
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 12

Agent-based Technologies and 
applications for enterprise

interOPerability

ATOP 2010

   

  



 



Proceedings of the 4th ATOP Workshop

Agent-based Technologies
and Applications for
Enterprise Interoperability

AAMAS Workshop, 10 May 2010

Editors:

Jörg P. Müller

Klaus Fischer

Renato Levy





Preface

Today’s enterprises must adapt their business processes to work in open set-
tings, such as online marketplaces and, more generally, the Web, where business
relationships exhibit a high degree of dynamism. Moreover, open settings are
characterized by the autonomy and heterogeneity of the enterprises. In such set-
tings, interoperability of / between the information systems that support and
automate business processes and applications is a key concern: how do we en-
sure that diverse enterprises can work together towards a mutually desirable
end? Interoperability problems occur at different levels: at the business level
(how organizations do business together, what needs to be described and how?),
at the knowledge level (different formats, schemas, and ontologies), and at the
infrastructure level (the underlying information and communication technologies
and systems). Agents, Model-Driven Architecture (MDA), and Service-Oriented
Architecture (SOA) are complementary approaches to addressing the enterprise
interoperability problem.

Agent technologies provide a cross-cutting approach promising to enable in-
telligent and proactive automation, adaptive planning and execution, decentral-
ized coordination, and semantic interoperability. Agents enable dynamic collab-
oration and orchestration in changing and unpredictable situations. MDA sup-
ports interoperability due to its promise of providing consistent models at dif-
ferent abstraction layers with well-defined mappings in between these layers and
provides mechanisms that generate artifacts for different platforms. SOA tries to
reach interoperability, focusing upon, but not restricted to, the information and
communication technology (ICT) level. It provides late-binding interoperability
between business process requirements and providers of service implementations
which results in loose coupling among software entities representing business
objects (processes, organizational units, etc.).

The workshop focuses on technologies that support interoperability in net-
worked organizations, on successful applications of these technologies, and on
lessons learned. The main goal is to stimulate a discussion on in how far agent
technologies can support interoperability in this context and to compare cur-
rent trends in the development of agent technologies with recent developments
in service-oriented and model-driven system design with respect to their ability
to solve interoperability problems. Regarding model-driven system design the
presentation and discussion of metamodels of the underlying technologies like
for example agent technologies and service-oriented architectures is especially of
interest.

Jörg P. Müller
Klaus Fischer
Renato Levy

Toronto, May 2010



Workshop Chairs

Jörg P. Müller TU Clausthal, Germany
Klaus Fischer DFKI, Germany
Renato Levy Intelligent Automation Inc., USA

Program Committee

Sahin Albayrak TU Berlin, Germany
Bernhard Bauer University Augsburg, Germany
Amit Chopra North Carolina State University, USA
Maksims Fiosins TU Clausthal, Germany
Dominic Greenwood Whitestein Technologies, Switzerland
Axel Hahn University Oldenburg, Germany
Christian Hahn DFKI, Germany
Øystein Haugen SINTEF, Norway
Sebastian Kämper IWi, Germany
Stefan Kirn Hohenheim University, Germany
Margaret Lyell IAI, USA
Saber Mansour Oslo Software, France
Eugenio Oliveira University of Porto, Portugal
Herve Panetto University Nancy, France
Omer Rana Cardiff University, UK
Ralph Ronnquist Intendico Pty. Ltd., Australia
Omair Shafiq University of Calgary, Canada
Carles Sierra IIIA, Spain
Ingo Timm Goethe-University Frankfurt/Main, Germany
Jörg Ziemann IWi, Germany
Ingo Zinnikus DFKI, Germany



Table of Contents

Agent-Supported Collaboration and Interoperability for Networked
Enterprises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Klaus Fischer and Ingo Zinnikus

A Model-Driven Approach to Close the Gap between Business and
Agent-Based Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Christian Hahn, Dmytro Panfilenko, and Klaus Fischer

Inter-organizational Interoperability through integration of Multiagent,
Web Service, and Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . 25

Paul Karaenke, Michael Schuele, András Micsik, Alexander Kipp

Ontology Matching across Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Renato Levy, Jakob Henriksson, Margaret Lyell, Xiong Liu, and
Michael J. Mayhew

Agent Metamodel and Profile: Current Status and Perspectives . . . . . . . . . 53
James Odell

Using ontologies to support decentral product development processes . . . . 55
Patrick D. Stiefel, Christian Hausknecht and Jörg P. Müller

Decentralized Semantic Service Discovery in Preferential Attachment
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

E. del Val, M. Rebollo, and V. Botti

Goal-Directed Approach for Process Specification and Service
Composition in Customer Life Cycle Management . . . . . . . . . . . . . . . . . . . . . 83

Kumari Wickramasinghe, Ian Thomas, Michael Georgeff, and
Christian Guttmann





Agent-Supported Collaboration and

Interoperability for Networked Enterprises

Klaus Fischer1 and Ingo Zinnikus1

German Research Center for Artificial Intelligence (DFKI) GmbH, Saarbrücken,
Germany

Abstract. The paper presents results from the COIN project which
deals with improving solutions for enterprise interoperability and enter-
prise collaboration. We present the context of COIN in the European
research area and explain the basic approach and system architecture
COIN is aiming at. Special emphasis is put on how agents can support
enterprise interoperability as well as enterprise collaboration services.

1 Background

In European research Enterprise Collaboration (EC) and Enterprise Interop-
erability (EI) have been the two major research catalysts for DG INFSO D4
Networked Enterprise & Radio Frequency Identification (RFID) and aggregated
tens of projects and hundreds of researchers in their project cluster initiatives.
Further information on EU projects and the cluster activities can be found at [1].
The COIN project [2] is one of the major current activities in this context. It is
the conviction of the COIN project promoters that EC and EI are different con-
cepts which cannot be merged and should not be confused. The former comes
from a business perspective and identifies the process of enterprises to set-up
and manage cross-enterprise win-win business relations in response to business
opportunities. The latter originated by the ICT world and identifying a capabil-
ity of enterprise software and applications to be integrated at the level of data,
applications, processes, and models. EC and EI are, however, so interdependent,
interconnected, and simultaneously present in every networked enterprise, that
they can be considered as the two sides of the same coin.

EC was mainly fed by projects like ECOLEAD and DBE (both were socalled
integrated projects (IP)) and by several smaller projects (small or medium-scale
focused research projects (STREP)) like myTreasury, E4, Fluid-Win, Pabadis-
Promise and Smart, aims at finding new paradigms for European enterprises
(mainly SMEs) aggregation, synchronization, and co-operation in response to the
more and more demanding and complex business opportunities coming from the
global market. The key phases for achieving EC is the identification of an SME’s
core competencies, the focus of the SMEs internal resources with respect to these
core competencies, and the valorization of these core competences by exposing
them in the marketplace searching for other SMEs to collaborate with. Sev-
eral collaboration models, ICT infrastructures, and support services have been

1



Fig. 1. ATHENA Interoperability Reference Architecture

so far successfully developed in such projects with the utmost concern to meet
SMEs expectations and requirements. An important collaboration is the closed
Breeding Environment more similar to a club or a gymnasium where SMEs are
getting prepared to collaborate or the open Business Ecosystem where constella-
tions of providers dynamically offer their services. Regarding ICT infrastructure
the Enterprise Service Bus (ESB) for Enterprise Applications Integration (EAI),
the Semantically Enabled Service Oriented Architectures (SESA), or the Digital
Ecosystem peer-to-peer architecture can be mentioned.

However, in order to fully exploit its potentials mainly for European SMEs,
EC research does not only aim at achieving important and relevant results from
the scientific, organizational, business standpoint, but tries to also magnify the
investments on resources in the ICT implementation of the key collaboration
processes and cross-enterprise applications needed to make collaboration eas-
ier and profitable. For instance, the two projects ECOLEAD and DBE have
achieved significant results in the field of IT infrastructure and IT support to
collaboration management and performance management, but they could not
address properly the problem of EAI and operational support to collaborative
processes in different industries and application domains.

EI research was so far mainly fed by the ATHENA and TRUSTCOM (both
EU IP projects), by the INTEROP NoE and by several STREPs like Abilities,
Genesis, Fusion and Satine, started from an IT perspective of Enterprise Ap-
plication and Software interoperability (inherited by the IDEAS road-mapping
effort) and focused on enterprise modeling, architecture and platforms, ontolo-
gies and semantics as the basic pillars for EI. According to the ATHENA railroad
for interoperability (see Fig. 1) this research stream proceeded very well in an
analytical way to deeply investigate the various interoperability problems which
affect European enterprises (and SMEs) and came out with a set of innovative
ICT solutions (for Enterprise Models Interoperability, Cross-organizational Busi-
ness Processes, Semantic Business Document Reconciliation, IT Service selection
and composition and, finally, a model-driven approach for SOA).

EI solutions have already proved to be efficient and effective in the ICT
and research community (e.g. with respect to software and service engineering,
model-driven architectures, semantic interoperability) but have in their innova-
tion potential privileged the big enterprises and regarding ICT more developed
sectors and domains, while there is a tremendous need for EI efficient and effec-

2



Fig. 2. COIN Architecture

tive solutions in the SMEs environment and in some less ICT-developed sectors
and domains like textile, food, or tourism. Moreover, it seems that EI solu-
tions so far lack flexibility and adaptation to different business scenarios and
collaboration forms like Supply Chains, Collaborative Networks and Business
Ecosystems.

2 The COIN Project

In its general approach to support EC and EI services in networked enterprises,
the main objectives of COIN is to design and develop a pervasive, adaptive ser-
vice platform to host baseline and innovative COIN services for EI and EC and
make them available under innovative on-demand, utility-oriented business mod-
els to European enterprises (and SMEs in particular) for running their business
in a secure, reliable and efficient way. Such a service platform, including business
and knowledge interoperability models and tools, represents the innovative glue
to fully exploit pre-existing and new services in the overall COIN mission.

Figure 2 displays the basic architecture of the COIN platform. On top of the
basic infrastructure of the Internet and the Web, COIN develops a generic service
platform (GSP). The WSMO/WSMX framework forms the core of the GSP.
Therefore the main part of the services in the GSP are semantically described.
Additionally, the COIN platform provides innovative services to support EC and
EI. These innovative services can access Web services registered in the GSP or
can be built directly with traditional Internet technology. Proof of concept tools
to support end users in the execution of collaborative processes in networked
enterprises are developed on top of the COIN platform.

The COIN Platform represents a service provisioning platform capable of
supporting the SaaS-U1 paradigm for EC/EI services. The overall idea is to
provide a set of services through the platform that enable enterprises to cre-
ate virtual organizations leveraging on collaborative services and exchanging
information through integration services. All collaborative and interoperability
services, according to the service agreements subscribed by the different stake

1 SaaS-U: Software as a utility service where utility means that the service is so widely
available that it becomes a commodity.

3



holders of the platform, are provided within a pay-per-use fashion or long term
subscription to the platform. As presented in the more detailed view to the plat-
form in Figure 3, the platform is composed of the Web Service Execution En-
vironment (WSMX see [3]) as the core of the platform, the TrustCoM2 security
gateways which provide trust and security in a SOA implementation, a peer-
to-peer repository/registry (coming from Digital Business Ecosystems project3)
which provides fail-safe storage facilities, and an agent platform component for
intelligent service compositions and negotiations.

SESA Platform

(Web Service Execution 

Environment)

Network

`

Service

Requester

S
e
c
u
ri
ty

 G
a
te

w
a
y

S
e
c
u
ri
ty

 G
a
te

w
a
y

S
e
c
u

ri
ty

 G
a

te
w

a
y

S
e
c
u

ri
ty

 G
a

te
w

a
y

Service

Provider X

Service

Provider Y

S
e
c
u
ri
ty

 G
a
te

w
a
y

P2P Repository/

Registry

Y Node

X Node

Network

Network

Agent Platform

(Jack/Jade)

Fig. 3. The COIN Service Provisioning Platform

2.1 Agents and Semantic SOAs

In COIN the agent subsystem is an important part of the platform supporting
EC and EI services. A crucial feature of agents is the use of an explicit–and,
in most cases publicly available—representation of entities in a collaboration
(services, contracts, protocols) for reasoning and decision-making. WSDL (see
[4]) is for example an explicit, publicly available (if stored in a UDDI registry)
representation about technical aspects of a service, but it can hardly be used
for reasoning or decision-making. Its main purpose is to support the (in most
cases manual) integration of a service. The initial Web service technology stack
allows exchange of messages between the parties by leveraging SOAP (see [5]).
Furthermore, it allows for description of the technical interface for Web service
consumption in the form of WSDL. These technologies form the foundation for
an implementation of the Service Oriented Architecture (SOA) paradigm that
represents the dominant approach in employing service orientation in delivery of
business functions. However, these technologies only support Web service usage
by manual inspection and integration, i.e. existing SOA solutions are proving

2 http://www.eu-trustcom.com
3 http://www.digital-ecosystem.org

4



difficult to scale without a proper degree of automation [6]. Tasks such as ser-
vice discovery, selection and ranking, composition, mediation, negotiation, and
execution of Web services require that involved services are completely charac-
terized by their interfaces. However, in traditional Web Service implementations,
the lack of information to express the meaning of data and of the vocabulary
referenced by the interface as well as the lack of the formalization of the behav-
ior is as a matter of fact prohibiting or at least hindering the automation of the
envisioned tasks.

The Semantic Web initiative took up this challenge and developed a set of
formalisms for semantic markup of services and other entities. In the vision of Se-
mantic Web services (SWS) [7], creating semantic markup of Web services makes
them machine understandable and use-apparent. Based on that, agent technolo-
gies can be developed that exploit this semantic markup to support automated
Web service composition and interoperability. Semantic markup of Web services
enables the automation of service discovery, execution, composition, and inter-
operation which drives the research and development of appropriate markup
languages and agent technologies. SWS utilize ontologies as the underlying data
model in order to support semantic interoperability between Web services and
its clients and apply semantically enabled automated mechanisms that span the
whole SWS life cycle. More generally, the introduction of semantics as an exten-
sion of SOA and creation of Semantically Enabled Service Oriented Architectures
[8], provides for next generation of service-oriented computing based on machine
processable semantics.

In order to provide support for SWS, two main approaches are envisioned.
The former approach (bottom-up) relies on changing and extending existing
models of Web services with the support for explicit semantics. This approach is
supported by W3C and some researcher groups through the effort of SAWSDL
(see [9]). SAWSDL extends the de-facto standard for service description WSDL
by annotating elements in a service description and providing schema mappings
for the transformation of data. The annotation of elements can be used for service
discovery whereas the mappings can be used for invocation of a service. It is
this latter feature which makes SAWSDL an interesting candidate for service
integration, because, based on the well-established standard WSDL, a service
provider can supply its partners not only with a syntactical description of her
service interface via a WSDL file, but additionally with the information required
for ad-hoc invocation of this service. The latter approach (top-down) utilizes
existing Web service technologies as foundational system, layering the semantics
support on top of it. This approach is taken by several groups in academia where
the most distinguishing representatives are Web Services Modeling Ontology
(WSMO) (see [10, 11]) and OWL-S (see [12]).

The Web Service Execution Environment (WSMX), presented in Figure 4,
is an execution environment, which intends to realize the SWS life cycle. It
is a platform characterized by strong component decoupling, goal-driven Web
service usage and direct support for mediation facilities. WSMX is a reference
implementation of WSMO. WSMO provides ontological specifications for the

5



core elements of SWS and acts as the comprehensive conceptual model which
describes various aspects of SWS consisting of formal descriptions of ontologies,
web services, goals and mediators.

The COIN platform, as an extension of WSMX, is embracing WSMO and
the corresponding set of languages and specifications for describing ontologies,
services, goals and mediators.

C
o

m
p

o
s
it
io

n

S
e

le
c
ti
o

n
 a

n
d

R
a

n
k
in

g

D
a
ta

 M
e
d

ia
ti
o

n

C
h

o
re

o
g

ra
p

h
y

Resource Manager Interface
Services Ontologies Mediators

Semantic Web Services Middleware (WSMX)

D
is

c
o

v
e

ry

Goals

In
v
o

k
e

r

Execution Semantics

Core Management

`

Client

Network
Network

Provider X

Provider Y

G
ro

u
n

d
in

g
Fig. 4. Web Service Execution Environment

Agent technologies are used in the GSP for intelligent service matchmaking
and for runtime negotiation of service selection and usage. Additionally agent
technologies are used for service composition to build more complex services.
In this manner the agents bridge the gap between innovative services and the
GSP. In this sense agents can themselves become providers of innovative services.
Negotiation services are one class of services that are investigated in this context.

3 Collaborative Processes

According to the main objectives of COIN as described in the last section, the
design and execution of collaborative business processes is in the main focus of
COIN. Figure 5 presents COIN’s approach to collaborative business process de-
sign. The situation in the figure is simplified to the collaboration of two partners
but of course COIN aims at the collaboration of any number of partners. In such
a setting each partner has its private process from which so-called view processes
are derived. On the other hand, a collaborative process is defined where the col-
laborative process can take advantage of the processes and services specified in
the view processes. The approach seems to be centralized, however, this is only
a conceptual description. It is actually not prescribed how the collaborative pro-
cess is developed nor is it prescribed how the resulting collaborative process is
eventually executed. However, to assume that the collaborative process is exe-
cuted by any of the participating parties or by a third party is a straightforward
solution once the collaborative process has been defined.

The view processes mediate between the private processes that are already
available in the local environment of the individual partners and the collaborative

6



Fig. 5. COIN’s Approach to Collaborative Process Design and Execution

process. In the design of collaborative processes already existing view processes
might be used or new view processes might be derived by the requirements that
are specified in the collaborative process. Two major concerns can be identified
when it comes to the design and implementation of collaborative processes:

1. The integration of the collaborative workflow with EI services which sup-
port the interoperability between the collaborative process and the view
processes.

2. The support of complex workflow patterns in the description and in the
execution of collaborative workflows.

Both aspects can be understood as offline and runtime activities. In the offline
case the user (most probably a system architect or a business process engineer)
wants to have support in the design of the collaborative process. A major task
is to find already existing services and process definitions. In the online case
the decision on which concrete service endpoint should be called is in the focus.
Agent technologies can provide innovative solutions for both areas in the online
and the offline situation.

Regarding 1. the main advantage of agent technologies is their ability to deal
with semantic descriptions and to reason about such descriptions. With this
agents introduce more flexibility in binding services to the collaborative
workflow (see [13] and [14] for detailed accounts on this topic).

Regarding 2. again two aspects are important:

1. Agent technologies are available that allow graphical modeling of com-
plex interaction and service composition patterns.

2. Agents can be used to wrap complex workflow patterns into services
which makes the overall collaborative process description less complex.
Figure 6 shows how a complex workflow pattern (in this case parallel
activities where the number of activities is known at design time) can be
wrapped in a service that is called from a workflow which is described
at a higher level of abstraction.

Complex interactions between the partners in collaborative environments
imply a number of problems which have to be solved:

7



– changing the protocol and integration of a new partner should be possible
in a rapid manner (scalability)

– the execution of the message exchange should be flexible, i.e. in case a partner
is unavailable or busy, the protocol should nevertheless proceed

– the different partners (may) expect different atomic protocol steps (service
granularity)

– the partners expect and/or provide differing data structures

These are typical interoperability problems occurring in cross-organizational
scenarios. Agent technologies in COIN bring together different approaches and
to combine them into a new framework: a modeling approach for designing col-
laborative processes, a model-driven development framework for semantic SOAs
and an agent-based approach for flexible execution.

The collaborative processes are specified on a technology-independent level
(e.g. using BPMN) and transformed to a platform-independent level so that re-
finements and modifications in the interaction of the partners can be made on
the respective levels and code generated automatically. Flexibility is achieved by
applying a BDI agent-based approach. BDI agents provide flexible behavior for
exception-handling in a natural way (compared to e.g. BPEL4WS where spec-
ifying code for faults often leads to complicated, nested code). The problem of
different service granularities is envisaged by specifying a collaborative protocol
which allows adaptation to different service granularities. Finally, the mediation
of the data is tackled with using transformations which are specified at design-
time and executed at run-time by transforming the exchanged messages based
on the design-time transformations. Two cases can be distinguished:

(i) Integrating consortial partners: Partners define the shared process to-
gether. The common information/data model may also be defined together.
Roughly speaking, two alternatives are possible, analogous to the local-as-
view (LAV) vs. global-as-view (GAV) distinction in the fields of data inte-
gration (cf. [15]) and Enterprise Information Integration (cf. [16]).
In a LAV approach, the common data structure is defined independently
from the local data model of each partner. Each partner then defines a
(local) mapping from the common information model to the local model. The
mapping in turn can be executed (at run-time) either by the consumer of
the service or the partner service itself. The first solution is the one preferred
by SWS descriptions, e.g. OWL-S where the service provider describes the
grounding to e.g. WSDL. The grounding is used by a service consumer who
invokes the service. The second solution means that the service consumer
always sends the same message (e.g. a SOAP message) to a partner service
and does not care about the local data model. This is reasonable if specifying
as well as testing the mapping is tedious and the mapping underlies many
changes.
In the GAV approach, each element in the global model is defined in terms
of local sources. Adding a new source (i.e. partner) affects the global model.
The LAV approach is preferable for cases where the global model is stable
and new partners are frequently joining (or leaving) the collaboration space.

8



Fig. 6. Reducing Complexity in Collaborative Processes

(ii) Integrating partners external to the collaboration: For integrating ex-
ternal partners service discovery as well as process and data mediation have
to be realized. Service discovery can be based on the service requirements
which are specified implicitly or explicitly for a service invocation task. In-
tegrating the discovered services requires data transformations which are
either provided by the service descriptions or based on a mapping to the
common information model.

In the top-down approach a business process engineer starts of with the
definition of a high-level process. When she is more or less satisfied with the
high-level definition she starts to work on the grounding of the collaborative
process. The tedious task of grounding the collaborative process can be sup-
ported by agents. Depending on the intelligence of these agents the support can
be automated or interactive. The main task to do is to fill the gap between the
description of the collaborative process and the services that are available in the
service environment. The most extreme case would be that the business process
engineer just pushes a button and everything is done automatically. However, it
is rather unlikely that this works in the situation that we have right now. So it
is likely that the user will be required to do additional manual integration steps.

On the one hand this might mean that already existing services must be
composed to provide more abstract services that can be deployed in the collab-
orative process or EI services must be integrated with the collaborative process
that help to bridge the gap in interoperability among the involved partners.

Basic agent technologies are already available to support these system en-
gineering tasks. The agent framework PIM4Agents developed at DFKI directly
supports complex workflow patterns like the parallel execution shown in Figure
1 (for a more complete discussion of supported workflow and service interaction
patterns see [17]). One should keep in mind that complex workflow and inter-
action patterns should be introduced at the lowest level of abstraction possible
which keeps higher levels of abstraction simpler and easier to understand.

The second case described above where new partners are integrated on the
fly (this means at run time because otherwise it comes down to the case that

9



was just described) would mean that the service discovery and deployment must
be done completely automated which is only possible in restricted scenarios.

A task that needs to be additionally solved is the integration of human users.
For this, support for the generation of service front ends is needed. Unfortunately,
the WSMO framework does not support a generic way to define and deploy
service front ends. It is always possible to use agents to provide the service
front ends. However, in many cases it will be more desirable to use tools the
user is already familiar with as service front ends and let the agents do their
work behind the scenes. In any case this setting leaves space for innovative and
creative solutions.

4 Related Work

Information on related activities in the European research context was already
presented in Section 1. Besides the large amount of literature on business pro-
cess modeling, enterprise application integration and SOAs, the relation between
agents and SOAs has already been investigated. [18] cover several important
aspects, [19] propose the application of agents for workflows in general. [20]
provide an overview of agent-based modeling approaches for enterprises. [21]
describe the TROPOS methodology for a model-driven design of agent-based
software systems. However, the problems related to integration of agent plat-
forms and service-oriented architectures are out of scope for their approach.
[22] map BPMN models to BDI agents but do not consider an integration of
agents and Web services. [23] and [24] present a technical and conceptual inte-
gration of an agent platform and Web services. [25] integrate Web services into
agent-based workflows, [26] integrate BDI agents and Web services. However,
the model-driven approach and the strong consideration of problems related to
cross-organizational settings have not been investigated in this context. Fur-
thermore, our focus on a tight and lightweight integration of BDI-style agents
fits much better to a model-driven, process-centric setting than the Web service
gateway to a JADE agent platform considered by e.g. [23]. A good starting point
for details on the semantic web is [27] and [28].

5 Conclusion

The paper presented results from the COIN project which deal with improving
solutions for enterprise interoperability and enterprise collaboration. We pre-
sented the context of COIN in the European research area and explained the
basic approach and system architecture COIN is aiming at. Special emphasis was
put on how agents can support enterprise interoperability as well as enterprise
collaboration services.

Future work will include research on how the reasoning capabilities of the
agents could be used to help a system engineer at design time to solve interop-
erability problems. An example of such support is the situation where the infor-
mation models of the collaborating partners differ. When a set of transformation

10



services is available in the GSP the agents can search for composed services that
transform documents represented in the format of one partner into the format
that is understood by the partner who receives the document. Composed trans-
formation services are necessary in case a direct transformation service between
the two information models is not available.

References

1. EI Cluster: Ict for enterprise networking.
http://cordis.europa.eu/fp7/ict/enet/ei en.html

2. (COIN), E.C..I. http://www.coin-ip.eu/
3. Bussler, C., Cimpian, E., Fensel, D., Gomez, J.M., Hallerand, A., Haselwan-

terand, T., Kerriganand, M., Mocanand, A., Moranand, M., Orenand, E., Sap-
kotaand, B., Tomaand, I., Viskovaand, J., Zaremba, T.V.M.: Web service
execution environment (wsmx). W3C Member Submission, avalailable from
http://www.w3.org/Submission/WSMX (3. June 2005)

4. Christensen, E., Curbera, F., Greg Meredith, M., Weerawarana, S.: Web
services description language (wsdl) 1.1. W3C Note, available from
http://www.w3.org/TR/wsdl (15. March 2001)

5. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D.: Simple object access protocol (soap) 1.1. W3C Note, Avail-
able from http://www.w3.org/TR/2000/NOTE-SOAP-20000508 (8. May 2000)

6. Vitvar, T., Zaremba, M., Moran, M., Zaremba, M., Fensel, D.: SESA: Emerging
Technology for Service-Centric Environments. IEEE Software 24(6) (November
2007) 56–67

7. Studer, R., Grimm, S., Abecker, A., eds.: Semantic Web Services, Concepts, Tech-
nologies, and Applications. Springer-Verlag, Berlin, Heidelberg (2007)

8. Fensel, D., Kerrigan, M., Zaremba, M., eds.: Implementing Semantic Web Services:
The SESA Framework. Springer-Verlag (2008)

9. Farrell, J., Lausen, H.: Semantic annotations for wsdl and xml schema. W3C
Proposed Recommendation, Available from http://www.w3.org/TR/sawsdl/ (5.
July 2007)

10. Lausen, H., Polleres, A., Roman, D.: Web service modeling ontology (wsmo). W3C
Member Submission, Available from http://www.w3.org/Submission/WSMO/ (3.
June 2005)

11. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J., eds.: Enabling Semantic Web Services: The Web Service Model-
ing Ontology. Springer-Verlag, Berlin (2007)

12. Martin, D., , M.B., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services. W3C Member Submission, Available
from http://www.w3.org/Submission/OWL-S/ (22. November 2004)

13. Zinnikus, I., Hahn, C., Fischer, K.: A model-driven, agent-based approach for
the integration of services into a collaborative business process. In Padgham,
Parkes, Müller, Parsons, eds.: Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portugal (May 2008) 241–248

14. Zinnikus, I., Hahn, C., Fischer, K.: Agent-driven Semantic Interoperability for
Cross-organisational Business Processes. In: Semantic Enterprise Application Inte-
gration for Business Processes: Service-Oriented Frameworks. IGI Global (Septem-
ber 2009) 61–89

11



15. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS ’02: Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, New York, NY, USA, ACM Press (2002) 233–246

16. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosenthal,
A., Sikka, V.: Enterprise information integration: successes, challenges and contro-
versies. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, New York, NY, USA, ACM (2005) 778–787

17. Hahn, C., Zinnikus, I.: Modeling and executing service interactions using an agent-
oriented modeling language. In: Proceedings of the Forum at the CAiSE’08 Con-
ference, Montpellier, France (June 2008) 37–40

18. Singh, M.P., Huhns, M.N.: Service-oriented Computing — Semantic, Processes,
Agents. John Wiley & Sons, Ltd. (2005)

19. Vidal, J.M., Buhler, P., Stahl, C.: Multiagent systems with workflows. Internet
Computing, IEEE 8(1) (2004) 76–82

20. Cabri, G., Leonardi, L., Puviani, M.: Service-oriented agent methodologies. In:
5th IEEE International Workshop on Agent-Based Computing for Enterprise Col-
laboration (ACEC-07). (2007)

21. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Proc. of the 18th Conference on Advanced
Information Systems Engineerng (CAiSE’06). (June 2006) 465–479

22. Endert, H., Kuster, T., Hirsch, B., Albayrak, S.: Mapping BPMN to agents: An
analysis. In: First international Workshop on Agents, Web-Services, and Ontologies
Integrated Methodologies (AWESOME07). (2007) 164

23. Greenwood, D., Calisti, M.: Engineering web service — agent integration. In: IEEE
International Conference on Systems, Man and Cybernetics. Volume 2. (2004)
1918–1925

24. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: Considering
BDI agents and web services. In: AAMAS 2005 Workshop on Service-Oriented
Computing and Agent-Based Engineering (SOCABE). (2005)

25. Savarimuthu, B.T.R., Purvis, M., Purvis, M., Cranefield, S.: Agent-based integra-
tion of web services with workflow management systems. In: Fourth international
joint conference on Autonomous agents and multiagent systems (AAMAS 05).
(2005) 1345–1346

26. Bozzo, L., Mascardi, V., Ancona, D., Busetta, P.: Coows: Adaptive BDI agents
meet service-oriented computing extended abstract. In: Proceedings of the Third
European Workshop on Multi-Agent Systems (EUMAS05). (2005)

27. Semantic Web. http://semanticweb.org/index.php?title=Semantic Web&oldid=44024
28. Lausen, H., Ding, Y., Stollberg, M., Fensel, D., Hernandez, R.L., Han, S.K.: Se-

mantic web portals: state-of-the-art survey. Journal of Knowledge Management
9(5) (2005) 40–49

12



A Model-Driven Approach to Close the Gap between 
Business Requirements and Agent-Based Execution 

 

Christian Hahn1, Dmytro Panfilenko2, Klaus Fischer1 

1 Agents and Simulated Reality (ASR) 
at the German Research Center for Artificial Intelligence (DFKI), 

Campus D3 2 Stuhlsatzenhausweg 3,  
66123 Saarbrücken, Germany 

Christian.Hahn@dfki.de 
 

2 Institute for Information Systems (IWi) 
at the German Research Center for Artificial Intelligence (DFKI), 

Campus D3 2 Stuhlsatzenhausweg 3,  
66123 Saarbrücken, Germany 
Dima.Panfilenko@iwi.dfki.de 

Abstr act: The current state-of-the-art in developing software applications is to 
design the systems based on visual design tools and take the resulting design 
artifact as a base to manually code the software application. The process of 
transferring the (business) requirements to executable code involves several 
different parties which makes the whole process again very error prone. In this 
paper, we present a model-driven approach to overcome the gap between 
business requirements on the one side and multiagent systems on the other, as 
we consider the use of agents for implementation beneficial in contrast to more 
traditional approaches like the WS-BPEL engine. 

Keywords: Model-driven Development, Model-driven Architecture, BPMN, 
CIMFlex, SOA, SoaML, Multiagent Systems, PIM4Agents 

 

 1 Introduction 

Service-oriented architectures (SOAs) have emerged as a direct consequence of 
specific business and technology drivers that have materialized over the past decade. 
From the business side, major trends such as the outsourcing of non-core operations 
and the importance of business process re-engineering have been key influences 
driving the surfacing of SOA as an important architectural approach to business 
information technology (IT) today. From the SOA side, adequate mechanisms need to 
be explored to combine business requirements and the underlying execution engines. 
Therefore, often the principles of model-driven development (MDD) [3] and 
metamodeling are applied. 

13



The aim of this paper is to present a model-driven development appproach for 
managing and implementing interoperable business processes through SOAs and 
multiagent systems (MASs). We aim at filling the gab between business requirements 
made on a strategic level and the execution models on the implementation level.  
Though, it is possible to execute business models with traditional means, e.g. 
communicating workflow engines for E-business protocols like RoseetaNet, the use 
of MASs for implementation seems to offer various advantages.  

The model-driven approach to close the gap between business requirements and 
executable agent systems has been developed in the SHAPE1

[8]

 (Semantically-enabled 
Heterogeneous Service Architecture and Platforms Engineering, http://www.shape-
project.eu/) project. SHAPE provides an integrated development environment that 
brings together MDD with the SOA paradigm and integrates other technologies like 
MAS, Semantic Web, Grid, and P2P. The technology developed in the project is 
centered on SoaML , a metamodel for describing service-oriented landscapes that 
is standardized in the Object Management Group (OMG). SoaML is extended with 
metamodels for the other technology platforms and advanced service engineering 
techniques 

As a consequence of the development in the area of the service modeling the 
Model Driven Architecture (MDA), which is one instance of MDD, increases the 
level of abstraction of this and related concepts to a new state. MDA’s goal is the 
faster system development through the model transformations from one level into 
another. These models are classified by the MDA concept into three levels of 
abstraction, namely the Computation Independent Model (CIM) level, the Platform 
Independent Model (PIM) level and the Platform Specific Model (PSM) level ([4], 
[5]). 

As the most of the existing MDA-approaches [6] focus on PIM- and PSM-level 
and the model-to-model transformation between them, the more conceptual CIM-
level is often as assumed to be present and is not investigated further. Hence, a real 
life software system development project comes to a problem during development in 
the starting phases where the conceptual modeling on the CIM level and even more 
unstructured verbal or media information about the application’s domain is in play. 
As there is an existing standard for modeling services on the PIM level – SoaML – 
that is connected to the agent modeling on the PSM level, we introduce the link 
between the CIM level modeling with the aid of CIMFlex, a language for 
comprehensive representation of the requirements through different views on the 
considered model, and services modeling on the PIM level with SoaML through 
conceptual mapping rules for the model-to-model transformation. CIMFlex combines 
the expressiveness of Business Process Modeling Notation (BPMN) and the 
Architecture of Integrated Information Systems (ARIS) notation through providing an 
aggregated process view, where the information of the other views (data, organization 
and business rules) is represented with a higher degree of abstraction. 

1 SHAPE is a European Research Project under the 7th Framework Program, detailed 
information can be found at  http://www.shape-project.eu/ 

14



The remainder of this paper is structured as follows: In Section 2, the model-driven 
service engineering approach is presented used in our approach. Afterwards, Section 
3 illustrates the main concepts of the Service-Oriented Architecture Modeling 
Language (SoaML), followed by Section 4 detailing the mappings between the 
business level and SoaML. Section 5 then presents the agent-modeling approach 
called PIM4Agents and defines the mappings between SoaML and PIM4Agents. 
Section 6 represents related work, followed by Section 7 naming future extensions. 
Section 8 then concludes this paper.  

2 Model-Driven Service Engineer ing 

A central part of the SHAPE technology is model transformations that define the 
basis for (semi-)automated transformation among several model types, and in 
particular enable the MDE-based approach for integrated top-down modelling from 
the CIM level to the PSM level. 

 
Figure 1: SHAPE Model Transformation Architecture 

The model transformation architecture (cf. Figure 1) of SHAPE illustrates the core 
language used within the project, their relationship to the abstraction levels CIM, PIM 
and PSM as well as their relationship to other languages defines through model 
transformations, either model-to-model or model-to-text. 

On the highest level, business models encompass business rules, processes, 
services and other issues such as contracts involving humans and organizations to 

15



achieve business goals. These conform to the metamodel of CIMFlex, which supports 
the user to create and refine a semi-formal model of a business process, an 
organisational structure, a data structure or business rules based on the input coming 
from the domain users. The editor is able to create, change and store these types of 
models in EPC (Event-Driven Process Chain) or BPMN notation.  

The middle layer contains the results of the proposal as transformation engines, 
extended SOA models, the standardized SoaML and extensions for semantically-
enabled heterogeneous architectures (ShaML) that includes concepts for partial 
modeling of the different platforms (e.g. agents, Web services, etc.). This architecture 
allows the realization of one of the main goals of SHAPE namely to provide a 
transformation engine that maps business models to SOA models which are then 
transferred to the various execution platforms. 

The model transformation architecture will in particular support the following 
model transformations: 

CIM to PIM transformation  

• Model transformation between CIMFlex, specifically BPMN, and SoaML: 
The challenge in transforming CIMFlex models to SoaML is to generate the 
appropriate system relevant constructs for SoaML according to the generic 
business context on CIM level. CIMFlex supports in its initial version the 
model-to-model transformation by making use of the Atlas Transformation 
Language (ATL) [9]. 

PIM to PIM transformation 

• Model transformation between SoaML and Web Services: The 
transformation between SoaML and Web Services is done through a model-
to-model transformation. The transformation will produce three kind of 
models form a single SoaML models. It will produce XML Schemas for 
information description, WSDL (Web Service Description Language) files 
for interface description and finally BPEL files for behavioural specification. 

• Model transformation between SoaML and PIM4Agents: The transformation 
between SoaML and PIM4Agents is done through a model-to-model 
transformation using ATL. 

PIM to PSM transformation 

• Model transformations between PIM4Agents and the metamodel of JACK 
[12] and JADE [13], which are both agent execution platforms. The model 
transformations between the PIM4Agents metamodel and the metamodels of 
JACK/JADE (JackMM/JadeMM) are specified through a model-to-model 

16



transformation using ATL. The final code is produced through a model-to-
text transformation realized with MOFScript2

• Model transformation between SoaML and WSMO (Web Service Modeling 
Ontolog): The model transformation between the metamodel of SoaML and 
WSMO is specified through a model-to-text transformation. 

. 

 
In the remainder of this paper, we focus on the model transformation path from 
CIMFlex to SoaML and from SoaML to PIM4Agents. 

3 Service-Oriented Architecture Modeling Language 

The Service-Oriented Architecture Modeling Language (SoaML) [8] is 
standardized in OMG. It describes a UML profile and metamodel for designing 
services.  

The goals of SoaML are to support the activities of service modelling and design 
and to fit into an overall model-driven development approach. The SoaML profile 
supports the range of modelling requirements for service-oriented architectures, 
including the specification of systems of services, the specification of individual 
service interfaces, and the specification of service implementations. 

 
Figure 2: The SoaML profile 

2 http://www.eclipse.org/gmt/mofscript/ 

17

http://www.eclipse.org/gmt/mofscript/�


 
The SoaML profile (see Figure 2) extends the UML2 metamodel to support an 

explicit service modelling in distributed environments. This extension aims to support 
different service modelling scenarios such as single service description, service-
oriented architecture modelling, or service contract definition. The main extension 
areas are: 

• Par ticipants to define the service providers and consumers in a system. A 
Participant may play the role of service provider, consumer or both. When a 
participant acts as a provider it contains ServicePoints, and when a 
participant acts as a consumer it contains RequestPoints. 

• Service inter faces to describe the operation provided and required to 
complete the functionality of a service. A ServiceInterface can be used as the 
protocol for a ServicePoint or a RequestPoint. 

• Service contracts to describe interaction patterns between service entities. A 
ServicesContract is used to model an agreement between two or more 
parties. Each service role in a ServiceContract has a ServiceInterface type 
that usually represents a provider or consumer. 

• Service data to describe service messages and message attachments. The 
MessageType is used to specify the information exchanged between 
services, attached to rather than contained in the message. 

• Services and par ticipant architectures to define how a set of participants 
works together for some purpose by providing and using services. A 
ServicesArchitecture or a ParticipantArchitecture describes how participants 
work together by providing and using services expressed as 
ServiceContracts. 

4 From CIMFlex to SoaML 

In this section we provide some aspects of the high CIM-level service modeling with 
the aid of the BPMN. This notation is well-known and established since the 
beginning of the 21st century, moreover it has been standardized and there are more 
than 50 products, both commercial and open-source, providing the implementation of 
this standard [11]. The particular considerations with respect to modelling services by 
the business users are that there is a little awareness of the services by CIM-level 
users, on the one hand, and even if there would be any knowledge about it, there are 
no direct constructs describing the services on the CIM-level in the BPMN notation 
anyway. Of course, the upcoming BPMN 2.0 standard includes the services modeling 
and the according constructs for it, but it only rules out the second, more technical 
problem, and not the first one – understanding. 

For solving this problem, we propose a semi-automated approach in this section 
based on a model-to-model transformation from CIM-level BPMN models to PIM-
level SoaML-based models. Those models on the higher abstraction level in BPMN 
would be analyzed through a set of mapping rules and would result in a service model 

18



representing according constructs and architectures needed for the comprehensive 
PIM-level model as a basis for the further transformation to the PSM-level. The 
concrete mappings are as follows: 
 
Task to ServiceInterface – as a task describes an activity that is possibly providing a 
useful output that could be consumed by the participants of the process, it can be then 
assigned to Service Interface construct in this mapping, as it gives the abstract 
interface for the job done and at the same time doesn’t give further specification of 
the workflow implementing this task. 

Table 1 Task to ServiceInterface 

BPMN 
Description 

Symbol SoaML Description Symbol 

Task 

 

ServiceInterface 

 
 
Pool to Participant / ServicesArchitecture – a pool in BPMN stands for a business 
entity or a participant of a process, on the one hand. It also can be structured with 
respect to further participants of the process, thus creating a participants’ hierarchy. 
These two points together put the pool on a role of a candidate for a Participant or 
Service Architecture, depending on the modeller’s intention.  

Table 2 Pool to Participant / Service Architecture 

BPMN 
Description 

Symbol SoaML Description Symbol 

Pool 

 

Participant 
Architecture 
(Service 
Architecture)  

 
Lane to Participant – a lane represents a participant or a department in BPMN and is 
situated in a pool, thus showing the two-tier hierarchy. In order to show the 
possibility for further subdivision (which is also ongoing in the current BPMN2 
proposals), the lane is first mapped to a Participant and next tiers of this hierarchy are 
constructed using the role constructs described below. 

Table 3 Lane to Participant / Service Architecture 

BPMN 
Description 

Symbol SoaML Description Symbol 

19



Lane 

 

Participant 
Architecture 
(Service 
Architecture) 

 
 
Lanes to ServiceContract – this transformation also reflects the service contract from 
the CIM level model into the SoaML and later into PIM for agent interaction 
specification. There is also a task sequence connected by a sequence flow, but the 
participants are represented through different lanes in the same pool, thus showing 
another possibility for a participant architecture modelling. The two tasks that belong 
to a service contract also share a data object. 

5 From SoaML to MAS 

In this section, a rough overview on the platform independent metamodel for MASs 
(PIM4Agents) is given. Afterwards, the model transformations between SoaML and 
PIM4Agent are discussed. 

5.1 Platform-Independent Metamodel for  Multiagent Systems 

For modelling MAS and in particular the protocol and the common data model, we 
developed a platform independent modeling language for MAS called domain-
specific language for multiagent systems. The abstract syntax of this language is 
defined by a platform independent metamodel for MAS called PIM4Agents 

The PIM4Agents metamodel [14] that defines the abstract syntax of the modelling 
language for MASs is a visual platform-independent model that specifies MASs in a 
technology independent manner. It represents an integrated view on agents in which 
different components can be deployed on different execution platforms. The 
PIM4Agents metamodel defines modelling concepts that can be used to model six 
different aspects or views of an agent system that are listed below: 
 

• Agent view describes single autonomous entities, the capabilities they have 
to solve tasks and the roles they play within the MAS. An Agent has access 
to a set of Resources from its surrounding Environment. These Resources 
may include information or ontologies the Agent has access to. Furthermore, 
the Agent can perform particular DomainRoles that define in which specific 
context the Agent is acting and Behaviours that define how particular tasks 
are achieved.  

• Organization view describes how autonomous entities cooperate within the 
MAS and how complex organizational structures can be defined. The 
Organization is a special kind of Agent and can therefore perform 

20



DomainRoles and have Capabilities which can be performed by its 
members. In addition to the Agent properties, an Organization may have its 
own internal Protocols specifying (i) how the Organization communicates 
with other Agents be them atomic Agents or complex Organizations and (ii) 
how organizational members are coordinated.  

• Role view covers feasible specializations of the Role concept (i.e. 
DomainRoles used to partition the organizational space and Actors used to 
define the message exchange within Protocols) and how they could be 
related to each other. 

• Interaction view describes how the interaction between autonomous entities 
or organizations takes place. Each interaction specification includes the 
Actors involved and in which order ACLMessages are exchanged between 
these Actors in a protocol-like manner.  

• Behavioural view describes how Plans are composed by complex control 
structures and simple atomic tasks like sending or receiving a Message and 
how information flows between those constructs. A Plan specifies the 
agents’ internal processes.  

• Environment view contains any kind of Resource (i.e. Service, Object) that 
is dynamically created, shared, or used by the Agents.  

• Deployment view describes the run-time AgentInstances that are involved 
in the system and how these are assigned to the organization's roles.  

To close the gap between design and implementation, we provide generic model 
transformations from PIM4Agents on the platform independent level to two 
underlying execution platforms (i.e. JACK or JADE on the platform specific level). 

5.2 Model Transformations: From SoaML to PIM4Agents 

ServicesArchitecture to Organization: The concept of a ServicesArchitecture nicely 
corresponds to the concept of an Organization PIM4Agents as both refer to roles that 
interact in accordance to some predefined processes. However, and this is the main 
differences between both constructs, a ServicesArchitecture does not perform any 
role to the outside. Hence, the generated Organization is more or less utilizes as a 
social structure providing the space for interaction. Hence, the Organization does 
neither own any Plans nor perform any DomainRole to the outside and hence should 
not be considered as an autonomous entity in the MAS, but rather as a form of 
grouping the necessary autonomous entities to fulfill the service. Likewise, the 
resulting Organization does not own any kind of knowledge, capability, or resource. 
 
ParticipantArchitecture to Organization: A ParticipantArchitecture illustrates, in 
contrast to a ServicesArchitecture, a concrete entity in the system described. Thus, the 
target Organization may perform a DomainRole which is either required inside 
ServicesArchitectures/ServiceContracts or even in other ParticipantArchitectures. 
Moreover, the Organization may own certain knowledge which is used by the source 
ParticipantArchitecture. 

21



 
ServiceContract to Interaction: The main purpose of a ServiceContract is to define 
the roles that agreed on the contract and how these interact with each other which is 
expressed through any kind of UML behavior. Hence, for representing a 
ServiceContract in PIM4Agents, the right choice is an Interaction, which defines how 
the exchange of messages between Actors is specified. 
 
ServiceInterface to Collaboration: A ServiceInterface defines a bi-directional service 
which includes the two roles provider and requester as well as the choreography 
which specifies the global interaction. In PIM4Agents, the concept of Collaboration is 
the best match, as it binds AgentInstances to (i) DomainRoles of the Organization and 
(ii) Actors of the Interaction.  
 
Participant to AgentInstance: In the same manner as ParticipantArchitetures are 
transformed to Agents, a Participant is mapped to an AgentInstance. The agent type 
of the AgentInstance is deduced from the ParticipantArchitecture that specifies the 
Participant. 
 
UML Behavior to Plan: Any kind of UML Behavior is transformed to a Plan in 
PIM4Agents. This Plan then specifies the internal processes of the Organization. 
 
Interface to Capability: A UML Interface defines a collection of operations and/or 
attributes that ideally define a set of processes. In order to represent this in an 
adequate manner in PIM4Agents, the concept of a Capability depicts the perfect 
match, as both, operations as well as attributes can be included into one of its Plans. 

6 Related Work 

Only few works exist aiming to bridge the gap between business-oriented approaches 
and MASs. Taveter [15] presented an agent-based approach for business modeling 
where Agent-Object Relationship Modeling Language (AORML) [16] is used as 
underlying agent modeling language. However, normally, agent languages are not the 
preferred paradigm of business analysts when it comes to designing the particular 
business requirements. Particular tailored languages are normally used for this 
purpose. Consequently, Endert et al. [17] presented a transformation between BPMN 
and JIAC IV (Java-based Intelligent Agent Componentware) [18] to bridge the gap 
between business process languages on the one hand and agent-based systems on the 
other hand. However, beside the fact that only a single platform is involved in their 
model transformation architecture, the even more problematic issue is that in most 
cases the gap between business languages like BPMN and agent platform cannot be 
automatically bridged. An intermediate level like defined by SOAs is often 
considered as more beneficial. 

22



7 Future Work  

The future work on connecting the high-level service modeling with the systems 
based on services comprises the alignment of the current BPMN to SoaML mapping 
with the upcoming new version of the BPMN. As there should be service constructs 
directly in the BPMN CIM-level methodology, it would be much easier to put this 
high-level notation with more technical description of a system on a PIM-level with 
the aid of SoaML in one line together in order to prepare it for the transformation to 
the PSM-level eventually resulting in an initial snap of the working system’s code. 

Another point of the future work concerning the high-level service modeling will 
be the study of the acceptance and evaluation of the comprehensiveness grade of the 
new version of the upcoming BPMN standard. That is, the question arises how much 
of the information can be put on the CIM-level that is through different 
transformations “pushed down” towards the system code. The real problem is not that 
the information can or cannot be modeled at the highest level, but the question of the 
understandability of the modeling constructs by the business level users.  

A third area of future work is the direct combination of BPMN 2.0 with agent-
based systems defined by PIM4Agents. The question that have to be answered in this 
respect in how much information has to be manually added on the PIM4Agents level 
after applying BPMN to PIM4Agents  model transformation to generate executable 
agent code. 

8 Conclusions 

This paper represents a model-driven approach to close the existing gap between 
business requirements specified using existing business modeling languages and 
agent technologies. To realize this, we defined two model-to-model transformations: 
The first transformation is specified between CIMFlex and SoaML, the second 
transformation maps SoaML models to PIM4Agents models. By utilizing the code 
generators of PIM4Agents, the generated models can be mapped to executable code 
based on the agent platforms JACK and JADE. 

This approach allows the specification of business requirements using BPMN and 
the mapping to agent code. On each level of the SHAPE model transformation 
architecture, details with respect to the underlying language and technology can be 
added that normally requires different roles to be involved, from the business analyst 
to the agent programmer. 
 

23



9 References 

[1] Erl, T.: SOA - Entwurfsprinzipien für serviceorientierte Architektur. Addison-
Wesley, München et al. 2008 

[2] Mathas, C.: SOA intern. Hanser, München 2008 
[3] Stahl, T.; Völter, M.: Modellgetriebene Softwareentwicklung. Techniken, 

Engineering, Management. dpunkt, Heidelberg 2005 
[4] Frankel, D. S.: Model Driven Architecture. Applying MDA to Enterprise 

Computing. Wiley, Indianapolis (2003) 
[5] Object Management Group: MDA Guide Version 1.0.1, 

www.omg.org/docs/omg/03-06-01.pdf 
[6] Mellor, S.J.; Scott, K.; Uhl, A.; Weise, D.: MDA Distilled: Principles of Model-

Driven Architecture. Addison-Wesley, (2004) 
[7] Object Management Group: Meta Object Facility (MOF) 2.0 

Query/View/Transformation Specification. http://www.omg.org/cgi-
bin/apps/doc?ptc/05-11-01.pdf 

[8] Object Management Group: Service oriented architecture Modeling Language 
(SoaML) – Specification for the UML Profile and Metamodel for Services 
(UPMS). http://www.omg.org/docs/ad/08-08-04.pdf 

[9] INRIA & LINA: ATLAS Transformation Language (ATL) project 
documentation. http://www.eclipse.org/gmt/am3/doc/ 

[10] Hahn, Christian (2009-01-14) SHAPE – Deliverable 5.1: Model transformation 
and deployment architecture description. http://www.shape-project.eu/wp-
content/uploads/2009/01/shape_d51.pdf 

[11] Object Management Group / Business Process Management Inititiative: BPMN 
implementations. http://www.bpmn.org/BPMN_Supporters.htm 

[12] Papasimeon, M., Heinze, C.: Extending the UML for designing JACK agents. In: 
Proceedings of the Australian Software Engineering Conference (ASWEC 01). 
(2001) 

[13] Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: 5. In: JADE - a Java agent 
development framework. Volume 15 of Multiagent Systems, Artificial Societies, 
and Simulated Organizations. Springer-Verlag, Berlin et al. (2005) 125–147 

[14] Hahn, C.: A platform independent agent-based modeling language. In: 
Proceedings of the Seventh International Conference on Autonomous Agents and 
Multiagent Systems (AAMAS). (2008) 233–240 

[15] Taveter, K. A. (2004). A Multi-Perspective Methodology for Agent-. Oriented 
Business Modelling and Simulation, PhD thesis 

[16] Wagner, G. (2003). The Agent-Object-Relationship meta-model: Towards a 
unified view of state and behavior, Information Systems 28(5): 475–504 

[17] Endert, H., Hirsch, B., Küster, T. and Albayrak, S. (2007). Towards a mapping 
from BPMN to agents, in J. Huang, R. Kowalczyk, Z.Maamar, D. L.Martin, 
I.Müller, S. Stoutenburg and K. P. Sycara (eds), Proceedings on the Internal 
Workshop on Service-Oriented Computing: Agents, Semantics, and Engineering 
(SOCASE 2007), AAMAS 2007 Honolulu, HI, USA, May 14, 2007, Vol. 4504 of 
Lecture Notes in Computer Science, Springer Verlag, Berlin et al., pp. 92–106 

[18] Albayrak, S. and Wieczcorek, D. (1999). Jiac - a toolkit for telecommunication 
applications, Proceedings of the Third International Workshop on Intelligent 
Agents for Telecommunication Applications (IATA ’99), Springer-Verlag, 
London, UK, pp. 1–18 

24

http://www.omg.org/docs/ad/08-08-04.pdf�


 

Inter-organizational Interoperability through 
integration of Multiagent, Web Service, and Semantic 

Web Technologies 

Paul Karaenke¹, Michael Schuele¹, András Micsik², Alexander Kipp³ 

¹University of Hohenheim, Information Systems 2, Schwerzstr. 35, 70599 Stuttgart, 
Germany, {karaenke, mschuele}@uni-hohenheim.de 

²MTA SZTAKI, Budapest Lágymányosi u. 11. H-1111, Hungary, micsik@sztaki.hu 
³High Performance Computing Center Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany, 

kipp@hlrs.de 

Abstract. This paper presents a software architecture for inter-organizational 
multiagent systems. The architecture integrates multiagent technology with 
Web service technology to overcome the technical interoperability problem of 
current multiagent systems in the fast growing service-oriented environments. 
We integrate Semantic Web technology to overcome the semantic 
interoperability problem in cross-organizational service provisioning. We 
address the problem of interoperability regarding interfaces, messaging 
protocol, data exchanged, and security whilst considering a dynamic e-business 
environment. The proposed architecture enables service virtualization, secure 
service access across organizational boundaries, service-to-agent 
communication, and OWL reasoning within agents. 

Keywords: multiagent systems, web services, semantic web 

1   Introduction 

In recent years, Service-oriented computing (SOC) has lead to significant 
transformations of industrial software architectures. SOC is in particular aiming at 
more flexible and open architectures which improve cross-organizational applications. 
It has originated a remarkable technology stack for Web services (WS) and respective 
standards which all contribute to systems interoperability. The same can not be said 
for multiagent systems. However, it has been argued that both technologies “need 
each other” [5]. Both are concerned with problem solving by distributed systems, but 
focus on different approaches and offer divergent capabilities: WS-* standards 
facilitate the building of secure, robust and reliable virtual organizations (VOs) to 
solve problems with distributed resources, but lack the capability to react or adapt to 
undesired conditions, changing requirements and in dynamic environments. 
 Multiagent technology, in contrast, offers the capability for flexible and adaptive 
problem solving behavior both on single agent and multiagent level, but lacks 
reliability, security, and robustness [5]. Thus, combining WS and multiagent 

25



 

technology could make use of the advantages of both technologies while avoiding 
their respective drawbacks. 

WS specifications foster interoperability on the technical level regarding interfaces 
(e.g., WSDL) and messaging protocol (e.g., SOAP). However, specifications of the 
data exchanged (i.e., message contents) is beyond the scope of WS specifications. The 
Semantic Web (SW) approach, in contrast, focuses on semantic interoperability. 
Thus, we propose an approach combining multiagent, WS, and SW technologies and 
contribute a software architecture for inter-organizational multiagent systems. We 
address the problem of interoperability regarding interfaces, messaging protocol, data 
exchanged, and security. Our proposed architecture enables service virtualization, 
secure service access across organizational boundaries, service-to-agent 
communication and OWL reasoning within agents.  

The remainder of this paper is as follows: section 2 defines the architectural 
requirements. In section 3, we describe our approach for integrating multiagent and 
Web service technologies. Section 4 describes the integration of multiagent and 
Semantic Web technologies. We provide a preliminary evaluation of parts of the 
architecture in section 5. Section 6 discusses related work. Section 7 summarizes the 
result and gives an outlook to future work.  

2   Requirements Analysis 

For the targeted interoperability of agent-based systems, agents must have adapters to 
WS systems; i.e., agents need capabilities for interactions with systems following the 
Service-oriented architecture (SOA) paradigm. In addition, the inter-agent 
communication has to be conceptually based on standardized agent communication 
mechanisms (e.g., [3]). Communication means of agents have to be integrated with 
Web service technologies to (i) ensure the preservation of the SOA properties 
interoperability, reliability, security, and robustness for the integration and to (ii) 
enable the utilization of existing SOA infrastructures. 

Communicating components need to have a common understanding of exchanged 
messages. This means at least, that exchanged messages can be enriched by 
annotations which refer to a shared conceptualization. Semantic technologies support 
the agents having behaviors with reasoning capabilities about the current agents’ 
environment, the internal status and especially messages received from other agents. 
Table 1 summarizes these requirements. 

Table 1.  Requirements.  

Requirement Description 
1 The inter-organizational communication interfaces and messaging protocol 

are based on Web service standards. 
2 Agents have capabilities for calling Web services and for providing Web 

service interfaces. 
3 The data exchanged between organizations is semantically annotated based on 

Semantic Web standards. 
4 The agents’ internal reasoning is linked to semantically annotated data 

utilized in inter-organizational communication. 

26



 

3   Integrating Multiagent and Web Service Technologies 

3.1   Encapsulation of Web Service Resources 

We propose an approach for coupling of WS and agent technology in a head body 
architecture [7]. The head body paradigm implies a conceptual separation of a 
software agent into two parts – head and body. The agent’s head is used for 
interactions with other agents. This includes reasoning about interactions such as 
participating in cooperative processes for problem solving. The body is encapsulating 
any other (domain) functionality of an agent [7]. The head body paradigm is used in 
the approach shown in Fig. 1. WS resources that are represented by agents are part of 
the body. The agent’s core capabilities are implemented in the head; i.e., interactions 
and especially coordination with other agents in the agent society. The agent 
communicates with the encapsulated WS via WS sensor and WS effector. 

On the conceptual level, agent-to-agent communication is based on FIPA 
communication standards (e.g., [3]). On the technical level, agent-to-agent 
communication is based on WS technologies and standards. Therefore, the agents can 
be used in existing WS infrastructures and systems. The presented approach of 
coupling WS and agents allows the utilization of multiagent coordination protocols 
for the coordination of existing WSs in existing infrastructures. A WS which is 
represented by an agent can transparently be invoked by WS clients. The agent can 
evaluate the invocation requests and can reason if an invocation of the encapsulated 
WS is in accordance to its own goals. If the invocation request is opposed to the 
goals, the agent can intercept the invocation and the encapsulated WS is not invoked. 
Further, the agents can pro-actively work towards the goals; e.g., maximizing revenue 
for encapsulated resources by establishing Service Level Agreements (SLAs). 

MULTIAGENT SYSTEM

GRID

Service 
Provider 
Agent

Body

Provider 
Web Service

Head

Service 
Customer 

Agent

Body

Customer 
Web Service

Head

WS Interfaces 
based SOAP 

Communication

Agent FIPA 
Communication via

 WS Middleware

GatewayAgent’s
WS 

Interface

Agent 
invokes 

WS

 
Fig. 1. Head Body Architecture 

3.2   Secure Inter-organizational Agent Communication 

For multiagent systems, FIPA provides specifications in the area of Agent 
Communication and Agent Message Transport. The Agent Message Transport group 
defines ACL (Agent Communication Language), envelope representations, and the 

27



 

transport protocols that can be used to transfer agent messages between hosts. 
Currently IIOP and HTTP protocols are supported for agent message transport (WAP 
support is experimental). The problem concerning multiagent and WS integrations is 
that the use of IIOP and WAP is declining, while the HTTP based MTP (Message 
Transport Protocol) is incompatible with SOAP, which is the most commonly used 
WS messaging protocol.  

Furthermore, the communication between multiagent groups, containers or 
platforms also raises issues when this communication crosses organizational 
boundaries. Organizations often aim at providing a unified messaging architecture, 
which can be administered and monitored easily and centrally. The aim of such 
messaging architectures is to ensure the reliability, flexibility, and security of message 
transfers. Since we propose a mixed environment of WSs and agents, a natural 
solution is to transfer messages using SOAP and WS-* standards. Therefore, we 
utilize SOAP as message transport between multiagent platforms. 

Uniform transportation of agent and WS messages simplifies system 
administration and enables common mechanisms to be introduced in routing and 
delivery. This is achieved by adding support for a new MTP to agent platforms. The 
SOAP MTP add-on [12] is a pluggable driver for sending and receiving SOAP 
messages and translating them to/from internal agent message format. Each agent 
platform uses the SOAP MTP add-on configured with a virtual endpoint address, 
which is mapped to the agent platform address in the Gateway component. The virtual 
endpoint address is also advertised in registries and directories outside the 
organizational domain, so that external entities will use the virtual address to reach 
the agent platform. 

Agent platforms can be operated in separate organizational domains. Inside each 
platform the communication between agents is usually not supervised and not 
restricted. Similarly, agents can access WSs freely inside the domain. However, the 
communication between agent platforms has to be supervised, according to current 
policies of the embedding domains. In order to allow for a seamless integration of 
components, a corresponding flexible and adaptive messaging infrastructure, 
commonly titled as “Enterprise Message Bus”, has to be provided. The Gateway 
Toolkit provides such a messaging infrastructure by allowing for a “double-blind” 
virtualization approach. On customer side, the Gateway Toolkit allows to hide the 
corresponding service provider (SP) which allows to describe corresponding 
workflows in a more abstract manner. Additionally, the customer can easily change 
service providers by adapting the routing information of the Gateway Toolkit 
infrastructure whilst not affecting the corresponding workflows. The SP can easily 
hide the underlying service infrastructure by providing virtual, callable service 
endpoints to potential customers. The major benefit of the service provider hereby is 
that he is now able to adapt the underlying service infrastructure whilst not affecting 
the corresponding service customers. The SP is additionally enabled to involve third 
party SPs for particular sub-tasks without affecting the customer. 

Through using “double-blind” virtualization mechanisms, i.e., by deploying the 
gateway on both consumer and SP side, it is possible to alter resources and providers 
without affecting the calling applications. This deployment of the gateway allows a 
transparent and secure interaction channel for the involved agents. In particular, the 
gateway allows the provision of virtual endpoints via which the corresponding agents 

28



 

are able to interact with each other in a secure way without the need for the agent to 
explicitly consider the corresponding security as well as the according WS standards. 
The interaction is done completely transparent for the agent whilst considering 
dynamic e-business needs; e.g., the possibility to change service provider during 
runtime, transparent usage of resources whilst considering accounting and secure and 
reliable communication. Other approaches like the AgentWeb Gateway [16] or the 
WSIG [6] approach also provide basic support to enable agents to communicate via 
WS technologies. However, these approaches lack in facing these essential e-business 
requirements thus enforcing the agent developer to adapt the setup of the 
corresponding framework every time an evolution step has been processed (cf. §6). 
To this end the interaction via virtual endpoints allows the adaption of the 
communication infrastructure during runtime; e.g., in the case an agent has to be 
replaced by another without affecting the remaining involved agents at any time, 
which is an essential need for dynamic e-business environments. 

Messages between administrative domains are sent and received by the Gateway of 
each domain (Fig. 2). In our example the Jade agent platform [8] is used. The 
Gateway mediates the communication between the front end WSs of the two domains. 
Each front end authenticates itself to their respective Gateway. The Gateway allows 
the invocation of virtual service endpoints by resolving these virtual to concrete 
endpoints via the service instance registry (SIR). The SIR also provides additional 
metadata such as the gateway endpoint that the message has to travel through, as well 
as the endpoint of the security token service (STS) where tokens affiliated with this 
service can be requested. Virtual addresses used in SOAP messages can be translated 
dynamically to appropriate real services. 

Consumer 

Gateway

Service
Instance
Registry

Security
Token

Service

Service Provider

Agent Container

Gateway

Agent

Agent

Security
Token
Service

Service
Instance
Registry

Agent Container

Agent

SOAP MTP

Agent

Endpoint

Client

SOAP MTP

Client

Endpoint

Messaging
Service

Messaging
Service

… …

 
Fig. 2. Inter-organizational Agent Communication 

The STS issues claim-based tokens to authenticated users, respectively agents, and 
is also involved in the process of establishing federation with the STS in the SP 
domain. The consumer-side role of the STS issues tokens that are necessary to pass 
the security check on the service side. The tokens are generated based on the 
information that is extracted from the service call message. The service-side role of 
the security token service acts not as token issuer but as verification instance for 
security tokens that are attached to the incoming message. It hence has the role of a 
policy decision point (PDP). In the example, the consumer requests a service from his 
own SIR by providing an URN (uniform resource name) and the SIR returns the 
virtual address along with the endpoints of the gateway and the STS. The provider 
side SIR will convert the server side virtual endpoint to an actual endpoint where the 
client request can be satisfied. 

29



 

The following steps are executed when sending a message to a remote agent 
platform: (1) The consumer agent addresses the message using the virtual endpoint 
address of the remote agent on the SP side. (2) The Messaging Service detects that 
this address belongs to the SOAP MTP, and forwards the message to the SOAP MTP 
add-on for delivery. (3) The SOAP MTP client prepares the SOAP message, and 
delivers it to the virtual address of the remote agent, but the outgoing message is 
actually caught by the local Gateway. (4) The local Gateway identifies the recipient 
SP using the SIR, and arranges for a security token with the STS of both sides. (5) 
The message is sent to the Gateway at SP side. (6) The SP Gateway checks the access 
rights for the service, decrypts the message, then finds the real endpoint service using 
the SIR, and calls the endpoint of the Jade platform. (7) The SOAP MTP of the SP’s 
Jade platform reconstructs the original agent message and passes it to the internal 
Messaging Service, which finally delivers it to the recipient agent. 

4   Integrating Multiagent and Semantic Web Technologies 

The belief-desire-intention (BDI) approach [1] is the most common architecture for 
deliberative agents, agents who deliberate over symbolic knowledge to reach given 
goals [18]. That is, the BDI architecture facilitates goal-driven system behavior. The 
model consists of the following concepts: beliefs capture informational attitudes 
realized as a data structure containing current facts about the world. Desires capture 
the motivational attitudes realized as goals that represent the concrete motivation; i.e., 
desires capture a set of goals to be realized. Intentions capture the deliberative 
attitudes realized by reasoning to select appropriate actions to achieve given goals or 
to react to particular situations. 

A BDI agent is equipped with sensors to assist it on its environmental awareness, 
and effectors to impact the environment by actions. A reasoning mechanism between 
the sensors’ input and the effectors’ output deduces the necessary actions for 
achieving the agent’s goals. The agent acquires new beliefs in response to changes in 
the environment and through the actions that it performs as it carries out its intentions 
[1]. Thus, the BDI agents allow reasoning regarding decisions to determine which, 
possibly conflicting, business goals can be achieved and how the agent is going to 
achieve these goals. For example, for an agent representing a resource of our case, 
beliefs correspond to the state, capabilities, and SLAs of the resource; desires 
represent the business goals of the resource provider, while intentions result from a 
collection of possible decision mechanisms to select and execute requests to use the 
resource. 

In addition, the BDI concept has been integrated with semantics: the agent’s 
beliefs, stored in the agent’s beliefbase, are completely based on semantic data. 
Further, semantic reasoning is applied to derive new knowledge – especially required 
actions to reach goals – based on the semantic beliefs. Conceptual definitions of SLA 
parameters, metrics, and economic values as well as resource characteristics are given 
in an OWL DL ontology [17]. New data arriving to the agents are inserted into the 
knowledge base, which is automatically enriched using DL reasoning. Agents can 
then retrieve the results of reasoning via the beliefs. This provides essential support 

30



 

towards the targeted technical interoperability over organizational boundaries, 
representing real-world business relationships. 

Fig. 3 shows the interactions of the Semantic BDI Agent’s internal components for 
semantic BDI reasoning: based on an internal (step 1) or external (step 2) event, the 
agent first stores new facts into its beliefbase (step 3). The agent utilizes semantic 
reasoning to assess the event, deriving new knowledge (step 5-10) and especially 
appropriate intentions to achieve the agent’s goals (step 11). These intentions lead to 
actions (step 12) which potentially include interactions with external components via 
the agent’s effector (step 13). 

 
Fig. 3. Semantic BDI Reasoning Sequence Diagram 

The semantic core, an embedded OWL engine is connected to the BDI agent via 
the beliefbase. The implemented BDI agent plans add or modify facts in the semantic 
database, which activate any OWL DL reasoning, SWRL or other rules inside the 
semantic core. The BDI agent core (Jadex [10] in this case) polls dedicated beliefs, 
which are actually stored in the semantic database. Thus, when reasoning changes the 
semantic representation of the agent beliefs inside the semantic core, it can trigger a 
goal via the BDI beliefs. Finally, when goals activate selected plans, the semantic 
core is updated and the loop starts again. We experimented with prototype 
implementations for the embedded lightweight semantic core using the Jena SW 
toolkit, Jena built-in rules and Pellet OWL reasoner (applicable as SWRL rule engine 
as well). Both solutions provided a small and effective extension to our BDI agents. 

31



 

In order to exchange semantic data, the components can apply two methods.  RDF 
can be exchanged as plain text (the N3 notation is more convenient during 
development).  Further, semantic annotations can be used with existing XML message 
formats. An example for the latter is the Semantically Annotated SLA (SA-SLA) 
format, used for the negotiation of Service Level Agreements (SLAs) between agents 
[14]. SA-SLA takes an existing XML representation of SLA and connects XML 
elements to corresponding ontology concepts. Therefore, the common interpretation 
of loosely defined XML elements is ensured. In contrast to existing approaches (e.g., 
[11]), our approach allows utilization of OWL not only as a content language for 
agent messages but also for data exchange with other software components (e.g., 
WSs). In addition, it enables to determine appropriate actions to reach the agents’ 
goals based on semantic reasoning. 

5   Evaluation 

This section provides an initial evaluation of the inter-organizational agent 
communication. The goal of this evaluation is to provide evidence that the proposed 
approach does not result in inappropriate temporal overhead. The experiments 
evaluate the proposed SOAP MTP and Gateway infrastructure in comparison to the 
established agent message transport via RMI and HTTP regarding performance in 
terms of communication time. In the following experiments we compare the agent 
message transport (1) locally via RMI, agent-to-agent communication on one 
platform, (2) distributed via HTTP, agent-to-agent communication on different 
platforms/machines via HTTP, (3) distributed via SOAP MTP, agent-to-agent 
communication on different platforms/machines via SOAP MTP, and (4) distributed 
using Gateway infrastructure, agent-to-agent communication on different 
platforms/machines via SOAP MTP using the Gateway infrastructure. 

The setup of experiment1 contains two agents which interact accordant with the 
FIPA Request Interaction Protocol [4]. Agent1 constitutes the initiator; it sends a 
request to Agent2, the participant. Agent2 replies to the request with an inform 
message to Agent1. The experiment repeats this process 1,000 times for each type of 
agent message transport. The duration of the protocol execution is measured for every 
iteration. Fig. 4 shows the results of experiment1 in one chart for each type of agent 
message transport. Table 2 shows the average values of the protocol execution 
duration for every type of agent message transport. 

 
Fig. 4. Experiment 1 

32



 

Table 2.  Average duration of the protocol execution in experiment1 

 Local HTTP SOAP MTP Gateway 
Average execution duration [ms] 3,019 3,023 3,053 3,641 

 
In experiment2, the setup of experiment1 is extended to 20 agents. Ten agents act 

as initiators and ten as participants. Each of the ten initiators sends 100 requests to 
each of the ten participants. The duration of the protocol execution is measured for the 
10,000 interaction iterations. Fig. 5 shows the protocol execution duration during 
experiment2 in one chart for every initiator agent (Agent1 – Agent10) and one chart 
for the average values over all initiator agents. Table 3 shows the average values of 
the protocol execution duration of every initiator agent for every type of agent 
message transport and the average values over all initiator agents. 

The results of experiment1 shows that the local RMI transport, the distributed 
HTTP, and SOAP MTP transport differ in a small range of about 35ms. The gateway 
approach differs from the other approaches with about 600ms (20%). 

In the experiment with 20 agents, the average execution duration of the local RMI, 
distributed HTTP, and SOAP MTP transport approach raises to approximately 
4,400ms. However, the average value of the gateway transport approach differs from 
the other approaches in experiment2 with only about 500ms (11%). An analysis of the 
charts of the single agents shows that the divergences from the average values are 
more explicit in this experiment. These divergences are caused by the mechanisms of 
the BDI framework and relativize the duration differences regarding the type of agent 
message transport which is also visible in the chart with the consolidated average 
values over all initiator agents. 

Table 3.  Average duration of the protocol execution in experiment2 

 Local HTTP SOAP MTP Gateway 
Agent1 [ms] 4,376 4,458 4,433 4,806 
Agent2 [ms] 4,365 4,511 4,409 4,842 
Agent3 [ms] 4,304 4,476 4,412 4,828 
Agent4 [ms] 4,373 4,435 4,447 4,825 
Agent5 [ms] 4,368 4,478 4,376 4,914 
Agent6 [ms] 4,366 4,488 4,420 4,956 
Agent7 [ms] 4,325 4,472 4,434 4,922 
Agent8 [ms] 4,368 4,477 4,414 4,946 
Agent9 [ms] 4,375 4,511 4,420 4,951 
Agent10 [ms] 4,338 4,472 4,409 4,916 
Average values Agent1 – Agent10 [ms] 4,356 4,478 4,417 4,891 

33



 

 
Fig. 5. Experiment 2 

6   Related Work 

The coupling of agents and WS resources in a similar approach is investigated in 
[15], though the authors remain on a very high level of abstraction and do not 
consider agent-to-agent communication based on WS-technology. The Web Service 
Integration Gateway (WSIG) [6][9] is an official Jade plug-in, which provides 
bidirectional invocation facility, by which Jade agents can call WSs and WS clients 
can call Jade agent services. The connection of agents and WSs is implemented using 
elaborate on-the-fly translation between agent messages and SOAP messages. 
However, WSIG cannot connect agent platforms via SOAP and does not allow 
transparent wrapping of agent message content into SOAP, thus it fails to support the 
above mentioned e-business scenarios (dynamically changing business partners, 
secure communication, etc.). The AgentWeb Gateway [16] is a middleware between 
agent platforms and WS platforms, which provides protocol transformations similar to 
WSIG. This approach also lacks the flexibility we missed for WSIG, and furthermore 
the code seems to be unavailable. We evaluated several other approaches for this 
aspect of our architecture and found that most of them are not available for re-use. 
Details of our evaluation can be found in [12]. 

34



 

Moreira et al. presented the AgentSpeak-DL dialect, which extends AgentSpeak 
towards Description Logic (DL) [13]. However, AgentSpeak-DL is a specific 
language, and its connection or interoperability with existing OWL ontologies is not 
straightforward. Therefore, it is not an ideal support for the use of shared OWL in a 
distributed scenario. AgentOWL is a Jade plug-in, enabling agents to exchange 
SPARQL and OWL in ACL messages [11]. It also contains an embedded inference 
engine and connection possibility with remote knowledge bases. It was still not 
feasible to use it in our scenario as AgentOWL was not integrated with the Jadex BDI 
implementation, and furthermore its interoperability with external ontologies was 
unsuitable for our purposes. Nuin [2] is an agent framework designed for practical 
development of agents in SW applications based on BDI principles. The agents 
running in Nuin may have access to different knowledge sources, including RDF and 
OWL ones. Despite that Nuin does not support RDF knowledge sources fully, our 
approach establishes a direct connection between the agent belief base and the 
underlying OWL knowledge base, which supports both accessing and modifying 
OWL facts. 

7   Conclusion 

The contribution of this research is a software architecture for inter-organizational 
multiagent systems. A key advantage of the presented architecture is a simple, yet 
powerful communication using a single message bus for both agents and WSs, 
gateways for the protection of organizational boundaries, and exchange of semantic 
content based on shared ontologies. An example for the successful application of all 
these benefits is SLA negotiation, where the SLA requests and offers can be 
exchanged using common semantics among several service providers. Furthermore, 
SLAs can be interpreted and reasoned about inside agents, enabling the use of agent 
cooperation mechanisms for SLA negotiation. 

Using the proposed architecture based on WS technology, agent messages can be 
transferred in a secured way, agent messages can be routed through gateways, and 
agent addressing can be virtualized; i.e., the agent platform can be dynamically 
relocated to a different address. The accessibility of agent platforms can be enhanced, 
as SOAP-based transport is more tolerant with firewalls and other security 
restrictions. Heterogeneous WS and agent environments may use a homogeneous 
message transport layer which reduces the complexity of system administration. It 
also enables secure inter-organizational transfer of agent messages between agent 
platforms, thus facilitating the advantages of both, multiagent and WS, technologies 
in a single environment. The preliminary evaluation has shown that the relative 
temporal overhead of the gateway communication decreases with the number of 
communicating agents. 

The utilization of explicit semantics further facilitates the semantic interoperability 
by incorporating domain knowledge in all phases of the service life cycle. Future 
research has to investigate how updates of the shared ontologies can be synchronized 
among the participants, including authorization aspects. Simulations of advanced 
scenarios have to further underpin the applicability and utility of the architecture. 

35



 

Acknowledgments. This work has been supported by the BREIN project 
(http://www.gridsforbusiness.eu) and has been partly funded by the European 
Commission under contract FP6-034556. 

References 

1. Bratman, M. E.; Israel, J., Pollack, M. E.: Plans and resource-bounded practical reasoning. 
In: Computional Intelligence 4, 349-355 (1988) 

2. Dickinson, I.; Wooldridge, M.: Towards Practical Reasoning Agents for the Semantic Web. 
In: Proceedings of the 2nd Int. Joint Conf. on Autonomous Agents and Multi-Agent 
Systems (AAMAS-03), Melbourne, Australia (2003) 

3. FIPA Communicative Act Library Specification, http://www.fipa.org/specs/fipa00037/ 
4. FIPA Request Interaction Protocol Specification, http://www.fipa.org/specs/fipa00026/ 
5. Foster, I.; Jennings, N. R.; Kesselman, C.: Brain meets brawn: why Grid and agents need 

each other. In: Proceedings of the 3rd International Conference on Autonomous Agents and 
Multi-Agent Systems (AAMAS 2004), New York, USA. pp. 8-15 (2004) 

6. Greenwood D.; Calisti, M.: Engineering Web Service - Agent Integration. In: Proceedings 
of the IEEE International Conference on Systems, Man & Cybernetics. The Hague, 
Netherlands, IEEE (2004) 

7. Haugeneder, H.; Steiner, D.: Ein Mehragentenansatz zur Unterstützung kooperativer 
Arbeit. In: Hasenkamp, U.; Kirn, St.; Syring, M. (ed.): CSCW – Computer Supported 
Cooperative Work. Addison Wesley, Bonn et al., pp. 203–229 (1994) 

8. Jade - Java Agent DEvelopment Framework, http://jade.tilab.com/ 
9. Jade Web Services Integration Gateway (WSIG) Guide, 

http://jade.tilab.com/doc/tutorials/WSIG_Guide.pdf 
10. Jadex BDI agent system, http://jadex.informatik.uni-hamburg.de 
11. Laclavík, M.;  Balogh, Z.; Babík, M.: AgentOWL: Semantic Knowledge Model and Agent 

Architecture. Computing and Informatics. Vol. 25, no. 5, p. 419-437 (2006) 
12. Micsik, A.; Pallinger, P.; Klein, A.: Soap based message transport for the jade multiagent 

platform. The 8th International Conference on Autonomous Agents and Multiagent 
Systems (AAMAS 2009) Industry track, Budapest, Hungary, May 10-15 (2009) 

13. Moreira, Á.F.; Vieira, R.;  Bordini, R.H.; Hübner, J.: Agent-oriented programming with 
underlying ontological reasoning,  In: Baldoni, M., Endriss, U., Omicini, A., & Torroni, P. 
(Eds.), Proceedings of the Third International Workshop on Declarative Agent Languages 
and Technologies (DALT-05), held with AAMAS-05, 25th of July (2005) 

14. Munoz, H.; Kotsiopoulos, I.; Vaquero, L. M.; Rodero, L.: Enhancing Service Selection by 
Semantic QoS. In Proceedings of the 6th European Semantic Web Conference on the 
Semantic Web, Crete, Greece (2009) 

15. Negri, A.; Poggi, A.; Tomaiuolo, M.: Intelligent Task Composition and Allocation through 
Agents. In: Proceedings of the 14th IEEE International Workshops on Enabling 
Technologies: Infrastructure for Collaborative Enterprise (WETICE'05), pp. 255-260 
(2005) 

16. Shafiq, O.M.; Ali, A.; Ahmad, H.F.; Suguri, H.: AgentWeb Gateway - a middleware for 
dynamic integration of Multi Agent System and Web Services Framework, 14th IEEE 
International Workshops on Enabling Technologies: Infrastructure for Collaborative 
Enterprise (WETICE'05), pp. 267-270 (2005) 

17. W3C: Web Ontology Language (OWL), http://www.w3.org/2004/OWL/ 
18. Wooldridge, M.: Reasoning about rational agents. MIT Press (2000) 

36



Ontology Matching across Domains 

Renato Levy1, Jakob Henriksson1, Margaret Lyell1, Xiong Liu1,  
Michael J. Mayhew2 

 
1 Intelligent Automation, Inc., 15400 Calhoun Drive, Suite 400 

Rockville, MD, USA, 20855, +1-301-294-5200 
{ rlevy | jhenriksson | mlyell | xliu }@i-a-i.com 

2 Air Force Research Laboratory, Information Directorate 
525 Brooks Road, Rome, NY, USA 13441, +1-315-330-7380 

michael.mayhew@rl.af.mil 
 

Abstract. Ontologies are often used to annotate information (metadata) that is 
passed between domains during negotiation. In that sense, Ontology matching is 
critical for the receiving domain to gather the correct meaning of the data, and 
hence critical for interoperability. Many Ontology matching algorithms have 
been proposed in the literature but in general they all assume that there is a 
considerable amount of knowledge about both ontologies (sender and recipient). 
This assumption is not true in many cases. In this paper, we present an approach 
that does not require such assumption, allowing the parts to keep a considerable 
amount of secrecy on their Ontology while still providing the required matching 
functionality. 

Keywords: Ontology, matching algorithm, metadata, cross-domain, multi-
language interoperability 

1   Introduction 

Ontologies are often used to annotate information (metadata) that is passed 
between domains during negotiation. In that sense, Ontology matching is critical for 
the receiving domain to gather the correct meaning of the data, and hence critical for 
interoperability. Many Ontology matching algorithms have been proposed in the 
literature but in general they all assume that there is a considerable amount of 
knowledge about both ontologies (sender and recipient).  

The manner in which an ontology is organized can give valuable insights on the 
organization’s knowledge representation and the importance, complexity or amount 
of data expressed in this knowledge base. This information in itself is very valuable 
and the assumption that negotiations can happen across domain boundaries with full 
disclosure of the domain’s ontologies are naïve at best. 

In this paper, we present an approach that does not require such assumption, 
allowing the parts to keep a considerable amount of secrecy on their Ontology while 
still providing the required matching functionality. In fact, we want, as much as 
possible, to keep the upkeep of the sending and receiving ontologies separated. This 
creates an extra layer of complexity for Ontology matching problem, since the 
metadata associated with the information must be converted to the receiving ontology 
at the domain boundary.  

37



The ontology matching process across domain boundaries has some extra 
requirements form the traditional academic problem that makes it unique. Some of 
these key issues are: 

• Multilingual/multicultural  One important issue in the cross-domain arena is 
that the Ontologies to be matched maybe in different languages (multi-
national negotiations), hence syntax proximity is not relevant.  

• Independent management/runtime matching  Another important issue to be 
observed is the ability to handle the matches quickly at runtime, without an 
extensive preparatory effort, thus allowing the Ontologies to be managed 
independently. 

• Limited information exchange  In the case of cross-domain, the participants 
of the Ontology matching may not want to disclose their full ontology, but 
only the necessary information for a correct matching to be performed. One 
must remember that the need for the ontology matching if often not a 
translation, but only the adjustment of the metadata and the coherence and 
continuity of its properties. 

Although the existing literature does not directly apply to this practical extended 
problem, we were able to find relevant work that we believe can be adapted/enhanced 
to work in our domain.  

1.1   Related work 

Ontology matching is the process of finding semantic correspondence between 
similar entities of different ontologies. A lot of work has addressed the problem of 
ontology matching. Here we describe five major matching methods that have been 
reported in the literature, including graph-based matching, linguistic matching, hybrid 
matching, learning based matching and probabilistic matching. 

1. Graph-based matching or structural matching uses graphs to represent 
ontologies and computes structural similarities of graphs. Examples of graph-based 
matching include GMO [1], Anchor-Prompt [2], and Similarity Flooding [3]. GMO is 
an iterative structural matcher, which uses RDF bipartite graphs to represent 
ontologies and computes structural similarities between entities by recursively 
propagating their similarities in the bipartite graphs. This is an approach that we 
possibly can exploit and hence take a closer look at it in section “Adjacency Matrix-
Based Matching Algorithm” below. Anchor-Prompt is an ontology merging and 
mapping tool, which treats ontologies as directed labeled graphs. The basic idea is 
that if two pairs of entities are similar and there are paths connecting them, then the 
entities in these paths are often similar as well. Similarity Flooding is a graph matcher 
which uses fixpoint computation to determine corresponding nodes in the graphs. The 
basic idea is that the similarity between two nodes depends on the similarity between 
their adjacent nodes, or similarities of nodes can propagate to their respective 
neighbors. 

2. Linguistic matching lies in the construction of virtual documents. The virtual 
document of an entity in an ontology contains the local descriptions as well as 
neighboring information that contains the meaning of the entity. Then calculating the 
similarities of entities translates to the problem of calculating document similarities 

38



using traditional vector space techniques. V-Doc [4] is an example of linguistic 
matcher. It exploits the RDF graph to extract the description information from three 
sorts of neighboring entities, including subject neighbors, predicate neighbors and 
object neighbors. 

3. Hybrid matching uses linguistic information (e.g., name, label, and 
description) and structural information (e.g., key properties, taxonomic structure) to 
find correspondences between entities. For example, PROMPT [5] is a hybrid 
matching tool for user oriented ontology merging. To make the initial suggestions, it 
uses a measure of linguistic similarity among concept names and mixes it with the 
structure of the ontology and user’s actions. For each operation, it finds conflicts that 
the operation may introduce and presents new suggestions to the user. 

4. Learning based matching is efficient when instances are available in 
ontologies. GLUE [6] is an example of learning based matching system. It first 
applies statistical analysis to the available data and uses multiple learners to exploit 
information in concept instances and taxonomic structure of ontologies. It then uses a 
probabilistic model to combine results of different learners. Finally it adopts 
relaxation labeling approach to search for the mapping that best satisfies the domain 
constraints and the common knowledge. 

5. Probabilistic matching is also used on instance level in ontology matching. 
For example, OMEN [7] is a tool which describes mappings using probabilities and 
infers new mappings by means of Bayesian Network inference. 

 
The rest of this paper is organized as follows: In section2, we present the overall 

approach for the extended cross-domain Ontology matching problem, and in section 3 
present an example on the matching methodology proposed. Section 4 gives more 
details on how to successfully implement such methodology. Finally, section 5 
discuses our conclusions and the future work in this area. 

 

2. Overview of Approach 

In a collaborative environment, every participant has their own priorities and 
perspectives of their reality—they each have their own domain model. The domain 
model highlights what is considered important and formally structures the domain. 
Such a domain model is the base of the ontology used to describe the concepts on the 
domain. It is clear, however, that the ontology of one collaborative participant does 
not always match the ontology of another participant. In fact, it is highly unlikely that 
this is the case, while at the same time it is likely that the ontologies overlap to some 
degree. After all, the participants have a desire to communicate so it’s likely they 
have some overlapping terms in their ontologies. We will later refer to these 
overlapping terms as anchors.  

In a cross domain environment that intends to share information between domains, 
security plays an important role. Hence, not only do domains have an ontology that 
describes their world, but they also limitations on how much of this ontology can be 
shared. These policies refer to the ontology since the policies are specified over the 
ontology terms (the resources in the domain). We will not focus on the policies here, 

39



but it is important to understand that there are properties associated with the ontology 
terms and policies that limit the amount of information that can be shared. 

So, each domain has a domain ontology and security restrictions specified by 
policies. This means that any data in the domain is classified according to the 
ontology, and hence has access restrictions in place.  

The premise of interoperability is that information (data) can flow between 
domains and have their key properties recognized, while still being able to ensure the 
policy restrictions. In short, the premise of interoperability that data requires metadata 
to be understood, and the realization that there are limitations on how to translate the 
metadata context greatly increases the overall complexity of the principle. An 
illustration of the setup is given in Figure 1. 

 

 
Since the ontologies differ, the security insurances (policies) also do not fit exactly. 
None the less, the data sent across domain boundaries eventually need to be stored 
according to the ontology of the receiving domain, and secured by its policies. Hence, 
to overcome these problems, some issues must be addressed: 

• Ontologies cannot be assumed to be fully shared or disclosed between domains, 
since each domain wants to protect the details of its domain understanding  

• Even if we can identify an appropriate concept in the receiving domain 
ontology that can be used to classify a data item, we cannot assume that the 
sending domain fully accepts the policy restrictions that are placed on this 
resource concept. 

Even if domains do not want to fully disclose their ontologies, they can agree on 
certain concepts that they share and can disclose. These concepts would manually be 
determined by human representatives of the domains. In order to be consistent with 
nomenclature used in previous literature [8], we call these concepts anchors.  

By having a guaranteed partial ontology overlap, it is possible to match a concept 
in the sending domain ontology with a concept in the receiving domain ontology to a 
sufficient degree of accuracy. Even if the match is not exact, the sending domain 
might agree with the security assurances and overall properties provided by the 
receiving domain and may send the data confident. An initial overview of the process 
is shown in Figure 2.  

 
Figure 1. Associated metadata (policies) is always attached to the information 

40



 
In more detail, the steps are the following: 

 
1. Describe matching metrics. The first step is for the sending domain to get 

assurances that the data that eventually can be sent with a sufficient matching concept 
in the receiving domain. Hence, before any data is actually sent, the domains need to 
negotiate. The data to be sent from the sending domain has some metadata associated 
with it. In particular, it is declared to be an instance of a particular concept C in the 
domain ontology. The sending domain, averse to disclosing too much of its ontology, 
effectively decides on an appropriate subset of the ontology to send over to the 
receiving domain. This subset is however made anonymous. By this is meant that all 
entity names, except the anchors (which are already shared), are removed (or changed 
to meaningless names).  

The aim of the sending domain is to provide enough information to the receiving 
domain such that a similar concept can be found in its ontology by which the received 
information can eventually be categorized and secured by policies. It should be noted 
that more than a simple topology of the selected ontology subset is communicated. 
Rather, what is sent is a set of metrics that can be used for matching against the 
receiving domain ontology. These metrics are descriptions of how the concept C 
relates to the anchors. This is important since this is the only way for the receiving 
domain to be able to find a matching concept (since they share anchors).  
 
An example of a metrics for concept C could be: 

(IS-A, 1, “Anchor Concept 1”). 
This metric says that the concept C is a subclass of the anchor “Anchor Concept 1”. 
The metrics:  

(IS-A, 2, “Anchor Concept 1”) 
for concept C means that C is related to “Anchor Concept 1” by two IS-A (or 
subclass-of) relationships. That is, there is some concept X that is a subclass of 
“Anchor Concept 1” and C is a subclass of X. Another metrics that partially describe 
the sending domain ontology can also be given as we will see in examples below.  
 
2. Match ontologies. Once a set of metrics <M1, …, Mn> has arrived at the 
receiving domain, it tries to determine which concept in its ontology, if any, might be 
a good match for the data that will arrive. This is done by applying graph search 
algorithms based on the received metrics. Each entity in the domain ontology is given 

 
Figure 2. Overview of the ontology matching process. 

41



a score (value between 0 and 1) for each metric. The set of scores for each entity is 
then combined and normalized into a final value that represents the confidence of it 
being a good match (again, between 0 and 1). The best k matches are selected and 
each associated with a key. The reason for using keys is to avoid having to disclose 
anything of the domain ontology to the sending domain. Then k triples: 

<key, relevant properties, matching score> 
are sent to the sending domain. This gives the sending domain a chance to pick a 
desired match.  
 
3. Metadata and selection. The sending domain can now make its decision based 
on the received response triples: the property set for a particular match and its 
likeliness of being a good match. The most likely scenario is for the sending domain 
to prioritize on a given property, but this must not be the case. In some cases a good 
match might be preferred despite detail degradation, while in other cases a lesser 
ontology match might be preferred when a given property has a higher priority. 
Nonetheless, the choice lies with the sending domain that is responsible for the data 
leaving its domain. Without acceptable guarantees given by the receiving domain, the 
response can also be “reject”, in which case the data is not sent at all. This means that 
the sending domain does not want to send the data to that particular receiving domain. 
If the choice instead is “accept”, one of the keys is picked and the data is sent together 
with the key. The key is here a representative of the metadata in the sense of “data 
and metadata are inseparable.”  

 
4. Data storage. Once the response from the sending domain is received, the 
receiving domain can classify the newly received data by using the correspondent 
concept represented by the key. 

3. Example 

In the following we provide an example that demonstrates the intuition behind the 
steps described above.  

Describe matching metrics. The domain ontology for the sending domain is shown 
in Figure 3. It describes concepts such as “Weather Reading”, “Wind Reading” and 
“Location”. Notice that we do not only have IS-A relationships, we also have disjoints 
(e.g. “Wind Reading” and “Hourly Temperature Reading” are disjoint), properties 
(e.g. location), domain and range restrictions (the domain and range of property 
“location” is “Weather Reading” and “Location”, respectively), and property 
restrictions (e.g. “= 1 location”, which means that an instance of “Weather Reading” 
is related to exactly one instance of “Location” via the property “location”). Hence, 
we make us of several different kinds of ontology constructs to model our domain.  

 

42



 
Concepts with a double border are anchors (pre-agreed and shared concepts). In 

this example the concept “Wind Reading” represents the metadata that is to be sent 
along with the. Since we know that the receiving domain ontology has the concepts 
“Weather Reading” and “Location” (they are the anchors), our goal is to describe 
enough about the concept “Wind Reading” in relation to the anchors such that the 
receiving domain can do a reasonable match onto its concepts and ontology structure. 
This description, which we call our metrics, could for example be the ones given in 
Table 1. 

 
Table 1. Metrics describing a partial ontology 

 
It should be noted that all the descriptions of the metadata concept given in Table 1 

 
Figure 3. Ontology on the sending domain. 

Metric Explanation 
(IS-A, 1, “Weather Reading”) The metadata concept is one step removed 

from anchor “Weather Reading” via a IS-A 
relationship. That is, the metadata concept is a 
subclass of “Weather Reading” 

(disjoint, sibling) The metadata concept has a disjoint sibling 
via the IS-A relationship. Notice that thanks to 
the first metric (above), we already know that 
this is in relation to the “Weather Reading” 
anchor. 

(domain, 1, = 1 restriction, 
range: “Location”) 

The metadata concept is the domain of an 
“exactly one value” restricted property that has 
as range the anchor concept “Location” 

(domain, 1, = 1 restriction, 
range: unknown) 

The metadata concept is the domain of an 
“exactly one value” restricted property that has 
an unknown range concept. Again, we know that 
this description is in relation to the “Weather 
Reading” anchor, and we know that the range is 
not an anchor, because otherwise it could be 
given. 

43



are in relation to an anchor. This is important since the anchors are the only agreed 
upon concepts between different domain ontologies. Intuitively, the descriptions in 
Table 1 correspond to the partial ontology structure highlighted in Figure 4. 

 
It should be noted that it is not always desirable to only match the topological 

structure of ontology graphs. It can also be highly desirable to give larger weight, or 
preference, to certain kinds of relationships. For example, one could say that a 
matching IS-A relationship is more important than whether or not a concept is the 
domain for some specific property. Hence, the relationships between the “nodes” 
(entities) in the ontology structure can play an important role. 

 
Match ontologies. At the receiving domain, we now assume that the metrics, the 

partial ontology description, from Table 1 has arrived. The task is now to determine 
which concept in the local ontology is a likely match for the metadata (concept) that 
will be sent from the sending domain. The local ontology is illustrated in Figure 5. 
The ontology describes similar, but different, terms compared to the ontology in 
Figure 3. That the ontology partly overlap should be clear since they already have 
agreed on some shared concepts (the anchors). 
  

 
Figure 4. Partial ontology structure/graph. 

44



 
The matching is done by searching the local ontology graph structure and assigning 

scores to nodes for each of the metrics. An example of scores given to only some of 
the concepts in the ontology is shown in Figure 6. 
 

 
The orders of the scores correspond to the descriptions in Table 1. For example, the 

first metric in Table 1 states that the metadata concept is a direct subclass of the 
anchor “Weather Reading”. Both the concepts “Coastal” and “Inland” match this 
description and get a high score. The concepts “Coastal Wind” and “Daily 
Temperature Reading” are not exact matches, but close, and receive a lower score. 
These calculations are done for each of the metrics that are sent from the sending 
domain. When we add the scores together we get something like what is shown in 
Table 2. These scores can then be normalized, but this is left out here. 
  

 
Figure 5. Ontology structure in the receiving domain. 

 
Figure 6. Assigning scores to concepts in the receiving domain ontology. 

45



 
Table 2. Scores for metadata concepts. 

Key Metadata Concept Score 
key1 Coastal 0.75 * 0.75 * 0.75 * .30 = 0.1265625 
key2 Inland 0.75 * 0.75 * 0.75 * .30 = 0.1265625 
key3 Coastal Wind 0.75 * 0.75 * 0.75 * .55 = 0.2320312 
key4 Daily Temperature Reading 0.55 * 0.75 * 0.75 * .55 = 0.1701562 

 
A cut-off value can be selected to limit the number of choices sent back to the 

sending domain. For example, 0.16 might be chosen for the above example. Hence, 
the domain would send back the following choices: 

<key3, “property1”, 0.23> 
<key4, “property2”, 0.17> 
Here we have assumed that there is some understanding of what the properties 

description mean, which could be more elaborate and must be pre-agreed between the 
domains along with the anchor concepts. 

Metadata and selection. The sending domain looks at the options, decides that the 
“property1” is equivalent on its original concept for the data to be sent, and decides to 
go with what is considered the best match. Hence, the sending domain sends the data 
together with “key3.” 

Data storage. The response is handled in the receiving domain by properly 
categorizing the data and hence protecting the data according to the policy. In this 
example, the received data would be tagged with the metadata “Coastal Wind”.  
 
Overview Summary 

The example above has been used to demonstrate how ontology matching can be 
used to facilitate cross domain security communication. The approach is based on the 
knowledge that each domain has a domain ontology that acts as its data model. 
Policies are specified with respect to this data/domain model, which are used to 
guarantee the security of the underlying data.  

For domains to share data (secure cross domain information sharing) they first 
need to negotiate the terms for sharing the data. This is done by matching their 
ontologies, but without the requirement to fully disclose their ontologies. To be able 
to do this, the domains have already agreed to certain common concepts. These fully 
disclosed and shared concepts are referred to as “anchors.”  

The domain which is to receive the data, tries to find a good match in its ontology 
and sends some alternatives back to the sending domain, including information about 
the properties associated with those ontology matches. The sending domain then has 
the opportunity to decide what to do, and under which terms to send the data. Once 
the data is sent, the proper matching can be enforced in the receiving domain, as 
agreed to by the sending domain.  

The crucial point here is to investigate good metrics for describing useful ontology 
structure with respect to agreed upon ontology anchors. Further to device a successful 
matching technique that properly can be evaluated and demonstrated to give good 
results. We outline our initial approach to this matching process below, but more 
work and evaluation is needed.. 

46



4. Secure Ontology Matching Algorithm 
In this section, we describe our approach to perform graph-based matching of 

ontologies. Unlike traditional ontology matching which matches the entities between 
different ontologies, our problem is to find the best match (i.e., an entity) in the 
receiving ontology for a given metadata in the sending ontology. Also, only graph-
based matching (or structural matching) is allowed in our problem, because the 
descriptions of the entities in the ontology are not to be shared. 

 

 
 

Architecture Overview 
Figure 7 shows the architecture for ontology matching. On each side, there is a 

domain ontology (or ontology block). Also, there are anchors that are predefined by 
humans. Anchors are alignments with high similarities. They are necessary for finding 
matches of the metadata. The red arrows show the information flow. When the 
sending side receives a metadata, it will construct matrices or a set of descriptions 
describing the relationships between the metadata and anchors. The matrices are then 
sent to the receiving side, which is responsible for finding a list of candidates. Since 
the contents of the candidates are not allowed to be shared, the receiving side will 
only send a list of candidate keys with their properties to the sending side. Then the 
sending side will pick a candidate and send back its choice. Finally the receiving side 
will attach the selected entity (i.e., metadata) to the data and forward it. 

The major processing steps on the sending side include: 
1. If the ontology is a large ontology with more than 1000 entities, partition it 

 
Figure 7. Architecture for ontology matching. 

47



into blocks of RDF triples. The divide-and-conquer method described in [8] 
will be used for partitioning here. 

2. Given a metadata M, retrieve the ontology block and construct a graph G for 
the block. 

3. Apply a depth-first search algorithm to construct the matrices or a set of 
descriptions describing the position of the metadata with respect to the 
anchors in the block. (Note: refer to the algorithm design part for the details 
of the depth-first search algorithm) 

4. Send the metrics to the receiving side. 
The major processing steps on the receiving side include: 

1. If the ontology is a large ontology with more than 1000 entities, partition it 
into blocks in the same way as on the sending side. 

2. For each metric obtained from the sending side, extract the information 
about anchor. Retrieve the ontology blocks that contain the anchor, and 
construct graphs for the blocks. 

3. For each metric, apply a width-first search algorithm to compute the scores 
of candidate entities that could potentially match the metadata. Note that this 
search is done in every retrieved ontology block. (Note: refer to the 
algorithm design part for the details of the width-first search algorithm) 

4. Compute the weighted sums of scores for the candidate entities. Rank the 
candidates and attach information about key and security level. 

5. Send the ranked list of candidate entities to the sending side. 

Search-based Matching Algorithm 
In this section, we describe the algorithm design for the matching process. On the 

sending side, we will design a depth-first search algorithm to construct the metrics. 
On the receiving side, we will design a width-first search algorithm to generate a list 
of candidate entities.  

Listing 1 below shows the pseudo code for constructing the matrices on the 
sending side. This depth-first search algorithm takes the ontology graph G and the 
metadata M (a vertex of G) as input. It assumes that there is a list of anchors in the 
ontology (Line 3). It initializes a tree T to the starting vertex, and a list L which stores 
the edges that are visited (Line 4, 5). In the search function Search(vertex v), the 
algorithm first marks the vertex as visited and checks if the vertex is an anchor or not. 
If the vertex is an anchor, the search stops (Line 21, 22, 23). If a vertex v has several 
unmarked neighbors, the edges between the vertex and the neighbors will be 
appended to the list L (Line 24, 25). Note that it would be equally correct to visit the 
neighbors in any order. The easiest method to implement would be to visit the 
neighbors in the order they are stored in the adjacency list for v. As a depth first 
search algorithm, it removes edges from end of list L so that the list acts as a stack 
rather than a queue (Line 10). Also, each vertex is clearly marked at most once, each 
edge is added to the list L at most once, and therefore removed from the list at most 
once. The spanning tree T constructed by the algorithm is a depth first search tree, 
where the leaf nodes contain the anchors. In T, a path from the root (i.e., metadata M) 
to a leaf node (i.e., an anchor) describes the position of the metadata with respect to 
the anchor. The easiest method to describe the position would be to count the steps 
from the metadata to the anchor. 
  

48



1. DFS (G, M) /* G is the ontology graph, M is the 
metadata */ 

2. { 
3.     List A = set of anchors in G 
4.     List L = empty 
5.     Tree T = empty 
6.     Choose M as the starting vertex 
7.     Search(M) 
8.     While (L not empty) 
9.     { 
10.         Remove edge (v, w) from end of L 
11.         If w not yet visited 
12.         { 
13.             Add edge(v, w) to T 
14.             Search(w) 
15.         } 
16.     } 
17. } 
18.  
19. Search(vertex v) 
20. { 
21.     Mark v as visited 
22.     If v is an anchor in A 
23.         return 
24.     For each edge (v, w) 
25.         Add edge (v, w) to end of L 
26. } 

Listing 1. Sending side matching 
 
The depth-first search algorithm is mainly for describing the metadata’s position 

with respect to the anchors. When we build metrics describing the relative position 
between the metadata and non-anchor entities, we will still apply this algorithm to 
reference the metadata’s position with respect to anchors. This is because the 
reasoning on the receiving side requires the information about anchors.  

Listing 2 below shows the pseudo code for matching on the receiving side. This 
width-first search algorithm takes the ontology graph G and the anchor (vertex of G) 
as input. It initializes a tree T to the starting vertex, and a list L which stores the edges 
that are visited (Line 3, 4). In the search function Search(vertex v), the algorithm first 
marks the vertex as visited and assigns a score based on the metric description. If the 
score is smaller than a critical value, the search stops (Line 19 ̶22). If a vertex v has 
several unmarked neighbors, the edges between the vertex and the neighbors will be 
appended to the list L (Line 23, 24). As a width first search algorithm, it removes 
edges from start of list L so that the list acts as a queue rather than a stack (Line 9). 
Also, each vertex is clearly marked at most once, each edge is added to the list L at 
most once, and therefore removed from the list at most once. The tree T constructed 
by the algorithm is a width first search tree of the vertices reached during the search. 
These vertices represent the candidates that could potentially match the metadata. 

49



1. WFS (G, A) /* G is the ontology graph, A is the 
anchor */ 

2. { 
3.     List L = empty 
4.     Tree T = empty 
5.     Choose A as the starting vertex 
6.     Search(A) 
7.     While (L not empty) 
8.     { 
9.         Remove edge (v, w) from start of L 
10.         If w not yet visited 
11.         { 
12.             Add edge(v, w) to T 
13.             Search(w) 
14.         } 
15.     } 
16. } 
17. Search(vertex v) 
18. { 
19.     Mark v as visited 
20.     Assign a score S based on the metric 

description 
21.     If the score S is smaller than a critical value 
22.         return 
23.     For each edge (v, w) 
24.         Add edge (v, w) to end of L 
25. } 

Listing 2. Receiving side matching 
 
 

 

Figure 8. Illustration of the scoring method for vertices. 

50



We recognize that how to assign score to a vertex is a research issue that needs 
further investigation. Figure 8 illustrates a simple example to generate the score for a 
vertex. The basic idea is to define a scoring function based on the metric. According 
to the scoring function, each vertex will get a score based on its relative position to 
the anchor. The vertex that perfectly matches the metric gets a highest score; the next 
nearest vertex gets a smaller score, and so on. We will investigate various ways to 
define the scoring function. 

 

5. Conclusions and Future Research 
Our initial results indicate that very consistent matches can be achieved using the 

techniques describe in this paper. The quality of the matches between Ontologies is 
highly dependent on the choice of anchors, and the set of relationships (IS-A, etc…) 
and properties supported. 

 
There are several points that require further research. Here we only list a few of 

them that we consider to be important:  
• It is unclear how good anchor concepts are selected. There are certain 

requirements, such as them being sharable and general enough to facilitate 
successful ontology matching. What makes a good anchor is however 
unclear and will require evaluation of real world scenarios. A methodology 
to select good anchor points is needed.  

• Once a data item has been successfully negotiated and transferred from 
domain A to domain B, it is important that the same data item can cross 
back, without being incorrectly classified. That is, a correct reverse operation 
must be guaranteed. The criteria for this operation must be defined, 
understood, and the ontology matching algorithms must guarantee this 
property.  

• It is important that higher priority can be given to certain relationships. That 
is, in some cases it might be very important for the sending domain to ensure 
that a data item’s metadata is matched against some concept in the receiving 
ontology that is closely related to some anchor A via the IS-A relationship. In 
contrast to, for example, the matching concept being the domain for a certain 
property. Hence, it should be possible for the sending domain to give weight 
to certain metrics that is sent to the receiving domain. The receiving domain 
must of course take this into consideration. How this weight is properly 
respected in the graph matching algorithm needs to be clarified.   

 

Acknowledgements 
This research was partially funded by AFRL under contract# FA8750-09-C-0058. 

Paper authorized for public release, case #: 88ABW-2010-0886, approved by 88 
ABW on 01 March 2010. 

 
  

51



References 
[1] Hu, W.,  Jian, N., Qu, Y., Wang, Y., “GMO: a graph matching for ontologies”, 

in: Proceedings of K-CAP Workshop on Integrating Ontologies, 2005, pp. 41–
48.  

[2] Noy, N. and M. Musen, “Anchor-PROMPT: Using non-local context for 
semantic matching”, Proc. IJCAI 2001 workshop on ontology and information 
sharing, Seattle, WA, 2001 

[3] Melnik, S., H. Garcia-Molina, et al., “Similarity flooding: a versatile graph 
matching algorithm and its application to schema matching”, Proc. 18th 
International Conference on Data Engineering (ICDE), San Jose, CA, 2002. 

[4] Qu, Y., Hu, W., Cheng, G, “Constructing virtual documents for ontology 
matching”, in Proceedings of the 15th International World Wide Web 
Conference, ACM Press, 2006, pp. 23- 31, 2006  

[5] Noy, N. and M. Musen, “PROMPT: Algorithm and Tool for Automated 
Ontology Merging and Alignment”, in the Proc. of 17th AAAI, Austin, TX, 
2000 

[6] Doan, A., J. Madhaven, et al. (2003). "Learning to Match Ontologies on the 
Semantic Web." VLDB Journal 12(4): 303-319 

[7] Mitra, P., N. Noy, et al., “OMEN: A Probabilistic Ontology Mapping Tool”, 
Proceedings of the Meaning Coordination and Negotiation workshop at the 
International Semantic Web Conference (ISWC), 2004 

[8] Hu, W., Qu, Y., Cheng, G., “Matching large ontologies: A divide-and-conquer 
approach”, in Data & Knowledge Engineering, vol. 67, 2008, pp. 140-160. 

 
 

52



Agent Metamodel and Profile:
Current Status and Perspectives

James Odell

CSC, USA

Abstract. This presentation will discuss the agent-based standard cur-
rently in-progress at the (OMG) Object Management Group: the Agent
Metamodel and Profile (AMP). The objective of AMP is to provide a
metamodel and profile for extending UML with core capabilities to en-
able agents and agent-based software. At a minimum, these core capabil-
ities include the notions of agent, role, and communityand the structural
and behavioral patterns defined by such constructs. The primary goals of
this talk is to explore how the AMP submission will provide a foundation
to enable the use of agent technology that can:
– Model agents and agent-enabled constructs that can aid in the design

of agent-based systems and emphasize how they will interact and
collaborate.

– Be used in conjunction with existing and upcoming OMG technolo-
gies, such as: UML, the UML Profile and Metamodel for Services
(SoaML) and the Event Metamodel and Profile (EMP).

– Be completed in a timely manner (approximately two years). Mul-
tiple follow-on agent-related RFPs can be planned and issued over
time. Here, each RFP needs to be tangible and deliverable in a timely
manner and carefully coordinated with the other agent-related RFPs

This submission, then, is expected to be the first in a series of agentre-
lated submission. As such, it seeks to address those basic foundational
elements of agent technology that are both commonly used and can be
defined in a reasonable amount of time.

53



54



Using ontologies to support decentral product 
development processes 

Patrick D. Stiefel1, Christian Hausknecht1 and Jörg P. Müller1 

 
1 Clausthal University of Technology, Department of Informatics 

{patrick.stiefel, christian.hausknecht, joerg.mueller}@tu-clausthal.de  

Abstract. Adaptive and open platforms for cross-organizational collaborative 
product development (CPD) need flexible architectures and network solutions 
as well as novel data integration concepts supporting distributed, decentralized 
collaboration. Previous approaches to solving this problem have largely ignored 
the requirement of providing interoperable formats for product model data that 
enable the support of collaborative product development activities. This paper 
proposes the use of ontology technology to address this problem; it presents the 
integration of ontology technology into existing model-driven approaches to 
product development, and evaluates the applicability of the approach by 
describing a use case with limited CPD platform functionality. 

Keywords: Decentral and collaborative product development (CPD), Peer-To-
Peer based collaboration, Ontologies in a distributed collaboration environment, 
Model-driven development of decentral organized information systems. 

1   Introduction 

Cross-organizational, collaborative Product Development (CPD) is the state-of-the-art 
approach to support knowledge sharing in multi-party cross-organizational 
engineering projects [1]. To support CPD processes, new collaboration platform 
technologies are required. They should provide an added value at product definition 
and execution stages by reducing collaboration complexity and obstacles.  

There are many CPD platform design recommendations that mainly focus on data 
sharing and mapping. These recommendations address one of the key problems of 
product development: the integration of heterogeneous product model definitions [2]. 
What still remains is the question on how to accelerate the product development 
processes, especially in the early phases of the product lifecycle where the major 
challenge is to efficiently share rapidly changing product design approaches among 
development teams [3]. 

These requirements result in new design strategies for CPD platforms. Existing 
client-/server-based approaches are too inflexible to support loosely coupled, ad-hoc 
collaboration situations. Therefore, our research focuses on developing decentral 
information technologies to support CPD processes [4,5]. One of the results is the 
Product Collaboration Platform (PCP), an experimental peer-to-peer (P2P) software 
platform to support decentral product development processes. As presented in [1], we 
follow a model driven development (MDD) approach to design information systems 

55



for decentral and collaborative product development (DeCPD). Based on 
Computation Independent Models (CIM) we employ an iterative process to develop 
different abstractions of IT models: starting from IT architecture models over 
platform specific models (PSM) to concrete software artifacts. We employ an agent-
based approach to model the distributed collaboration logics, as is explained in 
Section 2.1. 

When developing distributed systems for knowledge sharing there is a need to 
provide a common language. Product developers act in different languages and 
normally have unequal action courses and best-practices when doing their model 
design activities. A common global CIM process model constrains the user in his 
process sequence but it does not explain the objective of the collaboration. This 
results in a lack of interoperability.  To deal with model-centric processes, we have to 
introduce a common formal language that defines the intent of each collaboration 
step. Ontologies give us the possibility to enhance decentral information knowledge 
sharing with semantics. Collaborations based upon a semantic data model provide the 
possibility to understand a collaborations partner design requirements (specification) 
and to answer in an understandable format (proposal) without changing local product 
data management strategies. Thus, ontologies are an important building block to 
achieve interoperability between distributed model repositories and DeCPD 
processes. Last but not least we are able to underpin the suitability of the model-
driven approach [6]. 

The structure of this paper is the following: After introducing DeCPD and ontology 
concepts in Section 2, we will discuss some related work experiences in Section 3. 
Section 4 deals with DeCPD CIM level models to provide a technology independent 
need for concepts like ontologies. Section 5 with corresponding PSM models and 
introduces in our ontology concepts. In the last section we evaluate our approach by 
providing a reference scenario that we implemented in our Product Collaboration 
Platform (PCP). The scenario depicts on a simple LEGOTM building example. 

2   Background 

2.1   Model-driven decentral and collaborative product development  

Each DeCPD process describes a distributed solution of a given product engineering 
problem (specification). Our approach is based on the Distributed Problem Solving 
developed for multi-agent systems [7, 8]. The DeCPD process provides a synthesis of 
the distributed partial solutions of the participants (proposals) to an overall solution 
satisfying the initial requirements set up by the initiator. 

The engineering problem in our work can be represented as the search of a set of 
product model (PM) components matching the specification. Product engineers are 
normally confronted with this problem in the design phase of the product lifecycle. 
This view enables us to conceptualize a PM Specification by a query that describes 
features, which the target component has to fulfill; a corresponding PM Proposal 
represents one possible design solution. 

56



As described in the introduction modern approaches to collaboration platforms are 
needed to support the engineering problem described above. In designing a DeCPD 
collaboration platform, we follow a model-driven top-down approach. To model the 
underlying collaboration process we start with Computation Independent Models 
(CIM) that describe the functionalities of the platform on the functional level. We use 
the Business Process Modeling Notation (BPMN) to express CIM models in a 
language suitable for the audience (i.e. engineers). 

The result of performing this process are decentral architectures at Platform 
Specific Model (PSM) level. We design Business Process Execution Language 
(BPEL) workflows with especial architecture elements to cover the requirements 
given by decentral information systems subject to our work. Our BPEL workflows are 
model-centric; they cover event-driven trigger patterns (such as publish-subscribe) 
from the P2P overlay network. 

The focus of this paper is not on the development of MDD models but on their 
application combined with the use of ontologies that provide the flexible and scalable 
approach required for collaborative product engineering platforms. In doing so, we 
aim at  
• supporting ad-hoc interconnections between world-wide distributed partners that 

often did not collaborate in the past and 
• effectively distributing product models among participating engineers for load 

balancing reasons, and a more efficient execution of product development 
processes for the reasons of task sharing. 

2.1   Ontologies 

We propose using ontologies to represent product model data and metadata. We will 
give a short introduction into the core concepts of ontologies and related technologies. 

We use the web ontology language (OWL1) which is standardized by the W3C. 
OWL is based upon the resource description framework (RDF2), which is also a W3C 
standard. RDF enables the linking between objects, so called RDF Resources. This 
linking can be described by a directed graph, where nodes represent resources and the 
edges represent named links. This graph structure is also called triple. OWL itself 
defines some important concepts upon RDF: 
• classes are similar to sets as they group together individuals having the same 

properties. For example, a class represents “Lego building bricks” or “plates”. 
• properties describe the connection between individuals or the assignment of 

data values to them. For example, an individual of the class brick could have a 
property hasWidth which holds a value of “24”. 

• individuals are instances of classes like in class-based programming languages 
(Java, C++, C# e.g.). 

OWL provides a wealth of additional constructs, but these are the most important 
ones and sufficient for understanding this paper. Fig. 1 shows a simple example: Two 
individuals (Tuc01 and Tuc02) belong to the class Brick. Tuc01 has a property 

                                                           
1 http://www.w3.org/TR/owl-features/ [19th February 2010] 
2 http://www.w3.org/RDF/ [19th February 2010] 

57



isConnectedWith, which uses Tuc02 as endpoint. Furthermore it has another property 
hasWidth, which assigns the data value “24” to it. 
 

 

Fig. 1. OWL example  

Real world ontologies are much more complex and much harder to understand and 
validate. For that reason, techniques are required to query triples. One query language 
to provide this functionality is SparQL3, which is also a recommendation by the W3C. 
SparQL has much similarity with SQL. SparQL enables to select arbitrary subsets 
(subgraphs) from a given RDF graph that fulfill the users constraints (= graph 
pattern). Furthermore, a SparQL query specifies which elements from the result 
should be returned. A SparQL query has the general form: 
 

SELECT ?subject ?predicate ?object 
WHERE { 
    ?subject ?predicate ?object. 
}  

 
After the SELECT statement, elements that should be returned by the query are 
defined, no matter if these are individuals, classes, or properties. Within the WHERE 
clause, we define the graph pattern that the query engine has to match. 
 

SELECT ?item 
WHERE { 
    ?item   rdf:type            Brick. 
    ?item   isConnectedWith     ?other_item. 
}  

 
The following example (see Fig. 1) shows the selection of an individual (from the 
given ontology), the type of which is Brick and that has a relationship to another item, 
specified by the property isConnectedWith. The following SparQL query will return 
the name “Tuc01”. 

3   Related Work 

There are existing research approaches related to the topic of CPD that use semantic 
descriptions. We observe that there are mainly two ways how ontologies are used in 

                                                           
3 http://www.w3.org/TR/rdf-sparql-query/ [19th February 2010] 

58



CPD: (1) as a formal description for product model content, or (2) as a structural base 
that enable a mapping between several product data formats. 

3.1   Ontologies as formal product model description 

Kim [9] proposes the usage of ontologies for adding a semantic description to product 
model representations so that it possible to specify the meaning of design challenges. 
The author introduces an ontology-based specification of an assembly design, so 
called AsD. Based on this AsD, a product engineer can describe the topology of 
assemblies and their joining relations, mainly focusing on spatial, geometric 
characteristics. With computational reasoners it is possible to infer the meaning of an 
assembly connection. This helps developers understand the meaning of design 
decisions within a CPD process. 

Similar to Kim’s approach, Liang [10] studies the description of connections 
between LEGO™ objects due their given geometric structure. He also implements an 
ontology using OWL, that describes these connections (he calls them “ports”) in order 
to use it as a tool to find possibilities for connecting assemblies or to prove their 
validity. 

In [11], Mostefai describes a generic and extensible product ontology especially 
designed to use in the area of mechanics. This is mainly used to facilitate a common 
understanding among different people such as engineers with their CAD/CAM 
experience, production planners, IT technicians, etc. If all these people accept a 
“common ontology”, they can contribute to a unified product model. 

3.2   Ontologies as a support for product model data exchange 

Another use case for ontologies in CPD is the need to develop a platform-independent 
interchange format for product data. In [2], Patil, Dutta and Sriram propose an 
ontology-based framework to handle this task, called “Product Semantic 
Representation Language” (PSRL). They claim that the traditional solutions based 
upon industry standards for product data exchange (e.g. STEP, Standard for the 
Exchange of Product Model Data) are limited by the fact, that the semantics are 
ignored, which may lead to loss of information at transformation processes. They 
further claim that a better mapping solution can be achieved with PSRL that expresses 
semantics of a product model and not just plain parameters and values. 
 
To conclude, what we did not find in existing ontology approaches yet is to use 
ontologies as semantic description in a decentrally organized product engineering 
process. That is what we need in our work: The cross-organizational process state has 
to be determined from the product model and that would be impossible when not 
using ontologies to define semantic information and process coherences upon flat 
product model data. As a result, in our approach; we can allocate IT modules the 
capability to interpret intermediate collaboration results and to make the right 
decisions until the final result is reached.  

59



4   DeCPD CIM level models 

In this section we give an overview of several model design aspects at CIM level. 
This should help understand the main motivation when designing a DeCDP platform. 

4.1   CIM: Process aspect 

Using BPMN we build generic, cross-enterprise business processes (CBPs) to 
describe global DeCPD processes. Each CBP defines participating roles, public 
processes, and a collaboration protocol, carefully matched to the requirements given 
in a product modeling environment. 

To build CBPs that describe DeCPD processes we specified the following generic 
public processes: 
• GenerateSpecification is the process to specify a query that describes the 

searched component characteristics in a PM Specification, while 
GenerateProposal is the counterpart of the process mentioned before, which is 
used by participants to describe a target component in a PM Proposal. 

• PublishProposal makes a PM Proposal available to selected collaboration 
partners. At CIM layer, it is not specified how this is realized from a technical 
point of view; thus, e.g., on PSM layer the IT experts could provide a distributed 
database solution for storing PM Proposal information. 

• By contrast, PublishSpecification distributes a PM Specification among the 
developers involved in the collaboration. Suppose that the product model 
handling was realized using databases; in that case the PM Specification would 
be a SQL-type query that should deliver answers to the collaboration initiator 
when executing it after several participants have provided valid proposals.  

• The process Search describes the possibility to search for existing PM 
Specifications / Proposals in a distributed collaboration environment. The search 
mechanism has no bearing on the execution of a PM Specification query 
(perform a SQL query e.g.), but it means to find their physical location in the 
collaboration network. Beyond each search process, there is a complex request-
acknowledge and routing method to assure that only trustworthy partners get 
requested PM Specifications and/or -Proposals. These methods are part of our 
research and will not be discussed in this paper. 

• In some environments, it is useful to have a Notify process. In technical terms, 
this corresponds to event-triggered messaging. Independent from any technical 
realization, it means the participant to register on a particular event, like  e.g. the 
event “newProposal”, whereby he gets informed about every public changes 
made in this collaboration instance. 

• Last but not least a process Analyze is needed, that encapsulates the user’s 
decision on how to proceed a collaboration based on the incoming proposals.  

 
Generic DeCPD processes differ in the following three characteristics. The PM 
distribution (specifies how physical PM Specification and/or -Proposal data 
resources are dedicated to collaboration participants), hierarchies (describes the 

60



maximum levels of sub-collaborations, in the case of a 0-level collaboration there is 
no subdivision) and iterations (allows the compilation of versions and variants).  

The DeCPD process sequences in CIM Business Process Diagrams (BPDs) depend 
on the exact values of these three parameters. To evaluate the necessity of ontologies 
in the field of DeCPD we reduce complexity by setting up a 0-level collaboration 
between one initiator und a set of participants. PM Specifications are distributed 
among all participants via broadcast and the PM Proposals are interchanged via 
point-to-point transfer between initiator and corresponding participant. To maintain 
relevance to real world scenarios at product development we do consider iterations. 
Fig. 2 shows an example BPD for only one participant. 
 

 

Fig. 2. BPD for o-level collaboration with iterations 

4.2   CIM: Data aspect 

As described in Section 3 we need a data model that fits on the process described 
above. We defined the meta-model as shown in Fig. 3. 
 

 

Fig. 3. DeCPD data meta-model 

A concrete instantiation of the meta-model and its resulting complexity depends on 
the DeCPD characteristics (hierarchies and iterations) of a DeCPD project and 
therefore mainly on the amount of sub-collaborations (sub-projects, subP) and the 
maximum number of PM Specification- and PM Proposal variants (varS/varP), 
respectively versions (verS/verP). As a variant we describe all PM Specifications / 

+

Generate 
Specification

+

Analyze 
Specification

In
iti

at
or

Te
iln

eh
m

er
 A

+

Generate Proposal

+

Analyze Proposal

Proposal OK

Specifications Product 
model

Revise Proposal

Proposal Not OK

Proposals

+

Search 
Specification

+

Search Proposal

Revise 
Specification

61



Proposals that belong to one single component and that are published in parallel. Note 
that each variant has got only one valid version.   

To conclude, due to the process limitation that no sub-projects are allowed (cp. 
Section 4.1), we can concentrate on the collaboration process itself and not on the 
difficulties that affect us when putting together the sub-results from sub-projects. 

4.3   CIM: Service aspect 

In describing DeCPD services and their behavior at CIM level, we distinguish 
between two dimensions: Service Execution and Service Coordination. 

At execution dimensions we distinguish between local and distributed service 
execution. In local service execution, each collaboration partner hosts all needed 
DeCPD core services on its own; thus, the availability of needed services is ensured at 
any time (= local service execution). In the case that DeCPD core services are 
distributed between participants we have to provide additional service discovery 
methods at run time. Furthermore we distinguish between central and decentral 
service execution. In the central case, only selected partners provide a choice of core 
services, whereas in the decentralized case core services are distributed between 
participants. 

Considering the coordination dimension we distinguish between central and 
decentral coordination. Central coordination needs a coordinator that controls the 
cross-enterprise service workflow; decentral coordinated workflows do not need a 
coordinator, but decentral, model-centric mechanisms that make a control flow 
possible. 

To summarize, we decided to use a decentralized coordinated collaboration 
strategy with local DeCPD core service execution. Using local service execution we 
do not need to concentrate on strategies for a distributed service search that is as 
complex as decentral product model data exchange and provides nearly the same 
challenges. Rather we prefer not using a coordinator and control the workflows by 
querying the state of the distributed product model. 

5   Ontologies for a concrete PSM level data model 

The generic data model at CIM level has to be concretized at PSM level by specifying 
specific data elements needed to fulfill the requirements of a DeCPD. In this section 
we describe on how to use an ontology approach to specify the PSM data model. 

5.1   Ontologies to describe components and connections 

One of the core concepts of DeCPD is the decomposition of an overall product 
development problem (CIM: project) into several sub-problems (CIM: sub-projects). 
Central element of the CIM data meta-model is the sub-project related component.  

The challenge at PSM level is to specify components in an interoperable way, that 
means to cover aspects of different business domains like design, functional 

62



requirements, economic or of course geometric and topological parameters. To 
generate such a component description, all relevant parameters must be representable 
in a meaningful and feasible way. This is where we apply ontologies due to their 
flexibility and power of expression. 

As known from many programming languages we provide a common domain 
specific base for the fundamental expressions. This ontology, that we call 
BaseOntology (BaseOnt), depends on the domain of the collaboration and must define 
appropriate classes, properties and even individuals if needed. For sure the scope of 
our BaseOnt is limited to the field of product development, although it contains 
essential concepts that could be use in other application domains. The BaseOnt must 
be available for all participants in a DeCPD process. 

As we chose the LEGO™ system as domain for our example scenarios (cp. Section 
6), our BaseOnt provides a special vocabulary for a collaboration in this product 
development area and we define the following five superclasses: 
• Component. Holds the subclasses Project, Assembly and Part that are 

constructional superclasses themselves. Derived from Part, we define LEGO™ 
elements such as Brick, Plate, Lego Technic Part, and others. In the example, 
these special Part classes represent all the different kind of LEGO™ building 
bricks that can be purchased on the market. 

• Connection. Within the Connection classes it is possible to describe the type 
and the implementation of connections between parts, assemblies and perhaps 
other important stuff. This is especially needed to ensure, that the different PM 
Proposals connects well during the synthesis phase of the collaboration. 

• Requirement. This class helps to specify the various kinds of requirements 
concerning a component. We distinguish between functional (movability or 
flexibility) and non-functional requirements (price, weight, or material). 

• Resource. Using this class, ontology elements can be linked to external data 
storages such as files or database tuples. Generally, an external data source 
contains more detailed information than provided by the ontology. 

• ValuePartitions. This is a helper superclass to construct enumeration classes 
that are needed to restrict the ontology user when defining values. 

 
Using these predefined elements, a participant can describe a component by 
generating needed individuals derived from the given classes. By using properties 
individuals can be tied together or atomic values can be assigned to them. Sometimes 
the problem may occur that the BaseOnt’s classes are not adequate to build up an 
individual. In this case the missing elements can easily be added to a custom project 
ontology (PrOnt), cp. Section 5.3. 

Next to the simple description of components, connections between them have to 
be represented. We provide a solution for this requirement by defining special 
connection classes in our BaseOnt. So the connection modality (from physical point 
of view), the involved components and additional semantic information (why the 
connection is modeled the way it is) can be described in the same way as shown 
above. 

63



5.3   Project and component queries 

For describing the project and its components that should be developed during 
collaboration we use so called project queries (PrQ) that work upon a special project 
ontology (PrOnt) which extend the BaseOnt with project specific stuff. 

In a PrOnt we define the main component that represents our project subject as a 
new class by deriving from the Project class using the subClassOf built-in property of 
OWL. Additionally components are defined by deriving from the Assembly class. In 
order to represent the topological structure, we create an individual for each new type 
we defined before and link them together via the isChildOf property of the BaseOnt 
like building up a bill of material (BOM). To declare which components should really 
be developed in collaboration we mark each individual with a boolean value using the 
BaseOnt’s isExposed property. In summary this results in an ontology structure that 
holds all the information about types and  topological structure of the collaboration. 

To extract these information from the PrOnt we use a project independent PrQ, 
which is of course defined in the W3C standardized SparQL query language. The PrQ 
basically searches for types of those individuals, which are children of another 
individual that represents a type being a subclass of the Project class. The query 
returns the name of the component, if it should be developed in the collaboration and 
the associated project type as shown below: 

 
PREFIX lego: <http://tuc.de/ontologies/lego_base.owl#>  
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
 
SELECT ?components ?value ?root_type 
WHERE { 
    ?root       lego:hasChild   ?x; 
                rdf:type        ?root_type. 
    ?root_type  rdfs:subClassOf lego:Project. 
    ?x          lego:isExposed  ?value; 
                rdf:type        ?components. 
    ?components rdfs:subClassOf lego:Assembly. 
}  
 

In either case it might be the initiator that generates the first revision of the PrQ and 
the PrOnt. Dependent of the knowledge a collaboration initiator owns when 
specifying a new PrQ/PrOnt composition he might not be able to describe the 
components. This case might be suitable in real word scenarios when developing new 
products. So we must differentiate between a project partitioning made by the initiator 
and those made by the participants themselves. 

In reality a one-step PrQ breakdown is unrealistic. According to the supply 
pyramid a given PrQ will be specified more precisely from tier to tier. So a PrQ 
distributed by a OEM will be republished in a further collaboration by a 1st tier 
supplier and so on. Regarding our data meta-model in Section 4.2 it means that 
projects are recursively subdivided into sub-projects that are connected together by 
the components interfaces in principal.  

The distribution of PrQ’s is in general only practicable between participants from 
maximally two supply pyramid layers due to their interest in collaborate. The question 
is also to allow and/ or how to handle supplier rivals. 

64



After having distributed a project description the initiator hopes to find participants 
interested in developing selected components. Desired requirements of a PM 
specification are specified in a component specification query (CSQ). In contrast to 
the PrQ/PrOnt the person that describes a CSQ (= the initiator in general) is not the 
one who will also provide the CompOnt (= one of the participants). The component is 
still to be defined (cp. Section 5.1.2). 

 

 

Fig. 4. DeCPD query routing 

In the following we will take a look at the query routing that fulfills the 
requirements of the DeCPD process shown in Fig. 2. We consider a collaboration 
with only one initiator and an arbitrary amount of participants. Each sub-collaboration 
(again with one initiator and several participants) would adhere to the following base 
procedure: 

 
 Step 1: The BaseOnt is extended to the PrOnt by specifying additional 

components that are not yet contained. 
 Step 2: The project describing PrQ is generated. Executed on the PrOnt each 

PrQ returns the list of components to construct during collaboration. 
 Step 3: The initiator generates a separate CSQ (= PM Specification) in that the 

component requirements are specified. 
 Step 4: A participant receives the PrOnt and the PrQ. Based on that he can 

decide whether to provide participate at collaboration or not. 
 Step 5: Interested participants require a CSQ of the component they are 

interested in from the initiator. 
 Step 6: The PrOnt is extended to the CompOnt (= PM Proposal) by again 

specifying additional components. 
 Step 7: The CompOnt is submitted to the initiator and evaluated by executing 

the CSQ. 

network

Project
Ontology

Initiator

Generate
Project SparQL Query 

(PrSQ)

Participant

Generate
Component Ontology

(CompOnt)

PrSQ

Component
Ontology

Evaluate
PrSQ

Base 
Ontology
(BaseOnt)

4
6

Generate
Component SparQL

Query (CSQ)

Spezification (S)

3

CSQ

Require
CSQ

5

CompOnt

2

7

Generate
Project Ontology

(PrOnt)
1

65



5.2   Component proposals 

A PM Proposal at PSM level should describe a concrete implementation of a PM 
Specification. Therefore a ComponentOntology (CompOnt) is provided. Dependent on 
the used domain specific CAD models an individual mapping of relevant attributes 
and features into the CompOnt is needed. The mapping is again realized by generating 
and combining individuals using PrOnt’s classes and properties. Additionally the 
CompOnt should provide links to the ontology’s source CAD files. During evaluation 
of a PM Proposal the original CAD file is still a useful and important representation. 

6   Evaluation: Sample use case 

As proof of concept we implemented an example use case that combines the PSM 
service concepts with the ontology based data model approach. In the sample use 
case, we simulate the collaborative construction of a LEGO™ bulldozer (as illustrated 
in Fig. 5). 

 
Fig. 5. LEGO™ bulldozer to evaluate ontologies at DeDCP 
 
The bulldozer represents the data element project and consists of three components 
that are specified by the initiator: A chassis, a body and a shield. 
 

66



 

Fig. 6. Project Ontology for the sample use case 

As listed in Section 5.3, the first step is to use the BaseOnt and extend it to the PrOnt 
(cp. Fig. 4, Step 1) by adding project-specific components such as a class for the 
bulldozer, the chassis, the body and the shield and mark the bulldozer as the project 
class. For the topolocigal structure we define individuals for each type using the 
hasChild property and mark them via the isExposed property to identify which 
component is a PM Specification. Mind that not each component of the underlying 
bill-of-material has to be developed within the collaboration. 

With a special SparQL Query (= PrQ) that is developed in step 2, the exposed 
classes can be determined when running the query. Let us assume that in our 
reference scenario all three components should be developed by collaboration 
participants.  

For each exposed component the initiator has to implement a specification as 
SparQL query in the third step (cp. Fig. 4, Step 3). In summary there are three 
requirements for this assembly, one restricting the dimension, a second demanding the 
movability, and the third limiting the costs. The schema of this query type is quite 
generic and can be used for arbitrary projects and not only for describing LEGO™ 
toys.  

 
PREFIX spec: <http://tuc.de/ontologies/spec_bulldozer.owl#>  
PREFIX lego: <http://tuc.de/ontologies/lego_base.owl#>  
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT ?item 
WHERE { 
    ?item           rdf:type                 spec:Chassis; 
                    lego:hasRequirement      ?req_dim, ?req_mov, 

?req_costs. 
    ?req_dim        rdf:type          lego:Dimension; 
                    lego:hasDepth   8; 
                    lego:hasWidth   ?width 
                    FILTER(?width >= 20 && ?width <= 30). 
    ?req_mov        rdf:type                lego:Moveability; 
                    lego:hasAxisRelation    lego:XValue,  

lego:ZValue; 
                    lego:hasMoveability     lego:LinearValue. 
    ?req_costs      rdf:type          lego:Costs; 
                    lego:hasCosts   ?price FILTER(?price <= 45.99). 
}  
 
 

67



Based upon these requirements provided in a CSQ, a developer can now start to 
implement a PM Proposal. This is done by generating a CompOnt that follows the 
structure of the CSQ. Therefore a collaboration participant’s work is to map his final 
parameters from his proposed product model into the CompOnt. 

To check if the CompOnt is a valid proposal, both participants and the initiator 
need to execute the CSQ upon this CompOnt. If the result of a CSQ is an individual of 
a requested component (cp. individual Tuc01 in Fig. 8 below) the proposal is valid, if 
not it is invalid and there may remain some unfulfilled requirements. 
 

 

Fig. 8. Extract from component ontology for a CAD representation of a LEGOTM bulldozer 
chassis (LDraw). 

When the initiator has received enough valid PM Proposals (CompOnts) for each 
component, he can assemble them into a result ontology instance (ResOnt), which 
represents the package solution. In other words, it means that assembling all 
corresponding CAD model files will result in a final CAD model like the one shown 
in Fig. 5. 

7   Conclusion and outlook 

As mentioned in Section 3, there is a lack of using ontologies to support distributed 
collaboration processes like those addressed in this paper. The development and 
application of an ontology especially designed for decentral organized product 
development enables the full realization of DeCPD platforms. We are now able to 
complete our existing experimental PCP implementation, which was presented at the 
CeBIT trade fair in Hannover in 2009, by integrating the missing semantic data 

68



description module. With it we have the possibility to interpret relevant information 
from the state of the distributed product model that allows us to follow a decentrally 
developed process model. 

Beside the integration of the ontology concept into our PCP, we have to evaluate 
the applicability in real world engineering scenarios that is on CIM layer, i.e., 
independent from any IT realization. At the same time existing methods and protocols 
for query distribution and routing have to be evaluated and expanded to hierarchically 
designed DeCPD processes containing sub-collaborations. In that case we get 
confronted with the problem of describing interfaces between product models that 
could perhaps be realized in a similar way. This problem is yet unsolved. Finally, a 
more practical requirement which we shall address in future work is to provide 
automatic mappings from CAD files into the ontology approach. 

References 

1. Li, W.D. and Qiu, Z.M. (2006): State-of-the-Art Technologies and Methodologies for 
Collaborative Product Development Systems. In: International Journal of Production 
Research, 44(13), pp. 2525-2559. 

2. Patil, L., Dutta,D. and Sriram, R. (2005): Ontology-Based Exchange of Product Data 
Semantics. In: IEEE Transactions on automation science and engineering,Vol.2, 
No.3, pp. 213-225. 

3. Li W.D., Ong S.K. and Nee A.Y.C. (2006): Integrated and Collaborative Product 
Development Environment. Technologies and Implementations. World Scientific 
Publishing Co. Pte. Ltd. Singapore. 

4. Stiefel, P. D.; Müller, J. P. (2007): ICT interoperability challenges in decentral, cross-
enterprise product engineering. In: Gonçalves; Ricardo J., pp. 171–182. 

5. Stiefel, P. D.; Müller J.P. (2008): Realizing dynamic product collaboration processes 
in a model-driven framework: Case study and lessons learnt. In: K.-D. Thoben, K. S. 
Pawar, & R. Gonçalves, eds., 14th International Conference on Concurrent 
Enterprising, 23-25 June 2008, Lisbon, Portugal. 

6. Stiefel, P.D and Müller, J.P. (2009): A model-based software architecture to support 
decentral product development processes. In: Proceedings of the Eighth Workshop on 
eBusiness, Web2009, Arizona; to be published. 

7.  Müller, J. P. (1996): The Design of Intelligent Agents – a Layered Approach. Lecture 
Notes in Artificial Intelligence, Volume 1177, Springer-Verlag. 

8. Smith, Reid G. (1981): Frameworks for Cooperation in Distributed Problem Solving. 
In: IEEE Transactions on systems, man, and cybernetic, Volume 11, Seiten 61-70. 

9. Kim, K.-Y. et al. (2006): Ontology-based assembly design and information sharing 
for collaborative product development, In: Computer-Aided Design, Vol. 38, pp. 
1233-1250. 

10. Liang, Vei-Chung and Paredis, C.J.J. (2003): A port ontology for automated model 
composition. In: Proceedings of the 2003 Winter Simulation Conference. 

11. Mostefai, S. et al. (2004): Effective Collaboration in Product Development via a 
Common Sharable Ontology. In: Journal of Computational Intelligence, Vol.2, No. 4, 
pp. 206-212. 

 

69



70



Decentralized Semantic Service Discovery in
Preferential Attachment Networks

E. del Val, M. Rebollo, and V. Botti

Grupo de Tecnologı́a Informática - Inteligencia Artificial
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera S/N 46022 Valencia (Spain)
{edelval,mrebollo,vbotti}@dsic.upv.es

Abstract. Service discovery plays an important role in large-scale and highly
dynamic environments where the most valuable information is not widely avail-
able and may not be registered. In this paper, we present a distributed service
discovery approach which makes use of decentralized search algorithms and so-
cial network models as underlying structure.

1 Introduction

In new paradigms for computing, such as peer-to-peer technologies, grid computing or
autonomic computing, large systems can be seen in terms of service provider and con-
sumer entities or agents [15]. The main feature of these domains is that they are open
and dynamic, where new agents can enter to the system and existing ones leave. If we
consider agents as service providers, the available services change dynamically and it is
not an easy task to locate a suitable and available service in a crowded environment with
services. In this contex, one of the most challenge issue is service discovery. Conven-
tional approaches in multiagent systems such as registries or matchmakers partially ad-
dress this problem. However, in highly dynamic environments, the most valuable infor-
mation is not widely available or it is registered in a centralized repository or may not be
registered[28]. Much of this information may only be accessed by contacting the right
agents. This fact is present in human society. There are scenarios, such as labor mar-
ket, where the empirical evidences suggest that about half of all jobs are filled through
contacts[7]. Recent literature stresses the role of contact networks in other economic
phenomena such as buyer-sellers[12] or R&D (Research & Development)[6]. In the
provider-consumer scenario, individuals seeking services read yellow-pages, browse in
the web and mobilize their local networks of friends and relatives. Networks of personal
contacts can mediate in provider-consumer location opportunities which flow through
word-of-mouth and constitute a valid alternative source of service information to more
traditional methods.

In this paper, we propose a distributed service discovery approach for Open Multi-
Agent Systems (Open MAS) using social networks as underlying structure. When an
agent asks for another service, a distributed search is made considering only local infor-
mation associated to its neighbors: degree and service parameters contained in semantic
service descriptions offered by each neighbor.

71



2 E. del Val, M. Rebollo, and V. Botti

The paper is structured as follows. Section 2 gives an overview of several works
in the area of service discovery in MAS. Section 3 describes the structure and the ad-
vantages of preferential attachment networks. In section 4, the proposal for distributed
semantic service discovery is presented. Section 5 analyzes the performance of the pro-
posal, comparing with other approaches used in distributed search. In section 6 conclu-
sions and future work are presented.

2 Related Work

Open and dynamic environments where the scalability and the workload are low make
use of middle-agents [26][11][17] to facilitate service discovery. The main advantage is
that matchmakers could provide an optimal matching because they consider all the reg-
istered services in the system. These middle-agents usually make an efficient search and
get a good throughput. Unfortunately, this kind of agents could be a bottleneck when
the workload increases. Other drawbacks of middle-agents are their complexity, the
huge amount of memory needed to keep service advertisements and the cost of service
composition as the number of services grows significantly. Different approaches have
been suggested to overcome the above mentioned problems related to the centralized
paradigm in service discovery.

Peer-to-peer approach takes advantage of the fact that each agent already knows its
own capabilities and those of a few peers, and uses peer-to-peer search (recursively) for
locating agents with the needed capability [5][23]. An agent broadcasts a query using
its local knowledge to its neighbors and the agent that receives such a request either
offers its services to the original caller or broadcasts the request to its own neighbors.
The drawback of this approach to service discovery is that the communication among
agents is essential and the overall communication traffic overhead may be large.

Another distributed way to locate distributed services is to form coalitions or clus-
ters[22][18]. Nevertheless, the choice of what coalitions are going to be formed is a
difficult task. This entails recursively to calculate the values of the coalitions and later
selecting the coalition with the best result. The calculation of the coalition values can be
made in parallel, but this phase requires that each agent knows the rest of sytem agents
(global knowledge). In addition to determine the best value, they have to use broadcast.
Therefore, in some situations, the system could be overload.

A third way for agents to discover services in efficiently is the distribution of the
middle agents or facilitators. Jha et al.[8] suggest to split the function of the service
facilitator among a group of agents. The system designer assigns a local matchmaker
to each host or segment of the system, which provides matchmaking services to agents
in its vicinity (its segment). The local matchmaker can consult its peers or a central
matchmaker whenever it cannot provide an answer to a local query. This type of so-
lution reduces communication traffic and confines it to network segments (in which
communication is fast). Moreover, it reduces message queue sizes, improving scalabil-
ity and fault tolerance. Sigdel et al. [25] present an adaptative system. The framework
suggested allows automatically adaptable matchmaking methods for service localiza-
tion depending on the network structure and characteristics. This approach is based on
two levels: system adaptation level and node adaptation level. These approaches are

72



Decentralized Semantic Service Discovery in Preferential Attachment Networks 3

applicable in systems that have a hierarchical topology, in which information sharing
can be confined to local segments. In systems with very large segments the problems
of scalability are only marginally relieved by this approach because the large segments
become overloaded systems which have local bottlenecks. Another case in which this
approach is not useful is in systems with many crosslinks between segments. In this case
the overhead of coordinating tasks among local matchmakers might be greater than the
benefit obtained from their distribution.

The main advantage of the presented proposals are fault tolerant and adaptable to
changes in the environment. Besides that, they decrease communication time and spread
the information among agents. The main drawbacks are that distributed approaches
such as coalitions or peer-to-peer have performance problems (network traffic, slow
response and congestion) and the coordination effort required is not appropriated for
highly dynamic environments. Our proposal tries to overcome these drawbacks through
a completely distributed approach based on social networks as underlying structure. In
the next section the main features of these networks are presented.

3 Social Networks

As MAS continue to grow and migrate to heterogeneous environments, such as the In-
ternet and the Semantic Web, the structure of societies in MAS and the interconnections
among the agents in these societies will be fundamental to the effectiveness of service
discovery. Social network models are an appropriate representation of agent intercon-
nections, such as friendship, financial exchange, relationships of beliefs, knowledge
or prestige. Recent studies using data on communication within organizations[1] and
the friendships communities[14] have established the fact that human social networks
closely match some mathematical models present in social networks. Another interest-
ing feature of these networks is the property of being searchable: ’ordinary people are
capable of directing messages through their acquitance networks to reach a specific
but distant target person in only a few steps’[30]. This feature makes social networks
not only suitable to model relationships between agents, but also to discover services
offered by agents, situated in large networks whose topology is known only locally, in
few steps.

To frame the underlying problem, we go back to one of the most well-known social
network analysis: ’Six degrees of separation’[27]. In this experiment Milgram discov-
ered that individuals are connected via short paths, but also that the individuals in these
networks, only considering local information about their own neighbors, are able to find
these paths. Decentralized search can be classified considering if the network is struc-
tured or unstructured. This classification is presented in [31]: ’in structured networks
the global position of the target node in the space can guide the search process to reach
the target node more quickly. In unstructured networks, the global position of the node
is unknown and it is difficult to know whether a step in the search process is towards
the target node or away from the target node’. One of these model sof unstructured
networks is the scale-free[2].

Scale-Free Networks. The scale-free network model is defined as: ’a mathematic model
extracted from the real world. The distribution of the number of network neighbors

73



4 E. del Val, M. Rebollo, and V. Botti

(degree distribution) is typically right-skewed with a heavy tail, meaning that a majority
of nodes have less-than-average-degree and that a small fraction of hubs are many
times better connected than average’[29]. This qualitative description can be satisfied
by several mathematical functions, but the most common in the current literature is a
power law [2]:

P [k] ∼ k−α (1)

in which, k is an integer denoting the node degree, P [k] is the probability that a node
connects with k other nodes. The parameter α is a scalar coefficient, which usually
ranges in:

α ∈ (2,∞) (2)

The power law distribution denotes that some nodes have high degree although most
nodes have low degree. This property is called preferential attachment: new network
members prefer to make a connection to the more popular members in the network.

These kind of networks have many predominant advantages which can be used to
improve the cooperative performance in Open MAS, for instance in service discovery.
This model has a robust topology which is immune to random errors such as random re-
moval of links or nodes. Thus, for service location, the preferential attachment network
offers a reliable topology to ensure that a service can be found under the condition that
certain agents leave the system. The main disadvantage is that this kind of networks
are very sensitive to ’sabotage’ (attacks to highly connected nodes). Another feature of
these networks is the path length between two nodes: ’with most disordered networks,
such as the small world network model, the average distance between two vertices in the
network is very small relative to a highly ordered network such as a lattice[21]. More
concretely, power-law graphs having 2 < α < 3 have small diameter log(n) where n is
the number of nodes.

Due to all the described features of scale-free networks with preferential attach-
ment, a service discovery system has been proposed based on this this kind of complex
networks. In the next section this system is described with detail.

4 Social Discovery System

We formulate the service discovery problem in an Open MAS as a probabilistic decision-
making task in which the goal is to find an appropriated service minimizing the length
of the path travelled by the request message. Our system is based on social networks,
therefore agents are situated in a network with preferential attachment. We assume that
each agent knows about its immediate neighbors including their identity, degree, and
parameters related to the service they offer but it is unaware of the rest of the agents in
the network. At the source agent, and at each agent along the path, the optimal decision
rule is to send the message to the neighbor from which the message will reach the target
agent which offers the desired service in the smallest number of steps, assuming that all
future agents will make their decision using the same algorithm and only considering
local information related to its neighbors.

74



Decentralized Semantic Service Discovery in Preferential Attachment Networks 5

If a decentralized search is to succeed, an important point to consider is that the
underlying network possess some form of structure that can help to guide the search.
There are two features that structure the preferential attachment network: degree (it is
an intrinsic property of preferential attachment networks) and homophily. In the next
subsections, the main concepts and components of the service discovery system are
described.

4.1 Modeling Agent Homophily

Homophily is a compact word that expresses the idea that a contact between similar
people occurs at a higher rate than among dissimilar people[16]. This is often say with
the expression ’Birds of a feather flock together’ - that you tend to be friend, talk to,
work with and share ideas with people who share with you a common ethnic, religious
and economic background. This word was used by Lazarsfeld and Merton in 1954 in
an essay titled ’Friendship as a Social Process’[13]. Empirical work related to ho-
mophily within social networks shows that is one of the most robust and pronounced
characteristics of social networks. There are two types of homophily: status homophily,
’individuals are considered similar to one to another on the basis of informal, formal
or ascribed status’, and value homophily, ’individuals are considered similar to one
another on the basis of shared values, attitudes, and believes’[3].

There is no global and application independent law on how homophily is measured.
It is difficult to select an appropriate measure for a particular application area and to
compare the existing homophily measures. Although homophily measurement is not
restricted to solve a particular task, most homophily measures have been developed
for a specific purpose. In our network, the homophily between two agents is based on
semantic information contained in the service descriptions.

Given the agents a1 and a2, the homophily between them is calculated as follows.
If we consider s1 and s2 as the services offered by the agents a1 and a2 respectively,

s1 =< Is1 , Os1 > s2 =< Is2 , Os2 > (3)

the homophily between a1 and a2 can be computed as:

homophily(a1, a2) = αsim(Is1 , Is2) + βsim(Os1 , Os2) (4)

in whichα+β =1, 0≤α≤1, and the values ofα and β depends of the number of inputs or
outputs of the services. If the number of inputs is higher than the outputs, the value of α
will be higher than the β. The similarity function sim(X,Y ), whereX and Y represent
the input or output parameters of two services, means the degree that Y satisfies X and
is defined as a bipartite matching problem for service inputs and outputs.

A matching of a bipartite graph G=(V ,E) is a subgraph G′=(V ,E′), E′ ⊆ E,
such that no two edges e1,e2 ∈ E′ share the same vertex. Given a bipartite graph
G=(V1∪V2,E) and its matching G′, the matching is complete if and only if all ver-
tices in V1 are matched.

Let consider S1out and S2out the set of concepts in services s1 and s2 respectively.
Consider the graph G=(V1∪V2,E) where V1=S1out and V2=S2out. Consider two con-
cepts oi ∈ V1 and oj ∈ V2. We differentiate among the four degrees of match proposed

75



6 E. del Val, M. Rebollo, and V. Botti

by Paolucci et al. [24]. We calculate the degree of match of this two concepts using a
semantic similarity measure. With the value of this measure we decide the degree of
match R. R can be one of these values: Exact, Plugin, Subsume or Fail. If R is
one of these degrees, an edge is defined between (oi ,oj), oi ∈ V1 oj ∈ V2 in the graph
and label it with a weight (ωij). Once we have the weighted bipartite graph, we have
to compute a complete matching of the bipartite graph such that the sum of weights
of the edges in the matching, Σωij , is minimized. For this task we use the Hungarian
algorithm [19] which computes it in a polynomial time bound.

4.2 Agent Social Network

In this proposal, we use a preferential attachment network G = (V ,E) which consists of
a set of nodes V and a set of edges E between them. The set of nodes represent agents
which offer semantic services. The edges represent a relationship between agents which
provide similar services. This network possess some form of structure that can guide
the search. Basically, the preferential attachment network has two features that create
such structure [4]. The first is homophily: agents tend to be linked with other agents
that have services with similar category. The second feature is degree: some agents
have more neighbors than others and may act as hubs that connect agents with different
service categories. The consideration of homophily favors the neighbors that offer a
service more similar to the target service. Consideration of degree favors the neighbor
with the highest degree.

We create an undirected network with a power-law degree distribution. Each agent
in the network offers a semantic service and has defined two vectors: one with the
service inputs (I ′s) and the other with the service outputs (O′s). Each I/O is a semantic
concept defined in an ontology. The link between two agents is established considering
the ratio preference between agents a1 and a2 to the sum of preferences from a1 to all
the agents in the network. To approximate the preference from a1 to all the agents in
the network, using only local information, we use the degree of the agent a1 (ka1 ) and
the preference between the agent a1 and its neighbors.

qa1,a2 = fa1,a2/ka1 ∗max(fa1,neighbour), (5)

The preference between two agents a1 and a2 with services s1 and s2 respectively
fa1,a2 is defined as follows:

fa1,a2 = (max{homophily(s1, s2), 0.01})r (6)

where homophily(s1, s2) is the homophily function between the service offered by
agent a1 and the service offered by agent a2. The return value of these function is a real
number which ranges in the interval [0..1] (1 if the service provided by agent a1 is equal
to the service provided by agent a2). The r parameter is a homophily regulator. When
r is zero, the graph shows no homophily, agents are not grouped by similar service
categories. As r grows, links connect agents with more similar services. Basically r
makes the network to show groups of agents (communities) with similar services [9].

76



Decentralized Semantic Service Discovery in Preferential Attachment Networks 7

4.3 Semantic Distributed Searching of Services

Preferential attachment networks grow according to a simple self-organizating process.
These networks need efficient search algorithms in order to function well. Algorithms
should rely on local information in order to avoid a dependence on a unique point
of failure and to avoid the effects of the changes in the network structure. There are
several algorithms proposed for decentralized search in networks. Some methods do
not consider the special features for the corresponding network models such as breadth-
first searching methods based on limited flooding or random walks [32]. By making use
of special features of the system topologies the algorithms can be classified in three
groups:

– degree: the degree-based search methods typically make the assumptions defined in
[32]: (i) ’each node knows its own neighborhood network topology’; and (ii) ’each
node can locate the target if and only if the target is within a certain range of its
neighborhood’. Generally speaking, the algorithm navigates through the network
selecting in each step the neighbor agent with highest degree. In case that all the
neighbor agents have been visited, the algorithm selects one randomly.

– similarity: The algorithm basically navigates the network selecting in each step
the neighbor agent which has the service more similar to the target service. If all
the neighbor agents have been visited, the algorithm selects one randomly [32].
In our case, it navigates using semantic similarities among service description (or
parameters) using formula 4 as similarity measure.

– mixed: the algorithm navigates through the network selecting the neighbor agent
whose service is more similar to the target service. In case that the neighbor agent
do not offer the information needed to calculate the similarity between services, the
algorithm selects the next agent between its neighborhood considering the degree.
In the case that similarity and degree values are available, both parameters can be
used to calculate the next neighbor. If all the neighbor agents have been visited, the
algorithm selects one randomly.

In the context presented in this paper, the selected algorithm to search in preferential
attachment networks is the Expected-Value Navigation(EVN) described in[4] which is
a mixed algorithm. To apply this algorithm in the agent network, it is necessary to con-
sider degree and the homophily between agents which is based on semantic similarity
between the semantic services provided by the agents (see formula 4). In our scenario
we assume that if the agents do not share the same ontology a previous step of ontology
alignment is done. With this information, we can estimate the probability that a link ex-
ists from one agent to another. This probability is calculated assuming that each link is
placed independently of the others. For a link from agent a1 to agent a2 the probability
pa1a2 can be calculated as the inverse of qa1a2 :

pa1a2 = 1− (1− qa1a2)
k (7)

where qa1a2 is the probability that the first link for a1 ends at a2 (see formula 5), and k
is the degree of node a2.

77



8 E. del Val, M. Rebollo, and V. Botti

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90  100

M
ea

n 
Fr

ec
ue

nc
y

Path Length When Successful

Homophily parameter 0.5

EVN
Similarity-Based

Degree-Based
Random-Based

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90  100

M
ea

n 
Fr

ec
ue

nc
y

Path Length When Successful

Homophily parameter 1.5

EVN
Similarity-Based

Degree-Based
Random-Based

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90  100

M
ea

n 
Fr

ec
ue

nc
y

Path Length When Successful

Homophily parameter 2.0

EVN
Similarity-Based

Degree-Based
Random-Based

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90  100

M
ea

n 
Fr

ec
ue

nc
y

Path Length When Successful

Homophily parameter 3.0

EVN
Similarity-Based

Degree-Based
Random-Based

(d)

Fig. 1: Path Length When Successful

5 Experiments

5.1 Network Characterization

The experiments have been done in a set of synthetic networks. These networks are
preferential attachment networks with the features explained in section 4.2. Each net-
work is composed of 1000 agents with one semantic service each one. There are 100
service categories. The services have been assigned to the agents using a uniform dis-
tribution. We have created six sets of 10 random agent social networks. Each set of
networks have been generated with different homophily parameter. This degree ranges
from 0.5 to 3.0.

5.2 Experimental Results

In order to evaluate the proposed service discovery system in preferential attachment
networks, we have analyze the behavior of the EVN algorithm with respect the other

78



Decentralized Semantic Service Discovery in Preferential Attachment Networks 9

distributed searching algorithms: random, degree and similarity. We have made 5000
searches in each of the previous networks.

In Figures 1 and 2 the data gathered from the previous described experiment is
shown. In figure 1 we present the results obtained varying the homphily parameter
from 0.5 to 3.0. Each figure indicates the frequency of path lengths for each distributed
algorithm (EVN, degree, similarity and random). From these set of graphs we see that
the EVN algorithm, in general has a better performance than the other algorithms in-
dependently of the homophily parameter. The EVN algorithm has the higher frequency
of short paths (around 9 hops). In Figure 1a, the EVN have the same behavior than
the degree-based algorithm. This is due to the homophily degree is too low, so the net-
work does not show homophily and the EVN algorithm follows selects the neighbors
only considering the degree. When the homophily parameter increases (Fig.1b,1c)), the
performance of the EVN becomes better than the other algorithms. This is because the
EVN considers both parameters to guide the search: degree and homophily and can
take more advantage of the network structure. The best performance of the EVN with
respect the others is with the homophily parameter varying from 1.5 to 3.0 (Fig.1b -
1d).

 10

 15

 20

 25

 30

 35

 0.5  1  1.5  2  2.5  3

M
ea

n 
Pa

th
 L

en
gt

h

Homophily parameter

EVN
Degree-Based

Similarity-Based
Random-Based

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5  1  1.5  2  2.5  3

%
 S

uc
ce

ss
fu

l S
ea

rc
he

s

Homophily parameter

EVN
Degree-Based

Similarity-Based
Random-Based

(b)

Fig. 2: Network with different homophily degrees

Figure 2a shows the mean path length obtained with each algorithm in networks
with the homophily parameter varying from 0.5 to 3.0. In general, the EVN always re-
turn the shortest path except in graphs with a low value of the homophily parameter.
This is because EVN takes more advantage of the network structure. In Figure 2b the
success rate of each algorithm is shown. The EVN algorithm in the 90% of searches
finds a path between the source agent to the agent that has the service that it was inter-
ested in.

The last and very important check is the behavior of the network under failures.
The problem appears when a broken link splits the network into tow isolated parts,
since some nodes will no longer be reachable. To analyze it, node failures have been

79



10 E. del Val, M. Rebollo, and V. Botti

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 10  15  20  25  30  35  40  45  50

M
ea

n 
Pa

th
 L

en
gt

h

%deleted nodes

EVN
Degree-Based

Similarity-Based
Random-Based

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 10  15  20  25  30  35  40  45  50

%
su

cc
es

s

%deleted nodes

EVN
Degree-Based

Similarity-Based
Random-Based

(b)

Fig. 3: Network with random failures

modelled as a failure of all its connexions. When some links are broken, an alternative
path has to be found.

 30

 32

 34

 36

 38

 40

 42

 44

 2  4  6  8  10  12  14  16

M
ea

n 
Pa

th
 L

en
gt

h

number of deleted hubs

EVN
Degree-Based

Similarity-Based
Random-Based

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 2  4  6  8  10  12  14  16

%
su

cc
es

s

number of deleted hubs

EVN
Degree-Based

Similarity-Based
Random-Based

(b)

Fig. 4: Network under ’sabotage’ conditions

For random failures (see Fig.3a and Fig.3b), it can be observed that the path length
decreases when the number of deleted nodes increases. But this is a consequence of the
failure in most of the searches when the percentage of deleted nodes approaches 30%
because many searches cannot end successfully.

An interesting case is what happens when a deliberate failure is provoked. In the
case of power-law networks, the worst case occurs when nodes with highest degree
(hubs) are disconnected. Figure 4a and 4b shows how ’sabotage’ affects the perfor-
mance of the search process. In this case, the path length increases due to only a few

80



Decentralized Semantic Service Discovery in Preferential Attachment Networks 11

highly connected hubs have been deleted and an alternative path exists. The perfor-
mance attending the number of successful searches decreases considerably as the num-
ber of deleted hub increases.

6 Conclusions and future work

The aim of this work is to investigate the use of social networks and distributed search
algorithms to provide a fully distributed service discovery approach in Open MAS envi-
ronment. Our proposal tries to overcome drawbacks present in other centralized (bottle-
necks, complexity, huge amount of memory needed, global knowledge) and distributed
(network traffic, congestion, coordination effort, data consistency between distributed
registries, update data) discovery approaches. In our proposal, agents are situated in a
social network with homophily factor. Each agent maintains the information about the
current available services it offers. Agents in the network act as a ’matchmakers’ and
make use of a distributed search algorithm (EVN) that only makes use of local informa-
tion to guide the search. The experimental results show that the EVN can be considered
a good algorithm for service discovery domain.

As a future work we consider how does the problem of service discovery changes
when the network evolves over time and what happen when agents do not follow a fixed
algorithm. Furthermore, we will consider organizational information in the discovery
process to guide the search.

Acknowledgment

This work is supported by TIN2009-13839-C03-01 and TIN2008-04446 projects,
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, FPU grant AP-2008-
00601 awarded to E. del Val.

References

1. L. A. Adamic and E. Adar. How to search a social network, 2004.
2. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, October 1999.
3. B. Chaudhry, C. Marton, and H. Shepherd. Homophily and structure in multiplex networks.
4. O. Şimşek and Jensen. Navigating networks by using homophily and degree. Proceedings of

the National Academy of Sciences, 2008.
5. J. Dang and M. Hungs. Concurrent Multiple-Issue Negotiation for Internet-Based Services.

Number Vol.10 - 6. 2006.
6. S. Goyal and J. Moraga. R&d networks. Econometric Institute Report 202, Erasmus Univer-

sity Rotterdam, Econometric Institute, 2000.
7. H. Holzer. Search method used by unemployed youth. Journal of Labor Economics, 6:1–20,

1988.
8. S. Jha, P. Chalasani, O. Shehory, and K. Sycara. A formal treatment of distributed matchmak-

ing. In Proc. of the 2nd Int. Conference on Autonomous Agents, number Vol.3, pages 457–458,
1998.

81



12 E. del Val, M. Rebollo, and V. Botti

9. J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In in Proceedings
of the 32nd ACM Symposium on Theory of Computing, pages 163–170, 2000.

10. J. M. Kleinberg. Navigation in a small world. Nature, 406(6798), 2000.
11. M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discovery with owls-

mx. In Proceedings of 5th AAMAS, Hakodate, Japan, 2006.
12. R. E. Kranton and D. F. Minehart. A theory of buyer-seller networks. American Economic

Review, 91(3):485–508, 2001.
13. P. Lazarsfeld. Friendship as a social process: A substantive and methodological analysis.

Freedom and Control in Modern Society, 1954.
14. D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. Geographic rout-

ing in social networks. Proceedings of the National Academy of Sciences of the USA,
102(33):11623–11628, 2005.

15. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

16. M. Mcpherson, L. S. Lovin, and J. M. Cook. Birds of a feather: Homophily in social net-
works. Annual Review of Sociology, 27(1):415–444, 2001.

17. I. Mecar. Agent-oriented semantic discovery and matchmaking of web services. In 8th
International Conference on Telecommunications, pages 603–607, 2005.

18. M. Moore and T. Suda. A decentralized and self-organizing discovery mechanism. In Proc.
Of the First Annual Symposium on Autonomous Intelligent Networks and Systems, 2002.

19. K. Nedas. Implementation of munkres-kuhn (hungarian) algorithm, 2005.
20. M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167–

256, 2003.
21. http://en.wikipedia.org/wiki/Scale−free−network.
22. E. Ogston and S. Vassiliadis. Local distributed agent matchmaking. In Proceedings of the

9th International Conference on Cooperative Information Systems, 2001.
23. A. Ouksel, Y. Babad, and T. Tesch. Matchmaking software agents in b2b markets. In Pro-

ceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04),
2004.

24. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of web services
capabilities, 2002.

25. K. Sigdel, K. Bertels, B. Pourebrahimi, S. Vassiliadis, and L. Shuai. A framework for adap-
tive matchmaking in distributed computing. In In proceeding of GRID Workshop, 2005.

26. K. Sycara and M. Klusch. Brokering and matchmaking for coordination of agent societies:
A survey. Coordination of Internet Agents: Models, Technologies and Applications, pages
197–224, 2001.

27. J. Travers and S. Milgram. An experimental study of the small world problem. Sociometry,
32(4):425–443, 1969.

28. E. Del Val and M. Rebollo. A survey on web service discovering and composition. In Webist,
volume I, pages 135–142, 2008.

29. D. J. Watts. The new science of networks. Annual Review of Sociology, 30, 2004.
30. D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks, May

2002.
31. H. P.Thadakamalla, R. Albert, S. R.. TKumara. Search in spatial scale-free networks New

Journal of Physics, Volume 9, Issue 6, pp. 190 (2007).
32. S. Xiao and G. Xiao. On degree-based decentralized search in complex networks. CoRR,

abs/cs/0610173, 2006.

82



Goal-Directed Approach for Process Specification and
Service Selection in Customer Life Cycle Management

Kumari Wickramasinghe1, Michael Georgeff1, Heinz Schmidt2, Ian Thomas1, and
Christian Guttmann1

1 Department of General Practice
Faculty of Medicine, Nursing and Health Sciences

Monash University, Melbourne, Australia
{leelani.wickramasinghe|ian.thomas|michael.georgeff

|christian.guttmann}@med.monash.edu.au
2 School of Computer Science and Information Technology

RMIT University, Melbourne, Australia
Heinz.Schmidt@rmit.edu.au

Abstract. Service selection is the first step in customer life cycle management
where services are selected to meet a customer’s goals or objectives, person-
alised to the circumstances of the customer. The aim of this paper is twofold:
(1) to develop concepts and algorithms for goal-directed service selection; and
(2) to compare and reconcile our goal-directed approach with a service-oriented
approach. The proposed goal-directed service selection algorithm is based on
a goal-directed domain description that represents the customer objectives and
the business processes. We use service component architectures with formalised
contractual service process definitions as a software engineering approach to ar-
chitectural design and realisation of service-oriented architectures (SOA). The
comparison aims to understand the relationship between and benefits of a goal-
directed approach and a service oriented approach . We use case studies from two
complex customer care management domains to demonstrate the concepts. The
implemented algorithms are tested in a health care case study.

1 Introduction

This paper is concerned with the problem of selecting an appropriate set of services to
meet a customer’s goals or needs, personalised to the circumstances of that customer.
For example, a customer of a telecommunications company may have the objective of
getting a range of communication services. The services that best meet the customer’s
needs will depend on the location of the customer, with whom the customer needs
to communicate, the communication media, and the size of the customer’s business.
Similarly, in a quite different setting, a patient with chronic disease needs a care team
(provider services) to help manage the disease, and the composition of that team will
depend on a range of conditions, such as the particular disease or diseases the patient
has, the patient’s age, health status, family history, and so on.

We are interested in developing techniques for automating the selection of such
services, including both their representation and the process of service selection. Au-
tomation requires formalisation. The focus of this paper is to consider two approaches:

83



(1) goal-directed, and (2) service-oriented. The former is formalised using multi-
agent systems (MAS), in particular, goal-directed agents [1]. For the latter we use
service-oriented architectures, in particular service-component architectures [2] with
formalised, contractually agreed service coordination [3].

There has been considerable literature about service composition (e.g., web service
composition [4], flexible Business Process Management [5, 6, 3]) and goal-directed pro-
cessing [7, 8], and there have been some attempts to explicate the relationship between
services in an SOA and goals in an agent framework [9]. However, such research deals
primarily with run-time selection and orchestration of services. In this paper, we are
interested in the static (prior to run-time) generation of a set of interoperable services
that are capable of meeting a customer’s requirements. In this sense, the approach is
similar to program synthesis, at the one extreme, and mash-ups, at the other.

The work presented in this paper is carried out as part of the Intelligent Collabora-
tive Care Management (ICCM) Project3[10], which investigates a comprehensive archi-
tecture for managing the complete life cycle of customer care. The ICCM architectural
components include: (1) automatic selection of a number of (possibly interrelated) ser-
vices to meet a customer’s goals or objectives; (2) allocation of service providers to
deliver the selected services; (3) maintenance of contractual relationships among the
service providers; and (4) the delivery of services by the service providers in an agreed
manner over time and potentially the entire lifetime of the customer. Among these,
an investigation of the Item (1) is the objective of this paper (refer [11] for the other
components of ICCM).

The customer-centric automatic service selection has two key elements: (1) a do-
main representation mechanism; and (2) service selection algorithms. The domain
representation includes the specification of the actors (e.g., customers and service
providers), their properties, services (a unit of independent third-party deployment that
encapsulates internal data and state [12]) and the business processes which coordinate
such services. In a tightly coupled world, coordination is typically simple, monolithic,
deterministic, well understood and with few control paths. Here it is possible to specify
all the business processes that determine the flow between services considering all pos-
sible customer properties. However, this approach is impractical in widely distributed,
loosely coupled systems using different technologies implemented in different program-
ming languages on a wide range of platforms. The determination of the exact process
(static flow) at the design time is challenged (1) in dynamic environments where cus-
tomer objectives and business processes change; and (2) when different business units
interact with one another to realise customer objectives. To address these challenges we
propose:

1. A goal-directed domain representation called a coordination-level specification ;

3 The work reported here was supported in part by British Telecom (CT1080050530), the Aus-
tralian Research Council (LP0774944), the Australian Governments Clever Networks program
and the Victorian Department of Innovation, Industry and Regional Development, Department
of Health, and Multi Media Victoria. We also gratefully acknowledge the contributions and
advice from Dr Simon Thompson and Dr Hamid Gharib of British Telecom and Professor
Leon Piterman, Dr Kay Jones, Associate Professor Peter Schattner, and Mr Akuh Adaji of the
Department of General Practice, Monash University.

84



2. A goal-directed service selection algorithm based on the Item 1 above;
3. A goal-directed extension to a component-based service selection technique (from

main stream SE) based on the goal-directed specification in Item 1 above; and
4. A comparison between component-based and goal-directed service selection mech-

anisms highlighting the benefit each approach can obtain from the other.

The paper is organized as follows. Case studies of customer care management are
presented in Section 2. Service selection is described in Sections 3 (goal-directed) and
Section 4 (service-oriented). Section 5 relates our work to existing research. Concluding
remarks and future work are discussed in Section 6.

2 Case Studies of Customer Care Management

This section describes case studies of three complex customer care management do-
mains, health care and telecommunication, which can benefit from the proposed ser-
vice selection strategies. In the subsequent sections, examples are mainly obtained from
health care case study.

2.1 Health Care: Chronic Disease Management

The current practice for caring for patients with chronic diseases involves the develop-
ment and management of personalised care plans for these patients. A care plan includes
tests, medications and treatments (services) together with the details of health care
providers who provide each service. In ICCM project terms, patients are the customers
and the health care providers, such as general practitioners, podiatrists, optometrists and
dietitians are the service providers.

Once a chronically ill patient is identified, a General Practitioner (GP) creates a
care plan using chronic disease care plan templates. While related to service selection,
these templates only provide a guideline, requiring manual personalization for patient
properties that demands much of GP’s or practice nurse’s time. We expect to minimize
GP’s workload by generating personalized care plans using automated context-sensitive
service selection and service compatibility checking.

2.2 Telecommunication Domain: Customer Life Cycle Management (CLCM)

Telecommunication is a competitive domain with many telecommunication companies
providing similar services. The aim of Customer Life Cycle Management (CLCM) is
to move a potential customer through several stages until he/she eventually becomes
loyal, without losing them on the way to abandonment, attrition, churn, and migration
[13]. Cutler and Sterne state that a customer moves through five stages: reach, acqui-
sition, conversion, retention and loyalty [13]. In each stage, the customer’s objectives
may change, which demands personalised service selection to retain their customer.
In addition, in telecommunication companies, different business units such as Internet
and Voice provide different services. Usually a customer objective crosses among these
units, requiring collaboration among processes from different business units.

85



3 Service Selection: Goal-Directed Approach

This section investigates a goal-directed service selection strategy based on goal-
directed MAS (Section 3.1). In this approach, business processes and the customer
objectives are specified as goals in the coordination-level specification (Section 3.2).

3.1 Goal-Directed Coordination-Level Specification

The proposed coordination-level specification contains four distinct specifications:

Environment specification defines elements, artifacts or constructs of the domain;
Goal specification defines the goals or objectives of the customer;
Process specification defines the business processes available in the domain; and
Constraint specification defines how different services may interact with one another.

Environment Specification: The entities (which are applicable to customer care man-
agement) and their properties are defined in the environment specification. The com-
pulsory entities include the customer and service providers. Minimally, the environ-
ment specification contains the properties of the customer and the service providers.
Formally, the environment specification D consists of a set of attributes and function
definitions to describe each entity. For example, the patient entity from health care case
study contains the attributes: height, weight, history, isSmoker, numberOfSmokesPer-
Day and functional definitions: BMI(patient) = weight/height ∗ height and IsOver-
weight(patient) iff (BMI(patient) > 25). It includes only the definitions of attributes
and functional properties, not instances of the entities. The entities are instantiated in
the selection stage (Section 3.2) by assigning values to the definitions. The environment
specification can take the form of any knowledge representation technique: lists, trees,
semantic networks, schema, rule-based or logic-based representations.
Goal Specification: Goal specification, G defines the business objective that the com-
pany is trying to achieve or the objective of the customer or the desired outcome at
the end of service selection. Using the goal-directed terminology such an objective is
termed a goal. For example, patient’s goal can be to“Manage Diabetes” or “Manage
Weight” while the business objective is to provide “Manage Diabetes Service” or “Man-
age Weight Service”. Goals are defined as predicates G(x) or G(x, y) with subject x and
optional object y. For example, ManageNutrition(?SomePatient) means SomePatient
does ManagesNutrition; ObtainObesityEducation(SomePatient, SomeEducator) means
that the SomePatient obtains obesity education from an educator.

We categorize two types of goals: (1)service goals; and (2)abstract goals. Service
goals can be directly delivered by service providers. Service goals also map generally
into service operations in SOA, the provision of a service for another entity. The abstract
goals may not have specific concrete realizations as service provider operations, but
provide ordering constraints on the use of service goals. Hence abstract goals form a
management or orchestration layer over the main service goals. (For clarity, examples
of goals are provided after the process specification is described).

Formally, SG is a set of service goals SG = {sg1, . . . , sgn} and AG is a set
of abstract goals AG = {ag1, . . . , agm} and a set of goals: G = SG ∪ AG with
SG ∩ AG = ∅. If SPT = {spt1, . . . , sptl} denote the service provider types, then

86



the mapping of service goals to provider types that can deliver the goals is a simple
many-to-many relation: H ⊆ 2G × 2SPT .
Process Specification: The process specification defines the manner of achieving the
goals specified in the goal specification. The proposed process specification takes into
account: (1) processes may come from different business units; and (2) different busi-
ness units utilize such processes as part of their collaborations among services.

Analogous to business process design methodologies (e.g., Six Sigma [14]), pro-
cess specification establishes goals and decomposes them into sub-goals. It defines the
process in terms of the sub-goals that need to be achieved to ensure a successful out-
come of a goal. This goal-directed process definition allows loose coupling to exist at
the business process level opposed to the conventional approaches that use explicit links
to specific sub-processes (tightly coupled business processes).

Service goals are not subdivided further into sub-goals (they are considered prim-
itive). Abstract goals are refined recursively untilservice goals are reached. Moreover,
conditional goal refinement and service selection is supported. For example, the goal
Manage Life Style may have three sub-goals: Manage Nutrition, Manage Weight and
Cease Smoking. However, the Manage Weight goal is applicable only to overweight
patients and Cease Smoking goal is applicable only to smokers.

As a representation of this refinement, we use the notion of an operator: op ⊆
AG × BoolExp → 2G, which associates an abstract goal g ∈ AG with one or more
conditions C and for each of these with a unique refinement into a set of subgoals
s = {g1, . . . , gm} . We represent an operator instance as a triple < g, C, s >. C is a
logical expression over the environment specification. s is also called the body of op.
Note that the order of subgoals is not formalised here. Ordering constraints are modeled
outside of operators.
The following example illustrates two operators with their goals (from the case study):

Operator 0
Goal: ManageDiabetes(?SomePatient)
Context: Patient(?SomePatient) and Disease(?SomePatient, Diabetes)
Body: ManageLifestyle(?SomePatient)

ReduceRiskOfComplications(?SomePatient)

Operator 1
Goal: ManageLifestyle(?SomePatient)
Context: Patient(?SomePatient) and History(?SomePatient, Diabetes)
Body: ManageNutrition(?SomePatient)

If Overweight(?SomePatient) then ManageWeight(?SomePatient)
If Smoker (?SomePatient) then CeaseSmoking(?SomePatient)

goal: ManageDiabetes has two sub-goals: (1) ManageLifestyle (2) ReduceRiskOfCom-
plications
goal: ManageLifestyle has three sub-goals: (1) ManageNutrition (2) ManageWeight
(3) CeaseSmoking

ManageWeight is selected if the patient is overweight and CeaseSmoking is selected
if the patient is a smoker.
AG = {ManageLifestyle, ReduceRiskOfComplications, ManageNutrition, Man-
ageWeight, CeaseSmoking, SelfManageWeight }
SG = {ObtainObesityEducation, MonitorWeight, AttendWeightManagementProgram
}

87



Constraint Specification: Constraint specification includes constraints over goals, such
as ordering constraints or dependencies associated with abstract goals. A constraint can
specify which goals must appear together, or must not appear together, ordering or tim-
ing constraints or a restriction on goals that cannot be selected together. We consider
two types of constraints:

1. Exclusion constraints: Defines two or more goals which cannot be selected to-
gether (mutually exclusive goals for service selection). For example, if goal gi is chosen
for selection, then goal gj can not be executed, denoted by the property : P (gi∩gj) = 0.

2. Binding constraints: Defines two or more goals that must be selected together
(mutually exclusive goals for service selection). For example, if goal gi is selected, then
goal gj must be selected, too: denoted by gi → gj . Bindings may specify any ordering
or concurrency or services (e.g., if two services are executed in paralle or sequential).

The use of coordination-level specification in goal-directed service selection is de-
scribed next.

3.2 Goal-Directed Service Selection Algorithm

The ICCM service selection stage generates a care plan by selecting services from the
process specification to realise a customer objective. A customer instance is created
by assigning values to the customer attributes and the functional properties defined in
the environment specification, called the environment specification. Similarly, the goal
specification is assigned with the customer objective and termed a goal model.

Each operator in the process specification encapsulates a goal gi : gi ∈ G
and a set of sub-goals to achieve gi. With the notion of goals and sub-goals, opera-
tor specification depicts a tree structure, which we term a goal tree. A service goal
sgi : sgi ∈ SGandSG ⊂ G corresponds to a leaf node in the goal tree. The service se-
lection aims to identify all the service goals required to realise a customer as the service
goals corresponds to services in SOA which are provided by service providers.
Goal-directed Algorithm: The service selection algorithm: (1) traverses the goal tree;
(2) starts with the node that corresponds to the goal model; and (3) finishes when all
the relevant service goals are reached. This traversal depicts a branching tree structure
which selects an operators if its context matches with that map to the environment
model. A basic version of the service selection algorithm is:

SelectServices(customerObjective)
let careplan ={} and let subGoals ={}
subGoals = GetSubGoals(customerObjective)
while (subGoals 6= {} )
for each gi ∈ subGoals

subGoals = subGoals −gi

if x ∈ SG
careplan = careplan + gi

otherwise
subGoals = subGoals + GetSubGoals(gi)

return careplan

88



The SelectServices function gets invoked with the goal model as the customerOb-
jective parameter. The GetSubGoals function returns the immediate child node(s) of a
given goal from the goal tree.
For example (from the Process Specification in Section 3),
let customerObjective = ManageDiabetes
In the first iteration:

subGoals = {ManageLifestyle, ReduceRiskOfComplications}
where g1 = ManageLifestyle and g2 = ReduceRiskOfComplications

At the end of first iteration:
careplan = {} (Since (g1, g2) /∈ SG)
if the patient is overweight and a smoker:
subGoals = {ManageWeight, CeaseSmoking, ReduceRiskOfComplications}
if the patient is only overweight:
subGoals = {ManageWeight, ReduceRiskOfComplications}

and so on

The second iteration starts with the subGoals resulted at the end of the first iteration.
The iterations continue until the careplan variable is populated with all the relevant
service goals.

The service selection algorithm depicts a recursive nature: (1) due to the definition
of goals and sub-goals in the operator specification; and (2) to get a set of service goals
as the output of the service selection stage. The statement subGoals := subGoals +
GetSubGoals(gi) handles the recursive behaviour.

If there are multiple operators with matching context (OR tree), each such operator
produces a distinct care plan. An extended algorithm, Generate to generate multiple
care plans is given below. The Generate function invokes the Combine function to allo-
cate service goals to the appropriate care plan.

Generate(goal)
matchingOperator = Match(goal)
for each gi ∈ matchingOperator

finalServices ={}
subgoal = GetSubgoal(gi)
if subgoal = {}

let (gi ⊂ finalServices)
otherwise

for each sgj ∈ subgoal
z = Generate(sgj)

finalServices = Combine(z, finalServices)
return finalServices

Combine(z,finalServices)
newFinalServices ={}
for each xi ⊂ z

let ((xj ∪ finalServices) ⊂ newFinalServices)
return newFinalServices

89



The Match function returns a set of operators that match the goal and the context.
The Generate function returns a set of sets of service goals, each set corresponds to a
distinct care plan.

Next we describe a service-oriented service selection technique.

4 Service selection: Service-Oriented Approach

Component-based architecture focuses on the architectural design of systems with
reusable components, interfaces, ports and connections between them, and the build-
ing of composite services [15]. Architectural design has demonstrated success in re-
ducing software development and maintenance costs through reuse, product lines and
architecture-based quality assurance for dependable and trustworthy systems [16].
While components and services are not the same, SOA is a specific style of component-
based architecture [17]. Architecture definition languages for component-based archi-
tecture such as AADL and the UML2 are very similar in notation and modeling to
those of SOA, such as the open-source Apache Tuscany Servcie Component Architec-
ture (SCA) [2] now widely used in practice. Both aim at the separation of frameworks
and components, the independent incremental development of components/services in
different languages, their deployment into live systems on different platforms without
loss of interoperability and dependability.

The approach of contract-based design which underlies our work in this and other
projects [18] carries across to SOA [3]. Service providers and service coordination are
specified with precise contractual obligations, distinguishing service requirements and
conditional gurantees in service (composition/coordination) constraints. These are mod-
eled by process languages defining service invocation constraints, typically modelled
by process expressions or automata models. This formalization of interface behaviour
is used by us in user-guided plan design and automatic selection algorithms.

4.1 Service Model

The service model associates the goals from the goal specification with a set of ser-
vices to achieve such goals. These services are formalisations of the real-world service
providers such as podiatrists, GPs etc. or in the case of abstract goals represent ser-
vice components serving coordination. In service architecture terms, we distinguish
service provider types (SPT) from service instances. A SPT is associated to other SPTs
through interface descriptions. Our approach captures dependencies and constraints be-
tween service types via so-called gates. Beside a port name and an interface definition,
a gate includes a contractual service specification possibly including service quality
contracts. Independent of the specific service providers (the instances) selected at run-
time, our approach designs and checks the typical coordination and interaction between
these service types before run-time. When a service instance is selected at run-time, this
only necessitates type checking.

As usual in component-based architecture and service component architecture lan-
guages such as SCA we distinguish provided and required interfaces, and here, gates.
Unlike ports, connections to gates are only possible if the contracts are met. This al-
lows us to separate contractual assumptions from guarantees. A service provider entity

90



may have multiple service operations that it can publish at a provided or required gate.
Via gates, services can be connected, either by binary connectors that are linking up
a required gate with a conforming provided gate, or by special coordinators that in-
clude architectural coordination constraints over several gates.Coordinators are mod-
elled themselves like (light-weight) components. We use the Rich Architectural De-
scription Language (RADL) [19] to formally represent SPTs and gate constraints. For
example, from the health care case study, the goal “ManageDiabetes” is now termed a
SPT description and the sub-goals: “ManageLifestyle” and “ReduceRiskOfComplica-
tions” become the required services of the gate. Thus we ’componentise’, i.e. define an
architecture, a structure in-the-large, over the otherwise unstructured collection of goals
and operators in the goal-oriented approach.

4.2 Process Model

While RADL gate processes are described by (possibly concurrent) automata, RADL
features so-called abstract machines associated with software or service components.
Like many other architecture description languages[20], RADL uses gate processes for
conformance checks when components are selected or composed in a context. The ab-
stract machines expose an abstract translation from service abstractions invoked via a
provided gate to services called out to via required gates. They capture dependencies
between gates realised by component implementations without revealing the implemen-
tations and are used for refined dependency analysis, testing and performance prediction
across networks of mutually dependent service components.

Finally, this architecture provides structure to the set of services available to be de-
ployed to fulfill the customer objectives. This structure forms a manifest of all available
services. A sample structure extract is shown in Figure 2.

4.3 Service selection: Goal-Directed vs SOA

The service-oriented realisation of service selection, checking and composition mirrors
the goal-directed approach described (Section 4.1) as follows:

1. each goal is translated to an SPT description;
2. each sub-goal is mapped to a port in the service-oriented architecture;
3. the sub-goal is then translated to a gate by enriching the port with the appropriate

coordination process;
4. operators are identified in the SPT structure.

By construction we represent the same hierarchical structure for goals and service
types (Figures 1 and 2).

The concept of a goal is a semantically rich concept. The goal-directed approach:

1. has inherent verification support to check the correctness of the goal tree;
2. has inbuilt goal tree maintenance support;
3. captures the knowledge-based semantics of goals in the operator specification;
4. in addition to the task-based service selection (e.g., manageWeight), it allows ser-

vice selection based on:

91



 

ManageNutrition 

ObtainNutritionEducation SelfManageNutrition 

EatHealthily UseNutritionLifescript 

Fig. 1. A sample goal tree

 

Cons0R0: 
cons0R0.Dietitian0P0 

Dietitian0P0:true 

Cons0R1

Cons0R1:Cons5P0 

Cons0R1: 
Cons0R1.Cons4P0 

Cons4P0:true

Cons5P0:true

Service Provider: Dietitian0 
Provided:Dietitian0P0:"Obtain_Nutrition_Education*" 
Required: 
Abstract Machine: 
"(Obtain Nutrition Education*)"

Service Provider: cons5 
Provided: 
cons5P0:"Selfmanage_Nutrition" 
Required: 
cons5R0:"Use_Nutrition_Lifescript" 
Abstract Machine: 
"(Selfmanage_Nutrition, 
Use_Nutrition_Lifescript)" 

Service Provider: cons0 
Provided: 
cons0P0:"Manage_Nutrition" 
Required: 
cons0R0:"Obtain_Nutrition_Education*" 
cons0R1:"Selfmanage_Nutrition" 
Abstract Machine: 
"(Manage_Nutrition, 
Selfmanage_Nutrition, oct2009, 
Obtain_Nutrition_Education, oct2010, 
Obtain_Nutrition_Education)" 

Service Provider: cons4 
Provided: 
cons4P0:"Selfmanage_Nutrition" 
Required: 
cons4R0:"Eat_Healthily" 
Abstract Machine: 
"(Selfmanage_Nutrition, Eat_Healthily)" 

Fig. 2. SPT structure corresponds to the goal
tree in Figure 1

(a) the desired outcome (e.g., the patient wants to manage weight); and
(b) maintenance goals (e.g., maintain the patient’s weight gain less that 3% of the

service selection-time body weight);
5. supports a distributed design environment through partial plans.
6. supports the use of automatic goal planners.

On the other hand, formal approaches to SOA allow complex data and process types
and contractual constraints to be specified. Future work is directed towards developing
representation techniques for rich constraint specification in the goal-directed approach.
This will require reconciling goal search with architecture-based process definition.

5 Related Research

A service, which is an implementation of a well-defined business functionality with a
well-defined interface is the building block of SOA [12]. A web service describes a
standard way to integrate web-based applications by programmatically providing busi-
ness logic, data and processes. Web services are considered as the preferred way to
realize SOA [21]. Web Service composition strategies are broadly categorized into 5
categories: static vs dynamic, model-driven service composition, declarative service
composition, automated vs manual service composition, and Context-based service dis-
covery and composition [4]. ICCM service selection strategies illustrate a combination
of dynamic, model-driven, automated and context-based approach.

This paper investigates the applicability of the goal-directed approaches for service
selection which occur at static-time. The application of agent-based goal-directed ap-
proaches for managing the run-time behaviour of systems is a research area in its own

92



right with already proven success [7, 8]. Already there are initiatives for context sensi-
tive goal-directed service selection. For example, IBM has identified the importance of
flexible business process management plans to obtain SOA objective to create new solu-
tions by composing existing business services to handle dynamic business requirements
[5]. To address such requirements IBM introduced the BPM Suite “WebSphere Busi-
ness Services Fabric” which has shareable, context sensitive flexible modules called
intelligent business services [6]. However, these intelligent business services are not
formalized in MAS terms and, lack both the expression power of MAS and any formal
basis.

The semantics of goal-directed BDI agents and formalisms to represent such se-
mantics are well researched and mature [22]. The agent architectures (e.g., PRS [23],
dMARS [24]) have mechanisms to represent such formalisms. There are programming
languages (e.g., AgentSpeak [25]) based on BDI architectures and agent platforms (e.g.,
Jason [26]) to develop BDI agents. To our knowledge there is no research on goal-
directed service selection using goal-directed agent semantics, formalisms and imple-
mentation tools, although it clearly relates to work in hierarchical planning [27].

6 Conclusions and Future Work

This paper investigated service selection strategies to meet a customer’s goals or objec-
tives, personalised to the circumstances of that customer. It proposed a goal-directed do-
main representation technique, service selection algorithm, and extension to a service-
oriented service selection algorithm. The comparison among the goal-directed and
service-oriented approaches concludes that both the approaches can generate the same
outputs and add value to the other. SOA can provide rich techniques to apply complex
constraints over goals, while the goal-directed approach can provide knowledge-based
semantics of goals and a distributed design environment.

Currently our goal-directed approach does not have a mechanism to represent rich
constraints among goals. As future work we expect to enhance the goal-directed ap-
proach to represent process logical constraints, further integrate BDI agent-based goal-
oriented selection with SOA, and implement the goal-directed approach in other do-
mains, such as telecommunication.

References

1. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In Allen, J.,
Fikes, R., Sandewall, E., eds.: Principles of Knowledge Representation and Reasoning(KR).
Morgan Kaufmann, San Mateo, California, United States of America (USA) (1991) 473–484

2. Mahbod, H., Feng, R., Laws, S.: Building SOA with Tuscany SCA. Java Developer Journal
(11 2007)

3. Ling, S., Poernomo, I., Schmidt, H.W.: Describing web service architectures through design-
by-contract. In: Proc. 18th Intl. Symp. on Computer and Information Sciences (ISCIS’03).
Volume 2869 of LNCS., Springer-Verlag, Berlin (2003) 1008–1018

4. Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal of
Web and Grid Services 1(1) (2005) 1–30

93



5. Fiammante, M.: Dynamic SOA and BPM: Best Practices for Business Process Management
and SOA Agility. IBM Press (2009)

6. IBM: Websphere business services fabric (2009)
7. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-oriented

business processes. In: Proc. 7th Intl. Joint Conf. on Autonomous Agents and Multiagent
Systems: industrial track, Intl.Foundation for Autonomous Agents and Multiagent Systems
(2008) 37–44

8. Ingrand, F., Georgeff, M., Rao, A.: An architecture for real-time reasoning and system con-
trol. IEEE Expert 7(6) (1992) 34–44

9. Georgeff, M.: Service orchestration: The next big challenge. DM Review Special Report
(2006) 1056195–1

10. Wickramasinghe, K., Guttmann, C., Georgeff, M., Gharib, H., Thomas, I., Thompson, S.,
Schmidt, H.: Agent-based intelligent collaborative care management. In: Proc. AAMAS-
Volume 2, IFAAMS (2009) 1387–1388

11. Guttmann, C., Thomas, I., Georgeff, M., Wickramasinghe, K., Gharib, H., Thompson, S.,
Schmidt, H.: Towards an intelligent agent framework to manage and coordinate collaborative
care. In: Proc. First Workshop on Collaborative Agents – REsearch and development (CARE
2009). LNCS, Springer-Verlag, Berlin (accepted in 2009, to appear in 2010)

12. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
(2005)

13. Cutler, M., Sterne, J.: E-Metrics: Business Metrics For The New Economy, Cambridge
(MA): NetGenesis Corp. 2000. Online im Internet 12 (2000)

14. Tennant, G.: Six Sigma: SPC and TQM in manufacturing and services. Gower (2001)
15. Szyperski, C.: Components and architecture. Software Development (2000)
16. Schmidt, H.W.: Trustworthy components: Compositionality and prediction. Journal of Sys-

tems and Software: Component-Based Software Engineering 65(3) (2003) 215–225
17. Krämer, B.: Component meets service: what does the mongrel look like? Innovations in

Systems and Software Engineering 4(4) (2008) 385–394
18. Krämer, B.J., Reussner, R.H., Schmidt, H.W.: Predicting properties of component based soft-

ware architectures through parameterised contracts. In Wirsing, M., ed.: Radical Innovations
of Software and Systems Engineering. LNCS, Springer-Verlag, Berlin (October 2002)

19. Schmidt, H., Krämer, B., Poernomo, I., Reussner, R.: Predictable Component Architectures
Using Dependent Finite State Machines. In: Radical Innovations of Software and Systems
Engineering in the Future. Volume 2941 of LNCS. Springer-Verlag, Berlin (March 2004)
310–324

20. Medvidovic, N., Taylor, R.: A classification and comparison framework for software archi-
tecture description languages. IEEE TSE 26(1) (2000) 70–93

21. Mahmoud, Q.: Service-oriented architecture (SOA) and web services: The road to Enterprise
Application Integration (EAI). Sun Microsystems, April (2005)

22. Rao, A., Georgeff, M.: BDI agents: From theory to practice. In: Proc. First Intl.Conf. on
multi-agent systems, San Francisco, CA (1995) 312–319

23. Georgeff, M., Lansky, A.: Reactive reasoning and planning. In: Proc. 6th Natl. Conf. on
Artificial Intelligence (AAAI-87), Seattle, WA (1987) 677–682

24. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS.
Lecture notes in computer science 155–176

25. Rao, A.: Agentspeak(L): BDI agents speak out in a logical computable language. In: Proc.
of MAAMAW 96. Volume 1038 of LNAI., London, Springer-Verlag, Berlin (1996) 42–55

26. Bordini, R., Huebner, J., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason. Wiley New York (2006)

27. Wilkins, D.: Hierarchical planning: Definition and implementation (1985)

94


	0-Preface
	atop-papers-v1
	1-fischer
	2-hahn
	3-karaenke
	4-levy
	5-odell
	6-stiefel
	7-delval
	8-georgeff



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




