in the system trace each other as they execute
like the one defined by POSIX for processes [15]. However,
the trace model presented in this paper is a platform inde-
pendent abstract model, which has been thought and de-
signed to be implemented in any platform, which does not
mean that any implementation of this model will be plat-
form independent too.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

43

3. THE TRAMMAS MODEL
This section presents TRAMMAS, a platform indepen-

dent trace model for tracing events in multiagent systems,
considering a set of requirements previously described in
[11]. Once incorporated to a multiagent system, either at
platform or user level, this trace model lets agents and other
entities in the system, as well as human developers/operators,
generate and receive trace events generated by other entities
in the system.

From the viewpoint of this model, a multiagent system
can be considered to be formed by a set of tracing entities
or components which are susceptible of generating and/or
receiving trace events. As they execute, these tracing entities
generate certain information related to their activity as trace
events. Events generated by a tracing entity are recorded by
the tracing system and delivered to other tracing entities, so
that they can process all that information in order to fulfil
their corresponding goals.

In any computing system, tracing can be a very expensive
process in terms of computational resources. Multiagent
systems are by nature highly decentralized systems, where
the number of running entities and hosts can be high and
thus, tracing such systems can be very expensive. In this
context, the tracing process must be optimized in order to
minimize the overhead it produces to the system, since a
very sophisticated but excessively costly tracing system can
become completely useless in practice. In order to prevent
this kind of situations, it is necessary to let tracing enti-
ties decide which information they want to send or receive
at each moment. Thus, the tracing system must support
selective event tracing.

Event tracing, specially in open multiagent systems, has
obvious security issues, since many of the events registered
by the tracing system may contain sensitive information that
can be used by agents to take advantage from the multia-
gent system or even to damage it. In order to prevent these
situations from happening, each entity in the system which
is able to generate trace events, should also be able to de-
cide which entities in the system can receive its events. In
order to do so, this trace model also incorporates a security
mechanism based on the concept of authorization.

The rest of the section will describe in more detail the way
in which these main concepts are modelled in this work.

3.1 Trace event
This model defines a trace event as a piece of data repre-

senting an action which has taken place during the execution
of an agent or any other component of the multiagent sys-
tem. Trace events are generated each time the execution
flow of an application reaches certain instructions (tracing
points) in its source code.

This model defines the following common attributes for
each event:

• Event type: Trace events can be classified according
to the nature of the information which they represent.
This event type is necessary for tracing entities in order
to interpret the rest of the data attached to the trace
event.

• Timestamp: Global time at which the event took
place, necessary to be able to chronologically sort events
produced anywhere in the multiagent system.

• Origin entity: The tracing entity which originated
the event.

• Attached data: Additional data which could be nec-
essary to correctly interpret the trace event. The amount
and type of these data will depend on the event type.
Some trace events may not need any additional infor-
mation.

Attending to the origin entity which generates them, trace
events can be classified:

• Domain independent trace events: These trace
events are generated by the multiagent platform itself
and thus, they can be present in any multiagent sys-
tem. Examples of domain independent trace events
could be new agent in the platform or new service re-
quest.

• Domain dependent trace events: These trace events
are designed ad-hoc for a specific multiagent system.
Within a virtual market, an example of domain depen-
dent trace event could be sold product.

Trace events can be processed or even combined in or-
der to generate compound trace events, which can be used
to represent more complex information. Both domain de-
pendent and domain independent trace events can also be
classified into simple and compound

3.2 Tracing entities
In this model, a tracing entity is defined as any component

of the multiagent system or the multiagent platform which
is able to generate or receive tracing information. Thus,
from the point of view of the tracing process, any multiagent
system is seen as a set of tracing entities. In this trace model,
tracing entities can be classified in three main groups:

• Agents. Agents are all those autonomous and proac-
tive entities which define the multiagent system be-
haviour. This category includes not only all of the in-
dividual application agents in the multiagent system,
but also those which may be part of the multiagent
platform.

• Artifacts. In this model, artifacts are all those passive
elements in the multiagent system which are suscepti-
ble of generating events at run time or receiving them
as an input [21]. Artifacts model elements of the mul-
tiagent system such as databases, resources modelled
as web services, physical sensors and actuators and so
on. Two or more artifacts can be combined in order to
perform more complex tasks and they are also suscep-
tive of generating or receiving trace events as a tracing
individual. From the point of view of the tracing sys-
tem, these combinations of artifacts are also modelled
as single artifacts.

• Aggregations. If the multiagent system supports ag-
gregations of agents (or agents and artifacts), such
as organizational units [2], then such aggregations are
modeled by the tracing system as a single tracing en-
tities, in the sense that trace events can be generated
from or delivered to these entities as tracing individu-
als.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

44

From the point of view of the model, the multiagent plat-
form can be seen as a set of agents and artifacts. Therefore,
elements of the multiagent platform are also susceptible of
generating and receiving trace events as any other element
in the multiagent system.

3.3 Tracing roles
Any tracing entity in the multiagent system is able to play

two different roles related to the tracing process (or tracing
roles): event source (ES) and event receiver (ER). and Trace
Manager (TM). ES entities are those which generate trace
events as they execute, while ER entities are those which re-
ceive these events. TM entities are in charge of coordinating
the entire tracing process. The relation between ES and ER
entities is many to many: it is possible for events generated
by an ES entity to be received by many ER entities, as well
as it is also possible for an ER entity to receive events from
multiple ES entities simultaneously.

The model requires a third role, which has to be played by
at least one entity in the system: the trace manager (TM).
The TM is responsible for registering tracing entities and
trace event types. Also, this role is responsible for controling
the tracing process so that trace events generated by ES
entities are received only by those ER which requested them
(selective tracing), also considering the security model, both
further explained below, in Sections 3.4 and 3.5.

These three tracing roles are not exclusive and any trac-
ing entity can play one or more of them, at the same time.
Regarding to the time when tracing entities can start and
stop playing these roles, there are important differences be-
tween agents or agent aggregations and artifacts. On the one
hand, agents and aggregations can start or stop playing any
of these roles dynamically according to their current state.
On the other hand, artifacts, which are passive/reactive en-
tities, have to adopt the corresponding roles at design time.
Figure 1 shows all the interactions among ES, ER and TM.
In particular, it can be seen how trace events are generated
in ES entities before arriving to ER entities, while the TM
controls the entire process, interacting with ES and ER en-
tities.

When a tracing entity is playing the ER tracing role, the
tracing system provides it with a stream, which can be seen
as a special mailbox where trace events are stored before the
ER processes them. These streams can either be pieces of
memory (in on-line tracing) or log files (in off-line tracing).
In both cases, the ER entity which owns the stream has to
be able to limit its size in order not to overload its resources.
The model defines a set of full policies in order to let tracing
entities decide what to do with incoming trace events once
the stream is full: stop delivering events to the stream, over-
writing previously delivered events in chronological order or
flushing events to a log file.

3.4 Selective event tracing
In order to reduce as much as possible the overhead which

tracing information can cause to the multiagent system,
the model defines a protocol based in subscription to trace
events. ER entities must subscribe to those trace events
which they are interested in. In the same way, once an ER
entity is not interested in receiving events to which it had
previously subscribed, the ER entity may unsubscribe from
them. As a consequence, only those trace events to which
at least one ER has previously subscribed are generated and

TRACE
MANAGER

Tracing

System

Event Source Event Receiver

AGENT

ARTIFACT

AGGREGATION

EVENTS

Publish/Unpublish trace events

Add/Remove direct authorization

Look up for trace events

Subscribe to trace events

Unsubscribe from trace events

Add/Remove delegated authorization

AGGREGATION

CONTROLS

STRM
AGENT

STRM

STRM

ARTIFACT

Figure 1: Interaction between the different tracing roles in

the tracing system

ER entities do not receive any tracing information they are
not interested in.

In order to give support to this subscription mechanism
at run time, each ES entity has to publish which tracing
information it can provide. In Figure 1 it can be seen how
ES entities request the TM to publish and unpublish those
trace events they can provide. It can also be appreciated
how ER entities are able look for available trace events as
well as they can also subscribe and unsubscribe at run time.

3.5 Security
In order to let ES entities decide which ER entities can

receive their trace events, when an ES entity publishes its
trace events, it has also to specify which roles and entities in
the multiagent system are authorized to receive these events.
This is defined as direct authorization. In this way, when an
ER entity wants to receive events of a specific event type
which come from a specific ES, it has to be authorized as
an entity or it has to be able to assume one of the autho-
rized roles. ER entities which are authorized to receive trace
events from certain ES entity can also authorize other roles
or ER entities to receive the same trace events. This is de-
fined as authorization by delegation. In this way, the TM
mantains an authorization graph for each event type which
is being offered by each ES. This authorization graph is dy-
namic, since tracing entities can add and remove authoriza-
tions at run time. When an authorization, direct or by del-
egation is removed, all those delegated authorizations which
depended on the removed one are also removed.

The direct authorization mechanism has the advantage of
being conceptually simple; however, asking for an autho-
rization each time an ER entity needs to trace an ES entity
can cause an important overhead to ES entities, which may
receive too many authorization requests. Authorization by
delegation can help reducing the overhead this authorization
mechanism can cause to some ES entities due to excesive
authorization requests while still keeping the security model
conceptually simple.

The tracing system does not control which entities can
asume each role in order to receive trace events of a spe-

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

45

cific event type or to add and remove authorizations. It
is the multiagent platform which has to provide the neces-
sary security mechanisms to prevent agents from assuming
unappropiated roles.

4. TRACING SYSTEM ARCHITECTURE
This section describes a generic architecture to incorpo-

rate a tracing system to a multiagent platform according
to the model previously described in Section 3. This archi-
tecture was designed to be integrated within the multiagent
platform in order to let the tracing system be as efficient and
scalable as possible and that has conditioned some of the de-
cissons which have been made when designing it. However,
this is a generic, platform independent architecture and so, it
has been designed to be implemented in any multiagent plat-
form, in order to give support to any type of trace events,
while supporting selective event tracing and incorporating
the security issues commented in the previous section.

Tracing entities considered in this architecture are the
same as in the TRAMMAS model: agents, artifacts and
aggregations. As in the model, these tracing entities can be
considered to be playing two different tracing roles. When
they are generating trace events, tracing entities are consid-
ered Event Source entities (ES). When they are receiving
trace events, tracing entities are considered Event Receiver
entities (ER). According to the model presented in Section
3, agents and aggregations can start and stop playing these
tracing roles at run time, while artifacts are static and are
designed to play one or both of the tracing roles all the time.

This architecture is based on the concept of tracing ser-
vice, which is used in order to model the concept of event
type. Tracing services are special services which are offered
by tracing entities, in a similar way to traditional services, to
share their trace events. Each tracing entity may offer a set
of tracing services, corresponding to the different event types
which the tracing entity generates. In the same way as trace
events in the model, tracing services can be classified attend-
ing to the tracing entity which offers them. Tracing services
can also be compound, like trace events in the model, in
order to provide more complex tracing information.

When a tracing entity wants to offer any tracing infor-
mation, it must publish the corresponding tracing service so
that other tracing entities can request it if they are inter-
ested in its trace events. When a tracing entity does not
want to receive certain trace events anymore it only has to
cancel the request to the corresponding tracing service. In
this way, the architecture gives support to selective event
tracing by means of the tracing service request mechanism.

As with traditional services, when tracing services are
published, it is also published which agent roles or tracing
entities are authorized to request the service. In this way,
when an tracing entity wants to request a tracing service,
it has to be previously authorized or it has to be able to
assume an authorized role. Authorizations for a tracing ser-
vice can be added and removed at run time by the tracing
entity which published it by means of updating the corre-
sponding published data on that tracing service. Tracing
entities which have assumed a role which is authorized to
request a tracing service, can also authorize other roles to
request the service. In this way, the architecture provides
support to the authorization mechanism described by the
model.

The Trace Manager is the main component of the trac-

ing system. Integrated within the multiagent platform, this
component plays the TM role (see Section 3.3 for tracing
roles) and thus, it is in charge of coordinating the entire
tracing process. This component of the tracing system is
described in more detail in Section 4.1.

4.1 The Trace Manager
As previously commented, the Trace Manager is the main

component of the tracing system. Like other services pro-
vided by the multiagent platform, the Trace Manager can be
distributed. This module is in charge of coordinating the en-
tire tracing process, which means managing the trace event
registration and subscription processes, as well as provid-
ing and managing the authorization mechanism. Internally,
the Trace Manager incorporates different modules, each one
providing different functionalities:

• Trace Entity Module (TEM): This is the compo-
nent of the Trace Manager which registers and man-
ages all the tracing entities.

• Tracing Services Module (TSM): This is the com-
ponent of the Trace Manager which registers and man-
ages all the tracing services offered by ES entities.

• Subscription Module (SUBM): This is the compo-
nent of the Trace Manager which stores and manages
subscriptions to each tracing service and ES entity.

• Authorization Module (AM): This is the compo-
nent of the Trace Manager which stores and manages
the authorization tree for each tracing service and ES.

Tracing

System ERES

TRACE MANAGER

Publish/Unpublish Service

Look up for Service

Request Service

Cancel Request

EVENTS

TEM

TSM

AM

SUBM

Add/Remove

Direct Authorization

Add/Remove

Delegated Authorization

Register

Unregister

Register

Unregister

CONTROLS

Figure 2: Architecture model of the tracing system and in-

teractions among tracing entities depending on their tracing

roles and the Trace Manager’s internal modules

Figure 2 shows how tracing entities interact with the Trace
Manager depending on the tracing role that they are playing.
These interactions are detailed below:

• Publish/Unpublish Service: When an ES entity
wants to share its trace events it has to publish the
corresponding tracing services before any other entity
can request that information. Published tracing ser-
vices are stored in the TSM. When the ES does not
want to offer a tracing service anymore, it has to re-
move the publication. If the tracing service is the first
one offered by the ES entity, then this ES is internally

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

46

registered in the TEM. In the same way, when an ES
entity unpublishes all of its tracing services, it is inter-
nally removed from the TEM.

• Add/Remove Direct Authorization: ES entities
which have published a tracing service can specify which
roles have to be assumed by ER entities in order to re-
quest that tracing service. ES entities add and remove
direct authorizations for each of the tracing services
which they provide and the corresponding authoriza-
tion tree is stored in the AM.

• Add/Remove Delegated Authorization: ER en-
tities which have assumed a role which authorizes them
to request a tracing service can also authorize other
roles to request that tracing service. In the same way,
ER entities can remove those delegated authorizations
which they previously added. Modifications in the
corresponding authorization tree are registered in the
AM.

• Look up for Service: ER entities can look up in
the TSM to know which tracing services are available
and which ES entities offer them before requesting any
tracing information.

• Request Service / Cancel Request: ER entities
which want to receive certain trace events from an ES
have to request the corresponding tracing service to the
Trace Manager. The Trace Manager verifies against
the AM that the ER entity has authorization for that
tracing service before adding the subscription to the
SUBM. When an ER entity does not want to receive
events corresponding to a specific tracing service, it
has to cancel the request of that service and the corre-
sponding subscription is also deleted in the SUBM. If
the ER entity which requests the tracing service was
not subscribed to any other tracing service, then this
entity is internally registered and listed in the TEM.
In the same way, when an ER entity cancels all of its
requests, it is internally removed from the TEM. The
trace manager only records and delivers those trace
events for which there is at least one tracing service
request in the SUBM.

5. EXAMPLE
Let us consider an agent-based market like the one de-

scribed in Figure 3, where agents sell/buy articles to/from
other agents. In this market, there are two different agent
roles: seller and customer. Seller agents are those which
offer products that different customer agents can buy. The
market is open and thus, customer and seller agents enter
and abandon the market at run time. Customer and seller
agents have to negotiate and reach agreements about the
price customers are going to pay for the products and the
conditions in which these products will be provided (for in-
stance, time conditions).

Customer agents are independent from each other, as well
as seller agents, but they may need to know certain data
concerning the negotiation process or final prices reached by
other agents in the market, so that they can adapt to changes
and needs in the market. For instance, a seller agent may
change the price of a product according to recent sales of

AGENT
CUSTOMER 3

AGENT
CUSTOMER 4

AGENT
CUSTOMER 5

AGENT
CUSTOMER 1

AGENT
SELLER 3

PRODUCT 1

PRODUCT 2

PRODUCT 3

AGENT
SELLER 4

PRODUCT 1

PRODUCT 2

PRODUCT 3

AGENT
SELLER 2

PRODUCT 1

PRODUCT 3

NEGOTIATIONS

NEGOTIATIONS

NEGOTIATIONS

AGENT
CUSTOMER 2

NEGOTIATIONS

NEGOTIATIONS

SOLD:
Product 1, Price

AGENT
SELLER 1

PRODUCT 4

Interesting...

Interesting...

SOLD:
Product 3, Price

Figure 3: Multiagent system based virtual market where

customer and seller agents negotiate before buying/selling

products.

that product in order to be more competitive. Also, cus-
tomers interested in a product may start negotiations with
different sellers to obtain their products faster or for a lower
price. Knowing what other agents in the market are doing
can also be useful for sellers which may be considering offer-
ing a new product and want to know how many customers
may be interested and which price is being payed for that
product in the market.

Since discussions about norms, agent trust and so on are
out of the scope of this study, it will be assumed that agents
which enter the virtual market agree to share their infor-
mation as well as they are also benevolent in the sense that
they always inform the other agents about their activities
and that they do not lie about these activities.

From this point on, the example will consider only the
following concrete situation: Seller agents may want to know
when certain products are sold, as well as the time and the
price at which they have been sold. A seller may use this
information in order to adjust the price at which he is selling
that product according to the market. Agents which are
considering offering a certain product may also be interested
in knowing how that product is being sold. For instance, in
Figure 3, Seller 2 is interested in sales of Product 1, which
he also offers; however, Seller 4 is not interested in sales of
Product 1, in spite of the fact that he also offers it. Seller 1
does not offer Product 1, but he is also interested in sales of
that product, maybe because he is considering selling it too.
For the sake of simplicity, it will also be assumed that both
roles (seller and customer) cannot be played at the same
time by the same agent.

The rest of the section will explain different strategies to
solve the problem of sharing all this sale-related informa-
tion among the different sellers. Three different solutions
have been considered: Two of them based on comon ser-
vices available in most multiagent platforms (a white pages
and a yellow pages services) and finally, a solution based on
an event tracing system like the one presented in this paper.

In a solution based on a white pages service (such as the
one provided by the AMS in FIPA), each seller would have
to ask the agent in charge of providing that service for agents

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

47

in the market (this implies a message from the seller to the
white pages provider to ask for the existing agents and the
corresponding answer from the white pages provider to the
seller). After that, the seller would have to actively send a
message to all agents in the system each time he sells a prod-
uct (a typical AMS would not be able to distinguish between
sellers and buyers). For a system with a number of agents
(sellers or customers) equal to nagents and a number of sales
equal to nsales, the number of messages sent to inform about
all of the sales would be nmessages = (2 + nagents) ∗ nsales.
This solution would not only cause unnecessary information
traffic, since messages are sent to sellers which may not be
interested in that information and to customers, but also
would cause overhead in these non interested agents (sellers
or customers), which would also have to process this extra
information.

A yellow pages service (such as the one provided by the DF
in FIPA) can also be used in order to reduce the amount of
unrequested information which was to be transmited when
using a white pages service. First of all, all sellers would
have to register a service for each product they sell. Then,
each time a sale is done, the seller asks the yellow pages
provider agent for the rest of the sellers of that product (as
with the white pages solution, this implies a message from
the seller to the yellow pages provider to ask for the sellers of
that product and the corresponding answer from the white
pages provider to the seller). Finally, the seller has to send
a message to each of the sellers of that product. For each
sale, the total amount of messages would be (2+nproviders),
being nproviders the number of sellers which offer that prod-
uct. The worst case would be when all of the sellers offer
the product which has just been sold and the number of
messages would be (2 + nsellers). The best case would take
place when none of the sellers provides that product and
the number of messages would only be 2. As a result, for a
system with nsales, the number of messages sent would be
2 ∗ nsales ≤ nmessages ≤ (nsales ∗ (2 + nsellers)). Though
this solution reduces the number of unnecessary messages
to be transmitted and processed, it still has some with-
draws. First, sellers which are interested in a product have
to register as providers of that product in order to be in-
formed (in Figure 3, Seller 1 would have to be registered
as a provider for Product 1 in order to be informed about
sales of that product). And second, sellers which provide
a product are always informed about sales of that product
eventhough they may not be interested (in Figure 3, Seller
4 provides Product 1, but he has no interest in receiving any
information about that product).

To solve this problem using an event tracing system like
the one presented in this paper, seller agents have to pub-
lish data relating to their sales as tracing services. So, for
each product which is provided, sellers publish a tracing
service. Agents interested in sales of a product request the
corresponding tracing service and, from that moment, they
receive a trace event each time a product of the specifyed
type is sold. In this case, no messages are sent, but trace
events. For each sale, the total amount of trace events trans-
mitted (nt events) would be the number of sellers which are
interested in that product and requested the corresponding
tracing service. In a system with nsales sales, the num-
ber of trace events transmitted would be 0 ≤ nt events ≤
(nsales ∗ (nsellers)). When there is not any seller interested
in a product, no trace events are generated and so, the

Table 1: Summary of best and worst case costs as a
function of the number of sales (nsales) for the dif-
ferent techniques: White pages, yellow pages and
event tracing.

Number of transmissions

Best case Worst case
White P. nsales ∗ (2 + nagents) nsales ∗ (2 + nagents)
Yellow P. 2 ∗ nsales nsales ∗ (2 + nsellers)
E. Tracing 0 nsales ∗ nsellers

amount of information transmitted is reduced to that which
is strictly necessary. Also, since sellers do not have to know
which other sellers are interested in their sales, their internal
logic remains simple, unlike in previously shown solutions.

Table 1 shows the number of transmissions (either mes-
sages or trace events) as a function of the number of sales
in the virtual market. The number of transmissions in the
worst case is in the same order for all techniques. However,
the best case is constant for event tracing while it is higher
using the other techniques.

6. CONCLUSIONS AND FUTURE WORK
This paper presents TRAMMAS, an abstract model of an

event tracing system for multiagent systems. Unlike tradi-
tional tracing systems, the presented model is not conceived
only as a helping tool for multiagent system developers or
administrators, but it is also conceived as communication
mechanism which lets agents and other entities in the sys-
tem generate trace events, as well as receiving events gener-
ated by other entities. In this way, this tracing information
could be used by entities in a multiagent system to perceive
and interact with their environment.

With the trace model, a generic architecture has also been
presented. This architecture model lets concepts and mech-
anisms described by the model be incorporated to a multi-
agent system at platform level, which is more efficient and
flexible than incorporating them at application level.

Finally, a virtual market example, where agents need to
know certain information about other agents’ activities, has
been presented. In this example, different techniques and
strategies have been used to transmit the necessary infor-
mation. The analysis performed for each of these techniques
shows that event tracing can help reducing the amount of
unnecessary information which has to be transmitted and
processed, while keeping agents’ internal logic as simple as
possible and thus, this contributes to the scalability and fea-
sibility of multiagent systems.

7. ACKNOWLEDGMENTS
This work is partially supported by projects PROME-

TEO/2008/051, CSD2007-022, TIN2008-04446 and TIN2009-
13839-C03-01.

8. REFERENCES
[1] J. Alberola, L. Mulet, J. Such, A. Garćıa-Fornes,

A. Espinosa, and V. Botti. Operating system aware
multiagent platform design. Fifth European Workshop
On Multi-Agent Systems (EUMAS 2007), pages
658–667, 2007.

[2] E. Argente, V. Julian, and V. Botti. Mas modeling
based on organizations. Agent-Oriented Software

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

48

Engineering IX: 9th International Workshop, AOSE
2008 Estoril, Portugal, May 12-13, 2008 Revised
Selected Papers, pages 16–30, Jan 2009.

[3] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi.
Jade-a java agent development framework. Multiagent
Systems, Artificial Societies, and Simulated
Organizations, Jan 2005.

[4] R. Bordini, M. Dastani, and M. Winikoff. Current
issues in multi-agent systems development (invited
paper). Post-proceedings of the Seventh Annual
International Workshop on Engineering Societies in
the Agents World, pages 38–61, Jan 2007.

[5] R. Bordini and J. Hübner. Jason: A Java-based
interpreter for an extended version of AgentSpeak, Feb
2007.

[6] R. Bordini, J. Hubner, and R. Vieira. Jason and the
golden fleece of agent-oriented programming.
Multiagent Systems Artificial Societies and Simulated
Organizations International Book Series, Jan 2005.

[7] T. Bosse, C. M. Jonker, L. v. d. Meij,
A. Sharpanskykh, and J. Treur. Specification and
verification of dynamics in cognitive agent models.
Proceedings of the Sixth International Conference on
Intelligent Agent Technology, IAT’06. IEEE
Computer, pages 247–264, Jan 2006.

[8] T. Bosse, D. Lam, and K. Barber. Tools for analyzing
intelligent agent systems. Web Intelligence and Agent
Systems, 6(4):355–371, Jan 2008.

[9] J. Botia, J. Hernansaez, and A. Gomez-Skarmeta. On
the application of clustering techniques to support
debugging large-scale multi-agent systems.
Programming multi-agent systems, 4411/2007:217–227,
Aug 2007.

[10] J. Botia, J. Hernansaez, and F. Skarmeta. Towards an
approach for debugging MAS through the analysis of
ACL messages, volume 3187/2004, pages 301–312.
Springer Berlin / Heidelberg, Jan 2004.

[11] L. Búrdalo, A. Terrasa, and A. Garćıa-Fornes.
Towards providing social knowledge by event tracing
in multiagent systems. In HAIS ’09: Proceedings of
the 4th International Conference on Hybrid Artificial
Intelligence Systems, volume 5572/2009 of Lecture
Notes in Computer Science, pages 484–491, Berlin,
Heidelberg, Jan 2009. Springer-Verlag.

[12] J. Collis, D. Ndumu, H. Nwana, and L. Lee. The zeus
agent building tool-kit. BT Technology Journal,
16(3):60–68, Jul 1998.

[13] F. Dignum and G. Vreeswijk. Advances in Agent
Communication, volume 2922 of Lecture Notes in
Computer Science, chapter Towards a Testbed for
Multi-party Dialogues, pages 212–230. Springer Berlin
/ Heidelberg, 2004.

[14] V. Dignum, F. Dignum, and L. Sonenberg. Towards
dynamic reorganization of agent societies. In In
Proceedings of Workshop on Coordination in Emergent
Agent Societies, pages 22–27, Jan 2004.

[15] IEEE. 1003.1, 2004 EDITION IEEE Standard for
Information Technology Portable Operating System
Interface (POSIX). 2004.

[16] D. Lam and K. Barber. Debugging agent behavior in
an implemented agent system. Second International
Workshop in Programming Multi-Agent Systems

(ProMAS), Jul 2004.

[17] D. Lam and K. Barber. Comprehending agent
software. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents
and multiagent systems, pages 586–593, New York,
NY, USA, Jan 2005. ACM.

[18] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, Jan
2001.

[19] V. Mafik and M. Pechoucek. Social knowledge in
multi-agent systems, volume 2086/2001 of Lecture
Notes in Computer Science, pages 211–245. Springer
Berlin / Heidelberg, Jan 2004.

[20] D. Ndumu, H. Nwana, L. Lee, and J. Collis.
Visualising and debugging distributed multi-agent
systems. In AGENTS ’99: Proceedings of the third
annual conference on Autonomous Agents, pages
326–333, New York, NY, USA, Jan 1999. ACM.

[21] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
a&a meta-model for multi-agent systems. Autonomous
Agents and Multi-Agent Systems, Jan 2008.

[22] L. Padgham, M. Winikoff, and D. Poutakidis. Adding
debugging support to the prometheus methodology.
Engineering Applications of Artificial Intelligence,
18(2):173–190, Jan 2005.

[23] E. Platon, S. Honiden, and N. Sabouret. Oversensing
with a softbody in the environment: Another
dimension of observation. In Proceedings of Modeling
Others from Observation at International Joint
Conference on Artificial Intelligence, 2005.

[24] A. Pokahr and L. Braubach. Jadex Tool Guide, Sep
2008.

[25] V. Sanchez-Anguix, A. Espinosa, L. Hernandez, and
A. Garcia-Fornes. Mamsy: A management tool for
multi-agent systems. 7th International Conference on
Practical Applications of Agents and Multi-Agent
Systems (PAAMS 2009), pages 130–139, 2009.

[26] A. O. Software. JACK Intelligent Agents Tracing and
Logging Manual, May 2008.

[27] P. Tichý and P. Slechta. Java Sniffer 2.7 User
Manual, 2006.

[28] G. Valetto, G. Kaiser, and G. Kc. A mobile agent
approach to process-based dynamic adaptation of
complex software systems. In EWSPT ’01:
Proceedings of the 8th European Workshop on
Software Process Technology, pages 102–116, London,
UK, 2001. Springer-Verlag.

[29] D. Weyns, A. Omicini, and J. Odell. Environment as a
first class abstraction in multiagent systems.
Autonomous Agents and Multi-Agent Systems, Jan
2007.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

49

Drag-and-Drop Migration: An Example of Mapping User
Actions to Agent Infrastructures

Silvan Kaiser
DAI-Labor, Technische

Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
silvan.kaiser@dai-

labor.de

Michael Burkhardt
DAI-Labor, Technische

Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
michael.burkhardt@dai-

labor.de

Jakob Tonn
DAI-Labor, Technische

Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
jakob.tonn@dai-labor.de

ABSTRACT
Runtime management of a distributed Multi-Agent System
is a complex task. Tools that offer a generic solution for this
problem and that are intuitive to use only exist in a very
limited way so far. In this paper, we take the example of a
Drag-And-Drop migration feature to show a concept and a
prototype implementation for an intuitive to use user action.
This triggers an interaction between the Multi-Agent Sys-
tem and the visual management application, resulting in a
migration of a mobile agent between different Agent Nodes.
The example shows how the software agent metaphor, used
in AOSE concepts at design time, can be sustained and elab-
orated in runtime tools for Multi-Agent Systems.

1. INTRODUCTION
Distributed Multi-Agent Systems (MAS) are, in general,

rather complex systems used to solve complex tasks. Physi-
cal distribution as well as large numbers of agents become se-
rious issues when monitoring running MAS. Classical moni-
toring tools, applying user interface elements like log file out-
puts and tables of entities, are unintuitive and become con-
fusing with rising numbers of elements. The software agent
approach provides concepts for dealing with distributed and
highly dynamic infrastructures, in which entities are added
and removed in large numbers and at different locations. An
user interface (UI) has to keep up with these aspects, giv-
ing the user overview and manipulation abilities to assert
control over the MAS at runtime. Text based interaction,
for displaying system information or issuing commands, is
less than optimal. Simple user interactions can provide easy
access to complex functionalities and the dynamics of MAS
allow agents to react to infrastructure changes as conducted
by an administrator.

We propose to provide insight into a running MAS in-
frastructure, by providing an approach of intuitive interac-
tion for MAS administrators relying on graphics, common
metaphors and real-world knowledge of users. Major ele-
ments of this approach are user interactions that allow an
user to change his perspective or manipulate entities in the
running MAS, e.g. stopping a specific agent. In this pa-
per we focus on agent migration by Drag-and-Drop as an
example of a concept, design and implementation of such
an user interaction. Agent migration is well known con-
cept that can be used to achieve goals like load balancing
or administrative tasks. This example provides an excel-
lent opportunity to show the connections between a sim-

ple metaphor known to any user, the concept of how this
metaphor is integrated into the UI and the implementation
details of the resulting software components. The following
user interaction approach example relies on the Advanced
Structured Graphical Agent Realm Display (ASGARD) [11]
which provides the foundation for the MAS visualization.
The example implementation uses the JIAC V framework
and is implemented in Java. In JIAC V agents can be mo-
bile to support several types of migration (weak/strong) and
can be cloned in order to create similar redundant agents.
In ASGARD agents are represented as boardgame play fig-
ures that can be dragged and dropped from node to node,
similar to a real life boardgame.

The details of this concept and implementation are de-
scribed in the following sections and are structured as fol-
lows: The next section provides an overview of related work
in MAS monitoring. This allows a more accurate place-
ment of our approach in comparison with given concepts.
Related work is followed by a general concept description
providing details over the different aspects of this approach.
Subsequently the prototype implementation describes how
the concept was realized and finally a conclusion section dis-
cusses evaluation, results and future work.

2. RELATED WORK

2.1 Shell-based Monitoring and Interaction
The classical and most frequently used approach to in-

teract with running applications by developers is the use of
command shells and their input and output functionality.
These command shell applications are usually provided by
the operating system. Their main advantage is that com-
mand shell output (and by a lesser margin input as well) is
easily implemented in any application. This is contrasted
by the fact that command shell interaction is not intuitive.
There is no way for the user to judge the importance of a
textual log output on first look, and keyboard commands (if
available) tend to be of a rather cryptic nature. Further-
more, as waiting for keyboard input might block an appli-
cation or is rather complex to implement in a non-blocking
way, most developers only offer the process of stopping an
application, reconfiguring it and restarting as a mean of in-
teraction.

Those disadvantages of shell-based interaction get even
more significant in a distributed MAS, as the usual ap-
proaches either require the developer to watch a dedicated

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

50

shell console for each processing entity in the MAS or try to
differentiate the log outputs of each entity in a single console.
Providing live interaction for the MAS is almost impossible
by those means.

2.2 Tools for Post Mortem Analysis
Several monitoring tools that use a more visual approach

are available for various MAS implementations. One of these
is the ADAM3D [4] tool that visualizes interaction between
agents on the base of 3D technology, using the third dimen-
sion as a temporal axis. The Brahms Agent Framework
[9] provides it’s own visualization tool as well, which visu-
alizes property changes and communication between agents
over time. Both of these tools rely on log output that is
collected in a database, so they can only be used for post
mortem analysis of a MAS and thus cannot provide any suf-
ficient live management functionality.

2.3 Live Management Tools
There are few generic solutions for the problem of provid-

ing live management for a MAS so far. The JIAC Node
Monitor [6, p. 126] for the JIAC Agent Framework [3] is a
first attempt at solving this problem and can be seen as the
predecessor to the ASGARD concept, but is limited to a sin-
gle Agent Node1 and thus does not represent the distributed
nature of a MAS. It’s main disadvantage is the limited scal-
ability of it’s visualizations, and it’s management functions
were not intuitively designed. However the Node Monitor
shows that a visual monitoring and management applica-
tion does improve the workflow during the implementation
process of a MAS application. A developer can use the ex-
isting monitoring solution to check his entities instead of
having to implement his own interface for monitoring and
management.

3. CONCEPT
Herein metaphors for the user interaction, the migration

concept and the management aspects for our approach are
described.

3.1 Metaphoric understandability
A key requirement in the creation of an easy-to-use man-

agement solution is that it provides an intuitive interface, so
that the user will understand visualizations and interactions
because of prior experiences and knowledge. To achieve
this effect, a common attempt is the use of metaphors [1].
Metaphors provide a mental bridge between the abstract
nature of the software “world” and concrete objects in the
real world. As this link is essential for understandability, a
good metaphor should always have a lot in common with
the represented software entity.

In the JIAC V[3] framework, there is a set of basic entities
that provide the infrastructure (see section 4). To create
a visualization of these structures in ASGARD, the most
important JIAC V entities are replaced with metaphors ac-
cording to their role. Agents, as the entity that provides
all application-specific processes in the MAS, can easily be
visualized by an abstract human figure such as a play figure
from common board games. Agent Nodes as the providers
of a runtime environment for agents are consequently repre-
sented by rectangular platforms, as a“floorboard”for agents.

1see section 3.1 or [3]

Agents are placed on these platforms to make the hierarchic
relationship between agents and Agent Nodes instantly vis-
ible. Communication is a straightforward choice as well.
The image of a letter envelope is one of the most common
metaphors to indicate a message. To add even more under-
standability and the possibility to trace the communicating
entities, a path between those entities is shown.

States of entities are a bit more diverse. Some states like
the life cycle of an entity can best be visualized by coloring
parts of the corresponding metaphor, such as an agent head
being colored green or red to indicate a running or stopped
state. This choice of colors is straightforward as it relates to
the common experience with traffic lights. Other states and
capabilities are better visualized by adding icons to an entity,
such as the suitcase icon in figure 1 indicating migrateable
agents and nodes that support migration.2

3.2 Migration
The migration of agents is a process which allows an agent

to move from a source node to a target node by sending a
mobile agent description as message. This process extends
the agent’s life cycle. Thus a new class of agents are estab-
lished on JIAC V platforms – mobile agents.

Mobile Agents extend common agents on JIAC V. A mo-
bile agent is aware of its own configuration, library depen-
dencies and feature requirements.

A mobile agent has the capability to invoke his own migra-
tion to an other Agent Node, but is not designed to avoid his
migration. A mobile agent creates an abstract description
of itself, so called Agent Image.

This description is a message that can be transmitted.
The agent image differs from a simple Agent Description
which contains agent name, unique identifier and agent ad-
dress for communication.

In JIAC V we distinguish between different modes of mi-
gration. In the first step the process always creates an agent
image. The migration modes vary from each other in how
thorough the agent image reflects the migrating agent. The
agent image has to contain enough data to perform the spec-
ified mode of migration, e.g. for starting with a clean state,
or one that maintains the complete state the agent was in
right before the migration was triggered.

In the process of migration the Agent Node’s task is well-
defined: It has to handle the migration on the agent node
level. The agent nodes supporting mobility are grouped by
using a reserved message bus. This bus is supposed to find
other nodes with mobility support and exchange their ad-
dresses. It is furthermore an abstract facility. Intermediate
agent nodes on the route of a message (e.g. nodes acting as
a network gateway) are hidden.

While migrating an agent, the two involved agent nodes
communicate directly to move the agent from one to the
other. The individual addresses of the partner node is known
from the message bus.

The migration process (see figure 5) starts with the send-
request of the mobile agent to the source Agent Node. The
request consists of the complete requirements of the mo-
bile agent. Alternatively an upper authority can request
the migration for a distinct agent, e.g. a node management
component.

The target node is able to accept or reject this request. In

2A more detailed discussion of JIAC entities and their
metaphors in ASGARD can be found in [11].

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

51

Figure 1: The user drags the migratable agent

Figure 2: The user drops the migratable agent and triggers the migration

Figure 3: The migration process is animated

Figure 4: The migrated agent now runs on the target node.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

52

Figure 5: Interactions between Agent Nodes and agents for migration process

case of an acceptance the agent can be transported to the
target node. In doing this, the complete agent image will
be send from source to target node. After completing trans-
mission the agent will be reconstructed from the transmitted
image. The source node will be informed about success or
failure of the transportation process. Finally the agent re-
ceives feedback about the whole migration process. In case
of migration without cloning the original agent is shut down,
which completes the migration process, whereas in case of
cloning, the process is already completed upon receiving the
success or failure message. During the whole process, notifi-
cations are send over the management interface that contain
information about the current state of the migration process.
This enables a monitoring tool like ASGARD to keep track
of the migration process.

The visualization of this migration process makes use of
the metaphors mentioned in section 3.1. The existing meta-
phors for agents and Agent Nodes are used as a base to
visualize this process. To show the initiation of a migration
process from one node to another, a translucent copy of an
agent shape, a “ghost agent”, is placed on the target node
first. The migrating agent’s representation on the source
node is then animated to shrink, whereas the ghost agent
is filled by a regular agent object growing inside of it, as
visible in figure 3. As this visualization alone does not em-
phasize the communication aspect of the migration process,
a path between the positions of the agents on source and
target Agent Node is shown as well. This path indicates
the direction of the migration and makes it easy to spot the
corresponding partners in situations with a lot of migrations
occurring.

3.3 Management using Drag-and-Drop
Distributed MAS are usually long lived infrastructures

providing services for users or other software systems. Demon-
stration, maintenance or other reasons sometimes demand
the ability to migrate agents from one node to another in
a running platform. However, short of writing a quick pro-
gram to trigger such a migration, there generally are no

direct manipulation options for a MAS administrator that
could accomplish such a trivial task (trivial once the rather
complex process of migrating a mobile agent is already im-
plemented). Thus a simple user action is required that al-
lows a user to trigger migrations at will and the well known
Drag-and-Drop metaphor is an obvious choice.

The Drag-and-Drop process has evolved to a standard
feature in all modern user interfaces. It is based on the
metaphor of moving an object from a source location to a
target location, and thus used for all kinds of processes that
change the physical or logical location of an entity, such as
moving files between folders. The usual implementation is
that the user uses the mouse to select an object and move it
to the target while holding the mouse button down (Drag)
and releasing the button once the target is reached (Drop).
The common acceptance of Drag-and-Drop in user inter-
faces makes it an optimal metaphor to manage migration
processes as well, as a migration process in a MAS is char-
acterized by being a location change of an agent.

To make use of this, ASGARD offers control over migra-
tion by dragging an agent from the source node onto a target
node using the mouse. Migrateable agents are easy to iden-
tify for the user by the suitcase icon on agents, showing the
migration ability, Agent Nodes with support for migration
are similarly marked. To indicate that an agent is being
dragged, a ghost agent is attached to the mouse cursor and
moved along with it (see figure 1). Once the agent has been
dropped onto a target Agent Node that supports migration,
a standard GUI dialog (figure 2) asks the user which kind
of process (Strong/Weak Migration or Cloning) is required.
ASGARD then initializes the migration process and visual-
izes it’s progress in the same way as an internally triggered
migration would be visualized (figure 3).

The separation of the interaction and visualization has
the advantage of offering a base for automatically visualiz-
ing errors. If an error occurs during the initiated migration
process, the migration animation will not be shown and the
user will see that the migration process was not executed
as anticipated. This concept can even be extended to offer

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

53

detailed information about the occurred error, by reading
out the involved entities’ properties and presenting them in
a textual or graphical way to the ASGARD user.

3.4 Other interaction metaphors
In it’s current state, ASGARD offers several other con-

cepts of interactions using metaphors. One of them is the
idea of showing a greater level of detail when using the zoom
feature on a selected entity. This matches the users knowl-
edge. He can see far more details of an object if he watches it
from a close point of view than from far away. The adaptive
level of detail has the advantage of solving a scaling prob-
lem as well, as a visualization of every detail in every entity
would be way to complex and space-consuming to still be
intuitive and understandable.

Other planned features is the use of Drag-and-Drop be-
tween ASGARD and a visual editor for agent and Agent
Node configurations (AWE [7]) to deploy new agents in the
MAS, and a similar way to remove agents and Agent Nodes
from the running system. The latter could be done by drag-
ging an entity onto a waste basket, as this metaphor for
removing an object is common in current operating systems
as well.

4. IMPLEMENTATION
In order to implement the concept of Drag-and-Drop mi-

gration the Java based Intelligent Agent Framework ver-
sion V (JIAC V) was used. JIAC V combines agent tech-
nology with a service-oriented approach and provides a wide
range of basic functionalities for agent deployment, commu-
nication, management and dynamically changing distributed
environments. JIAC V MAS consist of a hierarchical struc-
ture as shown in figure 6.

A Platform consists of a range of different Agent Nodes
that provide the environment for the execution of agents.
An Agent Node is roughly equivalent to a Java VM with an
agent infrastructure. Individual Agents are implemented as
Java objects in an Agent Node and consist of several core
components and optional Agent Beans. These beans are
used to provide concrete functionalities as plug-in compo-
nents for agents. The JIAC V foundation is used in a wide
range of projects, ranging from service delivery platforms
to simulation environments. The following sections elabo-
rate on three specific components of the JIAC V framework
relevant for Drag-and-Drop migration.

4.1 Migration Implementation
JIAC supports basic migration capabilities by adding mo-

bility support to the Agent Nodes and instantiating a new
mobile agent. JIACs Agent Migration API provides strong
migration. The MAS developer only has to use the Java an-
notation @Migratable for migratable fields. Only the state-
ful information in the Agent Beans has to be marked. There
are three ways for the developer to mark the migratable
agent properties in an Agent Bean, in order to provide a
solution that is usable in all combinations of field access lev-
els. The Developer does not have to stick to a fixed naming
scheme for getter and setter methods.

In order to realize strong migration an agents state has to
be archived. We do not transfer the whole execution stack
of an agent out of a Java VM. The JIAC V API collects all
stateful information of all agent properties. The agent en-
gineer marks all stateful information about the agent beans

belonging to the mobile agent.
As described in section 3.2 an agent creates its own im-

age. The agent is aware of its configuration and correspond-
ing implementation, e.g. Java classes. Creating a complete
image of an agent for strong migration is a complex and ex-
pensive process. Due to this we adopted Java Annotations
as a simple way for realizing migration support. Each Java
field, constituting a migratable state, is marked with the an-
notation, which is only being evaluated in the case of strong
migration. For this purpose, every Java class implementing
an agent feature requires a scanning for annotations. This
process will be done if an agent image is needed within a
strong migration.

A mobile agent is equipped with a scanner, validator and
collector for agent properties. For every Java class related to
an agent feature the scanner collects Java fields annotated
with @Migratable. The output of the scanner is a list of Java
fields comprising field names and field types. The scanner
furthermore determines potential setter and getter methods.
Subsequently, each agent property requires validation.

The validator uses the list of collected Java fields. Every
field will be approved to be accessible and serializable. A
field is accessible, if it is public writeable or it has public set
and get methods. Java fields which do not pass the valida-
tion will be dropped, while we call the remaining ones Agent
properties. These are accessible and serializable properties
which can be read and set for the agent.

Finally a collector iterates over the validated agent prop-
erties and collects their current values. The collector creates
a list of agent properties, comprising their names and val-
ues. The set of all collected agent properties constitutes the
reconstructible state of the agent.

4.2 Management Interface JMX
The binding element between the migration implemen-

tation in the JIAC V Framework described above and the
ASGARD visualization implementation described below is
the JIAC V management interface. Since JIAC V is im-
plemented in Java, the application of the standard man-
agement interface concept JMX [10] was an obvious step.
This adds the ability to access the JIAC V infrastructure
and analyze an agent Nodes internal data. It can be used
by standard tools like JConsole, as well as by proprietary
implementations like the ASGARD tool. Standard infras-
tructure elements in JIAC V, like Agent Nodes, agents and
their Beans, provide JMX based access methods that allow
remote access to their internal state, data and some func-
tionalities. Agent Nodes are located in the LAN subnet by
multicast messages that use a special management channel
on the message bus. Last but not least remote JMX clients
can register for specific notifications in order to prevent in-
efficient polling mechanisms.

JMX relies on managed beans (MBeans) that effectively
are Java interfaces. By implementing such an interface a
class gains the ability to register with a local management
component (also called “agent” in JMX terminology) and
provides remote access to the attributes and methods (termed
“services”in JMX) and notifications through the JMX“agent”
component. JMX based client classes can then access the
specified interface remotely, usually through the RMI pro-
tocol. The JIAC V framework provides a range of standard
JMX clients for specific infrastructure elements like Agent
Nodes, agents, etc., that ASGARD utilizes as described in

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

54

Figure 6: Basic structure of entities in the JIAC V framework.

Figure 7: steps to scan Java classes for migratable agent properties

the following section.

4.3 ASGARD
The ASGARD application provides the user interface to

the management functions of a JIAC MAS. Using the JMX-
based management interface to retrieve information about
the current state of the MAS, ASGARD generates a meta-
phoric visualization at runtime, which is used to provide
information to the user as well as a base for user interaction
with the system. To create the visualization, ASGARD has
to locate the JIAC entities in the network infrastructure.
This feature is currently implemented by receiving multicast
discovery packets and reading out Java RMI registries. The
information received this way consists of JMX service URLs,
which are used to connect the management clients to the
MAS entities.

As two-dimensional graphic engines and raster images have
the problem of not being scalable quite well, ASGARD uses
3D graphics to visualize the structure of JIAC V applica-
tions. For this purpose, a 3D engine called Java Monkey
Engine (JME)[5] is used. It offers bindings to the OpenGL
API for most common operating systems, so that ASGARD
can be used on a large variety of systems. Furthermore, JME
provides a lot of functionality for creating and managing
three-dimensional objects and for user interaction. These
features turn JME into a solid base for a graphical and in-
teractive application.

ASGARD uses the data from polling the management
clients and receiving JMX notifications to generate a tree
structure of object instances containing the metaphoric rep-
resentation of a connected JIAC MAS. The reason why both
polling and notifications are used is that the JIAC V man-
agement interface provides notifications only for events and
property changes that are quite frequent to happen. This
provides instant knowledge of their occurrence. Properties
that are changed rarely or never can be retrieved by polling
with a low frequency. The combination of those techniques
offers a good tradeoff between network load and up-to-date
information about the managed system’s state.

The visual representation objects are built up in an Model-
View-Controller (MVC) [8] pattern style to provide easy
adaption and a separation of data, visual implementation
and interactions. This separation is performed by creating
three different objects for each entity. The entity controller
manages creation and deletion handling for the object and
polls the management interface for data. Furthermore, it
registers as receiver for both JMX notifications and user in-

teraction events such as mouse clicks. The data retrieved
over the management interface is stored in the data model.
It acts as a buffer for value properties of an entity and pro-
vides the base to generate a visualization as well as for a
textual presentation of the data in a property table. The vi-
sualization is generated and managed in a third object that
represents the “view” part of the MVC pattern. This object
uses the data from the data model to generate and adapt
the visualization to the current state of the entity.

As ASGARD uses a three-dimensional space for the visu-
alization, finding the entity that the user is currently point-
ing at with the mouse cursor has to be done by an algorithm
called ray intersection. This is done by sending a virtual
ray from the camera position in the direction of the mouse
cursor into the scene and checking which object’s bounding
box3 is intersected by it. ASGARD then forwards mouse
over and mouse click events to the foremost entity that got
intersected, so that mouse events get handled by the corre-
sponding entity controller class.

The visualization of a migration process is based on the
JMX notification mechanism. The Agent Node controller in-
stances in ASGARD register as notification receivers. The
migration implementation sends notifications containing the
current state of the migration process and identifiers for the
involved Agent Nodes and agents, Upon receiving those mi-
gration notifications, the representations for the involved en-
tities are identified in ASGARD’s internal entity tree. The
visualization handler instances then create the visuals and
animations which are shown in figure 3.

By extending the user action event handler mechanism
to special Drag-and-Drop events, ASGARD is able to pro-
vide the functionality to offer migration per Drag-and-Drop
to the user. The drag animation is implemented pretty
straightforward by moving a “ghost” copy of the entity ac-
cording to the mouse cursor motion (see figure 1). If the
user releases the mouse button, the entity that was below
the dragged entity gets identified by ray intersection and re-
ceives a drop event that contains a reference to the dragged
object. Thus, the drop handler can provide different han-
dling for different entities. In case of the dragged entity
being a migrateable agent and the agent Node supporting

3The ray/box intersection and the use of bounding volumes
for collision checks are common algorithms in 3D computer
graphics. Intersection checks are usually performed by solv-
ing linear equations to find the intersection point or plane.
Further details can be found in [2].

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

55

migration4, the Agent Node controller will trigger the migra-
tion process (see figure 3) by calling the appropriate method
of the JMX management system. The migration process is
then executed in the same way as if an internal event in the
MAS had triggered it, so that the same visualization algo-
rithm that shows all occurring migration processes in the
MAS will provide a visualization without further adaptions.

5. EVALUATION AND CONCLUSION

5.1 Evaluation
The implementation of a visualization for JIAC V’s mi-

gration feature and the subsequent adding of the Drag-and-
Drop migration management has shown to be successful dur-
ing an initial institution-wide testing process. The test users
were able to instantly connect the visualized process with
migration. The migration visualization shows clearly when
a migration process is occurring in a MAS application, the
current state the migration process is in, and which entities
are involved. Using ASGARD during debugging processes
has helped to identify migration-related problems such as
failed migrations or agents migrating onto a wrong target
node.

The implementation of triggering a migration using Drag-
and-Drop has proved successful as well. Instead of having
to add functionality to offer a user-triggered migration man-
ually to each JIAC V application, developers can now rely
on being able to test migration processes by just dragging
agents between nodes in ASGARD’s visualization of their
implementation. As this feature is available in the JIAC V
environment for all migratable agents as part of the manage-
ment interface without any further work for the user, it saves
a lot of implementation effort for testing and demonstration
processes.

A standardized test of the whole ASGARD application
with a larger and more diverse group of users is still to be
conducted once the prototype implementation reaches a sta-
ble state.

5.2 Conclusion
In this paper we presented an example for mapping user

actions to agent infrastructures, the Drag-and-Drop Migra-
tion. We motivated why graphical user interfaces provide
added value for administrating MAS and which major tech-
nologies are involved in our example. We compared our
approach with related work and gave a deeper insight into
the concepts of the metaphors, migration and Drag-and-
Drop concepts used herein. Afterwards we provided more
insight into the implementation details of our example and
described the different components involved. We conclude
with a results evaluation and provide some hints for future
work in this concluding section.
The resulting concept shows how user actions can be used to
trigger complex operations in a MAS infrastructure, through
the application of graphical user interfaces. This requires
carefully selected metaphors and an extensive framework to
rely on. The result is a visual interaction method that is con-
venient for administrators as well as intuitive to understand
for other observers, e.g. for demonstration purposes.

4Both of these abilities are identified using JMX when the
entity data and information is gathered.

5.2.1 Future Work
As the concept and initial implementation of Drag-and-

Drop migration in ASGARD has proved to be successful dur-
ing everyday use, more management functionality should be
offered to users in a similar way. The integration of agent de-
ployment and removal by Drag-and-Drop already mentioned
in section 3.4 are two of them. Other interaction metaphors
will be used for life cycle and property influence of entities
and to make visual navigation and locating certain entities
easier to handle.

6. REFERENCES
[1] S. Diehl. Software Visualization - Visualizing the

Structure, Behaviour and Evolution of Software.
Springer, 2007. ISBN 978-3-540-46504-1.

[2] M. Gomez. Simple Intersection Tests For Games.
Gamasutra online article, www.gamasutra.com,
October 1999.

[3] B. Hirsch, T. Konnerth, and A. Heßler. Merging
Agents and Services — the JIAC Agent Platform. In
R. H. Bordini, M. Dastani, J. Dix, and A. E. F.
Seghrouchni, editors, Multi-Agent Programming:
Languages, Tools and Applications, pages 159–185.
Springer US, 2009.

[4] S. Ilarri, J. L. Serrano, E. Mena, and R. Trillo. 3D
Monitoring of Distributed Multiagent Systems. In
WEBIST 2007 - International Conference on Web
Information Systems and Technologies, pages 439–442,
2007.

[5] JME Development Team,
http://www.jmonkeyengine.com. Java Monkey
Engine, 2009.

[6] J. Keiser. MIAS: Management Infrastruktur für
agentenbasierte Systeme. PhD thesis, Technische
Universität Berlin, September 2008.

[7] M. Lützenberger, T. Küster, A. Heßler, and B. Hirsch.
Unifying JIAC agent development with AWE. In
Proceedings of the Seventh German Conference on
Multiagent System Technologies, Hamburg, Germany.
Springer, 2009.

[8] T. Reenskaug. Models-Views-Controllers. Technical
report, Xerox-Parc, 12 1979.

[9] M. Sierhuis, W. J. Clancey, and R. van Hoof. Brahms
- a multiagent modeling environment for simulating
social phenomena. In First conference of the European
Social Simulation Association, Groningen, 2003.

[10] Sun Microsystems, Inc. Java Management Extensions
(JMX) Specification, version 1.4, 11 2006.

[11] J. Tonn and S. Kaiser. ASGARD - A Graphical
Monitoring Tool for Distributed Agent
Infrastructures. In 8th International Conference on
Practical Applications of Agents and Multi-Agent
Systems, University of Salamanca, Spain, 2010.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

56

AGRID - Agent Based Grid System

Uygar Gümüş
Institute of Science and Technology

Istanbul Techical University
Maslak, İstanbul, Turkey
gumusuy@itu.edu.tr

Prof. Dr. Nadia Erdoğan
Computer Eng. Department
Electrical-Electronics Faculty
Istanbul Techical University

Maslak, İstanbul, Turkey
nerdogan@itu.edu.tr

ABSTRACT
This paper presents the design and implementation of an
agent-based grid system (AGrid) that provides clients with
a distributed execution environment for sharing of process-
ing power resources. AGrid combines favorable aspects of
two different areas of distributed computing, namely grid
computing and agent technology. During the design phase,
system stability and robustness has been a primary concern.
The framework builds on various types of agents that are
defined and implemented to handle different issues of grid
computing. Each type of agent acts according to protocols
that define the interaction and coordination between agents
and describe actions required for the management of the
grid. This paper describes in detail the procedures followed
for connection and disconnection of clients and workers, task
assignment, task execution and result delivery.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed program-
ming; I.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems

General Terms
Algorithms, Design

Keywords
Agent systems, mobile agents, grid computing, computa-
tional grids, JADE.

1. INTRODUCTION
Distributed computing has become one of the popular

research topics in computer science. Especially, very high
speed Internet connections and new networking structures
enable promising research to be conducted in this field. This
paper, presents a new agent-based grid system, which com-
bines two different areas of distributed computing, namely
grid computing and agent technology.

Grid computing is a model for wide-area distributed and
parallel computing across heterogeneous networks, aiming to
reach breakthrough computing power at low cost [3]. Grids
are hardware and software infrastructures that enable the
sharing, distribution and collective use of heterogeneous re-
sources [8]. These resources may be secondary storage, pro-
cessing power or output data of any specific input output
device. The grid system we present focuses on sharing of

processing power resources. Reliability and stability are im-
portant specifications of grids systems. Data security and
trustworthiness of calculation results are very important.
Grid systems need mechanisms to manage the grid infras-
tructure as to ensure these issues.

Agents are encapsulated and autonomous software and
hardware systems, which execute an assigned task by com-
municating and collaborating with other actors at the same
or different physical environments [6]. Main attributes of
agent systems are flexibility and autonomy. In traditional
agent systems, generally no single agent controls the sys-
tem. Each agent has limited information about the problem
and limited capability to solve the problem. Agents build a
virtual organization using their communication capabilities
and solve the problem by combining the insufficient capabil-
ity of each agent through intensive cooperation. In the con-
text of grid computing, mobile agents are usually employed
in resource discovery, job scheduling, job deployment, task
execution and result collection [7].

This paper presents an agent-based grid system (AGrid)
for sharing of processing power resources. In AGrid, the
framework builds on various types of agents that are defined
and implemented to handle different issues of grid comput-
ing. Some agents handle job scheduling and job deployment,
while others execute jobs assigned to them and produce re-
sults. In the design phase, we determined the actors of the
system, specifying their tasks and responsibilities. After as-
sociating each actor with an agent type, protocols were de-
veloped for each role of agents. These protocols define in
detail the interaction and coordination between agents and
describe actions required for the management of the grid.
Methods of connection, disconnection, task assignment, task
executing and result delivery are declared. In addition,
an efficient and fast messaging infrastructure is developed
for effective agent communication. This paper presents the
agent types, their responsibilities in the grid systems and the
communication protocols between agents during the life cy-
cle of the grid. Protocols on task assignment, job scheduling
and result collection as handled by agents are also described
in detail. The grid was developed in a systematical man-
ner and up to the final version, three prior versions were
implemented, detecting and making design decisions to fix
problems of the prior version each time. Figure 1 depicts
the final grid architecture.

AGrid is compatible with the Foundation for Intelligent
Physical Agents (FIPA) standards [5]. The use of auton-
omy and flexibility features of agents in the grid design has
resulted in a stable and robust grid structure.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

57

Figure 1: Final grid architecture.

The rest of the paper continues with Section 2, which
briefly summarizes recent work in agent based grid comput-
ing. Next, Section 3 focuses on design and implementation
issues of the system, describing the system components and
runtime protocols. In Section 4, system performance is eval-
uated and, finally, Section 5 concludes the paper.

2. RELATED WORK
Agent based grid system has been a popular area in com-

puter science in recent years. Athanaileas et al. argued
about adding mobility support to grid systems using mo-
bile agents [1]. This system, named GridSBAP, is build
on OSGA platform and mainly focused on adding mobil-
ity feature to the grid systems. GridSBAP uses FIPA ACL
standards for agent communication.

AgentScape, an agent supported Internet based grid, is de-
veloped by B. J. Overeinder et al.[10] It supports large scale
agent system. This system defines its own communication
protocols for agents and a resource management system for
the grid. AgentScape can adapt to other communication
standards using an extra layer which transforms messages
in to the native format of AgentScape.

Fukuda and Smith introduced UWAgent, a grid system
middleware for Java based on mobile agents [7]. Just like
AGrid, UWAgent is not only an agent based grid system
but also a middleware that meets management needs of
distributed computing. However,UWAgent defines its own
communication standards for mobile agents, which is not
fully compliant with FIPA standards.

Also Poggi, Michele and Turci, worked on extending JADE
framework in order to support grid computing [9].

3. AGENT BASED GRID SYSTEM
AGrid is an agent based infrastructure for distributed and

parallel computing. Currently AGrid can be used to create
a grid system to share processing power and task executing
on remote platforms. The system is implemented on JADE
(Java Agent Development Framework) which is developed
by Telecom Italia SpA. JADE is a distributed runtime en-
vironment on which mobile agents can live, communicate
and run parallel tasks via behaviours. JADE also supports
graphical user interfaces that can be used for debugging,
monitoring, logging and management of the agent system.
In addition, JADE is compliant with FIPA specifications,
which enables the agents to communicate and cooperate
with other agent systems which are also compliant with the
FIPA standards.[4].

As stated in the introduction section, multi agent systems
and grid systems are two different branches of distributed

systems with different perspectives on distributed comput-
ing. In this work, a hybrid of these two different approaches
is implemented. In this section, we will present the com-
ponents of the system and describe in detail the protocols
between the agents.

3.1 System Participants
In AGrid, four different types of agents cooperate to pro-

vide a distributed computing environment:

• Manager agent which is in charge of general grid man-
agement,

• Worker agents which execute jobs assigned to them
and produce results,

• Client agents which use the grid to run their tasks,

• Delegate agents which help the manager agent via
coordinating the interaction and the communication
between client or worker agents and the manager agent.

Figure 2 depicts the hierarchical relation between agent
constituents of the grid.

Figure 2: Hierarchical relation between agents.

The following sections give detailed information for each
type of agent.

3.1.1 Manager Agent
AGrid has a central management system. There exists a

manager agent which controls communication channels, task
assignment and result collection issues. Classical agent sys-
tems generally do not contain a central management organi-
zation [11]. However, a computational grid system usually
needs a management structure to control the entire grid [2].
Central management usually becomes a bottleneck; there-
fore the manager agent in AGrid conveys some of its tasks
to delegate agents as to decrease its work load. The manager
agent has the following responsibilities:

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

58

• Keeps the record of each connected client and worker
agent.

• Creates a delegate for each worker and client agent
that connects to the system.

• Ensures safely disconnection of participant agents.

• Coordinates reassignment of a task in the case of im-
proper termination/exit of worker agents.

• Terminates task execution in the case of corresponding
client agent exits the system.

3.1.2 Client Agents
Client agents are users of AGrid that connect to the grid

system to receive service. They connect to the system in
order to have their local tasks be executed on remote hosts
which can lend their processing power. After a client con-
nects to the grid, it sends the required task information to
the delegate agent with which it is associated and waits for
the result. It may disconnect while the computation is going
on and may later collect the results

3.1.3 Worker Agents
These agents connect to the system to share any of their

resources. Currently, AGrid only supports computing power
based resources. When a worker agent connects to the sys-
tem, it provides the manager agent information about its
resources that are available and it is willing to share. If the
participation request to the grid is accepted, the manager
agent creates a delegate agent for the worker, which handles
all further communication/ interaction of the worker agent
with the grid system.

3.1.4 Delegate Agents
Delegate agents reside on the node where the manager

agent is present and handle all communication and protocol
implementation between the agents they are representative
of and the manager agent. Over the life time of a compu-
tation, each agent that participates in the process needs to
communicate frequently with grid management. Delegate
agents are representatives of those agents and they act as
addressees and coordinate the interaction, in order to min-
imize the heavy work load of the manager agent. As the
manager and the delegates communicate locally, communi-
cation overhead of the manager is reduced significantly. Two
types of delegate agents are created:

Client delegates: One is created for each connected client
agent to handle the coordination between grid management
and the client.

Worker delegates: One is created for each connected
worker agent. Delegate agents plan and organize task as-
signment, task result collection and handle monitoring issues
for their associated worker agent.

3.1.5 Tasks
In AGrid, a task is a set of computations designed to

solve a certain problem. Tasks can be highly specialized
and may require the target platform where they will be ex-
ecuted to carry certain attributes. During initial system
registration, each worker agent provides information about
its attributes, in the form of a description of its the compu-
tational features, to its delegate. The manager and delegate
agent cooperate to select the proper worker agent for the

task, according to the attributes requested. Actually, the
manager agent consults worker delegates not only to match
the requested features of a task with those of worker agents,
but also to locate capable worker agents whose schedule is
suitable to accept the task. The task runs its abstract “exe-
cute”method at the worker platform to which it is deployed.
AGrid supports every kind of computational task which can
be employed using the Java language. Tasks indicate the
attributes they require by an abstract “properties” method.
When the manager agent receives a task assignment request
through a client delegate agent, it checks the requested at-
tributes and matches the task with a suitable worker agent.
After a worker agent is assigned a task/group of tasks, it
executes each task via the execute method.

3.2 Protocols
Each agent in AGrid system must execute certain proto-

cols during its lifetime in the grid. These protocols define
the behaviour of the agent according to the role it carries in
the system. This section introduces these protocols.

3.2.1 Agent Connection Protocols
JADE framework assigns an identifier number (AID –

Agent Identifier) to each connected agent. Since the man-
ager agent needs to keep the record of all the agents in the
distributed environment, AID is inadequate for AGrid. The
manager agent needs to know the type and the properties of
each connected agent. Also, the manager agent has to de-
cide whether to allow an agent to connect to the system or
not. Therefore, a connection protocol for worker and client
agents is defined. There is no need to for a connection proto-
col for delegate agents, since they are automatically created
by the manager agent when any client or worker is connected
to system.

There are some minor differences between the connection
protocols of client and worker agents. Thus the protocols
will be presented separately for each.

3.2.2 Connection Protocol for Client Agents
Client agents connect to the system through the following

procedure:

• Client agent sends a “register message” to the manager
agent.

• Manager checks if the client has already connected to
the grid before. If the client is requesting to connect
for the first time, the manager creates a client delegate
agent for the client and pairs them. Otherwise, it runs
the reconnection protocol.

• The client delegate agent sends an “accepted message”
to the client agent which it represents.

• Client agent sends back an “info message” to its dele-
gate agent. The body of this message contains client
information.

• Consequently, the client agent is connected to system
and is ready to issue tasks.

Client agents can temporally disconnect after transmit-
ting a task execution request. The system allows clients to
reconnect later and receive the results.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

59

3.2.3 Connection Protocol for Worker Agents
Worker agents connect to the system with a very similar

protocol to the client agents’ protocol. However, the grid
system does not allow the workers to reconnect. The details
of the protocol are as follows:

• Worker sends a“register message”to the manager agent.

• Manager checks if the worker agent has connected to
the grid before. If the worker is trying to connect for
the first time, the manager creates a worker delegate
agent for the worker and pairs them. Otherwise, a dele-
gate already exists. Delegate sends“accepted message”
to the worker.

• Worker sends an “info message” to the delegate agent.

• Thus, the worker agent connects to the grid system
and is ready for task assignment and execution.

3.2.4 Task Assignment Protocol
Task assignment procedure and recovery from probable

errors are vital issues for grid systems. During the design
phase of AGrid, special care has been taken to develop an
effective and flexible task assignment protocol in order to
minimize runtime errors as much as possible. The details of
the protocol are as the following.

• A client agent reports its identification information
during the connection protocol. The “info message”
which it sends to its delegate contains tasks which are
to be processed in the grid.

• Each client delegate keeps track of tasks issued by its
client agent. It maintains two task lists: a list that
contains pending tasks and another that contains pre-
viously assigned and running tasks. Initially, all tasks
requested to be executed in the info message are added
to pending task list. Afterwards, tasks are moved to
the running tasks list after they are assigned to worker
agents.

• Client delegate agent checks the pending tasks list pe-
riodically and sends task assignment requests to the
manager agent.

• The manager agent consults worker delegates in or-
der to locate a free and suitable worker agent that
meets the requirements of the task. Worker delegate
accepts the request if the worker agent satisfies the
task requirements and is currently available, as it is
constantly informed about the status of the worker.
Otherwise, the request is rejected.

• If the manager can locate an appropriate worker, it
sends a “task execute request”message to the worker’s
delegate agent.

• The delegate agent forwards the request message to its
worker agent.

• Worker agent accepts the task and begins to execute
it.

• Worker delegate sends “confirm message” to the man-
ager agent.

• Worker delegate moves the task from pending tasks
list to running tasks list.

3.2.5 Monitoring Work Load of the Worker
One of the important parts of the task assignment is mon-

itoring the work load of the machines where worker agents
are located. Manager agent should assign tasks to non-busy
workers. Each worker agent measures its work load period-
ically. If the state of the worker changes, it informs its del-
egate agent. In the initial versions of the system, the man-
ager agent kept two separate lists for free and busy workers.
However, as this approach caused too many synchronization
problems, we decided to have each worker delegate to keep
track of the workload state of its worker agent, in the final
version.

3.2.6 Agent Disconnection Protocols
During the lifetime of the grid, client and worker agents

may be in either connected or disconnected state. For a
robust, stable grid system, the manager agent needs to be
aware of the states in which client and worker agents are.
It is clear that not noticing the disconnection of an agent
has a negative effect on the stability of the grid system. It
may result in the loss of some tasks or in the assignment of
tasks to worker agents that no longer exist. Consequently,
the grid system will have to run error recovery protocols.
Therefore, one of the responsibilities of the manager agent is
to detect disconnected agents. Hence, a flexible protocol for
disconnection is defined on account of increasing the stability
of the system.

As delegate agents are created and destroyed by the man-
ager agent itself, there is no need for a disconnection pro-
tocol for them. Disconnection protocols for the worker and
client agents are different. As stated in the connection proto-
col, while client agents can temporarily disconnect, a worker
agent’s disconnection is permanent. Agents periodically send
an “alive message” to their delegates in order to indicate
that they are still connected to the grid system. If a dele-
gate agent does not receive this type of a message from its
pair agent for a certain period of time, it decides that the
participant agent has quit the system. In the normal case,
a participant agent is expected to inform its delegate agent
about its disconnection by sending an“ disconnect message”.

3.2.7 Disconnection Protocol for Client Agents
Two disconnection protocols are defined for client agents;

one for temporary disconnection and one for permanent dis-
connection.

Temporary disconnection protocol is the following:

• A client delegate decides that the client agent has quit
the system because either the client has sent an “dis-
connect message” or an “alive message” has not been
received from the client for a certain period of time.

• Client delegate stops checking alive messages and waits
for a “reconnect message from the client agent.

A client agent may decide to permanently leave the system
before the computation it has requested completes. In this
case the following protocol is executed:

• A client agent sends a “quit message” to its delegate
agent.

• The delegate agent informs the manager agent about
the disconnection of the client agent.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

60

• The manager agent locates the delegate agents of the
workers which are running tasks on behalf of the quit-
ting client and informs them of the situation.

• Each worker delegate sends a message to its worker
agent, requesting it to stop task execution.

• Each worker agent terminates its task execution thread
and sends a “worker stopped” message to its delegate
agent.

• After receiving “worker stopped” messages from every
worker delegate, the manager agent destroys the client
delegate agent and deletes information records about
the client agent.

3.2.8 Reconnection Protocol for Client Agents
As stated before, a client agent may disconnect after sub-

mitting its tasks and, after a while, it may reconnect to
the system in order to receive the results. Even though
the reconnection protocol is very similar to the initial con-
nection protocol, there are some major differences between
them. In the reconnection protocol, the client agent does
not send identification information as this information is al-
ready present in the system. The corresponding protocol is
the following:

• Client agent sends “register message” to the manager
agent

• The manager agent checks if this agent has connected
to the system before.

• If the client has connected before, manager sends “ac-
cept reconnect message” to the delegate agent of the
client.

• Client delegate agent sends a message to the client
which indicates that its reconnection request has been
accepted.

• Client delegate sends the results of the completed tasks.

• Client delegate starts to wait for “alive messages”, that
are periodically sent by the client agent in order to
show that it is still connected to the system

• The client agent starts to wait for the result of its tasks.

4. TESTS AND ASSESSMENT
We have not yet carried out extensive experiments to ob-

serve and assess the performance of AGrid under various
workloads and with varying number of participating work-
ers. However, for a preliminary assessment, we have im-
plemented a parallel matrix multiplication algorithm. Since
multiplying an mXn matrix with an nXp matrix results in
an mXp matrix, mXp tasks are created to compute the re-
sultant matrix. We used 5X6 and 6X7 matrices for the test,
which required a total number of 35 tasks. We ran several
instances to observe the effect of the increasing number of
clients and workers. The minimum, maximum and average
calculation time were evaluated.

In the first test run, only one client was introduced and the
number of the workers were varied between 1 to 100. As seen
in the Figure 3, the working time decreases as the number of

Figure 3: Results of first test.

workers increases. After the number of the workers reaches
nearly 40, working time stays constant, as expected.

In the second test run, the number of workers were kept
constant while the number of the clients were increased. The
test results for 15 workers is given in the Figure 4. As the
number of clients increases, the number of the tasks also
increases. As seen in the figure, total working time for the
calculation increases as the number of independent tasks
increases.

Figure 4: Results of second test.

5. CONCLUSIONS
AGrid is an agent based infrastructure for distributed and

parallel computing. It combines the favorable aspects of
grid computing and agent technology, producing a robust
yet flexible execution environment. The system is imple-
mented on JADE and is fully FIPA compliant. Agents with
dedicated roles make up the framework. Client agents are
users of AGrid that connect to the grid system to receive
service. Worker agents connect to the system to share any
of their resources. AGrid has a centralized control, with a
manager agent in charge of general grid management. Dele-
gate agents cooperate with the manager agent, reducing its
workload significantly. Agent coordination and cooperation
through well designed protocols has resulted in a robust,
stable grid execution environment.

Even though experiments we have carried out to evaluate
the performance of the system are not yet adequate, the re-
sults are promising. We have observed that system response
time is within acceptable borders and the system is scalable,
capable of serving large numbers of clients.

Currently, work is going on to enhance the system, to spot
bottlenecks to optimize execution time. Our future work will

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

61

be on new protocols for dynamic load balancing to adapt to
changing computation needs and changing computing re-
source environments. It is a fact that large amounts of data
that accumulate on the manager agent may overload it, re-
sulting in inefficient scheduling of tasks. Currently, work is
continuing on a new version of task assignment policy, where
market based algorithms are employed. Auctions are held to
determine worker agents which can provide a requested ser-
vice. These algorithms are carried out by specialized agents,
thus decreasing the workload of the manager agent.

6. REFERENCES
[1] T. E. Athanaileas, N. D. Tselikas, G. V. Tsoulos, and

D. I. Kaklamani. An agent-based framework for
integrating mobility into grid services. In
MOBILWARE ’08: Proceedings of the 1st
international conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications,
pages 1–6, ICST, Brussels, Belgium, Belgium, 2007.
ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

[2] K. F. N. T. Bart Jacob, Michael Brown. Introduction
to Grid Computing. IBM Corp., Riverton, NJ, USA,
2005.

[3] F. R. L. Cicerre, E. R. M. Madeira, and L. E. Buzato.
Structured process execution middleware for grid
computing: Research articles. Concurr. Comput. :
Pract. Exper., 18(6):581–594, 2006.

[4] T. T. G. R. Fabio Bellifemine, Giovanni Caire. JADE
Programmer’s Guide. Telecom Italia S.p.A., 2007.

[5] FIPA. FIPA ACL Message Structure Specification.
Foundation for Intelligent Physical Agents, 2002.

[6] I. Foster, N. R. Jennings, and C. Kesselman. Brain
meets brawn: Why grid and agents need each other.
In AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 8–15, Washington, DC,
USA, 2004. IEEE Computer Society.

[7] M. Fukuda and D. Smith. Uwagents: A mobile agent
system optimized for grid computing. In GCA, pages
107–113, 2006.

[8] M. Li and M. Baker. The grid core technologies. John
Wiley & Sons, 2005.

[9] A. Poggi, M. Tomaiuolo, and P. Turci. Extending jade
for agent grid applications. In WETICE ’04:
Proceedings of the 13th IEEE International Workshops
on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 352–357, Washington,
DC, USA, 2004. IEEE Computer Society.

[10] O. W. Van, B. J. Overeinder, N. J. E. Wijngaards,
M. V. Steen, and F. M. T. Brazier. Multi-agent
support for internet-scale grid management. In
AISB’02 Symposium on AI and Grid Computing,
pages 18–22, 2002.

[11] M. Wooldridge. Agent-based software engineering.
Software Engineering. IEE Proceedings- [see also
Software, IEE Proceedings], 144(1):26–37, 1997.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

62

The Development of a Middleware Tool for
Extending a MAS to a Normative MAS

Farnaz Derakhshan
Electronic and Computer Eng.Dept,

University of Tabriz
29th Bahman St

Tabriz, Iran
+98 910 400 4125

derakhshan@tabrizu.ac.ir

ABSTRACT
Open multiagent systems typically require the participating agents
to comply with a set of regulations, or norms, and may punish
non-compliance. A remarkable challenge for designers of such
systems is how to provide discipline in multiagent systems. In this
paper, we present our novel and independent middleware tool
developed to enable a normative architecture to be overlaid on
any type of multiagent system. We achieve this by developing an
independent tool in a manner which obtains its inputs from a
normative knowledge base and events/actions of the multiagent
system, then provides run-time assignments of norms to agents.
To overlay development, we propose requirements of the system
to include a normative knowledge base containing explicit
representation of norms as conditional rules, where the conditions
for instantiation of a norm are various runtime occurrences, such
as the execution of some agent actions, or the occurrence of some
events. Using this normative knowledge base and catching all
actions and events in multiagent system, our middleware tool
establishes norms such that it can declare the agent’s permissions,
prohibitions and obligations activated based on runtime actions of
agents or even it can detect and report agent’s violent behaviours
immediately after taking place the violent actions.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artificial
Intelligence, and multiagent systems.

General Terms
Design, Experimentation, Legal Aspects.

Keywords
Multiagent Systems, Normative Multiagent Systems, Design,
Implementation, Development, Norms, Conditional Norms.

1. INTRODUCTION
Using notions from human social theory in multiagent systems
(MASs) is now well established and even appears in the basic
foundations of agent theory. Since norms play a very important
role in many social phenomena, there is an increasing interest in
using norms in MASs as well.

In [2, 3], the need for defining normative MASs is discussed from
two aspects. On the one hand, there are several social viewpoints
on MASs from the basic agent concepts such as coordination,
organization and communication to an artificial model of human
societies. On the other hand, in comparison with the use of norms
as a key issue in human social systems, it seems norms may be
necessary too for artificial agents in MASs that collaborate with
humans, or display human-like behaviors. A comprehensive
definition of normative MASs is defined in [4] by Boella.

Since the enforcement of norms applicable to agents is very
important task in theoretical viewpoint, we motivated to develop a
middleware tool providing normative structure over multiagent
system to realize the practical view as well. In essential we were
trying to find a way to extend typical MAS to a normative MAS.

In this paper, the development of a middleware tool is described.
This tool has been designed and implemented for those MASs
intended to establish and enforce norms in their system. The aim
of this implementation is to facilitate adding normative system to
a typical MAS without need to reengineering the MAS or making
any changes in design of the MAS. Using this tool over any
multiagent system, at any specific time, one can determine which
norms are applicable to each specific agent.

Following this introduction, we first explain the requirements of
the tool in more detail, followed by presenting our proposed
architecture in Section 2.4. Then, in Section 3, we describe the
development stages of the tool including design and
implementation of the tool. In Section 4, using an Auction
example as a typical MAS, we demonstrate the applicability and
feasibility of this tool. Then in Section 5, we explicate the main
features of this tool followed by a discussion of related work in
Section 6. Finally this paper ends with a summary and details of
our future work in Section 7.

2. The Requirements
In this section, the requirements of the tool considered in our
development are discussed. In the first stage, it was desired to
develop a tool can be attached to every MAS and provide the
regulative structure over it. This tool was designed absolutely
independent of the MAS connected to. This tool interacts with
MAS such that it obtains some required inputs from the MAS and
delivers its outputs to MAS.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

63

The type of norm implementation we consider for our desired
normative MAS is very important and effective in our design
criteria. Therefore, in this section, we first describe some main
issues with respect to norm categories and then distinguish our
choice.
In every normative MAS, it is desired to establish a set of norms
the system such that agents should follow them. Primarily, norms
in Normative MAS can be categorized in two types: protocol-
based and rule-based [10].
Protocol-based norms are related to all the necessary conventions
for agent interactions. This type of norm establishes the permitted
actions at each instant of time, considering the past actions of
agents. These protocols are statically designed at design time.
This fact means that the system designer defines all norms or
regulations of agents in the format of protocols at design time. So
at runtime agents simply follow the predefined dialogues of
protocols, moving from one state to another. In such a system,
agents do not have any autonomy to deviate from these system
norms.

Rule-based norms are defined by a certain type of first-order
formulae that set up a dependency relation between actions. These
norms specify that under certain conditions, new commitments
will be produced for agents to do some actions.

The rule-based norms are statically defined in the knowledge base
of the normative MAS, but the execution of the rule-based norms
for agents is a dynamic task which is executed at runtime. In the
normative knowledge base (KB), all obligations, permissions,
prohibitions and rights of agents are defined. At runtime, based on
the actions of the agents and the regulations in the KB, the system
detects that the action was acceptable or a violation occurs; if
there was a violation, then a sanction should be executed.

The type of normative system we are motivated to design is of the
rule-based one; because considering the rule-based norms in
normative MAS is more realistic in its norm treatment than the
protocol-based ones. In this case, we make no assumptions
regarding the decision making architecture of the agent in the
MAS. Agents have autonomy to may follow or violate the norms.
Thus, this tool requires firstly to have a knowledge base contains
all norms and enforcement norms; secondly, a rule base inference
engine to perform reasoning task.

As a result, next we describe normative knowledge base, and then
explain the inference engine we use in this tool. After that, we
describe events and actions of the MAS as a kind of inputs for our
proposed application.

2.1 Normative Knowledge Base
One of the main elements of this tool is a normative knowledge
base. The normative KB stores all the norms in the normative
multi-agent system. Using a descriptive normative language all
norms associated with roles can be formally defined. In [5] , we
proposed a normative language in which we addressed different
types of norms found in legal systems including various types of
legal modalities [13] such as obligation, prohibition, permission
and right; enforcement modalities [15, 16] such as punishment,
reward and compensation; and several key elements of norms
such as addressee [13], beneficiary [12], temporal notions such as

currency and deadlines [13, 16], and preconditions activating
norms [16] that we will describe them in Section 3.1.6..
In addition to these norms, this tool must insert additional
processes to manipulate dynamic tasks in runtime, that we will
describe them in Section 3.1.6.

2.2 Using Jess
For performing reasoning tasks in this architecture we use the Jess
rule engine [8]. Jess is a java-based rule engine and its java APIs
can be simply used in java applications as well. This rule base
engine is used by a variety of users in many different application
domains.

Similar to other typical rule-based systems, Jess has three main
components [9]: a rule base (or Jess knowledge base), a fact base
(or working memory) and an inference engine. The rule base
contains all the norms the system knows. The contents of this rule
base are stored in a format that the inference engine can work
with. The fact base contains information which the inference
engine will operate on. Whenever the inference engine is invoked,
it has to decide what rules can be fired based on the rule base and
the fact base; such that if the existing facts in fact base satisfy the
conditions of rules in the rule base, those rules are fired. Once the
inference engine decides what rules are to be fired, it has to
execute the actions of those selected rules.
The role of Jess in our method can be explained as follows: our
approach provides a Jess rule base, a Jess fact base and the
invocation command for executing Jess inference engine. The rule
base is supplied by our normative KB and created by the
legislator or the normative system designer. The contents of the
fact base are the facts of runtime occurrences which are dynamic
and frequently updated in runtime. In our approach, after
occurrence of each change (followed by asserting the change to
the fact base), the inference engine will be invoked by executing
run () command in order to perform a reasoning task.
After running Jess, Jess may return some new results; such as a
list of recently fired norms. The recently fired norms are new
facts which should be caught and analyzed in our approach.

2.3 Events and Actions
As we mentioned, this tool is connected to a MAS in order to
validate agent’s behaviors to be according to law on the basis of
predefined normative knowledge base. To do so, our tool requires
obtaining all important changes in the MAS. When a change in
the MAS occurs we say that a Runtime Occurrence takes place.
Here, we categorize the following types of runtime occurrences in
a typical MAS as follows:

 variations in the agent population as agents enter or
leave the system;

 the occurrence of actions performed by agents and other
system events;

 changes in environmental parameters, such as price;
 the achievement of important times.

As the result of a runtime occurrence, the conditions for one or
more norms of the normative KB may become satisfied, and so
rights, responsibilities and sanctions need to be assigned to one or
more agents. Therefore, we can use the runtime occurrences as

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

64

the triggers to instantiate a dynamic assignment or re-assignment
of normative consequences to agents in a system. For example:

Norm1: “The Auctioneer is obliged to reject lower bids, during
the auction session.”
Norm2: “During the auction session, if a lower bid is placed and
Auctioneer did not reject it, punishment_ 2 will be applied to the
Auctioneer.”

According to Norm1, the obligation is activated and assigned to
the Auctioneer agent only during the auction session. Norm2
shows that if auctioneer agent violates, s/he will be punished. So
if the condition of this norm is satisfied it will be activated and
assigned to the Auctioneer. As a result, the activation and
deactivation of the above norms is subject to the conditions of
time (during the auction), event (place a lower bid) and action
(rejection of bid). Thus the activation and deactivation of each
specific norm happens dynamically at runtime. So assigning each
activated norm to the relevant agent will be a dynamic task too.

2.4 Architecture
Using the above requirements, we present a general architecture
for implementation of our tool. The full description of this
architecture can be found in [5]. Using this architecture, it is
possible to implement a stand alone tool over a MAS intended to
facilitate transforming MAS to normative MAS.

This architecture along with the issues we have already mentioned
for defining roles and normative KBs provides the complete
picture for design and implementation of these techniques for
such assignments. This implementation is independent of the
design of MAS and can be implemented over a pre-developed
MAS to provide this facility.

3. The Development of a Middleware Tool
In this section, we explain the development stages of this tool
including analysis and design through to implementation. This
tool is not application-specific, but is generic, and so may be
incorporated into any MAS which intended to be normative MAS.

First, we explain the analysis stage along with the description of
the functionality, inputs and outputs of this tool. Next, we
describe the design, followed by the implementation of the tool.

3.1 Analysis and Design
This tool is implemented based on general architecture along with
the creation of a normative KB. Here we explain the general
functionality of the tool, specify inputs and outputs of the tool and
design issues including tool’s entities, normative KB, event/action
simulator, timer and user interface.

3.1.1 The functionality of the tool
The main work of this tool is started at runtime. This tool is
connected to a MAS and obtains all events and actions
dynamically as they occur, such as entry and exit of agents, the
actions agents undertake and any environmental events. For each
of these runtime occurrences the following tasks are undertaken,
in a continuous cycle:

 Our tool first asserts this event as a new fact in the Jess
fact base, then, activates Jess to perform reasoning task.
The Jess inference engine undertakes the reasoning task
using the rule base (the normative KB) and fact base.

 Next, this tool collects the results of Jess reasoning and
analysis of these data. The result of this analysis would
be a set of new assigned norms to controller agents of
the MAS or a set of new assigned norms to agents.

 Then the collected results are reported to the MAS.

3.1.2 Inputs and Outputs of the Tool
Using the above description of the functionality of the
middleware tool, identifying the inputs and outputs of the tool is
very straightforward. One of the main inputs of the tool is the
normative KB including the main rules describing all obligations,
prohibitions, permissions, and rights of agents along with the
temporal functions and also enforcement of norms including
punishment, reward and compensation. This input is provided by
normative designer or the legislator of the normative system.

Figure 1- The General Architecture

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

65

The other inputs are the runtime occurrences which includes
events, actions, and time. Runtime events and actions can be
provided by the Event/Action Handler component of the MAS.
For time inputs, the system needs timers for announcing the
important times (detected inside the application); so the
application needs to use the system’s clock to provide such inputs.
This tool has two types of outputs: the first one is the result of
dynamic assignment of rights, responsibilities and sanctions to
agents of the MAS which at each instant of time presents what
rights and/or responsibilities have recently been allocated to each
agent.
The other output is the enforcement instructions for controller
agents of the MAS. As mentioned, our rule base contains
enforcement norms. When the tool executes norms of the system,
the enforcement norms will be fired as well. These enforcement
norms contain punishments, compensations, or rewards, all of
which should be enforced by controller agents of the MAS over
agents. In our application, every punishment, compensation or
reward norm has an instruction code for controller agents. Based
on this code, the controller agent can execute the related
instruction for punishment, compensation or reward.

3.1.3 Design of Tool Entities
After identification of the functionality of the tool and the inputs
and outputs of that, we now present the design of the application
based on the analysis just presented. Diagrams of the software
engineering design, including a use case diagram, an activity
diagram and a class diagram, are presented with detailed
descriptions for each diagram in [5].

3.1.4 Design of Normative Knowledge Base
The creation of the normative KB is a design task and the
normative KB should be created by the system designer at design
time. Then, this KB will be used as an input of the tool.
The normative KB contains all the main norms and the
enforcement norms. Norms specify which role is obliged to/or
prohibited from/or permitted to/or has the right to do which
actions. Enforcement norms of the normative KB specify the
responses of the normative MAS if the desired action has not been
executed by the agents who play a role.
In addition to norms and enforcement norms, this tool must insert
additional processes (in norm format) to manipulate dynamic
tasks in runtime.
In the following, first we outline two important issues for
designing of the normative knowledge base: The type of
normative KB and the descriptive normative language of KB.

3.1.5 The Type of the Normative KB
In our general architecture, we do not limit the designer to use
any special type of knowledge base for creating a normative
knowledge base. The important concern is that this normative
knowledge base is used by an inference engine, so the type of KB
should be compatible with that inference engine. If the type of
knowledge base is not compatible with the inference engine, a
translator should be used to translate the KB to the language of
the inference engine. In our architecture we also anticipate such a
translator or transformer.

The inference engine we use in our general architecture is Jess
rule engine [8]. To avoid translation stage, we create our KB
based on Jess rule language and all examples in the following are
also in Jess language.

3.1.6 Defining Norms in Normative KB
For describing norms, a normative knowledge base should be
created based on a descriptive normative language. The
descriptive normative language contains the primary elements of
main norms and enforcement norms. We explained our
descriptive normative language in detail, in [5], followed by a
presentation of a formalism for such a language.
The definition of templates is one of the main features of the Jess
rule base language. Therefore, here, we also define a Jess
template for “norm” and “enforcement norm” comprising all the
above elements of our formalism. The slots of this template are
based on the key elements of main norms and enforcement norms.
In the following, we defined Jess templates for “norm” and
“enforcement norm” in our normative KB:
(deftemplate norm (multislot status) (slot deoMode) (slot act) (slot
addressee) (slot benef) (multislot object) (slot timeMode)
(multislot time))
(deftemplate enforcementNorm (slot status)(slot addressee)(slot
EnfCode))
We categorize norms of the normative KB in two types: domain-
related rules and general rules. Domain-related rules (including
norms and enforcement norms) are the norms specifically defined
for the application domain. These norms should be defined by the
legislator or the system designer. For instance, the following rule
shows an example of domain-related norm created by a legislator
for auction domain. This rule says “If seller advertises an item,
Seller is not allowed to place a Bid during the Auction Time
(between Start and End Time)”. In addition, the legislator of a
normative KB is also responsible for defining reaction norms of
the normative system. We defined a template for reaction norms
as enforcementNorm. Such reaction norms determine that the
system has anticipated what punishment or compensation for the
case of violations, or what reward has been considered, for
enactment of the various norms.
ER1 listed in Section 4.1 is an example of an enforcement norm
which is defined by the legislator of the system. This rule says “If
the obligation of the act of placeHigherBid is violated, the
addressee is punished by P1”. P1 is an instruction code which
should be run by internal agents of the multiagent system.
General rules are some norms which can be used in the normative
KB of every model intended to use our tool. The definition of
these general rules is one of the main features of our approach.
General rules include a set of necessary rules for execution of
commands. These rules are general and are not specific to an
application. These general rules are automatically added to the
normative KB by our tool at system runtime.
A number of of general rules are responsible for the modification
of the status of the norms. This task is performed by, the
command mode of norms in the formalization of normative
commands (we defined in [5]) such that CommandMode ∈
{ToBeActivated, Activated, Deactivated, Fulfilled, Violated}
Then, in the template of norms, we considered a slot named
“status” slot to represent this mode. The status of a norm is

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

66

changed at runtime when such modifications of modes are
provided by our general rules. The modification of modes can be
summarized as follows:

ToBeACTIVATED→ ACTIVATED

ACTIVATED → DEACTIVATED FULFILLED

ACTIVATED → DEACTIVATED VIOLATED
For instance, the following rule shows a general rule.
(defrule statusChangeForObligationNorm
 ?eventFact<-(event (act ?x)(actor ?y)(AtTime ?t))
 ?normFact<-(norm (status ACTIVATED)(deoMode Obl)(act
?x)(addressee ?y))
=> (duplicate ?normFact (status DEACTIVATED FULFILLED)
 (timeMode AtTime) (time ?t)) (retract ?normFact))
This norm detects when any obligation action is not fulfilled by
the deadline. So if an obligation norm satisfies the status of the
activated norm it should be deactivated and labeled as fulfilled.
The description of this norm states that if an event occurs (such
that actor “y” does the act “x” at time “t”) and this event
matches an activated norm (which says actor “y” is obliged to do
act “x”), it means that the norm is fulfilled and the status of the
norm should be changed to DEACTIVATED mode and labeled as
FULFILLED at the time immediately after occurrence of the
event.

3.1.7 Design of the Simulator of Event/Action
Handler
One of the main inputs of the system is events and actions which
occur in the MAS at runtime. In order to focus on the normative
part of the system, we have simply simulated these inputs, using a
class called the InputSimulator class which generates
events/actions for the system as if they were runtime occurrences
in a real MAS such as auction system.

Recording the Time of Events: As we use a simulator to
simulate occurrences of events and actions, when the occurred
event/action is asserted to the Jess fact base, the time of
occurrence is also added to the fact to show at what exact time the
event/action happened. Later, the At(t) function will be described
in order to represent the time of occurrence of the time.

These events/actions are passed to the tool with the format of
“event” template as follows:

(deftemplate event (slot act)(slot actor)(slot
forPerson)(multislot object)(slot AtTime))

3.1.8 Design of Timer
Time is another important issue in this tool. As mentioned before,
norms are mostly time-related and they contain the notion of
times using the temporal functions such as before(t), after(t) and
between(t1,t2) according to the grammar of the full normative
language. In addition to these three functions there is another
implicit time notion for the time of occurrences of event. As we
use an event simulator, we add another function, namely At (t),
showing the time of event/action occurrence.
When a norm is activated, the values of time functions indicate
the important times for the status of the norm. Such an important

time may be a start time for activation of an obligation,
prohibition, permission or right. Or it may be a deadline for an
activated norm and after that time norm should be deactivated.
For recording of time and date and their management, we use a
timestamping method. “A timestamp is a sequence of characters,
denoting the date and/or time at which a certain event occurred.”
[7]. Using a timestamp allows for easy comparison of different
records and tracking progress over time.
The format of our timestamps is based on the IETF standard date
syntax recognized by java.util.Date and also used by the Jess
language for timestamps. The source of time for this standard is
12:00 AM on 1/Jan/1970 and contains both time and date.
In general, the process of time management in this tool has the
following stages:

1. Events are recorded into the fact base at the time of
occurrences with a timestamp.

2. This timestamp is kept in the timer list of the application.
The timer notices whenever the current system time matches the
timestamp, when the current time (notified by timer), will be
asserted to Jess fact base. The format of current time has been
defined as “currentTime” template as follows:

(deftemplate currentTime (slot value))

3. The Jess inference engine will be activated by asserting
the current time, then the facts related to the current time will be
activated.

3.1.9 Design of User Interface
This tool has very simple user interface. For every agent that has
joined to the system, the tool creates a frame. Then all the
assignments of rights and responsibilities, of norms and
assignment of sanctions relevant to this agent, are dynamically
reported in the output frame. Whenever an agent leaves the
system the associated frame will be apparently destroyed.

3.2 Implementation
In the development process, the subsequent stage after analysis
and design is implementation and testing. In this section, we
provide some general description for implementation of this
middleware tool.
Technically, we built this application using the Java language.
The development environment we used for this middleware tool
was NetBeans IDE version 6.1. We selected Java because our
application is required to connect to any MAS and Java has the
capability of compatibility for such a connection. Moreover, the
inference engine we used for performing the task of reasoning
was the Jess Rule Engine which is based on Java and its Java
APIs can be simply imported and applied in any Java program, as
we used.
One of the other features of this implementation is we used a
simple function for translating assigned norms (which are the
outputs) to natural language. This feature is very helpful because
understanding the natural language format of outputs is much
easier than the Jess format of them.
Java source of this application is available in [5].

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

67

4. Auction: A Case Study
In order to test our application, we used a realistic auction
example for testing this tool, which works fine. However, in this
Section, we just limit this example to the Buy section of auction.
For testing, we should provide some inputs for application and
then obtain the outputs of the application. As mentioned before,
the inputs of this tool are the normative KB rule base of the
system designed by the legislator, and the runtime occurrences
provided by MAS. We also simulate runtime occurrences (as the
inputs from the MAS) and launch these inputs to the application
for obtaining the outputs of our application which are the results
of dynamic assignment of rights, responsibilities and sanctions to
agents of the MAS.
However, before trying inputs and observing outputs, we provide
the list of some norms relevant to Buy section of an auction
system; we provide a scenario in which a number of different
occurrences in the auction at runtime will happen

4.1 Normative KB for Auction
In order to define the normative knowledge base of this part of
auction system, we follow the instruction mentioned in Section
 3.1.4. We define the following norms as regulations for
purchasing items in our auction. The following norms are either
domain-related rules of the normative KB (in which R indicates
norms and ER indicates enforcement norms) or general rules
indicated by GR.

;R1: Buyer is permitted to place a Bid between Start & End Time.
(defrule placingBidPermission
 ?roleFact <-(role (roleTitle buyer)(agentName ?x)(AtTime ?time))
 ?sFact<-(auctionStartTime (value ?startTime))
 (test (> ?time ?startTime))
 => (assert (norm (status ACTIVATED) (deoMode Prm)
 (act placeBid) (addressee ?x)(timeMode BETWEEN)
 (time ?startTime (getEndTime ?startTime)))))

;R2: If Buyer places a bid, s/he is obliged to place higher bid.
(defrule placingHigherBidObligation
 ?roleFact<-(role (roleTitle buyer)(agentName ?x)(AtTime ?time))
 ?sFact<-(auctionStartTime (value ?startTime))
 ?normFact<-(norm (status ACTIVATED)(deoMode Prm)
 (act placeBid)(addressee ?x))
 ?event <-(event (act placeBid)(actor ?x)
 (object ?item ?auction)(AtTime ?time))
 => (assert (norm (status ACTIVATED) (deoMode Obl)
 (act placeHigherBid) (addressee ?x)
 (object ?item ?auction)(timeMode BETWEEN)
 (time ?time (getEndTime ?startTime)))))

;R3: If Buyer places a Bid, and the bid is a higher bid, the act of
placehigherBidder is fulfilled.
(defrule placingBid
 ?roleFact <-(role (roleTitle buyer)(agentName ?x))
 ?event <-(event (act placeHigherBid)(actor ?x)
 (object ?item ?auction)(AtTime ?time))
 =>(assert (norm (status FULFILLED) (deoMode Obl)
 (act placeHigherBid) (addressee ?x)
 (object ?item ?auction ?bid)(timeMode AtTime)(time ?time))))

;R4: If Buyer places a Lower Bid, Buyer has a punishment
:decrease the feedback number.
 (defrule placingHigherBidObligation

 ?roleFact <-(role (roleTitle buyer)(agentName ?x))
 ?event <-(event (act placeLowerBid)(actor ?x)
 (object ?item ?auction ?bid)(AtTime ?time))
 => (assert (norm (status VIOLATED) (deoMode Obl)
 (act placeHigherBid)(addressee ?x)(object ?item ?auction ?bid)
 (timeMode AtTime)(time ?time))))

;R5: If buyer wins the auction Seller has the right to receive the
money from the Buyer.
 (defrule receivePaymentRightAndPaymentObligation
 ?roleFact1 <-(role (roleTitle seller)(agentName ?s))
 ?roleFact2 <-(role (roleTitle buyer)(agentName ?b))
 ?sFact<-(auctionStartTime (value ?startTime))
 ?event <-(event (act win)(actor ?b)
 (object ?item ?auction ?price)(AtTime ?time))
 => (assert (norm (status ACTIVATED) (deoMode Right)
 (act recievePayment) (addressee ?s)(benef ?b)
 (object ?item ?auction ?price)(timeMode BEFORE)
 (time (getPaymentDueTime ?startTime))))
 (assert (norm (status ACTIVATED) (deoMode Obl)
 (act pay)(addressee ?b)(benef ?s)
 (object ?item ?auction ?price) (timeMode BEFORE)
 (time (getPaymentDueTime ?startTime)))))

;R6: If buyer pays the price, buyer has the right to get the item.
(defrule getItemRight
 ?roleFact1 <-(role (roleTitle seller)(agentName ?s))
 ?roleFact2 <-(role (roleTitle buyer)(agentName ?b))
 ?sFact<-(auctionStartTime (value ?startTime))
 ?event <-(event (act pay)(actor ?b)(forPerson ?s)
 (object ?item ?auction ?price)(AtTime ?time))
 => (assert (norm (status ACTIVATED) (deoMode Right)
 (act getItem) (addressee ?b) (benef ?s)
 (object ?item ?auction ?price) (timeMode BEFORE)
 (time (getSendingDueTime ?time)))))

;ER1: the punishment for wrong bids
(defrule wrongBidPunishment
 ?normFact<-(norm (status VIOLATED)
 (deoMode Obl)(act placeHigherBid)(addressee ?x))
 =>(assert (enforcementNorm (status PUNISHMENT)
 (addressee ?x)
 (EnfCode P1:toDecreaseFeedbackValueOfBuyer)))
 (assert (enforcementNorm (status EXECUTE) (addressee ?x)
 (EnfCode P1))))
;ER2: If buyer has feedbacks=-3, Buyer is forbidden to join to
the auction.
 (defrule agentJointprohibition
 ?feedbackFact<-(feedback (actor ?x)(value -3)(AtTime ?time))
 =>(assert(norm (status ACTIVATED) (deoMode Frb)
 (act auctionJoint) (addressee ?x)(timeMode AFTER)
 (time ?time)))
 (assert (enforcementNorm (status EXECUTE)
 (addressee ?x) (EnfCode barredMember))))

;GR1: General rule for fulfillment of a permission norm.
(defrule statusChangeForPermissionNorm
 ?eventFact<-(event (act ?x)(actor ?y)
 (object ?z ?p ?q)(AtTime ?t))
 ?normFact<-(norm (status ACTIVATED)(deoMode Prm)
 (act ?x)(addressee ?y)(object ?z ?p ?q))
 =>(assert (status FULFILLED)(deoMode Prm)
 (act ?x)(addressee ?y)(object ?z ?p ?q)
 (timeMode AtTime)(time ?t)))

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

68

4.2 Scenario
Here we present a scenario of different runtime occurrences in our
auction system. The scenario of this auction is as follows: We
suppose that Sarah is Seller and Mari logs into the system as
Buyer. As an example of environmental variables, we suppose
every member has a Feedback variable. We initialize feedbacks of
members as : hasFeedback(Sarah,0), hasFeedback(Mari,-2).
As an identification of the auction, the name of the auction is
Auction_1, and the item for the auction is Gold Watch. The
starting and ending time of the auction is “10:00:00 2/1/2008”
and “11:00:00 2/1/2008”respectively. The current Bid is 25GBP.

4.3 Runtime Occurrences and Outputs
Using the above scenario, here we show the result of testing our
tool assuming a number of events and actions occurred in the
auction MAS. These runtime occurrences along with our defined
normative knowledge base are the inputs of our tool. After taking
place of each runtime occurrence, our tool provides an output.
Now we suppose that Mari joins the auction system and chooses
to be a buyer. At this stage, this tool creates a frame for Mari to
show the result of norm assignments to Mari. Here we assume the
following actions or events happen:

An Action: Mari places a bid at “10:20:10 2/1/2008”.
Mari places a bid by pressing the bid button in the auction web
page and MAS reports this event to our tool as follows:
event (act placeBid) (actor Mari)(object GoldWatch Auction_1)
As a result of this occurrence, GR1 and R2 are fired.

An Action: Mari places a lower bid at “10:21:24 2/1/2008”.
Suppose that this event happens and the MAS reports the
following role assignment to our application:
event (act placeLowerBid)(actor Mari)(object GoldWatch
Auction_1 22GBP)
As the result of this occurrence, R4 and ER1 will be fired: The
rule R4 shows that a violation occurred, as it changes the status of
the rule to VIOLATED. Then rule ER1 specifies the punishment
for the person placed lower bid by a code. When this norm is
fires, NormAnalyzer detects “EXECUTE” and commands to
Enforcer for executing. Enforcer passes the code (here P1) of this
internal command to the relevant controller agent of the MAS.
This code has already been defined for controller agents. In this
rule P1 is decreasing the number of feedbacks of the violator
agent. As the following snapshot shows the dynamic assignment
of sanction to Mari is assigning P1:
decreaseFeedbackValueOfBuyer.

An Environmental Event: Enforcer increases the Neg.
feedback of Mari at 10:22 2/1/2008.
According to the previous punishment, the value of Mari’s
feedback has been changed. MAS reports this change to our tool
as: feedback (actor Mari)(value -3)

When this environmental event reports to our application, ER2
will be activated. This norm specifies that whenever the number
of feedback of an agent is -3, it is forbidden for that agent to join
to the auction anymore and the name of this agent will be added
to the list of barredMembers. Subsequently, controller agents will
check the legality of agents as they try to login to the system.

As this snapshot shows, Mari is forbidden to join to the auction
after her feedback value reaches to -3.

5. Evaluation of the Tool
Here, we complete the discussion of development stages of this
tool with an evaluation of it. The main features and potentials of
this tool can be summarized as follows:

First, using this tool reduces the cost of reengineering of a MAS
which intended to be normative one. In this case, the MAS can
establish a set of regulations with less effort.
Second, this tool is generic, not an application-specific, and so
may be incorporated into any multi-agent. It just has interaction to
Action/Event Handler of the MAS to provide its required inputs.

Third, from normative viewpoint, this tool covers all aspects of
norms (including obligation, permission and prohibition) and
enforcement norms (including rewards, punishments and
compensations), because the formalism and the normative
structure we used in our normative knowledge base are very
comprehensive.

Finally, from technical viewpoint, this tool works in a dynamic
environment and the enforcement of norms to agents is
undertaken dynamically at runtime, not statically at design time.
Therefore, this feature makes our application to be well-suited for
MASs with open and dynamic environments.

6. Related Work
The working group of IIIA[11] presented an integrated
environment called Electronic Institutions Integrated
Development Environment (EIDE) to support the engineering of
MAS as electronic institutions [1, 14]. The part of this integrated
environment most related to our work is the EI’s management of
external agents. In EIDE, external agents do not participate
directly in an electronic institution. Instead, all their interactions
are mediated by a tool called AMELI [6] through a special type of
internal agent called a governor. The governors are part of the
social layer of EI and manage the communication of an agent with
the other agents in the e-institution. Agents communicate to their
governors. Governors check the messages sent by agents within
the scenes. If messages are correct and according to the institution
specifications, governors transmit them to the addressed agents in
the scene, otherwise agent messages are not transmitted.
From a practical point of view, EI has not developed rule-based
norms at the application level, although the formalism of these
norms has been proposed.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

69

In comparison, we practically developed the formalism (including
many kinds of legal modalities of norms such as obligations,
prohibitions and permissions) in our proposed application, while
so far EI applications have not covered all legal modalities.
Moreover, our implemented norms are enforced by the
application and in the case of violation will be decided based on
the rules predefined by legislator, while enforcement mechanisms
have not been implemented in EIs yet.

7. Summary and Future Work
This work deals with the development of a tool over a MAS
intended to enforce normative system. To do so, we considered
requirements of implementation, followed by presentation of a
general architecture. Because of the importance of the normative
knowledge base in this technique, we analyzed the structure of
such a KB which contains norms and enforcement norms.
Finally, using these implementation issues, we develop a generic
application to demonstrate the practical feasibility of our
approach and architecture. With this perspective, using an auction
example we examined the functionality of this tool.
Here, we mention some of the potential future research avenues
which it would be interesting to investigate. First of all, the
integration of our approach for dynamic assignment of norms and
sanctions to agents with AOSE methodologies could be a valuable
effort, because our proposed mechanism helps the management of
the MAS, speeds up the dialogues, enforces norms, and reduces
the need for a system designer to identify and exclude all
behaviors at design time. Currently, no standard AOSE
methodologies has this feature.
Secondly, our tools could also be integrated with reputation
systems, such as those used on eBay. Currently, eBay has a static
system for applying its regulations. Regulations of this auction
system are based on predefined protocols or are controlled by its
human resources staff to detect violations. These regulations are
not assigned dynamically to the buyers or sellers, even when a
violation occurs.
As an example, shill bidding -or placing a bid by a seller on their
own item directly or through others- is prohibited in eBay.
Currently if a seller uses shill bidding, this violation is not
detected at runtime and the auction may be continued normally.
However, it is possible that eBay staff detects this violation after a
while and suspend the account of the seller. So this example
shows that assignment of norms in this case - detection of
violation - is not a dynamic task in eBay.
As a result, our application would be useful for such repetitive
systems to assign rights, responsibilities and sanctions to agents
dynamically, for instance, in shill bidding cases.

8. ACKNOWLEDGMENTS
I would like to thank Dr Peter McBurney and Professor Trevor
Bench-Capon for their valuable guidance in this research.

9. REFERENCES
[1] J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodr´ıguez-Aguilar

and C. Sierra, Engineering Open Environments with
Electronic Institutions, Engineering Applications of
Artificial Intelligence 18, (2005), 191-204.

[2] G. Boella, R. Damiano, J. Hulstijn and L. v. d. Torre, Role-
based Semantics for Agent Communication: Embedding of
the 'Mental Attitudes' and 'Social Commitments' Semantics,
The 5th Int. AAMAS 2006, ACM Press New York, NY,
USA Hakodate, Japan, (2006), 688 - 690.

[3] G. Boella, L. van der Torre and H. Verhagen, Introduction to
normative multiagent systems, NorMas Symposium at
AISB'05,Hatfield, England, (2005).

[4] G. Boella, H. Verhagen, and L. van der Torre. Introduction
to the special issue on normative multi-agent systems.
Journal of Autonomous Agents and Multi Agent Systems,
17(1):1–10, 2008.

[5] F. Derakhshan, 'The Implementation of Dynamic
Assignment of Rights, Responsibilities and Sanctions to
External Agents in Normative Multiagent Systems ', (PhD
Thesis, University of Liverpool), (2008),
http://www.csc.liv.ac.uk/research/techreports.

[6] M. Esteva, B. Rosell, J. A. R. guez-Aguilar and J. L. Arcos,
AMELI: An Agent-Based Middleware for Electronic
Institutions, The 3rd Int. Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004) , IEEE Computer
Society,New York, NY, USA, (2004), 236-243.

[7] FIPA. Foundation for Intelligent Physical Agents (ACL).
1995 2008 [cited Sept 2008]; http://www.fipa.org.

[8] E. Friedman-Hill, Jess in Action: Rule-Based Systems in
Java, Manning, (2003).

[9] E. Friedman-Hill, "What are rule-based systems?" Jess in
Action: Rule-Based Systems in Java, Manning, (2003).

[10] A. García-Camino, Pablo Noriega and J. A. Rodríguez-
Aguilar, Implementing norms in electronic institutions, 4rd
Int. Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), ACM 2005,Utrecht, The
Netherlands, (2005), 667-673.

[11] E. I. Group. Electronic Institutions. 2008 [cited Sept 2008];
Available from: http://e-institutions.iiia.csic.es.

[12] H. Herrestad and C. Krogh, "Obligations directed from
bearers to counterparts ", Proceedings of Int. conference on
Artificial intelligence and law table of contents, Publisher
ACM New York, USA, (1995), 210 - 218.

[13] R. W. V. Kralingen, P. R. S. Visser, T. J. M. Bench---Capon,
H. J. V. D. Herik and A principled approach to developing
legal knowledge systems, Int. Journal of Human-Computer
Studies archive, 51, (1999), no. 6, 1127-1154.

[14] C. Sierra, J. A. Rodrguez-Aguilar, P. Noriega, M. Esteva and
J. L. Arcos, Engineering Multi-agent Systems as Electronic
Institutions, European Journal for the Informatics
Professional, 4, (2004).

[15] G. Therborn, Back to Norms! on the Scope and Dynamics of
Norms and Normative Action, Current Sociology, 50,
(2002), 863-880.

[16] J. Vázquez-Salceda, H. Aldewereld and F. Dignum, Norms
in Multiagent Systems: from Theory to Practice, Int. Journal
of Computer Systems Science & Engineering, CRL
publishing, 20, (2005), 225-236.

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

70

Author Index

Aiello, Francesco 10

Bellifemine, Fabio Luigi 10
Bot́ıa, Juan . 34
Botti, Vicent . 18
Burdalo, Luis . 42
Burkhardt, Michael 50

Caballero, Alberto 34
Cantu, Francisco 26
Ceballos, Hector G. 26

Derakhshan, Farnaz 63

Erdogan, Nadia 57
Espinosa, Agust́ın 18

Fortino, Giancarlo10

Garcia-Fornes, Ana 18, 42
Gravina, Raffaele 10
Guerrieri, Antonio 10
Gumus, Uygar . 57

Julian, Vicente . 42

Kaiser, Silvan . 50
Karlapalem, Kamalakar 2

Noriega, Pablo . 26

Sethia, Prashant 2
Skarmeta, Antonio 34
Such, Jose M. 18

Terrasa, Andres 42
Tonn, Jakob . 50

Danny Weyns . 1

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

71

