
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 10

The Seventh International
Workshop on Argumentation

in Multi-Agent Systems

ArgMAS 2010

ArgMAS 2010

Seventh International Workshop

on

Argumentation in Multi-Agent Systems

Toronto, Canada, May 2010

In conjunction with AAMAS 2010

Workshop Proceedings

Editors:

Peter McBurney, Iyad Rahwan and Simon Parsons

ArgMAS 2010 PROGRAM COMMITTEE

Leila Amgoud, IRIT, Toulouse, France
Katie Atkinson, University of Liverpool, UK
Jamal Bentahar, Concordia University, Canada
Elizabeth Black, Oxford University, UK
Guido Boella, Università di Torino, Italy
Carlos Chesnevar, Universidad Nacional del Sur, Argentina
Frank Dignum, Utrecht University, The Netherlands
Yannis Dimopoulos, University of Cyprus, Cyprus
Sylvie Doutre, University of Toulouse 1, France
Rogier van Eijk, Utrecht University, The Netherlands
Anthony Hunter, University College London, UK
Antonis Kakas, University of Cyprus, Cyprus
Nikos Karacapilidis, University of Patras, Greece
Nicolas Maudet, Universite Paris Dauphine, France
Peter McBurney, University of Liverpool, UK
Jarred McGinnis, London, UK
Sanjay Modgil, Imperial College London, UK
Pavlos Moraitis, Paris Descartes University, France
Tim Norman, University of Aberdeen, Scotland, UK
Nir Oren, King's College London, UK
Fabio Paglieri, ISTC-CNR, Roma IT
Simon Parsons, Brooklyn College, City University of New York, USA
Enric Plaza, Spanish Scientific Research Council, Spain
Henri Prade, IRIT, Toulouse, France
Henry Prakken, Utrecht University, & University of Groningen, The Netherlands
Iyad Rahwan, Masdar Institute, UAE, & University of Edinburgh, Scotland, UK
Chris Reed, University of Dundee, Scotland, UK
Michael Rovatsos, University of Edinburgh, UK
Hajime Sawamura, Niigata University, Japan
Guillermo Simari, Universidad Nacional del Sur, Argentina
Francesca Toni, Imperial College, London, UK
Leon van der Torre, University of Luxembourg, Luxembourg
Paolo Torroni, Università di Bologna, Italy
Bart Verheij, University of Groningen, The Netherlands
Gerard Vreeswijk, Utrecht University, The Netherlands
Douglas Walton, University of Winnipeg, Canada
Simon Wells, University of Dundee, Scotland, UK
Michael Wooldridge, University of Liverpool, UK.

ArgMAS STEERING COMMITTEE

Antonis Kakas, University of Cyprus, Cyprus
Nicolas Maudet, Universite Paris Dauphine, France
Peter McBurney, University of Liverpool, UK
Pavlos Moraitis, Paris Descartes University, France
Simon Parsons, Brooklyn College, City University of New York, USA
Iyad Rahwan, Masdar Institute, UAE, and University of Edinburgh, UK
Chris Reed, University of Dundee, UK

Contents

Invited Talk

David Hitchcock:
Instrumental Rationality

Paper Presentations

Elizabeth Black and Katie Atkinson:
Agreeing what to do 1

Marcela Capobianco and Guillermo R. Simari:

An argument-based multi-agent system for information integration 19

Chukwuemeka David Emele, Timothy J. Norman, Frank Guerin and Simon Parsons:
On the benefits of argumentation-derived evidence in learning policies 37

Stella Heras, Vicente Botti and Vicente Julian:
On a computational argumentation framework for agent societies 55

Eric M. Kok, John-Jules Ch. Meyer, Henry Prakken and Gerard A. W. Vreeswijk:
A formal argumentation framework for deliberation dialogues 73

Ioan Alfred Letia and Adrian Groza:

Towards pragmatic argumentative agents within a fuzzy description logic framework 91

M. Julieta Marcos, Marcelo A. Falappa and Guillermo R. Simari:

Dynamic argumentation in abstract dialogue frameworks 109

Maxime Morge, Sameh Abdel-Naby and Bruno Beaufils:
Towards a dialectical approach for conversational agents in selling situations 127

Kenichi Okuno and Kazuko Takahashi:

Argumentation system allowing suspend/resume of an argumentation line 145

Santiago Ontanon and Enric Plaza:

Empirical argumentation: integrating induction and argumentation in MAS 163

Simon Parsons, Peter McBurney and Elizabeth Sklar:

Reasoning about trust using argumentation: a position paper 181

Yuqing Tang, Timothy J. Norman and Simon Parsons:

Computing argumentation in polynomial number of BDD operations: a preliminary report 193

Toshiko Wakaki:

Preference-based argumentation capturing prioritized logic programming 211

Tom van der Weide, Frank Dignum, John-Jules Meyer, Henry Prakken and Gerard Vreeswijk:
Arguing about preferences and decisions 229

Preface

Welcome to the seventh edition of the International Workshop on Argumentation in Multi-
Agent Systems (ArgMAS 2010), being held in Toronto, Canada, in association with the Ninth
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2010).
Previous ArgMAS workshops have been held in New York City (2004), Utrecht (2005),
Hakodate (2006), Honolulu (2007), Estoril (2008), and Budapest (2009), and the event has
now established itself on the international calendar among researchers in computational
argument and dialectics.

This document contains the proceedings of the workshop, comprising 14 papers and position
statements selected following a peer-review process. We thank all authors who made
submissions to ArgMAS 2010, and we thank the members of the Programme Committee for
their efforts in reviewing the papers submitted. The papers presented at the workshop are
assembled in this document in alphabetical order of the surname of the first author.

Our invited speaker this year is well-known argumentation-theorist and philosopher Professor
David Hitchcock of McMaster University, Hamilton, Ontario, Canada, who will talk on
instrumental rationality. We are honoured by Professor Hitchcock’s participation, and we
thank him for giving the keynote address.

Following a successful trial in 2009, we plan again this year to have selected official
respondents offer short critiques to several of the papers presented at ArgMAS 2010. We
have adopted this innovation from conferences in Philosophy, where it is standard, and we
found it worked will in Budapest in stimulating discussion. We thank the official respondents
for their willingness to undertake this task.

We hope that you enjoy the workshop, the conference overall, and your time in Toronto.

Peter McBurney, Iyad Rahwan and Simon Parsons

Programme Co-Chairs

May 2010

Agreeing what to do

Elizabeth Black1 and Katie Atkinson2

1 Department of Engineering Science, University of Oxford, UK
lizblack@robots.ox.ac.uk

2 Department of Computer Science, University of Liverpool, UK
katie@liverpool.ac.uk

Abstract. When deliberating about what to do, an autonomous agent mustgen-
erate and consider the relative pros and cons of the different options. The situation
becomes even more complicated when an agent is involved in a joint deliberation,
as each agent will have its own preferred outcome which may change as new
information is received from the other agents involved in the deliberation. We
present an argumentation-based dialogue system that allows agents to come to an
agreement on how to act in order to achieve a joint goal. The dialogue strategy
that we define ensures that any agreement reached is acceptable to each agent,
but does not necessarily demand that the agents resolve or share their differing
preferences. We give properties of our system and discuss possible extensions.

ACM Category: I.2.11 Multiagent systems.General terms: Theory.
Keywords: dialogue, argumentation, agreement, strategy, deliberation, action.

1 Introduction

When agents engage in dialogues their behaviour is influenced by a number of factors
including the type of dialogue taking place (e.g. negotiation or inquiry), the agents’
own interests within the dialogue, and the other parties participating in the dialogue.
Some of these aspects have been recognised in Walton and Krabbe’s characterisation
of dialogue types [1]. Some types of dialogue are more adversarial than others. For
example, in a persuasion dialogue an agent may try to force its opponent to contradict
itself, thus weakening the opponent’s position. In a deliberation dialogue, however, the
agents are more co-operative as they each share the same goalto establish agreement,
although individually they may wish to influence the outcomein their own favour.

We present a dialogue system for deliberation that allows agents to reason and ar-
gue about what to do to achieve some joint goal but does not require them to pool their
knowledge, nor does it require them to aggregate their preferences. Few existing dia-
logue systems address the problem of deliberation ([2, 3] are notable exceptions). Ours
is the first system for deliberation that provides a dialoguestrategy that allows agents
to come to an agreement about how to act that each is happy with, despite the fact that
they may have different preferences and thus may each be agreeing for different rea-
sons; it couples a dialectical setting with formal methods for argument evaluation and
allows strategic manoeuvring in order to influence the dialogue outcome. We present an
analysis of when agreement can and cannot be reached with oursystem; this provides

1

an essential foundation to allow us to explore mechanisms that allow agents to come to
an agreement in situations where the system presented here may fail.

We assume that agents are co-operative in that they do not mislead one another
and will come to an agreement wherever possible; however, each agent aims to satisfy
its own preferences. For the sake of simplicity, here we present a two party dialogue;
however, the assumed co-operative setting means that many of the difficult issues which
normally arise with multi party dialogues (e.g. [4]) are avoided here. We believe it
to be straightforward to extend the system to allow multipleparticipants, for example
following the approach taken in [5].

We describe the setting envisaged through a characteristicscenario. Consider a sit-
uation where a group of colleagues is attending a conferenceand they would all like to
go out for dinner together. Inevitably, a deliberation takes place where options are pro-
posed and critiqued and each individual will have his own preferences that he wishes
to be satisfied by the group’s decision. It is likely that there will be a range of differ-
ent options proposed that are based on criteria such as: the type of cuisine desired; the
proximity of the restaurant; the expense involved; the restaurant’s capacity; etc.

To start the dialogue one party may put forward a particular proposal, reflecting his
own preferences, say going to a French restaurant in the towncentre. Such an argument
may be attacked on numerous grounds, such as it being a taxi ride away, or it being
expensive. If expense is a particular consideration for some members of the party, then
alternative options would have to be proposed, each of whichmay have its own merits
and disadvantages, and may need to consider the preferencesalready expressed. We can
see that in such a scenario the agents , whilst each having their own preferred options,
are committed to finding an outcome that everyone can agree to.

We present a formal argumentation-based dialogue system tohandle joint delib-
eration. In section 2 we present the reasoning mechanism through which agents can
construct and propose arguments about action. In section 3 we define the dialogue sys-
tem and give an example dialogue. In section 4 we present an analysis of our system
and in section 5 we discuss important extensions. In section6 we discuss related work,
and we conclude the paper in section 7.

2 Practical arguments

We now describe the model of argumentation that we use to allow agents to reason about
how to act. Our account is based upon a popular approach to argument characterisation,
whereby argumentation schemes and critical questions are used as presumptive justifi-
cation for generating arguments and attacks between them [6]. Arguments are generated
by an agent instantiating ascheme for practical reasoningwhich makes explicit the fol-
lowing elements: the initial circumstances where action isrequired; the action to be
taken; the new circumstances that arise through acting; thegoal to be achieved; and the
social value promoted by realising the goal in this way. The scheme is associated with
a set of characteristic critical questions (CQs) that can beused to identify challenges
to proposals for action that instantiate the scheme. An unfavourable answer to a CQ
will identify a potential flaw in the argument. Since the scheme makes use of what are
termed as ‘values’, this caters for arguments based on subjective preferences as well

2

as more objective facts. Such values represent qualitativesocial interests that an agent
wishes (or does not wish) to uphold by realising the goal stated [7].

To enable the practical argument scheme and critical questions approach to be pre-
cisely formalised for use in automated systems, in [8] it wasdefined in terms of an
Action-based Alternating Transition System (AATS) [9], which is a structure for mod-
elling game-like multi-agent systems where the agents can perform actions in order to
attempt to control the system in some way. Whilst the formalisms given in [8, 9] are
intended to represent the overall behaviour of a multi-agent system and the effects of
joint actions performed by the agents, we are interested in representing the knowledge
of individual agents within a system. Hence, we use an adaptation of their formalisms
(first presented in [5]) to define aValue-based Transition System(VATS) as follows.

Definition 1: A Value-based Transition System(VATS), for an agentx, denotedSx,
is a 9-tuple〈Qx, qx

0 , Acx, Avx, ρx, τx, Φx, πx, δx〉 s.t.:

Qx is a finite set ofstates;

qx
0 ∈ Qx is the designatedinitial state;

Acx is a finite set ofactions;

Avx is a finite set ofvalues;

ρx : Acx 7→ 2Qx

is an action precondition function, which for each actiona ∈ Acx

defines the set of statesρ(a) from whicha may be executed;

τx : Qx × Acx 7→ Qx is a partial system transition function, which defines the state
τx(q, a) that would result by the performance ofa from stateq—n.b. as this function is
partial, not all actions are possible in all states (cf. the precondition function above);

Φx is a finite set ofatomic propositions;

πx : Qx 7→ 2Φx

is an interpretation function, which gives the set of primitive proposi-
tions satisfied in each state: ifp ∈ πx(q), then this means that the propositional variable
p is satisfied (equivalently, true) in stateq; and

δx : Qx × Qx × Avx 7→ {+,−, =} is a valuation function, which defines thestatus
(promoted (+), demoted (−), or neutral (=)) of a valuev ∈ Avx ascribed by the agent
to the transition between two states:δx(q, q′, v) labels the transition betweenq andq′

with respect to the valuev ∈ Avx.

Note,Qx = ∅ ↔ Acx = ∅ ↔ Avx = ∅ ↔ Φx = ∅.
Given its VATS, an agent can now instantiate the practical reasoning argument

scheme in order to construct arguments for (or against) actions to achieve a particu-
lar goal because they promote (or demote) a particular value.

Definition 2: An argument constructed by an agentx from its VATSSx is a 4-tuple
A = 〈a, p, v, s〉 s.t.: qx = qx

0 ; a ∈ Acx; τx(qx, a) = qy; p ∈ πx(qy); v ∈ Avx;
δx(qx, qy, v) = s wheres ∈ {+,−}.
We define the functions:Act(A) = a; Goal(A) = p; Val(A) = v; Sign(A) = s.
If Sign(A) = +(−resp.), then we sayA is an argumentfor (againstresp.) actiona.
We denote theset of all arguments an agentx can construct from Sx asArgsx; we
let Argsx

p = {A ∈ Argsx | Goal(A) = p}.
The set ofvalues for a set of argumentsX is defined asVals(X) = {v | A ∈
X andVal(A) = v}.

3

If we take a particular argument for an action, it is possibleto generate attacks on
that argument by posing the various CQs related to the practical reasoning argument
scheme. In [8], details are given of how the reasoning with the argument scheme and
posing CQs is split into three stages:problem formulation, where the agents decide on
the facts and values relevant to the particular situation under consideration;epistemic
reasoning, where the agents determine the current situation with respect to the struc-
ture formed at the previous stage; andaction selection, where the agents develop, and
evaluate, arguments and counter arguments about what to do.Here, we assume that the
agents’ problem formulation and epistemic reasoning are sound and that there is no
dispute between them relating to these stages; hence, we do not consider the CQs that
arise in these stages. That leaves CQ5-CQ11 for consideration (as numbered in [8]):

CQ5: Are there alternative ways of realising the same consequences?

CQ6: Are there alternative ways of realising the same goal?

CQ7: Are there alternative ways of promoting the same value?

CQ8: Does doing the action have a side effect which demotes the value?

CQ9: Does doing the action have a side effect which demotes some other value?

CQ10: Does doing the action promote some other value?

CQ11: Does doing the action preclude some other action which would promote some
other value?

We do not consider CQ5 or CQ11 further, as the focus of the dialogue is to agree to
an action that achieves thegoal; hence, the incidental consequences (CQ5) and other po-
tentially precluded actions (CQ11) are of no interest. We focus instead on CQ6-CQ10;
agents participating in a deliberation dialogue use these CQs to identify attacks on pro-
posed arguments for action. These CQs generate a set of arguments for and against
different actions to achieve a particular goal, where each argument is associated with
a motivating value. To evaluate the status of these arguments we use a Value Based
Argumentation Framework (VAF), introduced in [7]. A VAF is an extension of the ar-
gumentation frameworks (AF) of Dung [10]. In an AF an argument is admissible with
respect to a set of arguments S if all of its attackers are attacked by some argument in
S, and no argument in S attacks an argument in S. In a VAF an argument succeeds in
defeating an argument it attacks only if its value is ranked as high, or higher, than the
value of the argument attacked; a particular ordering of thevalues is characterised as
an audience. Arguments in a VAF are admissible with respect to an audience A and
a set of arguments S if they are admissible with respect to S inthe AF which results
from removing all the attacks which are unsuccessful given the audience A. A maximal
admissible set of a VAF is known as apreferred extension.

Although VAFs are commonly defined abstractly, here we give an instantiation in
which we define the attack relation between the arguments. Condition 1 of the following
attack relation allows for CQ8 and CQ9; condition 2 allows for CQ10; condition 3 al-
lows for CQ6 and CQ7. Note that attacks generated by condition 1 are not symmetrical,
whilst those generated by conditions 2 and 3 are.

Definition 3: An instantiated value-based argumentation framework(iVAF) is de-
fined by a tuple〈X ,A〉 s.t.X is a finite set of arguments andA ⊂ X ×X is theattack
relation. A pair (Ai, Aj) ∈ A is referred to as “Ai attacksAj” or “ Aj is attacked by

4

Ai”. For two argumentsAi = 〈a, p, v, s〉, Aj = 〈a′, p′, v′, s′〉 ∈ X , (Ai, Aj) ∈ A iff
p = p′ and either:

1. a = a′, s = − ands′ = +; or
2. a = a′, v 6= v′ ands = s′ = +; or
3. a 6= a′ ands = s′ = +.

An audiencefor an agentx over the valuesV is a binary relationRx ⊂ V × V that
defines atotal orderoverV . We say that an argumentAi is preferred to the argument
Aj in the audienceRx, denotedAi �x Aj , iff (Val(Ai), (Val(Aj)) ∈ Rx. If Rx is an
audience over the valuesV for the iVAF〈X ,A〉, thenVals(X) ⊆ V .

We use the term audience here to be consistent with the literature, it does not refer
to the preference of asetof agents; rather, we define it to represent a particular agent’s
preference over a set of values.

Given an iVAF and a particular agent’s audience, we can determine acceptability of
an argument as follows. Note that if an attack is symmetric, then an attack only succeeds
in defeat if the attacker is more preferred than the argumentbeing attacked; however,
as in [7], if an attack is asymmetric, then an attack succeedsin defeat if the attacker is
at least as preferred at the argument being attacked.

Definition 4: LetRx be an audience and let〈X ,A〉 be an iVAF.

For (Ai, Aj) ∈ A s.t.(Aj , Ai) 6∈ A, Ai defeatsAj underRx if Aj 6�x Ai.

For (Ai, Aj) ∈ A s.t.(Aj , Ai) ∈ A, Ai defeatsAj underRx if Ai �x Aj .

An argumentAi ∈ X is acceptable w.r.tS underRx (S ⊆ X) if: for everyAj ∈ X
that defeatsAi underRx, there is someAk ∈ S that defeatsAj underRx.

A subsetS of X is conflict-free underRx if no argumentAi ∈ S defeats another
argumentAj ∈ S underRx.

A subsetS ofX is admissibleunderRx if: S is conflict-free inRx and everyA ∈ S is
acceptable w.r.tS underRx.

A subsetS of X is a preferred extensionunderRx if it is a maximal admissible set
underRx.

An argumentA is acceptablein the iVAF〈X ,A〉 under audienceRx if there issome
preferred extension containing it.

We have now defined a mechanism with which an agent can determine attacks be-
tween arguments for and against actions, and can then use an ordering over the values
that motivate such arguments (its audience) in order to determine their acceptability. In
the next section we define our dialogue system.

3 Dialogue system

The communicative acts in a dialogue are calledmoves. We assume that there are always
exactly two agents (participants) taking part in a dialogue, each with its own identifier
taken from the setI = {1, 2}. Each participant takes it in turn to make a move to the
other participant. We refer to participants using the variablesx andx such that:x is 1
if and only if x is 2; x is 2 if and only if x is 1.

5

Move Format
open 〈x, open, γ〉
assert 〈x, assert, A〉
agree 〈x, agree, a〉
close 〈x, close, γ〉

Table 1. Format for moves used in deliberation dialogues:γ is a goal;a is an action;A is an
argument;x ∈ {1, 2} is an agent identifier.

A move in our system is of the form〈Agent, Act, Content〉. Agent is the identifier
of the agent generating the move,Act is the type of move, and theContent gives the
details of the move. The format for moves used in deliberation dialogues is shown in
Table 1, and the set of all moves meeting the format defined in Table 1 is denoted
M. Note that the system allows for other types of dialogues to be generated and these
might require the addition of extra moves. Also,Sender : M 7→ I is a function such
thatSender(〈Agent, Act, Content〉) = Agent.

We now informally explain the different types of move: anopenmove〈x, open, γ〉
opens a dialogue to agree on an action to achieve the goalγ; anassertmove〈x, assert, A〉
asserts an argumentA for or against an action to achieve a goal that is the topic of the
dialogue; anagreemove〈x, agree, a〉 indicates thatx agrees to performing actiona to
achieve the topic; aclosemove〈x, close, γ〉 indicates thatx wishes to end the dialogue.

A dialogue is simply a sequence of moves, each of which is madefrom one par-
ticipant to the other. As a dialogue progresses over time, wedenote each timepoint by
a natural number. Each move is indexed by the timepoint when the move was made.
Exactly one move is made at each timepoint.
Definition 5: A dialogue, denotedDt, is a sequence of moves[m1, . . . , mt] involving
two participants inI = {1, 2}, wheret ∈ N and the following conditions hold:

1. m1 is a move of the form〈x, open, γ〉 wherex ∈ I
2. Sender(ms) ∈ I for 1 ≤ s ≤ t
3. Sender(ms) 6= Sender(ms+1) for 1 ≤ s < t

Thetopic of the dialogueDt is returned byTopic(Dt) = γ. The set of all dialogues is
denotedD.

The first move of a dialogueDt must always be an open move (condition 1 of
the previous definition), every move of the dialogue must be made by a participant
(condition 2), and the agents take it in turns to send moves (condition 3). In order to
terminate a dialogue, either: two close moves must appear one immediately after the
other in the sequence (amatched-close); or two moves agreeing to the same action
must appear one immediately after the other in the sequence (anagreed-close).
Definition 6: LetDt be a dialogue s.t.Topic(Dt) = γ. We say thatms (1 < s ≤ t), is

• a matched-close forDt iff ms−1 = 〈x, close, γ〉 andms = 〈x, close, γ〉.
• anagreed-close forDt iff ms−1 = 〈x, agree, a〉 andms = 〈x, agree, a〉.

We sayDt has afailed outcomeiff mt is a matched-close, whereas we sayDt has a
successful outcomeof a iff mt = 〈x, agree, a〉 is an agreed-close.

So a matched-close or an agreed-close will terminate a dialogueDt but only if Dt

has not already terminated.

6

Definition 7: LetDt be a dialogue.Dt terminates at t iff mt is a matched-close or an
agreed-close forDt and¬∃s s.t.s < t, Dt extendsDs (i.e. the firsts moves ofDt are
the same as the sequenceDs) andDs terminates ats.

We shortly give the particular protocol and strategy functions that allow agents to
generate deliberation dialogues. First, we introduce somesubsidiary definitions. At any
point in a dialogue, an agentx can construct an iVAF from the union of the arguments
it can construct from its VATS and the arguments that have been asserted by the other
agent; we call thisx’s dialogue iVAF.
Definition 8: A dialogue iVAF for an agentx participating in a dialogueDt is denoted
dVAF(x, Dt). If Dt is the sequence of moves= [m1, . . . , mt], thendVAF(x, Dt) is the
iVAF 〈X ,A〉 whereX = Argsx

Topic(Dt) ∪ {A | ∃mk = 〈x, assert, A〉(1 ≤ k ≤ t)}.
An action isagreeableto an agentx if and only if there is some argumentfor that

action that is acceptable inx’s dialogue iVAF under the audience that representsx’s
preference over values. Note that the set of actions that areagreeable to an agent may
change over the course of the dialogue.
Definition 9: An actiona is agreeablein the iVAF〈X ,A〉 under the audienceRx iff
∃A = 〈a, γ, v, +〉 ∈ X s.t. A is acceptable in〈X ,A〉 underRx. We denote theset
of all actions that are agreeable to an agentx participating in a dialogue Dt as
AgActs(x, Dt), s.t.a ∈ AgActs(x, Dt) iff a is agreeable indVAF(x, Dt) underRx.

A protocol is a function that returns the set of moves that arepermissible for an
agent to make at each point in a particular type of dialogue. Here we give a deliberation
protocol. It takes the dialogue that the agents are participating in and the identifier of
the agent whose turn it is to move, and returns the set of permissible moves.
Definition 10: Thedeliberation protocol for agentx is a functionProtocolx : D 7→
℘(M). LetDt be a dialogue (1 ≤ t) with participants{1, 2} s.t.Sender(mt) = x and
Topic(Dt) = γ.

Protocolx(Dt) = P ass
x (Dt) ∪ P ag

x (Dt) ∪ {〈x, close, γ〉}

where the following are sets of moves andx′ ∈ {1, 2}.

P ass
x (Dt) = {〈x, assert, A〉 | Goal(A) = γ

and
¬∃mt′ = 〈x′, assert, A〉(1 < t′ ≤ t)

P ag
x (Dt) = {〈x, agree, a〉 | either

(1)mt = 〈x, agree, a〉}
else
(2)(∃mt′ = 〈x, assert, 〈a, γ, v, +〉〉(1 < t′ ≤ t)

and
(if ∃mt′′ = 〈x, agree, a〉)
then ∃A, mt′′′ = 〈x, assert, A〉

(t′′ < t′′′ ≤ t)))}

The protocol states that it is permissible to assert an argument as long as that argu-
ment has not previously been asserted in the dialogue. An agent can agree to an action

7

Strategyx(Dt) =















Pick(Sag
x)(Dt) iff Sag

x (Dt) 6= ∅
Pick(Sprop

x)(Dt) iff Sag
x (Dt) = ∅ andSprop

x (Dt) 6= ∅
Pick(Satt

x)(Dt) iff Sag
x (Dt) = Sprop

x (Dt) = ∅ andSatt
x (Dt) 6= ∅

〈x, close, Topic(Dt)〉 iff Sag
x (Dt) = Sprop

x (Dt) = Satt
x (Dt) = ∅

where the choices for the moves are given by the following subsidiary functions (x′ ∈
{x, x}, Topic(Dt) = γ):

Sag
x (Dt) = {〈x, agree, a〉 ∈ P ag

x (Dt) | a ∈ AgActs(x, Dt)}
Sprop

x (Dt) = {〈x, assert, A〉 ∈ P ass
x (Dt) | A ∈ Argsx

γ, Act(A) = a, Sign(A) = + and
a ∈ AgActs(x, Dt)}

Satt
x (Dt) = {〈x, assert, A〉 ∈ P ass

x (Dt) | A ∈ Argsx
γ, Act(A) = a, Sign(A) = −,

a 6∈ AgActs(x, Dt) and∃mt′ = 〈x′, assert, A′〉
(1 ≤ t′ ≤ t) s.t.Act(A′) = a andSign(A′) = +}

Fig. 1. Thestrategy function uniquely selects a move according to the followingpreference or-
dering (starting with the most preferred): an agree move (ag), a proposing assert move (prop), an
attacking assert move (att), a close move (close).

that has been agreed to by the other agent in the preceding move (condition 1 ofP ag
x);

otherwise an agentx can agree to an action that has been proposed by the other par-
ticipant (condition 2 ofP ag

x) as long as ifx has previously agreed to that action, then
x has since then asserted some new argument. This is because wewant to avoid the
situation where an agent keeps repeatedly agreeing to an action that the other agent
will not agree to: if an agent makes a move agreeing to an action and the other agent
does not wish to also agree to that action, then the first agentmust introduce some new
argument that may convince the second agent to agree before being able to repeat its
agree move. Agents may always make a close move. Note, it is straightforward to check
conformance with the protocol as it only refers to public elements of the dialogue.

We now define abasic deliberation strategy. It takes the dialogueDt and returns
exactly one of the permissible moves. Note, this strategy makes use of a functionPick :
℘(M) 7→ M. We do not definePick here but leave it as a parameter of our strategy
(in its simplest formPick may return an arbitrary move from the input set); hence
our system could generate more than one dialogue depending on the definition of the
Pick function. In future work, we plan to design particularPick functions; for example,
taking into account an agent’s perception of the other participant (more in section 5).

Definition 11: Thebasic strategyfor an agentx is a functionStrategyx : D 7→ M
given in Figure 1.

A well-formed deliberation dialogueis a dialogue that has been generated by two
agents each following the basic strategy.

Definition 12: A well-formed deliberation dialogueis a dialogueDt s.t.∀t′ (1 ≤ t′ ≤
t), Sender(mt′) = x iff Strategyx(Dt′−1) = mt′

We now present a simple example. There are two participatingagents ({1, 2}) who
have the joint goal to go out for dinner together (din). Ac1 ∪ Ac2 = {it, ch} (it: go to
an Italian restaurant;ch: go to a Chinese restaurant) andAv1 ∪ Av2 = {d, e1, e2, c}
(d: distance to travel;e1: agent 1’s enjoyment;e2: agent 2’s enjoyment;c: cost). The
agents’ audiences are as follows.

8

d �1 e1 �1 c �1 e2
c �2 e2 �2 e1 �2 d

Agent1 starts the dialogue.

m1 = 〈1, open, din〉
The agents’ dialogue iVAFs at this opening stage in the dialogue can be seen in Figs. 2
and 3, where the nodes represent arguments and are labelled with the action that they
are for (or the negation of the action that they are against) and the value that they are
motivated by. The arcs represent the attack relation between arguments, and a double
circle round a node means that the argument it represents is acceptable to that agent.

itit e1
c

it
d

¬ch
e1

Fig. 2. Agent 1’s dialogue iVAF at t = 1,dVAF(1,D1).

e2

c ch

¬it
ch

e2

Fig. 3. Agent 2’s dialogue iVAF at t = 1,dVAF(2,D1).

At this point in the dialogue, there is only one argumentfor an action that is ac-
ceptable to2 (〈ch, din, c, +〉), hencech is the only action that is agreeable to2. 2
must therefore assert an argument that it can construct for going to the Chinese restau-
rant. There are two such arguments that thePick function could select (〈ch, din, c, +〉,
〈ch, din, e2, +〉). Let us assume that〈ch, din, c, +〉 is selected.

m2 = 〈2, assert, 〈ch, din, c, +〉〉
This new argument is added to1’s dialogue iVAF, to givedVAF(1, D2) (Fig. 4).

Although agent2 has proposed going to the Chinese restaurant, this action isnot
agreeable to agent1 at this point in the dialogue (as there is no argument for this
action that is acceptable in Fig. 4). There is, however, an argument for the actionit
(〈it, din, d, +〉) that is acceptable in1’s dialogue iVAF (Fig. 4), and so going to the
Italian restaurant is agreeable to1. Hence,1 must make an assert move proposing
an argument for the actionit, and there are three such arguments that thePick func-
tion can select from (〈it, din, d, +〉, 〈it, din, c, +〉, 〈it, din, e1, +〉). Let us assume that
〈it, din, c, +〉 is selected.

9

itit

it

c

d

e1

¬ch e1

ch

c

Fig. 4. Agent 1’s dialogue iVAF at t = 2,dVAF(1,D2).

m3 = 〈1, assert, 〈it, din, c, +〉〉

This new argument is added to2’s dialogue iVAF, to givedVAF(2, D3) (Fig. 5).

e2

¬it
ch

it

e2

c

chc

Fig. 5. Agent 2’s dialogue iVAF at t = 3,dVAF(2,D3).

Going to the Italian restaurant is now agreeable to agent2 since the new argument
introduced promotes the value ranked most highly for agent2, i.e. cost, and so this
argument is acceptable. So,2 agrees to this action.

m4 = 〈2, agree, it〉

Going to the Italian restaurant is also agreeable to agent1 (as the argument〈it, din, d, +〉
is acceptable in its dialogue iVAF, which is still the same asthat shown in Fig. 4 as2
has not asserted any new arguments), hence1 also agrees to this action.

m5 = 〈1, agree, it〉

Note that the dialogue has terminated successfully and the agents are each happy to
agree to go to the Italian restaurant; however, this action is agreeable to each agent for a
different reason. Agent1 is happy to go to the Italian restaurant as it promotes the value
of distance to travel (the Italian restaurant is close by), whereas agent2 is happy to go
to the Italian restaurant as it will promote the value of cost(as it is a cheap restaurant).
The agents need not be aware of one another’s audience in order to reach an agreement.

It is worth mentioning that, as we have left thePick function unspecified, our strat-
egy could have generated a longer dialogue if, for example, agent1 had instead chosen
to assert the argument〈it, din, d, +〉 at the movem3. This illustrates how an agent’s
perception of the other participant may be useful: in the previous example agent1 may
make the assumption that, as agent2 has previously asserted an argument that promotes

10

cost, cost is something that agent2 values; or an agent may use its perception of another
agent’s personality to guide argument selection [11].

Another point to note concerns the arguments generated by CQ10. Such arguments
do not dispute that the action should be performed, but do dispute the reasons as to
why, and so they are modelled as attacks despite being for thesame action. Pinpointing
this distinction here is important for two main reasons. Firstly, an advantage of the
argumentation approach is that agents make explicit the reasons as to why they agree
and disagree about the acceptability of arguments, and the acceptability may well turn
on such reasons. Where there are two arguments proposed for the same action but each
is based upon different values, an agent may only accept the argument based on one of
the values. Hence such arguments are seen to be in conflict. Secondly, by participating
in dialogues agents reveal what their value orderings are, as pointed out in [12]. If
an agent will accept an argument for action based upon one particular value but not
another, then this is potentially useful information for future dialogue interactions; if
agreement is not reached about a particular action proposal, then dialogue participants
will know the values an opposing agent cares about and this can guide the selection of
further actions to propose, as we discuss later on in section5.

A final related issue to note is that of accrual of arguments. If there are multiple
arguments for an action and the values promoted are acceptable to the agents then some
form of accrual might seem desirable. However, the complex issue of how best to accrue
such arguments has not been fully resolved and this is not thefocus here.

4 Properties

Certainly (assuming the cooperative agents do not abandon the dialogue for some rea-
son), all dialogues generated by our system terminate. Thisis clear as we assume that
the sets of actions and values available to an agent are finite, hence the set of arguments
that an agent can construct is also finite. As the protocol does not allow the agents
to keep asserting the same argument, or to keep agreeing to the same action unless a
new argument has been asserted, either the dialogue will terminate successfully else the
agents will run out of legal assert and agree moves and so eachwill make a close move.
Proposition 1:If Dt is a well-formed deliberation dialogue, then∃t′ (t ≤ t′) s.t.Dt′ is
a well-formed deliberation dialogue that terminates att′ andDt′ extendsDt.

It is also the clear from the definition of the strategy (whichonly allows an action to
be agreed to if that action is agreeable to the agent) that if the dialogue terminates with
a successful outcome of actiona, thena is agreeable to both agents.
Proposition 2:If Dt is a well-formed deliberation dialogue that terminates successfully
at t with outcomea, thena ∈ AgActs(x, Dt) anda ∈ AgActs(x, Dt).

Similarly, we can show that if there is an action that is agreeable to both agents
when the dialogue terminates, then the dialogue will terminate successfully. In order to
show this, however, we need a subsidiary lemma that states: if an agent makes a close
move, then any arguments that it can construct that are for actions that it finds agreeable
must have been asserted by one of the agents during the dialogue. This follows from
the definition of the strategy, which only allows agents to make a close move once they
have exhausted all possible assert moves.

11

a

v1

v2
v3

a
v4

a

¬a

action a agreeable toaction a agreeable to
 agent 2 due to v2 agent 1 due to v3

Fig. 6. The joint iVAF

Lemma 1:Let Dt be a well-formed deliberation dialogue withTopic(Dt) = γ, s.t.
mt = 〈x, close, γ〉 and dVAF(x, Dt) = 〈X ,A〉. If A = 〈a, γ, v, +〉 ∈ X and a ∈
AgActs(x, Dt), then∃mt′ = 〈x′, assert, A, 〉 (1 < t′ ≤ t, x′ ∈ {x, x}).

Now we show that if there is an action that is agreeable to bothagents when the
dialogue terminates, then the dialogue will have a successful outcome.
Proposition 3:Let Dt be a well-formed deliberation dialogue that terminates att. If
a ∈ AgActs(x, Dt) anda ∈ AgActs(x, Dt), thenDt terminates successfully.
Proof: Assume thatDt terminates unsuccessfully att and thatSender(mt) = x. From
Lemma 1, there is at least one argumentA for a that has been asserted by one of the
agents. There are two cases. Case 1:x assertedA. Case 2:x assertedA.
Case 1:x assertedA. Hence (from the protocol) it would have been legal forx to
make the movemt = 〈x, agree, a〉 (in which casex would have had to replied with
an agree, giving successful termination), unlessx had previously made a movemt′ =
〈x, agree, a〉 but had not made a movemt′′ = 〈x, assert, A〉 with t′ < t′′ < t. How-
ever, if this were the case, then we would haveAgActs(x, Dt′) = AgActs(x, Dt)
(because no new arguments have been put forward byx to changex’s dialogue iVAF),
hencex would have had to respond to the movemt′ with an agree, terminating the
dialogue successfully. Hence contradiction.
Case 2: works equivalently to case 1. Hence,Dt terminates successfully.2

We have shown then: all dialogues terminate; if a dialogue terminates successfully,
then the outcome will be agreeable to both participants; if adialogue terminates and
there is some action that is agreeable to both agents, then the dialogue will have a
successful outcome.

It would be desirable to show that if there is some action thatis agreeable in the
joint iVAF , which is the iVAF that can be constructed from the union of the agents’
arguments (i.e. the iVAF〈X ,A〉, whereX = Argsx

γ ∪ Argsx
γ andγ is the topic of the

dialogue), then the dialogue will terminate successfully.However, there are some cases
where there is an action that is agreeable in the joint iVAF toeach of the participants
and yet still they may not reach an agreement. Consider the following example in which
there is an actiona that is agreeable to both the agents given the joint iVAF (seeFig.6)
and yet the dialogue generated here terminates unsuccessfully.

The participants ({1, 2}) have the following audiences.

v3 �1 v1 �1 v4 �1 v2
v2 �2 v1 �2 v4 �2 v3

Agent1 starts the dialogue.

12

m1 = 〈1, open, p〉

The agents’ dialogue iVAFs at this stage in the dialogue can be seen in Figs. 7 and 8.

v2
a ¬a

v1

Fig. 7. Agent 1’s dialogue iVAF at t = 1,dVAF(1,D1).

a
v3

a
v4

Fig. 8. Agent 2’s dialogue iVAF at t = 1,dVAF(2,D1).

At this point in the dialogue, there is one action that is agreeable to agent2 (a,
as there is an argumentfor a that is acceptable in Fig. 8); hence (following the basic
dialogue strategy), agent2 must assert one of the arguments that it can construct for
a (either〈a, p, v3, +〉 or 〈a, p, v4, +〉). Recall, we have not specified thePick function
that has to choose between these two possible proposing assert moves. Let us assume
that thePick function makes an arbitrary choice to assert〈a, p, v4, +〉.

m2 = 〈2, assert, 〈a, p, v4, +〉〉

This new argument is added to agent1’s dialogue iVAF, to givedVAF(1, D2) (Fig. 9).

a
v2

a v4

¬a
v1

Fig. 9. Agent 1’s dialogue iVAF at t = 2,dVAF(1,D2).

From Fig. 9, we see that the only argument that is now acceptable to agent1 is the
argumentagainsta (〈a, p, v1,−〉), hence there are no actions that are agreeable to agent
1. Thus agent1 must make an attacking assert move.

m3 = 〈1, assert, 〈a, p, v1,−〉〉

This new argument is added to agent2’s dialogue iVAF, to givedVAF(2, D3) (Fig. 10).
We see from Fig. 10 that the only argument that is now acceptable to agent2 is the

argumentagainsta that 1 has just asserted (〈a, p, v1,−〉); hence,a is now no longer
an agreeable action for agent2. As there are now no actions that are agreeable to agent

13

v1
a

v4¬a

a
v3

Fig. 10.Agent 2’s dialogue iVAF at t = 3,dVAF(2, D3).

2, it cannot make any proposing assert moves. It also cannot make any attacking assert
moves, as the only argument that it can construct against an action has already been
asserted by agent1. Hence, agent2 makes a close move.

m4 = 〈2, close, p〉

Thus, the dialogue iVAF for1 is still the same as that which appears in Fig. 9. As there
are no actions that are agreeable to agent1, it cannot make any proposing assert moves.
It cannot make any attacking assert moves, as the only argument that it can construct
against an action has already been asserted. Hence, agent1 also makes a close move.

m5 = 〈1, close, p〉

The dialogue has thus terminated unsuccessfully and the agents have not managed to
reach an agreement as to how to achieve the goalp. However, we can see that if thePick
function instead selected the argument〈a, p, v3, +〉 for agent2 to assert for the move
m2, then the resulting dialogue would have led to a successful outcome.

This example then illustrates a particular problem: the arguments exist that will
enable the agents to reach an agreement (we can see this in thejoint iVAF, Fig. 6,
in which each agent findsa agreeable) and yet the particular arguments selected by
thePick function may not allow agreement to be reached. The choice ofmoves made
in a deliberation dialogue affects the dialogue outcome; hence, strategic manoeuvring
within the dialogue is possible in order to try to influence the dialogue outcome.

This evaluation helps us to understand the complex issues and difficulties involved
in allowing agents with different preferences to agree how to act. We discuss possible
responses to some of these difficulties in the next section.

5 Proposed extensions

One way in which we could aim to avoid the problem illustratedin the previous example
is by allowing agents to develop a model of which values they believe are important to
the other participant. This model can then be used by thePick function in order to select
arguments that are more likely to lead to agreement (i.e. those that the agent believes
promote or demote values that are highly preferred by the other participant). Consider
the above example, if agent2 believed that valuev3 was more preferred to agent1
than valuev4, then2 would have instead asserted〈a, p, v3, +〉 for the movem2, which
would have led to a successful outcome.

Therefore, the first extension that we plan to investigate isto design a particularPick
function that takes into account what values the agent believes are important to the other

14

participant. We also plan to develop a mechanism which allows the agent to build up
its model of the other participant, based on the other participant’s dialogue behaviour;
for example, if an agentx asserts an argument for an actiona because it promotes a
particular valuev, and the other participantx does not then agree toa, agentx may
have reason to believe thatx does not highly rank the valuev.

Another problem that may be faced with our dialogue system iswhen it is not pos-
sible for the agents to come to an agreement no matter which arguments they choose
to assert. The simplest example of this is when each agent canonly construct one argu-
ment to achieve the topicp: agent1 can construct〈a1, p, v1, +〉; agent2 can construct
〈a2, p, v2, +〉. Now if agent1’s audience is such that it prefersv1 to v2 and agent2’s
audience is such that it prefersv2 to v1, then the agents will not be able to reach an
agreement with the dialogue system that we have proposed here; this is despite the fact
that both agents do share the goal of coming to some agreementon how to act to achieve
p. The agents in this case have reached an impasse, where thereis no way of finding an
action that is agreeable to both agents given their individual preferences over the values.

The second extension that we propose to investigate aims to overcome such an im-
passe when agreement is nevertheless necessary. We plan to define a new type of di-
alogue (which could be embedded within the deliberation dialogue we have defined
here) that allows the agents to discuss their preferences over the values and to suggest
and agree to compromises that allow them to arrive at an agreement in the deliberation
dialogue. For example, if agent1’s audience isv1 �1 v2 �1 v3 and agent2’s audience
is v3 �2 v2 �2 v1, then they may both be willing to switch their first and secondmost
preferred values if this were to lead to an agreement (i.e. giving v2 �1 v1 �1 v3 and
v2 �2 v3 �2 v1).

We would also like to extend our system to deal with the situation in which the
other stages of practical reasoning (problem formulation and epistemic reasoning) may
be flawed. In [5], an approach to dealing with epistemic reasoning was presented, that
allowed an embedded inquiry subdialogue with which agents could jointly reason epis-
temically about the state of the world. Thus, the third extension that we propose is to
develop a new type of dialogue that will allow agents to jointly reason about the ele-
ments of a VATS in order to consider possible flaws in the problem formulation stage.

6 Related Work

There is existing work in the literature on argumentation that bears some relation to
what we have presented here, though the aims and contributions of these approaches
are markedly different.

Our proposal follows the approach in [5, 13] but the types of moves are different,
and the protocol and strategy functions are substantially altered from those presented
in either [5] or [13]. This alteration is necessary as neither of [5, 13] allow agents to
participate in deliberation dialogues. In [13], a dialoguesystem is presented for epis-
temic inquiry dialogues; it allows agents to jointly construct argument graphs (where
the arguments refer only to beliefs) and to use a shared defeat relation to determine the
acceptability of particular arguments.

15

The proposal of [5] is closer to that presented here, as both are concerned with
how to act. However, the dialogue system in [5] does not allowdeliberation dialogues
as the outcome of any dialogue that it generates is predetermined by the union of the
participating agents’ knowledge. Rather, the dialogues of[5] are better categorised as a
joint inference; they ensure that the agents assert all arguments that may be relevant to
the question of how to act, after which a universal value ordering is applied to determine
the outcome. As a shared universal value ordering is used in [5], there is an objective
view of the “best” outcome (being that which you would get if you pooled the agents’
knowledge and applied the shared ordering); this is in contrast to the dialogue system we
present here, where the “best” outcome is subjective and depends on the point of view
of a particular agent. As the agents presented here each havetheir own distinct audience,
they must come to an explicit agreement about how to act (hence the introduction of
an agree move) despite the fact that their internal views of argument acceptability may
conflict. Also, here we define the attack relation (in the iVAF), which takes account of
the relevant CQs, whilst in [5] the attack relation is only informally discussed.

Deliberation dialogues have only been considered in detailby the authors of [2, 3].
Unlike in our work, in [2] the evaluation of arguments is not done in terms of argumen-
tation frameworks, and strategies for reaching agreement are not considered; and in [3]
the focus is on goal selection and planning.

In [12] issues concerning audiences in argumentation frameworks are addressed
where the concern is to find particular audiences (if they exist) for which some ar-
guments are acceptable and others are not. Also considered is how preferences over
values emerge through a dialogue; this is demonstrated by considering how two agents
can make moves within a dialogue where both are dealing with the same joint graph.
However, the graph can be seen as a static structure within which agents are playing
moves, i.e. putting forward acceptable arguments, rather than constructing a graph that
is not complete at the outset, as in the approach we have presented.

There is also some work that considers how Dungian argumentation frameworks
associated with individual agents can be merged together [14]. The merging is done not
through taking the union of the individual frameworks, but through the application of
criteria that determine when arguments and attacks betweenthem can be merged into a
larger graph. The main goal of the work is to characterise thesets of arguments accept-
able by the whole group of agents using notions of joint acceptability, which include
voting methods. In our work we are not interested in merging individual agent’s graphs
per se; rather, an agent develops its own individual graph and usesthis to determine if
it finds an action agreeable. In [14] no dialogical interactions are considered, and it is
also explicitly noted that consideration has not been givento how the merging approach
can be applied to value-based argument systems.

Prakken [15] considers how agents can come to a public agreement despite their
internal views of argument acceptability conflicting, allowing them to make explicit
attack and surrender moves. However, Prakken does not explicitly consider value-based
arguments, nor does he discuss particular strategies.

Strategic argumentation has been considered in other work.For example, in [16] a
dialogue game for persuasion is presented that is based uponone originally proposed
in [1] but makes use of Dungian argumentation frameworks. Scope is provided for

16

three strategic considerations which concern: revealing inconsistencies between an op-
ponent’s commitments and his beliefs; exploiting the opponent’s reasoning so as to
create such inconsistencies; and revealing blunders to be avoided in expanding the op-
ponent’s knowledge base. These strategies all concern reasoning about an opponent’s
beliefs, as opposed to reasoning about action proposals with subjective preferences, as
done in our work, and the game in [16] is of an adversarial nature, whereas our setting
is more co-operative.

One account that does consider strategies when reasoning with value-based argu-
ments is given in [7], where the objective is to create obligations on the opponent to ac-
cept some argument based on his previously expressed preferences. The starting point
for such an interaction is a fixed joint VAF, shared by the dialogue participants. In our
approach the information is not centralised in this manner,the argument graphs are built
up as the dialogue proceeds, we do not assume perfect knowledge of the other agent’s
graph and preferences, and our dialogues have a more co-operative nature.

A related new area that is starting to receive attention is the application of game
theory to argumentation (e.g. [17]). This work has investigated situations under which
rational agents will not have any incentive to lie about or hide arguments; although this
is concerned mainly with protocol design, it appears likelythat such work will have
implications for strategy design.

A few works do explicitly consider the selection of dialoguetargets, that is the
selection of a particular previous move to respond to. In [15] a move is defined as
relevant if its target would (if attacked) cause the status of the original move to change;
properties of dialogues are considered where agents are restricted to making relevant
moves. In [18] this is built on to consider other classes of move relevance and the space
that agents then have for strategic manoeuvring. However, these works only investigate
properties of the dialogue protocols; they do not consider particular strategies for such
dialogues as we do here.

7 Concluding Remarks

We have presented a dialogue system for joint deliberation where the agents involved
in the decision making may each have different preferences yet all want an agreement
to be reached. We defined how arguments and critiques are generated and evaluated,
and how this is done within the context of a dialogue. A key aspect concerns how
agents’ individual reasoning fits within a more global context, without the requirement
to completely merge all knowledge. We presented some properties of our system that
show when agreement can be guaranteed, and have explored whyan agreement may
not be reached. Identifying such situations is crucial for conflict resolution and we have
discussed how particular steps can be taken to try to reach agreement when this occurs.
In future work we intend to give a fuller account of such resolution steps whereby
reasoning about other agents’ preferences is central.

Ours is the first work to provide a dialogue strategy that allows agents with different
preferences to come to an agreement as to how to act. The system allows strategi-
cal manoeuvring in order to influence the dialogue outcome, thus laying the important

17

foundations needed to understand how strategy design affects dialogue outcome when
the preferences involved are subjective.

—

References

1. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press, Albany, NY, USA (1995)

2. McBurney, P., Hitchcock, D., Parsons, S.: The eightfold way of deliberation dialogue. Inter-
national Journal of Intelligent Systems22(1) (2007) 95–132

3. Tang, Y., Parsons, S.: Argumentation-based dialogues for deliberation. In: 4th Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems. (2005)552–559

4. Dignum, F., Vreeswijk, G.: Towards a testbed for multi-party dialogues. In: AAMAS Int.
Workshop on Agent Communication Languages and Conversation Policies. (2003) 63–71

5. Black, E., Atkinson, K.: Dialogues that account for different perspectives in collaborative
argumentation. In: 8th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems.
(2009) 867–874

6. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum
Associates, Mahwah, NJ, USA (1996)

7. Bench-Capon, T.J.M.: Agreeing to differ: Modelling persuasive dialogue between parties
without a consensus about values. Informal Logic22(3) (2002) 231–245

8. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoningas presumptive argumentation using
action based alternating transition systems. Artificial Intelligence171(10–15) (2007) 855–
874

9. Wooldridge, M., van der Hoek, W.: On obligations and normative ability: Towards a logical
analysis of the social contract. J. of Applied Logic3 (2005) 396–420

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming andn-person games. Artificial Intelligence77 (1995) 321–
357

11. van der Weide, T., Dignum, F., J.-J, Meyer, Prakken, H., Vreeswijk, G.: Personality-based
practical reasoning. In: 5th Int. Workshop on Argumentation in Multi-Agent Systems. (2008)
3–18

12. Bench-Capon, T.J.M., Doutre, S., Dunne, P.E.: Audiences in argumentation frameworks.
Artificial Intelligence171(1) (2007) 42–71

13. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-Agent
Systems19(2) (2009) 173–209

14. Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.C., Marquis, P.: On the
merging of Dung’s argumentation systems. Artificial Intelligence171(10–15) (2007) 730–
753

15. Prakken, H.: Coherence and flexibility in dialogue gamesfor argumentation. J. of Logic and
Computation15 (2005) 1009–1040

16. Devereux, J., Reed, C.: Strategic argumentation in rigorous persuasion dialogue. In: 6th Int.
Workshop on Argumentation in Multi-Agent Systems. (2009) 37–54

17. Rahwan, I., Larson, K.: Mechanism design for abstract argumentation. In: 5th Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems. (2008)1031–1038

18. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: Onthe relevance of utterances in
formal inter-agent dialogues. In: 6th Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems. (2007) 1002–1009

18

An Argument-Based Multi-Agent System for
Information Integration

Marcela Capobianco and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur – Av. Alem 1253, (8000) Bah́ıa Blanca Argentina
Email: {mc,grs}@cs.uns.edu.ar

Abstract. In this paper we address the problem of obtaining a consoli-
dated view of the knowledge that a community of information agents pos-
sesses in the form of private, possibly large, databases. Each agent in the
community has independent sources of information and each database
could contain information that is potentially inconsistent and incom-
plete, both by itself and/or in conjunction with some of the others. These
characteristics make the consolidation difficult by traditional means. The
idea of obtaining a single view is to provide a way of querying the re-
sulting knowledge in a skeptical manner, i.e., receiving one answer that
reflects the perception of the information community.
Agents using the proposed system will be able to access multiple sources
of knowledge represented in the form of deductive databases as if they
were accessing a single one. One application of this schema is a novel ar-
chitecture for decision-support systems (DSS) that will combine database
technologies, specifically federated databases, which we will cast as in-
formation agents, with an argumentation-based framework.

Categories and Subjects Descriptors: I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods—Representation languages, Representations
(procedural and rule-based); H.1.0 [Models and Principles]: Systems and Information
Theory—General systems theory.
General Terms: Algorithms, Design, Performance.
Keywords: Argumentation, Knowledge representation, Design languages for agent
systems.

1 Introduction

Information systems, and the capability to obtain answers from them, play a
key role in our society. In particular, data intensive applications are in constant
demand and there is need for computing environments with much more intelli-
gent capabilities than those present in today’s Data-base Management Systems
(DBMS). The expected requirements for these systems change every day: they
constantly become more complex and more advanced features are demanded
from them.

19

In this paper we address the problem of obtaining a consolidated view of the
knowledge that a community of information agents possess in the form of private,
possibly large, databases. Each agent in the community has independent sources
of information and each database could contain information that is potentially
inconsistent and incomplete, both by itself and/or in conjunction with some of
the others. These characteristics make the consolidation difficult by traditional
means. The idea of obtaining a single view is to provide a way of querying the
resulting knowledge in a skeptical manner, i.e., receiving one answer that reflects
the perception of the information community.

Agents using the proposed system will be able to access multiple sources
of knowledge represented in the form of deductive databases as if they were
accessing a single one. One application of this schema is a novel architecture
for decision-support systems (DSS) that will combine database technologies,
specifically federated databases, which we will cast as information agents, with
an argumentation-based framework.

Recently, there has been much progress in developing efficient techniques to
store and retrieve data, and many satisfactory solutions have been found for the
associated problems. However it remains an open problem how to understand and
interpret large amounts of information. To do this we need specific formalisms
that can perform complicated inferences, obtain the appropriate conclusions,
and justify their results. We claim that these formalisms should also be able to
access seamlessly databases distributed over a network.

In the field of deductive databases there has been a continued effort to pro-
duce an answer to this problem. Deductive databases store explicit and implicit
information; explicit information is stored in the manner of a relational database
and implicit information is recorded in the form of rules that enable inferences
based on the stored data. These systems combine techniques and tools from
relational databases with rule based formalisms. Hence, they are capable of han-
dling large amounts of information and perform some sort of reasoning based
on it. Nevertheless, these systems have certain limitations and shortcomings for
knowledge representation and modeling commonsense reasoning, especially for
managing incomplete and potentially contradictory information, as argued by
several authors [18, 24, 17].

Argumentation frameworks [10, 20, 15] are an excellent starting point for
building intelligent systems with interesting reasoning abilities. Research in ar-
gumentation has provided important results while striving to obtain tools for
commonsense reasoning, and this has sprung a new set of argument-based ap-
plications in diverse areas where knowledge representation issues play a major
role [11, 5, 8].

We believe that deductive databases can be combined with argumentation
formalisms to obtain interactive systems able to reason with large databases,
even in the presence of incomplete and potentially contradictory information.
This can be a significant advantage with respect to systems based on logic pro-

20

gramming, such as datalog, that cannot deal with contradictory information.1 In
particular, this could be useful in contexts where information is obtained from
multiple databases, and these databases may be contradictory among themselves.

The multi-agent system introduced here virtually integrates different databa-
ses into a common view; in that manner users of this system can query multiple
databases as if they were a single one. This schema can be applied to obtain
a novel system architecture for decision-support systems (DSS) that combines
database technologies, specifically federated databases [19], with an argumenta-
tion based framework.

In our proposal we consider that information is obtained from a number
of different heterogeneous database systems, each represented by a particular
agent. The reasoning mechanisms, based on an argumentative engine, use this
information to construct a consolidated global view of the database. This task is
performed by the reasoning agent, that is based on a set of rules expressed in a
particular argumentation framework. This agent can deal with incomplete and
contradictory information and can also be personalized for any particular DSS
in a relatively simple way.

We have also considered that one of the design objectives of interactive sys-
tems is that they can respond in a timely manner to users’ queries. So far the
main objection to the use of argumentation in interactive systems is their compu-
tational complexity. In previous work [6] we have addressed the issue of optimiz-
ing argumentation systems, where the optimization technique consisted in using
a precompiled knowledge component as a tool to allow significant speed-ups in
the inference process. We also apply this technique in our reasoning agent.

To understand the advantages of the proposed reasoning mechanism used
in our multiagent system, consider a set of databases used by the employers
responsible of drug administration, sales, and delivery in a given hospital. These
databases contains information regarding drugs, patients, known allergies, and
addictions. Suppose a deductive database system in the style of datalog is used
to query this information to derive certain relations. In this setting, there is
a rule establishing that a drug should be given to a patient if the patient has
a prescription for this drug signed by a physician. There could also be a rule
saying that the drug should not be sold if the prescription is signed by the
patient. In this case, if Dr. Gregory House enters the clinic with a prescription
signed by himself to get Vicodin, the employers could query the system to see if
the drug should or should not be sold. If a traditional deductive database is used,
in the style of datalog or another logic programming based system, this would
give raise to a contradiction and the system would not be able to recommend a
course of action. Using our system, an argument can be built backing that the
medication should be sold, given that there is a prescription signed by a doctor
that warrants it. However, an argument for not selling the drug could also be
built considering that the doctor and the patient are the same person. Our

1 Some extensions of datalog handle negation using CWA (see [9]), but these ap-
proaches do not allow negation in the head of the rules in the style of extended logic
programming.

21

argument-based framework can then compare both arguments, decide that the
second argument is preferred, and answer the query saying that the drug should
no be sold. In addition, it can also explain the reasons that back its answer. Note
that this kind of behavior cannot be obtained in Datalog-like systems.

The rest of this article is organized as follows. Section 2 sums up related
work, Section 3 contains our proposal for the system architecture, and section 4
formally describes the reasoning module, a key component of this architecture.
Section 5 presents a key optimization for the argumentation-based reasoning
process, and Section 6 shows a realistic example of the system’s mechanics.
Finally, Section 7 states the conclusions.

2 Integrating DBMS and Reasoning Systems

Previous work on the integration of databases and reasoning systems has al-
most been restricted to coupling Prolog interpreters and relational databases.
These approaches were motivated in the declarative nature of logic program-
ming languages and the data-handling capabilities of database systems. Several
researchers have built intelligent database systems coupling Prolog and a rela-
tional DBMS or extending Prolog with database facilities [9]. These works were
motivated by the fact that Prolog attracted attention in the 80’s for its ability
to support rapid development of complex applications. Besides, Prolog is based
on Horn Clauses that are close relatives of database query languages and its
language is more powerful than SQL [25].

Brodie and Jarke [4] envisioned several years ago that large scale data pro-
cessing would require more efficient and more intelligent access to databases. He
proposed the integration of logic programming and databases to meet future re-
quirements. First, he identified two different approaches for coupling a Prolog
interpreter and a Relational DBMS, which are usually called “tight coupling’ and
“loose coupling”. In the tight coupling approach the Prolog interpreter and the
Relational DBMS are strongly integrated. For example, the Prolog interpreter
can directly use low level functionalities of the DBMS, like relation manage-
ment in secondary memory, and relation access via indexes [13]. In contrast, in
the loose coupling approach, the Relational DBMS is called by the Prolog inter-
preter at the top level, that acts like a standard user. It sends Relational queries
to the DBMS, and the corresponding answers are treated as ground clauses by
the interpreter.

Brodie and Jarke also identified four basic architectural frameworks for com-
bining Prolog and a database system:

– Loose coupling of an existing Prolog implementation to an existing relational
database system;

– Extending Prolog to include some facilities of the relational database system;

– Extending an existing relational database to include some features of Prolog;

– Tightly integrating logic programming techniques with those of relational database
systems.

22

They recommend the fourth alternative (tight integration), based on the belief
that a special purposed language for large scale knowledge base systems would
best address issues regarding performance, knowledge representation and soft-
ware engineering. They also put forward a number of issues concerning the best
division of tasks between logic programming and a DBMS.

Zaniolo [26] proposed an approach to intelligent databases based on deduc-
tive databases. He advocates for elevating database programming to the more
abstract level of rules and knowledge base programming to create an environ-
ment more supportive of the new wave of database applications. To achieve
these goals the LDL/LDL+ project was developed. During the project a new
logic-based language was designed along with the definition of its formal seman-
tics, new implementation techniques were developed for the efficient support of
rule-based logic languages, and it was successfully used in a wide range of ap-
plication domains. The system supported an open architecture and SQL schema
from external databases could be incorporated into the LDL program seamlessly.

In the following section we present the system architecture for our proposal.
We believe that argumentation can offer a new perspective into the problem of
reasoning with large databases, giving more expressive power to the reasoning
component, making it able to decide even in the presence of uncertain and/or
contradictory information. This addresses a limitation that was present in each
of the deductive database systems considered in this section.

3 System Architecture

In this section we present an architectural pattern for our multiagent system that
can be applied to design information-based applications where a certain level of
intelligence is required. Such applications will be engineered for contexts where:
(1) information is uncertain and heterogeneous, (2) handling of great volume of
data flows is needed, and (3) data may be incomplete, vague, or contradictory.
These applications are also expected to integrate multiple information systems
such as databases, knowledge bases, source systems, etc.

Our system architecture is presented in Figure 1. The architecture is modular
and is independent of any particular domain or application. We have used a
layered architectural style, where every layer provides a series of services to the
one above. The first of our layers concerns data and knowledge acquisition. This
layer will receive heterogeneous sources of data and will extract and transform
this data into the formats required of the particular application. It can work with
diverse sources, such as laboratory data, different types of sensors, knowledge
bases, etc.

The received data will be formatted to comply with the relational models
provided by a group of federated databases that share a common export schema.
In our system, each one of the databases is represented by an agent. The common
export schema will be the result of a negotiation process among these agents.
The union of the views of these databases will generate a key element of our
framework, the extensional database that contains the information needed for the

23

Fig. 1. Proposed architectural pattern

reasoning module. The extensional database also will provide the data elements
with a certainty degree that depends of the credibility of the data source from
where it was obtained.

We have chosen to use a multi-source perspective for the characterization of
data quality [3]. In this case, the quality of data can be evaluated by comparison
with the quality of other homologous data (i.e., data from different information
sources which represent the same reality but may have contradictory values).
The approaches usually adopted to reconcile heterogeneity between values of
data are: (1) to prefer the values of the most reliable sources, (2) to mention the
source ID for each value, or (3) to store quality meta-data with the data.

For our proposed architecture, we have used the second approach. In multi-
source databases, each attribute of a multiple source element has multiple values
with the ID of their source and their associated Quality of Expertise, which is
represented as meta-data associated with each value, such as a given certainty
degree. This degree may be obtained weighting the plausibility of the data value,
its accuracy, the credibility of its source, and the freshness of the data.

The federated database layer provides the extensional database to the pre-
sentation layer. The extensional database can be computed on demand and is
not necessarily stored in a physical component. The presentation layer contains
the services related with the reasoning process and its optimization. This is the
core of our proposal and will be described later on in Sections 4 and 5. The
reasoning agent that generated the consolidated view is part of this layer. It
contains the set of rules that encode the specific knowledge of the application.
These rules will be used by the argumentation-based inference engine. The pre-
sentation layer also commands the generation of the extensional database, and
the selection if it is going to be done on demand (following a lazy approach) or
if it has to be computed completely. It can also generate a partial view of the

24

system according to these rules, resulting in an optimization mechanism. This
partial view depends only on the set of rules and must be changed accordingly
if changes on the rules are produced. Finally, the query services layer is com-
posed by an interactive agent that receives user queries, provides answers, and
can also explain the reasons backing these answers.

4 The DB DeLP Argumentation Framework

In this section we formally define the argumentation system that is used by
the reasoning agent in the Query Services Layer of the proposed system archi-
tecture. Here we detail the semantics and proof theory of the framework and
we also show some practical examples. A simplified view of our system would
describe it as a deductive database whose inference engine is based on a spe-
cialization of the DeLP language [16]. This particular framework will be known
as Database Defeasible Logic Programming (DB DeLP). Formally, DB DeLP is
a language for knowledge representation and reasoning that uses defeasible ar-
gumentation to decide between contradictory conclusions through a dialectical
analysis. DB DeLP also incorporates uncertainty management, taking elements
from Possibilistic Defeasible Logic Programming (P DeLP) [2, 1], an extension of
DeLP in which the elements of the language have the form (φ, α), where φ is a
DeLP clause or fact and α expresses a lower bond for the certainty of φ in terms
of a necessity measure. Conceptually, our deductive database consists of an ex-
tensional database EDB, an intensional database IDB, and a set of integrity
constrains IC. In what follows, we formally define these elements.

The language of DB DeLP follows a logic programming style. Standard logic
programming concepts (such as signature, variables, functions, etc.) are defined
in the usual way. Literals are atoms that may be preceded by the symbol “∼”
denoting strict negation, as in extended logic programming.

Definition 1. [Literal–Weighted Literal] Let Σ be a signature, then every atom A
of Σ is a positive literal, while every negated atom ∼A is a negative literal. A literal
of Σ is a positive literal or a negative literal. A certainty weighted literal, or simply
a weighted literal, is a pair (L,α) where L is a literal and α ∈ [0, 1] expresses a lower
bound for the certainty of L in terms of a necessity measure.

The extensional database EDB is composed by a set of certainty weighted
literals, according to the export schema of the federated database that is part
of our architecture. Conceptually, it accounts for the union of the views of every
particular database that belongs to the federation [19]. When implementing the
system, this set of ground literals may not be physically stored in any place, and
may simply be obtained on demand when information about a particular literal
is needed.

The certainty degree associated with every literal is assigned by the federated
database layer that assigns a particular degree to every data source according to
its plausibility. The resulting extensional database is not necessarily consistent,
in the sense that a literal and its complement w.r.t. strong negation may both

25

be present, with different or the same certainty degrees. In this case, the system
decides according to a given criterion which fact will prevail and which one will
be removed from the view.

species(X,Y)

(species(simba,lion), 0.6)
(species(mufasa,lion), 0.7)
(species(grace,lion), 0.6)
(species(grace,leopard), 0.4)
. . .

age(X,Y)

(age(simba,young), 0.65)
(age(mufasa,old), 0.7)
(age(grace,adult), 0.8)
(age(dumbo,baby), 0.8)
. . .

Fig. 2. An Extensional Database in DB DeLP

The intensional part of a DB DeLP database is formed by a set of defeasi-
ble rules and integrity constraints Defeasible rules provide a way of performing
tentative reasoning as in other argumentation formalisms [10, 20, 15].

Definition 2. [Defeasible Rule] A defeasible rule expresses a tentative, weighted,
relation between a literal L0 and a finite set of literals {L1, L2, . . . , Lk} and has the
form (L0 –≺ L1, L2, . . . , Lk, α) where α ∈ [0, 1] expresses a lower bound for the certainty
of the rule in terms of a necessity measure.

In previously defined argumentation systems, the meaning of defeasible rules
L0 –≺ L1, L2, . . . , Lk was understood as “L1, L2, . . . , Lk provide tentative reasons
to believe in L0” [23], but these rules did not have an associated certainty degree.
In contrast, DB DeLP adds the certainty degree, that expresses how strong is the
connection between the premises and the conclusion. A defeasible rule with a
certainty degree 1 will model a strong rule. Figures 2 and 3 show an extensional
and an intensional database in our formalism.

(feline(X) –≺ species(X,lion),1)
(climbs tree(X) –≺ feline(X),0.65)
(∼climbs tree(X) –≺ species(X,lion),0.70)
(climbs tree(X) –≺ species(X,lion), age(X,young).,0.75)
(∼climbs tree(X) –≺ sick(X),0.45)

Fig. 3. An Intensional Database in DB DeLP

Note that DB DeLP programs are range-restricted, a common condition for
deductive databases: a program is said to be range-restricted if and only if ev-
ery variable that appears in the head of the clause also appears in its body. This
implies that all the facts in the program must be ground (cannot contain vari-
ables). These programs can be interpreted more efficiently since full unification
is not needed, only matching that is significantly more efficient. Nevertheless,
the reason for this decision comes from a semantic standpoint, given that a de-
feasible reason in which there is no connection between the head and the body
has no clear meaning; the range restriction ensures this connection.

Integrity constraints are rules of the form L← L0, L1, . . . , Ln where L is a lit-
eral, and L0, L1, . . . , Lk is a non-empty finite set of literals, These rules are used

26

to compute the derived negations as follows. For the extensional and intensional
databases regarding felines, consider that the set of integrity constraints is com-
posed by {∼leopard(X) ← lion(X), ∼lion(X) ← leopard(X)} and the negations
{ (∼species(grace,lion), 0.4), (∼species(grace,leopard), 0.6)} are then added
to the extensional database. The certainty degree of the added rule is calculated
as the minimum of the certainty degree of the literals that are present in the
body of the integrity constraint rule used to obtain it. Note that a conflict may
arise with information received from other knowledge bases, since we may want
to add a literal and its complement may be already present in the extensional
database. Then the system will decide according to a given criterion which fact
will prevail and which one will be removed from the view. A standard criterion
in this case would be using the plausibility of the source, the certainty degree of
the literals, or a combination of both. Databases in DB DeLP, for short called
defeasible databases, can also include built-in predicates as needed along with
their corresponding axioms.

The P DeLP language [12], which presented the novel idea of mixing argu-
mentation and possibilistic logic, is based on Possibilistic Gödel Logic or PGL [2,
1], which is able to model both uncertainty and fuzziness and allows for a par-
tial matching mechanism between fuzzy propositional variables. In DB DeLP, for
simplicity reasons, we will avoid fuzzy propositions, and hence it will be based
on the necessity-valued classical Possibilistic logic [14]. As a consequence, pos-
sibilistic models are defined by possibility distributions on the set of classical
interpretations, and the proof theory for our formulas, written |∼, is defined by
derivation based on the following instance of the Generalized Modus Ponens rule
(GMP): (L0 –≺ L1 ∧ · · · ∧ Lk, γ), (L1, β1), . . . , (Lk, βk) ` (L0,min(γ, β1, . . . , βk)),
which is a particular instance of the well-known possibilistic resolution rule, and
which provides the non-fuzzy fragment of DB DeLP with a complete calculus for
determining the maximum degree of possibilistic entailment for weighted literals.
Literals in the extensional database are the base case of the derivation sequence;
for every literal Q in EDB with a certainty degree α it holds that (Q,α) can be
derived from the corresponding program.

A query presented to a DB DeLP database is a a ground literal Q which must
be supported by an argument. Deduction in DB DeLP is argumentation-based,
thus a derivation is not enough to endorse a particular fact, and queries must
be supported by arguments. In the following definition instances(IDB) accounts
for any set of ground instances of the rules in IDB, replacing free variables for
ground literals in the usual way.

Definition 3. [Argument]–[Subargument] Let DB = (EDB, IDB, IC) be a defea-
sible database, A ⊆ instances(IDB) is an argument for a goal Q with necessity degree
α > 0, denoted as 〈A, Q, α〉, iff: (1) Ψ ∪ A |∼(Q,α), (2) Ψ ∪ A is non contradictory,
and (3) there is no A1 ⊂ A such that Ψ ∪ A1 |∼(Q, β), β > 0. An argument 〈A, Q, α〉
is a subargument of 〈B, R, β〉 iff A ⊆ B.

Arguments in DB DeLP can attack each other; this situation is captured by
the notion of counterargument. An argument 〈A1, Q1, α〉 counter-argues an ar-
gument 〈A2, Q2, β〉 at a literal Q if and only if there is a sub-argument 〈A, Q, γ〉

27

of 〈A2, Q2, β〉, (called disagreement subargument), such that Q1 and Q are com-
plementary literals. Defeat among arguments is defined combining the counter-
argument relation and a preference criterion “�”. This criterion is defined on
the basis of the necessity measures associated with arguments.

Definition 4. [Preference criterion �][12] Let 〈A1, Q1, α1〉 be a counterargument
for 〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is preferred over 〈A2, Q2, α2〉 (denoted
〈A1, Q1, α1〉 � 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case that α1 > α2, then we will
say that 〈A1, Q1, α1〉 is strictly preferred over 〈A2, Q2, α2〉, denoted 〈A2, Q2, α2〉 �
〈A1, Q1, α1〉. Otherwise, if α1 = α2 we will say that both arguments are equi-preferred,
denoted 〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.

Definition 5. [Defeat]][12] Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments built
from a program P. Then 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently 〈A1, Q1, α1〉
is a defeater for 〈A2, Q2, α2〉) iff (1) Argument 〈A1, Q1, α1〉 counter-argues argument
〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉; and (2) Either it is true that
〈A1, Q1, α1〉 � 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be called a proper defeater
for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be called
a blocking defeater for 〈A2, Q2, α2〉.

As in most argumentation systems [10, 21], DB DeLP relies on an exhaustive
dialectical analysis which allows to determine if a given argument is ultimately
undefeated (or warranted) w.r.t. a program P. An argumentation line starting
with an argument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,
〈An, Qn, αn〉, . . .] that can be thought of as an exchange of arguments between
two parties, a proponent (even-numbered arguments) and an opponent (odd-
numbered arguments).

Given a program P and an argument 〈A0, Q0, α0〉, the set of all acceptable
argumentation lines starting with 〈A0, Q0, α0〉 accounts for a whole dialectical
analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogs rooted in〈A0, Q0, α0〉), formal-
ized as a dialectical tree and denoted T〈A0,Q0,α0〉. Nodes in a dialectical tree
T〈A0,Q0,α0〉 can be marked as undefeated or defeated nodes (U-nodes and D-
nodes, resp.). A dialectical tree will be marked as an and-or tree: all leaves in
T〈A0,Q0,α0〉 will be marked as U-nodes (as they have no defeaters), and every in-
ner node is to be marked as a D-node iff it has at least one U-node as a child,
and as a U-node otherwise. An argument 〈A0, Q0, α0〉 is ultimately accepted as
valid (or warranted) iff the root of T〈A0,Q0,α0〉 is labeled as a U-node.

Definition 6. [Warrant][12] Given a database DB, and a literal Q, Q is warranted
w.r.t. DB iff there exists a warranted argument 〈A, Q, α〉 that can be built from P.

Example 1. Suppose the system has to solve the query climbs(simba). Then ar-
gument

A2 = {(climbs(simba) –≺ feline(simba), 0.65), (feline(simba) –≺ species(simba,lion), 1)}

must be built. This argument has a certainty degree of 0.6, taking into account
the certainty degree of the literals on which the deduction is founded.

28

Next, the system looks for the defeaters. The only defeater is:

〈A4,∼climbs(simba), 0.6〉,A4 = {(∼climbs(simba) –≺ species(simba,lion), 0.75)}

But this argument is in turn defeated by 〈A3, climbs(simba), 0.6〉,

A3 = {(climbs(simba) –≺ species(simba,lion),age(simba,young), 0.75)}

Thus, climbs(simba) is warranted.

�
�
��

L
L
LL

U

species(simba,lion),age(simba,young)
|f

climbs(simba)

�
�
��

L
L
LL

D

species(simba,lion)

|f
∼climbs(simba)

�
�
��

L
L
LL

U

species(simba,lion)
|f

feline(simba)

|f
climbs(simba)

Fig. 4. Dialectical tree from Example 1

5 Optimization of DB DeLP’s Dialectical Process

To obtain faster query processing in the DB DeLP system we integrate pre-
compiled knowledge to avoid the construction of arguments which were already
computed. The approach follows the proposal presented in [7] where the pre-
compiled knowledge component is required to: (1) minimize the number of stored
arguments in the pre-compiled base of arguments (for instance, using one struc-
ture to represent the set of arguments that use the same defeasible rules); and
(2) maintain independence from the observations that may change with new per-
ception in order to avoid modifying also the pre-compiled knowledge when new
observations are incorporated.

Considering these requirements, we define a database structure called dialec-
tical graph, which will keep a record of all possible arguments in an DB DeLP

database DB (by means of a special structure named potential argument) as
well as the counterargument relation among them. Potential arguments, origi-
nally defined in [7], contain non-grounded defeasible rules, thus depending only
on the set of rules in the IDB, i.e., they are independent from the extensional
database.

Potential arguments have been can be thought as schemata that sum up
arguments that are obtained using different instances of the same defeasible
rules. Recording every generated argument could result in storing many argu-
ments which are structurally identical, only differing on the constants being used

29

to build the corresponding derivations. Thus, a potential argument stands for
several arguments which use the same defeasible rules. Attack relations among
potential arguments can be also captured, and in some cases even defeat can
be pre-compiled. In what follows we introduce the formal definitions, adapted
from [7] to fit the DB DeLP system.

Definition 7. [Weighted Potential Argument] Let IDB be an intensional database.
A subset A of IDB is a potential argument for a literal Q with an upper bound γ for its
certainty degree, noted as 〈〈A,Q, γ〉〉 if there exists a non-contradictory set of weighted
literals Φ and an instance A that is obtained by finding an instance for every rule in A,
such that 〈A, Q, α〉 is an argument w.r.t. the database with Φ as its extensional database
and IDB as its intensional database (α ≤ γ) and there is no instance 〈B, Q, β〉 of A
such that β > γ.

Definition 7 does not specify how to obtain the set of potential arguments
from a given database. The interested reader may consult [7] for a constructive
definition and its associated algorithm. The calculation of the upper bound γ
deserves special mention, since the algorithm in [7] was devised for a different
system, without uncertainty management. This element will be used later on
to speedup the extraction of the dialectical tree from the dialectical graph for
a given query. To calculate γ for a potential argument A we simply choose the
lower certainty degree of the defeasible rules present in A.

The nodes of the dialectical graph are the potential arguments. The arcs
of our graph are obtained by calculating the counterargument relation among
the nodes previously obtained. To do this, we extend the concept of counter-
argument for potential arguments. A potential argument 〈〈A1,Q1, α〉〉 counter-
argues 〈〈A2,Q2, β〉〉 at a literal Q if and only if there is a non-empty potential
sub-argument 〈〈A,Q, γ〉〉 of 〈〈A2,Q2, β〉〉 such that Q1 and Q are contradictory
literals.2 Note that potential counter-arguments may or may not result in a real
conflict between the instances (arguments) associated with the corresponding
potential arguments. In some cases instances of these arguments cannot co-exist
in any scenario (e.g., consider two potential arguments based on contradictory
observations). Now we can finally define the concept of dialectical graph:

Definition 8. [Dialectical Graph] Let DB = (EDB, IDB, IC) be a defeasible data-
base. The dialectical graph of IDB, denoted as GIDB, is a pair (PotArgs(IDB), C)
such that: (1) PotArgs(IDB) is the set {〈〈A1,Q1, α1〉〉, . . . , 〈〈Ak,Qk, αk〉〉} of all the
potential arguments that can be built from IDB; (2) C is the counterargument relation
over the elements of PotArgs(IDB).

Example 2. Consider the feline database previously presented; its dialectical
graph is composed by:
(feline(X) –≺ species(X,lion),1)

(climbs tree(X) –≺ feline(X),0.65)

(∼climbs tree(X) –≺ species(X,lion),0.70)

2 Note that P (X) and ∼P (X) are contradictory literals even though they are non-
grounded. The same idea is applied to identify contradiction in potential arguments.

30

(climbs tree(X) –≺ species(X,lion), age(X,young),0.75)

(∼climbs tree(X) –≺ sick(X),0.45)

– 〈〈A1, climbs(X), 0.65〉〉, A1 = {(climbs(X) –≺ feline(X), 0.65)}.
– 〈〈A2, climbs(X), 0.65〉〉, A2 = {(climbs(X) –≺ feline(X), 0.65),

(feline(X) –≺ species(X,lion), 1)}.
– 〈〈A3, climbs(X), 0.75〉〉,

A3 = {(climbs(X) –≺ species(X,lion), age(X,young), 0.75)}.
– 〈〈A4,∼climbs(X), 0.75〉〉, A4 = {(∼climbs(X) –≺ species(X,lion), 0.75)}.
– 〈〈A5,∼climbs(X), 0.45〉〉, A5 = {(∼climbs(X) –≺ sick(X), 0.45)}.
– 〈〈A6, feline(X), 1〉〉, A6 = {(feline(X) –≺ species(X,lion), 1)}.
– Dp = {(A2,A4), (A4,A3)}
– Db = {(A1,A4), (A4,A1), (A1,A5), (A5,A1), (A2,A5), (A5,A2), (A3,A5), (A5,A3)}.

The relationsDb andDp can be depicted as shown in Figure 2, where blocking
defeat is indicated with a double headed arrow.

A4 A5 A6

A1 A2 A3

�
�
�

��	

�

?

6@
@
@
@@R

I6

?�
�
�
���

����������

Fig. 5. Dialectical graph corresponding to Example 2.

Having defined the dialectical graph we can now use a specific graph travers-
ing algorithm to extract a particular dialectical tree rooted in a given potential
argument. The facts present in the EDB will be used as evidence to instantiate
the potential arguments in the dialectical graph that depend on the intensional
database IDB. This gives rise to the inference process of the system. This pro-
cess starts when a new query is formulated. Consider the dialectical graph in
Example 2 and suppose the set of facts in Figure 2 is present in the extensional
database. Lets see how the system works when faced with the query climbs(simba).

First, the set of potential arguments in the dialectical graph is searched to
see if there exists an element whose conclusion can be instantiated to match the
query. It finds 〈〈A2, climbs(X), 0.65〉〉,

A2 = {(climbs(X) –≺ feline(X), 0.65), (feline(X) –≺ species(X,lion), 1)}

A2 can be instantiated to

A2 = {(climbs(simba) –≺ feline(simba), 0.65), (feline(simba) –≺ species(simba,lion), 1)}
that has a certainty degree of 0.6 taking into account the certainty degree of the
literals on which the deduction is founded.

Now, to see if climbs(simba) is inferred by the system from the intensional and
the extensional database, we must check whether A2 can sustain its conclusion

31

when confronted with its counterarguments. Using the links in the dialectical
graph we find one defeater for A2, instantiating potential argument

A4 = {(∼climbs(X) –≺ species(X,lion), 0.75)}

to
A4 = {(∼climbs(simba) –≺ species(simba,lion), 0.75)}

The argument 〈A4,∼climbs(simba), 0.6〉 is defeated by 〈A3, climbs(simba), 0.6〉
(an instantiation of 〈〈A3, climbs(X), 0.75〉〉). Thus, climbs(simba) is warranted and
we found the same dialectical tree that was found in example 1 with an opti-
mized inference mechanism. Note that the links for the defeaters present in the
dialectical graph are used to find the conflicts. This makes it easier to recover
the tree from the dialectical graph of the framework.

The deductive database can be subject to constant changes as is the case with
every real world database. The only restriction is that it must not be changed
while a query is being solved. The dialectical graph is not affected by changes in
the extensional database.

We present now a classic example in traditional deductive database systems
based on logic programming, that usually causes problems with the semantics.
In our case the system follows a cautious semantics, not deriving either p(a) or
q(a).

Example 3. Consider a deductive database composed by:

– EDB = {(r, 0.6), (s, 0.6)},
– IDB = {(p(X) –≺ ∼q(X), 0.8), (q(X) –≺ ∼p(X), 0.8)}

The dialectical graph GIDB is composed by the two potential arguments:

– 〈〈A1, p(X), , 〉〉 A1 = {(p(X) –≺ ∼q(X), 0.8)}.
– 〈〈A2, q(X), , 〉〉 A1 = {(q(X) –≺ ∼p(X), 0.8)}.

and the defeat relation Db = {(A1, A2), (A2, A1)}.
Suppose the system is faced with the query p(a). The dialectical tree for this

query is formed by argument 〈A1,∼q(a), 0.6〉, A1 = {(p(a) –≺ ∼q(a), 0.6)} that
is in turn defeated by 〈A2, q(a), 0.6〉, A1 = {(q(a) –≺ ∼p(a), 0.6)}.

The situation with query q(a) is analogous and therefore the system cannot
derive p(a) nor q(a).

Note that the DB DeLP system can seamlessly treat this example without
semantic or operational problems. Furthermore, there is no need for imposing
additional restrictions, such as requiring predicate stratification. Traditional sys-
tems would enter a loop jumping from one rule to the other. This is prevented in
DB DeLP by the circularity condition imposed on argumentation lines of dialec-
tical trees.3 This condition does not allow the re-introduction of A1 as a defeater
of A2 in the dialectical tree of the previous example.
3 This condition was inherited from the original DeLP system, the interested reader

may consult [16].

32

6 A Worked Example

In this section we present an example to illustrate the practical uses of defeasible
databases. The example is based on a classical benchmark in deductive databases
concerning data on prescriptions, physicians and patients [22]. The system is a
DSS to help employees decide whether a given medication should be sold to
a patient. The relation prescription (pres) means that there is a prescription
for a given drug to be administered to a given patient. Allergic shows known
allergic reactions in patients, physician lists where physicians work, patient lists
insurance company and clinics to which a patient usually goes, and psychiatrist
(psy) establishes that a physician is also a psychiatrist (see Figure 6).

patients(patient id,clinic,insurance)

(patients(456,new line,hope), 0.6)
(patients(587,delta,hope), 0.6)
(patients(234,new line,trust), 0.6)
(patients(1211,delta,trust), 0.6)
(patients(254,star,trust), 0.6)
. . .

physicians(phy id,clinic)

(physicians(432,star), 0.7)
(physicians(54,delta), 0.7)
(physicians(672,new line), 0.7)
(physicians(432,delta), 0.7)
. . .

pres(note id,patient id,phy id,drug,text)

(pres(23445,587,432,pen,text1), 0.6)
(pres(23446,587,54,amoxicillin,text2), 0.6)
(pres(23447,587,54,vicodin,text3), 0.6)
(pres(23448,1211,54,morphine,text4), 0.6)
(pres(23449,234,672,diazepam,text5), 0.6)
. . .

allergic(patient id,drug)

(allergic(587,pen), 0.7)
(allergic(1211,pen), 0.6)
(allergic(1211,morphine), 0.6)
. . .

psy(phy id)

(psy(672), 0.8)
(psy(54), 0.8)
. . .

The intensional database is formed by the rules in Figure 6. The first rule
says that a medication should be sold if there is prescription for it. The second
rule says that it should not be sold if the physician is suspended and the third
says that it should not be sold if the patient is allergic. The fourth rule concerns
special drugs that have to be authorized before being sold and for that should
have been prescribed by a psychiatrist. The fifth rule establishes the drug is not
authorized when it is prescribed by a psychiatrist that has been suspended.

The dialectical graph contains arguments A, B, C, D, and E:
– 〈〈A, sell(Patient,Drug), 0.65〉〉,

A = {(sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug), 0.65)}.
– 〈〈B,∼sell(Patient,Drug), 0.75〉〉,

B = {(∼sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),susp(Y), 0.75)}.
– 〈〈C,∼sell(Patient,Drug), 0.95〉〉,

C = {(∼sell(Patient,Drug) –≺ allergic(Patient,Drug), 0.95)}.
33

(sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug),0.65)
(∼sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug),susp(Y),0.75)
(∼sell(Patient,Drug) –≺ allergic(Patient,Drug),0.95)
(auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug),psychiatrist(Y),0.6)
(∼auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug),psy(Y),susp(Y),0.7)

– 〈〈D, authorize pres(Patient,Drug), 0.6〉〉,
D = {(auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),psy(Y), 0.6)}.

– 〈〈E,∼authorize pres(Patient,Drug), 0.7〉〉,
E = {(∼auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),psy(Y),susp(Y), 0.7)}.

B C

A

E

D

?

@
@
@
@@R

I

?

Fig. 6. Dialectical graph for clinical database.

Suppose the system is faced with a query regarding the fact sell(587,vicodin).
It first finds a potential argument that can be instantiated to support this fact,
so it selects A and instantiates it to:
A = {(sell(787,vicodin) –≺ pres(23447,587,54,vicodin,text3), 0.6)}. Using the
dialectical graph we can see that there are two links that connect A with its de-
featers, so we can explore to see if an instance of B or C can be built to attack
argument A. Since this is not the case argument A is the only argument in the
dialectical tree and the answer is yes.

Next, the system is faced with query sell(587,pen). The structure is similar to
the previous case, but in this situation potential argument A is instantiated to

A = {(sell(587,pen) –≺ pres(23445,587,432,pen,text1), 0.6)}

and following the links in the dialectical graph we find defeater B that can be
instantiated to:
B = {(∼sell(587,pen) –≺ allergic(587,pen), 0.7)}. No more defeaters can be
added to this dialectical tree so the answer to sell(587,pen) is no.

Now the query auth pres(234,diazepam) is performed. In this case potential
argument D is instantiated to:
D = {auth pres(234,diazepam) –≺ pres(23449,234,672,diazepem,text5),

psy(672), 0.6)} and no defeater can be found for D thus the answer is yes.
Facts can be added to the database and also new tables can be created. Sup-

pose we add a new table that contains a list of doctors that have been suspended
due to legal issues. This table contains the fact (suspended(672), 0.8). If query

34

authorize pres(234,diazepam) is re-processed by the system the answer would now
be no, given that a new argument:
E = {(∼auth pres(234,diazepam) –≺ pres(23449,234,672,diazepam,text5),

psychiatrist(672),suspended(672), 0.7)}. can be built by instantiating E, result-
ing in a defeater for D. Thus, D is no longer warranted. Note how new tables
and new facts can be added to the system without the need for rebuilding the
dialectical graph.

7 Conclusions

In this work, we have defined a multi-agent system which virtually integrates
different databases into a common view. We have also presented a layered ar-
chitectural model that we have designed to develop practical applications for
reasoning with data from multiple sources. This model provides a novel system
architecture for decision-support systems (DSS) that combines database tech-
nologies with an argumentation based framework.

We have also defined an argumentation-based formalism that integrates un-
certainty management and is specifically tailored for database integration. This
formalism was also provided with an optimization mechanism based on pre-
compiled knowledge. Using this mechanism, the argumentation system can com-
ply with real time requirements needed to manage data and model reasoning
over this data in dynamic environments.

Future work may be done in different directions. In the first place we plan
to integrate DB DeLP with a massive data component to obtain experimen-
tal results regarding the system’s complexity. We also plan to extend the lan-
guage of DB DeLP to use it in practical systems, particularly to implement
argumentation-based active databases.

References

1. T. Alsinet, C. I. Chesñevar, Lluis Godo, and G. R. Simari. A logic programming
framework for possibilistic argumentation: Formalization and logical properties.
Fuzzy Sets and Systems, 159(10):1208–1228, 2008.

2. T. Alsinet and L. Godo. A complete calculus for possibilistic logic programming
with fuzzy propositional variables. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI-2000), pages 1–10. ACM Press, 2000.

3. L. Berti. Quality and recommendation of multi-source data for assisting tech-
nological intelligence applications. In Proc. of 10th International Conference on
Database and Expert Systems Applications, pages 282–291, Italy, 1999. AAAI.

4. M. L. Brodie and M. Jarke. On integrating logic programming and databases. In
Expert Database Workshop 1984, pages 191–207, 1984.

5. D. Bryant and P. Krause. An implementation of a lightweight argumentation
engine for agent applications. Logics in Artificial Intelligence, Lecture Notes in
Computer Science, 4160(1):469–472, 2006.

6. M. Capobianco, C. I. Chesñevar, and G. R. Simari. Argumentation and the dy-
namics of warranted beliefs in changing environments. Journal of Autonomous
Agents and Multiagent Systems, 11:127–151, 2005.

35

7. M. Capobianco, C. I. Chesñevar, and G. R. Simari. Argumentation and the dy-
namics of warranted beliefs in changing environments. Journal of Autonomous
Agents and Multiagent Systems, 11:127–151, 2005.

8. D. Carbogim, D. Robertson, and J. Lee. Argument-based applications to knowledge
engineering. The Knowledge Engineering Review, 15(2):119–149, 2000.

9. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. on Knowledge and Data Eng., 1(1), 1989.

10. C. I. Chesñevar, A. G. Maguitman, and R. P. Loui. Logical Models of Argument.
ACM Computing Surveys, 32(4):337–383, 2000.

11. C. I. Chesñevar, A. G. Maguitman, and G. R. Simari. Argument-based critics
and recommenders: A qualitative perspective on user support systems. Data &
Knowledge Engineering, 59(2):293–319, 2006.

12. C. I. Chesñevar, G. R. Simari, T. Alsinet, and L. Godo. A logic programming
framework for possibilistic argumentation with vague knowledge. In Proc. of Un-
certainty in Artificial Intelligence Conference (UAI 2004), Banff, Canada, 2004.

13. F. Cuppens and R. Demolombe. Cooperative answering: a method to provide
intelligent access to databases. In Proc. 2nd Conf. on Expert Database Systems,
pages 621–643, 1988.

14. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D.Gabbay, C.Hogger, and
J.Robinson, editors, Handbook of Logic in Art. Int. and Logic Prog. (Nonmonotonic
Reasoning and Uncertain Reasoning), pages 439–513. Oxford Univ. Press, 1994.

15. P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning and Logic Programming and n-Person Games. Artificial
Intelligence, 77(2):321–357, 1995.

16. A. J. Garćıa and G. R. Simari. Defeasible Logic Programming: An Argumentative
Approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.

17. L. V. S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In Proc. of
the Int. Logic Programming Symposium, pages 254–268, 1994.

18. L. V.S. Lakshmanan and N. Shiri. A parametric approach to deductive databases
with uncertainty. Journal of Intelligent Information Systems, 13(4):554–570, 2001.

19. D. McLeod and D. Heimbigner. A federated architecture for information manage-
ment. ACM Transactions on Information Systems, 3(3):253–278, 1985.

20. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In
Handbook of Philosophical Logic, volume 4, pages 219–318. 2002.

21. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In
Handbook of Philosophical Logic, volume 4, pages 219–318. 2002.

22. X. Quian. Query folding. In Proc. 12th Intl. Conf on Data Engineering, pages
48–55, 1996.

23. G. R. Simari and R. P. Loui. A Mathematical Treatment of Defeasible Reasoning
and its Implementation. Artificial Intelligence, 53(1–2):125–157, 1992.

24. V. S. Subrahmanian. Paraconsistent disjunctive deductive databases. Theorethical
Computer Science, 93(1):115–141, 1992.

25. C. Zaniolo. Prolog: A database query language for all seasons. In Expert Database
Workshop 1984, pages 219–232, 1984.

26. C. Zaniolo. Intelligent databases: Old challenges and new opportunities.
3/4(1):271–292, 1992.

36

On the Benefits of Argumentation-derived
Evidence in Learning Policies

Chukwuemeka David Emele1, Timothy J. Norman1,
Frank Guerin1, and Simon Parsons2

1 University of Aberdeen, Aberdeen, AB24 3UE, UK
{c.emele, t.j.norman, f.guerin}@abdn.ac.uk

2 Brooklyn College, City University of New York, 11210 NY, USA
parsons@sci.brooklyn.cuny.edu

Abstract. An important and non-trivial factor for effectively develop-
ing and resourcing plans in a collaborative context is an understanding of
the policy and resource availability constraints under which others oper-
ate. We present an efficient approach for identifying, learning and model-
ing the policies of others during collaborative problem solving activities.
The mechanisms presented in this paper will enable agents to build more
effective argumentation strategies by keeping track of who might have,
and be willing to provide the resources required for the enactment of a
plan. We argue that agents can improve their argumentation strategies
by building accurate models of others’ policies regarding resource use,
information provision, etc. In a set of experiments, we demonstrate the
utility of this novel combination of techniques through empirical eval-
uation, in which we demonstrate that more accurate models of others’
policies (or norms) can be developed more rapidly using various forms
of evidence from argumentation-based dialogue.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multi-agent Systems

General Terms

Algorithms, Experimentation

Keywords

Argumentation, Machine learning, Policies, Norms

1 Introduction

Distributed problem solving activities often require the formation of a team of
collaborating agents. In such scenarios agents often operate under constraints
placed on them by the organisations or interests that they represent. When

37

2 Emele et al.

these constraints are part of the standard operating procedures of the agents
or the organisations in question, we refer to them as policies (also known as
norms). Members of the team agree to collaborate and perform joint activities
in a mutually acceptable fashion. Often, agents in the team represent different
organisations, and so there are different organisational constraints imposed
on them. Even within a single organisation, team members often represent
sub-organisations with different procedures and constraints. Examples of such
constraints are those due to policies that guide the behaviour of representatives
of organisations. Furthermore, team members may possess individual interests
and goals that they seek to satisfy, which are not necessarily shared with other
members of the team. These individual motivations largely determine the way
in which members carry-out tasks assigned to them during joint activities.

In this paper, we focus on policy and resource availability constraints, and
define policies as explicit prohibitions that members of the team are required
to adhere to. Policy constraints may be team-wide or individual. We focus on
individual policies. These policies are often private to that individual member
or subset of the team, and are not necessarily shared with other members of
the team. In order to develop effective plans, an understanding of the policy
and resource availability constraints of other members in the team is beneficial.
However, tracking and reasoning about such information is non-trivial.

Our conjecture is that machine learning techniques may be employed to
aid decision making in this regard. Although this is not a new claim [7], it
is novel to combine it with evidence derived from argumentation-based di-
alogue, which we call argumentation-derived evidence (ADE). We present a
system where agents learn from dialogue by automatically extracting useful
information (evidence) from the dialogue and using these to model the poli-
cies of others in order to adapt their behaviour in the future. We describe an
experimental framework and present results of our evaluation in a resource pro-
visioning scenario [5], which show empirically (1) that evidence derived from
argumentation-based dialogue can indeed be effectively exploited to learn bet-
ter (more complete and correct) models of the policy constraints that other
agents operate within; and (2) that through the use of appropriate machine
learning techniques more accurate and stable models of others’ policies can be
derived more rapidly than with simple memorisation of past experiences.

For example, consider the following snippet of dialogue that may occur
between two agents i and j collaborating to hang a picture [11].

Example 1: Example 2:

i: Can I have a screw-driver? i: Can I have a screw-driver?
j: What do you want to use it for? j: What do you want to use it for?
i: To hang a picture. i: To hang a picture.
j: No. j: I can provide you with a hammer instead.

i: I accept a hammer.

Following from the interaction in example 1, there is very little that we
can learn from the encounter. It is unclear why agent j said no to agent
i’s request. It could be that there exists some policy X that forbids agent

38

On the Benefits of Argumentation-derived Evidence in Learning Policies 3

j from providing the screw-driver to agent i or it could be that the screw-
driver is not available at the moment. On the other hand, suppose we have
an argumentation framework that allows agents to suggest alternatives as in
example 2 or ask for and receive explanations as in examples 3 and 4, then
agent i can, potentially, gather more evidence regarding the provision of the
resources involved.

Example 3: Example 4:

i: Can I have a screw-driver? i: Can I have a screw-driver?
j: What do you want to use it for? j: What do you want to use it for?
i: To hang a picture. i: To hang a picture.
j: No. j: No.
i: Why? i: Why?
j: I’m not permitted to release the screw-driver. j: Screw-driver is not available.

Considering examples 3 and 4, it is worth noting that without the addi-
tional evidence, obtained by the information-seeking dialogue, the two cases
are indistinguishable. This means that the agent will effectively be guessing
which class these cases fall into. The additional evidence allows the agent to
learn the right classification for each of the cases. It should be noted here that
although in example 3, we now have a statement that the resource is not to
be provided for policy reasons, the question remains: what are the important
characteristics of the prevailing circumstances that characterise this policy?

In a domain where there are underlying constraints that could yield similar
results, standard machine learning techniques will have limited efficacy. Using
argumentation to gather additional evidence could improve the accuracy of
the information learned about the policies of others. We claim that significant
improvements can be achieved because argumentation can help clarify reasons
behind decisions made by the provider.

In the research presented in this paper, we intend to validate the follow-
ing hypotheses: (1) Allowing agents to exchange arguments during practical
dialogue (like negotiation) will mean that the proportion of correct policies
learned during interaction will increase faster than when there is no exchange
of arguments. (2) Through the use of appropriate machine learning techniques
more accurate and stable models of others’ policies can be derived more rapidly
than with simple memorisation of past experiences.

The remainder of this paper is organised as follows: In section 2 we briefly
describe argumentation-based dialogue and introduce the protocol employed.
Learning policies is discussed in section 3 and section 4 describes our simulation
environment. Experimental results are reported in section 5. Section 6 discusses
related work and future direction, and the paper concludes in section 7.

2 Argumentation-based Dialogue

In this section we present the argumentation-based negotiation protocol which
will be used in guiding the negotiation process, and for obtaining additional

39

4 Emele et al.

evidence from the interaction. This protocol uses information-seeking dialogue
[17] to probe for additional evidence.

2.1 The Negotiation Protocol

The negotiation for resources takes place in a turn-taking fashion, where the
seeker agent sends a request for resource to a provider agent. Figure 1 captures
the negotiation protocol in a AUML-like interaction diagram (www.fipa.org).
If the provider agent has the requested resource in its resource pool and it is
in a usable state then it checks whether there is any policy constraint that
forbids it from providing the resource to the seeker or not. If the provider
agent needs more information from the seeker in order to make a decision,
the provider agent would ask for more information to be provided. This is the
information gathering stage. The information gathering cycle will continue
until the provider has acquired enough information (necessary to make the
decision), or the seeker refuses to provide more information and the negotiation
ends.

Fig. 1. The negotiation protocol.

The provider agent releases the resource to the seeker agent if there is no
policy that prohibits the provider agent from doing so. Otherwise, the provider
agent offers an alternative resource (if there are no policies that forbid that
line of action and the alternative resource is available). When an alternative
resource is suggested by the provider agent, the seeker agent evaluates it. If it
is acceptable, the seeker agent accepts it and the negotiation ends. Otherwise,
the seeker agent refuses the alternative (in principle, this cycle may be repeated

40

On the Benefits of Argumentation-derived Evidence in Learning Policies 5

until an alternative is accepted or the negotiation ends). However, for simplicity
and brevity, only one suggest-refuse cycle is permitted per request.

From a learning point of view, the suggestion of alternative resources is a
positive evidence that the provider agent does not have any policy that forbids
the provision of the alternative resource to the seeker. In addition, it provides
an evidence that the alternative resource is also available. This extra evidence,
we anticipate, may help to improve the performance of the learner in predicting
the policy constraints of the provider agents in future encounters.

If there is a policy constraint that forbids the provision of the resource, or
the resource is not available then the provider agent will refuse to provide the
resource to the seeker agent. From the seeker ’s perspective, the refusal could
be as a result of policy constraint or because the resource is not available.
In order to disambiguate which of these constraints are responsible for the
refusal, the seeker agent switches to argumentation based dialogue. The seeker
agent asks for explanations for the refusal so as to gather further evidence
and thereby identify the underlying constraints. The provider agent, therefore,
responds with some explanations and the negotiation ends. Three categories of
explanations are possible in this framework: (1) Policy constraints (2) Resource
not available (3) Won’t tell you. These pieces of evidence will be explored in
the following section.

2.2 Argumentation-derived Evidence

Following the argumentation-based negotiation protocol described earlier, the
agents could ask for more information (with respect to a request or the response
to a request), which indicates what constraints others may be operating within.
For instance, let us assume that a provider agent has a policy that forbids it
from providing a screw-driver to any seeker agent that intends to use it for
hanging a picture. Then, whenever a screw-driver is requested the provider
agent will probe for more information to ascertain that the purpose the seeker
intends to use the screw-driver for is not hanging a picture. This extra evidence
could be useful. Similarly, whenever a seeker agent’s request is refused then
the seeker agent will ask for explanations/justifications for the refusal. These
additional evidence are beneficial, and we expect them to improve the quality
of the models of other agents that can be inferred in future encounters.

Figure 2 shows two simple examples of the kind of dialogue that
may occur between two agents, i and j. For the purpose of the example,
we use need(R, P, L, D) to denote that the seeker agent intends to
use the resource R for purpose P at location L on day D. Note that
although this is presented as a dialogue between two agents, in reality
the initiator (agent i, the agent that wishes to resource its plan) may
engage in multiple instances of this dialogue with other agents.

3 Learning Policies

In this section we discuss the machine learning techniques that we have
explored for learning policies through argumentation-derived evidence.
These techniques include decision tree learning (C4.5), instance-based

41

6 Emele et al.

Example A
i: request(i, j, screw-driver)
j: ask-infor(j, i, need(screw-driver, P, L, D))
i: provide-infor(i, j, need(screw-driver, P=x, L=y, D=z))
j: refuse(j, i, screw-driver)
i: why(i, j, refuse(screw-driver))
j: inform(j, i, screw-driver, reason(policy-constraints))

Example B
i: request(i, j, nail)
j: refuse(j, i, nail)
i: why(i, j, refuse(nail))
j: inform(j, i, nail, reason(wont-tell-you))
i: request(i, j, table)
j: agree(j, i, table)

Fig. 2. Dialogue snippets between agents i and j

learning (k-Nearest Neighbours, abbreviated as k-NN) and rule-based
learning (Sequential Covering, abbreviated as SC).

Our technique does not attempt to replace machine learning nor com-
pete with existing techniques. Rather, we seek ways to combine argumen-
tation analysis with already existing machine learning techniques with
a view to improving the performance of agents at predicting the pol-
icy constraints of others. We anticipate that this could enable them to
build more effective argumentation strategies. In other words, we argue
that evidence derived from argumentation-based dialogue can indeed be
effectively exploited to learn better (more complete and correct) mod-
els of the policy constraints that other agents operate within. Also, we
claim that through the use of appropriate machine learning techniques
more accurate and stable models of others’ policies can be derived more
rapidly than with simple memorisation of past experiences. In future en-
counters, the seeker agent attempts to predict the policies of the provider
agent based on the model it has built.

3.1 Decision Tree Learning (C4.5)

C4.5 [13] builds decision trees from a set of training data, using the
concept of information entropy [8] (beyond the scope of this paper).
Generally, the training data is a set S = s1, s2, ..., sn of already classified
samples. Each sample si = x1, x2, ..., xm is a vector where x1, x2, ..., xm
represent attributes of the sample. The training data is augmented with
a vector C = c1, c2, ..., cn where c1, c2, ..., cn represent the class to which
each sample belongs.

Integrating this algorithm into our system with the intention of learn-
ing policies is appropriate since the algorithm supports concept learning
and policies can be conceived as concepts/features of an agent. Agent
policies are represented as a vector of attributes (e.g. resource, purpose,

42

On the Benefits of Argumentation-derived Evidence in Learning Policies 7

location, etc.) and these attributes are communicated back and forth
during negotiation. The C4.5 algorithm is then used to classify each set
of attributes (policy instance) into a class. There are two classes: grant
and deny. Grant means that the provider agent will possibly provide the
resource that is requested while deny implies that the provider agent
will potentially refuse. The leaf nodes of a decision tree hold the class
labels of the instances while the non-leaf nodes hold the test attributes.
In order to classify a test instance, the C4.5 algorithm searches from the
root node by examining the value of test attributes until a leaf node is
reached and the label of that node becomes the class of the test instance.

The problem with this algorithm is that it is not incremental, which
means all the training examples should exist before learning. To overcome
this problem, the system keeps track of the provider agent’s responses.
After a number of interactions, the decision tree is rebuilt. Without
doubt, there is a computational drawback involved in periodically re-
constructing the decision tree. However, in practice, we have evaluated
C4.5 to be fast and the reconstruction cost to be small. Our approach is
similar to the incremental induction of decision trees proposed in [16].

The C4.5 algorithm has three base cases.
– All the samples in the list belong to the same class. When this hap-

pens, it simply creates a leaf node for the decision tree saying to
choose that class.

– None of the features provide any information gain. In this case, C4.5
creates a decision node higher up the tree using the expected value
of the class.

– Instance of previously-unseen class encountered. Again, C4.5 creates
a decision node higher up the tree using the expected value.

Algorithm 1. The C4.5 algorithm

1: Check for base cases
2: For each attribute D,

Find the normalised information gain from
splitting on D

3: Let D best be the attribute with the highest
normalised information gain

4: Create a decision node that splits on D best
5: Recurse on the sublists obtained by splitting on

D best, and add those nodes as children of the node

Fig. 3. The C4.5 algorithm.

3.2 Instance-based Learning (k-NN)

The k-nearest neighbours algorithm (k-NN) [3] is a type of instance-
based learning, or lazy learning, where the function is only approximated

43

8 Emele et al.

locally and all computation is deferred until classification. The univer-
sal set of all the policies an agent may be operating within could be
conceived as a feature space (or a grid) and the various policy instances
represent points on the grid. Using k-NN, a policy instance is classified by
a majority vote of its neighbours, with the policy instance being assigned
to the class most common amongst its k nearest neighbours, where k is
a positive integer, typically small. The k-NN algorithm is incremental,
which means all the training examples need not exist at the beginning
of the learning process. This is a good feature because the policy model
could be updated as new knowledge is learned.

The k-nearest neighbour algorithm is sensitive to the local structure
of the data and this, interestingly, makes k-NN a good candidate for
learning policies because slight changes in the variables/attributes of a
policy could trigger different action. For example:

Policy1: You are permitted to release resource R to team member X if his
affiliation is O and R is to be deployed at location L for purpose P on day 1.

Policy2: You are prohibited from releasing resource R to team member X if
his affiliation is O and R is to be deployed at location L for purpose P on day 2.

In order to identify neighbours, the policy instances are represented by
position vectors in a multidimensional feature space. In this approach, new
policy instances are classified based on the closest training examples in the
feature space. A policy instance is assigned to the class c if it is the most
frequent class label among the k nearest training samples. It is usual to use the
Euclidean distance, though other distance measures, such as the Manhattan
distance, Hamming distance could in principle be used instead. The training
phase of the algorithm consists only of storing the feature vectors and class
labels of the training samples. In the actual classification phase, the test sample
is represented as a vector in the feature space. Distances from the new vector
to all stored vectors are computed and k closest samples are selected.

A major drawback to using this technique to classify a new vector to a
class is that the classes with the more frequent examples tend to dominate
the prediction of the new vector, as they tend to come up in the k nearest
neighbours when the neighbours are computed due to their large number. The
distance-weighted k-NN algorithm, which weights the contribution of each of
the k neighbours according to their distance to the new vector, uses distance
weights to minimise the bias caused by the imbalance in the training examples
by giving greater weight to closer neighbours. In our work, the weight of a
neighbour is computed as the inverse of its distance from the new vector.

3.3 Rule-based Learning (Sequential Covering)

Since policies guide the way entities within a community (or domain) act by
providing rules for their behaviour it makes sense to learn policies as rules.
Sequential covering algorithm [8, 2] is a rule-based learning technique, which
constructs rules by sequentially covering the examples. The sequential covering
algorithm, SC for short, is a method that induces one rule at a time (by

44

On the Benefits of Argumentation-derived Evidence in Learning Policies 9

selecting attribute-value pairs that satisfy the rule), removes the data covered
by the rule and then iterates the process. SC generates rules for each class
by looking at the training data and adding rules that completely describe all
tuples in that class. For each class value, rule antecedents are initially empty
sets, augmented gradually for covering as many examples as possible. Figure
4 outlines the sequential covering algorithm in pseudo-code.

Algorithm 2. The Sequential Covering Algorithm

1: Input the training data (D) and the classes (C)
2: For each class c ∈ C
3: Initialise E to the instance set
4: Repeat
5: Create a rule R with an empty left-hand

side (LHS) that predicts class c:
6: Repeat
7: For each (Attribute, V alue) pair found in E
8: Consider adding the condition

Attribute = V alue to the LHS of R
9: Find Attribute = V alue that maximises p/t
10: (break ties by choosing the condition with

the largest p)
11: Add Attribute = V alue to R
12: Until R is perfect (or no more attributes to use)
13: Remove the instances covered by R from E
14: Until E contains no more instances that belong to c

Fig. 4. The Sequential Covering Algorithm.

In this study we used three different machine learning mechanisms: De-
cision tree learning, Instance-based learning and Rule-based learning. These
three mechanisms represent very different classes of machine learning algo-
rithms. The rationale for exploring a range of learning techniques is to demon-
strate the utility of argumentation-derived evidence regardless of the machine
learning technique employed. Thus, we hypothesize that the use of evidence
acquired through argumentation significantly improves the performance of ma-
chine learning in the development and refinement of models of other agents.
Also, we claim that through the use of appropriate machine learning techniques
more accurate and stable models of others’ policies can be derived more rapidly
than with simple memorisation of past experiences.

4 Simulation Environment

To test our hypotheses, we developed a simulation environment that combines
mechanisms for agents to engage in argumentative dialogue and to learn from
dialogical encounters with other agents. For the purpose of resourcing plans,
agents may act as resource seekers, which collaborate and communicate with
potential providers to perform joint actions. The enactment of both seeker and

45

10 Emele et al.

provider roles are governed by individual policies that regulate their actions.
A seeker agent requires resources in order to carry out some assigned tasks.
The seeker agent generates requests in accordance with its policies and nego-
tiates with the provider agents based on these constraints. On the other hand,
provider agents have access to certain resources and may have policies that
govern the provision of such resources to other members of the team.

Although agents may have prior assumptions about the policies that con-
strain the activities of others, these models are often incomplete and may be
inaccurate. Provider agents do not have an unlimited pool of resources and so
some resources may be temporarily unavailable. By a resource being available
we mean that it is not committed to another task (or agent) at the time re-
quested and the resource is in a usable state. Both seeker and provider agents
have access to the team-wide policies but not the individual policies of oth-
ers. Agents in this domain play the role of a seeker or a provider in different
interactions.

Fig. 5. Architecture of the framework for learning policies in team-based activities
using dialogue.

4.1 Architecture

Figure 5 depicts our architecture. Each agent has two main layers, the com-
munication layer and the reasoning layer. The communication layer embodies
the dialogue controller, which handles all communication with other agents
in the domain. The dialogue controller sends/receives messages to/from other
agents, and the reasoning layer reasons over the dialogue. If an agent is playing
the role of a seeker agent then the dialogue controller sends out the request
for resources. On the other hand, if the agent is a provider agent then the
dialogue controller receives a request and passes it on to the reasoning layer.

46

On the Benefits of Argumentation-derived Evidence in Learning Policies 11

The reasoning layer consists of two modules: the reasoner and the learner.
Upon receiving a message (e.g. a request), the reasoner evaluates the message
and determines the response of the agent. In most cases, the reasoner looks
up policy constraints from the knowledge-base and generates the appropriate
response for the agent. Policy and non-policy constraints are stored in the
constraints knowledge-base. Whenever the agent observes a new pattern of
behaviour the agent uses this experience as evidence for learning, and updates
the model of the other agent accordingly. The learner uses standard machine
learning techniques to learn policies based on the perceived actions of other
agents. The learning techniques are discussed in Section 3.

The knowledge store in Figure 5 acts as a repository where an agent stores
the constraints it has learned by interacting with other agents in the domain.
The information includes the features that an agent requires in order to make
a decision about providing a resource or not. For example, following from [11],
a provider agent B may need to know what the purpose for requesting a screw-
driver is before deciding whether to release the screw-driver or not. The seeker
agent stores such information about agent B in the knowledge store. Also, the
decision of B after the purpose has been revealed will also be learned for future
interactions.

To achieve this, we have developed a simple dialogue game3 involving seeker
agents and provider agents operating under different constraints. The players
take turns and the game starts with an agent, i, sending a request to another
agent, j, for the use of some resources needed to fulfill a plan. The other agent
(j) responds with an agree or refuse based on the prevailing context, e.g. policy
constraints. The requesting agent could ask for explanations and reasons for
an action, and so on until the game ends.

4.2 Implementation

We implemented a simulation environment for agent support in team-based
problem solving and integrated our learning and argumentation mechanisms
into the framework. The policies are encoded as rules in a rule engine [6].
The application programming interface in Weka [18] was used to integrate
standard machine learning algorithms into the framework. We note that, al-
though these three learning algorithms were used, the framework is config-
ured such that other machine learning algorithms can be plugged in. As dis-
cussed in the previous section, we evaluated the performance of a decision tree
learner (C4.5), an Instance based learner (k-Nearest Neighbour algorithm)
and a rule based learner (Sequential Covering) in learning policies through
argumentation-derived evidence.

The simulation environment allows us to generate multiple providers with
randomised policies, seeker agents with randomised initial models of the poli-
cies of providers in the simulation and randomised problems for the seeker
to solve (that is, random resource requirements). The seeker predicts (based
on the model of the provider) whether the provider has a policy that for-
bids/permits the provision of such resource in that context. The seeker re-
quests the required resource from the provider agent and the provider uses a

3 Dialogue games have proven extremely useful for modeling various forms of reasoning
in many domains [1].

47

12 Emele et al.

simple decision function (See Figure 6) to decide whether to grant or deny the
request.

If the decision of the provider agent deviates from the predictions of the
seeker agent then the seeker agent seeks additional evidence (through dialogue)
to disambiguate whether the deviation was as a result of policy or resource
availability constraints. The dialogue follows the protocol specified in Figure 1,
and at the end of the interaction the outcome is learned by the seeker and the
model of the provider is updated accordingly. This adaptive learning process
serves to improve the quality of the models of the other agents that can be
inferred from their observable actions in future interactions.

Assume seeker A requests resource R from provider P

IF (is−available(R) ∧ NOT (forbid(release(R, A)))

THEN agree(release(R, A))

ELSE refuse(release(R, A))

Fig. 6. Provider agents’ pseudo decision function

5 Experiments and Results

In a series of experiments, we show how learning techniques and ar-
gumentation can support agents engaging in collaborative activities, in-
crease their predictive accuracy, avoid unnecessary policy conflicts, hence
improve their performance. The experiments show that agents can effec-
tively and rapidly increase their predictive accuracy of the learned model
through the use of dialogue.

The scenario adopted in this research involves a team of five software
agents (one seeker and four provider agents) collaborating to complete
a joint activity in a region over a period of three days. The region is di-
vided into five locations. There are five resource types, and five purposes
that a resource could be used to fulfill. A task involves the seeker agent
identifying resource needs for a plan and collaborating with the provider
agents to see how that plan can be resourced.

Argumentation-derived evidence (ADE) was incorporated into the
learning process of the three machine learning techniques (C4.5, k-NN,
and SC) described earlier, and their performances in learning the policy
constraints of others were evaluated. A simple lookup table (hereafter
called, LT) was used as a control condition and it serves as a structure
for simple memorisation of outcomes from past encounters.

5.1 Results

This section presents the results of the experiments carried out to val-
idate this work. Experiments were conducted with seeker agents ini-

48

On the Benefits of Argumentation-derived Evidence in Learning Policies 13

Table 1. Average percentage of policies classified correctly and standard deviation

XXXXXXXXXApproach
Tasks

1000 2000 3000 4000 5000 6000

LT-ADE 65.1±6.5 70.3±10.3 75.6±6.7 78.1±10.2 79.3±8.3 81.3±10.1

LT+ADE 66.3±6.0 79.3±9.3 83.6±8.2 81.7±11.2 81.4±7.8 84.7±9.1

C4.5-ADE 58.3±15.1 69.2±16.6 75.1±12.0 82.1±12.3 85.3±8.9 88.2±8.2

C4.5+ADE 60.3±14.4 75.0±12.6 83.6±6.5 89.9±5.2 93.0±3.4 95.6±5.1

k-NN-ADE 65.2±9.8 71.0±7.8 75.3±5.3 80.7±3.8 81.0±4.1 82.0±3.8

k-NN+ADE 71.1±9.0 85.9±7.3 92.0±4.6 96.8±3.1 97.3±3.6 98.4±1.7

SC-ADE 66.7±8.2 71.7±6.0 78.7±8.4 84.3±6.5 87.4±6.0 90.6±5.3

SC+ADE 67.7±7.7 87.1±6.4 94.1±4.2 96.6±4.1 97.5±2.6 99.2±1.0

tialised with random models of the policies of provider agents. 100 runs
were conducted for each case, and tasks were randomly created during
each run from 375 possible configurations.

Table 1 illustrates the effectiveness of identifying and learning policies
through argumentation-derived evidence using the three machine learn-
ing techniques described earlier, and the control condition (lookup table).
It shows the average percentage of policies classified correctly and the
standard deviations for each of the approaches, namely: Lookup Table
without the aid of argumentation-derived evidence (LT-ADE), Lookup
Table enhanced with argumentation-derived evidence (LT+ADE), C4.5-
ADE, C4.5+ADE, k-NN-ADE, k-NN+ADE, SC-ADE, and SC+ADE.
In each case, the model of others’ policies is recomputed after each set of
1000 tasks. For all three machine learning techniques considered, the per-
centage of policies predicted correctly as a result of exploiting evidence
derived from argumentation was consistently and significantly higher
than those predicted without such evidence. Figure 7 gives a graphi-
cal illustration of the effectiveness of learning policies with the aid of
argumentation-derived evidence using rule-based learning technique, for
instance. After 3000 tasks, the accuracy of the approach with additional
evidence had risen above 94% while the configuration without additional
evidence was approaching 79%. It is easy to see that the experiments
where additional evidence was combined with machine learning signifi-
cantly and consistently outperformed those without additional evidence.
These results show that the exchange of arguments during practical dia-
logue enabled agents to learn and build more accurate models of others’
policies much faster than scenarios where there was no exchange of ar-
guments.

Figure 8 captures the effectiveness of the three machine learning tech-
niques described earlier, and a simple memorisation technique (a lookup
table) in learning policies. The result shows that both instance-based
learning (k-NN+ADE) and rule-based learning (SC+ADE) constantly
and consistently outperform the control condition (LT+ADE) through-

49

14 Emele et al.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000 5000 6000

Pe
rc

en
ta

ge
 o

f C
or

re
ct

 P
ol

icy
 P

re
di

ct
io

ns

No. of Tasks

Learning combined WITH argumentation-derived evidence (SC+ADE)
Learning WITHOUT argumentation-derived evidence (SC-ADE)

Fig. 7. Graph showing the effectiveness of allowing the exchange of arguments in learn-
ing policies.

out the experiment. It is interesting to see that, with relatively small
training set, the control condition performed better than the decision
tree learner (C4.5+ADE). This is, we believe, because the model built
by the decision tree learner overfit the data. The tree was pruned after
each set of 1000 tasks and after 3000 tasks the accuracy of the C4.5+ADE
model rose to about 83% to tie with the control condition and from then
the decision tree learner performed better than the control condition.
The performance of the control condition dropped to about 81% after
4000 tasks. After 6000 tasks the accuracy of the decision tree learner had
risen above 95% while that of the control condition was just over 84%.

Tests of statistical significance were applied to the results. The stan-
dard deviations of the results were analysed and the trend line plotted.
(See Figure 9). Using linear regression, the analysis of variance (ANOVA)
shows that as the number of tasks increases, each of the three machine
learning techniques (with or without argumentation-derived evidence)
consistently converges with a 95% confidence interval. Furthermore, for
all the pairwise comparisons, the scenarios where argumentation-derived
evidence was combined with machine learning techniques consistently
yielded higher rates of convergence (p < 0.02) than those without ad-
ditional evidence. Specifically, the decision tree learner enhanced with
argumentation-derived evidence (C4.5+ADE) converges (y = 15.3944−
0.0022x) with a F value of 15.66 and significance p = 0.0167. The k-
NN+ADE converges (y = 9.7983 − 0.0014x) with a F value of 38.58
and significance p = 0.0034, and the SC+ADE (y = 8.819 − 0.0013x)

50

On the Benefits of Argumentation-derived Evidence in Learning Policies 15

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000 5000 6000

Pe
rc

en
ta

ge
 o

f C
or

re
ct

 P
ol

icy
 P

re
di

ct
io

ns

No. of Tasks

SC+ADE
k-NN+ADE
C4.5+ADE

Control Condition (LT+ADE)

Fig. 8. Graph showing the effectiveness of learning policies with the aid of
argumentation-derived evidence using various techniques (LT+ADE, C4.5+ADE, k-
NN+ADE & SC+ADE).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000

De
via

tio
n

of
 P

ol
icy

 P
re

di
ct

io
ns

No. of Tasks

Line of fit for C4.5+ADE
Line of fit for IBk+ADE
Line of fit for SC+ADE

Standard Deviation of C4.5+ADE
Standard Deviation of IBk+ADE
Standard Deviation of SC+ADE

Fig. 9. Graph showing the rate of convergence of the three techniques enhanced with
ADE in learning policies (C4.5+ADE, k-NN+ADE, & SC+ADE).

converges with a F value of 136.45 and significance p = 0.0003. On the
other hand, with a significance p = 0.3957, there is no statistical signif-

51

16 Emele et al.

icance as to whether LT+ADE converges or not. These results confirm
our hypotheses.

6 Discussion and Related Work

The research presented in this paper represents the first model for using
evidence derived from argumentation to learn underlying social char-
acteristics (e.g. policies/norms) of others. There is, however, some prior
research in combining machine learning and argumentation, and in using
argument structures for machine learning. In that research, Možina et
al. [9] propose a novel induction-based machine learning mechanism us-
ing argumentation. The work implemented an argument-based extension
of CN2 rule learning (ABCN2) and showed that ABCN2 out-performed
CN2 in most tasks. However, the framework developed in that research
will struggle to disambiguate between constraints that may produce sim-
ilar outcome/effect, which is the main issue we are addressing in our
work. Also, the authors assume that the agent knows and has access
to the arguments required to improve the prediction accuracy, but we
argue that it is not always the case. As a result, we employ information-
seeking dialogue to tease out evidence that could be used to improve
performance.

In related research, Rovatsos et al. [14] use hierarchical reinforcement
learning in modifying symbolic constructs (interaction frames) that regu-
late agent conversation patterns, and argue that their approach could im-
prove an agent’s conversation strategy. In our work, we used information-
seeking dialogue to obtain evidence from the interaction and learned the
entire sequence as against a segment (frame) of the interaction [14]. We
have demonstrated the effectiveness of using argumentation-derived ev-
idence to learn underlying social characteristics (e.g. policies) without
assuming that those underlying features are public knowledge.

In recent research, Sycara et al. [15] investigate agent support for
human teams in which software agents aid the decision making of team
members during collaborative planning. One area of support that was
identified as important in this context is guidance in making policy-
compliant decisions. This prior research focuses on giving guidance to
humans regarding their own policies. An important and open question,
however, is how can agents support human decision makers in develop-
ing models of others’ policies and using these in guiding the decision
maker? Our work is aimed at bridging this gap (a preliminary version
was presented in [4]). We employ a novel combination of techniques in
identifying, learning and building accurate models of others’ policies,
with a view to exploiting these in supporting human decision making.

In our future work, we plan to develop strategies for advising human
decision makers on how a plan may be resourced and who to talk to
on the basis of policy and resource availability constraints learned [10].

52

On the Benefits of Argumentation-derived Evidence in Learning Policies 17

Parsons et al. [12] investigated the properties of argumentation-based
dialogues and examined how different classes of protocols can have dif-
ferent outcomes. Furthermore, we plan to explore ideas from this work
to see which class of protocol will yield the “best” result in this kind
of task. We are hoping that some of these ideas will drive the work on
developing strategies for choosing who to talk to.

7 Conclusions

In this paper, we have presented a technique that combines machine
learning and argumentation for learning policies in a team of collab-
orating agents engaging in joint activities. We believe, to the best of
our knowledge, that this is the first study into learning models of other
agents using argumentation-derived evidence. The results of our empir-
ical investigations show that evidence derived from argumentation can
have a statistically significant positive impact on identifying, learning
and modeling others’ policies during collaborative activities. The results
also demonstrate that through the use of appropriate machine learning
techniques more accurate and stable models of others’ policies can be de-
rived more rapidly than with simple memorisation of past experiences.
Accurate policy models can inform strategies for advising human deci-
sion makers on how a plan may be resourced and who to talk to [15], and
may aid in the development of more effective strategies for agents [10].
Our results demonstrate that significant improvements can be achieved
by combining machine learning techniques with argumentation-derived
evidence. Having shown that accurate models of others’ policies could
be learned through argumentation-derived evidence, we conjecture that
one could, in principle, learn accurate models of other agents’ properties
(e.g. priorities, preferences, and so on).

Acknowledgements

This research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence and was accomplished under Agreement
Number W911NF-06-3-0001. The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

1. T. J. M. Bench-Capon, J. B. Freeman, H. Hohmann, and H. Prakken.
Computational models, argumentation theories and legal practice. In

53

18 Emele et al.

C. Reed and T. J. Norman, editors, Argumentation Machines. New
Frontiers in Argument and Computation, pages 85–120, Dordrecht, The
Netherlands, 2003. Kluwer Academic Publishers.

2. J. Cendrowska. Prism: An algorithm for inducing modular rules. Interna-
tional Journal of Man-Machine Studies, 27(4):349–370, 1987.

3. T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transaction on Information Theory, 13(1):21–27, 1967.

4. C. D. Emele, T. J. Norman, F. Guerin, and S. Parsons. Learning policies
through argumentation-derived evidence (extended abstract). In van der
Hoek, Lesprance, Kaminka, Luck, and Sen, editors, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,
Canada, 2009. To appear.

5. C. D. Emele, T. J. Norman, F. Guerin, and S. Parsons. Learning policy
constraints through dialogue. In Proc. of the AAAI Fall Symposium on
The Uses of Computational Argumentation, pages 20–26, Virginia, USA,
2009.

6. E. Friedman-Hill. Jess in Action. Manning, 2003.
7. A. Kelemen, Y. Liang, and S. Franklin. A comparative study of different

machine learning approaches for decision making. In N. E. Mastorakis,
editor, Recent Advances in Simulation, Computational Methods and Soft
Computing, pages 181–186, Piraeus, Greece, 2002. WSEAS Press.

8. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
9. M. Možina, J. Žabkar, and I. Bratko. Argument based machine learning.

Artificial Intelligence, 171(10-15):922–937, 2007.
10. N. Oren, T. J. Norman, and A. Preece. Loose lips sink ships: A heuristic

for argumentation. In Proc. of the 3rd Int’l Workshop on Argumentation
in Multi-Agent Systems (ArgMAS 2006), pages 121–134, 2006.

11. S. Parsons and N. R. Jennings. Negotiation through argumentation-A pre-
liminary report. In Proc. of the 2nd Int’l Conference Multi-Agent Systems
(ICMAS’96), pages 267–274, Kyoto, Japan, 1996.

12. S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexities
of some formal inter-agent dialogues. Journal of Logic and Computation,
13(3):347–376, 2003.

13. J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

14. M. Rovatsos, I. Rahwan, F. Fischer, and G. Weiss. Practical strategic rea-
soning and adaptation in rational argument-based negotiation. In Argu-
mentation in Multi-Agent Systems, volume 4049 of LNCS, pages 122–137.
Springer-Berlin, 2005.

15. K. Sycara, T. J. Norman, J. A. Giampapa, M. J. Kollingbaum, C. Bur-
nett, D. Masato, M. McCallum, and M. H. Strub. Agent support for
policy-driven collaborative mission planning. The Computer Journal, page
bxp061, 2009.

16. P. E. Utgoff. Incremental induction of decision trees. Machine Learning,
4(2):161–186, 1989.

17. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. SUNY Press, Albany, NY, USA,
1995.

18. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

54

On a Computational Argumentation Framework
for Agent Societies

Stella Heras, Vicente Botti, and Vicente Julián

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
email: sheras@dsic.upv.es

Abstract. In this paper, we analyse the requirements that argumenta-
tion frameworks should take into account to be applied in agent societies.
Then, we propose a generic framework for the computational represen-
tation of argument information. It is able to represent different types
of complex arguments in open multi-agent societies, where agents have
social relations between them. In addition, we have formalised our frame-
work by defining an argumentation framework based on it.
ACM Categories: Coherence and Coordination, Multi-Agent Systems.
Keywords: Agreement Technologies, Argumentation.

1 Introduction

A recent trend in Multi-Agent Systems (MAS) research is to broaden the ap-
plications of the paradigm to open MAS [20], where heterogeneous agents could
enter into (or leave) the system, interact, form societies and adapt to changes in
the environment. This and other paradigms for computing, such as grid comput-
ing or peer-to-peer technologies, have given rise to a new approach of computing
as interaction [17]. This notion is used to define large complex systems in terms
of the services that their entities or agents can offer and consume and conse-
quently, in terms of the interactions between them. The high dynamism of these
systems requires them to have a way of harmonising knowledge inconsistencies
and reaching common agreements, for instance, when agents in an open MAS
are faced with the goal of collaborating and solving a problem together.

Argumentation is probably the most natural way of harmonising conflicts. It
provides a fruitful means of dealing with non-monotonic and defeasible reason-
ing. During the last decade, this important property has made many Artificial
Intelligence (AI) researchers to pay attention on argumentation theory. In addi-
tion, research on argumentation is also at its peak in the Multi-Agent Systems
(MAS) community, since it has been very successful to implement agents’ inter-
nal and practical reasoning and to manage multi-agent dialogues [23]. Nowadays,
argumentation is an active research area in AI and MAS [4].

However, most argumentation systems consider abstract notions of argument
that are not intended for performing automated reasoning over them (automatic

55

argument generation, selection and evaluation). In fact, the proposed computa-
tional argumentation frameworks take a narrow view of the argument structure
[26]. On the other hand, most MAS whose agents have argumentation capabil-
ities use ad-hoc and domain-dependent representations for arguments [30][31].
Moreover, little work, if any, has been done to study the effect of the social
relations between agents in the way that they argue and manage arguments.
Commonly, the term agent society is used in the argumentation and AI liter-
ature as a synonym for an agent organisation [12] or a group of agents that
play specific roles, follow some established interaction patterns and collaborate
to reach global objectives [14][19]. Nevertheless, the social context of agent soci-
eties (the social dependencies between agents and the effects of their membership
to a group in the way that they can argue with other agents), is not analysed.

To our knowledge, no research is done to adapt argumentation frameworks
to represent and manage arguments in agent societies taking into account their
social context both in the representation of arguments and in the argument man-
agement process. Nevertheless, this social information plays an important role
in the way agents can argue and learn from argumentation experiences. Depend-
ing on their social relations with other agents, an agent can accept arguments
from a member of its society that it would never accept before acquiring social
dependencies with this member. For instance, in a company a subordinate must
sometimes accept arguments from his superior that go against his own ideas and
that he would never accept without this power relation. Also, despite having no
knowledge about an opponent agent, an agent could try to infer the potential
willingness of the opponent to accept an argument by taking into account its
social relation with the opponent, or even its social relation with similar agents
in the past. These are major considerations that should be studied to apply
argumentation techniques in real domains modelled by means of open MAS.

The purpose of this paper is twofold. On one hand, Section 2 analyses the
requirements for an argumentation framework for agent societies and proposes
a generic computational representation of arguments. This framework stresses
the importance of the social dependencies between agents and the effects of
their membership to a group in the way that they argue. On the other hand, in
Section 3 we formalise this proposal by defining a computational argumentation
framework (AF) for the design and implementation of argumentation dialogues
in MAS. Our notion of argument relies on technological standards for argument
and data interchange on the web. Hence, our argumentation framework can be
adapted to work in multiple domains and distributed environments.

2 A Computational Model for Argument Representation
in Agent Societies

In this section, we introduce the formal definition of the concepts that define our
approach for agent societies. Then, we analyse the issues that have been consid-
ered to choose a suitable argumentation framework for agent societies. Taking

56

them into account, we propose a computational representation of arguments.
Finally, an example is provided.

2.1 Society Model

In this work, we follow the approach of [10] and [2], who define an agent society
in terms of a set of agents that play a set of roles, observe a set of norms and
a set of dependency relations between roles and use a communication language
to collaborate and reach the global objectives of the group. This definition is
generic enough to fit most types of agent societies, such as social networks of
agents or open agent organisations. Broadly speaking, it can be adapted to any
open MAS where there are norms that regulate the behaviour of agents, roles
that agents play, a common language that allow agents to interact defining a
set of permitted locutions and a formal semantics for each of these elements.
Moreover, the set of norms in open MAS define a normative context (covering
both the set of norms defined by the system itself as well as the norms derived
from agents’ interactions)[8].

However, we consider that the values that individual agents or groups want
to promote or demote and preference orders over them have also a crucial im-
portance in the definition of an argumentation framework for agent societies.
These values could explain the reasons that an agent has to give preference to
certain beliefs, objectives, actions, etc. Also, dependency relations between roles
could imply that an agent must change or violate its value preference order. For
instance, an agent of higher hierarchy could impose their values to a subordi-
nate or an agent could have to adopt a certain preference order over values to
be accepted in a group. Therefore, we endorse the view of [21], [28] and [3], who
stress the importance of the audience in determining whether an argument (e.g.
for accepting or rejecting someone else’s beliefs, objectives or action proposals)
is persuasive or not. Thus, we have included in the above definition of agent so-
ciety the notion of values and preference orders among them. Next, we provide
a formal definition for the model of society that we have adopted:

Definition 1 (Agent Society). An Agent society S in a MAS is a tuple S =<
A, R, D,G, N, V,Roles, Dependency, Group, val, V alPrefQ > where:

– A = {a1, ..., aI} is the set of I agents members of S in a certain time.
– R = {r1, ..., rJ} is the set of J roles that have been defined in S.
– D = {d1, ..., dK} is the set of K possible dependency relations in S.
– G = {g1, ..., gL} is the set of groups that the agents of S form, where each

gl = {a1, ..., aM},M ≤ I consist of a set of agents ai ∈ A of S.
– N is the normative context of S. That is, the defined set of norms that affect

the roles that the agents play in S1.
– V = {v1, ..., vP } is the set of P values predefined in the S.
– Roles : A → 2R is a function that assigns an agent its roles in S.

1 Thus, we assume normative MAS, such as the one proposed in [8] for instance.

57

– Dependency :<S
D⊆ RxR defines a reflexive and transitive pre-order relation

over roles2. That is, ∀r1, r2, r3 ∈ R, r1 <S
d r2 <S

d r3 implies that r3 has the
highest rank with respect to the dependency relation d in S. Also, r1 <S

d r2

and r2 <S
d r1 implies that r1 and r2 have the same rank with respect to d.

– Group : A → 2G is a function that assigns an agent its groups in S.
– val : A → V is a function that assigns an agent the set of values that it has.
– V alPrefQ ⊆ V xV , where Q = A∨Q = G, defines a reflexive and transitive

pre-order relation <S
Q over the values. For instance, ∀v1, v2, v3 ∈ V, V alprefa =

v1 <S
a v2 <S

a vS
3 implies that agent a prefers value v3 to v2 and value v2 to

value v1 in S. Similarly, V alprefg = v1 <S
g v2 <S

g vS
3 implies that group g

prefers value v3 to v2 and value v2 to value v1 in S.

Once the concepts that we use to define agent societies are specified, the next
section analyses the computational requirements for argument representation in
these societies. Then, our approach for agent societies and the analysed require-
ments are used to propose a new computational representation for arguments.

2.2 Computational Requirements for Arguments in Agent Societies

An argumentation process is conceived as a reasoning model with several steps:

1. Building arguments (supporting or attacking conclusions) from knowledge
bases.

2. Defining the strengths of those arguments by comparing them in conflict
situations.

3. Evaluating the acceptability of arguments in view of the other arguments
that are posed in the dialogue.

4. Defining the justified conclusions of the argumentation process.

The first step to design MAS whose agents are able to perform argumentation
processes is to decide how agents represent arguments. According to the interac-
tion problem defined in [7], “...representing knowledge for the purpose of solving
some problem is strongly affected by the nature of the problem and the infer-
ence strategy to be applied to the problem...”. Therefore the way in which agents
computationally represent arguments should ease the automatic performance of
argumentation processes.

Most research effort on the computational representation of arguments is per-
formed in the area of developing models for argument authoring and diagram-
ming [25][27](OVA3). However, these systems assume human users interacting
with the software tool and are not conceived for performing agents’ automatic
reasoning processes. Other research works where the computational modelling

2 For instance, in the society S of the example of Section 2.4, a basin administrator
has a power dependency relation over any farmer of its river basin, which has to
accept arguments from this administrator that it would never accept without this
power relation (Farmer <S

Power Basin Administrator).
3 OVA at ARG:dundee: www.arg.dundee.ac.uk

58

of arguments has been studied are those on case-based argumentation. From
the first uses of argumentation in AI, arguments and cases are intertwined [29].
Case-based argumentation particularly reported successful applications in Amer-
ican common law [4], whose judicial standard orders that similar cases must be
resolved with similar verdicts. In [5] a model of legal reasoning with cases is pro-
posed. But, again, this model assumed human-computer interaction and cases
were not thought to be only acceded by software agents. Case-Based Reasoning
(CBR) systems [1] allow agents to learn from their experiences. In MAS, the
research in case-based argumentation is quite recent with just a few proposals to
date. These proposals are highly domain-specific or centralise the argumentation
functionality in a mediator agent that manages the dialogue between the agents
of the system [15].

As pointed out before, we focus on argumentation processes performed among
a set of agents that belong to an agent society and must reach an agreement to
solve a problem taking into account their social dependencies. Each agent builds
its individual position in view of the problem (a solution for it). At this level of
abstraction, we assume that this could be a generic problem of any type (e.g. a
resource allocation problem, an agreed classification, a joint prediction, etc.) that
could be characterised with a set of features. Thus, we assume that each agent
has its individual knowledge resources to generate a potential solution. Also,
agents have their own argumentation system to create arguments to support
their positions and defeat the ones of other agents.

Taking into account the above issues, there are a set of requirements that a
suitable framework to represent arguments in agent societies should met:

– be computationally tractable and designed to ease the performance of auto-
matic reasoning processes over it.

– be rich enough to represent general and context dependent knowledge about
the domain and social information about the agents’ dependency relations
or the agents’ group.

– be generic enough to represent different types of arguments.
– comply with the technological standards of data and argument interchange

on the web.

These requirements suggest that an argumentation framework for agent societies
should be easily interpreted by machines and have highly expressive formal se-
mantics to define complex concepts and relations over them. Thus, we propose
a Knowledge-Intensive (KI) case-based argumentation framework [9], which al-
lows automatic reasoning with semantic knowledge in addition to the syntactic
properties of cases. Reasoning with cases is specially suitable when there is a
weak (or even unknown) domain theory, but acquiring examples encountered in
practice is easy. Most argumentation systems produce arguments by applying
a set of inference rules. In open MAS the domain is highly dynamic and the
set of rules that model it is difficult to specify in advance. However, tracking
the arguments that agents put forward in argumentation processes could be rel-
atively simple. Other important problem with rule-based systems arises when
the knowledge-base of rules must be updated (e.g. adding a new rule). Updates

59

imply to check the knowledge-base for conflicting or redundant rules. Case-based
systems are in most cases easier to maintain than rule-based systems and hence,
more suitable for being applied in dynamic domains.

In the following section, we present the framework proposed accordingly to
the above requirements. This framework is also conceived to allow agents to im-
prove their argumentation skills and be able to evaluate the persuasive power of
arguments for specific audiences in view of their previous argumentation expe-
riences.

2.3 Case-Based Model for Argument Representation

In open multi-agent argumentation systems the arguments that an agent gener-
ates to support its position can conflict with arguments of other agents and these
conflicts are solved by means of argumentation dialogues between them. To allow
agents to take the maximum profit from previous argumentation experiences, the
structure that agents use to store information related to their argumentation ex-
periences must be able to represent knowledge about individual arguments and
also about the argumentation dialogues where arguments were posed. There-
fore, agents that implement our argumentation framework have an individual
case-based argumentation system with the following knowledge resources:

– Domain-cases: a set of cases that store information about problems that
were solved in the past. The structure and concrete feature set of these
cases depends on the specific application domain, but at least, they have a
minimum set of features that represent the problem and the solution applied
to it.

– Argument-cases: a set of cases that store information about arguments that
the agent posed in the past and the results that were obtained by putting
forward them in a previous argumentation dialogue4.

– Dialogue graphs: a set of directed graphs that link argument-cases and rep-
resent previous argumentation dialogues. Nodes represent arguments and
arrows between nodes represent attack relations.

– Ontology of Argumentation Schemes: an ontology that encodes the set of
argumentation schemes that agents can use to produce arguments. These
schemes are stereotyped patterns of reasoning [32] that can be used to create
presumptive arguments from a set of premises that characterise the problem
to solve. In addition, argumentation schemes have a set of critical questions,
which represent attacks to the conclusion drawn from the scheme.

The argument-cases are the main structure that we use to implement our
framework and computationally represent arguments in agent societies. Argument-
cases have two main objectives: 1) they can be used by agents as knowledge
resource to generate new arguments in view of past argumentation experiences
4 Note that argument-cases and arguments are not the same, but the former are knowl-

edge structures that store information about previous arguments (and maybe rep-
resent a generalisation of several arguments)

60

PROBLEM

Domain Context Premises = {Volume, Price, etc.}

Social Context

Proponent

ID = F2

Role = Farmer

Norms = NF2

V alPrefF2 = [EC<SO]

Opponent

ID = BA

Role = Basin Administrator

Norms = NBA

V alPrefBA = ∅

Group

ID = RB

Norms = NRB

V alPrefRB = [SO<EC]

Dependency Relation = Power

SOLUTION

Argument Type = Inductive

Conclusion = F2tr (F2 wins the water-right transfer)

Acceptability State = Acceptable

Received Attacks

Critical Questions = ∅
Distinguish Case = ∅
Counter Examples = {C1}

JUSTIFICATION

Cases = {C2}
Schemes = ∅
Associated Dialogue Graph

Table 1. Structure of an Argument Case

and 2) they can be used to store new argumentation knowledge that agents gain
in each dialogue, improving the agents’ argumentation skills. Due to space re-
strictions, we focus here on explaining this knowledge resource. Table 1 shows an
example of the structure of a specific argument-case (explained in the example
of Section 2.4). As it is usual in CBR systems, the argument-cases have three
main parts: the description of the problem that the case represents, the solution
applied to this problem and the justification why this particular solution was
applied. An argument-case stores the information about a previous argument
that an agent posed in certain step of a dialogue with other agents.

Problem: The problem description stores the premises of the argument, which
represent the context of the domain where the argument was put forward. In
addition, if we want to store an argument and use it to generate a persuasive ar-
gument in the future, the features that characterise the audience of the previous
argument (the social context) must also be kept.

For the definition of the social context of arguments, we follow our model
of society presented in Section 2.1. Therefore, we store in the argument-case
the social information about the proponent of the argument, the opponent to
which the argument is addressed, the group to which both agents belong and
the dependency relation established between the roles that these agents play. For
the sake of simplicity, in what follows we assume that in each step of the dialogue,
one proponent agent generates an argument and sends it to one opponent agent
that belongs to its same group. However, either the proponent or the opponent’s

61

features could represent information about agents that act as representatives of
a group and any agent can belong to different groups at the same time.

Thus, the proponent and opponent’s features represent information about the
agent that generated the argument and the agent that received it respectively.
Concretely, for each agent the argument-case stores a unique ID that identifies
it in the system and the role that the agent was playing when it sent or received
the argument (e.g. farmer and basin administrator, do not confuse with the role
of proponent and opponent from the argumentation perspective). In addition, a
reference to the set of norms that governed the behaviour of the agents at this
step of the dialogue is also stored, since the normative context of agents could
force or forbid them to accept certain facts and the arguments that support
them (e.g. a norm could invalidate a dependency relation or a value preference
order). Moreover, if known, we also store the preferences of each agent over the
pre-defined set of general values in the system (e.g. security, solidarity, economy,
etc.). As pointed out before, these preferences (V alPrefF2 and V alPrefBA)
affect the persuasive power of the proponent’s argument over the opponent’s
behaviour.

Regarding the group features, the argument-case stores the unique identifier
ID of the agents’ group, the set of norms that regulates the behaviour of the
group members at this moment, since changes can occur due to norm emergence,
and the preference order (V alPrefRB) about the social values5 of the group.
Finally, the dependency relation between the proponent’s and the opponent’s
roles is also stored. To date, we define the possible dependency relations between
roles as in [10]:

– Power : when an agent has to accept a request from other agent because of
some pre-defined domination relationship between them (e.g. in a society S
that manages the water of a river basin, Farmer <S

Power BasinAdministrator,
since farmers must comply with the laws announced by the basin adminis-
trator).

– Authorisation: when an agent has committed itself to other agent for a cer-
tain service and a request from the latter leads to an obligation when the
conditions are met (e.g. in the society S, Farmeri <S

Authorisation Farmerj ,
if Farmerj has contracted a service that offers Farmeri).

– Charity : when an agent is willing to answer a request from other agent with-
out being obliged to do so (e.g. in the society S, by default Farmeri <S

Charity

Farmerj and Farmerj <S
Charity Farmeri).

Solution: In the solution part, the argument type that defines the method by
which the conclusion of the argument was drawn and this conclusion itself are
stored. By default, we do not assume that agents have a pre-defined set of rules
to infer deductive arguments from premises, which is difficult to maintain in

5 We use the term social values to refer to those values that are agreed by (or com-
manded to) the members of a society as the common values that this society should
promote (e.g. justice and solidarity in an ideal society) or demote.

62

open MAS. In our framework, agents have the following ways of generating new
arguments:

– Presumptive arguments: by using the premises that describe the problem to
solve and an argumentation scheme whose premises match them.

– Inductive arguments: by using similar argument-cases and/or domain-cases
stored in the case-bases of the system.

– Mixed arguments: by using premises, cases and argumentation schemes.

Moreover, the argument-case stores the information about the acceptability
state of the argument at the end of the dialogue. This feature shows if the
argument was deemed acceptable, unacceptable or undecided in view of the other
arguments that were put forward during the dialogue (see Section 3 for details).
Regardless of the final acceptability state of the argument, the argument-case
also stores the information about the possible attacks that the argument received.
These attacks could represent the justification for an argument to be deemed
unacceptable or else reinforce the persuasive power of an argument that, despite
being attacked, was finally accepted. Argument-cases can store different types
of attacks, depending on the type of argument that they represent:

– For presumptive arguments: critical questions associated with the scheme.
– For inductive arguments [5]: either

• Premises which value in the context where the argument was posed was
different (or non-existent) than the value that it took in the cases used
to generate the argument (distinguish the case) or

• Cases which premises also match the premises of the context where the
argument was posed, but which conclusion is different than the conclu-
sion of the case(s) used to generate the argument (counter-examples).

– For mixed arguments: any of the above attacks.

Justification: The justification part of the argument-case stores the informa-
tion about the knowledge resources that were used to generate the argument
represented by the argument-case (e.g. the set argumentation schemes in pre-
sumptive arguments, the set of cases in inductive arguments and both in mixed
arguments). In addition, each argument-case has associated a dialogue-graph
that represents the dialogue where the argument was posed. This graph can
be used later to develop dialogue strategies. The same dialogue graph can be
associated with several argument-cases.

Following a CBR methodology, the knowledge resources of the agents’ case-
based argumentation system allow them to automatically generate, select and
evaluate arguments. However, the complete argument management process (how
agents generate, select and evaluate arguments by using the knowledge resources
of their argumentation systems) is out of the scope of this paper. Also, the frame-
work presented is flexible enough to represent different types of arguments and
their associated information, but the value of some features on argument-cases
and domain-cases could remain unspecified in specific domains. For instance, in

63

some open MAS, the preferences over values of other agents could not be previ-
ously known. However, agents could try to infer the unknown features by using
CBR adaptation techniques [16].

2.4 Example

To exemplify our framework, let us propose a simple scenario of an open MAS
that represents a water market [6], where agents are users of a river basin that
can buy or sell their water-rights to other agents. A water-right is a contract
with the basin administration organism that specifies the rights that a user has
over the water of the basin (e.g. the maximum volume that he can spend, the
price that he must pay for the water or the district where it is settled6). In this
setting, suppose that two agents that play the role of farmers, F1 and F2, are
arguing with a basin administrator, BA, to decide over a water-right transfer
agreement that will grant an offered water-right to a farmer. Then, the premises
of the domain context would store data about the water-right transfer offer and
other domain-dependent data about the current problem. All agents belong to
the same group (the river basin RB) whose behaviour is controlled by certain
set of norms NRB , its value preference order promotes economy over solidarity
(SO<EC) and commands a dependency relation of charity (C) between two
farmers and power relation (P) between a basin administrator and a farmer.
Also, F1 prefers economy over solidarity (SO<EC) and has a normative context
NF1, F2 prefers solidarity over economy (EC<SO) and has a normative context
NF2 and by default, BA has the value preference order of the basin (SO<EC)
and a normative context NBA.

Suppose that F1 has a domain-case C1 that represents a previous water-right
transfer agreement that granted a similar water-right to a farmer whose land was
adjacent to the district associated with the current water-right offer. Thus, F1
would put forward an argument to BA, generated by using C1.

A1: I should be the beneficiary of the transfer because my land is adjacent
to the owner’s land.

Here, we suppose that the closer the lands the cheaper the transfers between
them and then, this argument would promote economy. However, F2 has a
domain-case C2 that represents a previous water-right transfer agreement that
granted a similar water-right to a farmer whose land needed an urgent irrigation
to save the crop due to a drought. Thus, F2 would put forward the following
argument to BA, generated by using C2.

A2: I should be the beneficiary of the transfer because there is a drought
and my land is almost dry.

In this argument, we assume that crops are lost in dry lands and helping people
to avoid losing crops promotes solidarity. In addition, suppose that as basin
administrator, BA knows that there is a drought in the basin, which is a new
6 Following the Spanish Water Law, a water-right is always associated to a district.

64

premise that should be considered. Also, its ontology of argumentation schemes
includes an Argument for An Exceptional Case scheme [32] S1 stating that the
value preference order of the basin can be waived in case of drought and changed
for EC<SO. Therefore, BA could generate an argument by using S1 and certain
domain-case C3 that granted a similar water-right transfer to a farmer whose
land was dry in a drought to promote solidarity.

A3: There is a drought in the basin and dry lands must be irrigated first.

Table 1 shows the argument-case that F2 could store for A2 at the end of the
dialogue, including the attacks received and the knowledge resources that sup-
port the argument. The dialogue graph of this argument-case would point to
the node that represents it in the whole dialogue (represented with several
argument-cases interlinked). Assuming that in our open MAS all agents can
receive the arguments posed by the agents of their group, A1 and A2 will at-
tack each other. In addition, A3 will attack A1, which do not takes into account
the exceptional case of drought in the basin. Also, assuming that in this soci-
ety S the administrator BA has a power dependency relation over any farmer
(Farmer <S

Power Basin Administrator), F1 would have to accept the attack
that defeats its argument A1 and withdraw it. If the dialogue ends here, the
water-right transfer would be granted to F2.

Recall that argument-cases store the social information about roles, values,
norms, etc. Therefore, agents can use this information when they are faced with
the task of selecting a case from a set of possible cases to support their arguments.
For instance, suppose that BA has also found a domain-case C4 that turned down
a similar water-right transfer to a farmer whose land was dry in a drought. To
decide which C3 or C4 is most suitable to draw a conclusion for the current
problem, BA can check its arguments case-base. Then, suppose that BA finds
the argument-case that represents the argument that ended the past dialogue
that motivated the creation of the domain-case C4 by turning down the transfer.
However, the social information about the group does not match with the current
one. Thus, BA could infer that in those situation, the farmer was member of a
different group where the irrigation of dry lands does not take priority in the
case of drought and hence, C4 could not be cited in the current situation.

Up to this point, we have specified our approach for agent societies, analysed
the requirements that a suitable argumentation framework for these type of
societies should met and proposed our framework. In next section, we formalise
this framework.

3 Case-Based Argumentation Framework for Agent
Societies

Following our case-based computational representation of arguments, we have
designed a formal AF as an instantiation of Dung’s AF [11]. The main advan-
tages that this framework contributes over other existent AFs are: 1) the ability
to represent social information in arguments; 2) the possibility of automatically

65

managing arguments in agent societies; 3) the improvement of the agents’ ar-
gumentation skills; and 4) the easy interoperability with other frameworks that
follow the argument and data interchange web standards. Next, the elements of
the AF (according to Prakken’s AF elements [22]) are specified.

3.1 The Notion of Argument: Case-Based Arguments

We have adopted the Argument Interchange Format (AIF) [33] view of argu-
ments as a set of interlinked premiss-illative-conclusion sequences. The notion of
argument is determined by our KI case-based framework to represent arguments.
In our framework agents can generate arguments from previous cases (domain-
cases and argument-cases), from argumentation schemes or from both. However,
note that the fact that a proponent agent use one or several knowledge resources
to generate an argument does not imply that it has to show all this information
to its opponent. The argument-cases of the agents’ argumentation systems and
the structure of the actual arguments that are interchanged between agents is
not the same. Thus, arguments that agents interchange are tuples of the form:

Definition 2 (Argument). Arg = {φ,< S >}, where φ is the conclusion of
the argument and < S > is a set of elements that support it.

This support set can consist of different elements, depending on the argument
purpose. On one hand, if the argument provides a potential solution for a problem
(e.g. who should be the beneficiary of the transfer), the support set is the set
of features (premises) that describe the problem to solve and optionally, any
knowledge resource used by the proponent to generate the argument (domain-
cases, argument-cases, argumentation schemes or elements of them). On the
other hand, if the argument attacks the argument of an opponent, the support set
can also include any of the allowed attacks in our framework (critical questions,
distinguishing premises or counter-examples). Then, the support set consists of
the following tuple of sets of support elements7:

Definition 3 (Support Set). S =< {Premises}, {DomainCases},
{ArgumentCases}, {ArgumentationSchemes}, {CriticalQuestions},
{DistinguishingPremises}, {CounterExamples} >

For instance, assuming that ∼ stands for the logical negation and the set of n
premises is defined as Pre = {pre1, ..., pren}, in our example we have that:

A1 = {F1tr,< Pre, {C1}, ∅, ∅, ∅, ∅, ∅ >}
A2 = {F2tr,< Pre, {C2}, ∅, ∅, ∅, ∅, ∅ >}
A3 = {∼C1, < Pre ∪ {Drought}, ∅, ∅, {S1}, ∅, {Drought}, {C3} >}

where F1tr and F2tr mean that the transfer should be granted to the farmers
F1 or F2 respectively and ∼C1 means that this case cannot be applied in this
context, due to the new distinguishing premise {Drought} and the counter-
example C3.
7 This representation is only used for illustrative purposes and efficiency considerations

about the implementation are obviated.

66

3.2 The Logical Language

The logical language represents argumentation concepts and possible relations
among them. In our framework, these concepts are represented in the form of KI
cases and argumentation schemes. Therefore, the logical language of the AF is
defined in terms of the vocabulary to represent these resources. In this section,
we focus on the definition of the logical language to represent cases. To represent
schemes, we use the AIF ontology proposed in [24].

The vocabulary of cases is defined by using an ontology inspired by the ap-
proach proposed in [9] and the AIF ontology. We have selected the Ontology
Web Language OWL-DL 8 as the formal logics to represent the vocabulary of
cases. This variant is based on Description Logics (DL) and guarantees compu-
tational completeness and decidability. Thus, it allows for automatic description
logic reasoning over argument-cases and domain-cases. In addition, it facilitates
the interoperability with other systems. Next, we provide a partial view of the
top levels of the ontology9 for the AF proposed.

In the top level of abstraction, the terminological part of the ontology dis-
tinguishes between three disjoint concepts: Case, which is the basic structure to
store the argumentation knowledge of agents; CaseComp, which represent the
usual parts that cases have in CBR systems; and CaseAtt, which are the specific
attributes that make up each component:

Case v Thing Case v ¬CaseComp
CaseComp v Thing CaseComp v ¬CaseAtt
CaseAtt v Thing CaseAtt v ¬Case

As pointed out before, there are two disjoint types of cases:
ArgumentCase v Case DomainCase v Case
ArgumentCase v ¬DomainCase

Both argument-cases and domain-cases have the three possible types of com-
ponents that usual cases of CBR systems have: the description of the state of
the world when the case was stored (Problem); the solution of the case (Con-
clusion); and the explanation of the process that gave rise to this conclusion
(Justification):

Problem v CaseComp Conclusion v CaseComp
Justification v CaseComp
Case v ∀hasProblem.Problem
Case v ∀hasConclusion.Conclusion
Case v ∀hasJustification.Justification

Case components are composed of one or more attributes:
CaseComp v≥ 1hasAttribute.CaseAtt

For instance, the attributes of the solution description of an argument-case are
presented below. The cardinality of the possible attacks that an argument-case
can receive is not specified, since the case could not have been attacked.

ArgumentType v CaseAtt
Solution v= 1hasArgumentType.ArgumentType
Conclusion v CaseAtt

8 http://www.w3.org/TR/owl-guide/
9 The complete specification of the ontology is out of the scope of this paper.

67

Solution v= 1hasConclusion.Conclusion
AcceptabilityState v CaseAtt
Solution v= 1hasAcceptabilityState.AcceptabilityState
ReceivedAttacks v CaseAtt
CriticalQuestions v ReceivedAttacks
DistinguishingPremises v ReceivedAttacks
CounterExamples v ReceivedAttacks

In addition, some additional properties about the concepts of the ontology
can also be defined. For instance, instances of argument-cases can have a unique
identifier, a creation date or a date for the last time that the case was used,
which could be used to determine if a case is outdated and should be removed
from the case-base10. For simplicity, these elements are not shown in Table 1.

Case v= 1identifier
T v ∀identifier.ID T v ∀identifier−.Case
Case v= 1creationDate
T v ∀creationDate.Date T v ∀creationDate−.Case
Case v= 1lastUsed
T v ∀lastUsed.Date T v ∀lastUsed−.Case

3.3 The Concept of Conflict between arguments

The concept of conflict between arguments defines in which way arguments can
attack each other. There are two typical attacks studied in argumentation: re-
but and undercut. In an abstract definition, rebuttals occur when two argu-
ments have contradictory conclusions. Similarly, an argument undercuts other
argument if its conclusion is inconsistent with one of the elements of the sup-
port set of the latter argument or its associated conclusion. This section shows
how our AF instantiates these two attacks. Taking into account the possible
elements of the support set, rebut and undercut attacks can be formally de-
fined as follows. Let Arg1 = {φ1, < S1 >} and Arg2 = {φ2, < S2 >} be two
different arguments, where S1 =< {Premises}1, ..., {CounterExamples}1 >,
S2 =< {Premises}2, ..., {CounterExamples}2 >, ∼ stands for the logical nega-
tion, ⇒ stands for the logical implication and conc(x) is a function that returns
the conclusion of the formula x. Then:

Definition 4 (Rebut). Arg1 rebuts Arg2 iff φ1 =∼φ2 and {Premises}1 ⊇
{Premises}2
That is, if Arg1 supports a different conclusions for a problem description that
includes the problem description of Arg2. Assuming F1tr =∼F2tr and vice-
versa, in our example, A1 and A2 rebut each other.

Definition 5 (Undercut). Arg1 undercuts Arg2 if
1)φ1 =∼conc(ask)/
∃cq ∈ {CriticalQuestions}1 ∧ ∃ask ∈ {ArgumentationSchemes}2∧

10 In DL, the range of a property C is specified as T v ∀R.C and its domain as
T v ∀R−.C.

68

cq ⇒∼conc(ask), or
2)φ1 = dp/
(∃dp ∈ {DistinguishingPremises}1 ∧ ∃prek ∈ {Premises}2 ∧ dp =∼prek)∨
(dp 6∈ {Premises}2), or

3)φ1 = ce/
(∃ce ∈ {CounterExamples}1 ∧ ∃dck ∈ {DomainCases}2
∧ conc(ce) =∼conc(dck))∨
(∃ce ∈ {CounterExamples}1∧
∃ack ∈ {ArgumentCases}2 ∧ conc(ce) =∼conc(ack))

That is, if the conclusion drawn from Arg1 makes one of the elements of the
support set of Arg2 or its conclusion non-applicable in the current context of the
argumentation dialogue. In our example, A3 undercuts A1, since its conclusion
makes C1 non-applicable due to the counter-example C3 and the distinguishing
premise {Drought}, which is not considered in the premises that describe the
previous problem that is represented by C1 and made F1 to infer A1 from it.

3.4 The Notion of Defeat between arguments

Once possible conflicts between argument have been defined, the next step in the
formal specification of an AF is to define the defeat relation between a pair of
arguments. This comparison must not be misunderstood as a strategical function
to determine with which argument an argumentation dialogue can be won [22].
A function like this must also consider other factors, such as other arguments put
forward in the dialogue or agents’ profiles. Therefore, it only tells us something
about the relation between two arguments. Hence, the relation of defeat between
two arguments is defined in our AF as follows. Let Arg1 = {φ1, < S1 >} and
Arg2 = {φ2, < S2 >} be two conflicting arguments. Then:

Definition 6 (Defeat). Arg1 defeats Arg2 if Arg1 rebuts Arg2 and Arg2 does
not undercut Arg1, or else Arg1 undercuts Arg2

The fist type of defeat poses a stronger attack on an argument, directly attacking
its conclusion. In addition, an argument can strictly defeat other argument.

Definition 7 (Strict Defeat). Arg1 strictly defeats Arg2 if Arg1 defeats Arg2

and Arg2 does not defeat Arg1

In our example, A1 and A2 defeat each other and A3 strictly defeats A1.

3.5 The Acceptability State of arguments

The acceptability state of arguments determines their status on the basis of
their interaction. Only comparing pairs of arguments is not enough to decide if
their conclusions are acceptable, since defeating arguments can also be defeated
by other arguments. Taking into account the underlying domain theory of a
dialectical system, arguments can be considered acceptable, unacceptable and

69

undecided [11]. However, the acquisition of new information in further steps of
the dialogue could change the acceptability state of arguments.

Therefore, to decide the acceptability state of arguments a proof theory that
takes into account the dialogical nature of the argumentation process is neces-
sary. To evaluate the acceptability of arguments by using a dialogue game is a
common approach. Dialogue games are interactions between two or more play-
ers, where each one moves by posing statements in accordance with a set or
predefined rules [18]. In our AF, the acceptability state of arguments could be
decided by using a dialogue game and storing in the argument-case associated
to each argument its acceptability state when the dialogue ends. However, the
definition of this game is out of the scope of this paper.

4 Discussion

In this paper, we have presented a computational framework to represent argu-
ments in agent societies. This framework takes into account the social depen-
dencies between agents and the effects of their membership to a group in the
way that they can argue. However, although the framework is flexible enough
to store complex knowledge about arguments and dialogues, the value of some
case features could not be specified or known in some domains. For instance, the
proponent of an argument obviously knows its own preferences over its set of
values, probably knows the preferences of its group but, in a real open MAS, we
cannot assume that it also knows the value preferences of its opponent. However,
the proponent can know the value preferences of the opponent’s group (if both
belong to the same) or have some previous knowledge about the value prefer-
ences of similar agents playing the same role that the opponent is playing now.
The same could happen when agents belong to different groups. Thus, the group
features could be unknown, but the proponent could try to use its experience
with other agents of the opponent’s group and infer these features.

In addition, the argumentation framework was inspired by the standard for
argument interchange on the web and hence, an argumentation system based
on it can interact with other systems that comply with the standard. Elements
of cases are specified by using an ontologic case representation language. This
means that agents that implement our case-based framework for argument repre-
sentation and management could argue with agents with other models of reason-
ing. Each element of the knowledge structures of the argumentation framework
proposed can be translated to a concept of the AIF ontology [25] or an ontology
for CBR systems based on [9]. For instance, domain premises can be translated
into AIF Premise Descriptions Forms and premise values into Premise I-Nodes,
value preferences can instantiate Preference-Application-Nodes S-Nodes and ar-
gument types Presumptive Rule-of-Inference Schemes. Even temporal proposi-
tions, agents, roles and norms can be described with OWL ontologies, as pro-
posed in [13]. Although agents in open MAS are heterogeneous, by sharing these
ontologies they can understand the arguments interchanged in the system.

70

Moreover, a formal argumentation framework has been presented. This frame-
work is aimed at providing agents with the ability of having argumentation di-
alogues with other agents in agent societies, with a weak or unknown domain
theory. Moreover, the KI case-based approach used for representing argumenta-
tion related information allows agents to apply CBR techniques to learn from the
experience and improve their argumentation skills. Current work is focused on
the development of the necessary CBR algorithms to generate, select and evalu-
ate arguments from domain-cases, argument-cases and argumentation schemes.

Acknowledgment

This work is supported by the Spanish government grants CONSOLIDER IN-
GENIO 2010 CSD2007-00022, TIN2008-04446 and TIN2009-13839-C03-01 and
by the GVA project PROMETEO 2008/051.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations and system approaches. AI Communications, 7, no. 1:39–59, 1994.

2. A. Artikis, M. Sergot, and J. Pitt. Specifying norm-governed computational soci-
eties. ACM Transactions on Computational Logic, 10(1), 2009.

3. T. Bench-Capon and K. Atkinson. Argumentation in Artificial Intelligence, chapter
Abstract argumentation and values, pages 45–64. 2009.

4. T. Bench-Capon and P. Dunne. Argumentation in artificial intelligence. Artificial
Intelligence, 171(10-15):619–938, 2007.

5. T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating
theories and values. Artificial Intelligence, 150(1-2):97–143, 2003.

6. V. Botti, A. Garrido, A. Giret, and P. Noriega. Managing water demand as a
regulated open mas. In W. on Coordination, Organization, Institutions and Norms
in agent systems in on-line communities, COIN-09, volume 494, pages 1–10, 2009.

7. T. C. Bylander and B. Chandrasekaran. Generic tasks in knowledge-based reason-
ing: The right level of abstraction for knowledge acquisition. International Journal
of Man-Machine Studies, 26(2):231–243, 1987.

8. N. Criado, E. Argente, and V. Botti. A Normative Model For Open Agent Orga-
nizations. In International Conference on Artificial Intelligence, ICAI-09, 2009.

9. B. Diaz-Agudo and P. A. Gonzalez-Calero. Ontologies: A Handbook of Princi-
ples, Concepts and Applications in Information Systems, chapter An Ontological
Approach to Develop Knowledge Intensive CBR Systems, pages 173–214. 2007.

10. V. Dignum. PhD Dissertation: A model for organizational interaction: based on
agents, founded in logic. PhD thesis, 2003.

11. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and n -person games. Artificial Intelli-
gence, 77:321–357, 1995.

12. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organi-
zational view of multi-agent systems. volume 2935, pages 214–230, 2003.

13. N. Fornara and M. Colombetti. Ontology and Time Evolution of Obligations and
Prohibitions using Semantic Web Technology. In Workshop on Declarative Agent
Languages and Technologies, DALT-09, 2009.

71

14. D. Gaertner, J. A. Rodriguez, and F. Toni. Agreeing on institutional goals for
multi-agent societies. In 5th International Workshop on Coordination, Organiza-
tions, Institutions, and Norms in agent systems, COIN-08, 2008.

15. S. Heras, V. Botti, and V. Julian. Challenges for a CBR framework for argumen-
tation in open mas. Knowledge Engineering Review, 24(4):327–352, 2009.

16. R. López de Mántaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw,
B. Faltings, M.-L. Maher, M. Cox, K. Forbus, M. Keane, and I. Watson. Retrieval,
Reuse, Revision, and Retention in CBR. The Knowledge Engineering Review,
20(3):215–240, 2006.

17. M. Luck and P. McBurney. Computing as interaction: agent and agreement tech-
nologies. In IEEE Int. Conference on Distributed Human-Machine Systems, 2008.

18. P. McBurney and S. Parsons. Dialogue games in multi-agent systems. Infor-
mal Logic. Special Issue on Applications of Argumentation in Computer Science,
22(3):257–274, 2002.

19. E. Oliva, P. McBurney, and A. Omicini. Co-argumentation artifact for agent so-
cieties. In 5th International Workshop on Argumentation in Multi-Agent Systems,
ArgMAS-08, 2008.

20. S. Ossowski, V. Julian, J. Bajo, H. Billhardt, V. Botti, and J. M. Corchado. Open
issues in open mas: An abstract architecture proposal. In Conf. de la Asociacion
Española de Inteligencia Artificial, CAEPIA-07, volume 2, pages 151–160, 2007.

21. C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argu-
mentation. 1969.

22. H. Prakken and G. Sartor. A dialectical model of assesing conflicting arguments
in legal reasoning. Artificial Intelligence and Law, 4:331–368, 1996.

23. I. Rahwan. Argumentation in multi-agent systems. Autonomous Agents and Mul-
tiagent Systems, Guest Editorial, 11(2):115–125, 2006.

24. I. Rahwan and B. Banihashemi. Arguments in OWL: a progress report. In 2nd Int.
Conf. on Computational Models of Argument, COMMA-08, pages 297–310, 2008.

25. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide
argument web. Artificial Intelligence, 171(10-15):897–921, 2007.

26. C. Reed and F. Grasso. Recent advances in computational models of natural
argument. International Journal of Intelligent Systems, 22:1–15, 2007.

27. G. Rowe and C. Reed. Diagramming the argument interchange format. In Confer-
ence on Computational Models of Argument, COMMA-08, pages 348–359, 2008.

28. J. Searle. Rationality in Action. 2001.
29. D. Skalak and E. Rissland. Arguments and cases: An inevitable intertwining.

Artificial Intelligence and Law, 1(1):3–44, 1992.
30. L.-K. Soh and C. Tsatsoulis. A real-time negotiation model and a multi-agent

sensor network implementation. Autonomous Agents and Multi-Agent Systems,
11(3):215–271, 2005.

31. P. Tolchinsky, U. Cortés, S. Modgil, F. Caballero, and A. López-Navidad. Increas-
ing human-organ transplant availability: Argumentation-based agent deliberation.
IEEE Intelligent Systems, 21(6):30–37, 2006.

32. D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. 2008.
33. S. Willmott, G. Vreeswijk, C. Chesñevar, M. South, J. McGinnis, S. Modgil, I. Rah-

wan, C. Reed, and G. Simari. Towards an argument interchange format for Multi-
Agent Systems. In 3rd International Workshop on Argumentation in Multi-Agent
Systems, ArgMAS-06, pages 17–34, 2006.

72

A Formal Argumentation Framework for
Deliberation Dialogues

Eric M. Kok, John-Jules Ch. Meyer, Henry Prakken, and
Gerard A. W. Vreeswijk

Department of Information and Computing Sciences,
Utrecht University,
The Netherlands

Abstract. Agents engage in deliberation dialogues to collectively decide
on a course of action. To solve conflicts of opinion that arise, they can
question claims and supply arguments. Existing models fail to capture
the interplay between the provided arguments as well as successively
selecting a winner from the proposals. This paper introduces a general
framework for agent deliberation dialogues that uses an explicit reply
structure to produce coherent dialogues, guides in outcome selection and
provide pointers for agent strategies.

Category I.2.11 [Artificial Intelligence] Distributed Artificial Intelligence—

Languages and structures, multi-agent systems

General Terms Design, Languages

Keywords Argumentation, multi-agent communication, deliberation dialogues

1 Introduction

In multi-agent systems the agents need to work together in order to achieve their
personal and mutual goals. Working together means communication and often
these dialogues will be on finding consensus over some belief, action or goal. In
the last decade frameworks and protocols for such dialogues have been designed
using argumentation theory. Walton and Krabbe [14] give a classification of dia-
logues types based on their initial situation, main goals and participant aims. In
a persuasion dialogue agents need to find resolution for some conflicting point
of view. They will try to persuade the others by forwarding arguments. In nego-
tiation, there is not a conflict on some claim, but rather a potential conflict on
the division of resources. A deal needs to be made in which each agent tries to
get their most preferred resource allocation. Deliberation dialogues in contrast,
have a significant cooperative aspect. There is a need for action and the agents
need to mutually reach a decision. Although agreement is pursued, individual
interests also play part.

The literature on argumentation in multi-agent systems has mainly focused
on persuasion and negotiation type dialogues. Few systems for deliberation have
so far been proposed. The most sophisticated work is that of McBurney et al.

73

[5] To accommodate deliberating agents, a language and protocol are given that
allow for forwarding and discussing of proposals for action. The protocol that
they use is liberal in the sense that very few restrictions are imposed on the
agents. The modelling of conflicts on beliefs and interests of the agents is limited
to the assessment of commitments. It is stated that a voting phase can be used
to derive a winner.

It seems that the inquisitive nature of the deliberation process has been well
captured in the existing literature. However, the conflicts that arise are left more
or less indeterminate. In persuasion, on the other hand, dealing with conflicts is
explicitly modelled. Frameworks for these dialogues allow to determine whether
given arguments are justified and consequently point out a winner. Such conflicts
can be modelled this way for deliberation as well. This can be used to control the
deliberation process by maintaining focus on the topic and support the selection
of a winning proposal.

For persuasion dialogues, Prakken [10] has proposed a framework that uses
an explicit reply structure to capture the relation between arguments. This in
turn is used to ensure coherent dialogues as well as to determine the dialogical
status of the initial claim. Our framework will be based on this work, adjusting
it for use with deliberation dialogues. This will give several advantages. First,
proposals can be assigned a status, which can be used to ensure coherent dia-
logues. Second, the proposed actions can be classified to guide in the selection of
a winner. Moreover, the framework will be general to allow for domain specific
instantiations and to capture existing protocols in it.

2 The Deliberation Dialogue

A deliberation dialogue commences when the need for action arises. In other
words, it needs to be decided upon what action should be taken. A group of
people may need to decide where to go for dinner or some automotive company
needs to plan what type of car to develop. Agents will need to conceive novel
proposals for action and move them in the dialogue. These proposed actions can
then be reasoned upon by the agents. If a proposal is unfavourable to the agent
it can question it, while it can support the proposal if it seems advantageous.
Agents can even express preferences on the proposals. All this is done to influence
the dialogue outcome.

In a multi-agent system, deliberation dialogues are only a part of the full
communication system. Other types of dialogue, such as argument-based mutual
planning [12] or persuasion, can also be part of the system. Deliberation dialogues
are thus part of a context. In particular, it commences when in the context the
agents belief they mutually need to decide on some action to realize a common
goal. Both the goal and need for action can originate from various sources in
the context, such as an authority or an earlier dialogue. When the deliberation
dialogue starts, agents have, at least in our framework, already agreed on them
and can start generating and evaluating proposals.

74

Agents will have different personal interests and beliefs, because of which
conflicts of opinion will come to light during the dialogue. These conflicts can
be solved by embedding persuasion-style dialogues. Agents move arguments and
question claims to convince other agents. A decision on the winning proposal
may be reached through agreement, a voting system or through some author-
ity. Depending on the domain however, both the supplied arguments and the
expressed preferences can still be used.

While persuasion is always competitive, deliberation is partially a cooperative
process as well. This is expressed in a mutual goal that every agent needs to
respect once they accept to engage in deliberation. Support for their proposals
needs to show how the action will achieve this common goal. Agents thus need
to mediate between their personal opinions and the mutual objective.

As an example, consider a dialogue between three agents that need to find
a place for dinner where they will all enjoy the food. They all have an incentive
to work towards an agreement on the restaurant, but as the dialogue progresses,
differences on beliefs will also need to be resolved.

– a1: We should go to the local pizzeria.
– a2: Why should we go there? I propose we go to the nearby bistro.
– a1: Well, the pizzeria serves tasty pizza’s. Why should we go to the bistro?
– a2: The toppings at the pizzeria are very dull, while the bistro has the best

steaks in town.
– a3: I agree on going to the bistro, because the seafood there is great.
– a1: The bistro doesn’t even server steaks any more.
– a3: What makes you think the pizza toppings are so dull?
– a2: Because the menu hasn’t been changed for a very long time. We could

also just go to pub.
– a1: No, I don’t want to go there.

3 A Formal Deliberation Framework

As explained, our framework will build on the argumentation framework for
persuasion dialogues of Prakken, altering and extending it for use with deliber-
ation dialogues. It models persuasion as a dialogue game in which agents make
utterances in a communication language while being restricted by a protocol.
The utterances, or moves, are targeted at earlier moves. Every reply is either an
attacker of surrender, forming an explicit dialogue reply structure. The moves
contain claims and arguments in the topic language with an argumentation logic.
Since it is a framework it allows for various instantiations of the languages and
protocol. In the most basic form the protocol is very liberal, only disallowing
agents to speak at the same time and requiring that moves are replies to earlier
moves. The dialogue terminates when one of the agents cannot make a legal
move. The protocol is defined such that there are no legal moves when there is
agreement on the original claim.

The explicit reply structure is utilized in two ways. First, moves have a
dialectic status. The idea is that a dialogue move is in if it is surrendered or else

75

all its attackers are out, and that it is out if it has an attacker that is in. Now the
outcome of the persuasion dialogue can be determined based on the dialogical
status of the original claim, viz. if at termination this claim is in the proponent
is the winner. Second, the protocol may be extended with a relevance rule. This
compels the agents to stay focussed on the dialogue topic, giving rise to more
coherent dialogues.

To make the framework suitable for deliberation dialogues, several modifica-
tions are needed. First, multiple agents need to be supported, while the persua-
sion framework only covers one proponent and one opponent. Several notions,
such as relevance, and protocol rules, such as for termination, need to be revised
accordingly. Second, there are multiple proposals instead of a single claim to
discuss. The communication language needs support for forwarding, rejecting
and questioning them. Multiple proposals also means there are multiple dialog-
ical trees to which the agents may contribute. Third, the dialogue outcome is
no longer a direct result of the moves. A winning function is needed to select a
single action from all actions that are proposed, or possible none if there is no
acceptable option.

Now the formal specification for deliberation systems in our framework is
introduced. This definition is taken from [10], with the appropriate additions
and revisions.

Definition 1 (Deliberation system). A dialogue system for deliberation di-
alogues is defined by:

– A topic language Lt is a logical language closed under classical negation.
– An argumentation logic L as defined in [11]. It is an instance of the Dung [4]

argumentation model in which arguments can be formed using inference trees
of strict and defeasible rules. Here, an argument will be written as A ⇒ p
where A is a set of premises and sub-arguments, ⇒ is the top inference rule
and p is the conclusion of the argument. Such an argument can be attacked
by rebutting the conclusion or a sub-argument, by undermining some premise
it uses or by undercutting one of the used inference rules.

– A communication language Lc, which is a set of locutions S and two binary
relations Ra and Rs of attacking and surrendering reply on S. Every s ∈ S
is of the form p(l) where p is a performative and l ∈ Lt, l ⊆ Lt or l is an
argument in L. Ra and Rs are disjunct and irreflexive. Locutions cannot
attack one locution and surrender to another. Finally, every surrendering
locution has an attacking counterpart, which is an attacking locution in Lc.

– The set A of agents.
– The set of moves M defined as IN × A × Lc × IN where each element of a

move m respectively is denoted by:
• id(m), the move identifier,
• player(m), the agent that played the move,
• content(m), the speech act, or content, of the move,
• target(m), the move target.

76

– The set of dialogues M≤∞ is the set of all sequences m1, . . . ,mi, . . . from
M , where each ith element in the sequence has identifier i and for each mi

in the sequence it holds if target(mi) 6= 0 then target(mi) = j for some
mj preceding mi in d. The set of finite dialogues M<∞ is the set of all those
dialogues that are finite, where one such dialogue is denoted by d.

– A dialogue purpose to reach a decision on a single course of action, which is
a P ∈ Lt. P is a proposition stating that some action should be done.

– A deliberation context consisting of the mutual goal gd ∈ Lt.
– A protocol P that specifies the legal moves at each point in the dialogue.

Formally a protocol on M is a function that works on a non-empty set of
legal finite dialogues D ⊆M<∞ and the mutual goal such that P : D×Lt −→
Pow(M). The elements of P(d) are called the legal moves after d. P must
satisfy the condition that for all legal finite dialogue d and moves m it holds
that d ∈ D and m ∈ P(d) iff d,m ∈ D.

– A turntaking function T : D −→ A mapping a legal finite deliberation
dialogue to a single agent.

– A deliberation outcome specified by a function O : D × Lt −→ Lt, mapping
all legal finite dialogues and the mutual goal gd to a single course of action
α.

This deliberation system specification gives rise to a dialogue game with an
explicit reply structure. The types of locutions of Lc that are available to the
agents are enumerated in Table 1, each with the appropriate attacking and sur-
rendering replies. The attacking counterpart for each surrendering locution is dis-
played in the same row. The locutions that deal with proposals (propose, reject,
why-propose and prefer) are taken from McBurney et al. while the ones deal-
ing with persuasion (argue, why, retract, concede) are adopted from Prakken’s
framework. Below the term proposal move is used when the content(m) =
propose(P), argue move is used when the content(m) = argue(A⇒ p), etc.

Argue moves have a well-formed argument in L as content. If it attacks some
other argue move it should defeat the argument contained in that targeted move
following the defeat relation of L. All other speech acts have some well-formed
formula in Lt as content. Note that for every move m where content = propose,
prefer or prefer-equal it holds that target(m) = 0 and for all other locutions
target 6= 0. Specific instantiations of our framework may use a different com-
munication language with different speech acts, as long as the reply relation is
defined.

Series of moves that agents make are called turns.

Definition 2 (Turn). A turn T in a deliberation dialogue is a maximal se-
quence of moves 〈mi, . . . ,mj〉 where the same player is to move. A complete de-
liberation dialogue d can be split up in the sequence of turns 〈T1, . . . , Tk, . . . , Tn〉
where k ∈ IN is the turn identifier. A turn thus only has moves from a single
player, defined by player(T).

A deliberation dialogue may be represented a set of ordered directed trees.

77

Table 1. The available speech acts in the communication language Lc

speech act attacks surrenders

propose(P) why-propose(P)
reject(P)

reject(P) why-reject(P)

why-propose(P) argue(A⇒ p) drop-propose(P)

why-reject(P) argue(A⇒ ¬p) drop-reject(P)

drop-propose(P)

drop-reject(P)

prefer(P, Q)

prefer-equal(P, Q)

skip

argue(A⇒ p) argue(B ⇒ q) where concede(p)
B ⇒ q defeats A⇒ p

why(q) where q ∈ A concede(q) where q ∈ A

why(p) argue(A⇒ p) retract(p)

concede(p)

retract(p)

Definition 3 (Proposal tree). For each proposal move mi in dialogue d a
proposal tree P is defined as follows:

1. The root of P is mi.
2. For each move mj that is a node in P , its children are all moves mk in d

such that target(mk) = mj .

This is a tree since every move in d has a single target. Now, for any move m in
proposal tree P we write proposal(m) = mi.

An example proposal tree is displayed in Fig. 1, which represents a dialogue
between three agents. A proposal is moved, questioned and being supported with
an argument that in turn had several replies. For each move mi the number i
is its identifier in the dialogue and between brackets the playing agent is noted.
Moves in a dotted box are out, those in a solid box are in.

4 Dialogical Status of a Move

At every point in time, the dialogical status of a move can be evaluated. The
use for this is twofold. First, it helps making dialogues coherent through the
notion of move relevance. Secondly, the status of proposal moves can later be
used during the selection of the final dialogue outcome.

Every move in a proposal tree is always either in or out. The distinction
between attacking and surrendering replies is used here to make the status of
moves concrete.

78

m1(a1) : propose(D(c))

m2(a2) : why-propose(D(c))

m3(a1) : argue(G(gd), p, (c ∧ p ; gd)⇒ D(c))

m4(a2) : why(p)

m5(a3) : retract(p)

m6(a2) : argue(G(gd), (c 6; gd)⇒ ¬D(c))

Fig. 1. A small example proposal tree

Definition 4 (Move status). A move m in a dialogue d is in, also called
warranted, iff:

1. m is surrendered in d by every agent a ∈ A; or else,
2. m has no attacking replies in d that are in.

Otherwise it is out.

Although this definition is directly taken from [10], special attention here is
required to the surrendering attacks. A move is not yet out until it is surrendered
by every agent in the dialogue, not only by the agent that originally made the
attacked move. Take for example the dialogue of Fig. 1. Although agent a3 moved
a retract(p) in response to a2’s why(p) this targeted move was still in. It is not
until agent a1 replied with a retract(p) as well that the why(p) move is in again.
A surrendering move is more a statement of no commitment. This idea is made
concrete in the following definition of a surrendered move.

Definition 5 (Surrendered move). A move m is surrendered in a dialogue d
by some agent a iff:

1. m is an argue move A ⇒ p and a has made a reply m′ to m that has
content(m′) = concede(p); or else

2. a has made a surrendering reply to m in d.

Otherwise it is out.

The notion of relevance can now be formalised.

Definition 6 (Relevance). An attacking move m in a dialogue d is relevant
iff it changes the move status of proposal(m). A surrendering move is relevant
iff its attacking counterpart is.

Depending on the domain a different notion of surrendered move or rele-
vance may be useful. Prakken describes a notion of weak relevance that may be

79

adopted. It is weaker in the sense that an agent can contribute multiple ways
to change the proposal tree root and still be relevant. This is achieved by only
requiring a move to create an additional way to change the status of a proposal.
A protocol with weak relevance allows an agent to make multiple attacks per
turn in a proposal tree as opposed to a single one if the earlier notion is used,
which we below use the term strong relevance for.

Definition 7 (Weak relevance). An attacking move m in a dialogue d is
weakly relevant iff it creates a new or removes an existing winning part in the pro-
posal tree P associated with proposal(m) in d. A surrendering move is weakly
relevant iff its attacking counterpart is. If the proposal(m) is in, a winning part
wP for this tree P is defined as follows:

1. First include the root of P ;
2. For each m of even depth, if m is surrendered by every agent a ∈ A, include

all its surrendering replies, otherwise include all its attacking replies;
3. For each m of even depth, include one attacking reply m′ that is in in d;

The idea of a winning part is that it is ’a reason’ why the proposal is in
at that moment. Since this is not unique, there may be alternative attacking
replies, a move is already weakly relevant if it succeeds to create an additional
winning part or removes a winning part. Take for example the dialogue of Fig. 1
again. After argue(G(gd), (c ; gd) ⇒ D(c)) was moved by agent a1 there are
no more strongly relevant moves in this proposal tree, while there exists new
weakly relevant moves, for example argue(s⇒ gd). This results in a more liberal
deliberation process.

5 Turntaking and Termination

We have still not made concrete how agents take turns and when the dialogue
terminates.

Definition 8 (Turntaking). Agents take turns in sequence and end their turns
explicitly with a skip move. Formally, for a dialogue d = 〈m1, . . . ,mn〉 T (d) =
player(mn) unless content(mn) = skip in which case T (d) = player(mn) + 1.

Clearly, when there are no more legal moves besides the skip move, that is
P(d) = {skip}, the turn switches. Now, the dialogue terminates if all agents no
longer make other moves than directly skipping.

Definition 9 (Termination). A dialogue d terminates on |A|+ 1 consecutive
skip moves.

The rationale behind the termination rule is that each agent should have
the opportunity to make new moves when it stills want to. However, to prevent
agents from endlessly skipping until some other agent makes a beneficial move
or even a mistake, the number of skip moves is limited.

80

6 Protocol Rules

Now various protocol rules are discussed. Depending on the domain some might
or might not be desirable. First, some rules that prevent agents from playing
incoherent moves are added. More precisely, these rules require the agents to be
relevant, not to overflow the dialogue.

1. Agents can only reply to moves of others. Formally, for every attacking or
surrendering move m in a dialogue player(m) 6= player(target(m)).

2. Every attacking and surrendering move must be relevant.
3. A turn can contain at most one proposal move.
4. A proposal must be unique in the dialogue. Formally, for every proposal move
m in d it holds that content(m) /∈ {p|p = content(n) of some proposal move
n ∈ d}.

The first rule may be dropped for domains where a more liberal deliberation
process is appropriate. This would allow agents to attack their own proposals
as well. The relevance of the second rule may be strong or weak relevance. Note
that in case of strong relevance there can be at most one attacking move per
proposal tree.

Not only the dialogue should be coherent. The same holds for the agents’
preference statements on the proposals. A protocol rule is added to ensure that
an agent is consistent in his ordering.

5. An agent may only make a prefer move if the resulting option ordering
maintains transitivity and antisymmetry. This is further explained below.

The last rules are used to ensure that arguments for (and against) a proposal
explain how it (fails to) achieve the mutual goal.

6. Every argue movem with target(m) = m′ and content(m′) = why-propose(D(P))
will contain an argument in L with gd as one of its premises and D(P) as
conclusion.

7. Every argue movem with target(m) = m′ and content(m′) = why-reject(D(P))
will contain an argument in L with ¬gd as one of its premises and ¬D(P) as
conclusion.

The arguments that these protocol rules require are used to make sure that
a proposal for action P will indeed (fail to) achieve the mutual goal gd. Put dif-
ferently, the proposed action needs to be appropriate in relation to our dialogue
topic. The topic language and used logic therefore need support to express this.
One option, used below, is to include an inference rule for the practical syllogism
in our logic L. Similar to [2] a practical reasoning rule will then be used that
says ‘if gd is a goal and P will achieve gd then P is an appropriate proposal for
action’. Such arguments, below written as G(gd), P ; gd ⇒ D(P), can then be
moved.

81

7 Dialogue Outcome

At any moment in time the outcome of the deliberation dialogue can be deter-
mined. As the outcome function dictates, this is a single course of action, or
no action at all when there is a structural disagreement. To establish this, the
options, which are the moved proposals, are first specified and then classified
based on their status. This set of proposals is then considered over the agent
preferences to determine a winner.

Definition 10 (Options). The dialogue options are defined by a function O :
D −→ Pow(Lt) mapping all legal dialogues to a subset of proposals. For any
dialogue d the set of options is O(d) = {o|o = content(m) for each proposal
move m ∈ d} (below written simply as O). In reverse, move(o) is used to refer
to the move in which the option o was proposed.

The proposal moves that introduced the various options have a move status,
which will be used to classify the options. Such a classification is any-time and
can thus not only be used in selecting the dialogue outcome, but also during the
dialogue by agent strategies.

Definition 11 (Option status). An option o ∈ O(d) for any dialogue d is:

– justifiable iff move(o) is in,
– invalid iff player(move(o)) played a move m such that target(m) = move(o)

and content(m) = drop-propose(o),
– otherwise it is defensible.

Justifiable options are proposals that were questioned but were successfully
defended. None of the agents was able to build a warranted case against the
proposal. Defensible options are proposals that were attacked by some move that
is still warranted. These are thus options that might be reasonable alternatives
albeit not being properly supported. Invalid options are those that were retracted
by the proposing agent. From the perspective of the multi-agent system, the
status of each option hints at its acceptability as dialogue outcome. To settle on
one of the options they are first ordered according to some preference.

Definition 12 (Option preference). An option preference relation � is a
partial order of O. This is defined as oi ≺ oj (strictly preferred) if oi � oj but
oj 6� oi and we have oi ≈ oj (equally preferred) if oi � oj and oj � oi.

A preliminary ordering on the options can be made. This captures the idea of
preferring justifiable options over non-justifiable ones. This may be used during
the selection of a dialogue outcome.

Definition 13 (Preliminary ordering). Using the set of all options a parti-
tion O = Oj ∪Oi ∪Od is created such that

– Oj = {o|o ∈ O where o is justifiable },
– Od = {o|o ∈ O where o is defensible },

82

– Oi = {o|o ∈ O where o is invalid }.

Now �p is the total preliminary ordering over O such that:

– for every two options ok, ol ∈ Oj , Od or Oi it holds that ok ≈p ol,
– for every oj ∈ Oj and od ∈ Od it holds that oj ≺p od,
– for every od ∈ Od and oi ∈ Oi it holds that od ≺p oi.

Justifiable proposals are in principle preferred as dialogue outcome over de-
fensible proposals, which in turn are preferred over invalid ones. However, justi-
fiable options should not always be selected as winner over defensible ones. For
one, the preferences as moved by the agents using prefer and prefer-equal moves
may be taken into account.

Definition 14 (Agent option ordering). Every agent a has a partial agent
option ordering �a over O such that for any two options oi, oj ∈ O:

– oi ≺a oj if the agent played some movem where content(m) = prefer(oj , oi),
– oi ≈a oj if the agent played some movem where content(m) = prefer-equal(oj , oi).

The protocol forces an agent to be consistent in its preference utterances
with relation to the strict ordering of options.

When the dialogue terminates, the deliberation dialogue outcome should be
selected from the set of options. How this final selection is achieved is totally
dependent on the domain and the purpose of the system. For example, there
may be an agent authority that gets to choose the winner, an additional phase
may be introduced in which agents vote on the outcome or a function may be
used to aggregate all (preliminary and agent-specific) preference orderings. In
any case we need to leave open the option for mutual disagreement [5].

Preference aggregation is extensively studied in the field of social choice the-
ory and is out of the scope of the present paper. [9] It is interesting to note,
though, that when maximum social welfare is desirable it may be good to in-
corporate the notion of our option status in the winner selection. The valuable
information obtained during the deliberation dialogue can be used with a public
calculus. This would decide on the outcome in a way similar to the use of public
semantics and would not need to rely on agents considering these notions in their
voting strategies. For single agents, this is already studied in [1]. How to make
use of this is left as future research.

8 An Example

To further explain how the different notions work together, consider an example
of three agents A = {a1, a2, a3} participating in a deliberation dialogue with
mutual goal gd. We will use all the protocol rules discussed above and adopt a
weak form of move relevance. The turns are as follows:

83

– T1 by a1

m1 : propose(D(z)) where z = goToP izzeria
– T2 by a2

m2 : why-propose(D(b)) where b = goToBistro
m3 : propose(D(z))

– T3 by a3

m4 : skip
– T4 by a1

m5 : argue(P ⇒ D(z)) where
P = {G(enjoyFood), tastyP izza, goToP izzaria∧tastyP izza ; enjoyFood}
m6 : why-propose(D(b))

– T5 by a2

m7 : argue(T ⇒ ¬D(z)) where
T = {G(enjoyFood), dullTopping, goToP izzaria∧dullTopping ; ¬enjoyFood}
m8 : argue(S ⇒ D(b)) where
S = {G(enjoyFood), bestSteaks, goToBistro ∧ bestSteaks ; enjoyFood}

– T6 by a3

m9 : argue(D ⇒ D(b)) where
D = {G(enjoyFood), greatSeafood, goToBistro∧greatSeafood ; enjoyFood}

– T7 by a1

m10 : argue(¬m⇒ ¬s) where m = steakOnMenu
– T8 by a2

m11 : skip
– T9 by a3

m12 : why(d) where d = dullTopping
– T10 by a1

m13 : skip
– T11 by a2

m14 : argue(n⇒ d) where m = menuNeverChanged}
m15 : propose(D(p)) where b = goToPub
m16 : prefer(b, p) m17 : prefer(p, z)

– T12 by a3

m18 : prefer(b, p)
– T13 by a1

m19 : reject(p)
m20 : prefer(z, b)
m21 : prefer-equal(b, p)

– T14 by a2

m22 : skip
– T15 by a3

m23 : skip
– T16 by a1

m24 : skip
– T17 by a2

m25 : skip

84

At that point, the proposal trees of the dialogue will look as represented
Fig. 2. To see how the dialogical status and protocol rules affected the agents,
consider turn T5, in which agent a2 tries to refute the proposal for do(goToP izzeria)
as made by agent a1 and support its own proposal for do(goToBistro).

m1(a1) : propose(D(z)) m3(a2) : propose(D(b)) m15(a2) : propose(D(p))

m2(a2) : why-propose(D(z))

m5(a1) : argue(P ⇒ D(z))

m7(a2) : argue(T ⇒ ¬D(z))

m12(a3) : why(d)

m14(a2) : argue(n⇒ d)

m6(a1) : why-propose(D(b))

m8(a2) : argue(S ⇒ D(b))

m10(a1) : argue(¬m⇒ ¬s)

m9(a3) : argue(D ⇒ D(b))

m19(a1) : reject(D(p))

Fig. 2. The proposal trees of the example

To somehow attack proposal D(goToP izzeria) the agent needs to find a
point of attack, which should always be a relevant move. Within this proposal
branch, the only points of attack are to attack m5 or to move another reply
to m1. A relevant move to m5 can be both an argue (rebuttal, undercutter or
underminer) or a why move. Since the proposal move m1 was already ques-
tioned with a why-propose the only remaining valid reply there is to move a
reject(D(goToP izzeria)). The agent chooses to rebut the conclusion of m5 with
some argument T ⇒ ¬D(goToP izzeria).

Within the same turn, the agent also decides to give support to its own
proposal D(goToBistro). To make this proposal in, it will have to find a relevant
attack move. In this case the only legal attacking move is to forward an argument
with conclusion D(goToBistro) in reply to m6, which it does in the form S ⇒
D(goToBistro).

Weak relevance is displayed in turn T6 where agent a3 make the move argue(D ⇒
D(goToBistro)). Although at that point a winning part for the proposal tree of
D(goToBistro) already existed, specifically {m3,m6,m8}, a new winning part
{m3,m6,m9} is created. If instead strong relevance is used, then move m9 is not
relevant and thus illegal. In turn, the move m10 by agent a1 is only weakly rele-
vant because it removed one winning part in the proposal tree without changing
the status of proposal(m8).

85

The dialogue terminates after turn T25, when agent a2 was the first to skip
twice in a continuous series of skips. The proposal moves of goToP izzeria
and goToPub are out so those options are defensible. The proposal move of
goToBistro on the other hand is in and so this option is justifiable. Par-
titioning the options set O according to the option status results in Oj =
{goToBistro} and Od = {goToP izzeria, goToPub}. This gives a preliminary
ordering goToP izzeria ≈p goToPub ≺p goToBistro. The agent orderings fol-
low directly from the prefer moves they made. The agent option ordering for a1 is
goToBistro ≈a1 goToPub ≺a1 goToP izzeria, while that of a2 is goToP izzeria ≺a2

goToPub ≺a2 goToBistro and the ordering of a3 is goToBistro ≺a3 goToPub.

9 Basic Fairness and Efficiency Requirements

McBurney et al. [6] have proposed a set of 13 desiderata for argumentation
protocols. These are criteria which dialogue game protocols need to adhere for
basic fairness and efficiency. Each of the desiderata can be verified against our
deliberation framework and protocol.

1. Stated Dialogue Purpose The protocol is explicitly designed to decide on
a course of action.

2. Diversity of individual purpose Agents are allowed to have personal
goals that possibly conflict with the stated mutual goal.

3. Inclusiveness Many agents can join the deliberation dialogue and no roles
are enforced upon them.

4. Transparency The rules of our framework are fully explained, but it is up
to an implementation to make sure every agents knows these rules and knows
how to play the game.

5. Fairness Every agent has equal rights in the dialogue and the framework
allows for fair winner selection methods. Since an agent may always choose
not to move (any more) at all, it is never forced to adopt or drop some belief
or goal.

6. Clarity of Argumentation Theory The reply structure and notion of
relevance in our framework are not hidden implicitly in a protocol, but made
explicit. Moreover, the structure of arguments is formalised in an explicitly
defined argumentation logic and topic language.

7. Separation of Syntax and Semantics The communication language is
separately defined from the protocol. Also, dialogues in the framework are
independent of the agent specification while their public behaviour can still
be monitored.

8. Rule Consistency We have not studied the rule consistency in detail, but
the protocol will never lead to deadlocks; agents can always skip their turn
or make a new proposal and within a proposal tree there is always a way to
make a new contribution, as long as the top argue move was not conceded.

9. Encouragement of Resolution Agents are encouraged to stay focussed
on the dialogue topic through the notion of relevance. If agents still have
something to say, there is always the opportunity to do so.

86

10. Discouragement of Disruption Disruption is discouraged through the
definition of legal speech acts, which are separated in attacks and replies.
This restricts the available moves, for example agents cannot attack their
own moves. However, it is still possible for aggressive agents to question
everything that is claimed and no agent is compelled to accept any claim.

11. Enablement of Self-Transformation Agents are allowed to adjust their
beliefs or goals depending on the arguments that are moved and preferences
that are expressed. Moreover, they are allowed to drop proposals and to
retract or concede claims.

12. System Simplicity Simplicity of the system is hard to prove or disprove.
However, it is highly modular; communication and topic languages are sep-
arated and various alternative protocol rules may be adopted or dropped.
The winner function is left unspecified, but this may range from a dictator
agent to a social welfare-based function.

13. Computational Simplicity The computational implications of our frame-
work have not yet been studied. However, the separation of agent and frame-
work designs is at least one step towards simplifying the complexity.

Conforming to these guidelines does not yet mean that every dialogue will
be fair and effective. A better understanding is needed of what fair and efficient
deliberation dialogues are. Indeed, future work will need to assess how the delib-
eration process and outcome can be evaluated in relation to the initial situation.
In contrast to beliefs, actions will never have an actual truth value but are rather
more or less applicable in a specific situation. [5]

New research will also focus on more complete fairness and effectiveness
results. For example it is interesting to see how agent attitudes [8] are influential
in deliberation dialogues. Moreover, additional formal properties are interesting
to study such as the correspondence between the dialogue outcome and the
underlying logic of [10].

10 Related Work

The literature on argumentation theory for multi-agent systems includes sev-
eral attempts at designing systems for deliberation dialogues. Earlier we already
briefly discussed the most important work on argumentation in deliberation, i.e.
that of McBurney et al. [5] They propose a very liberal protocol for agents to
discuss proposals restricted by the advancement of a series of dialogue stages.
The used speech acts are very similar to that of our framework, although no
explicit logic is used to construct and evaluate arguments. Proposals can be for-
warded or rejected, claims and arguments are made, questioned or retracted and
preferences are expressed. The resulting commitments of agents are determined,
but as in our model they are not used to restrict the legal moves.

Specific support is built into their system for discussion of different per-
spectives about the problem at hand. Perspectives are influential factors such
as moral implications and costs. These perspectives can be integrated in our

87

framework as well though the adopted topic language and logic. One model that
could be adopted is proposed in [15].

Agents in the framework of McBureny et al. are constrained in their utter-
ances only by preconditions of the different speech acts. For example, they may
not state a preference on two actions before they are asserted. Our model ac-
complishes this through the explicit reply structure of moves rather than using
preconditions. Moreover, our model can enforce dialogical coherence through the
notion of move relevance.

To decide on a winning proposal agents need to unanimously accept some pro-
posal or a voting system may be used. This way any knowledge of the arguments
on proposals is discarded. In contrast, our model may utilise this knowledge on
the multi-agent level to decide on a fair winner without the need for a consensus.

A dialogue protocol on proposals for action is introduced in the work of
Atkinson et al. [2] They list all the possible ways to attack a proposal for action,
including the circumstances, the goal it achieves and the values it promotes.
In our framework, both the goal and action itself are explicitly stated, while
the circumstances appear within the arguments that are moved in our delibera-
tion dialogues. As explained earlier, support for values, which are similar to the
perspectives of McBurney et al. [5], will be added later.

Many locutions are available to attack proposals, like ’deny goal exists’ or ’ask
circumstances’. These are needed because no explicit reply structure is present.
This also means that no direct relation between the attacks and the resolution of
conflicting statements can be made. It is assumed that agents eventually agree
on the subject at hand, agree to disagree or use a separate argumentation frame-
work to establish the validity of the proposal. Moreover, the complete work only
covers dialogues on a single proposal for action, which makes it persuasion rather
than deliberation, albeit being about actions instead of beliefs.

A practical application of multi-agent deliberation dialogues was developed
by Tolchinsky et al. [13] A model for discussion on proposals is coupled to a
dialogue game. In the model, agents are proponents or opponents of some pro-
posal for action, while a mediator agent determines the legal moves and evaluates
moved arguments to see if they are appropriate and how they support or criti-
cize the proposal for action. Although the paper focusses on the translation and
application of argument schemes, it is interesting to see how their work can be
modelled inside our framework. The number of proposals is limited to a single
action, namely to transplant some organ to some recipient, with a mutual goal
to find the best organ donor. A dialogue has to start with propose, reject and
why-reject moves after which agents can play argue moves. Whether the proposal
is also the winner is determined an the authoritative mediator agent.

88

11 Conclusions

In this paper a framework for multi-agent deliberation dialogues has been pro-
posed. The contribution is twofold.

The general framework for persuasion-type dialogues of Prakken [10] has been
altered to provide support for multi-party deliberation dialogues. Consequently,
non-trivial modifications have been made to the framework. First, support for
moving, criticizing and preferring proposals for action was added. By reusing the
explicit reply structure we represent deliberation dialogues as directed multiple
trees. Second, the notions of dialogical status and relevance have been adapted
for multiple agents. In particular, surrendering replies in a multi-agent context
are studied and how strong and weak relevance can still be maintained.

Our framework also improves on the existing work on deliberation dialogues.
In contrast with McBurney et al. [5], conflicts of interest are handled through
a persuasion-style explicit move status. This allows for varying ways to impose
coherence on the deliberating agents. Moreover, the status of proposals is used
to define a classification so a preliminary ordering on them can be made. This,
together with the agents’ explicit preferences, may be used to select a winning
proposal.

The framework was checked against the desiderata for multi-agent argumen-
tation protocols. Deliberation systems in our framework will adhere to those
basic standards for efficiency and effectiveness. A more rigid study on formal
properties of the framework will be valuable here as well as a study on how
different agent strategies can affect fairness and effectiveness.

As an extension of our framework, we could allow agents to discuss not only
beliefs but also goals, values and preferences. For example, attacking of prefer
moves could be allowed, by which a new argument tree is started. A preference-
based argumentation framework [7] may be used to in turn evaluate the effect
on the dialogical status of proposals. To support discussion on values the topic
and communication languages can be extended. One option is to incorporate
the work of Black and Atkinson [3], who explicitly allow discussion on promoted
values.

Acknowledgments This research was supported by the Netherlands Organi-
sation for Scientific Research (NWO) under project number 612.066.823.

References

1. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions.
Artificial Intelligence 173(3-4), 413–436 (2009)

2. Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: A dialogue game protocol for
multi-agent argument over proposals for action. Autonomous Agents and Multi-
Agent Systems 11(2), 153–171 (2005)

89

3. Black, E., Atkinson, K.: Dialogues that account for different perspectives in col-
laborative argumentation. In: Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems. pp. 867–874. Budapest, Hungary
(2009)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321–357 (1995)

5. McBurney, P., Hitchcock, D., Parsons, S.: The eightfold way of deliberation dia-
logue. International Journal of Intelligent Systems 22(1), 95–132 (2007)

6. McBurney, P., Parsons, S., Wooldridge, M.: Desiderata for agent argumentation
protocols. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems. pp. 402–409. Bologna, Italy (2002)

7. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial
Intelligence 173(9-10), 901–934 (2009)

8. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some for-
mal inter-agent dialogues. Journal of Logic and Computation 13(3), 347–376 (2003)

9. Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Aggregating Partially Ordered
Preferences. Journal of Logic and Computation 19(3), 475–502 (2008)

10. Prakken, H.: Coherence and Flexibility in Dialogue Games for Argumentation.
Journal of Logic and Computation 15(6), 1009–1040 (2005)

11. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument and Computation 1(2) (2010 (to appear))

12. Tang, Y., Parsons, S.: Argumentation-based dialogues for deliberation. In: Pro-
ceedings of the 4th International Conference on Multi-Agent Systems. pp. 552–559.
ACM (2005)

13. Tolchinsky, P., Atkinson, K., McBurney, P., Modgil, S., Cortés, U.: Agents deliber-
ating over action proposals using the ProCLAIM model. In: Proceedings of the 5th
International Central and Eastern European Conference on Multi-Agent Systems.
pp. 32–41. Springer-Verlag New York Inc, Leipzig, Germany (2007)

14. Walton, D.N., Krabbe, E.C.W.: Commitment in dialogue: Basic concepts of inter-
personal reasoning. State University of New York Press, New York (1995)

15. van der Weide, T.L., Dignum, F.P.M., Meyer, J.J.C., Prakken, H., Vreeswijk,
G.A.W.: Practical reasoning using values: Giving meaning to values. In: Proceed-
ings of the 6th International Workshop on Argumentation in Multi-Agent Systems.
pp. 225–240. Budapest, Hungary (2009)

90

Towards Pragmatic Argumentative Agents
within a Fuzzy Description Logic Framework

Ioan Alfred Letia1 and Adrian Groza1

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-400391 Cluj-Napoca, Romania
{letia,adrian}@cs-gw.utcluj.ro

Abstract. To bring the level of current argumentation to the expres-
sive and flexible status expected by human agents, we introduce fuzzy
reasoning on top of the classical Dung abstract argumentation frame-
work. The system is built around Fuzzy Description Logic and exploits
the integration of ontologies with argumentation theory, attaining the
advantage of facilitating communication of domain knowledge between
agents. The formal properties of fuzzy relations are used to provide se-
mantics to the different types of conflicts and supporting roles in the
argumentation. The usefulness of the framework is illustrated in a sup-
ply chain scenario.

1 Introduction

Abstract argumentation frameworks lack high-level conveniences such as
ease of understanding, an aspect required by human agents. Many chal-
lenges still exists in order to build intelligent systems based on abstract
argumentation frameworks [1].
On the one hand, humans manifest a lot of flexibility when they con-
vey arguments from supporting and attacking a claim. One can disagree,
can provide a counter example, can rebut or undercut a claim. Cur-
rently, these common patterns of attacking relations are encapsulated
as argumentation schemes [2]. This informal reasoning does not exploit
the formal properties of the attacking relations. The semantics of the
support relation agree contains the transitivity property: agree(a, b) and
agree(b, c) implies that a agrees with c. Similarly, the rebutting rela-
tion is symmetrical. That is, rebut(a,¬a) implies rebut(¬a, a). In this
paper, we advocate to use such properties when deciding on the status
of an argument. We provide software agents with description logic based
reasoning capabilities to exploit the formal properties of the attacking
relations.
On the other hand, people do not express their arguments precisely in
their daily life. Such vague notions as: strongly, moderately, don’t fully
agree, tend to disagree are used during an argumentative dialog. Real
arguments are also a mixture of fuzzy linguistic variables and ontologi-
cal knowledge. Arguments conveyed by people are incomplete, normally
enthymemes [3], where the opponent of the arguments assumes that his

91

2

Operation Lukasiewicz Logic Gödel Logic

intersection α⊗S β max{α + β − 1, 0} min{α, β}
union α⊕S β min{α + β, 1} max{α, β}
negation ⊖Sα 1− α 1, if α = 0, 0, otherwise
implication α ⇒S β min{1, 1− α + β} 1, if α 6 β, β, otherwise

Table 1. Operators in Fuzzy Logics.

partner understands the missing part. Thus, a common knowledge on the
debate domain is assumed by the agents. We introduce Fuzzy Descrip-
tion Logic on top of the argumentation theory, as the adequate technical
instrumentation needed to model real-life debates.

2 Preliminaries

2.1 Fuzzy Sets and Relations

A fuzzy relation R between two set A and B has degree of membership
whose value lies in [0, 1]: µR : A × B → [0, 1]. µR(x , y) is interpreted
as strength of relation R between x and y . When µR(x , y) ≥ µR(x ′, y ′),
(x , y) is more strongly related than (x ′, y ′). A fuzzy relation R over X ×
X is called:

– transitive: ∀ a, b ∈ X ,R(a, c) ≥ supb∈X {⊗S (R(a, b),R(b, c))}
– reflexive: ∀ a ∈ X ,R(a, a) = 1

– irreflexive: ∃ a ∈ X ,R(a, a) 6= 1

– antireflexive: ∀ a ∈ X ,R(a, a) 6= 1

– symmetric: ∀ a, b ∈ X ,R(a, b) → R(b, a)

– antisymmetric: ∀ a, b ∈ X ,R(a, b) → ¬R(b, a)

– disjoint : ∀ a, b ∈ X ,⊗S (R(a, b),S(a, b)) = 0

The inverse of a fuzzy relation R ⊆ X × Y is a fuzzy relation R− ⊆
Y × X defined as R−(b, a) = R(a, b). Given two fuzzy relations R1 ⊆
X × Y and R2 ⊆ Y × Z we define the composition as [R1 ◦ R2](a, c) =
supb∈Y {⊗S (R(a, b),R(b, c))} (table 1). The composition satisfies the fol-
lowing properties: (R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3), and (R1 ◦ R2)

− =
(R−

2 ◦R−
1). Due to the associativity property we can extend the composi-

tion operation to any number of fuzzy relations: [R1◦t R2◦t ...◦t Rn](a, b).
If a relation is reflexive, antisymmetric, and transitive it is called order
relation.

2.2 Fuzzy Description Logic

In the following paragraphs the differences introduced by fuzzy reasoning
on top of classical description logic are presented. The complete formal-
ization of the fuzzy description logic can be found in [4]. The syntax of
fuzzy SHIF concepts [4] is as follows:

92

3

C ,D = ⊤ | ⊥ | A | C ⊓S D | C ⊔S D | C ⊑S D | ¬LC |
∀R.C | ∃R.C | ∀T .d | ∃T .d |≤ nR |≥ nR | m(C) | {a1, ...an}

d = crisp(a, b) | triangular(a, b, c) | trapezoidal(a, b, c, d)

where S={L, G, C}, L comes from Lukasiewicz semantics, G from Gödel
semantics, and C stands for classical logic (see table 1). The modifier
m(C) = linear(a) | triangular(a, b, c) can be used to alter the member-
ship functions of the fuzzy concepts. Fuzzy modifiers such as very, more-
or-less, slightly can be applied to fuzzy sets to change their membership
functions. They are defined in terms of linear hedges. For instance, one
can define very=linear (0.8). A functional role S can always be obtained
by means of the axiom ⊤ ⊑ (≤ 1S).

Example 1. The definition of junk food is applied to some food which
has little nutritional value, or to products with nutritional value but
which also have ingredients considered unhealthy: JunkFood = Food ⊓
(∃ hasNutritionalValue.Little ⊔ ∃ hasIngredients.Unhealthy). In this defi-
nition, there are two roles which point to the fuzzy concepts Little and
Unhealthy , which could be represented as Little = triangular(10, 20, 30),
or Unhealthy = ∃ hasSalt . ≥ 2mg ⊔ hasAdditive. > 0.5mg .

⊥I (x) = 0 (∀R.C)I (x) = infy∈∆I RI (x , y) ⇒S C I (y)
⊤I (x) = 1 (∃R.C)I (x) = supy∈∆I RI (x , y)⊗S C I (y)
(¬C)I = ⊖C I (x) (∀T .d)I (x) = infy∈∆I RI (x , v) ⇒S d I (y)
(C ⊓S D)I (x) = C I (x)⊗S D I (x) (∃R.d)I (x) = supy∈∆I RI (x , v)⊗S d I (y)
(C ⊔S D)I (x) = C I (x)⊕S D I (x) (x : C)I = C I (x I)
(C →S D)I (x) = C I (x) ⇒S D I (x) ((x , y) : R)I = RI (x I , yI)
(m(C))I (x) = fm(C I (x)) (C ⊑ D)I (x) = infx∈∆I C I (x) ⇒S D I (x)

Fig. 1. Semantics of fuzzy concepts.

The main idea of semantics of FDL is that concepts and roles are in-
terpreted as fuzzy subsets of an interpretation’s domain [4]. A fuzzy
interpretation I = (∆I , •I) consists of a non empty set ∆I (the domain)
and a fuzzy interpretation function •I . The mapping •I is extended to
roles and complex concepts as specified in figure 1.

3 Fuzzy Argumentation Systems

3.1 Fuzzy Resolution Argumentation Base

An argumentation framework [5] consists of a set of arguments, some
of which attack each other. In our approach, the arguments represent
instances of concepts, while different types of attack relations are instan-
tiations of roles defined on these concepts. Both, the concepts and the
roles can be fuzzy.

93

4

Definition 1. A fuzzy resolution argumentation base is a tuple FRA =
〈A, T, R〉, consisting of a fuzzy Abox A, representing argument instances
and their attacking relations, a fuzzy Tbox T representing concepts, and
a fuzzy Rbox R encapsulating attack-like and support-like relations.

Definition 2. A fuzzy Abox A is a tuple ≺ Arg ,Attacks ≻, where Arg
of a finite set of assertion axioms for fuzzy arguments {a1 : C1 ⊲⊳ α1, a2 :
C2 ⊲⊳ α2, ..., an : Cn , ⊲⊳ αn}, and Attacks is a set of fuzzy roles ⊆ Arg ×
Arg of the form {(ai , aj) : Rk ⊲⊳ αl}, where αl ∈ [0, 1], Ci are concepts,
Rk are attack and support-like relations, and ⊲⊳= {<,≤, >,≥}.

Example 2. Let A =≺ {funghi : CheapPizza ≥ 0.8}, {(funghi , vegetarian) :
Attack ≥ 0.7} ≻ states that funghi is a CheapPizza with degree at least
0.8, and it attacks the vegetarian argument with degree at least 0.7.

If α is omitted, the maximum degree of 1 is assumed. We use ⊲⊳− as the
reflection of inequalities ≤−=≥ and <−=>.

Definition 3. A fuzzy Tbox T is a finite set of inclusion axioms {Ci ⊑S

Di ,≥ αi}, where αi ∈ [0, 1], Ci ,Di are concepts, and S specifies the
implication function (Lukasiewicz, Gödel) to be used. The axioms state
that the subsumption degree between C and D is at least α.

Example 3. Let’s take the common example of pizza. Can it be catego-
rized as junk food or nutrition food? Associated with some food outlets,
it is labeled as ”junk”, while in others it is seen as being acceptable and
trendy. Rather, one can consider that it belongs to both concepts with
different degree of truth, let’s say 0.7 for JunkFood and 0.5 to Nutri-
tionFood, encapsulated as T = {Pizza ⊑L JunkFood ≥ 0.7,Pizza ⊑L

NutritionalFood ≥ 0.5,FreshFruits ⊑L NutritionalFood ,CandyBar ⊑L

JunkFood}. Note the subconcept CandyBar is subsumed by the concept
JunkFood with a degree of 1.

Definition 4. The argumentation core Rk of the fuzzy Rbox R consists
of two relations Attack and Support (noted by Ā, respectively S̄), having
the properties: i) dis(Ā,S̄), meaning that ∀ a, b ∈ Arg ,⊗((a, b) :Ā, (a, b) :S̄) =
0. Formally, Rk = {Ā, S̄, dis(Ā,S̄)}.

Under the Gödel semantics, the disjoint property of the Attack and
Support relations states that⊗G((a, b) :Ā, (a, b) :S̄) = min((a, b) :Ā, (a, b) :S̄) =
0 ⇔ if (a, b) :S̄≥ 0 then (a, b) :Ā≤ 0 and if (a, b) :Ā≥ 0 then (a, b) :S̄≤ 0.
In other words, if a attacks b there is no support relation from a to
b, and similarly if a supports b there is no attack relation from a to
b. The Lukasiewicz semantics leads to a more flexible interpretation,
given by ⊗L((a, b) :Ā, (a, b) :S̄) = max((a, b) :Ā+(a, b) :S̄−1, 0) = 0 ⇔
(a, b) :Ā+(a, b) :S̄≤ 1. Thus, if a attacks b to a certain degree α, there
exists the possibility that also a supports b with a maximum degree of
1−α. While the Gödel interpretation fits perfectly to the general case of
argumentative debates, some special examples lay under the Lukasiewicz
semantics.

94

5

Definition 5. The fuzzy Rbox R consists of i) the argumentation core
Rk ; ii) an hierarchy of disjoint attack and support-like relations R, de-
fined by role inclusion axioms: R ⊑ Attack, or R ⊑ Support; and iii) a set
of role assertions of the form: (fun R), (trans R), sym(R), (inv R R−),
stating that the role R is functional, transitive, symmetric, respectively
its inverse relation is R−.

There are two types of relations in R: supporting roles (denoted by RS),
opposite to attacking roles (denoted by RA), where RS ∩ RA = ∅. We
note that a1 supports a2 by a1 → a2 and a1 attacks a2 by a1 9 a2.

Example 4. Let R = Rk∪{Defeat ,Disagree,Agree,Defeat ⊑ Ā,Disagree ⊑
Ā,Agree ⊑ S̄, tra(Agree), sym(Agree), ref (Agree)}. The two hierarchies
are RA = {Ā,Defeat ,Disagree}, respectively RS = {S̄,Agree}. Note that
Support relation is transitive, while Attack role is not a transitive one;
Agree is a particular instance of Support relation, while Disagree and
Defeat relations are Attack -type relations. The following properties hold:

Proposition 1. Attack and Support-like relations are not functional,
i.e. the same argument a can attack two different arguments b1 6= b2:
(a, b1) : Attack and (a, b2) : Attack.

Proposition 2. The inverse of the Attack relation is an attack-like re-
lation (inv Attack ⊑ Attack).

Proposition 3. An argument a agrees to itself (a, a) : Agree, given by
the the reflexivity property of the Agree relation.

Example 5. Consider FRA = 〈≺ {a : A, b : B , c : C}, {(a, b) : Agree ≥
0.9, (b, c) : Agree ≥ 0.8}, {A,B ,C}, Rk ∪ {Agree ⊑ S̄, tra(Agree)}. Agree
being a transitive relation, the argument a also agrees to c with a degree
of α ≥ supb∈Arg{⊗S ((a, b) : Agree, (b, c) : Agree)}, which gives max(0.9+
0.8− 1, 0) = 0.7 under Lukasiewicz semantics and min(0.9, 0.8) = 0.8 in
Gödel interpretation.

Proposition 4. The relation S is complement of the relation R if (inv R S)
and (x , y) : R ⊲⊳ α → (y , x) : S ⊲⊳− (1−α). Here, Agree and Disagree are
complement relations, (a, b) : Agree ≥ α implies (b, a) : Disagree ≤ 1−α.
Informally, if a and b agree each other with at least α, the disagreement
degree between them should be less then 1− α.

Definition 6. (Argumentation Chains) An argument b is supported by
the argument a if their is a finite path p = (a, x1) : R1, (x1, x2) : R2, ..., (xn−1, b) :
Rn ,∀Ri ,Ri ⊑ Support. An argument b is attacked by the argument a
if their is a finite path p = (a, x1) : R1, (x1, x2) : R2, ..., (xn−1, b) :
Rn ,∀Ri ,Ri ⊑ Support⊔Attack, and the number of attack relations | RA |
is odd.

Proposition 5. (Indirect Support) By composing an even number of
attack relations, one gets an indirect support relation. Formally, R1 ⊑
Attack, R1 ⊑ Attack, implies R1 ◦t R2 ⊑ Support. The norm used to
compute the strength of the attack is ◦tĀ = ⊗2

S , where the power 2 models
the fact that an indirect attack should be smaller than a direct one.

95

6

Example 6. Consider FRA = 〈≺ {a : A, b : B , c : C}, {(a, b) : Undercut ≥
0.9, (b, c) : Attack ≥ 0.7} ≻, {A,B ,C}, Rk∪{Disagree,Undercut ,Disagree ⊑
Attack ,Undercut ⊑ Attack}. By applying complex role inclusion we ob-
tain Attack ◦t Disagree ⊑ Support . In other words, if the argument a
attacks b and b disagrees with c we say that there is a support-like re-
lation between a and c: (a, c) : R > 0,R ∈ RS . The degree of support
is given under the Lukasiewicz semantics as Undercut ⊗2

L Disagree =
(supb:B{max(0, 0.9 + 0.7 − 1)})2 = (0.6)2 = 0.36 and Undercut ⊗2

G

Disagree = (supb:B{min(0.9 + 0.7)})2 = 0.49, under Gödel semantics.

3.2 Aggregation of Arguments

Several issues are raised by merging description logic and fuzzy argumen-
tation: What happens when there is more than one attack-like relation
between two concepts? What happens when one argument belongs with
different membership functions to several concepts, which are linked by
different attack-like relations with the opposite argument? What happens
when two independent arguments attack the same argument? Should one
take into consideration the strongest argument, or both of them may con-
tribute to the degree of truth of that concept? Given an argumentation
system, a semantic attaches a status to an argument. Different semantics
may lead to different outputs [6].

One advantage of fuzzy logic is that it provides technical instrumentation
(Lukasiewicz semantics, Gödel semantics) to handle all the above cases
in an argumentative debate. The interpretation of Gödel operators maps
the weakest link principle [7] in argumentation, which states that an ar-
gument supported by a conjunction of antecedents α and β, is as good
as the weakest premise ⊗G = min(α, β). The reason behind this princi-
ple is the fact that the opponent of the argument will attack the weakest
premise in order to defeat the entire argumentation chain. When two rea-
sons supporting the same consequent are available, having the strength
α and β, the strongest justification is chosen to be conveyed in a debate,
which can be modeled by the Gödel union operator ⊕Gmax{α, β}).
The Lukasiewicz semantics fits better to the concept of accrual of argu-
ments. In some cases, independent reasons supporting the same conse-
quent provide stronger arguments in favor of that conclusion. Under the
Lukasiewicz logic, the strength of the premises (α,β) contributes to the
confidence of the conclusion, given by ⊕L = min{α+β, 0}. For instance,
the testimony of two witnesses is required in judicial cases. Similarly, sev-
eral reasons against a statement act as a form of collaborative defeat [7].
One issue related to applying Lukasiewicz operators to argumentation
regards the difficulty to identify independent reasons. Thus, an argu-
ment presented in different forms contributes with all its avatars to the
alteration of the current degree of truth.

Thus, the description logic provides the technical instrumentation needed
to identify independent justifications, whilst the Lukasiewicz semantics
offers a formula to compute the accrual of arguments. The accrual of
dependent arguments is not necessarily useless. Changing the perspec-
tive, this case can be valuable in persuasion dialogs, where an agent,

96

7

by repeatedly posting the same argument in different forms, will end in
convincing his partner to accept it.

3.3 Resolution Schemes

The key limitation of conventional systems is that, even if they guar-
antee to compute a solution for consistent sets, admissible or preferred
extensions, it is possible that the only answer to be the empty set.

Definition 7. The preference relation Pref ⊆ Arg ×Arg is a fuzzy role
having the following properties: (ref P), (tran P), and (antysim P). The
Rbox R extended with preferences is given by RP = R ∪ {Pref }. An
argument a is preferred to b (a ≻ b) based on the preference role Pref
with a degree α if (a, b) : Pref ⊲⊳ α.

Example 7. Consider the task to classify a compound according to poten-
tial toxicity. In the guidelines of U.S. Environmental Protection Agency
for the assessment the health impacts of potential carcinogens, an ar-
gument for carcinogenicity that is based on human epidemiological evi-
dence is considered to outweigh arguments against carcinogenicity that
are based only on animal studies. The corresponding FRA (figure 2) aug-
mented with preferences is
FRAP = 〈≺ (h : HumanStudy , a : A, b : B , c : Carcinogenicity , d :
AnimalStudy , (a, h) : BasedOn, (a, c) : For , (b, d) : BasedOn, (b, c) :
Against , (a, b) : Outweigh ≻, {HumanStudy ,AnimalStudy ,Carcinogenicity ,A,B}, Rk∪
{For ⊑ Support ,Against ⊑ Attack , (inv BasedOn ⊑ Support)}∪{Outweigh ⊑
Pref }〉. Observe that if a is based on h then there exists a support-like
relation from h towards a. Formally (inv BasedOn ⊑ Support).

HumanStudy

h

A

a

B

b

Carcinogenicity

c

AnimalStudy

d

BasedOn Outweigh

For Against

BasedOn

Fig. 2. Explicit preference among arguments

In the above example, the preference assertion Outweigh between the
arguments a and b was explicitly given, stating that a clearly outweighs
b (α = 1). Note that any preference role can be a fuzzy one. When this
explicitness does not exist, FDL offers the possibility to infer preference
relations among arguments based on various conflict resolution strategies,
like the following ones.

97

8

– Fuzzy membership value (M). The status of an argument is assessed
by comparing the membership degrees of the arguments to their con-
cepts. Prior information is usually provided by an expert or knowl-
edge engineer.

– Specificity (S). This heuristic can be applied both on concepts, in
which case the most specific argument dominates, and roles, where
the most specific relation in the hierarchy prevails (figure 3).

– Value based argumentation (V). The argument which promotes the
highest value according to some strict partial ordering on values will
defeat its counter-argument. In a FRA, arguments can promote (or
demote) values to a given degree, so that if the arguments a and b
promote the same value v , we consider that a successfully attacks b
if it promotes v to a greater degree than b. In the current framework,
values can be used from an ontology of values, providing a reasoning
mechanism over values.

C

c

D

d

B
A

a

Attack Support

a) specificity on concepts

C

c

A

a

B

b

Defeat Attack

b) specificity on roles

Fig. 3. Conflict Resolution Strategies

Example 8. (Specificity on concepts) FRAP = 〈≺ (a : A, c : C , d :
D ,A ⊑ B ≻, {A,B ,C ,D}, Rk{(C ,B) : Attack , (D ,A) : Support}〉. So, a
as an element of A ⊑ B is supported by d , and attacked by c (figure 3a).
In this case the specificity principles says that the support relation will
prevail.

Example 9. Now consider the case in which (a, b) : Defeat , (b, c) : Attack
and Defeat ⊑ Attack (figure 3b). Based on the specificity heuristic on
roles, the Defeat relation is stronger (more specific) than Attack . Conse-
quently, the only admissible set is {a, c}.

The specificity preference is also illustrated by the following dialog:
A: I am very hungry. Let’s go eat something.
B: I am a little hungry too. I agree.
A: I don’t have too much time. Let’s have a pizza.
B: It’s not healthy. I prefer something else. What about fish and wine.
A: It’s too expensive.
Here, the agent B accepts the argument Food , defined as Food = ∃ canEat .Self
and supported by the argument hungry . Observe that the support is
stronger from the agent A, given by the fuzzy modifier very , and not so

98

9

convincing as denoted by the modifier little. However, the more spe-
cific argument pizza, which is a kind of food (Pizza ⊑ JunkFood ⊑
Food) is rejected by the agent B . Similarly, the argument fish con-
flicts with the argument expensive. In many real life discussions, peo-
ple have agreements at certain level of generality, while they manifest
divergent opinions starting with a given level of specificity. Descrip-
tion logic is particularly useful to define the edge between agreement
and disagreement. In this particular case, the agreed concept would be
NutritionalFood ⊓ ∀ hasPrice.¬Expensive. The instance that belongs to
this concept with the highest degree will best satisfy the both agents. If
such an assertion does not exist, the agreement is reached by a preference
relation over the common constraints: healthy , not expensive, quick .
Note that preferences are fuzzy relations, meaning that linguistic scale
can be defined on them. Preferences like: just equal, weakly more impor-
tant, fairly strongly preferred, absolutely outweighed are accepted in a
FRAP .

Proposition 6. By composing two preference relations we get a prefer-
ence relation. In order not to breach the transitivity property, the com-
position function that we use is ◦tPref = ⊗1/2

S .

Example 10. Let (a, b) : Outweigh ≥ 0.9 and (b, c) : Pref ≥ 0.7. The
preference degree between a and c is given by Outweigh(a, b)◦tPref (b, c) =
min(0.9, 0.7)1/2 = 0.83.

3.4 Semantic Inconsistency

An important aspect is that inconsistency is naturally accommodated in
fuzzy logic: the intersection between the fuzzy concept A and its nega-
tion is not 0 (A ⊓ ¬A 6= 0). Similarly, the disjoint property of an at-
tack A1 ⊑ Attack and support S1 ⊑ Support relation ⊗S ((a, b) : A1 ≥
α, (a, b) : S1 ≥ β) = 0, under the Lukasiewicz interpretation leads to an
inconsistent argumentation base if α+β > 1. Consider the concept Inter-
nallyConsistentArguments (ICA) defined in FDL as: ICA ≡ Argument ⊓
¬∃Attack .ICA. Based on the (∀R.C)I = (¬∃R.¬C)I , which holds un-
der the Lukasiewicz semantics [8], follows that: ICA ≡ Argument ⊓
∀Attack .¬ICA. The semantics of ∀R.C being (∀R.C)I = infy∈∆I =

RI (x , y) → C I (y) implies in FRA that if (x , y) : Attack ⊲⊳ α →L y :
¬ICA ⊲⊳ β The implication holds if 1 − α + β ≥ 1 (recall table 1), or
α ≤ β. In order to keep the argumentation base semantically consistent
the following constraints exist, where γ = 1−β, represents the degree of
y to the ICA concept:
– (x , y) : Attack ≤ α ⇒ α ≤ β ⇔ γ < 1− α: If the attack relation be-

tween x and y is maximum α, the knowledge base remains consistent
as long as y belongs to the concept ICA no more than 1− α.

– (x , y) : Attack ≥ α ⇒ β = 1 ⇔ γ = 0: If the attack relation between
x and y is at least α, the knowledge base is guaranteed to remain
consistent if y does not belong to ICA at all.

– y : ¬ICA ≤ β ⇒ α = 0: If y belongs to the concept ¬ICA with
maximum β, it means that it should belong to the opposite concept

99

10

IAC at least 1 − β. Consequently, no attack relation should exist
between x and y .

– y : ¬ICA ≥ β ⇒ α ≤ β ⇔ γ ≤ 1− α.
The notion of indirect support in combination with the disjoint property
of the attack and support relation may help to signal semantic inconsis-
tencies in an argument bases. If A attacks B attacks C and A attacks C,
then A indirectly both supports C and attacks C.

Example 11. Consider the situation in which (A,B) : attack0.6, (B ,C) :
attack0.9, and also (A,C) : attack0.7. Under the Lukasiewicz semantics,
the indirect support from A to C equals max(0.6 + 0.9 − 1, 0)2 = 0.25.
The disjoint property of attack and support holds because max(0.25 +
0.7− 1, 0) = 0. If the strength of the attack from A to C increases to 0.7
the disjoint property is violated. In this case, the framework signals to
the human agent that the argument base is semantically inconsistent. In
other words, the alert means that on the these particular argumentation
chains the strengths of the attacks or supports might be incorrect stated
and the initial facts should be reconsidered.

There is no need to explicitly define simple negation on roles, as it exists
in FDL systems by mean of assertions that use the inequalities, ≤ and
< [9]. For instance, the assertion x does not attack y can be defined as
(x , y) : Attack ≤ 0

4 Argumentative Agents in FRA

Definition 8. A preference scheme specifies the order in which the con-
flict resolution strategies are applied. An example of preference scheme
is MSV (fuzzy membership value, specificity, value-based).

Preference schemes come from the cognitive system of the agents. A
FRAP still allows a lack of complete transitive preference.

Definition 9. An agent is a tuple Ag = [PreferenceScheme, (⊕,⊗,⊖,→
), (◦Pref , ◦Ā, ◦S̄)], where ⊕,⊗,⊖,→ represent the union, intersection, nega-
tion and implication operators, and ◦Pref , ◦Ā, ◦S̄ the norm used for com-
posing preferences, attacks, and support relations. KB encapsulates the
private domain information of the agent.

We assume that agents acting within the same FRAP share a common
vocabulary of attacking, supporting, and outranking fuzzy relations and
common understanding of their formal properties. However, they have
their own order of preferences and own functions for aggregating argu-
ments. The inconsistency budget of each agent emerges from the combi-
nation of these functions. The personality of the agents can be encapsu-
lated also by the above combination

Example 12. An agent Judge = [MSV , (⊕L,⊗L,⊖L,→L), (⊗1/2
L ,⊗2

L,⊗2
L)],

by aggregating arguments under the Lukasiewicz semantics takes into
consideration all the existing facts. It acts based on a hierarchy of values
derived from the hierarchy of laws. In case of conflict, the most specific

100

11

norm, which in general refers to exceptions, will be applied, then the
argument from the most recent case (in case based law) or most recent
norm (in norm based law). Afterward, the fuzziness of some linguistic
terms from the law, will be considered in the decision.

For modeling practical scenarios we follow the steps.

1. Identify the relevant concepts and their attacking and supporting
relations.

2. Define the membership functions.
3. Formalize the FRA: define the class hierarchy, define the role hierar-

chy, define the role properties, define the membership of arguments
to their concepts, define the known strengths of the attacking and
supporting relations among arguments.

4. Build the argumentation network
5. The agents start reasoning on the knowledge within the FRA based

on their own preference schemes and aggregating functions. The rea-
soning process includes: i) identify semantic inconsistencies, ii) iden-
tify indirect attacks and supports, iii) reduce the argumentation net-
work by composing the fuzzy relations, iv) aggregate arguments, v)
compute the defeat status based on the active preference scheme.

5 A Case for Food Supply Chains

ISO 22000 is a recent standard designed to ensure safe food supply chains
worldwide. Its main component is the HACCP (Hazard Analysis at Crit-
ical Control Points) system, which is a preventive method of securing
food safety. Its objectives are the identification of consumer safety haz-
ards that can occur in the supply chain and the establishment of a control
process to guarantee a safer product.

5.1 Technology drivers for HACCP

HACCP is based on the following steps and principles [10]. In the first
step, the business entities within the supply chain determine the food
safety hazards and identify the preventive measures for controlling them.
Then, the critical control points (CCP) are identified. They represent
point steps in a food process at which a specific action can be applied in
order to prevent a safety hazard, or to reduce it to an acceptable level.
Afterward, critical limits are established, representing criteria which sep-
arate acceptability from unacceptability. Criteria often used include mea-
surements of time, temperature, moisture level, pH, Aw, available chlo-
rine, and sensory parameters such as visual appearance and texture. Crit-
ical limits must be specified for each CCP and they should be justified.
A monitor process is followed by the establishment of critical actions
in order to deal with deviations when they occur. Then procedures for
verifications are needed to confirm that the HACCP system is working
effectively. Finally, the documentation is needed to encapsulate justifica-
tions for all the decisions which have been taken. The main goal of the

101

12

standard is to build confidence between suppliers and customers. It de-
mands that business entities follow specific well-documented procedures,
in which the quality of the items should be demonstrated by different
types of justifications, and not only by attaching a quality label to the
product. The technical requirements for building an HACCP system lay
around the need to integrate support for argumentative debates.

Structured Argumentation. The technical support for argumen-
tation is needed during the HACCP development for various tasks.

Justifying hazards. The HACCP standard explicitly requests that argu-
ments pro and against should be provided in order to justify all decisions
to classify hazards as critical or not critical (Hazard = ∃ hasJustification.Argument).
Based on the above definition in DL, the reasoner can check that a jus-
tification is attached to both significant or not significant hazard.

Justifying control options. For each hazard which is considered signifi-
cant, a control measure should be defined (SignificantHazard = Hazard⊓
hasControlMeasure.⊤). The absence of the control measure is signaled
as an inconsistency by the reasoner. The advantages and disadvantages
of each available option should be backed by supporting arguments, re-
spectively counter-arguments.

Justifying associated critical limits. The recommended sources of in-
formation for justifying the chosen critical limits are: norms, experts,
scientific publications, or experimental studies. The rationale and the
reference material should become part of the HAACP plan [10].

Ontological knowledge. When implementing the HACCP standard,
the human experts need ontological knowledge in the following activities.

Hazard identification. The user can query hazard ontologies and their
possible connections with ingredients and processing steps. Also, food
and pathogen ontologies may be used to compare different risks which
may stem from the production system.

Automatic verification of the safety conditions. Having formal de-
scriptions about what a safety device, process, or service represent (en-
capsulated as TBoxes) and by having the current situation (encapsulated
as ABoxes) the system can automatically point out possible contradic-
tions with the norms in use.

Fuzzy Reasoning. It is used as a tool for qualitatively assessing dur-
ing the following activities:

Assessment of critical control points. For each step of the production
process, one should decide whether that stage will be a CCP. The decision
depends on the hazard possibility of occurrence (terms such as rarely,
often, sometimes, always are used in practice by the experts) and on its
severity (usually assessed as low, medium, high).

102

13

Supply chain integration. An important source of hazards appears
when receiving the input items. Depending on the potential risk, the
company should decide to rely on the information from the product label
or to conduct its own measurements of the product characteristics. This
qualitative decision is based on fuzzy assessments. Also, the feedback re-
ceived from the buyers, representing their preferences and perceptions is
fuzzy. The costumers subjective evaluation can refer to attributes such
as: color, smell, taste. Moreover, the company decides if it is able to deal
with all the identified hazards or to outsource this task. For instance,
the presence of rodents, insects, birds or other pests is unacceptable.
The hazards are related both to the direct effects of these pests, and to
the risks coming from the substances used to eliminate them. A good
option is to contract a specialized company to handle these hazards.

Process adjustment. Actions need to be taken to bring the CCP under
control before the critical limit is exceeded. The point where the oper-
ators take such action is called the operating limit. The process should
be adjusted when the operating limit is reached to avoid violating the
critical limit.

Modeling fuzzy critical limits. Consider some microbiological data.
One rule can say: ”The product is safe if it is kept no longer than 48
hours at a temperature below 100C”. What happens if the product is
kept 47 hours at the temperature of 90C ? Is it safer comparing with
the situation in which it is kept for 1 hour at a temperature of 120C?
According to the above rule, the second item is not considered safe. As
the alteration of product features is gradual, fuzzy membership functions
being able to model these cases.

5.2 An HACCP Scenario

The framework is exemplified by for a cooked shrimp company. The
control measure has emerged after an argumentation process.
The first step is two identify the main concepts and the relations among
them. From figure 4, we have three options, each supported by its advan-
tages and attacked by the disadvantages that it brings (figure 5, step 1).
In the second step the agents should agree on the fuzzy membership func-
tions for each concept in the domain. In the figure 5 three such member-
ship functions are shown. The ExpensiveToMonitor concept is defined as
a trapezoidal number ExpensiveToMonitor = ∃ hasCost .trapezoidal(10, 20, 30, 30)
Consider a particular limit of pathogens d1 which has the estimated cost
at least 18 to be validated. The degree of membership to the concept
ExpensiveToMonitor will be 0.8 (d1 : ExpensiveToMonitor ≥ 0.8), re-
flected in the strength of the attack between d1 and the first option o1.
We consider the agents E1,E2 (decision makers) needing to be involved
with other agents E3,B1 (consultants) in the process.

E1 = [M , (⊕G ,⊗G ,⊖L,→G), (⊗1/2
G ,⊗2

G ,⊗2
G)]

E2 = [MS , (⊕L,⊗L,⊖L,→L), (⊗1/2
L ,⊗2

L,⊗2
L)]

103

14

Agent HACCP Plan: Justifying control measures
E1 The first option for the control measure is to set a microbiological limit,

under which the product is considered safe. This direct method minimizes
error measurements, but I admit the monitoring process is expensive.

E2 Several tests are necessary to determine critical limits derivations and
samples may need to be large to be meaningful.

E3 Moreover, the results are obtained in several days.
E2 The second option is to set a minimum internal temperature at which the

pathogens are destroyed. The method is practical and more sensitive.
E1 But justification is needed to validate the chosen temperature value.
E3 The third option is to control the factors that affect the internal

temperature of the product (oil, thickness of the pane, or cooking time).
E1 The method requires justifications between these limits and the internal

temperature of food.
E3 I agree. Nevertheless, it is very practical and it increases confidence in

the measurements.
B1 The business policy encourages practical and reliable solutions.

Fig. 4. Arguing for the adequate control measures in an HACCP plan.

They start by aggregating the direct attack and support relations. The
aggregation of d1, d2, d3 and d4 gives an attack strength of max(0.8, 0.5, 0.4, 0.7) =
0.8 for the first option o1, under the Gödel semantics (the agent E1)
and min(min(min(0.8 + 0.5), 1) + 0.4), 1) + 0.7, 1) = 1 (figure 6). Be-
cause both arguments a2 and a3 support the second option o2 there
strengths are aggregated, giving max(0.55, 0.49) = 0.55 for the agent
E1, respectively min(0.55 + 0.49, 1) = 1 for the agent E2. Next, the
indirect relations are taken into consideration. By composing the sup-
porting relation Enc with Support we get an indirect attack between b1

and o2 of strength min(0.9, 0.49)2 = 0.24 under Logic semantics and
max(0.9 + 0.49− 1, 0)2 = 0.15. Hence, (b1, o1) : Enc(⊗G)2 ≥ 0.24 for E1

and (b1, o1) : Enc(⊗L)2 ≥ 0.15. Note that b1 indirectly supports the op-
tion o3 through two intermediary nodes a2 and a4. The amount of indirect
support provided by b1 for o3 is max(min(0.9, 0.55)2,min(0.9, 0.8)2) =
0.64 from the E1’s perspective. The agent E2 computes the degree of sup-
port from b1 towards o3 as min(max(0.9+0.55−1, 0)2 +max(0.9+0.7−
1, 0)2, 1) = 0.56. The bottom part of figure 6 depicts the aggregation of
direct and indirect relations. The compound concept a23b1 supports the
option o2 with at least max(0.55, 0.24) = 0.55 from the E1 viewpoint and
with min(1 + 0.15, 0) = 1 from that of the expert E2. The support given
by a24b1 to the third option equals max(0.64, 0.8) = 0.8, respectively
min(1 + 0.49, 1) = 1.

The attack on the first option is stronger then its support, from both
perspectives E1 and E2. Hence, an agreement between the agent E1 and
E2 exists to eliminate this option. Given the above information, the agent
E2 equally accepts the options o3 and o2. The degree of support is 1 and
the attack 0.6 in both cases. On the other hand, the agent E1 rejects the
option o2 but accepts option o3. Consequently, the last control measure
gets the support from both parties.

104

15

1. Identifying concepts and attacking and supporting relations.

Advantages ControlMeasures Disadvantages
Support Attack

safety

veryPractical

sensitive

confidence

SetMicrobiologicalLimit

SetInternalTemperature

SetControlFactors

ExpensiveToMonitor

LargeNoOfTests

ResultsDelay

LargeNoOfSamples

RequiresJustification

2. Define the membership functions

µ

costs

ExpensiveToMonitor

0

1

3010 18

0.8

µ

tests

NoOfTests
LargeSmall

0

1

105 6 7

0.5

µ

hours

ResultsDelay

LateQuickMedium

0

1

7224 36 48

0.4

4. Formalizing the FRA
(A=Advantages, D=Disadvantages, O=ControlMeasures, B=BusinessPolicy, Enc=Encourage)

A = ≺ {a1 : Safety ≥ 0.6, a2 : Practical ≥ 0.7, a2 : very(Practical) ≥ 0.49, a3 : Sensitive ≥ 0.3,
a4 : Confidence ≥ 0.5, d1 : ExpensiveToMonitor ≥ 0.8, d2 : LargeNoOfTests ≥ 0.5,
d3 : ResultsDelay ≥ 0.4, d4 : LargeNoOfSamples ≤ 0.8,
d5 : RequiresJustification, b1 : B, o1 : O, o2 : O, o3 : O} ≻

T = {A, D, O, B, Safeness ⊑ A, Practical ⊑ A, Sensitive ⊑ A, Confidence ⊑ A,
ExpensiveToMonitor ⊑ D, LargeNoOfTests ⊑ D, ResultsDelay ⊑ D, LargeNoOfSamples ⊑ D,
RequiresJustification ⊑ D, (A, O) : Ā), (A, O) : S̄)}

R = Rk ∪ {Enc ⊑ S̄}

3. Building the Argumentation Network

b1

a1

a2

a3

a4

o1

o2

o3

d1

d2

d3

d4

d5

A ≥ 0.8
A ≥ 0.5
A ≥ 0.4
A ≥ 0.7

A ≥ 0.6

A ≥ 0.6

S ≥ 0.6

S ≥ 0.49

S ≥ 0.7
S ≥ 0.55

S ≥ 0.8

Enc ≥ 0.9

Enc ≥ 0.9

Fig. 5. A FRA for Justifying Control Measures

105

16

E1 = [M , (⊕G ,⊗G ,⊖L,→G), (⊗1/2
G ,⊗2

G ,⊗2
G)].

a1

a23

b1

a24

o1

o2

o3

d1234

d5

A ≥ 0.8

A ≥ 0.6

A ≥ 0.6

S ≥ 0.5

ES ≥ 0.64

ES ≥ 0.24

S ≥ 0.55

S ≥ 0.8

E2 = [MS , (⊕L,⊗L,⊖L,→L), (⊗1/2
L ,⊗2

L,⊗2
L)].

a1

a23

b1

a24

o1

o2

o3

d1234

d5

A ≥ 1

A ≥ 0.6

A ≥ 0.6

S ≥ 0.5

ES ≥ 0.56

ES ≥ 0.15

S ≥ 1

S ≥ 1

a1

a23b1

a24b1

o1

o2

o3

d1234

d5

A ≥ 0.8

A ≥ 0.6

A ≥ 0.6

S ≥ 0.5

S ≥ 0.55

S ≥ 0.8

a1

a23b1

a24b1

o1

o2

o3

d1234

d5

A ≥ 1

A ≥ 0.6

A ≥ 0.6

S ≥ 0.5

S ≥ 1

S ≥ 1

Fig. 6. Argumentative agents

6 Discussion and Related Work

Arguments supporting both a consequent and its negation co-exist in the
knowledge base. To overcome this drawback, weighted argument systems
(WAS) have been introduced, with the notion of inconsistency budget [11]
used to characterize how much inconsistency one is prepared to tolerate
in an argumentation base. A FRA framework is a particular instance
of a WAS, where the degree of inconsistency is accommodated by the
semantics of fuzzy reasoning.

Other approaches have investigated imprecise argumentation [12–14].
The fuzzy argumentation framework [12] is an extension of the classi-
cal Dung model, while in our approach, the fuzzy component is meant to
help software agents to exploit the real arguments conveyed by humans.
Compared to the defeasible logic approach [13, 14], where the ontolog-
ical knowledge is embedded in the program, we have been interested
in having a clear, separate representation of the ontology, allowing for
transparency.

Rahwan and Banihashemi address [15] the idea of modeling argument
structures in OWL, where arguments are represented in the Argument
Interchange Format ontology (AIF), a current proposal for a standard
to represent arguments. Meta-argumentation [16, 17] is supported by the
AIF approach: one can apply a preference on preference, attack a sup-
port, or support a preference. Meta-argumentation can be handled in
FRA indirectly by defining new concepts and applying roles on them.
For instance, the preference relation P applied to the argument a over
b can be encapsulated as the concept a preferred to b, which makes
possible to apply further attack or support roles on it. If one wants to
challenge the degree α of membership of an element a to the concept A,

106

17

the new concept A≥α can be defined and the attack should be applied
on it. A hierarchy of Dung frameworks is proposed in [18], in which level
n arguments refer to level n-1 arguments, and conflict based relations
and preferences between level n-1 arguments. Arguing hierarchically is
handled by navigating through the concepts which are subject of dispute
and which can be organized hierarchically based on description logic.

The role of ontologies to resolve conflicts among arguments based on the
specificity principle appears also in [19]. The existing work has focused on
concept properties only, and do not exploit the formal properties of the
attack relations. Our formalism based on FDL contributes to the current
vision of developing the infrastructure for the World Wide Argument
Web.

7 Conclusions

The fuzzy-based approach presented in this paper makes a step towards
practical applications, a fuzzy-based argumentative system being cogni-
tively less demanding for the decision makers. Real argumentative de-
bates implies other relations and concepts, not only attacking and sup-
port roles or arguments. This additional domain knowledge can be easily
integrated into a FRA framework. The main contribution comes from the
introduction of different types of attack and support roles with a specific
semantics given by their formal properties, with no need to invent a new
mechanism to compute the strength of the attack. We have just used
the technical instrumentation provided by fuzzy logic for computing the
status of argument. We advocate the merging of argumentation theory
with semantic technologies, which leads to the possibility to reuse the ar-
gumentation bases among multi-agent systems. The preference schemes
have already proved their success as conflict resolution strategies in ex-
pert systems. Techniques from expert systems can be used to validate
them for specific domains (by checking the accuracy of the FRA frame-
works against the expert evaluation of arguments).

One drawback is that we assume a common ontology of attacking and
supporting roles. In the presented scenario, this limitation is partial over-
come by the fact that HACCP represents a standard, which implies a
common description of concepts and procedures. Also, the implication
of fuzzy composition to indirect attacks needs a deeper investigation
to validate the proposed semantics. Third, a methodology for modeling
practical applications with argumentation theory is needed.

Acknowledgments

We are grateful to the anonymous reviewers for the very useful com-
ments. Part of this work was supported by the grant ID 170/672 from
the National Research Council of the Romanian Ministry for Education
and Research.

107

18

References

1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial in-
telligence. Artif. Intell. 171(10-15) (2007) 619–641

2. Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a World
Wide Argument Web. Artif. Intell. 171(10-15) (2007) 897–921

3. Hunter, A.: Real arguments are approximate arguments. In: AAAI.
(2007) 66–71

4. Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description
logic reasoner. In: FUZZ-08, IEEE Computer Society (2008) 923–930

5. Dung, P.M.: On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person
games. Artif. Intell. 77 (1995) 321–357

6. Madakkatel, M.I., Rahwan, I., Bonnefon, J.F., Awan, R.N., Abdal-
lah, S.: Formal argumentation and human reasoning: The case of
reinstatement. In: Proceedings of the AAAI Fall Symposium on
The Uses of Computational Argumentation, Washington DC, USA.
(2009)

7. Pollock, J.: Defeasible reasoning with variable degrees of justifica-
tion. Artificial Intelligence 133 (2002) 233–282

8. Straccia, U.: A fuzzy description logic for the semantic web. In
Sanchez, E., ed.: Capturing Intelligence: Fuzzy Logic and the Se-
mantic Web, Elsvier (2006)

9. Straccia, U.: Reasoning within fuzzy description logics. Journal of
Artificial Intelligence Research 14 (2001) 137–166

10. Food, of the United Nations World Health Organization, A.O.:
Codex Alimentarus. (1997)

11. Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.:
Inconsistency tolerance in weighted argument systems. In: AAMAS.
(2009) 851–858

12. Janssen, J., De Cock, M., Vermier, D.: Fuzzy argumentation frame-
works. In: IPMU. (2008) 513–520

13. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic pro-
gramming framework for possibilistic argumentation: Formalization
and logical properties. Fuzzy Sets and Systems 159(10) (2008) 1208–
1228

14. Gomez, S.A., Chesñevar, C.I., Ricardo, G.: Reasoning with incon-
sistent ontologies through argumentation. Applied Artificial Intelli-
gence 24 (2010) 102–148

15. Rahwan, I., Banihashemi, B.: Arguments in OWL: A progress report.
In: COMMA. (2008) 297–310

16. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Meta-
argumentation modelling i: Methodology and techniques. Studia
Logica 93(2-3) (2009) 297–355

17. Modgil, S.: Reasoning about preferences in argumentation frame-
works. Artif. Intell. 173(9-10) (2009) 901–934

18. Modgil, S.: Hierarchical argumentation. In: JELIA. (2006) 319–332
19. Bench-Capon, T.J.M., Gordon, T.F.: Isomorphism and argumenta-

tion. In: ICAIL. (2009) 11–20

108

Dynamic Argumentation in
Abstract Dialogue Frameworks ?

M. Julieta Marcos, Marcelo A. Falappa, and Guillermo R. Simari

National Council of Scientific and Technical Research (CONICET)
Artificial Intelligence Research & Development Laboratory (LIDIA)

Universidad Nacional del Sur (UNS), Bahı́a Blanca, Argentina
{mjm, mfalappa, grs}@cs.uns.edu.ar

Abstract. In this work we present a formal model for collaborative argumentation-
based dialogues by combining an abstract dialogue framework with a formalism
for dynamic argumentation. The proposed model allows any number of agents to
interchange and jointly build arguments in order to decide the justification sta-
tus of a given claim. The model is customizable in several aspects: the argument
attack relation and acceptability semantics, the notion of relevance of contribu-
tions, and also the degree of collaboration are selectable. Important properties
are ensured such as dialogue progress step by step, completeness of the sequence
of steps, and termination. Under the higher degree of collaboration, the dialogue
constitutes a sound and complete distributed argumentation process.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence and coordination

General Terms
Theory, Design

Keywords
Collective intelligence, Dialogue, Argumentation

1 Introduction and Motivation

Multi-agent systems (MAS) provide solutions to problems in terms of autonomous in-
teractive components (agents). A dialogue is a kind of interaction in which a sequence
of messages, over the same topic, is exchanged among a group of agents, with the pur-
pose of jointly drawing some sort of conclusion. There is a subset of dialogues, which
we call collaborative, in which the agents are willing to share any relevant knowledge
to the topic at issue, having no other ambition than achieving the right conclusion on
the basis of all the information they have.

Argumentation-based dialogues usually consist of interchanging arguments for and
against certain claim. Mostly in the literature, these dialogues are held between two

? This research is partially supported by Sec. Gral. de Ciencia y Tecnologı́a (Univ. Nac. del Sur),
CONICET and Agencia Nac. de Prom. Cientı́fica y Técnica (ANPCyT).

109

agents, one of them putting the arguments ‘for’ and the other putting the arguments
‘against’. In order to achieve collaborative (in the sense described above) behavior, all
the participants should contribute with both kinds of arguments, and also they should be
able to jointly build new arguments. Even as part of non-collaborative dialogues (e.g.
persuasion) it may be useful to build arguments in conjunction.

Classical abstract argumentation [1] assumes a static set of already built arguments,
resulting insufficient for modeling collaborative dialogues. The set of arguments in-
volved in a dialogue is, in contrast, dynamic: new arguments jointly constructed by the
agents may arise, and also arguments may be invalidated (note this is not the same as
defeated) at the light of new information. The argument construction step cannot be
performed separately from the dialogue.

Recently, a dynamic abstract argumentation framework (DAF) has been proposed
by Rotstein et al. [2], which extends the work done on acceptability of arguments, by
taking into consideration their construction and their validity with respect to a varying
set of evidence. This approach results, hence, very suitable for the modeling of collab-
orative dialogues. The main elements of the DAF are summarized in Sect. 2.

In [3] we have defined an abstract dialogue framework (DF) together with a set
of collaborative semantics which characterize different levels of collaboration in dia-
logues, in terms of a given reasoning model and a given notion for the relevance of con-
tributions. Under certain natural conditions, the proposed semantics ensure important
properties of collaborative dialogues, such as termination and outcome-determinism.

The aim of this work is to show how the abstract dialogue framework and semantics
[3] can be applied to dynamic argumentation [2]. As will be seen, the agents will inter-
change both arguments (in Rotstein’s sense) and evidence, achieving the joint construc-
tion of arguments in the usual sense. A particular framework for argumentation-based
dialogues will be obtained, which inherits the semantics and properties defined for the
abstract framework. In sections 4 through 6, we will reintroduce the abstract concepts
that constitute the DF showing how they can be instantiated in terms of the DAF.

2 Background

Next we summarize an abstract argumentation framework capable of dealing with dy-
namics through the consideration of a varying set of evidence [2]. Depending on a
particular situation (given by the content of the set of evidence), an instance of the
framework will be determined, in which some arguments hold and others do not.

The formalization is coherent with classical abstractions [1], however arguments
play a smaller role: they are aggregated in structures. These argumental structures can
be thought as if they were arguments (in the usual sense), but they will not always
guarantee their actual achievement of the claim.

A language L will be assumed for the representation of evidence, premisses, and
claims. An argument A is a pair 〈{s1 . . . sn}, δ〉 consisting of a consistent set of pre-
misses, noted supp(A), and a claim, noted cl(A). These basic premisses are consid-
ered the argument support. A supporting argument is one that claims for the premise of
another argument. The language of all the possible arguments built from L will be noted
LA. Consider for instance the argument A1 = 〈{th, ps}, dr〉 which assumes a route to

110

be dangerous because there are known thieves in that area and the security there is poor.
Consider also the supporting argument A2 = 〈{upc}, ps〉 saying that underpaid cops
might provide poor security [2].

An argument is coherent, wrt. a set of evidence E, if its claim does not contradict,
nor coincides with, any evidence in E. Then, a coherent argument is active if each of
its premisses is either evidence or a claim of an active argument. Following the above
example, the argumentA1 is active wrt. the set {th, ps} and also wrt. the set {th, upc},
but it is not wrt. {th} nor {th, ps, dr}. Inactive arguments will be depicted in gray.

dr

th ps

upc

Σ
1An argumental structure (structure for short), for a claim δ, is a tree of

arguments where the root argument claims for δ, and every non-root argu-
ment supports the parent through a different premise (note there may be un-
supported premisses). The arguments A1 and A2 from the previous example
constitute an argumental structure Σ1 , depicted on the right, for the claim
‘dr ’. Structures are depicted as dashed boxes. The box will be omitted when
the structure consists of a unique argument.

Further constraints over structures (yielding well-formed structures) are imposed in
order to ensure a sensible reasoning chain. These avoid arguments attacking each other
within a structure, infinite structures, and heterogeneous support for a premise through-
out a structure (see [2] for details). A well-formed argumental structure is active, wrt.
a set of evidence E, if every argument in it is coherent wrt. E, and every unsupported
premise is evidence in E. For instance, the previous structure Σ1 claiming a route as
being dangerous, is active wrt. the set {th, upc}, but not wrt. {th} because the premise
‘upc’ is not evidence nor the claim of another argument in the structure. Neither is Σ1

active wrt. {th, ps} since A2 would not be coherent: its claim ‘ps’ is redundant wrt. to
the evidence. Inactive structures will be depicted in gray.

The dynamic argumentation framework (DAF) we will use is a pair 〈E, (W,R)〉
composed by a consistent set E of evidence, a working set of arguments W, and an
attack relation R ⊆ LA × LA

1 between arguments. We restrict the attacks to pairs of
arguments with contradictory claims, and at least in one direction. That is, for every pair
of arguments A1 and A2 whose claims are in contradiction, at least one of (A1,A2) or
(A2,A1) will belong to R. Contradictory sentences will be noted as a and a.

dr

th ps

upc

ps

un

fc

ps

mc

Σ
1

Σ
2

Σ
3The notion of attack over arguments has a direct correlation

to argumental structures: a structure attacks another if the root ar-
gument of the first attacks any argument of the second. Consider,
for instance, the argument A3 = 〈{mc}, ps〉 which assumes the
security to be good because there are many cops in the area. Con-
sider also the arguments A4 = 〈{un}, ps〉 and A5 = 〈{fc}, un〉
saying that foreign cops might be unacquainted with the place, giving the idea of poor
security [2]. Assume that A3 attacks A2 and A4 attacks A3. Then, the structure Σ1

mentioned earlier is attacked by the structure Σ2 (composed by A3), which is in turn
attacked by the structure Σ3 (composed by A4 and A5).

1 In [2], the attack relation is defined over the working set of arguments W. Since a unified
policy for comparing arguments from different agents is needed in a collaborative dialogue
setting, here we introduce a slight variation generalizing the attack relation over the universal
set of arguments LA.

111

Σ
1

Σ
2

Σ
12

At any moment, the active instance of a DAF is a pair (S,R), where
S is the set of active argumental structures, and R is the resulting attack
relation between them. This is equivalent to Dung’s definition of argu-
mentation framework [1]. Therefore, classic argumentation semantics can be applied
to the active instance. From the previous examples, if we consider the set of evidence
{th, upc,mc} then the active instance, depicted on the right, consists of: the structures
Σ1 and Σ2 mentioned earlier, and also the structure Σ12 composed only by argument
A2. Note that Σ3 is not active, and hence does not belong to the active instance. Picking
grounded semantics, for instance, the only accepted structure would be Σ2.

In this work we will assume unique-extension semantics. The arguments belonging
to the extension, along with their claims, will be considered justified from the DAF,
as well as the whole evidence set. From the previous example, the claim ‘ps’ would be
justified. Multiple-extension semantics could also be used, expanding the set of possible
‘justification statuses’ of a claim (e.g. ‘justified’, ‘not-justified’, or ‘undecided’).

3 Informal Requirements for Collaborative Dialogue Models

We believe that an ideal collaborative behavior of dialogues should satisfy the follow-
ing, informally specified, requirements:

R1: All the relevant information is exposed in the dialogue.
R2: The exchange of irrelevant information is avoided.
R3: The final conclusion follows from all what has been said.

On that basis, we will conduct our analysis of collaborative dialogue behavior in terms
of two abstract elements: a reasoning model and a relevance notion 2, assuming that
the former gives a formal meaning to the word follows, and the latter to the word rele-
vant. Both elements are domain-dependent and, as we shall see, they are not unattached
concepts. It is important to mention that the relevance notion is assumed to work in a
context of complete information (this will be clarified later).

We believe that the achievement of R1-R3 should lead to achieving other important
requirements, listed below. Later in this work we will state the conditions under which
this hypothesis actually holds.

R4: The dialogue should always end.
R5: Once the dialogue ends, if the agents added all their still private information, and

reasoned from there, the previously drawn conclusions should not change.

In the task of simultaneously achieving requirements R1 and R2, in the context of a
distributed MAS, a non-trivial problem arises: relevant information distributed in such
a way that none of the parts is relevant by itself. For instance, considering the DAF of
Sect. 2, an agent may have an argument for a certain claim but the activating evidence

2 The term relevance appears in many research areas: epistemology, belief revision, economics,
information retrieval, etc. In this work we intend to use it in its most general sense, which may
be closer to the epistemic one: pertinence in relation to a given question, but it should not be
tied to any particular interpretation, except for concrete examples given in this work.

112

resides in a different agent. This, in principle threatens R1 since the whole contribu-
tion would be left unseen. Besides, any attempt to detect these ‘non-self-relevant’ parts
threatens R2 due to the risk of being mistaken. This could happen for instance, follow-
ing with the previous example, if the argument is exposed but the activating evidence
does not actually exist. There is a tradeoff between requirements R1 and R2.

Because of the nature of collaborative dialogues, we believe R1 may be mandatory
in many application domains, and hence we will seek solutions which achieve it, even
at the expense of relegating R2 a bit. As will be seen later in Sect. 6, the basic idea will
be to develop a new relevance notion (which will be called a potential relevance notion)
able to detect parts of distributed relevant contributions (under the original notion).

4 The Dialogue Framework

Three languages are assumed to be involved in a dialogue: the Knowledge Represen-
tation Language L for expressing the information exchanged by the agents, the Topic
Language LT for expressing the topic that gives rise to the dialogue, and the Outcome
Language LO for expressing the final conclusion (or outcome). Also assumed is a lan-
guage LI for agent identifiers. As usual, a dialogue consists of a topic, a sequence of
moves, and an outcome. In each move an agent makes a contribution (exposes a set of
knowledge). This is a public view of dialogue: agents’ private knowledge is not taken
into account yet.

Definition 1 (Move). A move is a pair 〈id , X〉 where id ∈ LI is the identifier of the
speaker, and X ⊆ L is her contribution.

Definition 2 (Dialogue). A dialogue is a tuple
〈
t, 〈mj〉, o

〉
where t ∈ LT is the dia-

logue topic, 〈mj〉 is a sequence of moves, and o ∈ LO is the dialogue outcome.

As will be seen in short, in the argumentative approach based on the DAF, the agents
will expose arguments and evidence, topics will correspond to claims, and dialogue
outcomes might be Yes (justified) or No (not justified).

As anticipated in Sec. 3, we will study the dialogue behavior in terms of two abstract
concepts: relevance and reasoning. To that end, an Abstract Dialogue Framework (DF)
is introduced, whose aim is to provide an environment for dialogues to take place, and
which includes: the languages involved in the dialogue, a set of participating agents, a
relevance notion and a reasoning model. An agent is represented by an identifier and a
private knowledge base (kb), providing in this way a complete view of dialogues.

Definition 3 (Agent). An agent is a pair 〈id ,K〉, notedKid , whereK ⊆ L is a private
finite knowledge base, and id ∈ LI is an agent identifier.

A relevance notion is a criterion for determining, given certain already known infor-
mation and a topic, whether it would be relevant to add certain other information (i.e.,
to make a contribution). We emphasize that this criterion works under an assumption of
complete information, to be contrasted with the situation of a dialogue where each agent
is unaware of the private knowledge of the others. This issue will be revisited in Sec. 5.
Finally, a reasoning model will be understood as a mechanism for drawing a conclusion

113

about a topic, on the basis of an individual knowledge base. The argumentation-based
reasoning model, for instance, will determine the justification status of a claim from a
given set of evidence and arguments.

Definition 4 (Abstract Dialogue Framework). An abstract dialogue framework (DF)
is a tuple 〈L,LT,LO,LI,R, Φ,Ag〉 where L, LT, LO and LI are the languages in-
volved in the dialogue, Ag is a finite set of agents, R ⊆ 2L × 2L × LT is a relevance
notion, and Φ : 2L × LT ⇒ LO is a reasoning model. The brief notation 〈R, Φ,Ag〉
will be also used.

Notation 1. If (X,S, t) ∈ R, we say that X is a t-relevant contribution to S under R,
and we note it XRtS. When it is clear what relevance notion is being used, we just say
that X is a t-relevant contribution to S. For individual sentences α in L, we also use
the simpler notation αRtS meaning that {α}RtS.

Throughout this work we will refer to the partially instantiated DF Far =
〈L ∪ LA,L, {Yes,No},LI,Rδ, Ψ,Ag〉. The languages L and LA are the ones of Sect. 2.
Hence, in this argumentation-based dialogue framework, the knowledge representation
language consists of both evidence and arguments, topics correspond to claims, and
outcomes might be Yes or No. As mentioned before, the reasoning model Ψ determines
the justification status of a claim from a given set of evidence and arguments. That is,
Ψ(K, δ) = Yes if, and only if, the claim δ is justified (under a certain argumentation
semantics S) from the DAF 〈E, (W,R)〉, with E∪W = K and R a certain attack rela-
tion between arguments. We will sometimes use the more specific notation Far(S,R).
Particularly, the notation Far(G,R) will be used for the instantiation with grounded
semantics [1]. For the aim of simplicity, we will assume that the union of the evidence
in all knowledge bases is consistent.

There are two different sets of knowledge involved in a dialogue: the private knowl-
edge which is the union of the agents’ knowledge bases, and the public knowledge
which is the union of all the contributions already made, up to certain step. The former
is a static set, whereas the latter grows as the dialogue progresses.

Definition 5 (Public Knowledge). Let d be a dialogue consisting of a sequence〈
〈id1, X1〉 . . . 〈idm, Xm〉

〉
of moves. The public knowledge associated to d at step j

(j ≤ m) is the union of the first j contributions of the sequence and is noted PUj
d

(PUj
d = X1 ∪ · · · ∪Xj).

Definition 6 (Private Knowledge). Let F be a DF including a set Ag of agents. The
private knowledge associated to F (and to any admissible dialogue under F) is the union
of the knowledge bases of the agents in Ag , and is noted PRF (PRF =

⋃
Kid∈Ag K).

In order to restrict agents’ contributions to be subsets of their private knowledge,
we define next the set of admissible dialogues under a given DF.

Definition 7 (Admissible Dialogues). Let F = 〈L,LT,LO,LI,Rt, Φ,Ag〉 be a DF,
t ∈ LT and o ∈ LO. A dialogue

〈
t, 〈mj〉, o

〉
is admissible under F if, and only if, for

each movem = 〈id , X〉 in the sequence, there is an agentKid ∈ Ag such thatX ⊆ K.
The set of admissible dialogues under F is noted d(F).

114

Remark 1. For any step j of any dialogue d ∈ d(F), it holds that PUj
d ⊆ PRF.

Returning to the notions of relevance and reasoning, it was mentioned in Sec. 3 that
these were not unattached concepts: a coherent dialogue must exhibit some connection
between them. Assuming a contribution to be relevant whenever its addition alters the
conclusion achieved by the reasoning model, as defined below, seems to be a natural
connection.

Definition 8 (Natural Relevance Notion). Let Φ be a reasoning model. The natural
relevance notion associated to Φ is a relation NΦ

t such that: XNΦ
t S iff

Φ(S, t) 6= Φ(S ∪X , t). When XNΦ
t S we say that X is a natural t-relevant contribu-

tion to S under Φ.

Hence, in the argumentative approach, the natural relevance notion NΨ
δ detects the

change of the “justification status” for a given claim. It will be seen later that this con-
nection can be relaxed, i.e., other relevance notions which are not exactly the natural
one, might also be accepted. We distinguish the subclass of DFs in which the rele-
vance notion is the natural one associated to the reasoning model. We refer to them
as Inquiry 3 Dialogue Frameworks (IDF), and the relevance notion is omitted in their
formal specification.

Definition 9 (Inquiry Dialogue Framework). An Inquiry Dialogue Framework (IDF)
is a DF 〈Rt, Φ,Ag〉 whereRt = NΦ

t . The brief notation 〈Φ,Ag〉 will be used.

Throughout this work we will refer to the partially instantiated IDF Iar = 〈Ψ,Ag〉.
As with DFs, we will also use the notation Iar(S,R) for specifying a particular argu-
mentation semantics and a particular argument attack relation.

5 Utopian Collaborative Semantics

A semantics for a DF is a subset of the admissible dialogues representing a particu-
lar dialogue behavior. We are interested in specifying which, from all the admissible
dialogues under a given DF, have an acceptable collaborative behavior. In Sec. 3 we
identified three requirements, R1-R3, to be ideally achieved by collaborative dialogue
systems. In this section, we will define an Utopian Collaborative Semantics which gives
a formal characterization of such ideal behavior. In order to translate requirements R1-
R3 into a formal specification, some issues need to be considered first.

In particular, the notion of relevant contribution needs to be adjusted. On the one
hand, there may be contributions which does not qualify as relevant but it would be
adequate to allow. To understand this, it should be noticed that, since relevance notions
are related to reasoning models, and reasoning models may be non-monotonic, then it
is possible for a contribution to contain a relevant subset, without being relevant itself.

3 The term Inquiry is inspired on the popularized typology of dialogues proposed in [4], since
we believe that the natural relevance notion captures the essence of this type of interaction:
collaboration to answer some question. However, the term will be used in a broader sense
here, since nothing is assumed regarding the degree of knowledge of the participants.

115

For instance, in the context of the Iar(G,R) framework, an active argumental structure
Σ1 would be a natural cl(Σ1)-relevant contribution to the empty set, but if we added
an active structure Σ2 attacking Σ1, then it would not. The possibility of some other
agent having, for instance, an active structure Σ3 attacking Σ2, explains why it would
be useful to allow the whole contribution consisting of both Σ1 and its attacker Σ2

(and all the supporting evidence). In these cases, we say that the relevance notion fails
to satisfy left-monotonicity and that the whole contribution is weakly relevant 4. The
formal definitions are given below.

Definition 10 (Left Monotonicity). LetRt be a relevance notion. We say thatRt sat-
isfies left monotonicity iff the following condition holds: if XRtS and X ⊆ Y then
YRtS.

Definition 11 (Weak Contribution). LetRt be a relevance notion. We say that X is a
weak t-relevant contribution to S iff there exists Y ⊆ X such that YRtS.

On the other hand, there may be contributions which qualify as relevant but they are
not purely relevant. For example, the argument 〈{b}, a〉 together with the set of evi-
dence {b, e} constitute a natural ‘a’-relevant contribution to the empty set, although the
evidence ‘e’ is clearly irrelevant. These impure relevant contributions must be avoided
in order to obey requirement R2. For that purpose, pure relevant contributions impose a
restriction over weak relevant ones, disallowing absolutely irrelevant sentences within
them, as defined below.

Definition 12 (Pure Contribution). Let Rt be a relevance notion, and X a weak t-
relevant contribution to S. We say that X is a pure t-relevant contribution to S iff the
following condition holds for all α ∈ X: there exists Y ⊂ X such that αRt(S ∪ Y).

Finally, it has been mentioned that the relevance notion works under an assumption
of complete information, and thus it will be necessary to inspect the private knowledge
of the others for determining the actual relevance of a given move. Now we are able to
give a formal interpretation of requirements R1-R3 in terms of the DF elements:

Definition 13 (Utopian Collaborative Semantics). Let F = 〈Rt, Φ,Ag〉 be a DF. A
dialogue d =

〈
t, 〈mj〉, o

〉
∈ d(F) belongs to the Utopian Collaborative Semantics for

F (noted Utopian(F)) if, and only if:

Correctness: if mj is the last move in the sequence, then Φ(PUj
d, t) = o.

Global Progress: for each movemj = 〈id j , Xj〉 in the sequence, there exists Y ⊆ PRF

such that Xj ⊆ Y and Y is a pure t-relevant contribution to PUj−1
d .

Global Completeness: if mj is the last move in the sequence, then PRF is not a weak
t-relevant contribution to PUj

d.

Requirement R3 is achieved by the Correctness condition, which states that the di-
alogue outcome coincides with the application of the reasoning model to the public

4 The term weak relevance is used in [5] in a different sense, which should not be related to the
one introduced here.

116

knowledge at the final step of the dialogue (i.e., the outcome of the dialogue can be
obtained by reasoning from all that has been said). In the case of the Iar framework, for
instance, this means that the dialogue outcome is Yes if, and only if, the claim (topic) re-
sults justified considering all the arguments and evidence exposed during the dialogue.
Requirement R2 is achieved by the Global Progress condition, which states that each
move in the sequence is part of a distributed pure relevant contribution to the public
knowledge generated so far. Finally, requirement R1 is achieved by the Global Com-
pleteness condition, which states that there are no more relevant contributions, not even
distributed among different knowledge bases, after the dialogue ends. Notice that the
three conditions are simultaneously satisfiable by any DF and topic, i.e., there always
exists at least one dialogue which belongs to this semantics, as stated in the following
proposition.

Proposition 1 (Satisfiability). For any DF F = 〈Rt, Φ,Ag〉, the set Utopian(F) con-
tains at least one dialogue over each possible topic in LT.

Furthermore, any sequence of moves satisfying global progress can be completed to
a dialogue belonging to the semantics. This means that a system implementation under
this semantics would not need to do backtracking. Although this property is useless for
the case of the utopian semantics which, as will be seen in short, is not implementable
in a distributed system, it will be useful in the case of the two practical semantics that
will be presented in Sec. 6.

Definition 14. A dialogue d2 over a topic t is a continuation of a dialogue d1 over the
same topic t if, and only if, the sequence of moves of d2 can be obtained by adding zero
or more elements to the sequence of moves of d1.

Proposition 2 (No Backtracking). Let F = 〈Rt, Φ,Ag〉 be a DF, and d1 ∈ d(F). If d1

satisfies global progress under F, then there exists a dialogue d2 ∈ Utopian(F) which
is a continuation of d1.

Note that the truth of the previous statements (regarding satisfiability and no back-
tracking) comes from the following facts, which can be easily proven: (1) if global
completeness is not achieved, then there exists at least one possible move that can be
added to the sequence according to global progress, and (2) the correctness condition
is orthogonal to the other two. Next, an illustrative example of the dialogues generated
under the Utopian Semantics is given.

added to the sequence according to global progress, and (2) the correctness condition
is orthogonal to the other two. Next, an illustrative example of the dialogues generated
under the Utopian Semantics is given.

j A B C Ψ(PUj
d1

, a)

1 {〈{b}, a〉} No
2 {〈{c}, b〉} No
3 {c} Yes

Example 1. Consider an instance of the Iar(G,R)
framework, where the set Ag is composed by KA =
{〈{b}, a〉, e}, KB = {〈{c}, b〉, 〈{d}, b〉, f} and
KC = {c, g}.The dialogue d1 shown on the right,
over topic a, and also all the permutations of its moves with the same topic and outcome,
belong to the Utopian Semantics for the framework. The chart traces the dialogue,
showing the partial results of reasoning from the public knowledge so far generated.
The last of these results (underlined) is the final dialogue outcome.

Utopian Semantics (i) (ii) (iii)

a

b

a

b

c

a

b

c

Utopian Semantics (i) (ii) (iii)

a

b

a

b

c

a

b

c

Utopian Semantics (i) (ii) (iii)

a

b

a

b

c

a

b

c

The evolution of the public knowledge is depicted in fig-
ures (i) through (iii). At the first step of the dialogue, an in-
active argument is added (i). At the second step, a support-
ing argument is added (ii). Finally, the supporting evidence is
added, and the whole structure becomes active (iii), yielding to
the justification of claim a.

An essential requirement of dialogue systems is ensuring the termination of the
generated dialogues. This is intuitively related to requirement R2 (achieved by global
progress) since it is expected that agents will eventually run out of relevant contribu-
tions, given that their private knowledge bases are finite. This is actually true as long
as the relevance notion satisfies an intuitive property, defined below, which states that a
relevant contribution must add some new information to the public knowledge.

Definition 15 (Novelty). A relevance notion Rt satisfies novelty iff the following con-
dition holds: if XRtS then X * S.

Proposition 4 (Termination). Let F = 〈Rt, Φ,Ag〉 be an ADF, and d =
〈
t, 〈mj〉, o

〉
∈

d(F). If the notion Rt satisfies novelty and dialogue d satisfies global progress under
F, then 〈mj〉 is a finite sequence of moves.

It is easy to see that any natural relevance notion satisfies novelty, since it is not pos-
sible for the conclusion achieved by the reasoning model to change without changing
the topic nor the knowledge base.

Proposition 5. For any reasoning model Φ, it holds that its associated natural rele-
vance notion, NΦ

t , satisfies novelty.

Another desirable property of collaborative dialogue models is ensuring it is not
possible to draw different conclusions, for the same set of agents and topic. In other
words, from the entirety of the information, it should be possible to determine the out-
come of the dialogue, no matter what sequence of steps are actually performed 5. Fur-
thermore, this outcome should coincide with the result of applying the reasoning model

5 This property, which we will call outcome determinism, has been studied in various works
under different names. For instance in [10] it was called completeness. Notice that we use that
term for another property, which is not the same but is related to the one under discussion.

a

b

c

a

b

a

b

c

(a)

a

b

c

a

b

a

b

c

(b)

a

b

c

a

b

a

b

c

(c)

Example 1. Consider
an instance of the
Iar(G,R) frame-
work, where the set
Ag is composed by
KA = {〈{b}, a〉, e},
KB = {〈{c}, b〉, 〈{d}, b〉, f} and KC = {c, g}. The dialogue d1 shown above, over
topic ‘a’, and also all the permutations of its moves with the same topic and outcome,
belong to the Utopian Semantics for the framework. The chart traces the dialogue,
showing the partial results of reasoning from the public knowledge so far generated.

117

The last of these results (underlined) is the dialogue outcome. The evolution of the pub-
lic knowledge is depicted in figures (a) through (c). At the first step of the dialogue,
an inactive argument is added (a). The second step adds another inactive argument,
supporting the first one (b). Finally, the supporting evidence is made available, and the
whole structure becomes active (c), yielding to the justification of claim a.

An essential requirement of dialogue systems is ensuring the termination of the
generated dialogues. This is intuitively related to requirement R2 (achieved by global
progress) since it is expected that agents will eventually run out of relevant contribu-
tions, given that their private knowledge bases are finite. This is actually true as long
as the relevance notion satisfies an intuitive property, defined below, which states that a
relevant contribution must add some new information to the public knowledge.

Definition 15 (Novelty). A relevance notion Rt satisfies novelty iff the following con-
dition holds: if XRtS then X * S.

Proposition 3 (Termination). Let F = 〈Rt, Φ,Ag〉 be a DF, and d =
〈
t, 〈mj〉, o

〉
∈

d(F). If the notion Rt satisfies novelty and dialogue d satisfies global progress under
F, then 〈mj〉 is a finite sequence of moves.

It is easy to see that any natural relevance notion satisfies novelty, since it is not pos-
sible for the conclusion achieved by the reasoning model to change without changing
the topic nor the knowledge base.

Proposition 4. For any reasoning model Φ, it holds that its associated natural rele-
vance notion, NΦ

t , satisfies novelty.

Another desirable property of collaborative dialogue models is ensuring it is not
possible to draw different conclusions, for the same set of agents and topic. In other
words, from the entirety of the information, it should be possible to determine the
outcome of the dialogue, no matter what sequence of steps are actually performed 5.
Furthermore, this outcome should coincide with the result of applying the reasoning
model to the private knowledge involved in the dialogue. We emphasize that this is re-
quired for collaborative dialogues (and probably not for non-collaborative ones). For
instance, in Ex. 1, all the possible dialogues under the semantics end up justifying the
claim, which is also justified fromKA∪KB∪KC. This is intuitively related to require-
ments R1 (achieved by global completeness) and R3 (achieved by correctness) since it
is expected that the absence of relevant contributions implies that the current conclu-
sion cannot be changed by adding more information. This is actually true as long as the
relevance notion is the natural one associated to the reasoning model, or a weaker one,
as stated below.

Definition 16 (Stronger Relevance Notion). LetRt andR′
t be relevance notions. We

say that the notion Rt is stronger or equal than R′
t iff the following holds: if XRtS

then XR′
tS (i.e.,Rt ⊆ R′

t). We will also say thatR′
t is weaker or equal thanRt.

5 This property, which we will call outcome determinism, has been studied in various works
under different names. For instance in [6] it was called completeness. Notice that we use that
term for another property, which is not the same but is related to the one under discussion.

118

Observe that here we use the term weaker, as the opposite of stronger, denoting
a binary relation between relevance notions, and this should not be confused with its
previous use in Def. 11 of weak relevant contribution.

Proposition 5 (Outcome Determinism). Let F = 〈Rt, Φ,Ag〉 be a DF and d =〈
t, 〈mj〉, o

〉
∈ d(F). If d satisfies correctness and global completeness under F, and

Rt is weaker or equal than NΦ
t , then o = Φ(PRF, t).

For example, a relevance notion which detects the generation of new justified argu-
ments (in the usual sense) for a given claim, would be weaker than the natural one. It is
easy to see that this weaker relevance notion would also achieve outcome determinism.

The following corollaries summarize the results regarding the utopian semantics
for DFs, and also for the particular case of IDFs. Clearly, these results are inherited
respectively by Far and Iar.

Corollary 1. Let F = 〈Rt, Φ,Ag〉 be a DF. The dialogues in Utopian(F) satisfy ter-
mination and outcome determinism, provided that the relevance notion Rt satisfies
novelty and is weaker or equal than NΦ

t .

Corollary 2. Let I be an IDF. The dialogues in Utopian(I) satisfy termination and
outcome determinism.

It is clear that Def. 13 of the Utopian Collaborative Semantics is not constructive,
since both global progress and global completeness are expressed in terms of the pri-
vate knowledge PRF, which is not entirely available to any of the participants. The
following example shows that, it is not only not constructive, but also in many cases not
even implementable in a distributed MAS.

j A B C Ψ(PUj
d2
, a)

1 {〈{b}, a〉} No
2 {〈{d}, b〉} No
3 {〈{c}, b〉} No
4 {c} Yes

Example 2. From Ex. 1, the dialogue d2, shown on
the right, does not belong to the Utopian Semantics
since step 2 violates global progress. However, it
would not be possible to design a dialogue system
which allows d1 (from Ex. 1) but disallows d2, since
agent B cannot know in advance that ‘c’, rather than ‘d’, holds.

The undesired situation is caused by a relevant contribution distributed among sev-
eral agents, in such a way that none of the parts is relevant by itself, leading to a tradeoff
between requirements R1 and R2 (i.e., between global progress and global complete-
ness). In the worst case, each sentence of the contribution resides in a different agent.
Thus, to avoid such situations, it would be necessary for the relevance notion to war-
rant that every relevant contribution contains at least one individually relevant sentence.
When this happens, we say that the relevance notion satisfies granularity, defined next.

Definition 17 (Granularity). Let Rt be a relevance notion. We say that Rt satisfies
granularity iff the following holds: if XRtS then there exists α ∈ X such that αRtS.

Unfortunately, the relevance notions we are interested in, fail to satisfy granularity.
It does not hold in general for the natural notions associated to deductive inference
mechanisms. In particular, it has been shown in Ex. 2 that it does not hold for NΨ

δ .

119

6 Practical Collaborative Semantics

The lack of granularity of relevance notions motivates the definition of alternative se-
mantics which approach the utopian one, and whose distributed implementation is vi-
able. The simplest approach is to relax requirement R1 by allowing distributed relevant
contributions to be missed, as follows.

Definition 18 (Basic Collaborative Semantics). Let F = 〈Rt, Φ,Ag〉 be a DF. A di-
alogue d =

〈
t, 〈mj〉, o

〉
∈ d(F) belongs to the Basic Collaborative Semantics for F

(noted Basic(F)) if, and only if, the following conditions, as well as Correctness (Def. 13),
hold:

Local Progress: for each move mj = 〈id j , Xj〉 in the sequence, Xj is a pure t-
relevant contribution to PUj−1

d .
Local Completeness: if mj is the last move in the sequence, then it does not exist an

agent Kid ∈ Ag such that K is a weak t-relevant contribution to PUj
d.

In the above definition, requirement R2 is achieved by the local progress condition
which states that each move in the sequence constitutes a pure relevant contribution to
the public knowledge generated so far. Notice that this condition implies global progress
(enunciated in Sec. 5), as stated below.

Proposition 6. Let F = 〈Rt, Φ,Ag〉 be a DF, and d ∈ d(F). If the dialogue d satisfies
local progress, then it satisfies global progress under F.

Requirement R1 is now compromised. The local completeness condition states that
each agent has no more relevant contributions to make after the dialogue ends. Unless
the relevance notion satisfies granularity, this is not enough for ensuring global com-
pleteness (enunciated in Sec. 5), since there could be a relevant contribution distributed
among several agents, in such a way that none of the parts is relevant by itself.

Proposition 7. Let F = 〈Rt, Φ,Ag〉 be a DF, and d ∈ d(F). If the dialogue d satisfies
global completeness, then it satisfies local completeness under F. The reciprocal holds
if, and only if, the relevance notionRt satisfies granularity.

As a result, requirement R4 (termination) is achieved, given the same condition as
in Sec. 5, whereas requirement R5 (outcome determinism) cannot be warranted. These
results are summarized in the corollary below. Clearly, these results are inherited by Far

and Iar.

Corollary 3. Let F = 〈Rt, Φ,Ag〉 be a DF. The dialogues in Basic(F) satisfy termi-
nation, provided that the relevance notionRt satisfies novelty.

Corollary 4. Let I be an IDF. The dialogues in Basic(I) satisfy termination.

Considering the same scenario as in Ex. 1, it is easy to see that the only possible
dialogue under the Basic Semantics is the empty one (i.e., no moves are performed),
with outcome No. A more interesting example is shown next.

120

a

e

f

a

bg

aExample 3. Consider an instance of the Iar(G,R) framework,
where the set Ag is composed by KA = {〈{b}, a〉, b, g}, KB =
{〈{e}, a〉, 〈{f}, e〉, f, g}, and KC = {〈{g}, a〉, e}. Also consider
that both 〈{e}, a〉 and 〈{g}, a〉 attack 〈{b}, a〉, but not viceversa.
The private knowledge is depicted on the right. The dialogue d3

traced below, over topic a, belongs to the Basic Semantics for the IDF instantiated
above. The evolution of the public knowledge is depicted in figures (a) through (c). At
the first step, an active argument for ‘a’ is added (a). At the second step, an attacking
structure is added (b). Finally, the attacking structure is deactivated due to a supporting
argument becoming inconsistent wrt. new evidence (c). Note that global completeness
is not achieved, since there still exists a distributed relevant contribution when the di-
alogue ends: {〈{g}, a〉, g}. Consequently, outcome determinism is not achieved: the
outcome is Yes whereas the result of reasoning from the private knowledge is No.

a

e

f

a

bg

a

Example 3. Consider an instance of the Iar(G,R) framework,
where the set Ag is composed by KA = {〈{b}, a〉, b, g}, KB =
{〈{e}, a〉, 〈{f}, e〉, f, g}, and KC = {〈{g}, a〉, e}. Also consider
that both 〈{e}, a〉 and 〈{g}, a〉 attack 〈{b}, a〉, but not viceversa.
The private knowledge is depicted on the right. The dialogue d3

traced below, over topic a, belongs to the Basic Semantics for the IDlgF instantiated
above. The evolution of the public knowledge is depicted in figures (a) through (c). At
the first step, an active argument for ‘a’ is added (a). At the second step, an attacking
structure is added (b). Finally, the attacking structure is deactivated due to a supporting
argument becoming inconsistent wrt. new evidence (c). Note that global completeness
is not achieved, since there still exists a distributed relevant contribution when the di-
alogue ends: {〈{g}, a〉, g}. Consequently, outcome determinism is not achieved: the
outcome is Yes whereas the result of reasoning from the private knowledge is No.

As a result, requirement R4 (termination) is achieved, given the same condition as
in Sec. 5, whereas requirement R5 (outcome determinism) cannot be warranted. These
results are summarized in the corollary below.

Corollary 3. Let F = 〈Rt, Φ,Ag〉 be an ADF. The dialogues in Basic(F) satisfy termi-
nation, provided that the relevance notion Rt satisfies novelty.

Considering the same scenario as in Ex. 1, it is easy to see that the only possible
dialogue under the Basic Semantics is the empty one (i.e., no moves are performed),
with outcome No. A more interesting example is shown next.

Basic Semantics (PK)

f

a

b

a

e

a

g

Example 4.Consider an instance of the Iar(G,R) framework, where
the set Ag is composed by KA = {〈{b}, a〉, b, g}, KB = {〈{e}, a〉,
〈{f}, e〉, f, g}, and KC = {〈{g}, a〉, e}. Also consider that both
〈{e}, a〉 and 〈{g}, a〉 attack 〈{b}, a〉, but not viceversa. The private
knowledge is depicted on the right. The dialogue traced below, over topic a, belongs to
the Basic Semantics for the IDF instantiated above. The evolution of the public knowl-
edge is depicted in figures (ii) through (iv). At the first step, an active argument for a is
added (ii). At the second step, an attacking structure is added (iii). Finally, the attacking
structure is deactivated due to a supporting argument becoming inconsistent wrt. new
evidence (iv). Note that global completeness is not achieved, since there still exists a
distributed relevant contribution when the dialogue ends: {〈{g}, a〉, g}. Consequently,
outcome determinism is not achieved: the dialogue outcome is Yes whereas the result
of reasoning from the private knowledge is No.

added to the sequence according to global progress, and (2) the correctness condition
is orthogonal to the other two. Next, an illustrative example of the dialogues generated
under the Utopian Semantics is given.

j A B C Ψ(PUj
d1

, a)

1 {〈{b}, a〉} No
2 {〈{c}, b〉} No
3 {c} Yes

Example 1. Consider an instance of the Iar(G,R)
framework, where the set Ag is composed by KA =
{〈{b}, a〉, e}, KB = {〈{c}, b〉, 〈{d}, b〉, f} and
KC = {c, g}.The dialogue d1 shown on the right,
over topic a, and also all the permutations of its moves with the same topic and outcome,
belong to the Utopian Semantics for the framework. The chart traces the dialogue,
showing the partial results of reasoning from the public knowledge so far generated.
The last of these results (underlined) is the final dialogue outcome.

Utopian Semantics (i) (ii) (iii)

a

b

a

b

c

a

b

c

Utopian Semantics (i) (ii) (iii)

a

b

a

b

c

a

b

c

Utopian Semantics (i) (ii) (iii)

a

b

a

b

c

a

b

c

The evolution of the public knowledge is depicted in fig-
ures (i) through (iii). At the first step of the dialogue, an in-
active argument is added (i). At the second step, a support-
ing argument is added (ii). Finally, the supporting evidence is
added, and the whole structure becomes active (iii), yielding to
the justification of claim a.

An essential requirement of dialogue systems is ensuring the termination of the
generated dialogues. This is intuitively related to requirement R2 (achieved by global
progress) since it is expected that agents will eventually run out of relevant contribu-
tions, given that their private knowledge bases are finite. This is actually true as long
as the relevance notion satisfies an intuitive property, defined below, which states that a
relevant contribution must add some new information to the public knowledge.

Definition 15 (Novelty). A relevance notion Rt satisfies novelty iff the following con-
dition holds: if XRtS then X * S.

Proposition 4 (Termination). Let F = 〈Rt, Φ,Ag〉 be an ADF, and d =
〈
t, 〈mj〉, o

〉
∈

d(F). If the notion Rt satisfies novelty and dialogue d satisfies global progress under
F, then 〈mj〉 is a finite sequence of moves.

It is easy to see that any natural relevance notion satisfies novelty, since it is not pos-
sible for the conclusion achieved by the reasoning model to change without changing
the topic nor the knowledge base.

Proposition 5. For any reasoning model Φ, it holds that its associated natural rele-
vance notion, NΦ

t , satisfies novelty.

Another desirable property of collaborative dialogue models is ensuring it is not
possible to draw different conclusions, for the same set of agents and topic. In other
words, from the entirety of the information, it should be possible to determine the out-
come of the dialogue, no matter what sequence of steps are actually performed 5. Fur-
thermore, this outcome should coincide with the result of applying the reasoning model

5 This property, which we will call outcome determinism, has been studied in various works
under different names. For instance in [10] it was called completeness. Notice that we use that
term for another property, which is not the same but is related to the one under discussion.

Basic Semantics (i)(ii)

a

b

f

a

b

a

e

Basic Semantics (i)(ii)

a

b

f

a

b

a

e

Basic Semantics (i)(ii)

a

b

f

a

b

a

e

j A B C Ψ(PUj
d, a)

1 {〈{b}, a〉, b} Yes
2 {〈{e}, a〉, 〈{f}, e〉, f} No
3 {e} Yes

In Sec. 3 we argued that requirement R1 may be mandatory in many domains, but
the Basic Semantics does not achieve it unless the relevance notion satisfies granularity,
which does not usually happen. In order to make up for this lack of granularity, we
propose to build a new notion (say P) based on the original one (say R) which ensures
that, in the presence of a distributed relevant contribution under R, at least one of the
parts will be relevant under P . We will say that P is a potential relevance notion for
R, since its aim is to detect contributions that could be relevant within certain context,
but it is uncertain whether that context actually exists or not. Observe that the context
is given by other agents’ private knowledge, which has not been exposed yet. Just for
clarifying the idea, a simple example (not logic-based) is shown next.

Example 5.Consider the scenario of Ex. 3, but suppose now that the agents only need
to know whether the balance on certain item is non-negative, so the reasoning model

a

e

f

a

b

a

b

(a)

a

e

f

a

b

a

b

(b)

a

e

f

a

b

(c)

j A B C Ψ(PUj
d3

, a)

1 {〈{b}, a〉, b} Yes
2 {〈{e}, a〉, 〈{f}, e〉, f} No
3 {e} Yes

a

e

f

a

b

a

b

(a)

a

e

f

a

b

a

b

(b)

a

e

f

a

b

(c)

In Sec. 3 we argued that requirement R1 may be mandatory in many domains, but
the Basic Semantics does not achieve it unless the relevance notion satisfies granularity,
which does not usually happen. In order to make up for this lack of granularity, we
propose to build a new notion (say P) based on the original one (sayR) which ensures
that, in the presence of a distributed relevant contribution under R, at least one of the
parts will be relevant under P . We will say that P is a potential relevance notion for
R, since its aim is to detect contributions that could be relevant within certain context,
but it is uncertain whether that context actually exists or not. Observe that the context
is given by other agents’ private knowledge, which has not been exposed yet.

Below we define the binary relation (“is a potential for”) between relevance no-
tions, and also its propagation to DFs. Clearly, if a relevance notion already satisfies
granularity then nothing needs to be done. Indeed, it would work as a potential rele-
vance notion for itself.

Definition 19 (Potential Relevance Notion). Let Rt and Pt be relevance notions. We
say that Pt is a potential (relevance notion) for Rt iff the following conditions hold:
(1)Rt is stronger or equal than Pt, and (2) if XRtS then there exists α ∈ X such that
αPtS. If XPtS and Pt is a potential for Rt, we say that X is a potential t-relevant
contribution to S underRt.

Definition 20 (Potential Dialogue Framework). Let F = 〈Rt, Φ,Ag〉 and
F∗ = 〈Pt, Φ,Ag〉 be DFs. We say that F∗ is a potential (framework) for F if, and only
if, Pt is a potential relevance notion forRt.

Proposition 8. If the relevance notion Rt satisfies granularity, then Rt is a potential
relevance notion for itself.

121

Now we will show a more interesting potential relevance notion, in the context of
the Iar framework. The basic idea is to detect contributions that would be relevant
given a certain situation (i.e., a certain set of evidence). To that end, we first introduce
the concept of abduction set associated to a given claim δ and a given set K. This
abduction set reflects how the current situation (represented by the evidence inK) could
be minimally expanded in order to change the justification status of δ.

Definition 21 (Abduction Set). Let K ⊆ L ∪ LA and δ ∈ L. The abduction set of δ
from K is defined as: AB(K, δ) = {E ⊆ L : E is consistent wrt. the evidence in K,
and E is a minimal natural δ-relevant contribution to K}.

K AB(K, a)
{} {{a}}

{ 〈{b}, a〉 } {{a}{b}}
{ 〈{b}, a〉, b } {{}}

{ 〈{b}, a〉, b, 〈{e}, a〉, {{a}{e}}
〈{f}, e〉, f }

Example 4. Consider the Iar framework. In the chart
on the right, the second column shows the abduction set
of claim “a”, from the set K on the first column. In the
last case, assume that the argument 〈{e}, a〉 attacks the
argument 〈{b}, a〉, but not viceversa.

Now we are able to introduce an abductive relevance notionAΨδ . Under this notion,
a set X is considered an δ-relevant contribution to K if, and only if, its addition gener-
ates a new element in the abduction set of δ from K. This means that a new potential
situation in which the justification status of δ would change has arisen. It can be shown
(proof is omitted due to space reasons) that AΨδ is a potential relevance notion for NΨ

δ .

Definition 22 (Abductive Relevance). LetK ⊆ L ∪ LA and δ ∈ L. A setX ⊆ L ∪ LA

is an δ-relevant contribution to K under AΨδ iff there exists E ⊆ L such that:
(1) E ∈ AB(K ∪X, δ) and (2) E /∈ AB(K, δ).

Proposition 9. The notion AΨδ is a potential relevance notion for NΨ
δ .

Returning to the semantics definition, the idea is to use the potential framework un-
der the Basic Semantics, resulting in a new semantics for the original framework. Next
we introduce the Full Collaborative Semantics, which is actually a family of semantics:
each possible potential DF defines a different semantics of the family.

Definition 23 (Full Collaborative Semantics). Let F = 〈Rt, Φ,Ag〉 be a DF. A dia-
logue d =

〈
t, 〈mj〉, o

〉
∈ d(F) belongs to the Full Collaborative Semantics for F (noted

Full(F)) iff d ∈ Basic(F∗) for some DF F∗ = 〈Pt, Φ,Ag〉 which is a potential for F.
We will also use the more specific notation d ∈ Full(F,Pt).

In this way, each agent would be able to autonomously determine that she has no
more potential relevant contributions to make, ensuring there cannot be any distributed
relevant contribution when the dialogue ends, and hence achieving R1. In other words,
achieving local completeness under the potential relevance notion implies achieving
global completeness under the original one, as stated below.

Proposition 10. Let F = 〈Rt, Φ,Ag〉 and F∗ = 〈Pt, Φ,Ag〉 be DFs such that F∗ is a
potential for F, and d ∈ d(F). If dialogue d satisfies local completeness under F∗, then
it satisfies global completeness under F.

122

Requirement R2 is now compromised, since the context we have mentioned may not
exist. In other words, achieving local progress under the potential relevance notion does
not ensure achieving global progress under the original one. The challenge is to design
good potential relevance notions which considerably reduce the amount of cases in
which a contribution is considered potentially relevant but, eventually, it is not. Observe
that a relevance notion which considers any sentence of the language as relevant, works
as a potential for any given relevance notion, but it is clearly not a good one.

Next we summarize the results for the dialogues generated under the Full Collabora-
tive Semantics. By achieving global completeness these dialogues achieve outcome de-
terminism under the same condition as before. Although global progress is not achieved
under the original relevance notion, it is achieved under the potential one, and thus ter-
mination can be ensured as long as the latter satisfies novelty. Clearly, these results are
inherited by Far and Iar.

Corollary 5. Let F = 〈Rt, Φ,Ag〉 be a DF, and Pt a potential for Rt. The dialogues
in Full(F,Pt) satisfy termination and outcome determinism, provided that Pt satisfies
novelty andRt is weaker or equal than NΦ

t .

Corollary 6. Let I = 〈Φ,Ag〉 be an IDF, and Pt a potential for NΦ
t . The dialogues

in Full(I,Pt) satisfy termination and outcome determinism, provided that Pt satisfies
novelty.

Example 5. Both dialogues d1 and d2, presented in Ex. 1 and Ex. 2 respectively, belong
to Full(Iar,Aar

δ). Also belongs to this semantics the dialogue which results from d2 by
interchanging steps 2 and 3, or by merging these two steps together in a single one.
Note that all these dialogues achieve global completeness, although global progress is
achieved only by dialogue d1.

j A B C AB(PUj
d4
, a) Ψ(PUstep

d4
, a)

0 {{a}} No
1 {〈{b}, a〉, b} {{a}} Yes
2 {〈{e}, a〉, 〈{f}, e〉, f} {{a}, {e}} No
3 {e} {{a}} Yes
4 {〈{g}, a〉} {{a}, {g}} Yes
5 {g} {{a}} No

Example 6. The
dialogue d3 from
Ex. 3 can be com-
pleted according
to Full(Iar,Aar

δ),
as shown on the
right. The fifth column of the chart shows the evolution of the abduction set of the
claim “a” from the generated public knowledge. An additional step 0 is added, in order
to show the initial state of this abduction set. At step 4 an attacking, for the meantime

a

e

f

a

bg

a

(a)

a

e

f

a

bg

a

(b)

inactive, argument is added (a). This gen-
erates a new potential situation in which
the claim ‘a’ would not be justified any
more. At step 5 the previous situation is
realized, activating the attack and leav-
ing the claim ‘a’ not justified (b). Note
that other dialogues also belong to the Full Collaborative Semantics, since the first three
steps do not actually need to be natural relevant contributions. For instance, agent A
could expose the argument 〈{b}, a〉 and then, in the next step, the supporting evidence.

123

Moreover, agent B could make her attack while agent A’s argument is still inactive. In
that moment, the element {b, e} would be added to the abduction set.

It is important to note the existence of alternative potential relevance notions which
may be also adequate, and which may cause variations in the behavior of the dialogue.
For instance, a variant of the abductive relevance notion defined earlier is to consider a
contribution as relevant if its addition either adds or deletes an element of the abduction
set. The latter case, deletion, could be seen as discarding a possible explanation before
it is actually realized (or activated). For instance, assume from Ex. 6 that agent A ex-
poses just the argument 〈{b}, a〉 without the activating evidence. Before the activation,
it would be possible for agent C to make an attack by exposing the argument 〈{g}, a〉
together with the supporting evidence {g}. Observe that that exact sequence of steps
is not allowed under the abductive notion defined earlier, in Def. 22, since no element
is added to the abduction set, instead the element {b} is deleted. Under that notion, it
would be necessary for agent A to activate her argument before agent C can attack it.
It is easy to see that the alternative notion which considers not only the expansion but
also the reduction of the abduction set, may in some cases lead to shorter dialogues.

Results regarding satisfiability and no-backtracking also hold under the two practi-
cal semantics we have presented in this section, as stated below.

Proposition 11. For any DF F = 〈Rt, Φ,Ag〉, each one of the sets Basic(F) and Full(F,Pt),
contains at least one dialogue over each possible topic in LT.

Proposition 12. Let F = 〈Rt, Φ,Ag〉 and F∗ = 〈Pt, Φ,Ag〉 be DFs such that F∗ is a
potential for F, and let d1 ∈ d(F). If d1 satisfies local progress under F (F∗), then there
exists a dialogue d2 ∈ Basic(F) (d2 ∈ Full(F,Pt)) which is a continuation of d1.

Finally, a result showing the relation among the three collaborative semantics, for
the case in which the relevance notion satisfies granularity, is stated.

Proposition 13. Let F = 〈Rt, Φ,Ag〉 be a DF. If the relevance notion Rt satisfies
granularity, then it holds that: Basic(F) = Full(F,Rt) ⊆ Utopian(F).

To sum up, we have defined three collaborative semantics for a DF. The Utopian
Semantics describes an idealistic, in most cases impractical behavior of a collaborative
dialogue. Its usefulness is theoretical. It is approximated, in different ways, by the other
two practical semantics. The Basic Semantics, on the other side, describes a straight-
forward implementable behavior of a collaborative dialogue. The weak point of this se-
mantics is not ensuring global completeness (neither outcome determinism, thus). The
Full Collaborative Semantics is actually a family of semantics: each potential relevance
notion Pt associated toRt defines a semantics of the family. Thus, the constructiveness
of these semantics is reduced to the problem of finding a potential relevance notion for
Rt. These semantics succeed in achieving global completeness, at the price of allowing
moves which may not be allowed by the Utopian Semantics. The goodness of a given
potential relevance notion increases as it minimizes the amount of such moves.

124

7 Related Work

There are some works particulary related to our proposed approach, due to any of the
following: (a) an explicit treatment of the notion of relevance in dialogue, (b) the search
of the global completeness property, as we called it in this work, or (c) a tendency to
examine general properties of dialogues rather than designing particular systems.

Regarding category (a), in [7], [8] and [5], the importance of a precise relevance no-
tion definition is emphasized. However, these works focus on argumentation-based per-
suasion dialogues (actually a subset of those, which the author called disputes), which
belong to the non-collaborative class, and thus global completeness is not pursued. In-
stead, the emphasis is put on properties with similar spirit to our properties of cor-
rectness and local progress (i.e., only the public knowledge involved in the dialogue
is given importance). In [8] the author considers dynamic disputes in which two par-
ticipants (proponent and opponent) interchange arguments and counter-arguments, and
studies two properties of protocols (namely soundness and fairness) regarding the rela-
tion between the generated public knowledge and the conclusion achieved (in this case,
the winner of the dispute). The author also gives a natural definition of when a move
is relevant: “iff it changes the status of the initial move of the dispute” whose spirit is
similar to our definition of natural relevance notion but taken to the particular case in
which the reasoning model is a logic for defeasible argumentation. In [5] the author
considers more flexible protocols for disputes, allowing alternative sets of locutions,
such as challenge and concede, and also a more flexible notion of relevance.

Another work in which relevance receives an explicit treatment is [6], where the
authors investigate the relevance of utterances in an argumentation-based dialogue.
However, our global completeness property is not pursued, so they do not consider
the problematic of distributed contributions (distributed arguments in this case). They
study three notions of relevance showing how they can affect the dialogue outcome.

Regarding category (b), in [9] an inquiry dialogue protocol which successfully pur-
sues our idea of global completeness is defined. However, the protocol is set upon a
particular argumentative system, with the design methodology implicit. They take a
simplified version of the DeLP system [10], and define an argument inquiry dialogue
which allows exactly two agents to jointly construct arguments for a given claim. In
the present work, we not only explicitly and abstractly analyze the distributed relevance
issue, but also consider the complete panorama of collaborative dialogue system behav-
ior, including correctness and progress properties.

Regarding category (c), different measures for analyzing argumentation-based per-
suasion are proposed in [11]: measures of the quality of the exchanged arguments, of the
behavior of each agent, and of the quality of the dialogue itself in terms of the relevance
and usefulness of its moves. The analysis is done from the point of view of an external
agent (i.e., private knowledge is not considered), and it is focused in a non-collaborative
dialogue type, so they are not concerned with our main problematic.

8 Conclusions

We have shown how an existent abstract dialogue framework can be instantiated for
modeling argumentation-based dialogues. This new instance, in contrast with a previ-

125

ous one in terms of Propositional Logic Programming [3], naturally deals with possible
differences of opinion that can emerge among participants in a dialogue. Also the ver-
satility of the abstract framework is shown through this new instantiation based on a
non-monotonic reasoning model.

The obtained framework instance is capable of modeling collaborative argumentation-
based dialogues among any number of participants, each of them exposing indifferently
either type of argument (‘for’ and ‘against’), and also building arguments together. The
model inherits the chance of parametrization and properties from the abstract frame-
work. The most appropriate relevance notion can be chosen according to the dialogue
purpose, e.g. all the possible justifications for a given claim could be searched, or just
one. Also the degree of collaboration is selectable by picking a certain semantics, either
basic or full collaborative, according to domain requirements.

In particular, by picking the natural relevance notion and the full collaborative se-
mantics, a model for argumentation-based inquiry has been provided, which ensures
a sound and complete (in the usual sense) distributed reasoning. This model is still
parametrizable, since different potential relevance notions could be investigated, for
instance trying to enhance efficiency. This last issue has been left for future research.

Finally, another item left as future work is the consideration of the case in which
the agents can disagree also about evidence. This would imply redefining the reasoning
model in order to deal with inconsistencies in the set of evidence.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2) (1995) 321–357

2. Rotstein, N., Moguillansky, M., Garcı́a, A., Simari, G.: An Abstract Argumentation Frame-
work for Handling Dynamics. In: NMR. (2008) 131–139

3. Marcos, M.J., Falappa, M.A., Simari, G.R.: Semantically characterizing collaborative be-
havior in an abstract dialogue framework. In: FoIKS. (2010) 173–190

4. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal Reason-
ing. State University of New York Press, Albany, NY (1995)

5. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. Log. Comput.
(2005)

6. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utterances in
formal inter-agent dialogues. In: AAMAS’2007, Honolulu, Hawai’i. (2007)

7. Prakken, H.: On dialogue systems with speech acts, arguments, and counterarguments. In:
JELIA. (2000)

8. Prakken, H.: Relating protocols for dynamic dispute with logics for defeasible argumenta-
tion. Synthese (2001)

9. Black, E., Hunter, A.: A generative inquiry dialogue system. In: AAMAS’2007, Honolulu,
Hawai’i. (2007)

10. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: An argumentative aproach. The-
ory and Practice of Logic Programming 4(1) (2004) 95–138

11. Amgoud, L., de Saint-Cyr, F.D.: Measures for persuasion dialogs: A preliminary investiga-
tion. In: COMMA’2008, Toulouse - France. (2008)

126

Towards a dialectical approach for
conversational agents in selling situations

Maxime Morge, Sameh Abdel-Naby, and Bruno Beaufils

Laboratoire d’Informatique Fondamentale de Lille
Université Lille 1

Bât M3 - F-59655 Villeneuve d’Ascq
{maxime.morge,sameh.abdel-naby,bruno.beaufils}@lifl.fr

Abstract. The use of virtual agents to intelligently interface with online
customers of e-commerce businesses is remarkably increasing. Most of
these virtual agents are designed to assist online customers while search-
ing for information related to a specific product or service, while few
agents are intended for promoting and selling a product or a service.
Within the later type, our aim is to provide proactive agents that rec-
ommend a specific item and justify this recommendation to a customer
based on his purchases history and his needs. In this paper, we propose
a dialectical argumentation approach that would allow virtual agents
that have sales goals to trigger persuasions with e-commerce’s customers.
Then, we illustrate the proposed idea through its integration with an ex-
ample from real-life.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Intelligent Agents.

General Terms
Algorithms.

Keywords
Argumentation, E-commerce, Agents, Language Processors.

1 Introduction

Within the last twelve years, precisely from 1998 wherein the dot-coms’ boom
first made an impact, e-commerce has succeeded to pursue a massive number of
shoppers to change their idea of buying [1]. Several existing businesses have taken
an advantage of this boom by adding a virtual presence to their physical one
by means of an e-commerce website, these companies are now called brick and
mortar businesses (e.g., Barnes & Noble). Additionally, new companies that exist
only through the web, called bricks and clicks businesses, have also appeared
(e.g., Amazon). Although the online presence of companies is cost-efficient, yet
the lack of a persuading salesman affects the transformation ratio (sales vs.
visits).

127

Apart from the Business’s reaction to the boom, in Computer Science, several
research efforts were made to study, analyze, and better shape the processes of
assisting customers while being present in an e-commerce space [2, 3]. In Artificial
Intelligence, a considerable amount of the research conducted in the area of
Software Agents [4] focus on the enhancement and the proper provision of online
Embodied Conversational Agents (ECAs) [5].

Whether these agents sell, assist, or just recommend, it is now clear that
such autonomous agents are capable of engaging in verbal and non-verbal di-
alogues with e-commerce’s customers. However, the ability of these agents to
transform an ordinary visitor of an e-commerce who needs assistance to an ac-
tual buyer is yet of no notable weight. For an overview of the issues encountering
the development of virtual sales agents refer to [6].

In this paper, we propose the use of dialectical argumentation technologies
as a step on the way to increase the sales-oriented negotiation skills of software
agents in the business-to-consumer (B2C) segment of e-commerce. For this pur-
pose, we suggest the exploitation of existing argumentation tools, such as those
found in [7–9]. Using these tools we intend to build a sales-driven dialogue sys-
tem that is capable of leading a virtual seller agent to influence the decision of a
potential buyer in an e-commerce setting. Then, we illustrate the proposed idea
through its integration with an example from real-life.

This paper is organized as follows. In section 2 we give an overview of the
existing dialogue systems while pointing out their limitations. In section 3 we
adopt a different approach for dialogue management based upon argumentation.
Section 4 illustrates this approach using an intuitive scenario. Section 5 briefly
describes the CSO language processor on which our dialogue system is based. The
rest of the paper overviews the dialectical argumentation technology we consider.
Section 6 outlines the dialogue-game protocol we use. Section 7 presents our
realization of the dialogue strategy. We then conclude this paper by discussing
some of the related work and, providing a summary of our future work.

2 Dialogue systems

A dialogue system is a computer system that is capable of interacting with
humans using the language they understand - natural language. Similar to that
we can find TRAINS-93 [10], Collagen [11] and Artemis Agent Technology [12],
which are mixed-initiative dialogue systems for collaborative problem solving.
These dialogue systems can respond to initiatives made by users and, they also
take initiatives themselves, which is required to support a selling process.

TRAINS-93 [10], Collagen [11] and Artemis Agent Technology [12] are adopt-
ing the same approach of focusing on the dialogue modelling itself besides the
dialogue management that is based on intentions recognition. For example, out
of the following utterance of a user, ”I want to purchase a quilt”, there can be
three possible interpretations:

1. It can be a direct report of a need;

2

128

2. It can be a statement of a goal that a user is pursuing independently;
3. It can be a proposal to adopt this joint goal.

Particularly, the discourse structure considered by Collagen in [11] is based
on a comprehensive axiomatization of SharedPlans [13], while TRAINS-93 and
Artemis Agent Technology are based upon a BDI approach [14]. The semantics
of utterances is specified with the help of a first order modal logic language using
operators as Beliefs, Desires and Intentions. The notions of persistent goal is a
composite mental attitude which is defined from the previous operators in order
to formalize the intention expressed by utterances. According to the semantic
language of FIPA-ACL [15] adopted by the Artemis Agent Technology, an agent
i has p as a persistent goal, if i has p as a goal and is self-committed toward this
goal until i comes to believe that the goal is achieved or, this goal is unachievable.
Here, an intention is defined as a persistent goal imposing the agent to act, which
accordingly generates a planning process.

The process of inferring intentions from actions is needed to constraint and
reduce the amount of communications exchanged. Also, it is worth noticing here
that it is hard to incorporate this process into practical computer systems due to
the complexities encountered while facilitating natural intractability. Therefore,
it is then required to develop a heuristic mechanism for software agents in a
collaborative setting.

For this purpose, dialogue systems are required to recognize the intention
of the user and reason about it. The implementation of this theory is problem-
atic due to its computational complexity [16]. Moreover, the specification of the
semantics for the speech acts in terms of mental states is not adapted for re-
solving the conflicts which can appear during a selling process. For instance, an
information that is received by a virtual seller agent must be adopted even if
this information is contradictory with its beliefs. Those are the reasons why we
consider an alternative approach based upon dialectical argumentation.

3 Dialectical approach

Our approach for dialogue modelling considers the exchange of utterances as an
argumentation process regulated by some normative rules that we call dialogue-
game protocol. Our approach is inspired by the notion of dialectical system that
Charles L. Hamblin introduced in [17]. A dialectical system is a family of reg-
ulated dialogue, (i.e., a system through which a set of participants communicate
in accordance with some rules).

From this perspective, Walton and Krabbe in [18] define a dialogue as a
coherent and structured sequence of utterances aiming at moving from an initial
state to reach the goals of the participants. These are the dialogue’s goals that
can be shared by the participants or they can be also each of the participants’
individual goals. Based on this definition, Walton and Krabbe have distinguished
between five main categories of dialogues depending on the initial situation and
goals. These categories are: information seeking, persuasion, negotiation, enquiry
and deliberation [18].

3

129

Table 1: Systemic overview of dialogue categories

Initial situation → Conflict Open problem Ignorance of
Goal ↓ a participant

Stable agreement persuasion enquiry information
i.e., Resolution seeking

Practical settlement negotiation deliberation ∅
i.e., Decision

Table 1 represents the analysis grid for dialogues proposed by Walton and
Krabbe. An information seeking appears when a participant aims at catching
knowledge from its interlocutor. The goal is to spread knowledge. In a persua-
sion dialogue, the initial situation is disagreement, (i.e., a conflict of opinion).
The goal consists of solving the conflict by verbal means. In a negotiation
dialogue, the initial situation is a conflict of interest mixed with a need for
collaboration. The goal consists of a deal, i.e. an agreement attracting all partic-
ipants to maximizing their gains. An enquiry dialogue aims at establishing (or
demonstrating) the truth of a predicate. This one must answer to an open ques-
tion and a stable agreement emerges. Each participant aims at extending their
knowledge. A deliberation, as an enquiry, begins with an open problem rather
than a conflict. The discussion is about the means and ends of a future action.
It is worth noticing that, in real world, the nature of dialogues can be mixed. A
dialogue can be composed of different sub-dialogues with different natures as we
will see in our scenario.

4 Dialogue: Phases & Purposes.

In this section, we explain the different phases of the overall online sales process
that we are attempting to tackle in our research. Within these phases, we expect
our virtual agent to rely on a specific language processor - explained further
ahead - to handle online one-to-one conversations, related misspelling, and the
use of diverse languages. Since the existing language processor is already capable
of handling what is known to us as After-Sales, (i.e., assisting online users while
searching for problems’ answers), we then became extra interested to increase
the salesability of this agent.

• BEFORE-SALE: in this phase we distinguish between two different pro-
cesses that are possibly interleaved: a) the process of needs identification
and, b) the process of product selection.

The Needs Identification can be performed with the help of an infor-
mation seeking dialogue shifting from an initial asymmetric situation to a
final one where both of the players share the user requirements.

The Product Selection allows the participants to constraint and to
reduce the amount of communication by considering only relevant products
later in the selling process. This task, in overall, also supports the information

4

130

seeking dialogue where the virtual seller agent asks discriminatory questions
in order to narrow its focus into a single product.

Both of these dialogues can be interleaved. The aim of the virtual seller
agent here is to spread information about the products, while the aim of the
user is expected to be the spreading of information about his needs.

• SALE: here, the aim for all dialogues’ parties is to bargain over their inter-
ests and, eventually, ”make a deal”. For this purpose, the participants play
a role in a negotiation dialogue. The simplest dialogue is: the virtual seller
agent makes an offer and the user accepts or refuses this proposal.

If there is no single product corresponding to the user needs, then the
participants attempt to maximize their benefits by conceding some aspects
while insisting on others. If no product is matching user’s needs, the user’s
high-ranked features of the products, (i.e., top priority conditions), are then
altered to a lower ranked ones. On the other hand, if more than one product
is corresponding to user’s needs, the virtual seller agent picks the ones with
the highest gross margin.

Later to that, the virtual seller agent can suggest - after a single sale -
additional sub-items or an offer which invokes more of the user needs. These
later approaches are well-known marketing techniques, (i.e., cross-selling and
up-selling). In both cases, the new items aim at persuading the customer.

• AFTER-SALE: The initial condition of this phase is not coming out of a
sales conflict, however, it comes out of the user’s unawareness of the problem
related to the concerned product. Therefore, participants here aim at extend-
ing their knowledge about each foreseen encounter and, eventually, decide
about their subsequent action, (e.g., product replacement). As a result, users
here play in an enquiry dialogue or a deliberation fashion.

The dialogue in Fig 1 consists of a specific case run which embraces the before-
sale and sale phases between a user and a virtual seller agent (VSA). While the
utterances #3 and #5 are related to the Needs Identification, the utterances
#1,#6 and #8 are of the Product Selection. The rest of utterances are directly
related to the sales process. The utterance #9 is a single-sale offer, the utterance
#11 captures an up-selling offer and the utterance #13 is a cross-selling proposal.

It is also worth highlighting here that relying on argumentation will make
the virtual seller agent more credible and, then, persuasive, since its appearance
or involvement will yield from the fulfillment of a set of predefined conditions,
(e.g., user X is wandering in the quilt section).

The After-Sale phase, (i.e., assistance), is out of the scope of this paper since
the existing query answering systems, such as the CSO Language Processor we
present in the next section, have been practically proven to be efficient for such
tasks.

5

131

1. VSA: Your moves through our website indicates that you might be interested in
Quilts, do you need help to select one?

2. User: Nice.
3. VSA: Are you allergic?
4. User: Yes.
5. VSA: Do you sweat?
6. User: Sure. Is there any organic quilts ?
7. VSA: Definitely, but which dimensions are you looking for?
8. User: 200x200. Is there any one within a budget of e 350?
9. VSA: Yes, it cost e 239 since the dimensions are 200x200, it is nonallergenic and

organic.
10. User: I buy it.
11. VSA: Since it is still within your budget, I may also suggest you to buy a “four

seasons” one that cost e 279?
12. User: Good idea.
13. VSA: What about a quilt cover that cost e 99 only? still in your budget.
14. User: No, thanks.

Fig. 1: Virtual Seller Agent Vs. User: Before-Sale & Sale scenarios

5 CSO Language Processor

The CSO Language Processor [9] is the technology upon which our dialogue
system is built.

The CSO Language Processor provided by Artificial Solutions1 allows to
produce virtual dialogue assistants such as Anna2 and numerous other systems
in more than 20 different languages. Elbot, which has won the Loebner Prize3

in 2008, is built upon this technology.
This technology manages users’ sessions, handles misspellings and it also

contains a language dependent preprocessing feature. In accordance with the
dialogue state, it selects and carries out the best dialogue move. Additionally,
this technology is able to interact with a back-end system, (e.g., databases), to
hand out answer document for requesting application/front end and to write log
files for analysis.

The inputs of the language processor are the user queries, (i.e., the user’s
identity and his text inputs). After the identification of the session, the inputs
are divided in sentences and words and the spelling is corrected. Another phase
is carried out wherein an interpretation of the inputs is made: an answer retrieval
for each sentences of the user’s inputs based on some interaction rules in a
knowledge base. Finally, the answer is selected and generated by replacing
some template variables.

1 http://www.artificial-solutions.com
2 http://www.ikea.com
3 http://www.loebner.net/Prizef/loebner-prize.html

6

132

The interaction rules combine the meaning of the user’s inputs and the dia-
logue state to define the conditions under which a dialogue move may be uttered.
A given move can only be performed if the conditions are completely fulfilled.

However, the core of the CSO Language Processor is an inference engine
that implements forward-chaining and so reactionary. Therefore, the language
processor only makes it possible to respond to a user’s queries and not to initiate
or lead a sales-driven conversations. consequently, in order for us to make CSO
proactive and enable it to go through sales-driven encounters, we introduce in the
next section a formal framework for possible sale-driven dialogue management
that can be adapted by virtual agents.

6 Dialectical system

A dialogue is a social interaction amongst self-interested parties intended to
reach a common goal. In this section, we present how our game-based social
model [8] handles the forseen conversation between a user and a virtual seller
agent (VSA).

A dialectical system is a formal system that regulate persuasion dialogue,
(See [19] for an overview). According to the game metaphor for social interac-
tions, the parties are players which utter moves according to social rules.

Definition 1 (Dialectical system). Let us consider L a common object lan-
guage and ACL a common agent communication language. A dialectical sys-
tem is a tuple DS=〈P, ΩM , H, T, proto, Z〉 where:

– P is a set of participants called players;
– ΩM ⊆ ACL is a set of well-formed moves;
– H is a set of histories, the sequences of well-formed moves s.t. the speaker

of a move is determined at each stage by the turn-taking function T and the
moves agree with the dialogue-game protocol proto;

– T: H→ P is the turn-taking function;
– proto: H → 2ΩM is the function determining the legal moves which are

allowed to expand an history;
– Z is the set of dialogues, i.e. the terminal histories.

Here, DS reflects the formalization of social interactions between players uttering
moves during a dialogue. Each dialogue is a maximally long sequence of moves.
Later to that, we specify informally the elements of DS for bilateral negotiation
and information-seeking.

In our scenario, there are two players: the initiator init and, the responder
resp, which utter moves each in turn. Since we address a proactive dialogue
system, we consider the initiator to be a VSA. The syntax of moves is in con-
formance with a common agent communication language, ACL. A move at
time t: has an identifier, mvt; is uttered by a speaker (spt ∈ P) and the speech
act is composed of a locution loct and a content contentt.

The possible locutions are: question, assert, unknow, introduce, request,
accept and reject. The content consists of all instances of the following schemata

7

133

1. VSA: question(is(product, quilt) because search(user, product)).
2. User: assert(is(product, quilt)).
3. VSA: question(is(user, allergic)).
4. User: assert(is(user, allergic)).
5. VSA: question(is(user, sweat)).
6. User: assert(is(user, sweat)).

question(is(product, organic)).
7. VSA: assert(is(product, organic)).

question(dimension(product, 200, 200)).
8. User: assert(dimension(product, 200, 200)).

question(budget(product, 350)).
9. VSA: introduce(is(product, quilt) because budget(product, 239) and

is(product, nonallergenic)) and is(product, organic)).
10. User: accept(is(product, quilt).
11. VSA: introduce(is(product, quilt) because budget(product, 279) and

is(product, nonallergenic)) and is(product, fourseasons)).
12. User: accept(is(product, quilt).
13. VSA: introduce(is(product, quilt)) and is(product, quiltcovers) because

budget(product, 333.90) and is(product, nonallergenic)) and
is(product, fourseasons)).

14. User: reject(is(product, quiltcovers).

Fig. 2: A Possible Scenario Formalization

”S (because S′)” where S (eventually S′) is a set of sentences in the common ob-
ject language, L. Actually, natural language utterances are interpreted/generated
by the language dependent preprocessing of CSO (See Section 5). A move is an
abstract representation of natural language utterances.

The dialogue in Fig 2 depicts a possible formalization of the natural language
dialogue of Fig 1. It is worth noticing here that each utterance can contain more
than one move.

In Fig. 3, we present our dialogue-game protocols by means of a deterministic
finite-state automaton. An information-seeking dialogue begins with a question.
The legal responding speech acts are assert and unknow. Two possible cases can
occur: i) the dialogue is a failure if it is closed by an unknow; ii) the dialogue is a
success if it is closed by an assert. A negotiation dialogue either begins with an
offer from the VSA through the speech act introduce or the offer is suggested
by the user through the speech act request. The legal responding speech acts
are accept and reject. Here, the possibly occurring cases are: i) the dialogue
is a failure if it is closed by a reject; ii) the dialogue is a success if it is closed
by an accept.

The strategy interfaces with the dialogue-game protocol through the condi-
tion mechanism of utterances for a move. For example, at a certain point in the
dialogue the VSA is able to send introduce or question. The choice of which
locution and which content to send is depending on the VSA’s strategy. For in-
stance, the VSA is benevolent in the dialogue represented in Fig 2 since he first

8

134

assert unknow

question
introducerequest

rejectaccept

Fig. 3: Dialogue-game protocol for information-seeking (on the left), and negotiation (on
the right)

attempts to identify the dialogue’s party needs, he continues with the product
selection phase and then it terminates with the sale dialogue. An aggressive
agent would consider the sale prior to anything whether the before-sale tasks
have been performed or not.

7 Arguing over utterances

In this section, we present how our computational model of argumentation for
decision making [7] handles the dialogue strategy in order to generate and eval-
uate utterances.

In our framework, the knowledge is represented by a logical theory built upon
an underlying logic-based language. In this language we distinguish between
several different categories of predicate symbols. We use goals to represent the
possible objectives of the decision making process (e.g. the dialogue to perform),
decisions an agent can adopt (e.g. the move to utter) and a set of predicate
symbols for beliefs (e.g. the previous utterance).

Assumptions here are required to carry on the reasoning process with incom-
plete knowledge, (e.g. some information about user’s needs are missing), and
we need to express preferences between different goals (e.g. some dialogues are
prior depending on the agent’s strategy). Finally, we allow the representation of
explicit incompatibilities between goals, decisions and beliefs.

Definition 2 (Decision framework). A decision framework is a tuple
DF = 〈DL,Asm, I , T ,P〉, where:

– DL = G ∪D∪B is a set of predicate symbols called the decision language,
where we distinguish between goals (G), decisions (D) and beliefs (B);

9

135

– Asm is a set of atomic formulae built upon predicates in DL called assump-
tions;

– I is the incompatibility relation, i.e. a binary relation over atomic
formulae in G, B or D. We require I to be asymmetric;

– T is a logic theory built upon DL; statements in T are clauses, each of them
has a distinguished name;

– P ⊆ G × G is the priority relation, namely a transitive, irreflexive and
asymmetric relation over atomic formulae in G.

In our framework, we consider multiple objectives which may or not be ful-
filled by a set of decisions under certain circumstances. Additionally, we explicitly
distinguish assumable (respectively non-assumable) literals which can (respec-
tively cannot) be assumed to hold, as long as there is no evidence to the contrary.
Decisions as well as some beliefs can be assumed. In this way, DF can model the
incompleteness of knowledge.

The most natural way to represent conflicts in our object language is through-
out some forms of logical negation. We consider two types of negation, as usual,
(e.g., in extended logic programming), namely strong negation ¬ (also called ex-
plicit or classical negation), and weak negation ∼, also called negation as failure.
As a consequence we will distinguish between strong literals, i.e. atomic formula
possibly preceded by strong negation, and weak literals, i.e. literals of the form
∼ L, where L is a strong literal. The intuitive meaning of a strong literal ¬L is
”L is definitely not the case”, while ∼ L intuitively means “There is no evidence
that L is the case”. The set I of incompatibilities contains some default incom-
patibilities related to negation on the one hand, and to the nature of decision
predicates on the other hand. Indeed, given an atom A, we have A I ¬A as
well as ¬A I A. Moreover, L I ∼ L, whatever L is, representing the intuition
that L is evidence to the contrary of ∼ L. Notice, however, that we do not have
∼ L I L, as in the spirit of weak negation.

Other default incompatibilities are related to decisions, since different al-
ternatives for the same decision predicate are incompatible with one another.
Hence, D(a1) I D(a2) and D(a2) I D(a1), D being a decision predicate in
D, and a1 and a2 being different constants representing different4 alternatives
for D. Depending on the particular decision problem being represented by the
framework, I may contain further non-default incompatibilities. For instance,
we may have g I g′, where g, g′ are different goals.

To summarize, the incompatibility relation captures the conflicts, either de-
fault or domain dependent, amongst decisions, beliefs and goals. The incompat-
ibility relation can be easily lifted to set of sentences. We say that two sets of
sentences Φ1 and Φ2 are incompatible (still denoted by Φ1 I Φ2) if there is a
sentence φ1 in Φ1 and a sentence φ2 in Φ2 such that φ1 I φ2.

A theory gathers the statements about the decision problem.

Definition 3 (Theory). A theory T is an extended logic program, i.e a finite
set of rules R: L0 ← L1, . . . , Lj ,∼ Lj+1, . . . ,∼ Ln with n ≥ 0, each Li (with

4 Notice that in general a decision can be addressed by more than two alternatives.

10

136

i ≥ 0) being a strong literal in L. R, called the unique name of the rule, is an
atomic formula of L. All variables occurring in a rule are implicitly universally
quantified over the whole rule. A rule with variables is a scheme standing for all
its ground instances.

To simplify, we assume that names of rules are neither in the bodies nor in
the head of the rules thus avoiding self-reference problems. We assume that the
elements in the body of rules are independent. Besides, we suppose the decisions
do not influence the beliefs and the decisions have no side effects.

In order to evaluate the relative importance of goals, we consider the priority
relation P over the goals in G, which is transitive, irreflexive and asymmetric.
G1PG2 can be read ”G1 has priority over G2”. There is no priority between G1

and G2, either because G1 and G2 are ex æquo (denoted G1 ≃ G2), or because
G1 and G2 are not comparable.

We consider the dialogue formalized in Section 6. The generation and the
evaluation of utterances by the VSA are captured by a decision framework DF =
〈DL,Asm, I , T ,P〉 where:

– the decision language DL distinguishes,
• a set of goals G. This set of literals identifies various motivations for

driving the possible dialogues, negotiation (negotiating(product)) and
information-seeking ones for product selection (infoseeking(product))
or need identification (infoseeking(user)),

• a set of decisions D. This set of literals identifies the possible utterances
(e.g. send(question(is(user, allergic)))),

• a set of beliefs, i.e. a set of literals identifying various situations identi-
fying the possible queries of the user,
(e.g. receive(question(is(product, nonallergenic))), behavior through
the website (e.g. search(user, quilt)) or the knowledge about the prod-
uct/needs information (e.g. is(user, allergic));

– the set of assumptions Asm contains the possible decisions and the missing
information about the user, (e.g. ∼ is(user, allergic)), or the product,
(e.g. ∼ is(product, nonallergenic));

– the incompatibility relation I is trivially defined. For instance,
send(x) I send(y), with x 6= y
infoseeking(topic1) I infoseeking(topic2), with topic1 6= topic2

negotiating(topic1) I infoseeking(topic2) whatever topic1 and topic2 are
– the theory T contains the rules in Table 2;
– If the VSA is benevolent, then the priority is defined such that:

infoseeking(user)Pinfoseeking(product) and
infoseeking(product)Pnegotiating(product).
If the VSA is aggressive, then the priority is defined such that:
negotiating(product)Pinfoseeking(product) and
infoseeking(product)Pinfoseeking(user).

11

137

Table 2: The rules of a Virtual Seller Agent (VSA)

r11 : infoseeking(user) ← send(question(is(user, allergic))),
∼ is(user, allergic), is(product, quilt),∼ receive(x)

r12 : infoseeking(user) ← send(question(is(user, sweat))),
∼ is(user, sweat), is(product, quilt),∼ receive(x)

r21 : infoseeking(product) ← send(question(is(product, quilt))),
search(user, quilt),∼ is(product, quilt)

r22 : infoseeking(product) ← send(question(is(product, nonallergenic))),
∼ is(product, nonallergenic),∼ receive(x)

r23 : infoseeking(product) ← send(question(is(product, organic))),
∼ is(product, organic),∼ receive(x)]

r24 : infoseeking(product) ← send(question(dimension(product, x , y))),
∼ dimension(product, x , y),∼ receive(z)

r25 : infoseeking(product) ← send(question(budget(product, x))),
∼ budget(product, x),∼ receive(y)

r26 : infoseeking(product) ← send(assert(is(x , y)), receive(question(is(x , y))), is(x , y)
r27 : infoseeking(product) ← send(assert(¬is(x , y)), receive(question(is(x , y))),¬is(x , y)
r28 : infoseeking(product) ← send(unknow(is(x , y)), receive(question(is(x , y))),∼ is(x , y)
r29 : negotiating(product) ← send(introduce(product)), budget(product, y)
r31 : budget(product, 350) ← is(product, nonallergenic),

is(product, organic), dimension(product, 200, 200)
r32 : is(product, nonallergenic) ← is(user, allergic)
r33 : is(product, organic) ← is(user, sweat)

Our formalization allows to capture the incomplete representation of a de-
cision problem with assumable beliefs. It provides a knowledge base on top of
which arguments are built in order to reach decisions. We adopt here a tree-like
structure for arguments.

Definition 4 (Argument). Let DF = 〈DL,Asm, I , T ,P,RV〉 be a decision
framework. An argument ā deducing the conclusion c ∈ DL (denoted conc(ā))
supported by a set of assumptions A in Asm (denoted asm(ā)) is a tree where
the root is c and each node is a sentence of DL. For each node :

– if the node is a leaf, then it is either an assumption in A or ⊤5;
– if the node is not a leaf and it is α ∈ DL, then there is an inference rule

α← α1, . . . , αn in T and,
• either n = 0 and ⊤ is its only child,
• or n > 0 and the node has n children, α1, . . . , αn.

The sentences of ā (denoted sent(ā)) is the set of literals of DL in the bod-
ies/heads of the rules including the assumptions of ā. We write ā : A ⊢ α to
denote an argument ā such that conc(ā) = α and asm(ā) = A. The set of argu-
ments built upon DF is denoted by A(DF).

5 ⊤ denotes the unconditionally true statement.

12

138

Arguments are built by reasoning backwards. Additionally, arguments interact
with one another, and consequently, we reach to define the following attack
relation.

Definition 5 (Attack relation). Let DF = 〈DL,Asm, I , T ,P〉 be a decision
framework, and ā, b̄ ∈ A(DF) be two arguments. ā attacks b̄ iff sent(ā) I sent(b̄).

This relation encompasses both the direct (often called rebuttal) attack due
to the incompatibility of the conclusions, and the indirect (often called under-
mining) attack, (i.e., directed to a ”subconclusion”).

Since the goals promoted by arguments have different priorities, the argu-
ments interact with one another. For this purpose, we define the strength relation
between concurrent arguments. Arguments are concurrent if their conclusions
are identical or incompatible.

Definition 6 (Strength relation). Let DF = 〈DL,Asm, I , T ,P〉 be a deci-
sion framework and ā1, ā2 ∈ A(DF) be two arguments which are concurrent. ā1

is stronger than ā2 (denoted ā1P ā2) iff conc(ā1) = g1 ∈ G, conc(ā2) = g2 ∈ G
and g1Pg2.

Due to the definition of P over T , the relation P is transitive, irreflexive and
asymmetric over A(DF).

The attack relation and the strength relation can be combined to adopt
Dung’s calculus of opposition as in [20]. We distinguish between one argument
attacking another, and that attack succeeding due to the strength of arguments.

Definition 7 (Defeat relation). Let DF = 〈DL,Asm, I , T ,P〉 be a decision
framework and ā and b̄ be two structured arguments. ā defeats b̄ iff:

1. ā attacks b̄;
2. and it is not the case that b̄P ā.

Similarly, we say that a set S of structured arguments defeats a structured argu-
ment ā if ā is defeated by one argument in S.

Let us consider this example:

Example 1 (Defeat relation). Let us consider the situation after the second move
in the dialogue represented in Fig. 1.

The arguments ā concludes infoseeking(user) since the VSA can ask to the
user if he is allergic, (i.e. question(is(user, allergic))), the VSA is not yet
aware about it, (i.e. ∼ is(user, allergic)), the user is looking for a quilt,(i.e.
is(product, quilt)), and the user did not query the VSA, (i.e. ∼ receive(x)).
The argument b̄ concludes infoseeking(product) since the VSA can ask to the
user if the product must be nonallergenic,
(i.e. send(question(is(product, nonallergenic)))), the VSA is not yet aware
about it (i.e. ∼ is(product, nonallergenic)) and the user did not query the
VSA (∼ receive(x)) . While ā is built upon r11, b̄ is built upon r22. Since these

13

139

arguments suppose different decisions, they attack each others. If the VSA is
benevolent, it is not the case that infoseeking(product)Pinfoseeking(user)
and so ā defeats b̄. If the VSA is aggressive, it is not the case that
infoseeking(user)Pinfoseeking(product) and so ā defeats b̄.

In our argumentation-based approach for dialogue strategy, arguments moti-
vate decisions and they can also be defeated by other arguments. Formally, our
argumentation framework (AF for short) is defined as follows.

Definition 8 (AF). Let DF = 〈DL,Asm, I , T ,P〉 be a decision framework.
The argumentation framework for decision making built upon DF is a pair AF =
〈A(DF), defeats 〉 where A(DF) is the finite set of arguments built upon DF as
defined in Definition 8, and defeats ⊆ A(DF) × A(DF) is the binary relation
over A(DF) as defined in Definition 7.

We adapt Dung’s extension-based semantics in order to analyze whenever a
set of arguments can be considered as subjectively justified with respect to the
agent’s priority.

Definition 9 (Semantics). Let DF = 〈DL,Asm, I , T ,P〉 be a decision frame-
work and AF = 〈A(DF), defeats 〉 be our argumentation framework for decision
making. For S ⊆ A(DF) a set of arguments, we say that:

– S is conflict-free iff ∀ā, b̄ ∈ S it is not the case that ā defeats b̄;
– S is admissible iff S is conflict-free and S defeats every argument ā such that

ā defeats some argument in S;

Here, we only consider admissibility but other Dung’s extension-based se-
mantics [21] can easily be adapted.

Formally, given an argument ā, let

dec(ā) = {D(a) ∈ asm(ā) | D is a decision predicate}
be the set of decisions supported by the argument ā.

The decisions are suggested to reach a goal if they are supported by an
argument concluding this goal and this argument is a member of an admissible
set of arguments.

Definition 10 (Credulous decisions). Let DF = 〈DL,Asm, I , T ,P〉 be a
decision framework, g ∈ G be a goal and D ⊆ D be a set of decisions. The deci-
sions D credulously argue for g iff there exists an argument ā in an admissible
set of arguments such that conc(ā) = g and dec(ā) = D. We denote valc(D) the
set of goals in G for which the set of decisions D credulously argues.

It is worth noticing here that the decisions that credulously argue for a goal
cannot contain mutual exclusive alternatives for the same decision predicate.
This is due to the fact that an admissible set of arguments is conflict-free.

If we consider the arguments ā and b̄ supporting the decisions D(a) and
D(b) respectively where a and b are mutually exclusive alternatives, we have
D(a) I D(b) and D(a) I D(b) and so, either ā defeats b̄ or b̄ defeats ā or
both of them depending on the strength of these arguments.

14

140

Proposition 1 (Mutual exclusive alternatives). Let
DF = 〈DL,Asm, I , T ,P〉 be a decision framework, g ∈ G be a goal and AF =
〈A(DF), defeats 〉 be the argumentation framework for decision making built
upon DF. If S be an admissible set of arguments such that, for some ā ∈ S,
g = conc(ā) and D(a) ∈ asm(ā), then D(b) ∈ asm(ā) iff a = b.

However, it is worth highlighting here the fact that mutual exclusive decisions
can be suggested for the same goal through different admissible set of arguments.
This case reflects the credulous nature of our semantics.

Definition 11 (Skeptical decisions). Let DF = 〈DL,Psm, I , T ,P,RV〉 be
a decision framework, g ∈ G be a goal and D ⊆ D be a set of decisions. The
decisions D skeptically argue for g iff for all admissible set of arguments S

such that for some arguments ā in S conc(ā) = g, then dec(ā) = D. We denote
vals(D) the set of goals in G for which the set of decisions D skeptically argues.

Due to the uncertainties, some decisions satisfy goals for sure if they skeptically
argue for them, or some decisions can possibly satisfy goals if they credulously
argue for them. While the first case is required for convincing a risk-averse agent,
the second case is enough to convince a risk-taking agent. Since some ultimate
choices amongst various justified sets of alternatives are not always possible, we
will consider in this paper only risk-taking agents.

Since agents can consider multiple objectives which may not be fulfilled all
together by a set of non-conflicting decisions, high-ranked goals must be preferred
to low-ranked goals.

Definition 12 (Preferences). Let DF = 〈DL,Asm, I , T ,P,RV〉 be a decision
framework. We consider G, G′ two set of goals in G and D, D′ two set of decisions
in D. G is preferred to G (denoted GPG′) iff

1. G ⊇ G′, and
2. ∀g ∈ G \ G′ there is no g′ ∈ G′ such that g′Pg.

D is preferred to D′ (denoted DPD′) iff valc(D)Pvalc(D′).

Formally, let
AD = {D | D ⊆ D such that ∀D′ ⊆ D it is not the case that valc(D′) P valc(D)}
be the decisions which can be accepted by the agent. Additionally, let
AG = {G | G ⊆ G such that G = valc(D) }
be the goals which can be reached by the agent.

Let us consider now the VSA’s decision problem after the second move.

Example 2 (Semantics). The argument ā (respectively b̄) (described in Exam-
ple 1), concludes infoseeking(user) (respectively infoseeking(product)). Ac-
tually, the decisions {send(question(is(user, allergic)} credulously argue for
infoseeking(user) and the decisions
{send(question(is(product, nonallergenic)} credulously argue for
infoseeking(product). If the VSA is benevolent, then
{send(question(is(user, allergic)} is an acceptable set of decisions. If the
VSA is aggressive, then {send(question(is(product, nonallergenic)} is an
acceptable set of decisions.

15

141

8 Related Works

Amgoud & Prade in [22] are presenting a general and abstract argumentation
framework for multi criteria decision making. This framework captures the men-
tal states (goals, beliefs and preferences) of the decision makers. Therefore, in
their framework the arguments are prescribing actions to reach goals if the-
ses actions are feasible while certain circumstances are true. These arguments -
that eventually conflict - are balanced according to their strengths. The argu-
mentation framework we proposed earlier in this paper is conforming with this
approach while being more specific and concrete.

The argumentation-based decision making process envisaged in [22] is divided
into different steps where the arguments are successively constructed, weighted,
confronted and evaluated. However, the computations we proposed earlier in
this paper go through the construction of arguments, the construction of coun-
terarguments, the evaluation of the generated arguments and the relaxation of
preferences for making concessions. It is also worth noticing here that: a) the
model we propose is unique in making it finally possible to concede, b) Our
argumentation-based decision process suggest some decisions even if low-ranked
goals cannot be reached.

Bench-Capon & Prakken formalize in [23] defeasible argumentation for prac-
tical reasoning. As in [22], they select the best course of actions by confronting
and evaluating arguments. Bench-Capon & Prakken focus on the abductive na-
ture of practical reasoning which is directly modelled within in our framework.

Kakas & Moraits propose in [24] an argumentation-based framework for de-
cision making of autonomous agents. For this purpose, the knowledge of the
agent is split and localized in different modules representing different capabil-
ities. Whereas [24] is committed to one argumentation semantics, we can still
deploy our framework for a number of such semantics by relying on assumption-
based argumentation.

Finally, to the best of our knowledge, few implementation of argumentation
over actions exist. CaSAPI6 [25] and DeLP7 [26] are restricted to the theoretical
reasoning. GORGIAS8 [27] implements an argumentation-based framework to
support the decision making of an agent within a modular architecture.

9 Conclusions

In this paper, we have presented a dialogue management system that applies
argumentation for generating and evaluating utterances. The agent start the
conversation with the prior task which can consist of the need identification,
the product selection or the negotiation depending on its strategy. During the
dialogue, a proactive agent can query the user. Additionally, it can introduce a

6 http://www.doc.ic.ac.uk/∼dg00/casapi.html
7 http://lidia.cs.uns.edu.ar/DeLP
8 http://www.cs.ucy.ac.cy/∼nkd/gorgias/

16

142

product to sell and justify this choice depending on the information collected in
the previous steps.

In order for us to implement an agent’s reasoning method we are considering
MARGO9 (A Multiattribute ARGumentation framework for Opinion explana-
tion), which is an argumentation-based mechanism for decision-making [7]. We
are currently rewritting MARGO in Java so that issues related to improving its
performance, (i.e., the response time), and its scalability, (i.e., the number of
rules which can be managed), are better tackled. This work is required to pro-
vide an industrial application rather than a research prototype. Besides, we need
to interface this argumentation-based engine with the CSO Artificial Solutions’
Language Processor in order to build conversational agents which are proactive
in different selling situations.

Although the negotiation dialogue model we proposed allows single-sellings
through the exchange of proposals and counter-proposals. However, we are cur-
rently working on an extension that will address cross-selling and up-selling.

Acknowledgements

This work is supported by the Ubiquitous Virtual Seller (VVU) project that was
initiated by the Competitivity Institute on Trading Industries (PICOM).

References

1. Hof, R., Green, H., Himmelstein, L.: Now it’s YOUR WEB. BusinessWeek (Oc-
tober 1998) 68–75

2. Poong, Y., Zaman, K.U., Talha, M.: E-commerce today and tomorrow: a truly gen-
eralized and active framework for the definition of electronic commerce. In: Proc.
of the 8th international conference on Electronic commerce (ICEC), Fredericton,
New Brunswick, Canada, ACM (2006) 553–557

3. Palopoli, L., Rosaci, D., Ursino, D.: Agents’ roles in B2C e-commerce. AI Com-
munications 19(2) (2006) 95–126

4. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge
Engineering Review 10 (1995) 115–52

5. Isbister, K., Doyle, P.: Design and evaluation of embodied conversational agents:
A proposed taxonomy. In: Proc. of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), Budapest, Hungary (2002)

6. Rist, T., Andr, E., Baldes, S., Gebhard, P., Klesen, M., Rist, P., Schmitt, M.:
A review of the development of embodied presentation agents and their applica-
tion fields. In: Life-Like Characters Tools, Affective Functions, and Applications,
Springer (2003) 377–404

7. Morge, M., Mancarella, P.: The hedgehog and the fox. An argumentation-based
decision support system. In: Proc. of the Fourth International Workshop on Ar-
gumentation in Multi-Agent Systems (ArgMAS). (2007) 55–68

8. Morge, M., Mancarella, P.: Assumption-based argumentation for the minimal con-
cession strategy. In: Proc. of the 6th International Workshop on Argumentation
in Multi-Agent Systems (ArgMAS), Budapest, Hungary (2009)

9 http://margo.sourceforge.net

17

143

9. Roberts, F., Gülsdorff, B.: Techniques of dialogue simulation. In: Proc of the 7th
International Conference on Intelligent Virtual Agents. Volume 4722 of Lecture
Note in Computer Science., Paris, France, Springer (2007) 420–421

10. George Ferguson, J.A.: Mixed-initiative systems for collaborative problem solving.
AI Magazine 28(2) (2007) 23–32

11. Rich, C., Sidner, C.L., Lesh, N.: COLLAGEN applying collaborative discourse
theory to human-computer interaction. AI Magazine 22(4) (2001) 15–25

12. Sadek, D.: Artemis Rational Dialogue Agent Technology: An Overview. In: Multi-
Agent Programming. Springer-Verlag (2005) 217–225

13. Grosz, B.J., Sidner, C.L.: Plans for Discourse. In: Intentions and Plans in Com-
munication and Discourse. Cohen, Morgan and Pollack edn. MIT press (1990)

14. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Proc. of the 2nd International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), Morgan Kaufmann publishers Inc.: San Mateo, CA,
USA (1991) 473–484

15. C, F.T.: FIPA ACL Communicative Act Library Specification.
Component, Foundation for Intelligent Physical Agents (6-12 2002)
http://fipa.org/specs/fipa00037/.

16. Breiter, P.: La communication orale coopérative : contribution à la modélisation
et à la mise en œuvre d’un agent rationnel dialoguant. PhD thesis, Université de
Paris Nord (1992)

17. Hamblin, C.L.: Fallacies. Methuen (1970)
18. Walton, D., Krabbe, E.: Commitment in Dialogue. SUNY Press (1995)
19. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering

Review 21 (2006) 163–188
20. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based

argumentation. In: Proc. of UAI, Madison, Wisconsin, USA., Morgan Kaufmann
(1998) 1–7

21. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2)
(1995) 321–357

22. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions.
Artificial Intelligence Journal 173(3-4) (2009) 413–436

23. Bench-Capon, T., Prakken, H.: Justifying actions by accruing arguments. In: Proc.
of the 1st International Conference on Computational Models of Argument, IOS
Press (2006) 247–258

24. Kakas, A., Moraitis, P.: Argumentative-based decision-making for autonomous
agents. In: Proc. of AAMAS, ACM Press (2003) 883–890

25. Gartner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation.
In: Proc. of ArgNMR. (2007) 80–95

26. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative ap-
proach. Theory and Practice of Logic Programming 4(2) (2004) 95–138

27. Demetriou, N., Kakas, A.C.: Argumentation with abduction. In: Proc. of the 4th
Panhellenic Symposium on Logic. (2003)

18

144

Argumentation System Allowing
Suspend/Resume of an Argumentation Line

Kenichi OKUNO1 � and Kazuko TAKAHASHI2

School of Science&Technology, Kwansei Gakuin University,
2-1, Gakuen, Sanda, 669-1337, JAPAN

o.kenichi@gmail.com, ktaka@kwansei.ac.jp

Abstract. This paper discusses an argumentation system that treats ar-
gumentation dynamically. We previously proposed a model for dynamic
treatment of argumentation in which all lines of argumentation are ex-
ecuted in succession, with the change of the agent’s knowledge base.
This system was designed for grasping the behaviour of actual argu-
mentation, but it has several limitations. In this paper, we propose an
extended system in which these points are revised so that the model can
more precisely simulate actual argumentation. In addition, we provide a
simpler algorithm for judgement of given argumentation, which can be
applied to make a strategy to win.
categories:D3.2 Prolog
keywords: computational model for argumentation, belief change, agent
communication
general terms: algorithm, theory

1 Introduction

Argumentation is a model that evaluates arguments. It was originally investi-
gated in legal reasoning. Dung’s work on constructing a logical framework for
argumentation and showing the relationships with nonmonotonic reasoning and
logic programming [8] enlarged the application area of argumentation in the field
of artificial intelligence (AI). As a result, formal models of argumentation have
given much attention by AI researchers [4, 21]. These works include applications
for defeasible logic programming [10, 6, 17, 16], belief revision [9, 18, 22] and so
on. Argumentation is considered to be a powerful tool for logically analysing
significant phenomena that appear in multiagent systems, such as negotiations,
agreements and persuasion [14, 1], and for making computational models of the
behaviour of multiagents [12]. Generally, argumentation proceeds between two
agents by giving arguments that attack the opponent’s argument in turn until
one of them cannot attack any more. Finally, the loser accepts the winner’s pro-
posal. This process is usually represented in tree form [1, 10]. The root node is a
proposed formula and each branch corresponds to a single argumentation line,
namely, a sequence of arguments. Lots of argumentation systems have been pro-
posed so far, but they considered the evaluation of a single argumentation line,
� Currently, JSOL Corporation

145

and cannot handle the dynamic properties of actual argumentation. By contrast,
we have proposed a system that can treat the continuous evaluation of multiple
argumentation lines [19, 20].

Let us consider an example of argumentation. According to many argumen-
tation systems, a proposer P makes the first argument and a defeater C makes
counterarguments. We suppose a situation in which a murderer P tells a lie: ”I
did not commit murder”. A policeman C argues that P’s statement is a lie. Pi
and Ci represent P’s and C’s i-th utterances, respectively.

P1: “I did not commit murder! There is no evidence!”
C1: “There is evidence. We found your license near the scene.”
P2: “It’s not evidence! I had my license stolen!”
C2: “It is you who killed the victim. Only you were near the scene at the
time of the murder.”
P3: “I didn’t go there. I was at facility A at that time.”
C3: “At facility A? No, that’s impossible. Facility A does not allow a person
to enter without a license. You said that you had your license stolen, didn’t
you?”

Figure 1 shows the structure of this argumentation.

P1

C1

2P

C2

3C

3P

Fig. 1. Structure of argumentation

In this example, if argumentation proceeds along the left branch, and if C
has no counterargument to P2, then C continues a counterargument in the right
branch which attacks P1 from another side. Finally, C points out the contradic-
tion between P’s utterances and wins. P’s utterance P2 gives C new information
and causes C to generate C3.

To capture the behaviour in this example, we have proposed an argumenta-
tion system incorporating changes in an agent’s knowledge base caused by the
exchange of arguments [19, 20]. The goal of this system is to dynamically grasp
argumentation by providing a model for actual argumentation. However, several
points exist in which this earlier system does not reflect actual argumentation.

The first limitation is on the mechanism that brings up the settled matter in
some argumentation line. Consider another argumentation:

P1: “I did not commit murder! There is no evidence!”

146

C2: “It is you who killed the victim. Only you were near the scene at the
time of the murder.”

P3: “I didn’t go there. I was at facility A at that time.”

C1: “There is evidence. We found your license near the scene.”

P2: “That’s not evidence! I had my license stolen!”

C′
3: “That’s strange. Facility A does not allow a person to enter without a

license. You said that you were at facility A when the murder occurred. How
did you enter?”

In this case, an argumentation first proceeds along the right branch, and
then continues to the left branch, P’s utterance P2 gives C new information
and causes C to generate C′

3 as a counterargument to P3. C also points out the
contradiction between P’s utterances, and wins. Such a phenomenon frequently
occurs in actual argumentation when each argumentation line is not so long.
In our earlier system, this mechanism could not be handled. In this paper, we
present a revised framework in which each argumentation line is considered as
suspended but may be resumed afterward.

A second shortcoming is the equivalent rights of agents. In the earlier version,
the defeater could continue an argumentation with the revised knowledge base
after he/she loses one argumentation line, leading him/her to ultimately win
the argumentation tree. However, the proposer loses the whole argumentation
tree if he/she loses one argumentation line. In the revised version, we also allow
the proposer to continue an argumentation after he/she loses one argumentation
line.

The third point is also related to the equivalent rights of agents. In the ear-
lier version, a proposer could not use disclosed information whereas a defeater
could. This condition is unfair and unnatural. In the revised version, we intro-
duce commitment store [13], a common knowledge base to store all the disclosed
information, and both agents can use this knowledge base.

We extend the earlier system by addressing these three points so that it
can more precisely simulate an actual argumentation and redefine the dynamic
win/lose of an argumentation tree.

Moreover, we propose an algorithm for judging the result of an argumentation
tree. This algorithm is simpler and easier to implement and it can be applied to
formulate an argumentation strategy.

This paper is organised as follows. Section 2 provides the definitions of basic
concepts such as argumentation and the argumentation tree. Section 3 proposes
an extended model for argumentation incorporating changes in an agent’s knowl-
edge base and also presents an algorithm for the judgement of an argumentation
tree. Section 4 provides an example of this algorithm. Section 5 outlines the ma-
jor changes from our previous work and compares the proposed approach with
related works. Finally, section 6 presents conclusions.

147

2 Argumentation

2.1 Argumentation Framework

We define an argumentation framework based on Dung [8].

Definition 1 (consistent) Let Ψ be a set of formulas in propositional logic. If
there does not exist ψ that satisfies both ψ ∈ Ψ and ¬ψ ∈ Ψ , Ψ is said to be
consistent.

The knowledge base Ka for each agent a is a finite set of propositional for-
mulas. Note that Ka is not necessarily consistent and may have no deductive
closure; that is, a case may exist in which φ, φ→ ψ ∈ Ka and ψ /∈ Ka hold. An
agent a participates in argumentation using elements of Ka.

Definition 2 (support) For a nonempty set of formulas Ψ and a formula ψ,
if there exist φ, φ→ ψ ∈ Ψ , then Ψ is said to be a support for ψ.

Definition 3 (argument) Let Ka be a knowledge base for an agent a. An ar-
gument of a is a pair (Ψ, ψ) where Ψ is a subset of Ka, and ψ ∈ Ka such that Ψ
is the empty set or a consistent support for ψ,

For an argument A = (Ψ, ψ), Ψ and ψ are said to be grounds and a sentence of
A, respectively. They are denoted byGrounds(A) and Sentence(A), respectively.
S(A) denotesGrounds(A)∪{Sentence(A)}. If ψ ∈ S(A), it is said that a formula
ψ is contained in an argument A.

Similar to many argumentation systems, we adopt the concept of prefer-
ence [3, 15]. Preferences are assigned to formulas depending on their strength,
certainty and stability to avoid loops in the argumentation. Here, we assume that
a formula is given a preference value based on some rules in advance regardless
of the knowledge base in which it is contained, and adopt a simple definition for
computing the preference of an argument. Although these definitions affect the
result of the argumentation, we do not discuss the definitions here, since this
aspect of argumentation is beyond the scope of this paper.

Definition 4 (preference) Each formula is assigned a preference value. Let
ν(ψ) be the preference for a formula ψ. Then, the preference of an argument A
is defined by

∑
ψ∈S(A)

ν(ψ).

Definition 5 (attack) Let ARKa and ARKb be sets of all possible arguments
of agents a and b, respectively.

1. If Sentence(Aa) ≡ ¬Sentence(Ab) and ν(Aa) ≥ ν(Ab), then (Aa, Ab) is said
to be a rebut from a to b.

2. If ¬Sentence(Aa) ∈ Grounds(Ab) and ν(Aa) ≥ ν((∅,¬Sentence(Aa))), then
(Aa, Ab) is said to be an undercut from a to b.

3. An attack from a to b is either a rebut or an undercut from a to b.

148

When (Aa, Ab) is an attack from a to b, it is said that Aa attacks Ab.
Based on Dung [8], in an argumentation framework between two agents, a

proposer P makes the first argument and a defeater C makes counterarguments.
Hereafter, KP and KC denote their knowledge bases, respectively.

Definition 6 (argumentation framework) Let ARKP and ARKC be sets of
all possible arguments of P and C, respectively, with preferences ν. Let ATKP⇀KC

and ATKC⇀KP be sets of attacks from P to C and from C to P , respectively.
An argumentation framework between P and C, AF (KP,KC, ν) is defined as a
quadruple 〈ARKP , ARKC , ATKP⇀KC , ATKC⇀KP〉.

2.2 Argumentation Tree

Definition 7 (move) A move is a pair of a player (an agent) P/C and an
argument A in which A ∈ ARKP/ARKC . If player is P/C, then it is said to
be P/C’s move. For a move M = (player, argument), we denote player and
argument by Ply(M) and Arg(M), respectively.

Definition 8 (move’s attack) M is said to be an attack to M ′,
if (Arg(M), Arg(M ′)) is an attack from Ply(M) to Ply(M ′).

Definition 9 (argumentation line, argument set) Let P and C denote a
proposer of a formula ϕ and its defeater, respectively. Let AF (KP,KC, ν) be
an argumentation framework between P and C. An argumentation line D for ϕ
on AF (KP,KC, ν) is a finite nonempty sequence of moves [M1, . . . ,Mn] (i =
1, . . . , n) that satisfies the following:

1. Ply(M1) = P , where Sentence(Arg(M1)) = ϕ.
2. If i is odd, then Ply(Mi) = P , and if i is even, then Ply(Mi) = C.
3. Mi+1 is an attack to Mi for each i (1 ≤ i ≤ n− 1).
4. No attack occurs against Arg(Mn).
5. Mi �= Mj for each pair of i, j (1 ≤ i �= j ≤ n).
6. Both S(Arg(M1)) ∪ S(Arg(M3)) ∪ S(Arg(M5)) ∪ . . . ∪ S(Arg(Mo)) and

S(Arg(M2)) ∪ S(Arg(M4)) ∪ S(Arg(M6)) ∪ . . . ∪ S(Arg(Me)) are consis-
tent, where o and e are the largest odd number and the largest even number
less than or equal to n, respectively.

The above S(Arg(M1)) ∪ S(Arg(M3)) ∪ S(Arg(M5)) ∪ . . . ∪ S(Arg(Mo)) and
S(Arg(M2))∪ S(Arg(M4))∪ S(Arg(M6))∪ . . .∪ S(Arg(Me)) are said to be P’s
argument set on D and C’s argument set on D, and they are denoted by SP (D)
and SC(D), respectively.

This definition puts the constraints of loop-freeness and consistency of each
agent’s arguments on an argumentation line.

Definition 10 (win of an argumentation line) If the last element of an ar-
gumentation line D is P ’s move, then it is said that P wins D; otherwise, P loses
D.

149

1

2

3

4

depth

0

P

C

P

C

(b)

AND

move
1

move
20

move
21

move
30 move

32

(c)

AND

move
1

move
20 move

21

move
31

move
32

move
4

(a)

OR

AND

move
1

move
20

move
30

move
21

move
31

move
4

move
32

Fig. 2. An argumentation tree and its candidate subtrees

Definition 11 (argumentation tree) An argumentation tree for ϕ on
AF (KP,KC, ν) is a tree in which the root node at depth 0 is empty and all
the branches1 starting from the node of depth 1 are different argumentation lines
for ϕ on AF (KP,KC, ν).

Definition 12 (candidate subtree) A candidate subtree is a subtree of an
argumentation tree that selects only one child node for each node correspond-
ing to C’s move in the original tree, and selects all child nodes for each node
corresponding to P’s move.

Definition 13 (solution subtree) A solution subtree is a candidate subtree
in which P wins all of the argumentation lines in the tree.

Each candidate subtree corresponds to P’s selection of an argument, and
the solution subtree indicates the case in which P takes a winning strategy. In
Figure 2, (a) is an argumentation tree, (b) and (c) are its candidate subtrees,
and (b) is the solution subtree.

In general, judgement of an argumentation tree is defined as follows.

Definition 14 (static win of an argumentation tree) If an argumentation
tree has a solution subtree, then P statically wins the argumentation tree; other-
wise, P statically loses it.

3 Argumentation with Changes in the Knowledge Base

3.1 Execution of Argumentation

We propose an argumentation system that considers the successive executions
of all possible argumentation lines, whilst the usual ones consider only a sin-
1 Here, a branch is a path from the designated node to a leaf node.

150

gle argumentation line. In a dynamic argumentation, we have to consider the
interaction of argumentation lines.

We prepare history Ha for each agent a to preserve the coherence of each
agent’s arguments. Ha is a set of all the formulas contained in a’s arguments in
the argumentation lines in which a wins. We, however, ignore the coherence of
the loser’s side. This is based on the idea that the winner should be responsible
for his/her arguments, but the loser can make an attack from a different side.

A dynamic argumentation line is defined by extending a static argumentation
line with history.

Definition 15 (dynamic argumentation line) Let P,C denote a proposer of
a formula ϕ and its defeater. Let AF (KP,KC, ν) be an argumentation framework
between P and C. A dynamic argumentation line D = [M1, . . . ,Mn] for ϕ on
AF (KP,KC, ν) with histories HP and HC is defined as the extension of the
(static) argumentation line by adding the following additional condition.

7. HPly(Mi) ∪ S(Arg(Mi)) is consistent for each i (1 ≤ i ≤ n).

If no misleading is involved, a dynamic argumentation line for ϕ on
AF (KP,KC, ν) with a history HP and HC , is said to be just an argumenta-
tion line on AF (KP,KC, ν).

Here, we present a dynamic argumentation model. We consider the execution
of an argumentation as selecting a branch, updating the commitment store and
agents’ histories and modifying a tree. The commitment store is a set of all the
formulas contained in all arguments given so far.

An argumentation starts by selecting a branch of an initial argumentation
tree. It proceeds along the branch and when the execution reaches the leaf node,
the branch is suspended. At that time, the commitment store is updated and
agents can make new arguments using the commitment store in addition to their
own knowledge bases. New nodes are added to the argumentation tree if new
arguments are generated. Next, another branch is selected. On the execution
procedure, the executed node is marked and the branch containing unmarked
nodes can be selected. The suspended branch may be resumed if a new unmarked
node is added to it. On the selection of a branch, the turn of an utterance should
be kept. This means that if one branch suspends at the node that corresponds
to one agent’s argument, then the next branch should start with the node that
corresponds to the other agent’s argument.

Definition 16 (executable node) For a node Mi (1 ≤ i ≤ n) in a branch
D = [M1, . . . ,Mn] and a current turn t, if M1, . . . ,Mi−1 are marked
and Mi, . . . ,Mn are unmarked, and Ply(Mi) = t, then the node Mi is said
to be executable.

Definition 17 (execution of a branch) For a branch D = [M1, . . . ,Mn], his-
tories HP ,HC and the commitment store K, execution of D from i (1 ≤ i ≤ n)
is defined as follows.

1. Mark Mi, . . . ,Mn.

151

2. Set K=K ∪⋃n
k=i S(Arg(Mi)).

3. if Ply(Mn) = P ,
then set the current turn to C and HP =HP ∪ SP (D).

if Ply(Mn) = C,
then set the current turn to P and HC=HC ∪ SC(D).

Definition 18 (suspend/resume) After the execution of all nodes in a branch,
D is said to be suspended. For a suspended branch D, if an executable node is
added to its leaf on the modification of a tree, and D is selected, then D is said
to be resumed.

This Argumentation Procedure with Knowledge Change is formalised as fol-
lows.

Argumentation Procedure with Knowledge Change (APKC2)

Let AF (KP,KC, ν) be an argumentation framework, and ϕ be a proposed
formula.
[STEP 1(initialisation)]

Set K = ∅, HP = ∅, HC = ∅, turn = P . Construct an initial argumentation
tree for AF (KP,KC, ν) on ϕ with HP ,HC with all the nodes unmarked.
[STEP 2(execution of an argumentation)]

if no branch has an executable node,
if turn=P, then terminate with P’s lose.
else turn=C, then terminate with P’s win.

else select a branch and execute it from the executable node.
[STEP 3(modification of a tree)]

Reconstruct an argumentation tree for AF (KP ∪K,KC ∪K, ν) on ϕ with
HP ,HC .
if the nodes N and M are identical, and N is marked whilst M is unmarked,

then mark M .
go to STEP 2.

The elements of K are included either by KP or KC, which are both finite
sets. It follows that finite kinds of moves can be generated. Therefore, APKC2
terminates.

In the modification of a tree in APKC2, a new node may be added. An idea
of threat is introduced to explain this situation.

Definition 19 (threat) Let M and M ′ be moves in an argumentation tree T on
AF (KP,KC, ν). If S(Arg(M)) generates more than one new move that attacks
M ′, then it is said that M is a threat to M ′, and that T contains a threat. M
and M ′ are said to be a threat resource and a threat destination, respectively.

Intuitively, a threat is a move that may provide information advantageous to
the opponent. A move may be a threat to a move in the same branch.

152

Definition 20 (continuous candidate subtree) For a candidate subtree CT ,
if more than one candidate subtree is generated by the addition of nodes, then
these subtrees are said to be continuous candidate subtrees of CT .

Note that nondeterminism is involved in the selection of a branch in APKC2,
and finally obtained trees are different depending on the selection.

Consider an argumentation tree in Figure 3. In this figure, M2 and M4 are
a threat resource and a threat destination, respectively, and M5 is a newly gen-
erated node by this threat. If we execute from the left branch, then APKC2
proceeds by executing M1,M2,M3,M4,M5, and terminates with P’s win. On
the other hand, if we execute from the right branch, then APKC2 proceeds by
executing M1,M4 and suspends. The next turn is P. If there exists no branch
in the other candidate trees that starts with P and ends with P, the suspended
branch never resumes, and APKC2 terminates with P’s lose.

P

P

C

generated
by threat

M2

M3

M4threat

M1

M5

Fig. 3. Argumentation affected on the execution order of branches

We define a dynamic win/lose of an argumentation tree according to APKC2.

Definition 21 (dynamic solution subtree) Let CT be a candidate subtree
of an initial argumentation tree. For any execution order of branches of CT, if
APKC2 terminates with P’s win or CT has a continuous subtree such that P
wins, then CT is said to be a dynamic solution subtree.

Definition 22 (dynamic win of an argumentation tree) If an argumenta-
tion tree has a dynamic solution subtree, then P dynamically wins the argumen-
tation tree; otherwise, P dynamically loses it.

3.2 Judgement of Dynamic Win/Lose

APKC2 gives to an execution model for an argumentation procedure. If we only
want to judge the result of an argumentation and not simulate the procedure,
then there exists a simpler algorithm.

153

Definition 23 (consistent candidate subtree) Let CT be a candidate sub-
tree. If there does not exist moves M,M ′ and a formula ψ that satisfy Ply(M) =
Ply(M ′) = P , ψ ∈ S(Arg(M)) and ¬ψ ∈ S(Arg(M ′)), then CT is said to be a
consistent candidate subtree.

Let CT be a candidate subtree of an argumentation tree of AF (KP,KC, ν).
Then we can judge a proposer P’s win/lose of CT by the following algorithm.
Hereafter, D ∈ T denotes that a branch D in a tree T .

Judgement of Win/Lose of a Candidate Subtree (JC)

[STEP 1]
if CT is not consistent, then P loses CT.
else set K =

⋃
D∈CT SP (D) ∪ ⋃

D∈CT SC(D).
[STEP 2]

Reconstruct CT on AF (KP ∪ K,KC ∪ K, ν), and let the resultant tree be
CT ′.

[STEP 3]
if CT ′ = CT ,

if all the leaves are P’s moves, then P wins CT.
else P loses CT.

else select a new continuous candidate subtree and go to STEP 1.

The algorithm JC terminates by the same reason as that for termination of
APKC2.

We show the relationship of dynamic win of an argumentation tree and JC.

Lemma 1 Let Tf be a finally obtained tree when APKC2 terminates with P’s
win. For a subtree T whose root node M is C’s move in Tf , let MP1 , . . . ,MPn

be
M ’s child nodes, and let T1, . . . , Tn be subtrees whose root nodes are MP1 , . . . ,MPn

,
respectively. If T1, . . . , Tn are all candidate subtrees, then there exists a (static)
solution subtree Ti (1 ≤ i ≤ n).

Proof)
Assume that Ti is not a solution subtree for some i. Then, Ti includes C’s

move as a leaf node. Let D be a branch of Tf that contains this node. There
should exist another branch as the successive execution of D, since APKC2
terminates with P’s move. On the other hand, when the leaf node of D has been
executed, the unmarked nodes nearest to the root node of Tf in every branch of Ti
that includes unmarked nodes are C’s moves. They are unexecutable. Therefore,
a branch in subtrees other than Ti should be selected as D’s successive execution.
If none of T1, . . . , Tn is a solution subtree, it is impossible to terminate APKC2
with P’s move. Hence, one of them should be a solution subtree. �

We can take such Ti as T ’s candidate subtree, and obtain the following
lemma.

154

Lemma 2 Let Tf be a finally obtained tree when APKC2 terminates with P’s
win. Tf includes a (static) solution subtree.

Proof)
For a subtree whose root node M is C’s move in Tf , let MP1 , . . . ,MPn

be M ’s
child nodes, and let T1, . . . , Tn be subtrees whose root nodes are MP1 , . . . ,MPn

,
respectively. For each i (1 ≤ i ≤ n), if Ti is not a candidate subtree, then replace
it by its candidate subtree T ′i from lemma 1; otherwise, set T ′i be Ti. There
exists a solution subtree T ′i (1 ≤ i ≤ n), since all of them are candidate subtrees.
Repeating this procedure, it is proved that Tf includes a solution subtree. �

Theorem 1 Let T be an argumentation tree which includes no threat over dif-
ferent candidate subtrees. P dynamically wins T if and only if there exists a
candidate subtree in T for which JC terminates with P’s win.

Proof) (⇒) Let CT ′ is a finally obtained tree for a candidate subtree CT in
JC. From lemma 2, the finally obtained tree Tf in APKC2 includes a (static)
solution subtree. There exists CT that contains this solution subtree, since both
threat resource and threat destination are in the same candidate tree from the
condition. Moreover,

⋃
D∈Tf

SP (D) is consistent because of the constraints on
HP . Therefore, there exists a candidate tree for which JC terminates with P’s
win.
(⇐) Let CT0, . . . , CTm be a sequence of candidate subtrees and Kj be a set of
newly generated formulas by CTj (1 ≤ j ≤ m) in JC. Suppose that we execute
APKC2 as follows: first executing an arbitrary branch in CT0, update the com-
mitment store and modify the tree; second, executing an arbitrary branch in the
reconstructed tree; and repeat this procedure. In this procedure, newly gener-
ated formulas by the execution of a branch is contained either in K1, . . . ,Km. It
follows that it should be contained as a node in Km. If the leaf node of a branch
is P’s move, then there exists an executable node in another branch. If it is C’s
move, then P’s node should be added on reconstruction. Therefore, there should
exist an execution that ends with P. �

4 An Example

Consider the example shown in Section 1. We illustrate various properties of
APKC2 and JC using this example.

4.1 Formalisation

The knowledge bases of a proposer P and a defeater C are shown below. The
number attached to each formula shows its preference. We assume that the facts
and rules are all represented in the knowledge base and the agents have no other
knowledge.

155

KP =

⎧
⎨
⎩
¬m[1], ¬e[2], (¬e→ ¬m)[1], ¬(la→ e)[1],
ls[1], (ls→ ¬(ls→ e))[1], ¬n[1], a[2],
(a→ ¬n)[1]

⎫
⎬
⎭

KC =
{
e[1], la[1], (la→ e)[2], m[2], n[2],
(n→ m)[1], ¬a[1], (ls→ ¬a)[1]

}

The propositions have the following meanings:
m: P commits murder.
e: there is evidence.
la: P’s license was left at the scene of the murder.
ls: P’s license was stolen.
n: P was near the scene when the murder was committed.
a: P was at facility A when the murder was committed.

4.2 The Case of Changing from Static Win to Dynamic Lose

Figure 4 shows a relevant part of an initial argumentation tree and a final ar-
gumentation tree in APKC2. The argumentation starts with the murderer’s ut-
terance. The nodes M1,M2,M3,M4,M5, and M6 correspond to the utterances
P1,C1,P2,C2,P3, and C3, respectively.

e

la la e

ls

(la e)

(la e)ls

m

e e m

M1

M2

M3

m

n n m

n

a na

M4

M5

e

la la e

ls

(la e)

(la e)ls

m

e e m

M1

M2

M3

m

n n m

n

a na

M4

M5

ls

a

als

M6

(a) Initial argumentation tree (b) Final argumentation tree

Fig. 4. The argumentation trees starting from the murderer

This example shows the case in which a proposer statically wins but dynam-
ically loses the argumentation tree.

156

4.3 Behaviour of Suspend/Resume

Figure 5(a) shows the trees at each step in case the left branch of the tree in
Figure 4(a) is selected first. T0 is the initial argumentation tree, and T1 is the
modified tree based on the knowledge bases obtained after the execution of the
left branch. The hatched nodes are marked. T2 is the tree modified based on the
knowledge bases after the execution of the right branch afterward. No unmarked
node exists in T2, which indicates the absence of a counterargument. Then, the
procedure terminates. The winner is C, who gives the final argument.

Figure 5(b) shows the trees at each step in case the right branch of the tree
in Figure 4(a). T ′1 is the modified tree based on the knowledge bases obtained
after the execution of the right branch. The right branch is suspended. T ′2 is
the modified tree based on the knowledge bases obtained after the execution
of the left branch afterward. In this case, a new node M6, which corresponds
to the utterance C′

3, is added, and it is the only node that is unmarked. To
execute this node, the right branch is resumed. T ′3 is the modified tree based
on the knowledge bases obtained after this execution. No unmarked node exists
in T ′3, which indicates the absence of a counterargument. Then, the procedure
terminates. The winner is C, who gives the final argument.

This example shows the procedures with different branch selection orders,
and illustrates how suspend/resume occurs.

4.4 The Case of Changing from Static Lose to Dynamic Win

Next, we show an argumentation that starts with the policeman’s utterance C0

in the first example:

C0: “You committed the murder.”

and continues to P1, C2, P3, C1, P2, similar to the first example. The argumen-
tation trees are shown in Figure 6. M0 is a node corresponding to C0.

The trees can be regarded as C’s argumentation trees because the roles of
P and C are switched from the first example. C statically loses, since all the
leaf nodes in the initial argumentation tree shown in Figure 6(a) are P’s move,
but dynamically wins, since the final argumentation tree shown in Figure 6(b)
is obtained by APKC2.

This example shows the case in which a proposer statically loses but dynam-
ically wins the argumentation tree.

4.5 Judgement of dynamic win/lose

Here, we apply an algorithm JC to the first example, starting from the murderer’s
utterance.

The initial argumentation tree is shown in Figure 4(a). It includes only one
candidate subtree2 and no threats over different candidate subtrees.
2 This figure shows only the relevant part, and it actually contains more candidate

subtrees. Although we ignore them to make a description simple, the result is the
same.

157

M1

M2 M4

M3 M5

P

P

C

T0

C

T1

M1

M2 M4

M3 M5

M6

T2

M1

M2 M4

M3 M5

M6

(a) APKC2 with left branch selected first

M1

M2 M4

M3 M5

P

P

C

T0

C

M1

M2 M4

M3 M5

T’1 T’2

M1

M2 M4

M3 M5

M6

T’3

M1

M2 M4

M3 M5

M6

(b) APKC2 with right branch selected first

Fig. 5. Comparison of procedures on the order of selecting branches

Figure 7 shows this procedure.
We take T0 as a candidate tree, which is consistent.
First, we obtain K, a set of all formulas in T0.

K =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¬m, ¬e, (¬e→ ¬m), ¬(la→ e),
ls, (ls→ ¬(ls→ e)), ¬n, a,
(a→ ¬n)
e, la, (la→ e), m, n,
(n→ m), ¬a, (ls→ ¬a)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Reconstruct the tree, then a new node M6 is added to obtain the tree T ′′1 ,
which is consistent.

Second, we have the following from T1:

K = K ∪
{
¬(la→ e), ls, ls→ ¬(la→ e)

}

158

m

e

la la e

ls

(la e)

(la e)ls

m

e e m

M1

M2

M3

m

n n m

n

a na

M4

M5

M0

m

e

la la e

ls

(la e)

(la e)ls

m

e e m

M1

M2

M3

m

n n m

n

a na

M4

M5

M0

ls

a

als

M6

(a) Initial argumentation tree (b) Final argumentation tree

Fig. 6. The argumentation trees starting from the policeman

Next, reconstruct the tree to obtain T ′′2 . Since T ′′1 = T ′′2 , and one leaf node
is C’s move, P loses this candidate subtree.

Since no other candidate subtrees exist, P dynamically loses the argumenta-
tion tree from Theorem 1.

5 Discussion

5.1 Improvements on the Earlier Version

Three significant points distinguish the argumentation system proposed in this
paper from the earlier version.

First, suspend/resume of a branch is enabled, allowing for the resumption of
a settled matter. We mark the executed node instead of deleting it, and make it
possible to add a new node to already executed ones. We also provide a simpler
judgement algorithm of win/lose for a given candidate subtree. The method of
selecting a candidate tree to win can contribute to argumentation strategy.

Second, both agents can continue an argumentation after he/she loses one
argumentation line, whilst only the defeater could do so in the earlier version.
This makes it possible to handle the case in which a proposer statically loses but
dynamically wins.

159

M1

M2 M4

M3 M5

P

P

C

T0

C

T’’1

M1

M2 M4

M3 M5

M6

T’’2

M1

M2 M4

M3 M5

M6

Fig. 7. The argumentation trees for judgement

Third, both P and C can use disclosed knowledge, whereas only C could do
so in the earlier version. We prepare the commitment store for this purpose.

In addition, in the earlier version, we had to reconstruct an argumentation
tree every time a branch was executed, since some formulas might be deleted
from C’s knowledge base. However, in the revised version, we do not need to
reconstruct a tree, only add nodes to the existing tree, since the usable knowledge
is monotonically increasing. This makes the implementation of APKC2 easier.

Due to these improvements, APKC2 provides a more natural model for actual
argumentations and a simple win/lose judgement algorithm.

5.2 Related Works

Garćıa applied argumentation to defeasible logic programming. He considered
argumentation to be an explanation and proposed a model in which argumen-
tation is evaluated when a claim is accepted [11]. In his model, evaluation of
argumentation is a dialectical proof procedure performed by traversing a con-
structed dialectical tree. Moguillansky discussed revision of the knowledge base
represented in the form of defeasible logic programming [16]. These works both
examined reconstruction of the tree with revised knowledge bases, but their goal
was to construct undefeated argumentation by selecting suitable defeasible rules,
not to consider the effect of the execution of argumentation.

Several works regard argumentation as a dialogue exchanging information
between agents [14, 1, 18]. An argument is regarded as a communication protocol
between agents. In most models, an agent rejects a proposal if it contradicts
his/her knowledge base and accepts it otherwise, and in the end, agreement
may be achieved. In these models, an agent’s behaviour is determined by the
arguments he/she receives, but his/her knowledge base never changes during
the argumentation.

Amgoud formalised a negotiation system in an argumentation framework
[2]. She considered the knowledge base for each agent separately, as well as its

160

revision by exchanging arguments. The significant difference between her work
and ours is that in her approach only a single argumentation line is considered,
so only threats to the same branch are taken into account, whereas in our ap-
proach all argumentation lines are considered successively, so threats to the other
branches are examined. Dunne proposed a “dispute tree” on which successive
execution of all argumentation lines are considered [7]. However, the revision of
agents’ knowledge base, allowing executed moves to add new information to the
opponent’s knowledge base, is not considered.

Cayrol conducted interesting research on the revision of an argumentation
theory [5]. She investigated how acceptable arguments are changed when an
argument is added. The aim of her research is a formal analysis on changes to
argumentation, and the contents of the additional arguments and reasons for the
addition are beyond its scope. In contrast, we focus specifically on the effect of
knowledge gained by executing argumentation.

A few models exist in which an independent knowledge base for each agent
is considered, but it is more natural to assume the existence of such knowledge
bases for treating an actual argumentation. This assumption also contributes the
strategy of argumentation. Moreover, we believe that such a strategy is closely
related to game programming with incomplete information, such as bridge. In
one such game, a player determines his/her next advantageous hand by con-
sidering his/her own current hand and the cards displayed so far. It would be
interesting to investigate the relationship between strategy in argumentation and
strategy in game programming.

6 Conclusion

We have proposed an argumentation system APKC2, which is an extension of
our earlier argumentation system APKC. APKC is a system in which multi-
ple argumentation lines are executed in succession, and an agent’s knowledge
base can change during argumentation. We have extended APKC so that the
suspend/resume of an argumentation line can be processed, both agents can
continue an argumentation after he/she loses one argumentation line and both
can use information given in previous arguments. These extensions provide a
more natural model of actual argumentation. In addition, we proposed a simpler
algorithm for the judgement of the win/lose result of an argumentation tree,
which can be applied to argumentation strategy.

In future, we are considering an extension of APKC2 that can not only di-
rectly use new information, but also derive new facts from the new knowledge.
We are also considering a strategy to win an argumentation.

References

1. L.Amgoud, S.Parsons, and N.Maudet: Arguments, dialogue, and negotiation,
ECAI2000, pp.338-342, 2000.

161

2. L.Amgoud, Y.Dimopolos and P.Moraitis: A general framework for argumentation-
based negotiation, ArgMAS2007, pp.1-17, 2007.

3. L.Amgoud and S.Vesic: Repairing preference-based argumentation frameworks, IJ-
CAI2009, pp.665-670, 2009.

4. T.Bench-Capon and P.Dunne: Argumentation in artificial intelligence, Artificial In-
telligence, 171, pp.619-641, 2007.

5. C.Cayrol, F.D.de St-Cyr, and M-C Lagasquie-Shiex: Revision of an argumentation
system. pp.124-134, KR2008, 2008.

6. C.I.Chesñevar, A.Maguitman and R.Loui: Logical models of argument. ACM Com-
puting Surveys, 32(4), pp.337-383, 2005.

7. P.E.Dunne and T.J.M.Bench-Capon: Two party immediate response disputes: prop-
erties and efficiency. Artificial Intelligence, 149(2), pp.221-250, 2003.

8. P.M.Dung: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games, Artificial Intelligence, 77,
pp.321-357, 1995.

9. M.Falappa, G.Kern-Isberner and G.R.Simari: Explanations, belief revision and de-
feasible reasoning, Artificial Intelligence, 141(1-2), pp.1-28, 2002.

10. A.Garćıa, and G.Simari: Defeasible logic programming: an argumentative ap-
proach. Theory and practice of logic programming, 4(1), pp.95-138, 2004.

11. A.Garćıa, C.Chesñevar, N.Rotstein, and G.Simari: An abstract presentation of
dialectical explanations in defeasible argumentation, ArgNMR07, pp.17-32, 2007.

12. S.Joseph and H.Prakken Coherence-driven argumentation to norm consensus,
ICAIL2009, pp.58-67, 2009.

13. C.Hamblin: Fallacies, Methuen, 1970.
14. S.Kraus, K.Sycara and A.Evenchik: Reaching agreements through argumentation:

a logical model and implementation, Artificial Intelligence, 104(1-2), pp.1-69, 1998.
15. S.Modgil: Reasoning about preferences in argumentation frameworks, Artificial

Intelligence, 173(9-10), pp.901-1040, 2009.
16. M.O.Moguillansky, et al.: Argument theory change applied to defeasible logic pro-

gramming, AAAI2008, pp.132-137, 2008.
17. H.Prakken: Combining skeptical epistemic reasoning with credulous practical rea-

soning. COMMA 2006, pp.311-322, 2006.
18. F.Paglieri and C.Castelfranchi: Revising beliefs through arguments: bridging the

gap between argumentation and belief revision in MAS, ArgMAS2004, pp.78-94,
2004.

19. K.Okuno and K.Takahashi: Argumentation with a revision of knowledge base,
EUMAS08, CD-ROM, December, 2008.

20. K.Okuno and K.Takahashi: Argumentation system with changes of an agent’s
knowledge base, IJCAI2009, pp.226-232, 2009.

21. I.Rahwan, and G.Simari (eds.): Argumentation in Artificial Intelligence, Springer,
2009.

22. T.Takahashi and H.Sawamura: A logic of multiple-valued argumentation, AA-
MAS2004, pp.789-805, 2004.

162

Empirical Argumentation: Integrating
Induction and Argumentation in MAS

Santiago Ontañón and Enric Plaza

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain).
santi|enric@iiia.csic.es

Abstract. This paper presents an approach that integrates notions and
techniques from two distinct fields of study —namely inductive learning
and argumentation in multiagent systems (MAS). We will first discuss
inductive learning and the role argumentation may play in multiagent
inductive learning, and then how inductive learning can be used to re-
alize an argumentation in MAS based on empirical grounds. We present
a MAS framework for empirical argumentation and then we show how
this is applied to a particular task where two agents argue in order to
reach agreement on a particular topic. Finally, an experimental evalua-
tion of the approach is presented evaluating the quality of the agreements
achieved by argumentation.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence — Multia-
gent systems, Intelligent Agents. I.2.6 [Artificial Intelligence]: Learning.

General Terms

Algorithms, Experimentation, Theory.

Keywords

Argumentation, Learning.

1 Introduction

This paper presents an approach that integrates notions and techniques from
two distinct fields of study —namely inductive learning and argumentation in
multiagent systems (MAS). We will discuss first inductive learning and the role
argumentation may play in multiagent inductive learning, and later how induc-
tive learning can be used to realize an argumentation in MAS based on empirical
grounds.

163

Multiagent inductive learning (MAIL) is the study of multiagent systems
where individual agents have the ability to perform inductive learning, i.e. an
agent is able to learn general descriptions from particular examples. Therefore,
induction is a form of empirical-based inference, where what is true (or what is
believed by the agent) is derived from the experience of that agent in a particular
domain (such experience is usually represented with “cases” or “examples”).
Notice that inductive inference is not deductive, and specifically it is not truth-
preserving1, and therefore it captures a form of empirical knowledge that can be
called into question by new empirical data and thus needs to be revised.

The challenge of multiagent inductive learning is that several agents will in-
ductively infer empirical knowledge that in principle is not the same, since that
knowledge is dependent on each individual in two ways: the concrete empiri-
cal data an agent has encountered and the specific inductive method an agent
employs.

Therefore, empirical knowledge will be different in principle for each indi-
vidual agent, and based on a part of the empirical data (the one observed by
each individual agent). Communication among agents is necessary in order to
reach a shared and agreed-upon empirical-based generalization that is based on,
and consistent with, all the empirical data available to a collection of agents.
Instead of simply using a communication process that redistributes all data to
all agents, we propose an argumentation-based communication process where
agents can propose, compare and challenge the empirical knowledge of other
agents, with the goal of achieving a more accurate, shared, and agreed-upon
body of empirical knowledge.

From the point of view of argumentation in MAS, inductive learning provides
a basis for automating, in empirical domains, a collection of activities necessary
for implementing artificial agents that support argumentation: how to generate
arguments, how to attack and defend arguments, and how to change an agent’s
beliefs as a result of the arguments exchanged. Logic-based approaches to ar-
gumentation like DeLP [2] amend classical deductive logic to support defeasible
reasoning. Our approach takes a different path, assuming agents that learn their
knowledge (by using induction over empirical data) instead of assuming agents
have been programmed (by giving them a rule-based knowledge base). There-
fore, we need to specify empirical methods that are able to perform the required
activities of argumentation (generating arguments and attacks, comparing argu-
ments and revising an agent’s beliefs): this is the approach we will call empirical
argumentation for MAS.

This paper presents a MAS framework for empirical argumentation that pro-
poses a way to implement those activities on the basis of the inductive inference
techniques developed in the field of Machine Learning. The structure of the pa-
per starts by introducing the notions of inductive learning needed (Section 2).
Then Section 3 presents the MAS framework for empirical argumentation called
A-MAIL, while Section 4 shows the utility of the framework in the task of concept

1 Inductive inference is not truth-preserving since new experiences may contradict
past generalizations, albeit it is falsity-preserving.

164

convergence (in which two agents argue with the goal of achieving an agreement
on a particular topic); an experimental evaluation of the approach is presented
evaluating the quality of the agreements achieved by argumentation. The paper
closes with sections on related work and conclusions.

2 Concept Induction

Inductive learning, and in particular concept learning, is the process by which
given an extensional definition of a concept C (a collection of examples of C
and a collection of examples that are not C) then an intensional definition (or
generalization) of a concept C can be found. Formally, an induction domain
is characterized as pair 〈E ,G〉 where E is the language describing examples or
instances and G is the language for describing generalizations; usually E ⊂ G is
assumed, but this is not necessary. A language is understood as the set of well
formed formulas built from a domain vocabulary or ontology O. The relation
between languages E and G is established by the subsumption relation (v); we
say a generalization g ∈ G subsumes (or covers) an example e ∈ E , g @ e,
whenever e satisfies the properties described by g [7]. Different approaches to
induction work with different languages, from propositional languages (attribute
value vectors) to subsets of predicate logic (like Inductive Logic Programming
that uses a sublanguage of Horn logic).

Given a collection of examples E = {e1, ..., eM} described in a language
E , an extensional definition of a concept C is a function C : E −→ {+,−},
i.e. determines the subset E+ of (positive) examples of C, and the subset E−

of counterexamples (or negative examples) for C. Induction is a function I :
P(E) × C −→ G, which given a collection of examples and a target concept
yields an intensional definition C ∈ G; generally one single formula in G is not
sufficient to describe an intensional definition so it is usually described as a
disjunction of generalizations C = h1 ∨ ... ∨ hn.

Definition 1. An intensional definition C of a concept C is a disjunct C =
h1∨ ...∨hn (where hi ∈ G) such that its generalizations subsume (v) all positive
examples of C and no counterexample of C:

∀ej ∈ E+ : ∃hi : hi v ej ∧ ∀ej ∈ E− ∧ ∀hi : hi 6v ej

For simplicity, we will shorten the previous expression as follows: C v E+ ∧
C 6v E−.

As an exemplification of these notions, consider the case where C is the
concept Chair; in this scenario, the set E may consists of chairs, benches, stools,
tables and other furniture, and each specific positive example is a description
of one concrete chair and each specific negative example is a description of one
furniture item that is not a chair. Finally, and intensional description Chair of
concept Chair might be “Chair is an object with a seat, four legs and a back.”

165

Ci Cj

E+
jE+

i

C C

Fig. 1. Schema for two agents where a concept name (C) is shared while intensional
descriptions are, in general, not equivalent (Ci 6∼= Ci).

2.1 Inductive agents with empirical beliefs

Since we will focus on argumentation between two agents (say A1 and A2), and
each agent will have certain beliefs according to what they have learnt, we will
now explore how differences between these two agents relate to induction and
argumentation. First, we will assume each agent has its own set of examples
from which they may learn by induction (say E1 and E2) and they are both
in principle unrelated although expressed in the same language E . Furthermore,
each agent may use, in principle, different induction techniques but they obtain
generalizations in the same language G. Thus, for any particular concept C two
agents will have intensional descriptions C1 and C2 that are, in general, not equal
or equivalent. Fig. 1 depicts these relationships between two agents beliefs about
what C is based on their empirical data E1 and E2.

Finally, since Def. 1 is too restrictive for practical purposes, Machine Learn-
ing approaches allow the intensional definitions to subsume less than 100% of
positive examples by defining a confidence measure. The goal of induction is,
given as a target the function C : E −→ {+,−}, to find a new function C,
which is a good approximation of C, in the sense of yielding a small error in
determining when an example is a positive or negative example of C.

We will use the following confidence measure:

Definition 2. The individual confidence of a hypothesis h for an agent Ai:

Bi(h) =
|{e ∈ E+

i |h v e}|+ 1
|{e ∈ Ei|h v e}|+ 2

Bi(h) is the ratio of examples correctly covered by h over the total number
examples covered by h; moreover, we add 1 to the numerator and 2 to the
denominator following the Laplace probability estimation procedure (which pre-
vents estimations too close to 0 or 1 when very few examples are covered). Other
confidence measures could be used, our framework only requires that the confi-
dence measure reflects how much the set of examples known to an agent endorses

166

the hypothesis. Finally, a threshold τ is established and only hypotheses with
confidence Bi(h) > τ are accepted as valid for the inductive process.

Definition 3. A hypothesis h is τ -admissible for an agent Ai if Bi(h) ≥ τ ,
where 0 ≤ τ ≤ 1.

3 An Empirical Approach to MAS Argumentation

This section will focus on how to integrate argumentation with inductive agents
in scenarios where the goal is to achieve an agreement between two agents on
the basis of their empirical knowledge. Here the empirical adjective refers to
the observations of the real world that each agent has had access to and that is
embodied in the set of examples E1 and E2 represented using a language E .

Argumentation in Multiagent Inductive Learning (A-MAIL) is a framework
where argumentation is used as a communication mechanism for agents that
want to perform collaborative inductive tasks such as concept convergence. We
do not claim, however, that A-MAIL is a new “argumentation framework” in
the sense of Dung [5], it is intended as a framework to integrate argumentation
processes and inductive processes in MAS. According to Dung, an argumen-
tation framework AF = 〈A,R〉 is composed by a set of arguments A and an
attack relation R among the arguments. A-MAIL is not a general logic frame-
work and, although certainly we will define what we mean as arguments and
attack relations, we take an empirical approach to argumentation. Thus, the
main difference from Dung’s framework is that, since arguments are generated
from examples, our approach necessarily defines a specific relation between ar-
guments and examples, which is not part of the usual interpretations of Dung’s
framework2.

3.1 The A-MAIL Approach

Let us define both the kinds of arguments considered by A-MAIL and how argu-
ments attack each other.

There are two kinds of arguments in A-MAIL:

Example Argument: α = 〈e, C〉 is a pair where an example α.e ∈ E is related
to a concept α.C ∈ {C,¬C}, either endorsing C if α.e is a positive example
or endorsing ¬C if α.e is a counter-example of C.

Hypothesis Argument: α = 〈h,C〉 is a pair where α.h is a τ -admissible hy-
pothesis and α.C ∈ {C,¬C}. An argument 〈h,C〉 states that α.h is a hy-
pothesis of C, while 〈h,¬C〉 states that h is a hypothesis of ¬C, i.e. that
examples covered by α.h do not belong to C.

2 Some approaches may consider “counter-examples” as a kind of arguments. This is
certainly true, but in our approach there is a constitutive relation between examples
and arguments (the “empirical” approach) that is different from merely accepting
counter-examples as arguments.

167

Since hypotheses in arguments are generated by induction, they have an
associated degree of confidence for an individual agent:

Definition 4. The confidence of a hypothesis argument α for an agent Ai is:

Bi(α) =





|{e∈E+
i |α.hve}|+1

|{e∈Ei|α.hve}|+2 if α.C = C

|{e∈E−i |α.hve}|+1

|{e∈Ei|α.hve}|+2 if α.C = ¬C

Consequently, we can use the threshold τ to impose that only arguments
with a strong confidence are admissible in the argumentation process; however,
we require only a strong confidence on the part of the individual agent uttering
such an argument.

Definition 5. Am argument α generated by an agent Ai is τ -admissible iff it
is a hypothesis argument and Bi(α) > τ , or if it is an example argument.

From now on, only τ -admissible arguments will be considered within the A-MAIL
framework.

Now we can define the attack relation between arguments; we will use the
notation C ∈ {C,¬C} to specify the boolean valuation of a concept as true or
false, while Ĉ = ¬C is the dual boolean valuation.

Definition 6. The attack relation (α� β) between two τ -admissible arguments
α, β holds when:

1. 〈h1, Ĉ〉� 〈h2, C〉 ⇐⇒ Ĉ = ¬C ∧ h2 @ h1, or
2. 〈e, C〉� 〈h, Ĉ〉 ⇐⇒ e.C = ¬h.Ĉ ∧ h v e

where C ∈ {C,¬C}.

Notice that a hypothesis argument α only attacks another argument β if β.h @
α.h, i.e. when α is (strictly) more specific than β. This is required since it implies
that all the examples covered by α are also covered by β, and thus if one supports
C and the other ¬C, they must be in conflict.

Figure 2 shows some examples of arguments and attacks. Positive examples
of the concept C are marked with a positive sign, whereas negative examples are
marked with a negative sign. Hypothesis arguments are represented as triangles
covering examples; when an argument α1 subsumes another argument α2, we
draw α2 inside of the triangle representing α1. Argument α1 has a hypothesis
supporting C, which covers 3 positive examples and 2 negative examples, and
thus has confidence 0.57, while argument α2 has a hypothesis supporting ¬C
with confidence 0.60, since it covers 2 negative examples and only one positive
example. Now, α2 � α1 because α2 supports ¬C, α1 supports C and α1.h v
α2.h. Moreover, ε3 � α2, since e3 is a positive example of C while α2 supports
¬C and covers this example (α2.h v ε3.e).

Notice that the viewpoint on the (empirical) admissibility of an argument
or of an attack depends on each individual agent, as shown in Fig 3 where

168

+ --++

h1

h2

e3 e4

α2 � α1

α1 = �h1, C�
α2 = �h2,¬C�

ε4 � α1

ε3 � α2
ε3 = �e3, C�

Bi(α1) =
3 + 1
5 + 2

= 0.57 Bi(α2) =
2 + 1
3 + 2

= 0.60

ε4 = �e4,¬C�

Fig. 2. An illustration of the different argument types, their confidences and attacks.

two agents Ai and Aj compare arguments α1 and α2 for hypotheses h1 and h2,
assuming τ = 0.75. From the point of view of agent Ai (the Opponent), proposing
argument α2 as an attack against argument α1 of agent Aj (the Proponent) is a
sound decision, since for Ai, α1 is not τ -admissible, while α2 is. However, from
the point of view of the Proponent of α1, α2 is not τ -admissible. Thus, Aj does
not accept α2 and will proceed by attacking it; on the other side, had it found
that confidence Bj(α2) was higher than Bj(α1) agent Aj would have revised its
beliefs by dismissing α1 and accepting α2, as we will explain later.

Next we will define when arguments defeat other arguments, based on the
idea of argumentation lines [2].

Definition 7. An Argumentation Line αn � αn−1 � ...� α1 is a sequence of
τ -admissible arguments where αi attacks αi−1 and α1 is called the root.

Notice that odd-numbered arguments are generated by the agent whose hy-
pothesis is under attack (the Proponent of the root argument α1) and the even-
numbered arguments are generated by the Opponent agent attacking α1. More-
over, since hypothesis arguments can only attack other hypothesis arguments,
and example arguments can only attack hypothesis arguments, example argu-
ments can only appear as the left-most argument (e.g. αn) in an argumentation
line.

Definition 8. An α-rooted argumentation tree T is a tree where each path from
the root node α to one of the leaves constitutes an argumentation line rooted on
α. The example-free argumentation tree T f corresponding to T is a tree rooted in
α that contains the same hypothesis arguments of T and no example argument.

Therefore, a set of argumentation lines rooted in the same argument α1 can
be represented as an argumentation tree, and vice versa. Notice that example
arguments can only appear as leafs in any argumentation tree.

169

+ -++

h1

h2

+ --+

h1

h2

PROPONENT
OPONENT

+ +

Bj(α1) =
5 + 1
6 + 2

= 0.75

Bj(α2) =
1 + 1
3 + 2

= 0.40

-

Bi(α1) =
2 + 1
5 + 2

= 0.43

Bi(α2) =
3 + 1
3 + 2

= 0.8

Fig. 3. An comparison of two individual viewpoints on arguments, attacks, and ac-
ceptability.

α1

α3 α7

β2 β6

e4 e5

α7 ! β6 ! α1

e5 ! α3 ! β2 ! α1

e4 ! α3 ! β2 ! α1

Fig. 4. Multiple argumentation lines rooted in the same argument α1 can be composed
into an argumentation tree.

Figure 4 illustrates this idea, where three different argumentation lines rooted
in the same α1 are shown with their corresponding argumentation tree. The αi
arguments are provided by the Proponent agent (the one proposing the root
argument) while βi arguments are provided by the Opponent trying to attack
the Proponent’s arguments.

Definition 9. Let an T α-rooted argumentation tree, where argument α belongs
to an agent Ai, and let T f be the example-free argumentation tree corresponding
to T . Then the root argument α is warranted (or undefeated) iff all the leaves
of T f are arguments belonging to Ai.

Now we are able to define the state of the argumentation among two agents
Ai and Aj at an instant t as the tuple 〈Rti, Rtj , Gt〉, consisting of:

– Rti = {〈h,C〉|h ∈ {h1, ..., hn}}, the set of arguments defending the current
intensional definition Cti = h1 ∨ ... ∨ hn of agent Ai;

170

– Rtj is the same for Aj .
– Gt contains the collection of arguments generated before t by either agent,

and belonging to one argumentation tree rooted in an argument in Rti ∪Rtj .

3.2 Argument Generation Through Induction

Agents need two kinds of argument generation capabilities: generating empirical
arguments based on the individual examples known to an agent, and generating
attack arguments that attack arguments provided by other agents; notice that a
defense argument is simply α′ � β � α, i.e. an attack on the argument attacking
a previous argument. Concerning empirical arguments, they are generated by
using induction to find an initial intensional definition C from examples; for
this reason, an agent Ai can generate an intensional definition of C by using
any inductive learning algorithm capable of learning concepts as a disjunction
of hypothesis, e.g. learning algorithms such as CN2[3] or FOIL[12].

Attack arguments, however, require a more sophisticated form of induction.
When an agent Ai wants to generate an argument β such that β � α, Ai has
to find an inductive hypothesis h for β that satisfies four conditions:

1. β.h should support the opposite concept than α: namely β.C = ¬α.C,
2. β.h should have a high confidence Bi(β) (at least being τ -admissible),
3. β.h should satisfy α.h @ β.h, and
4. β should not be attacked by any undefeated argument in Gt.

Currently existing inductive learning techniques cannot be applied out of the
box, because they do not satisfy these conditions (mainly the last two condi-
tions).

In previous work, we developed the Argumentation-based Bottom-up Induc-
tion (ABUI) algorithm, capable of performing such task [9]; this is the inductive
algorithm used in our experiments by the agents. However, any algorithm which
can search the space of hypotheses looking for a hypothesis which satisfies the
four conditions stated before would work in our framework: e.g. CN2 could be
modified in a way that the search of rules is restricted to the subspace of rules
satisfying α.h @ β.h.

Let L be the inductive algorithm used by an agent Ai; then to attack an
argument α = 〈h,C〉 for C has to generate an argument β = 〈h′, Ĉ〉 such that
β � α. The agent calls L to generate such hypothesis h′, then:

– If L returns an individually τ -admissible h′, then β is the attacking argument
to be used.

– If L fails to find an argument, then Ai looks for examples attacking α in
Ei. If any exist, then one such example is randomly chosen to be used as an
attacking argument.

Otherwise, Ai is unable to generate any argument attacking α. If an argument
or example is not enough to defeat another argument, additional arguments or
examples can be sent in subsequent rounds of the A-MAIL protocol (see below).

171

3.3 Empirical Belief Revision

During argumentation, agents exchange arguments which contain new hypothe-
ses and examples. These exchanges contain empirical knowledge that agents will
integrate with their previous empirical beliefs. Consequently, their beliefs will
change in such a way that their hypothesis are consistent with the accrued em-
pirical evidence: we call this process empirical belief revision. The belief revision
process of an agent Ai at an instant t, with an argumentation state 〈Rti, Rtj , Gt〉
starts whenever Ai receives an argument from another agent:

1. If it is an example argument ε then ε.e is added as a new example into Ei,
i.e. Ai expands its extensional definition of C.

2. Whether the received argument is an example or an hypothesis, the agent
re-evaluates the confidence of any argument in Rti or Gt: if any of these
arguments becomes no longer τ -admissible for Ai they removed from Rt+1

i

and Gt+1.
3. If any argument α in Rti became defeated, and Ai is not able to expand the

argumentation tree rooted in α to defend it, then the hypothesis α.h will be
removed from Ci. This means that some positive examples in Ei will not be
covered by Ci any longer. The inductive learning algorithm is called again to
generate new hypotheses that cover the now uncovered examples.

Thus, we have presented the A-MAIL approach to empirical argumentation for
MAS. Notice that, as shown in Fig. 5 all aspects of the argumentation process
(generating arguments and attacks, accepting arguments, determining defeat,
and revising beliefs) are supported on an empirical basis and, from the point of
view of MAS, implemented by autonomous decision making of artificial agents.
The activities in Fig. 5 permit the MAS to be self-sufficient in a domain of
empirical enquiry, since individual agents are autonomous and every decision is
based on the empirical knowledge available to them.

The next section presents an application of this MAS framework to reach
agreements in MAS.

4 Concept Convergence

We have developed A-MAIL as part of our research line on deliberative agree-
ment3, in which 2 or more artificial agents use argumentation to reach different
forms of agreement. In this section we will present a particular task of delibera-
tive agreement called concept convergence. The task of Concept Convergence is
defined as follows: Given two or more individuals which have individually learned
non-equivalent meanings of a concept C from their individual experience, find a
shared, equivalent, agreed-upon meaning of C.

Definition 10. Concept Convergence (between 2 agents) is the task defined as
follows:
3 This is part the project Agreement Technologies: http://www.agreement-

technologies.org/

172

Generating
Arguments

Accepting
Arguments

Generating
Attacks

Revising
Beliefs

Determining
Defeat

Fig. 5. The closed loop of empirically based activities used in argumentation.

Given two agents (Ai and Aj) that agree on the sign C denoting a concept (Ci ∼=
Cj) and with individually different intensional (Ci 6∼= Ci) and extensional
(E+

i 6= E+
j) definitions of that concept,

Find a convergent, shared and agreed-upon intensional description (C′i ∼= C′j) for
C that is consistent for each individual with their extensional descriptions.

For example, in the experiments reported in this paper, we used the domain
of marine sponge identification. The two agents need to agree on the definition
of the target concept C = hadromerida, among others. While in ontology align-
ment the focus is on establishing a mapping between the ontologies of the two
agents, here we assume that the ontology is shared, i.e. both agents share the
concept name hadromerida. Each agent has experience in a different area (one in
the Atlantic, and the other in the Mediterranean), so they have collected differ-
ent samples of hadromerida sponges, those samples constitute their extensional
definitions (which are different, since each agent has collected sponges on their
own). Now they want to agree on an intensional definition C, which describes
such sponges. In our experiments, one such intensional definition reached by one
of the agents is: C = “all those sponges which do not have gemmules in their ex-
ternal features, whose megascleres had a tylostyle smooth form and that do not
have a uniform length in their spikulate skeleton”. In the remainder of this paper
we will present how agents can combine argumentation and inductive learning
to argue about such definitions.

Concept convergence is assessed individually by an agent Ai by computing
the individual degree of convergence among two definitions Ci and Cj as:

173

Definition 11. The individual degree of convergence among two intensional
definitions Ci and Cj for an agent Ai is:

Ki(Ci,Cj) =
|{e ∈ Ei|Ci v e ∧ Cj v e}|
|{e ∈ Ei|Ci v e ∨ Cj v e}|

where Ki is 0 if the two definitions are totally divergent, and 1 when the two
definitions are totally convergent. The degree of convergence corresponds to the
ratio between the number examples covered by both definitions (intersection)
and the number of examples covered by at least one definition (union). The
closer the intersection is to the union, the more similar the definitions are.

Definition 12. The joint degree of convergence of two intensional definitions
Ci and Cj is:

K(Ci,Cj) = min(Ki(Ci,Cj),Kj(Cj ,Ci))

Concept convergence is defined as follows:

Definition 13. Two intensional definitions are convergent (Ci ∼= Cj) if K(Ci,Cj) ≥
1− ε, where 0 ≤ ε ≤ 1 is a the degree of divergence allowed.

The next section describes the protocol to achieve concept convergence.

4.1 Argumentation Protocol

The CC argumentation process follows an iteration protocol composed of a series
of rounds, during which two agents will argue about the individual hypotheses
that compose their intensional definitions of a concept C. At each round t of
the protocol, each agent Ai holds a particular intensional definition Cti, and only
one agent will hold a token. The holder of the token can assert new arguments
and then the token will be passed on to the other agent. This cycle will continue
until Ci ∼= Cj .

The protocol starts at round t = 0 and works as follows:

1. Each agent Ai communicates to the other their current intensional definition
by sharing R0

i . The token is given to one agent at random, and the protocol
moves to 2.

2. The agents share their individual convergence degrees (Ki(Ci,Cj) andKj(Cj ,
Ci)). If Ci ∼= Cj the protocol ends with success; if no agent has produced
a new attack in the last two rounds then the protocol ends with failure;
otherwise it moves to 3.

3. If modified by belief revision, the agent Ai with the token, sends a mes-
sage communicating its current intensional definition Rti. Then, the protocol
moves to 4.

4. If any argument α ∈ Rti is defeated, and Ai can generate an argument α′ to
defend α, the argument will be sent to the other agent. Also, if any of the
undefeated arguments β ∈ Rtj is not individually τ -admissible for Ai, and

174

Ai can find an argument β′ to extend any argumentation line rotted in β,
in order to attack it, then β′ is sent to the other agent. If at least one of
these arguments was sent, a new round t+ 1 starts; the token is given to the
other agent, and the protocol moves back to 2. Otherwise, if none of these
arguments could be found, the protocol moves to 5.

5. If there is any example e ∈ E+
i such that Ctj 6v e (i.e. a positive example not

covered by the definition of Aj), Ai will send e to the other agent, stating
that the intentional definition of Aj does not cover e. A new round t + 1
starts, the token is given to the other agent, and the protocol moves to 2.

Moreover, in order to ensure termination, no argument is allowed to be sent
twice by the same agent. A-MAIL ensures that the convergence of the resulting
concepts is at least τ if (1) the number of examples is finite, (2) the number of
hypotheses that can be generated is finite. Convergence higher than τ cannot
be ensured, since 100 × (1 − τ)% of the examples covered by a τ -admissible
hypothesis might be negative, causing divergence. Even when both agents use
different inductive algorithms, convergence is assured since by assumption they
are using the same finite generalization space, and there is no hypothesis τ -
admissible by one agent that could not be τ -admissible by the other agent when
both use the same acceptability condition over the same collection of examples.

4.2 Experimental Evaluation

In order to empirically evaluate A-MAIL with the purpose of concept conver-
gence we used the marine sponge identification problem. Sponge classification
is interesting because the difficulties arise from the morphological plasticity of
the species, and from the incomplete knowledge of many of their biological and
cytological features. Moreover, benthology specialists are distributed around the
world and they have experience in different benthos that spawn species with dif-
ferent characteristics due to the local habitat conditions. The specific problem
we target in these experiments is that of agreeing upon a shared description of
the features that distinguish one order of sponges from the others.

To have an idea of the complexity of this problem, Figure 6 shows a de-
scription of one of the sponges collected from the Mediterranean sea used in
our experiments. As Figure 6 shows, a sponge is defined by five groups of at-
tributes: ecological features, external features, anatomy, features of its spikulate
skeleton, and features of its tracts skeleton. Specifically, we used a collection of
280 sponges belonging to three different orders of the demospongiae family: ax-
inellida, hadromerida and astrophorida. Such sponges were collected from both
the Mediterranean sea and Atlantic ocean. In order to evaluate A-MAIL, we used
each of the three orders as target concepts for concept convergence. In an exper-
imental run, we split the 280 sponges randomly among the two agents and, given
a target concept, the goal of the agents was to reach a convergent definition of
such concept. The experiments model the process that two human experts un-
dertake when they get together to discuss over which features determine whether
a sponge belongs to a particular order.

175

sponge-220

external-
features

bristly

absent-osc

none

velvety

yellowcolour

no

medium

tough

erect
growing

line-form
branching

yesstony

form

peduncle

grow

external

surface
osc

macro-debris

touch

colour

boring

body-size

hand

growing

consistency line-form

ecological-
features

mediterranean

yes

rock

yes

location

association

substrate

oxid

spikulate-
skeleton

silica

no

no

plumo-ret

megascleres

chemical

sclerospongids

uniform-length
architecture

megascleres

style

oxea

no-acanthose

shaft

fusiform

smooth-ornamentation

850

no

smooth-form

acanthose

characteristics

ornamentation

max-length

two-or-more-lengths

tracts-
skeleton

anatomy

smooth-
ornamentation

no-visible

absent-cortex

ornamentation

ectosome

cortex

ecological-
features external-

features

spikulate-
skeleton

tracts-
skeleton

anatomy

Fig. 6. A description of one of the sponges of the Axinellida order used in our experi-
ments.

Centralized Individual A-MAIL

C P R P R K P R K

Axinellida 0.98 1.00 0.97 0.95 0.80 0.97 0.95 0.89

Hadromerida 0.85 0.98 0.89 0.91 0.78 0.92 0.96 0.97

Astrophorida 0.98 1.00 0.97 0.97 0.93 0.98 0.99 0.97

Table 1. Precision (P), Recall (R) and degree of convergence (K) for the intensional
definitions obtained using A-MAILversus those obtained using .

We compared the results of A-MAIL with respect to agents which do not
perform argumentation (Individual), and to the result of centralizing all the ex-
amples and performing centralized induction (Centralized). Thus, the difference
between the results of individual agents and agents using A-MAIL should provide
a measure of the benefits of A-MAIL for concept convergence, where as compar-
ing with Centralized gives a measure of the quality of the outcome. All the results
are the average of 10 executions, ε = 0.05 and τ = 0.75.

Table 1 shows one row for each of the 3 concepts we used in our evaluation:
Axinellida, Hadromerida and Astrophorida. For each setting we show three val-
ues: precision, measuring how many of the examples covered by the definition are
actually positive examples; recall, measuring how many of the total number of
positive examples in the data set are covered by the definition; and convergence,
as defined in Definition 12. The first thing we see in Table 1 is that A-MAIL is

176

sponge-220

external-
features

erect
growing

line-form formform

growgrowing

line-form

spikulate-
skeleton megascleres

megascleres

style

smooth-ornamentation

smooth-form

ornamentation

external-
features

spikulate-
skeleton

sponge-220

external-
features growing line-form formformgrowing line-form

spikulate-
skeleton megascleres

megascleres
yes

acanthose

external-
features

spikulate-
skeleton

Bi(r2) = 0.91

Bi(r1) = 0.96

sponge-220

anatomic-
features ectosome

ectosome

spikulate-
skeleton megascleres

anatomy

spikulate-
skeleton

megascleres yes
acanthose Bi(r3) = 0.90

sponge-220

external-
features growing

growing line-form

spikulate-
skeleton megascleres

megascleres
yes

acanthose

external-
features

spikulate-
skeleton

sponge-220

external-
features

growing
growing grow

spikulate-
skeleton megascleres

megascleres
yesacanthose

external-
features

spikulate-
skeleton

line-form

encrusting

notwo-or-more-
length

Bi(r4) = 0.86

Bi(r5) = 0.91

Fig. 7. Set of rules forming the definition of Axinellida and obtained by one of the
agents using A-MAIL in our experiments.

able to increase convergence from the initial value appearing in the Individual
setting. For all concepts except for Axinellida the convergence was higher than
0.95 (i.e. 1 − ε). Total convergence was not reached for thhat concepts because
in our experiments τ = 0.75, allowing hypotheses to cover some negative ex-
amples and preventing overfitting. This means that acceptable hypotheses can
cover some negative examples, and thus generate some divergence. Increasing τ
could improve convergence but if would make finding hypotheses by induction
more difficult, and thus recall might suffer. Moreover, even precision and recall
improve thanks to argumentation, reaching values close to the ones achieved by
a Centralized setting.

Figure 7 shows the set of rules that one of the agents in our experiments
using A-MAIL obtained as the definition of the concept Axinellida. For instance,
the first rule states that “all the sponges with an erect and line-form growing,
and with megascleres in the spikulate skeleton which had style smooth form and
smooth ornamentation belong to the Axinellida order”. By looking at those rules,
we can clearly see that both the growing external features and the characteristics
of the megascleres are the distinctive features of the Axinellida order.

177

In summary, we can conclude that A-MAIL successfully achieves concept con-
vergence by integrating argumentation and inductive learning, in addition to
improve the quality of the intensional definition (precision and recall). This is
achieved by exchanging only a small percentage of the examples the agents know
(as opposed to the Centralized setting where all the examples are given to a sin-
gle agent, which might not be feasible in some applications). Additionally, in
average, the execution time of A-MAIL is lower than that of a centralized strat-
egy.

5 Related Work

Concerning argumentation in MAS, previous work focuses on several issues like
a) logics, protocols and languages that support argumentation, b) argument
selection and c) argument interpretation, a recent overview can be found at [13].

The idea that argumentation might be useful for machine learning was dis-
cussed in [6], but no concrete proposal has followed, since the authors goal was
propose that a defeasible logic approach to argumentation could provide a sound
formalization for both expressing and reasoning with uncertain and incomplete
information as appears in Machine Learning. Since the possible hypotheses can
be induced from data could be considered an argument, and then by defining
a proper attack and defeat relation, a sound hypotheses can be found. How-
ever, they did not develop the idea, or attempted the actual integration of an
argumentation framework with any particular machine learning technique. Am-
goud and Serrurier [1] elaborated on the same idea, proposing an argumentation
framework for classification. Their focus is on classifying examples based on all
the possible classification rules (in the form of arguments) rather than on a single
one learned by a machine learning method.

A related idea is that of argument-based machine learning [8], where some
examples are augmented with a justification or “supporting argument”. The idea
is that those supporting arguments are then used to constrain the search in the
hypotheses space: only those hypotheses which classify examples following the
provided justification are considered. Notice that in this approach, arguments
are used to augment the information contained in an example. A-MAIL uses ar-
guments in a different way. A-MAIL does not require examples to be augmented
with such supporting arguments; in A-MAIL the inductive process itself gener-
ates arguments. Notice, however, that both approaches could be merged, and
that A-MAIL could also be designed to exploit extra information in the form of
examples augmented with justifications. Moreover, A-MAIL is a model for mul-
tiagent induction, whereas argument-based machine learning is a framework for
centralized induction which exploits additional annotations in the examples in
the form of arguments.

The idea of using argumentation with case-based reasoning in multiagent
systems has been explored by [11] in the AMAL framework. Compared to A-
MAIL, AMAL focuses on lazy learning techniques where the goal is to argue
about the classification of particular examples, whereas A-MAIL, although uses

178

cases and vase bases, allows agents to argue about rules generated through in-
ductive learning techniques. Moreover, the AMAL framework explored a related
idea to A-MAIL, namely learning from communication [10]. An approach similar
to AMAL is PADUA [14], an argumentation framework that allows agents to
use examples to argue about the classification of particular problems, but they
generate association rules and do not perform concept learning.

6 Conclusions

The two main contributions of this paper are the definition of an argumentation
framework for agents with inductive learning capabilities, and the introduction
of the concept convergence task. Since our argumentation framework is based
on reasoning from examples, we introduced the idea of argument admissibility,
which measures how much empirical support an argument has, which is used to
define an attack relation among arguments. A main contribution of the paper has
been to show the feasibility of a completely automatic and autonomous approach
to argumentation in empirical tasks. All necessary processes are autonomously
performed by artificial agents: generating arguments from their experience, gen-
erating attacks to defeat or defend, changing their beliefs as a result of the
argumentation process — they are all empirically based and autonomously un-
dertook by individual agents.

The A-MAIL framework has been applied in this paper to the concept con-
vergence task. However, it can also be seen as a multi-agent induction technique
to share inductive inferences [4]. As part of our future work, we want to ex-
tend our framework to deal with more complex inductive tasks, such achieving
convergence on a collection of interrelated concepts, as well as scenarios with
more than 2 agents. Our long term goal is to study the relation and integration
of inductive inference and communication processes among groups of intelligent
agents into a coherent unified MAS framework.

Acknowledgments

This research was partially supported by projects Next-CBR TIN2009-13692-
C03-01 and Agreement Technologies CONSOLIDER CSD2007-0022.

References

[1] Leila Amgoud and Mathieu Serrurier. Arguing and explaining classifications. In
Argumentation in Multi-Agent Systems, volume 4946 of LNCS, pages 164–177,
2008.

[2] Carlos I. Chesñevar, Guillermo R. Simari, and Llúıs Godo. Computing dialectical
trees efficiently in possibilistic defeasible logic programming. In LNAI/LNCS
Series (Proc. 8th Intl. LPNMR Conf, pages 158–171. Springer, 2005.

[3] Peter Clark and Tim Niblett. The CN2 induction algorithm. In Machine Learning,
pages 261–283, 1989.

179

[4] Winton Davies and Peter Edwards. The communication of inductive inferences. In
ECAI ’96: Selected papers from the Workshop on Distributed Artificial Intelligence
Meets Machine Learning, Learning in Multi-Agent Environments, pages 223–241,
London, UK, 1997. Springer-Verlag.

[5] Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–357, 1995.

[6] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Integrating defeasible argu-
mentation and machine learning techniques. CoRR, cs.AI/0402057, 2004.

[7] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
[8] Martin Mozina, Jure Zabkar, and Ivan Bratko. Argument based machine learning.

Artificial Intelligence, 171(10-15):922–937, 2007.
[9] Santi Ontañón and Enric Plaza. Multiagent inductive learning: an argumentation-

based approach. In Submitted, 2010.
[10] Santiago Ontañón and Enric Plaza. Case-based learning from proactive commu-

nication. In IJCAI, pages 999–1004, 2007.
[11] Santiago Ontañón and Enric Plaza. Learning and joint deliberation through ar-

gumentation in multiagent systems. In Proc. AAMAS’07, pages 971–978, 2007.
[12] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5:239–266, 1990.
[13] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence.

Springer Publishing Company, Incorporated, 2009.
[14] Maya Wardeh, Trevor J. M. Bench-Capon, and Frans Coenen. PADUA: a protocol

for argumentation dialogue using association rules. Artificial Intelligence in Law,
17(3):183–215, 2009.

180

Reasoning about Trust using Argumentation:
A position paper

Simon Parsons1,2, Peter McBurney3, and Elizabeth Sklar1,2

1 Department of Computer & Information Science, Brooklyn College,
City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210 USA

{sklar,parsons}@sci.brooklyn.cuny.edu
2 Department of Computer Science, Graduate Center

City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
3 Department of Computer Science, University of Liverpool,

Ashton Building, Ashton Street, Liverpool, L69 3BX, United Kingdom
mcburney@liverpool.ac.uk

Abstract. Trust is a mechanism for managing the uncertainty about autonomous
entities and the information they store, and so can play an important role in any
decentralized system. As a result, trust has been widely studied in multiagent
systems and related fields such as the semantic web. Managing informationabout
trust involves inference with uncertain information, decision making, anddealing
with commitments and the provenance of information, all areas to which systems
of argumentation have been applied. Here we discuss the application of argu-
mentation to reasoning about trust, identifying some of the components thatan
argumentation-based system for reasoning about trust would need to contain and
sketching the work that would be required to provide such a system.

1 Introduction

Trust is a mechanism for managing the uncertainty about autonomous entities and the
information they store. As a result trust can play an important role in any decentral-
ized system. As computer systems have become increasingly distributed, and control in
those systems has become more decentralized, trust has steadily become an ever more
important concept in computer science.

Trust is an especially important issue from the perspectiveof autonomous agents
and multiagent systems. The premise behind the multiagent systems field is that of
developing software agents that will work in the interests of their owners, carrying out
their owners’ wishes while interacting with other entities. In such interactions, agents
will have to reason about the amount that they should trust those other entities, whether
they are trusting those entities to carry out some task, or whether they are trusting those
entities to not misuse crucial information.

This paper argues that systems of argumentation have an important role to play
in reasoning about trust. We start in Section 2 by briefly reviewing work that defines
important aspects of trust and giving an extended example which illustrates some of
these aspects. Section 3 then briefly reviews some of the workon reasoning about trust
and identifies some of the characteristics of any effective system for dealing with trust

181

information. Building on this discussion, Section 4 then argues that systems of argu-
mentation can handle trust and sketches a specific system of argumentation for doing
this. Section 5 then concludes.

2 Trust

As a number of authors have pointed out, trust is a concept that is both complex and
rather difficult to pin down precisely and as a result, there are a number of different
definitions in the literature. Thus, to pick a few specific examples, Sztompka [26] (cited
in [7]) suggests that:

Trust is a bet about the future contingent actions of others.

while Mcknight and Chervany [20], drawing on a range of existing definitions, define
trust as:

Trust is the extent to which one party is willing to depend on something or
somebody in a given situation with a feeling of relative security, even though
negative consequences are possible.

and Gambetta [4] states:

Trust is the subjective probability by which an individual,A, expects that an-
other individual, B, performs a given action on which its welfare depends.

While these definitions differ, there are clearly some commonelements. There is a
degree of uncertainty associated with trust — whether expressed as a subjective proba-
bility, as a bet (which, of course, can be expressed as a subjective probability [11]), or
as a “feeling of security”. Trust is tied up with the relationships between individuals.
Trust is related to the actions of individuals and how those actions affect others.

It is also pointed out in a number of places that there are different kinds of trust,
what Jøsang et al. [12] call “trust scopes”. For example, [12] cites the classification of
[9] which identifies the following types of trust:

1. Provision trust:the trust that exists between the user of a service or resource, and
the provider of that resource.

2. Access trust:the trust that exists between the owner of a resource and those that are
accessing those resources.

3. Delegation trust:the trust that exists between an individual who delegates responsi-
bility for some action or decision and the individual to which that action or decision
is delegated.

4. Identity trust:trust that an individual is who they claim to be.
5. Context trust:trust that an individual has in the existence of sufficient infrastructure

to support whatever activities that individual is engaged in.

We illustrate some of these different types of trust with thefollowing example.

182

Alice is planning a picnic for a group of friends. She asks around amongst
some of her aquaintances for ideas about where to hold the picnic. Bob suggests
a park a little way outside of the city where he goes quite regularly (provision
trust, relating to information) — he says it is quiet and easyto get to. Carol says
she has never been to the park herself, but has heard that the bugs are terrible
(provision trust, relating to information).

Alice decides that the picnic will be a potluck4. Alice asks David to bring
potato salad (delegation trust) and Eric says he will bring bread from the bak-
ery near his house (provision trust, relating to a good). Fran offers to bake a
cake (provision trust, relating to a good). Carol says she will make her famous
barbeque chicken, cooking it on the public barbeques that Alice believes are
provided by the park (context trust).

The picnic is scheduled for midday. George arranges to pick up Alice from
her house at 10am in order to drive her to the park (Alice doesn’t have a car).
Harry, who can borrow a minivan (access trust), offers to collect several people
from their homes and stop on the way to buy a case of beer. Iain,who is going
to ride with George, says he’ll bring a soccer ball so they canall play after
lunch. John asks if he can bring a friend of a friend, Keith, whom John has
never met, but whom John knows will be visiting the city and isunoccupied
that day (identity trust).

As Alice makes the arrangements, she is obviously trusting alot of people to make sure
that the plan comes together in ways that are rather distinct.

Bob and Carol are providing information. To decide whether to go to the park, Alice
has to factor in the trustworthiness of that information in deciding this, she has to take
into account how reliable Bob and Carol are as information providers, not least because
the information that they have gven here is contradictory. She might judge that what
she knows about Bob (that he goes to the park often) makes him more trustworthy than
Carol in this regard (though in other contexts, such as when deciding what film to see,
she might value Carol’s opinion more), and the fact that Carol is relying on information
from yet another person might strengthen this feeling (or, equally, make Alice value
Carol’s opinion about the park less).

The trust involved in handling the information from Bob and Carol seems to be
some what different to the handling of trust when considering the makeup of the meal.
Here Alice has to balance not the reliability of the information that people provide, but
thecommitmentsthey are making, the extent to which Carol, David, Eric, Fran, George,
Harry and Iain will do what they say they will do. Carol may be aterribly unreliable
source of information about parks, and thus untrustworthy in that regard, but a superb
provider of barbequed chicken, and one who has never failed to bring that chicken to a
potluck when she says that she will. In contrast, Alice may know that Fran saying she
will bake a cake means very little. She is just as likely to bake cookies, or realise late
the night before the picnic that she has no flour and will have to bring a green salad
instead (thus ruining the meal). David, on the other hand, isquite likely not to make

4 “Pot luck” means that all the guests are expected to bring something that will contribute to the
meal, typically an item of food or a beverage.

183

potato salad; but if he doesn’t, he can be relied upon to subsitute it with some close
approximation, a pasta salad for example.

In other words, an individual can be an untrustworthy sourceof information, but a
trustworthy provider of services, or indeed an untrustworthy provider of services but
a very reliable information source (it is perfectly possible that Fran only ever provides
correct information despite her food-related flakiness) — there are different dimensions
of trust for different services that are provided (here, information and food items). We
distinguish this by talking of thecontextof trust. Similarly, the failure of an individual
to fulfill their commitments is not necessarily binary — how they fail can be important.

There are also other aspects to the failure of a commitment. Actions have time and
location components. If George is a few minutes late pickingAlice up, it may not affect
the picnic. If he is an hour late, that might be catastrophic.If he has the wrong address,
then even if he arrives at that (wrong) location at 10am, the success of the picnic is
in danger. And if Harry can’t find his way to the park, there won’t be any soccer after
lunch even if he successfully collected everyone and boughtthe beer just as he said he
would. However, as long as he arrives while the picnic is going on, then his passengers
have a chance to enjoy themselves, though the later he arrives, the less chance that they
will have a good time.

3 Reasoning about Trust

As discussed above, a key aspect of trust is that it stems fromthe relationship between
individuals or groups of individuals. This means that it is arelative notion — Alice and
Bob may have different views about Carol’s trustworthiness— and thus thatprovenance
is important in reasoning about trust [6]. A situation that often arises is one where it is
necessary to combine different people’s information abouttrust and when this is done,
it is important to know where information about trust is coming from.

In this context, Jøsang et al. [12] distinguish betweenfunctionaltrust, the trust in an
individual to carry out some task, andreferral trust, the trust in an individual’s recom-
mendation. Thus, in our example, Alice’s reasoning about George’s offer of a lift, and
Carol’s offer to bring chicken arefunctionaltrust — Alice is thinking about George’s
reliability as a provider of lifts and Carol’s reliability as a provider of chicken. However,
if Alice were to ask Carol for a recommendation for a good butcher, then Alice would
base her assessment of Carol’s answer on her (Alice’s) assesssment of Carol’s ability to
make good recommendations, an instance of referral trust, while what Carol expresses
about her butcher is another instance of functional trust.

As [12] points out, the fact that Carol trusts her butcher to supply good meat is not
necessarily a reason for Alice to do the same, and it certainly isn’t a reason for Alice to
trust the butcher in any more general context (to do a good jobof painting Alice’s house,
for example). However, under certain circumstances — and inparticular when the trust
context is the same, as it is when Alice is considering the useof Carol’s butcher as a
provider of meat [14]5 — it is reasonable to consider trust to be transitive. Thus Alice

5 Depending on the butcher, of course, even this might be too broad a trust context — perhaps
the butcher provides excellent chicken and beef, but can only supply indifferent pork and his
game has never been hung for long enough.

184

can consider combining her direct assessment of Carol’s referral trustworhiness in the
food domain, with Carol’s direct assessment of her butcher’s functional trustworthiness
to derive anindirect functional assessment of the butcher.

Given this transitivity, the notion of atrust networkthen makes sense. If Alice can
estimate the referral trustworthiness of her friends, and they can do the same for their
friends, then Alice can make judgements about recommendations she receives not just
from her friends, but also from the friends of her friends (and their friends and so on).
The question is, what is a reasonable way to represent this computationally?

At the moment there is no definitive answer to the question. Asthe definitions of
trust cited above suggest, one way to model trust is to use some form of subjective
probability — Alice’s degree of trust in Bob’s park recommendation is a measure of her
belief that she will like the park since Bob says that he likesthe park.Eigentrust[15]
is a mechanism, derived for use in peer-to-peer networks, for establishing a global trust
rating that estimates how much any individual should trust another. While such a global
rating, based as it is on performance, is reasonable for peer-to-peer systems, it has been
argued [6] that in the kind of social networks we are discussing here, it is necessary to
capture the fact that, for example, Alice and Bob can have very different estimations of
Carol’s trustworthiness (and, as we have argued, that they will have different ratings for
Carol’s trustworthiness in different contexts).

Subjective logic [13] is a formalism for capturing exactly this aspect of trust, and for
inferring the degree of trust existing between two nodes in atrust network. Based on the
Dempster-Shafer theory of evidence [25] it computes a measure that is a generalisation
of probability, distinguishing belief in the reliability of an individual, disbelief in the
reliability, and the potential belief that has not yet been determined one way or another
(termed the “uncertainty”). Singh and colleagues [10, 27] provide extensions of the ap-
proach, the former looking at how best to update the measure of trust one individual has
in another depending on their experience of interactions. Thus Alice may have her high
regard for Carol’s food-related recommendations damaged by a bad experience with a
supplier that Carol recommends. Subjective logic is not theonly approach to handling
this problem. For example, Katz and Golbeck [16] describe analgorithm called Tidal-
Trust for establishing the trust between asourcenode (representing the individual doing
the trusting) and asinkmode (representing the individual being trusted). Later work by
Kuter and Golbeck provides theSUNNY algorithm [18] which is reported to outperform
TidalTrust on a benchmark database of trust information.

4 Argumentation and Trust

The Trust field, including sample literature discussd above, gives us methodologies for
computingtrust, while the Argumentation field can give us methodologies forreason-
ing about trust. In short, we believe that argumentation can provide a mechanism for
handling many of the aspects that we need to capture about trust, as we discuss at some
length in this section.

185

4.1 Argumentation in general

As we have discussed above, there are two major aspects that need to be handled by any
representation of trust — we need to handle measures of trust, and we need to handle
the provenance of trust information. Both of these are provided by several existing
argumentation systems.

Some approaches to argumentation, for example abstract approaches such as that
of Dung [3] and its derivatives, treat arguments as atomic objects. As a result, they say
little or nothing about the internal structure of the argument and have no mechanism to
represent the source of the information from which the argument is constructed. Such
systems can represent the relationship between arguments (“a attacksb”, and “b attacks
c”), but cannot representwhy this is the case. As a result, such systems cannot capture
the fact thata attacksb becauseb is based on information from sources, and there is
evidence that sources is not trustworthy.

There are, however, a number of existing systems that extend[3] with more detailed
information about the argument. One system system is that ofAmgoud [1], where an
argument is taken to be a pair(H, h), h being a formula, theconclusionof the argument,
andH being a set of formulae known as thegroundsor supportof the argument. Con-
clusion and support are related. In particular, [1] requires thatH be a minimal consistent
set of formulae such thatH ⊢ h in the language in whichh andH are expressed. This
means of representing the support is rather restricted. It presents the support as a bag
of formulae with no indication as to how they are used in the construction of the argu-
ment, and without recording any of the intermediate steps. It is easy enough to see if
another argumentrebuts(H, h), meaning that the conclusion of this second argument is
the negation ofh, and it is also quite simple to establish if the conclusion ofthe second
argument contradicts any of the grounds inH (which in some systems of argumentation
is known asundercutting). However, other forms of relationship are harder to establish.
For example, in some cases it is interesting to know if an argument contradicts any of
the intermediate steps in the chain of inferences betweenH andh.

Since the information about the steps in the argument can be useful, some systems
of argumentation, for example [5] and [22], record more detail about the proof ofh
from H as part of the grounds. Some, including the system [19] whichwe will discuss
in more detail below, go as far as to record the proof rules used in derivingh from H,
permitting the notion of “attack” to include not only the intermediate conclusions but
also the means by which they were derived.

Another problem with Dung’s argumentation system from the perspective of rea-
soning about trust is that it has no explicit means to represent degrees of trust. In [3]
the important question is whether, given all the arguments that are known, a specific
argument should be considered to hold. While one could construct a system for reason-
ing about trust in this way — the critical point, after all, isoften whether someone’s
argument is trustworthy or not — the prevelance of numericalmeasures of trust in the
literature leads us to want to represent these.

Systems like that of Amgoud [1] provide one means of handlingsuch measures,
allowing formulae to have preference values attached to them. The values propagate to
arguments and are taken into consideration when reasoning about the relationship be-
tween arguments (roughly speaking, strong arguments shrugoff the attacks of weaker

186

arguments). This approach seems a little too restrictive for dealing with trust, but there
are systems that are more flexible. One example is the work of Oren et al. [21], which
allows formulae and arguments to be weighted with the beliefvalues used by Jøsang’s
subjective logic [13]. A more abstract approach is that of Fox [17] where values to
represent belief in formulae are picked from some suitabledictionary of values, and
propagated in a suitable way through the proof rules that areused to construct argu-
ments. Arguments are then triples of conclusion, support, and value, and such systems
are close to the notion of alabelled deductive system[2] (though they pre-date labelled
deductive systems by some years).

4.2 A suitable argumentation system

Having given a high level description of how argumentation can help in handling a
number of the aspects of reasoning about trust, we give a moredetailed example of
using a specific system of argumentation. The system we describe is the systemTL that
we introduced in [19], notable because it explicitly represents the rules of inference
employed in constructing arguments in the support of the argument (which then makes
it possible to dispute the application of those rules).

We start with a set of atomic propositions including⊤ and⊥, the ever true and ever
false propositions. The set of well-formed formulae (wffs), labeledL, is comprised of
the set of atomic propositions closed under the connectives{¬,→,∧,∨}. L may then
be used to create a database∆ whose elements are 4-tuples:

(θ : G : R : d̃)

in which each elementθ is a formulae,G is the derivation of that formula,R is the
sequence of rules of inference used in the derivation, andd̃ is a suitable measure.

In more detail,θ is awff fromL, G = (θ0, θ1, . . . , θn−1) is an ordered sequence of
wffs, with n ≥ 1, andR = (⊢1,⊢2, . . . ,⊢n) is an ordered sequence of inference rules,
such that:

θ0 ⊢1 θ1 ⊢2 θ2 . . . θn−1 ⊢n θ

In other words, each elementθk ∈ G is derived from the preceding elementθk−1 as a
result of the application of the k-th rule of inference,⊢k, (k = 1, . . . , n− 1). The rules
of inference in any such sequence may be non-distinct. ThusG andR together provide
an explicit representation of the way thatθ was inferred.

The element̃d = (d1, d2, . . . , dn) is an ordered sequence of elements from some
dictionaryD. For reasoning about trust, these elements could be a numerical measure
of trust, or some linguistic term that indicates the trust inthe relevant inference, for
example:

{very reliable, reliable, no opinion, somewhat unreliable, very unreliable}

We also permitwffs θ ∈ L to be elements of∆, by including tuples of the form(θ :
∅ : ∅ : ∅), where each∅ indicates a null term. (Such tuples represent information that
has not been derived — basic premises may take this form.) Note that the assignment
of labels may be context-dependent, i.e., thedi assigned to⊢i may also depend onθi−1.

187

Ax
(θ : G : R : d̃) ∈ ∆

∆ ⊢TCR (θ : G : R : d̃)

∧-I
∆ ⊢TCR (θ : G : R : d̃) and ∆ ⊢TCR (φ : H : S : ẽ)

∆ ⊢TCR (θ ∧ φ : G⊗ H ⊗ (θ ∧ φ) : R⊗ S⊗ (⊢∧-I) : d̃⊗ ẽ⊗ (d∧-I))

∧-E1
∆ ⊢TCR (θ ∧ φ : G : R : d̃)

∆ ⊢TCR (θ : G⊗ (θ) : R⊗ (⊢∧-E1) : d̃⊗ (d∧-E1))

∧-E2
∆ ⊢TCR (θ ∧ φ : G : R : d̃)

∆ ⊢TCR (φ : G⊗ (φ) : R⊗ (⊢∧-E2) : d̃⊗ (d∧-E2))

∨-I1
∆ ⊢TCR (θ : G : R : d̃)

∆ ⊢TCR (θ ∨ φ : G⊗ (θ ∨ φ) : R⊗ (⊢∨-I1) : d̃⊗ (d∨-I1))

∨-I2
∆ ⊢TCR (φ : H : S : ẽ)

∆ ⊢TCR (θ ∨ φ : H ⊗ (θ ∨ φ) : S⊗ (⊢∨-I2) : ẽ⊗ (e∨-I2))

∨-E

∆ ⊢TCR (θ ∨ φ : G : R : d̃) and
∆, (θ : ∅ : ∅ : ∅) ⊢TCR (γ : H : S : ẽ) and ∆, (φ : ∅ : ∅ : ∅) ⊢TCR (γ : J : T : f̃).
∆ ⊢TCR (γ : G⊗ H ⊗ J⊗ (γ) : R⊗ S⊗ T ⊗ (⊢∨-E) : d̃⊗ ẽ⊗ f̃ ⊗ (d∨-E))

¬-I
∆, (θ : ∅ : ∅ : ∅) ⊢TCR (⊥ : G : R : d̃)

∆ ⊢TCR (¬θ : G⊗ (¬θ) : R⊗ (⊢¬-I) : d̃⊗ (d¬-I))

¬-E
∆ ⊢TCR (θ : G : R : d̃) and ∆ ⊢TCR (¬θ : H : S : ẽ)

∆ ⊢TCR (⊥ : G⊗ H ⊗ (⊥) : R⊗ S⊗ (⊢¬-E) : d̃⊗ ẽ⊗ (d¬-E))

¬¬-E
∆ ⊢TCR (¬¬θ : G : R : d̃)

∆ ⊢TCR (θ : G⊗ (θ) : R⊗ (⊢¬¬-E) : d̃⊗ (d¬¬-E))

→-I
∆, (θ : ∅ : ∅ : ∅) ⊢TCR (φ : G : R : d̃)

∆ ⊢TCR (θ → φ : G⊗ (θ → φ) : R⊗ (⊢→-I) : d̃⊗ (d→-I))

→-E
∆ ⊢TCR (θ : G : R : d̃) and ∆ ⊢TCR (θ → φ : H : S : ẽ)

∆ ⊢TCR (φ : G⊗ H ⊗ (φ) : R⊗ S⊗ (⊢→-E) : d̃⊗ ẽ⊗ (d→-E))

Fig. 1. The TL Consequence Relation

188

This is the case for statistical inference, where thep-value depends on characteristics of
the sample from which the inference is made, such as its size.

With this formal system, we can take a database∆ and use the consequence re-
lation ⊢TCR defined in Figure 1 to build arguments for propositions of interest. This
consequence relation is defined in terms of rules for building new arguments from old.
The rules are written in a style similar to standard Gentzen proof rules, with the an-
tecedents of the rule above the horizontal line and the consequent below. In Figure 1,
we use the notationG⊗ H to refer to that ordered sequence created from appending
the elements of sequenceH after the elements of sequenceG, each in their respective
order. The rules are as follows:

Ax The rule Ax says that if the tuple(θ : G : R : d̃) is in the database, then it is possible
to build the argument(θ : G : R : d̃) from the database. The rule thus allows the
construction of arguments from database items.

∧-I The rule∧-I says that if the arguments(θ : G : R : d̃) and(φ : H : S : ẽ) may
be built from the database, then an argument forθ ∧ φ may also be built. The rule
thus shows how to introduce arguments about conjunctions; using it requires an
inference of the form:θ, φ ⊢ (θ ∧ φ), which we denote

⊢∧-I

in Figure 1. This inference is then assigned a value ofd∧-I .

∧-E The rule∧-E1 says that if it is possible to build an argument forθ ∧ φ from the
database, then it is also possible to build an argument forθ. Thus the rule allows
the elimination of one conjunct from an argument, and its userequires an inference
of the form:θ ∧ φ ⊢ θ. ∧-E2 allows the elimination of the other disjunct.

∨-I The rule∨-I1 allows the introduction of a disjunction from the left disjunct and the
rule∨-I2 allows the introduction of a disjunction from the right disjunct.

∨-E The rule∨-E allows the elimination of a disjunction and its replacement by tuple
when that tuple is a TL-consequence of each disjunct.

¬-I The rule¬-I allows the introduction of negation.
¬-E The rule¬-E allows the derivation of⊥, the ever-false proposition, from a contra-

diction.
¬¬-E The rule¬¬-E allows the elimination of a double negation, and thus permits the

assertion of the Law of the Excluded Middle (LEM).
→-I The rule→-I says that if on adding a tuple(θ : ∅ : ∅ : ∅) to a database, where

θ ∈ L, it is possible to concludeφ, then there is an argument forθ → φ. The rule
thus allows the introduction of→ into arguments.

→-E The rule→-E says that from an argument forθ and an argument forθ → φ it is
possible to build an argument forφ. The rule thus allows the elimination of→ from
arguments and is analogous to MP in standard propositional logic.

This is an intentionally abstract formalism — syntactically complete, but without a
specified semantics. The idea is that to capture a specific domain, we have to identify
a suitable dictionary from which to construct thed̃ and that this set of values will de-
termine the mechanism by which we can compute an overall value from the sequence

189

of di . For example, if one wanted to use Jøsang’s subjective logic, then the mechanism
for combining thedi ’s would be taken from [13]. If one wanted to quantify trust using
probability, then the combination rules would be those dictated by probability theory
(for example using [28]). If one wanted to use the dictionarymentioned above (“very
reliable” and so on) then it would be necessary to determine the right way to combine
these values across all the inference rules in Figure 1.

Even without specifying these mechanisms, it should be clear that whatever means
we use to quantify trust in combination withTL, the formalism can both capture trust
values and the precise source of information used. It is alsopossible to go further.
The fact thatTL includes explicit reference to different forms of inference allows us to
capture the fact that inferences may differ depending on thesource of the information
on which they are based — we might want to make different inferences depending
on whether the source was something we have direct experience of or something that
comes from a trusted source, or something that comes from an untrusted source.

4.3 Extensions

The previous sections have argued that systems of argumentation can provide the core
functionality required to reason about trust. Here we discuss how systems of argumen-
tation, especially the systemTL sketched above, can provide additional mechanisms
that are important in dealing with trust.

First, argumentation systems explicitly allow the representation of different points
of view. The systemTL we have sketched above provides us with the rules for con-
structing arguments, and it does not limit the number of arguments that one can con-
struct for a specific conclusion. Thus, the database∆ may contain information that
represents a number of different assessments of the trustworthiness of, for example, a
source of information. This might be done through the inclusion of a number of tuples
(θ : G : R : d̃) with different Gs, representing different views of the sources, and
different d̃s representing different assessments of trustworthiness.These pieces of in-
formation could then be used to make different inferences, with any potential choice
between conclusions being made on the basis of the relevantd̃ values.

That is one, fairly simple, way to represent different viewpoints. Another would be
to have different argumentation systems represent the views of different individuals,
and to use the mechanisms of argumentation-based dialogue (like those discussed in
[24, 8]) to explore the differences in the views of trust and to attempt to resolve them. In
such a combination, the individual argumentation systems can be constructed usingTL,
and would then reason about trust based on a single viewpoint. The interaction between
different viewpoints is then captured by the dialogue mechanisms of [24, 8], enabling a
rational discourse about trust issues.

Another important aspect of reasoning about trust, addressed in [10] for example,
is the need for an individual to be able to revise the trust they have in another based on
experience. Revision of beliefs is not a subject that has been widely considered within
the argumentation community, but [23] suggests some approaches to the subject, and
these can be implemented on top ofTL. This would allow us to represent the case in
which one individual revises its view of a source as a result of considering information
provided by another individual.

190

5 Conclusion

This paper has presented the case for using argumentation asa mechanism for reasoning
about trust. Starting from some of the many views of trust expressed in the literature,
we extracted the major features that need to be represented,discussed formalisms for
handling trust, and then suggested how argumentation couldbe used for reasoning about
trust. We sketched in some detail how a specific system of argumentation,TL, could be
used in this way and identified some additional argumentation-based mechanisms that
could be of use in dealing with trust.

Acknowledgement

Research was sponsored by the Army Research Laboratory and was accomplished un-
der Cooperative Agreement Number W911NF-09-2-0053. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation
here on.

References

1. L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable argu-
ments.Annals of Mathematics and Artificial Intelligence, 34(1-3):197–215, 2002.

2. C.Chesñevar and G. Simari. Modelling inference in argumentation through labelled deduc-
tion: Formalization and logical properties.Logica Universalis, 1(1):93–124, 2007.

3. P. M. Dung. On the acceptability of arguments and its fundamental role innonmonotonic
reasoning, logic programming and n-person games.Artificial Intelligence, 77(2):321–358,
1995.

4. D. Gambetta. Can we trust them? In D. Gambetta, editor,Trust: Making and beraking
cooperative relations, pages 213–238. Blackwell, Oxford, UK, 1990.

5. A. J. Garcia and G. R. Simari. Defeasible logic programming: an argumentative approach.
Theory and Practice of Logic Programming, 4(2):95–138, 2004.

6. J. Golbeck. Combining provenance with trust in social networks for semantic web con-
tent filtering. InProceedings of the International Provenance and Annotation Workshop,
Chicago, Illinois, May 2006.

7. J. Golbeck and C. Halaschek-Wiener. Trust-based revision for expressive web syndication.
The Logic Journal of the IGPL, (to appear).

8. T. F. Gordon. The pleadings game: An exercise in computational dialectics. Artificial Intel-
ligence and Law, 2(4):239–292, 1994.

9. T. Grandison and M. Sloman. A survey of trust in internet applications. IEEE Communica-
tions Surveys and Tutorials, 4(4):2–16, 2000.

10. C.-W. Hang, Y. Wang, and M. P. Singh. An adaptive probabilistic trust model and its evalu-
ation. InProceedings of the 7th International Conference on Autonomous Agentsand Mul-
tiagent Systems, 2008.

11. E. T. Jaynes.Probability Theory: The Logic of Science. Cambridge University Press, Cam-
bridge, UK, 2003.

191

12. A. Jøsang, E. Gray, and M. Kinateder. Simplification and analysis oftransitive trust networks.
Web Intelligence and Agent Systems, 4(2):139–161, 2006.

13. A. Jøsang, R. Hayward, and S. Pope. Trust network analysis withsubjective logic. In
Proceedings of the 29th Australasian Computer Society Conference, Hobart, January 2006.

14. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision.Decision Support Systems, 43(2):618–644, 2007.

15. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm for reputa-
tion management in P2P networks. InProceedings of the 12th World Wide Web Conference,
May 2004.

16. Y. Katz and J. Golbeck. Social network-based trust in prioritzed default logic. InProceedings
of the 21st National Conference on Artificial Intelligence, 2006.

17. P. Krause, S. Ambler, M. Elvang-Gørannson, and J. Fox. A logicof argumentation for
reasoning under uncertainty.Computational Intelligence, 11 (1):113–131, 1995.

18. Y. Kuter and J. Golbeck.SUNNY: A new algorithm for trust inference in social networks
using probabilistic confidence models. InProceedings of the 22nd National Conference on
Artificial Intelligence, 2007.

19. P. McBurney and S. Parsons. Tenacious tortoises: A formalism for argument over rules of
inference. InProceedings of the ECAI Workshop on Computational Dialectics, Berlin, 2000.

20. D. H. McKnight and N. L. Chervany. The meanings of trust. Working Paper 96-04, Carlson
School of Management, University of Minnesota, 1996.

21. N. Oren, T. Norman, and A. Preece. Subjective logic and arguingwith evidence.Artificial
Intelligence, 171(10–15):838–854, 2007.

22. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and Computation, 8(3):261—292, 1998.

23. S. Parsons and E. Sklar. How agents alter their beliefs after an argumentation-based dialogue.
In S. Parsons, N. Maudet, P. Moraitis, and I. Rahwan, editors,Argumentation in Multi-Agent
Systems, Second International Workshop, volume 4049 ofLecture Notes in Computer Sci-
ence, pages 297–312. Springer, 2005.

24. H. Prakken. Coherence and flexibility in dialogue games for argumentation.Journal of Logic
and Computation, 15(6):1009–1040, 2005.

25. G. Shafer.A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ,
1976.

26. P. Sztompka.Trust: A Sociological Theory. Cambridge University Press, Cambridge, UK,
1999.

27. Y. Wang and M. P. Singh. Trust representation and aggregation in adistributed agent system.
In Proceedings of the 21st National Conference on Artificial Intelligence, 2006.

28. Y. Xiang and N. Jia. Modeling causal reinforcement and undermining for CPT elicitation.
IEEE Transactions on Knowledge and Data Engineering, 19(12):1708–1718, 2007.

192

Computing Argumentation in Polynomial Number of
BDD Operations: A Preliminary Report

Yuqing Tang1, Timothy J. Norman2, and Simon Parsons1,3

1 Dept. of Computer Science, Graduate Center, City University of New York
365 Fifth Avenue, New York, NY 10016, USA

ytang@gc.cuny.edu
2 Dept of Computing Science, The University of Aberdeen

Aberdeen, AB24 3UE, UK
t.j.norman@abdn.ac.uk

3 Dept of Computer & Information Science, Brooklyn College, City University of New York,
2900 Bedford Avenue, Brooklyn, NY 11210 USA

parsons@sci.brooklyn.cuny.edu

Abstract. Many advances in argumentation theory have been made, but the ex-
ponential complexity of argumentation-based reasoning has made it impractical
to apply argumentation theory. In this paper, we propose a binary decision dia-
gram (BDD) approach to argumentation-based reasoning. In the approach, sets of
arguments and defeats are encoded into BDDs so that an argumentation process
can work on a set of arguments and defeats simultaneously in one BDD opera-
tion. As a result, the argumentation can be computed in polynomial number of
BDD operations on the number of input sentences.

1 Introduction

Argumentation provides an elegant approach to nonmonotonic reasoning [15] and de-
cision making [17, 26], and now sees wide use as a mechanism for supporting dialogue
in multiagent systems [32, 33]. As an approach that has its roots in logic — in many
systems of argument, the arguments are constructed using some form of logical in-
ference — the efficiency of reasoning using argumentation isa topic of considerable
interest [13, 16, 25] with a number of negative results that stress the fact that generating
arguments and establishing properties of arguments can be very costly in computational
terms.

In this paper we take a rather different look at the computation of arguments. We
have been investigating the creation of multiagent plans [36–38], especially the con-
struction of plans that take into account the communicationbetween agents [34, 35].
In doing so, we have been using a representation, that of quantified boolean formu-
lae (QBFs) and binary decision diagrams (BDDs), which has been widely adopted in
symbolic planning in non-deterministic domains. It turns out that this representation
provides a way to compute arguments, and given the computational efficiency of plan-
ning based on QBFs and BDDs, it seems that it can provide an efficient way to compute
arguments.We investigate exactly how efficient this approach is in this paper and con-
clude that we can carry out many of the basic operations needed to compute arguments
in a polynomial number of operations.

193

Note that we are not claiming to be performing general logical inference in poly-
nomical time. As we explain in detail later in the paper, the “polynomial number of
opertions” are operations on the BDD representation, and while this representation in
many cases can be constructed compactly from a set of logicalformulae, there are some
cases in which the size of this representation is exponential in the number of formulae.

2 Background

This section gives the technical background needed by the remainder of the paper, a
description ofquantified boolean formulae, andbinary decision diagrams.

2.1 Qantified boolean formulae

A propositional languageL based on a set of proposition symbolsP with quantifica-
tion can be defined by allowing standard connectives∧,∨,→,¬ and quantifiers∃,∀
over the proposition variables. The resulting language is alogic of quantified boolean
formulae (QBF) [5]. Asymbol renaming operation, which we use below, can be defined
onL, denoted byL[P/P ′], which means that a new language is obtained by substituting
the symbols ofP with the symbols ofP ′ whereP ′ contains the same set of proposi-
tions as that ofP but using different symbol names (notice that|P ′| = |P|). Similarly
for a formulaξ ∈ L, if x is a vector of propositional variables forP, then a variable
renaming operation can be defined byξ[x/x′] which means that all the appearances
of variablesx = x1x2 . . . xn are substituted byx′ = x′1x

′
2 . . . x′n which is a vector

of the corresponding variables or constants inP ′. In QBF, propositional variables can
be universally and existentially quantified: ifφ[x] is a QBF formula with propositional
variable vectorx andxi is one of its variables, the existential quantification ofxi in φ is
defined as∃xiφ[x] = φ[x][xi/FALSE]∨φ[x][xi/TRUE] and the universal quantifi-
cation ofxi in φ is defined as∀xiφ[x] = φ[x][xi/FALSE] ∧ φ[x][xi/TRUE]. Here
FALSE andTRUE are two propositional constants representing “true” and “false”
in the logic. Quantifications over a setX = {x1, x2, . . . , xn} of variables is defined as
sequantial quantifications over each variablesxi in the set:

QXξ = Qxn
Qxn−1 . . . Qx1ξ

whereQ is either∃ or ∀. The introduction of quantification doesn’t increase the ex-
pressive power of propositional logic but allows us to writeconcise expressions whose
quantification-free versions have exponential sizes [11].

With above language, we can encode sets and relations to manipulate sets of ar-
guments and defeats. Letx be an element of a setX = 2P , x can then be explicitly
encoded by a conjunction composed of all proposition symbols inP in either positive
or negative form

ξ(x) =
∧

pi∈x

pi ∧
∧

pj 6∈x andpj∈P

¬pj

wherepi ∈ x means that the corresponding bitpi is set to beTRUE in the encoding of
x, andpj 6∈ x means that the corresponding bitpj is set to beFALSE in the encoding

194

Set operator QBF operator

X1 ∩X2 ξ(X1) ∧ ξ(X2)
X1 ∪X2 ξ(X1) ∨ ξ(X2)
X1 \X2 ξ(X1) ∧ ¬ξ(X2)
x ∈ X ξ(x)→ ξ(X)
X1 ⊆ X2 ξ(X1)→ ξ(X2)

Table 1.The mapping between set operators and QBF operators

of x. We denote that a formulaγ can be satisfied in an elementx by x |= γ. Then a set
of elements can be characterized by a formulaγ ∈ L, with the set denoted byX(γ),
whereX(γ) = {x|x |= γ}.4 Two special sets, the empty set∅ and the universal setU ,
are represented byFALSE andTRUE respectively.

With these notions we can have a mapping between the set operations on states and
the boolean operations on formulae as shown in Table 1 whenX1 andX2 are interpreted
as two sets of states.

2.2 Binary decision diagrams

In the above, we have showed the natural connections betweenthe set paradigm and its
implicit representation using QBF formulae. Now we will briefly survey that the QBF
formulae and the operations over them can be represented andefficiently computed
using a data structure called Binary Decision Diagrams (BDD) [5]. In this way, the time
and space complexity for exploring the space of arguments and defeats for acceptable
arguments can be significantly reduced due to the compact representation provided by
BDDs in comparison to explicit search techniques.

A BDD is a rooted directed acyclic graph. The terminal nodes are eitherTRUE
or FALSE. Each non-terminal node is associated with a boolean variable xi, and two
BDDs, called left and right, corresponding to the values of the sub-formula whenxi

is assignFALSE andTRUE respectively. The value of a QBF formula can be de-
termined by traversing the graph from the root to the leaves following the boolean as-
signment given to the variables of the QBF formula. The advantage of using BDDs to
represent QBF formulae is that most basic operations on QBFscan be performed in lin-
ear or quadratic time in terms of the number of nodes used in a BDD representation of
the formulae if a special form of BDD, called Reduced OrderedBinary Decision Dia-
gram (ROBDD) [5], is used. A ROBDD is a compact BDD which uses afixed ordering
over the variables from the root to the leaves in the BDD, merges duplicate subgraphs
into one, and directs all their incoming edges into the merged subgraph. Following the
notation traditionally used in symbolic model checking andAI planning, we will refer
to an ROBDD simply as a BDD.

Let ξ, ξ1, ξ2 be QBF formulae, let the number of nodes used in its BDD repre-
sentation denoted by|| · ||. With this BDD representation, the complexity of a QBF
binary operator〈op〉 (e.g.∧,∨,→) on two formulaeξ1 and ξ2, namelyξ1〈op〉ξ2, is

4 Note thatX(p1 ∧ p2 ∧ . . . ∧ pk) 6= {s} wherex = {p1, p2, . . . , pk}.

195

QBF/Set operator BDD operator Complexity

¬ξ ¬G(ξ) O(||ξ||)
∃xi(ξ) G(ξxi=0) ∨G(ξxi=1) O(||ξ||2)
∀xi(ξ) G(ξxi=0) ∧G(ξxi=1) O(||ξ||2)
ξ1 ∧ ξ2 G(ξ1) ∧G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 ∨ ξ2 G(ξ1) ∨G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 → ξ2 G(ξ1)→ G(ξ2) O(||ξ1|| · ||ξ2||)
|X| Sat-count(G(ξ(X))) O(||ξ(X)||)

Table 2.The mapping between QBF operators and BDD operators.ξ, ξ1, ξ2 are formulae in QBF;
G(ξ), G(ξ1), G(ξ2) are BDD representations for these formulae.

O(||ξ1|| × ||ξ2||), that of negation¬ξ is O(||ξ||) (or O(1) if complement edges are in-
troduced to the BDDs), and that of quantificationQxi

(f [x]), whereQ is either∃ or ∀,
is O(||f ||2) [5, 11] as summarized in Table 2.

The key achievement of using BDDs (and the front end languageof QBFs) to rep-
resent sets and relations is that the complexity of the operations will depend on the
complexity of the BDD representation instead of the size of the sets and relations, and
the complexity of the BDD representation of the sets and relations doesn’t depend on
the size of those sets and relations. Instead, the operations on BDDs are polynomial in
the size of the BDD, and so operations on sets and relations will be polynomial in the
size of their BDD representation rather than exponential intheir size.

3 Set-theoretic argumentation

Having introduced the ideas from QBFs and BDDs, in this section we give an overview
of the argumentation system we will capture using them. The framework we use is
mostly drawn from the work of Amgoud and her colleagues [1, 2]with some slight
modifications. This framework will abstract away the inference procedure by which the
arguments are created and only keep track of the premises thearguments are based on.
In the next section, we will introduce the inference procedure back into the representa-
tion of arguments.

Definition 1. An argument based onΣ ⊆ L is pair (H,h) whereH ⊆ Σ andH 6= ∅
such that

1. H is consistent with respect toL,
2. H ⊢ h,
3. H is minimal (for set inclusion).

H is called the support andh is called the conclusion of the argument.A(Σ) denotes
the set of all arguments which can be constructed fromΣ.

This definition of argument can be understood as a set of constraints on how information
can be clustered as arguments. Condition(1) is to ensure that an argument is coherent.

196

The coherence of an agent’s information is defined in terms ofthe consistency of the
languageL in which the information is written. Condition(2) can be understood as
insisting that the conclusion of an argument should be supported by a set of information
in the sense of inference in the languageL. Condition(3) can be understood as saying
that no redundant information should appear in an argument.

Definition 2. (H ′, h′) is a subargument of the argument(H,h) iff H ′ ⊆ H.

Definition 3. Let (H1, h1), (H2, h2) be two arguments ofA(Σ).

1. (H1, h1) rebuts(H2, h2) iff h1 ≡ ¬h2.
2. (H1, h1) undercuts(H2, h2) iff ∃h ∈ H2 such thath1 ≡ ¬h.
3. (H1, h1) contradicts(H2, h2) iff (H1, h1) rebuts a subargument of(H2, h2).

The binary relationsrebut, undercut, and contradict gather all pairs of arguments
satisfying conditions (1), (2) and (3) respectively.

Definitions ofrebut, undercut, andcontradict will be given below and we will collec-
tively refer to the relations asdefeat if no distinction is necessary. Following Dung’s
work [15], we have the following component definitions:

Definition 4. Anargumentation frameworkis a pair,Args = 〈A,R〉, whereA is a set
of arguments, andR is the binary relationdefeat over the arguments.

Definition 5. Let 〈A,R〉 be an argumentation framework, andS ⊆ A. An argumentA
is defended byS iff ∀B ∈ A if (B,A) ∈ R then∃C ∈ S such that(C,B) ∈ R.

Definition 6. S ⊆ A. FR(S) = {A ∈ A|A is defended byS with respect toR}.

Now, for a functionF : D → D whereD is the domain and the range of the function,
a fixed point ofF is anx ∈ D such thatx = F (x). When theD is associated with an
orderingP — for example,P can be set inclusion over the power setD of arguments
— x is a least fixpointof F if x is a least element ofD with respect toP andx is a
fixed point.

Definition 7. Let 〈A,R〉 be an argumentation framework. The set of acceptable ar-
guments, denoted byAccF

R, is the least fixpoint of the functionFR with respect to set
inclusion.

The least fixpoint semantics can be viewed as a mathematical translation of the princi-
ple such that an argument survives if it can defend itself andbe defended by a set of
arguments which can also survive all the attacks made upon them.

4 Representing arguments in QBFs and BDDs

We now turn our attention to using QBFs and BDDs to represent the components of an
argumentation system, and then to perform the computationswe need to carry out on
that representation.

197

We can label each itemfi ∈ Σ with a propositionli. Namely, we will extend the
languageL to contain both the information baseΣ and the labels for these sentences.
Formally, the proposition symbols can be extended to beP = PD ∪ PL wherePD is
the set of proposition symbols for the domain information, andPL is the set of system
proposition symbols labeling the sentences inΣ. Given a finite information baseΣ ⊆
L, |PL(Σ)| = |Σ|, namely each sentencefi ∈ Σ has a corresponding labelli.

For any formulaξ in L based onP = PD ∪ PL, ξD = ∃PL
ξ is the formula with

only domain symbols left, andξL = ∃PD
ξ is the formula with only the label symbols

left.

4.1 Labeling

For representational convenience, we define

SEL(li) = li ∧
∧

j 6=i

¬lj .

A sentencefi of Σ corresponds to a pair〈SEL(li), fi〉 which can be represented by
SEL(li) ∧ fi. Given a set of input informationΣ = {fi} for fi ∈ LD, a labeling table
Λ(Σ) can be expressed as follows

Λ(Σ) = {〈SEL(li), fi〉}
wherefi ∈ Σ andli ∈ PL, and the corresponding QBF representation

ξ(Λ(Σ)) =
∨

fi∈Σ

[SEL(li) ∧ fi]

The aboveΛ(Σ) expression requires2 × |Σ| QBF/BDD operations.5 Given a subset
σ ⊆ Σ,

SEL(σ) =
∧

fi∈σ

(li) ∧
∧

fj 6∈σ

¬lj

4.2 Consistent subsets

Since the support of an argument is a consistent set of propositions, a natural place
to start thinking about argument computation is with the computation of consistent
subsets. The set of all consistent subsets ofΣ is

CONS(Σ) =
∨

σ⊆Σ

[SEL(σ) ∧
∧

fi∈σ

fi] (1)

5 The first condition of using QBF/BDD is to guarantee a way to express the informa-
tion/specification that we need with only polynomial, linear, or even logarithmicnumber of
QBF/BDD operations; the second condition is to guarantee that the size of theinitial, inter-
mediate, and final BDDs corresponding to the information/specification is small enough to fit
into memory. For the second condition, if the size of the BDD explodes we may partition the
expression into conjunctions or disjunctions, and modify the algorithms manipulating these
BDDs correspondingly to try to avoid the explosion. If this still fails, then it means that the
problem cannot be efficiently handled by BDDs. In this case, it usually also means that some
aspect of the information required to solve the problem is simply too complex.

198

Computing the above expression directly requires an exponential number of QBF/BDD
operations, so we want to find another way to compute it.

Proposition 1. CONS(Σ) can be constructed using2×|Σ|−1 operations as follows

CONS(Σ) =
∧

fi∈Σ

[li → fi]. (2)

Proof. The form of formula 2 follows from

CONS(Σ) =
∧

fi∈Σ

[li → fi]

=
∧

fi∈Σ

[li → (li ∧ fi)]

=
∧

fi∈Σ

[¬li ∨ (li ∧ fi)]

=
∨

σ⊆Σ

[
∧

fj 6∈σ

¬lj ∧
∧

fi∈σ

(li ∧ fi)]

=
∨

σ⊆Σ

[SEL(σ) ∧
∧

fi∈σ

fi]

(li → fi)↔ (li → (li ∧ fi)) follows from:

A→ B ↔ ¬A ∨B

↔ (¬A ∨A) ∧ (¬A ∨B)
↔ ¬A ∨ (A ∧B)
↔ A→ (A ∧B)

2

With the above expression, we can exclude empty consistent subsets by

CONS+(Σ) = CONS(Σ) ∧ (
∨

fi∈Σ

lk)

Because we are only interested in non-empty consistent subsets, from here on we will
meanCONS+(Σ) when we useCONS(Σ). The set of subsets of selected sentences
is

CONS(Σ)L = ∃PD

(∨
σ∈Σ(SEL(σ) ∧∧

fi∈σ fi)
)

=
∨

σ∈Σ(SEL(σ) ∧
[
∃PD

(∧
fi∈σ fi)

)]

=
∨

σ⊆Σ SEL(σ)

As we see, the complexity ofCONSL(Σ) is O(2× |Σ| − 1 + |PD|). Let

CONJ(σ) = SEL(σ) ∧
∧

fi∈σ

fi.

199

Proposition 2. Given a sentence set selectorσ ⊆ Σ represented bySEL(σ), if the
conjunction of the selected sentences inσ is consistent then it can be expressed as
follows

CONJ(σ) = SEL(σ) ∧ CONS(Σ)
=

∨
σ⊆Σ [SEL(σ) ∧∧

fi∈σ fi]

Proof. CONS(Σ) is a disjunction of conjunctions of all consistent subsets of Σ.
Among these conjunctions,SEL(σ) only can make the one corresponding to theσ
selection true, which isSEL(σ) ∧ ∧

fi∈σ fi, and others false. NamelySEL(σ) ∧
CONS(Σ) = SEL(σ) ∧∧

fi∈σ fi 2

Similarly, the set of conjunctions of a set of selected sentences can be expressed by:

CONJ({σi}) =
∨

σi

[SEL(σi)] ∧ CONS(Σ)

With this expression, we will be able to filter conbinations of consistent and inconsistent
sets of sentences into consistent sets.

4.3 QBF/BDD representation of arguments

We can extend the languageP further to containP = PL ∪PD ∪PL,C ∪PD,C where
PD,C is a set of renaming symbols ofPD to represent the conclusions of arguments;
PL,C is an optional set of symbols to label an interesting sub-space of conclusions
(the ones we want to compute arguments for). For example, if the sentences inΣ and
their negations are of interest, thenPL,C = 2log|Σ| (we don’t need to label a set of
sentences, instead we just need to label individual setences and their negations so that
we need2log|Σ| symbols). Similarly, we will denotePD by PD,P for premises when
a distinction is needed.

An argument(H,h) in LD can then be represented by formulaξ(H,h) in L

ξ(H,h) = SEL(H) ∧
∧

fi∈H

fi ∧ h[PD,C]

whereh[PD,C] means the expressionh is in terms of the symbols ofPD,C .
The set of all arguments that can be constructed fromΣ will be equivalent to

A(Σ) = CONS(Σ)

for the moment by abstracting away the conclusions. Later wewill reintroduce the con-
clusions to the representation during the query for conclusions and the defeat process.

4.4 Arguments for conclusions

We can construct the set of arguments for a set of conclusionsall at once as follows. Let
us assume that, besides the input information baseΣ, we also have a set of conclusions
C that we wish to support.

C = {hk}

200

with K = log|C| and a set of labeling symbols

PL,C = lC = {l1,C , . . . , lK,C}
and letck be defined aslC = k, namelyck is the encoding of integerk using the
boolean symbols ofPL,C .

The set of arguments forC based onΣ can be represented as

Args(Σ,C)L = ∀x∈PD∪PD,C

∨

hk∈C

∨

σ⊆Σ

[(
∧

fi∈Σ

fi → hk) ∧ SEL(σ) ∧ ck)]

and results in

Args(Σ,C) = Args(Σ,C)L ∧ CONS(Σ) ∧
∨

hk∈C

(ck ∧ hk)

Proposition 3. Args(Σ,C)L can be expressed as

∀x∈PD∪PD,C
CONS(Σ)L ∧

[∨

hk∈C

(ck)

]
∧


 ∨

fi∈Σ

(li ∧ ¬fi) ∨
∨

hk∈C

(ck ∧ hk)




using O(2 × |C|) + O(|Σ|) + O(2 × |Σ| + |PD|) + O(|PD ∪ PD,C |) QBF/BDD
operations.

Proof. Start with the first two items above,

CONS(Σ)L ∧
[∨

hk∈C

(ck)

] ∨

σ⊆Σ

∨

hk∈H

[SEL(σ) ∧ ck]

Conjoining with the remaining two items
[∨

fi∈Σ (li ∧ ¬fi) ∨
∨

hk∈C (ck ∧ hk)
]
, gives:

∨

σ⊆Σ

∨

hk∈C


SEL(σ) ∧ ck ∧


 ∨

fi∈Σ

(li ∧ ¬fi) ∨
∨

hk∈C

(ck ∧ hk)







=
∨

σ⊆Σ

∨

hk∈Σ





SEL(σ) ∧ (

∨

fi∈σ

¬fi)


 ∨ (ck ∧ hk)




=
∨

σ⊆Σ

∨

hk∈Σ


SEL(σ) ∧ ck ∧


 ∧

fi∈σ

(fi)→ (hk)







The first line is derived using
∨

i Ai ∧
∨

j Bj =
∨

i

[
Ai ∧

(∨
j Bj

)]
. The second line

is derived using

SEL(σ) ∧ (
∨

fi∈Σ

(li ∧ ¬fi)) = SEL(σ) ∧ (
∨

fi∈σ

¬fi)

since:
SEL(σ) ∧ (li ∧ ¬fi) = FALSE

for anyfi 6∈ σ. The second line also employsck ∧
∨

hk∈C(ck ∧ hk) = ck ∧ hk 2

201

Algorithm 4.1 Computing BDD for set-inclusion⊆
1: Associate with each element infi ∈ Σ two BDD variablesli andl′i.
2: Take the variable orderl1, l′1, l2, l

′
2, ..., ln, l′n (n = |Σ|)

3: for eachli do
4: link li = 1 to l′i
5: link li = 0 to li+1

6: end for
7: for eachl′i 6= l′n do
8: link l′i = 1 to li+1

9: link l′i = 0 to terminal0
10: end for
11: link l′n = 0, to terminal0
12: link l′n = 1, to terminal1

4.5 Minimization of consistent sets with respect to conclusions

In the above,Args(Σ,C) may contain non-minimal arguments. To overcome this, we
need to minimize the arguments inArgs(Σ,C) with respect to their conclusions. Given
a set of argumentsQ ⊆ A and a partial relationB ⊆ A × A (e.g. the set-inclusion⊆
relation on the supports of arguments) onA, the set of minimal arguments inQ with
respect toB is

Min(Q,B) = {A ∈ Q|for all C ∈ Q, (C,A) ∈ B implies(A,C) ∈ B}
By encodingQ with a QBF formulaQ[P] based on a setP of propositional symbols,
and encoding the partial relationB with another QBFB[P,P ′] with the first component
of B based on symbols inP and the second component ofB based on the symbols in
P ′, we can computeMin(Q,B) as fllows

Min(Q,B) = Q ∧ ∀Z [(Q[P/Z]→ (B[P/Z,P ′/P]→ B[P ′/Z])]

whereZ is a temporary set of symbols renamed fromP to hold the intermediate results
during the computation.

The set-inclusion relation between two sets of supportsH1[P] andH2[P ′] can be
implemented as:

ξ(⊆) =
∧

fi∈Σ

[li → l′i].

This requires2×|Σ|QBF/BDD operations to construct. A linear BDD size implemen-
tation of⊆ on the supports ofA is given in Algorithm 4.16.

The set of minimal supports which attack a sentencehk ∈ C can be computed as

Argsmin(Σ, hk) = Min ((Args(Σ,C) ∧ ck)L, ξ(⊆)) .

The set of minimal supports with respect to each each setencein C can be computed as

Argsmin(Σ, hk) =
∨

hk∈C

Argsmin(Σ, hk).

For description convenience, below we will useArgs(Σ,C) for Argsmin(Σ,C).
6 To the best of our knowledge only an exponential implementation exists in theliterature [3].

202

4.6 A QBF representation of defeat

A defeatdefeat((H,h), (H ′, h′)) can be represented by

ξ(H,h,H ′, h′) = CONJ(H) ∧ SEL(h)[PL,C] ∧ h[PD,C]
∧ CONJ(H ′)[P ′D] ∧ SEL(h′)[P ′L,C] ∧ h′[P ′D,C]

by extending the languageL[P] to beL[P] ∪ L[P ′]. A defeat relationD = {(Ai, A
′
i)}

can be represented by a single QBF/BDD formula:

ξ(D) =
∨

(Ai,A′
i)∈D

[ξ(Ai) ∧ ξ(A′
i)].

Now we need an expression with a polynomial number of operations to generate the
set of all possible defeats fromΣ. To do this, we need to inspect the specific types of
defeats. We start withundercut:

Definition 8. An argument(H1, h1) undercutsanother argument(H2, h2) iff there ex-
ists anf ∈ H2 such thath1 ≡ ¬f .

and this gives us:

Proposition 4. Let C = Σ ∪ {¬fi|fi ∈ Σ}, the set of all possible undercuts can be
constructed as

undercut(Σ) = Args(Σ,C) ∧Args(Σ′, C ′) ∧ (
∨

f ′i∈Σ′(c¬fi
∧ li))

wherec¬fi
denotes the encoding of the label that corresponds to¬fi in C.

Proof. Args(Σ,C) andArgs(Σ′, C ′) constructs the arguments forC based onΣ us-
ing two sets of symbols, and the corresponding selection of input sentences and conclu-
sion sentences.(

∨
f ′i∈Σ′(c¬fi

∧ li)) builds up the undercut relation between these two
sets of arguments. 2

Note that the setting of the conclusion pointsC = Σ∪{¬fi|fi ∈ Σ} can be changed ac-
cording to any application-dependent argumentation process, for exampleCONS(Σ)
and their negations or other application oriented conclusions and their negations.

Next we considerrebut:

Definition 9. (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.

We can construct therebut relation in the same way asundercut by assuming a set of
interesting conclusion points. However, we can also construct therebut relation in the
following way and leaving the conclusion points open to makethe system more flexible.

Definition 10. Given a setH of sentences, let

S(H) = {s|s |= H}
S(h) = {s|s |= h}

wheres is an assignment toP. H ⊢ h iff S(H) ⊆ S(h).

203

The definition ofrebut is then:

Definition 11. H1 rebutsH2, if there is someh such thatH1 ⊢ h andH2 ⊢ ¬h.

and we have:

Proposition 5. Given two consistent sets of sentencesH1 and H2, H1 rebutsH2 iff
S(H1) ∩ S(H2) = ∅, namely[CONJ(H1) ∧ CONJ(H2)]↔ FALSE.

Proof. If H1 rebutsH2, then there is ah such thatH1 ⊢ h andH2 ⊢ ¬h. SinceS(h)∩
S(¬h) = ∅, andS(H1) ⊆ S(h) andS(H2) ⊆ S(¬h), thereforeS(H1) ∩ S(H2) = ∅.

If S(H1) ∩ S(H2) = ∅, the rebutting pointh can be constructed as follows. Let
padding = ¬(H1 ∨ H2), and h = H1 ∨ padding. In this way,S(padding) =
U \ (S(H1) ∪ S(H2)), S(h) = S(H1) ∪ S(padding), S(¬h) = U \ (S(H1) ∪
S(padding)) = S(H2). ThereforeS(H1) ⊆ s(h) andS(H2) ⊆ S(¬h), namelyh
is the rebutting point we are looking for such thatH1 ⊢ h andH2 ⊢ ¬h. 2

Actually h can be anything such thatS(H1) ⊆ S(h) ⊆ (S(H1) ∪ S(padding)), so we
have the following corollary.

Corollary 1. Given two sets of sentencesH1 andH2 which rebut each other, the rebut
point h can be obtained by settingS(H1) ⊆ S(h) ⊆ S(H1) ∪ S(padding) where
padding = ¬(H1 ∨H2). The choice ofh = H1 ∨ ¬(H1 ∨H2) which makesH1 and
H2 be the minimal sets of sentences such thatH1 ⊢ h andH2 ⊢ ¬h 2

As a result, the set of all rebuts can be expressed as

rebut(Σ) =∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧ CONJ ′(σ′) ∧ ¬ (CONJ(σ)D ∧ CONJ(σ′)D)]

and we have:

Proposition 6. rebut(Σ) can be expressed as

rebut(Σ) = CONS(Σ) ∧ CONS′(Σ) ∧
[∨

fi∈Σ(li ∧ ¬fi) ∨
∨

fj∈Σ(l′j ∧ ¬fj)
]

using2×O(CONS(Σ)) + 6× |Σ|+ 3 QBF/BDD operations.

Proof.

rebut(Σ)

=
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧ CONJ ′(σ′) ∧ ¬ (CONJ(σ)D ∧ CONJ(σ′)D)]

=
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧ CONJ ′(σ′) ∧ (¬CONJ(σ)D ∨ ¬CONJ(σ′)D)]

=
∨

σ⊆Σ,σ′⊆Σ


CONJ(σ) ∧ CONJ ′(σ′) ∧


 ∨

fi∈σ

¬fi ∨
∨

fj∈σ′

¬fj







204

=
∨

σ⊆Σ,σ′⊆Σ


CONJ(σ) ∧ CONJ ′(σ′) ∧


 ∨

fi∈σ

(li ∧ ¬fi) ∨
∨

fj∈σ′

(l′j ∧ ¬fj)







= CONS(Σ) ∧ CONS′(Σ) ∧


 ∨

fi∈Σ

(li ∧ ¬fi) ∨
∨

fj∈Σ

(l′j ∧ ¬fj)




2

Finally we consider the computation of thecontradict relation:

Definition 12. (H1, h1) contradicts(H2, h2) if and only if(H1, h1) rebuts a subargu-
ment of(H2, h2).

The contradict relation can be computed by

contradict(Σ) = ∃Z (rebut(Σ)[P ′/Z] ∧ ξ(⊆)[P/Z])

4.7 Computing fixed points of argumentation

The relationsundercut, rebut andcontradict give us the relationship between individual
arguments, but, as is usual, we are more interested in computing things like which
arguments areacceptable, where such properties are defined as fixed-points.

Definition 13. An argumentH defends another argumentH ′ if there exists another
argumentH ′′ such thatH ′′ defeatsH ′ butH defeatsH ′′.

Thedefend relation can be constructed from thedefeat relation on the set of arguments
as follows:

defend(Σ, defeat) = ∃Z (defeat(Σ)[P ′/Z] ∧ defeat(Σ)[P/Z])

wheredefeat(Σ) is eitherundercut(Σ), rebut(Σ), contradict(Σ), or any disjunction
of the relations (e.g.undercut(Σ) ∨ rebut(Σ)). The composition of two relationsR1

andR2 on the setA of arguments can be computed by

ComposeR(R1, R2) = ∃ZR1[P ′/Z] ∧R2[P/Z].

With these constructs defined, the fixed point of argumentation can be computed using
Algorithm 4.2. In Algorithm 4.2, the closure of a binary relation R onA, is computed
using a method called iterative squaring [7] which is guaranteed to terminate within
O(log|A|) steps. In line3 : OldR ← IPL

∪ defendPL
, the defend relation is first

projected to sentence labeling symbols so that during the computation of the defending
closure only the label of arguments are considered without referring to their internal
structure; the union with the identity relationIPL

=
∧

fi∈Σ(li ↔ l′i) is to keep the
defended arguments in the closure.

Proposition 7. Algorithm 4.2 computes the fixed point of the defend relation, namely
the set of acceptable arguments constructed fromΣ.

205

Algorithm 4.2 Computing Fixed Point of Argumentation
1: function ComputeF ixedpoint(Σ, defeat) {

(1) Σ: The set of input information
(2) defeat is binary relation onA }

2: defend← defend(Σ, defeat)
3: OldR← IPL ∪ defendPL

4: R← FAIL
5: while (OldR 6= R) do
6: tmpR← R
7: R← ComposeR(OldR, OldR)
8: OldR← tmpR
9: end while

10: Undefeated← CONS(Σ) ∧ ¬ (∃x∈Pdefeat) [P ′/P]
11: Acc← ∃x∈P(Undefeated ∧R)[P ′/P] ∨ Undefeated
12: return Acc end function

Proof. Let step(R) be the maximum length of paths between a pair(A,A′) ∈ R in
the induced graph of the defend relationdefend. Let the startingR in line 3 denoted
by R0 = defend ∪ I. In R0, for every(A,A′) ∈ R, either(A,A′) ∈ defend, namely
A defendsA′ using one step, orA is identical toA′ namelyA defendsA′ using0
step, thereforestep(R0) = 1. Let the consequent content ofR in eachwhile itera-
tion denoted byRi wherei is the number of the iteration. Each time, whenRi+1 ←
ComposeR(Ri, Ri) is applied in line7, Ri+1 will gather all the argument pairs of
the form (A,A′) such thatA defendsA′ using defending steps less or equal than
step(Ri+1) = 2 × step(Ri) steps. Assume thati is the number such thatRi+1 = Ri,
if the iteration continues we will have

Ri+2 = ComposeR(Ri+1, Ri+1) = ComposeR(Ri, Ri) = Ri+1 = Ri

namely for allj ≥ i, Rj = Ri. Theforefore, after thewhile loop terminatesR will
gather all the argument pairs(A,A′) via any number of defending steps. Since the
number of arguments is finite, all the defending paths are of finite length, therefore the
algorithm is guaranteed to terminate. 2

Proposition 8. The complexity of algorithm 4.2 isO(|Σ| ×K2 × |P|) whereK is the
maximum size of the BDDs which appear during the fixed point computing process.

Proof. As the analyzed in the proof of proposition 7, thestep(Ri) = step2(Ri+1). The
maximum possible step ofRis is the number of arguments which is2|Σ|. Therefore the
algorithm is guaranteed to terminate afterm = log22|Σ| = |Σ| iterations, therefore
the number of iteraction is bounded above byO(|Σ|). In each iteration,CompoeseR
can be computed usingO(1 + |P|) number of BDD operations, each operation is of
complexityO(K2) whereK is the maximum size of BDDs used. Therefore the whole
algorithm is bounded above byO(|Σ|)×O(K2 × |P|). 2

206

5 Discussion

Proposition 8 shows that we can compute the fixed-point in a polynomial number of
BDD operations. As we mentioned above, this is a long way fromsaying that we can do
general logical inference in polynomial time, rather what we are saying is that while the
complexity of algorithm 4.2 depends on the maximum size of the BDD (K), this doesn’t
depend on the size ofΣ but rather on the complexity of the information contained inΣ.
In the worse case,K can still be exponential in|P|, but in many practical applications
K tends to be small.

Because of this feature of systems built using the QBF/BDD representation, there
has been a lot of work on reducing the size of BDDs. Many successful approaches have
been developed in literature, especially those developed for symbolic model checking
in software and hardware verfication [24], and in non-determinstic AI planning [10].
Examples of techniques for reducing the size of BDDs are early quantification [19],
quantification scheduling [9], transition partitioning [6], iterative squaring [7, 8], fron-
tier simplification [12], input splitting [28, 29], and state setA∗ branching [22, 21, 23]
(a BDD version of theA∗ search heuristic [31]).

Another factor affecting the BDD size greatly is variable ordering. The problem
of finding an optimal variable ordering is NP-complete [4]. Algorithms based on dy-
namic programming [14], heuristics [20], dynamic variablereordering [30] and ma-
chine learning approaches [18] have been proposed for finding a good variable ordering
in reasonable time7.

We are currently working on an implementation of the reasoning mechanism pro-
prosed above with the aim of experimentally clarifying the nature ofK for different
argumentation problems.

6 Conclusions and Future Work

In this paper, we have proposed a symbolic model checking approach to compute ar-
gumentation. The computation only uses a polynomial numberof BDD operations in
terms of the number of sentences in the input and the number ofsymbols used in the
input. A key idea in the approach is to construct the set of consistent arguments all
together using a polynomial number of BDD operations. In thesame way, the defeat
relation among these arguments can also be computed all at once using a polynomial
number of BDD operations. And with the iterative squaring technique, we are able to
compute the fixed point of a set of arguments in polynomial number of BDD operations.

We are currently working on implementing the BDD-based argumentation system
proposed in this paper, with the aim of conducting experiments to classify the nature of
the BDDs constructed for argumentation. This will allow us to determine how effective
this approach will be in general. This in turn may lead us to look for new heuristics
for controlling the size of the BDDs we need to construct to compute arguments. An-
other direction that we are working on is to extend the current method to compute more

7 [18] is also a good source for other references on BDD variable (re-)ordering.

207

sophisticated and controllable approaches argumentation, such as those based on argu-
mentation schemes [27]. On the way, we will need to develop BDD techniques to effi-
ciently specify application-dependent patterns of arguments (such as those captured by
argument schemes), specify application-dependent patterns of defeats (defeat schemes),
and extend the basic entailment-based reasoning modelled here to specify the necessary
patterns of rule-based procedural reasoning. In combination with our continuing efforts
to use BDD techniqes in multiagent planning and dialogues [34, 36, 38, 39], all these ef-
forts are aimed at our ultimate goal of a practical argumentation-based dialogue model
for multiagent planning.

Acknowledgment

Research was sponsored by the U.S. Army Research Laboratoryand the U.K. Ministry
of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and should
not be interpreted as representing the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence
or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation
hereon.

References

1. Leila Amgoud and Claudette Cayrol. Inferring from inconsistency in preference-based ar-
gumentation frameworks.Journal of Automated Reasoning, 29(2):125–169, 2002.

2. Leila Amgoud and Claudette Cayrol. A reasoning model based on the production of ac-
ceptable arguments.Annals of Mathematics and Artificial Intelligence, 34(1-3):197–215,
2002.

3. Rudolf Berghammer and Alexander Fronk. Exact computation of minimum feedback vertex
sets with relational algebra.Fundam. Inf., 70(4):301–316, 2005.

4. Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is NP-Complete.
IEEE Transations on Computers, 45(9):993–1002, 1996.

5. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, 1992.

6. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transi-
tion relations. InProceedings of International Conference on Very Large Scale Integration,
pages 49–58. North-Holland, 1991.

7. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.Symbolic Model
Checking:1020 States and Beyond. InProceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, pages 1–33, Washington, D.C., 1990. IEEE Computer Soci-
ety Press.

8. Gianpiero Cabodi, Paolo Camurati, Luciano Lavagno, and Stefano Quer. Disjunctive parti-
tioning and partial iterative squaring: an effective approach for symbolic traversal of large
circuits. InDAC ’97: Proceedings of the 34th Annual Conference on Design Automation,
pages 728–733, New York, NY, USA, 1997. ACM.

208

9. Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula, TomShiple, Helmut Veith,
and Dong Wang. Non-linear quantification scheduling in image computation.In ICCAD ’01:
Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided Design,
pages 293–298, Piscataway, NJ, USA, 2001. IEEE Press.

10. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking.Artificial Intelligence, 147(1-2):35–84, 2003.

11. O. Coudert and J. C. Madre. The implicit set paradigm: a new approach to finite state system
verification.Formal Methods in System Design, 6(2):133–145, 1995.

12. Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification of synchronous
sequential machines based on symbolic execution. InAutomatic Verification Methods for
Finite State Systems, pages 365–373, 1989.

13. Yannis Dimopoulos, Bernhard Nebel, and Francesca Toni. On the computational complexity
of assumption-based argumentation for default reasoning.Artificial Intelligence, 141:57–78,
2002.

14. Rolf Drechsler, Nicole Drechsler, and Wolfgang Günther. Fast exact minimization of BDDs.
In DAC ’98: Proceedings of the 35th Annual Conference on Design Automation, pages 200–
205, New York, NY, USA, 1998. ACM.

15. Phan Minh Dung. On the acceptability of arguments and its fundamentalrole in nonmono-
tonic reasoning, logic programming and n-person games.Artificial Intelligence, 77(2):321–
358, 1995.

16. Paul E. Dunne and T. J. M. Bench-capon. Two party immediate response disputes: properties
and efficiency.Artificial Intelligence, 149:2003, 2001.

17. Thomas Gordon and Nikos Karacapilidis. The zeno argumentation framework. Inin Pro-
ceedings of the Sixth International Conference on AI and Law, pages 10–18. ACM Press,
1997.

18. Orna Grumberg, Shlomi Livne, and Shaul Markovitch. Learningto order BDD variables in
verification.Journal of Artificial Intelligence Research (JAIR), 18:83–116, 2003.

19. Ramin Hojati, Sriram C. Krishnan, and Robert K. Brayton. Early quantification and parti-
tioned transition relations. InICCD ’96: Proceedings of the 1996 International Conference
on Computer Design, VLSI in Computers and Processors, pages 12–19, Washington, DC,
USA, 1996. IEEE Computer Society.

20. Jawahar Jain, William Adams, and Masahiro Fujita. Sampling schemes for computing
OBDD variable orderings. InICCAD ’98: Proceedings of the 1998 IEEE/ACM Interna-
tional Conference on Computer-aided Design, pages 631–638, New York, NY, USA, 1998.
ACM.

21. Rune M. Jensen, Randal E. Bryant, and Manuela M. Veloso. An efficient BDD-based A*
algorithm. InProceedings of AIPS-02 Workshop on Planning via Model Checking, 2002.

22. Rune M. Jensen, Randal E. Bryant, and Manuela M. Veloso. SetA*: An efficient BDD-
based heuristic search algorithm. InProceedings of 18th National Conference on Artificial
Intelligence (AAAIŠ02), pages 668–673, 2002.

23. Rune M. Jensen, Manuela M. Veloso, and Randal E. Bryant. State-set branching: Leveraging
BDDs for heuristic search.Artificial Intelligence, 172(2-3):103–139, 2008.

24. Ranjit Jhala and Rupak Majumdar. Software model checking.ACM Comput. Surv., 41(4):1–
54, 2009.

25. Antonios C. Kakas and Francesca Toni. Computing argumentation in logic programming.
Journal of Logic and Computation, 9:515–562, 1999.

26. Nikos Karacapilidis and Dimitris Papadias. Computer supported argumentation and collab-
orative decision making: The hermes system.Information Systems, 26:259–277, 2001.

27. Joel Katzav and Chris Reed. On argumentation schemes and the natural classification of
arguments.Argumentation, 18(2), 2004.

209

28. Christoph Meinel and Thorsten Theobald.Algorithms and Data Structures in VLSI Design.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

29. In-Ho Moon, James H. Kukula, Kavita Ravi, and Fabio Somenzi. To split or to conjoin: the
question in image computation. InDAC ’00: Proceedings of the 37th conference on Design
automation, pages 23–28, New York, NY, USA, 2000. ACM.

30. Shipra Panda, Fabio Somenzi, and Bernard F. Plessier. Symmetrydetection and dynamic
variable ordering of decision diagrams. InICCAD ’94: Proceedings of the 1994 IEEE/ACM
International Conference on Computer-aided Design, pages 628–631, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

31. Judea Pearl.Heuristics: intelligent search strategies for computer problem solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

32. Henry Prakken. Coherence and flexibility in dialogue games for argumentation.Journal of
Logic and Computation, 15(6):1009–1040, 2005.

33. Iyad Rahwan, Sarvapali D. Ramchurn, Nicholas R. Jennings, Peter Mcburney, Simon Par-
sons, and Liz Sonenberg. Argumentation-based negotiation.The Knowledge Engineering
Review, 18(4):343–375, December 2003.

34. Yuqing Tang, Timothy J. Norman, and Simon Parsons. A model forintegrating dialogue and
the execution of joint plans. InProceedings of the Eigth International Joint Conference on
Autonomous Agents and Multiagent Systems, Budapest, Hungary, May 10-15 2009.

35. Yuqing Tang, Timothy J. Norman, and Simon Parsons. Towards theimplementation of a
system for planning team activities. InProceedings of the Second Annual Conference of the
ITA, University of Maryland University College, Maryland, 2009.

36. Yuqing Tang and Simon Parsons. Argumentation-based dialogues for deliberation. InPro-
ceedings of the Fourth International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 552–559, New York, NY, USA, 2005. ACM Press.

37. Yuqing Tang and Simon Parsons. Using argumentation-based dialogues for distributed plan
management. InProceedings of the AAAI Spring Symposium on Distributed Plan and Sched-
ule Management, Stanford, 2006.

38. Yuqing Tang and Simon Parsons. A dialogue mechanism for public argumentation using
conversation policies. InProceedings of the Seventh International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 445–452, Estoril, Portugal, May 12-16
2008.

39. Yuqing Tang and Simon Parsons. An MDP model for planning team actions with commu-
nication. Technical report, International Technology Alliance in Networkand Information
Science, 2009.

210

Preference-based Argumentation Capturing

Prioritized Logic Programming

Toshiko Wakaki

Shibaura Institute of Technology
307 Fukasaku, Minuma-ku, Saitama, 337–8570 Japan

twakaki@sic.shibaura-it.ac.jp

Abstract. Firstly we present a novel approach of an abstract preference-
based argumentation framework (an abstract PAF, for short), which gen-
eralizes a Dung’s abstract argumentation framework (AF) to deal with
additional preferences over the set of arguments. In our formalism, the
semantics of such a PAF is given as P-extensions that are selected from
extensions of acceptability semantics by taking account for such pref-
erences. Secondly, using a prioritized logic program (PLP) capable of
representing priority information along with integrity constraints, the
proposed method defines the non-abstract preference-based argumen-
tation framework (a non-abstract PAF) translated from a PLP, whose
semantics is also given by P-extensions instantiating those of an abstract
one. Finally we show the interesting result that, P-extensions of such a
non-abstract PAF under stable semantics capture preferred answer sets of
a PLP, which ensures advantages as well as correctness of our approach.

Categories and Subject Descriptors
1.2.11[Distributed Artificial Intelligence]:[Multiagent systems]
General Terms Theory, Languages
Keywords preferences, argumentation, prioritized logic programs

1 Introduction

In the research field of argumentation, Dung’s frameworks of abstract argumen-
tation [9] have gained wide acceptance and are the basis for the implementation
of concrete formalisms. In his paper [9], Dung showed that argumentation can be
viewed as a special form of logic programming with negation as failure and gives
a series of theorems that relate semantics of logic programs and semantics of ar-
gumentation frameworks. As practical applications, there have been a number of
proposals for negotiation between multiagents that make use of argumentation.

Recently, several approaches to generalize Dung’s theory have been proposed
in order to handle additional information such as preferences as well as con-
straints which a negotiating agent generally has as its knowledge, because prefer-
ences are useful to solve conflicts between arguments and constraints are needed
to eliminate extensions not satisfying the required conditions. With respect to
handling preferences, quite recently, Amgoud and Vesic [2] pointed out that,
there is the critical problem such that extensions are not conflict-free w.r.t. the

211

attack relation for existing preference-based argumentation frameworks such as
Amgoud and Cayrol’s approach [1]. The property of conflict-freeness for exten-
sions is important since it ensures sound results. Hence they [2] proposed a new
abstract preference-based argumentation framework whose semantics ensures
requirements of conflict-freeness along with generalization to recover Dung’s ac-
ceptability semantics in case that preferences are not available.

On the other hand, with respect to formalisms for integrating logic program-
ming and argumentation, Dung [8] showed that answer set semantics [11] of
an extended logic program (an ELP, for short) is captured by stable seman-
tics of Dung’s argumentation framework, whereas Prakken and Sartor [13] in-
troduced an argument-based formalism for extended logic programming with
defeasible properties, which instantiated Dung’s grounded semantics if it is re-
stricted to static priorities. Especially with respect to logic programming based
on answer set semantics [10, 11], a significant amount of studies have been done
such as Brewka and Eiter’s preferred answer sets for extended logic programs [4],
Sakama and Inoue’s prioritized logic programming [17], Delgrande and Schaub’s
ordered logic programs [7] and so on. However, few works have been achieved
with respect to the semantical relation between such logic programming capable
of handling preferences and preference-based argumentation which generalizes
Dung’s argumentation framework [9] as far as we know.

Under such circumstances, firstly, we present a new approach of an abstract
preference-based argumentation framework (an abstract PAF, for short), which
generalizes Dung’s abstract argumentation framework to deal with additional
preferences with meeting requirements of conflict-freeness and generalization.
In our formalism, the semantics of such a PAF is given as P-extensions that
are selected from extensions of Dung’s acceptability semantics by taking into
account such preferences.

Secondly, since Sakama and Inoue’s formalism of a prioritized logic program
(PLP) is capable of representing priority information along with integrity con-
straints in a nonmonotonic logic program, we use such PLP as the underlying
logic to construct an non-abstract PAF instantiating an abstract PAF. That
is, the proposed method defines a non-abstract preference-based argumentation
framework (a non-abstract PAF, for short) translated from a PLP, whose se-
mantics is also given by P-extensions instantiating those of an abstract one. As
a result, we can show the interesting result that, P-extensions of such a non-
abstract PAF under stable semantics capture preferred answer sets of a PLP,
which generalizes Dung’s theorem about relation between answer sets of an ELP
P and stable extensions of the argumentation framework associated with P .
Thus this property ensures advantages as well as correctness of our approach.

Finally under an inconsistent knowledge base, the PLP system [19, 18] can
reason nothing from it, whereas the non-abstract PAF translated from a PLP
enables to reason intended results from it based on preferred semantics, i.e.
preferred P-extensions. Therefore we can regard such a non-abstract PAF as
the enhanced PLP so that it can also reason paraconsistently from inconsistent
knowledges.

212

This paper is organized as follows. Section 2 gives preliminaries. Section 3
presents a new abstract PAF. Section 4 presents the non-abstract PAF translated
from a PLP and the semantics. Section 5 discusses the related work and Section
6 concludes the paper.

2 Preliminaries

We briefly review the basic notions used throughout this paper.

2.1 Extended Logic Programs and Answer Set Semantics

The logic programs we consider in this paper are extended logic programs
(ELPs), which have two kinds of negation, i.e. classical negation (¬) along with
negation as failure (not) defined as follows.
Definition 1 An extended logic program (ELP)[11, 10] is a set of rules of the
form:

L← L1, . . . , Lm, notLm+1, . . . , notLn, (1)
or of the form:

← L1, . . . , Lm, notLm+1, . . . , notLn, (2)

where L and Li’s are literals, i.e. either atoms or atoms preceded by the classical
negation sign ¬ and n ≥ m ≥ 0. The symbol “ not” denotes negation as failure.
We call a literal preceded by “ not” a NAF-literal. For a rule r of the form (1), we
call L the head of the rule, head(r), and {L1, . . . , Lm, notLm+1, . . . , notLn} the
body of the rule, body(r). Especially, body(r)+ and body(r)− denote {L1, . . . , Lm}
and {Lm+1, . . . , Ln} respectively. We often write L ← body(r)+, not body(r)−

instead of (1) by using sets, body(r)+ and body(r)−. Each rule of the form (2)
is called an integrity constraint. For a rule with an empty body, we may write
L instead of L←. As usual, a rule with variables stands for the set of its ground
instances.

The semantics of an ELP is given by the answer sets [11, 10] as follows.

Definition 2 Let LitP be the set of all ground literals in the language of P .
First, let P be a not-free ELP (i.e., for each rule m = n). Then, S ⊆ LitP is an
answer set of P if S is a minimal set satisfying the conditions:
1. For each ground instance of a rule L← L1, . . . , Lm in P , if {L1, . . . , Lm} ⊆

S, then L ∈ S. In particular, for each integrity constraint ← L1, . . . , Lm in
P , {L1, . . . , Lm} �⊆ S holds;

2. If S contains a pair of complementary literals, then S = LitP .

Second, let P be any ELP and S ⊆ LitP . The reduct of P by S is a not-free ELP
PS whose form is L← L1, . . . , Lm, or ← L1, . . . , Lm,
iff there is a ground rule of the form (1), (2) in P s.t. {Lm+1, . . . , Ln}∩S = ∅.
Then, S is an answer set of P if S is an answer set of PS.

An answer set is consistent if it is not LitP . A program P is consistent if it has
a consistent answer set; otherwise, P is inconsistent. We write P |= L if a literal
L is included in every answer set of P .

213

2.2 Prioritized Logic Programs and Preferred Answer Sets

A prioritized logic program (PLP) [17] is defined as follows.

Definition 3 (Priorities) Given an ELP P and the set of ground literals LitP ,
a reflexive and transitive relation 	 is defined on LitP . For any element e1 and
e2 from LitP , e1 	 e2 is called a priority, and we say e2 has a higher priority
than e1. We write e1 ≺ e2 if e1 	 e2 and e2 �	 e1, and say e2 has a strictly
higher priority than e1.

Definition 4 (Prioritized Logic Programs, PLPs) A prioritized logic pro-
gram (PLP, for short) is defined as a pair (P, Φ), where P is an ELP 1 and Φ
is a set of priorities on LitP .

The declarative semantics of a PLP (P, Φ) is given by preferred answer sets
which are selected from answer sets of P based on the preference relation �as

derived from priorities in Φ. In what follows, the closure Φ∗ is defined as the set
of priorities which are reflexively or transitively derived using priorities in Φ.

Definition 5 (Preferences between answer sets) Given a PLP (P, Φ), the
preference relation �as over answer sets of P is defined as follows:
For any answer sets S1, S2 and S3 of P ,

1. S1 �as S1,
2. S1 �as S2 if for some literal e2 ∈ S2 \ S1,

(i) there is a literal e1 ∈ S1 \ S2 such that e1 	 e2 ∈ Φ∗, and
(ii) there is no literal e3 ∈ S1 \ S2 such that e2 ≺ e3 ∈ Φ∗,

3. if S1 �as S2 and S2 �as S3, then S1 �as S3.

We say that S2 is preferable to S1 with respect to Φ if S1 �as S2 holds. We write
S1 �as S2 if S1 �as S2 and S2 ��as S1. Hereafter, each S1 �as S2 is called a
preference between answer sets.

Definition 6 (Preferred answer sets) Let (P, Φ) be a PLP. Then, an answer
set S of P is called a preferred answer set (or p-answer set, for short) of (P, Φ)
if S �as S′ implies S′ �as S (with respect to Φ) for any answer set S′ of P .

2.3 Abstract/non-Abstract Argumentation Frameworks and
Acceptability Semantics

Dung presented an abstract argumentation framework and acceptability seman-
tics [9] defined as follows.

Definition 7 (Abstract Argumentation Frameworks) An abstract argu-
mentation framework is a pair AF=(A, R) where A is a set of arguments and
R is a binary relation over A, i.e. R ⊆ A×A. (a, b) ∈ R, or equivalently a R b,
means that a attacks b. A set S of arguments attacks an argument a if a is
attacked by an argument of S.
1 In this paper, for a PLP (P, Φ), P is restrictedly given as an ELP though such P is

originally allowed to be a GEDP, i.e. a member of the superclass of an ELP [17].

214

Definition 8 (Acceptable sets / Conflict-free sets) Let AF=(A,R) be an
argumentation framework. A set S ⊆ A is conflict-free iff there are no arguments
a and b in S such that a attacks b. An argument a ∈ A is acceptable w.r.t. a
set S ⊆ A iff for any b ∈ A such that (b, a) ∈ R, there exists c ∈ S such that
(c, b) ∈ R.

Definition 9 (Acceptability Semantics) Let AF=(A,R) be an argumenta-
tion framework and E ⊆ A be a conflict-free set of arguments. Let F : 2A → 2A

be a function with F (E) = {a | a is acceptable w.r.t. E}.
Acceptability Semantics such as complete (resp. stable, preferred, grounded)
semantics is given by the respective extensions defined as follows. E is admissible
iff E ⊆ F (E). E is a complete extension iff E = F (E). E is a grounded extension
iff E is a minimal (w.r.t. set-inclusion) complete extension. E is a preferred
extension iff E is a maximal (w.r.t. set-inclusion) complete extension. E is a
stable extension iff E is a preferred extension that attacks every argument in
A \ E.

Definition 10 (Credulous Justification vs Skeptical Justification)
Let AF=(A, R) be an argumentation framework and Sname be one of complete,
stable, preferred, and grounded. Then for an argument a ∈ A,

– a is credulously justified (w.r.t. (A, R)) under Sname semantics iff a is
contained in at least one Sname extension of (A, R);

– a is skeptically justified (w.r.t. (A, R)) under Sname semantics iff a is
contained in every Sname extension of (A, R).

Non-abstract argumentation formalisms for ELPs [13, 15] are defined as follows.

Definition 11 (Arguments) [15] Let P be an extended logic program whose
rules have the form (1). An argument associated with P is a finite sequence Ag =
[r1, . . . , rn] of ground instances of rules ri ∈ P such that for every 1 ≤ i ≤ n,
for every literal Lj in the body of ri there is a k > i such that head(rk) = Lj.
The head of a rule in Ag, i.e. head(ri) is called a conclusion of Ag, whereas
a NAF-literal not L in the body of a rule of Ag is called an assumption of
Ag. We write assm(Ag) for the set of assumptions and conc(Ag) for the set of
conclusions of an argument Ag. Especially we call the head of the first rule r1

the claim of an argument Ag as written claim(Ag).
A subargument of Ag is a subsequence of Ag which is an argument. An ar-

gument Ag with a conclusion L is a minimal argument for L if there is no
subargument of Ag with conclusion L. An argument Ag is minimal if it is mini-
mal for its claim, i.e. claim(Ag). Given an extended logic program P , the set of
minimal arguments associated with P is denoted by ArgsP .

As usual, the notions of attack such as “rebut”, “undercut”, “attack”, “defeat”
abbreviated to r, u, a, d are defined as a binary relation over ArgsP as follows.

Definition 12 (Rebut, Undercut, Attack, Defeat) For two arguments, Ag1

and Ag2, the notions of attack such as rebut, undercut, attack, defeat (r, u, a,
d for short) are defined as follows:

215

– Ag1 rebuts Ag2, i.e. (Ag1, Ag2) ∈ r if there exists a literal L such that
L ∈ conc(Ag1) and ¬L ∈ conc(Ag2);

– Ag1 undercuts Ag2, i.e. (Ag1, Ag2) ∈ u if there exists a literal L such that
L ∈ conc(Ag1) and not L ∈ assm(Ag2);

– Ag1 attacks Ag2, i.e. (Ag1, Ag2) ∈ a if Ag1 rebuts or undercuts Ag2;
– Ag1 defeats Ag2, i.e. (Ag1, Ag2) ∈ d if Ag1 undercuts Ag2, or Ag1 rebuts

Ag2 and Ag2 does not undercut Ag1.

Definition 13 (Abstract vs non-Abstract Argumentation Frameworks)
Let P be an ELP, ArgsP be the set of minimal arguments associated with P and
attacksP be the binary relation over ArgsP defined according to some notion
of attack (e.g. r, u, a, d). Then we call AFP

def
= (ArgsP , attacksP) the “non-

abstract argumentation framework” associated with P .

Although Dung’s acceptability semantics is defined as the set of extensions under
the specified argumentation semantics w.r.t. an abstract argumentation frame-
work AF = (A,R), it is also given as the set of extensions w.r.t. the non-abstract
AFP = (ArgsP , attacksP) instantiating AF using an ELP P .

2.4 Answer Set Programming as Argumentation

Dung [8] showed that stable extensions of the argumentation framework AFP

associated with an ELP P without integrity constraints capture answer set se-
mantics of P as follows.

Theorem 1. Let P be an ELP having no integrity constraints, and AFP =(ArgsP ,
attackP) be the concrete argumentation framework associated with P , where
attacksP is the binary relation over ArgsP defined according to undercut (i.e.
u) as the notion of attack. Then S is an answer set of P iff there is a stable
extension E of AFP such that

S = { L |L is a literal s.t. L = claim(Ag) for an argument Ag ∈ E}.2

3 A New Approach of an Abstract Preference-based
Argumentation Framework

We present a new approach of an abstract preference-based argumentation frame-
work (an abstract PAF for short), where Dung’s acceptability semantics is ex-
tended in a natural way so as to take account for additional preferences.

An abstract PAF takes as input three elements: a set A of arguments, an
attack relation R on A, and a preorder ≤ on A, where a pair AF=(A, R) coin-
cides a Dung’s argumentation framework. It returns extensions that are subsets
of A satisfying two basic requirements as addressed by Amgoud [2] as follows.
Conflict-freeness: If E is an extension (i.e. P-extension in our approach) of
2 In [8], it is expressed that S = { L |L is supported by an argument from E}.

216

PAF=(A, R, ≤), then E is conflict free w.r.t. R.
Generalization: Dung’s acceptability semantics of AF=(A, R) is captured as

the special case of the semantics of PAF=(A, R, ≤).

Our formalism of PAF which satisfies these basic requirements is based on
the idea that an arguing agent wants to filter out extensions of the traditional
acceptability semantics according to his/her preference, as is defined as follows.

Definition 14 (Priorities between arguments) A reflexive and transitive
relation ≤ is defined over A. For any element a1 and a2 from A, a1 ≤ a2, or
equivalently (a1, a2) ∈≤, is called a priority, and we say a2 has a higher priority
than a1. We write a1 < a2 if a1 ≤ a2 and a2 �≤ a1, and say a2 has a strictly
higher priority than a1.

Definition 15 (Preference-based Argumentation Frameworks)
A preference-based argumentation framework (PAF) is a tuple PAF=(A,R,≤),
where A is a set of arguments, R is an attack relation on A, and ≤ is a preorder
on A.

The semantics of an abstract PAF=(A,R, ≤) is given as preferable extensions
(or P-extensions) defined as follows. In what follows, given a set ≤ of priorities
between arguments, we define the closure ≤∗ as the set of priorities which are
reflexively and transitively derived from priorities in ≤.

Definition 16 (Preferences between extensions) Let Sname be one of
complete, stable, preferred, and grounded, i.e. names of Dung’s acceptability
semantics. Given PAF=(A, R, ≤), let E be the set of extensions for AF =
(A,R) under Sname semantics. Then the preference relation �ex is defined
over E as follows. For any Sname extensions E1, E2 and E3 from E,

1. E1 �ex E1,
2. E1 �ex E2 if for some argument a2 ∈ E2 \ E1,

(i) there is an argument a1 ∈ E1 \ E2 such that a1 ≤ a2 w.r.t. ≤∗, and
(ii) there is no argument a3 ∈ E1 \ E2 such that a2 < a3 w.r.t. ≤∗,

3. if E1 �ex E2 and E2 �ex E3, then E1 �ex E3.

Note that �ex is reflexive and transitive according to the items no.1 and no.3.
We say that E2 is preferable to E1 with respect to ≤ if E1 �ex E2 holds. We
write E1 �ex E2 if E1 �ex E2 and E2 ��ex E1. Hereafter, each E1 �ex E2 is
called a preference between extensions.

Example 1. Consider PAF=(A,R,≤) where A = {a, b, c, d}, R = {(a, b), (b, a),
(c, d), (d, c), (c, a), (b, d)} and ≤= {(a, b), (a, c), (b, d), (c, d)}. Then both of {a, d}
and {b, c} are preferred extensions as well as stable extensions of AF = (A,R),
and {b, c} �ex {a, d}. Note that {a, d} ��ex {b, c} by the presence of b ≤ d and
c ≤ d in ≤.

217

Definition 17 (P-extensions)
Let Sname be one of complete, stable, preferred, and grounded, and E be
the set of Sname extensions (e.g. a set of preferred extensions) for AF = (A,R).
Given PAF = (A,R,≤), a Sname extension E ∈ E (e.g. a preferred extension)
is called a Sname P-extension (e.g. a preferred P-extension) of PAF if E �ex

E′ implies E′ �ex E (with respect to ≤) for any Sname extension E′ ∈ E.

Example 2. (Ex. 1, Cont.) {a, d} is a preferred P-extension as well as a stable
P-extension of PAF w.r.t. ≤, but {b, c} is neither of them.

Proposition 1 (Generalization) Let Sname be one of complete, stable,
preferred, and grounded. E is an Sname extension of AF=(A, R) iff E is a
Sname P-extension of PAF = (A,R,≤) when ≤ is empty.

4 Preference-based and Constrained Argumentation
capturing Prioritized LP

In Section 3, an abstract PAF is presented. In this section, a non-abstract
preference-based argumentation framework (a non-abstract PAF , for short)
compiled from a PLP expressing domain knowledges is proposed as follows.

In the following, let P (resp. IC) be a set of rules of the form (1) (resp. (2)).
Then in answer set programming (ASP), the semantics of an ELP P∪IC is given
by answer sets which are selected from answer sets of P by taking account of the
set IC of integrity constraints. On the other hand, the semantics of a prioritized
logic program, i.e. a PLP (P ∪IC, Φ), is given by preferred answer sets (p-answer
sets, for short) which are selected from answer sets of P ∪ IC by taking account
of the set Φ of priorities between literals, where integrity constraints from IC
and priorities from Φ are regarded as hard and soft constraints respectively.

Similar idea is also applied to our formalisms of argumentation handling pref-
erences and constraints. That is, our basic idea is that, given an ELP P ∪ IC
as the underlying logic, the semantics of the constrained argumentation frame-
work, i.e. CAF = (ArgsP , attacksP , IC) is given by C-extensions which are
selected from extensions of the non-abstract argumentation framework AFP =
(ArgsP , attacksP) under a particular Dung’s argumentation semantics by tak-
ing account of constraints expressed by integrity constraints from IC, whereas
given a PLP (P∪IC, Φ) as the underlying logic, the semantics of the non-abstract
preference-based argumentation framework, i.e. PAF = (ArgsP , attacksP , IC,≤
) translated from a PLP is given by P-extensions which are selected from C-
extensions of the CAF by taking account of the set ≤ of priorities between
arguments as are constructed via priorities between literals from Φ.

4.1 Constrained AFs built on ELPs with integrity constraints

First of all, we show a constrained argumentation framework whose underlying
logic is an ELP with integrity constraints as follows.

218

Definition 18 (From ELPs with constraints to constrained AFs)
A constrained argumentation framework CAF (P, IC) associated with an ELP
P ∪ IC is defined as follows:

CAF (P, IC)
def
= (ArgsP , attacksP , IC),

where P and IC are sets of rules of the form (1) and (2) respectively.

After defining the claims of a set of arguments, we show the definition of satis-
fiability of an extension w.r.t. constraints as follows.

Definition 19 (The claims of a set of arguments) Let E be a set of argu-
ments. Then claims(E) which we call the claims of E is defined as follows:

claims(E)
def
= {L | L is a literal s.t. L = claim(Ag) for an argument Ag ∈ E}.

Definition 20 (Satisfiability) Let CAF (P, IC)
def
= (ArgsP , attacksP , IC) be

a constrained argumentation framework associated with P ∪ IC. Note that for a
rule from IC having the following form (2) whose name is ric:

ric : ← L1, . . . , Lm, notLm+1, . . . , notLn, (2)
body(ric)+ = {L1, . . . , Lm} and body(ric)−={L1, . . . , Lm}.
Then for E ⊆ ArgsP , whether E satisfies IC is defined as follows.

• E violates IC iff E ∪ IC is inconsistent
iff ∃ric ∈ IC s.t. body(ric)+ ⊆ claims(E) and body(ric)− ∩ claims(E) = ∅
• E satisfies IC iff E does not violate IC iff E ∪ IC is consistent

iff ∀ric ∈ IC if body(ric)− ∩ claims(E) = ∅, then body(ric)+ �⊆ claims(E).

The semantics of a constrained argumentation framework is given by C-extensions
as follows.

Definition 21 (C-extensions) Let CAF (P, IC) = (ArgsP , attacksP , IC) be
a constrained argumentation framework associated with an ELP P ∪ IC, and
AFP = (ArgsP , attacksP) be the argumentation framework associated P . Then
the semantics of CAF (P, IC) is defined as follows. For E ⊆ ArgsP ,

• E is C-admissible iff E is admissible for AFP and satisfies IC.
• E is a complete C-extension of CAF (P, IC) iff E is a complete extension of

AFP and satisfies IC.
• E is a preferred C-extension of CAF (P, IC) iff E is a preferred extension

of AFP and satisfies IC.
• E is a grounded C-extension of CAF (P, IC) iff E is a grounded extension

of AFP and satisfies IC.
• E is a stable C-extension of CAF (P, IC) iff E is a stable extension of AFP

and satisfies IC.

The following Theorem extends Theorem 1 to handle integrity constraints.

219

A B

C D

A B

C D

A B

C D

A B

C D

Fig. 1. Argumentation Frameworks (AFP s) of Example 3 and Example 4

Theorem 2. Let CAF (P, IC)
def
= (ArgsP , attacksP , IC) be a constrained ar-

gumentation framework associated with an ELP P ∪ IC, where P and IC are
the sets of rules of the form (1) and (2) respectively, and attacksP is the binary
relation over ArgsP which is defined according to undercut (i.e. u) as the notion
of attack. Then S is an answer set of P ∪ IC iff there is a stable C-extension E
of CAF (P, IC) such that S = claims(E).

Proof: See appendix.

Example 3. Let us consider the following ELP P ∪ IC:

P : p← not q, q ← not p,

q ← not r, r ← not q.

IC: ← p, r.

P has two answer sets, S1 and S2 such that S1 = {p, r} and S2 = {q}, whereas
P ∪ IC has only one answer sets, S2. On the other hand, the set ArgsP of
minimal arguments associated with P is {A, B, C, D} such that

A = [p← not q], B = [q ← not p]
C = [q ← not r], D = [r ← not q],

whereas the attack relation, attacksP is obtained according to undercut as fol-
lows,

attacksP = {(A, B), (B, A), (C, D), (D, C), (C, A), (B, D)},
Thus, w.r.t. AFP = (ArgsP , attacksP) whose graph is shown as the left one of
Fig. 1, there are two preferred as well as stable extensions, E1 and E2 as follows:

E1 = {A, D}, E2 = {B, C}

with claims(E1) = {p, r} and claims(E2) = {q}.
Instead, E2 is the preferred C-extension as well as the stable C-extension of

CAF (P, IC) = (ArgsP , attacksP , IC), but E1 is neither of them since claims(E1)∪
IC is inconsistent, but claims(E2)∪ IC is consistent. Note that claims(E2) co-
incides with the answer set S2 = {q} of P ∪ IC as addressed by Theorem 2.

4.2 Preference-based AFs translated from PLPs

Here, we show a non-abstract preference-based argumentation framework trans-
lated from a PLP (P ∪ IC, Φ).

220

Definition 22 (From PLPs to Preference-based AFs) For a PLP (P ∪
IC, Φ), the non-abstract preference-based argumentation framework PAF (P, IC, Φ)
associated with the PLP is defined as follows:

PAF (P, IC, Φ) = (ArgsP , attacksP , IC, ≤)

where ≤ is a priority relation between arguments defined as a preorder 3 on
ArgsP such that,

Ag1 ≤ Ag2 iff e1 	 e2 ∈ Φ∗ for claim(Ag1) = e1 and claim(Ag2) = e2.
For any argument Ag1 and Ag2 from ArgsP , Ag1 ≤ Ag2 or (Ag1, Ag2) ∈≤ is
called “a priority between arguments”, and we say Ag2 has a higher priority than
Ag1. We write Ag1 < Ag2 if Ag1 ≤ Ag2 and Ag2 �< Ag1, and say “Ag2 has a
strictly higher priority than Ag1”. When IC is empty, we may write

PAF (P, Φ) = (ArgsP , attacksP ,≤)

instead of PAF (P, ∅, Φ) = (ArgsP , attacksP , ∅, ≤).

Note that ≤ is equivalent to ≤∗, i.e. the reflexive and transitive closure of ≤.
In our approach, given a PLP (P ∪ IC, Φ), preferences between C-extensions are
defined w.r.t. PAF (P, IC, Φ) as follows.

Definition 23 (Preferences between C-extensions) Let Sname be be one
of complete, stable, preferred, and grounded. For a PLP (P ∪ IC, Φ), let
PAF (P, IC, Φ)= (ArgsP , attacksP , IC, ≤) be the non-abstract preference-based
argumentation framework, CAF (P, IC)=(ArgsP , attacksP , IC) be the constrained
argumentation framework, and E be the set of Sname C-extensions for CAF (P, IC).
Then a preference relation �ex over E is defined as follows. For any C-extensions,
E1, E2 and E3 from E,
1. E1 �ex E1,
2. E1 �ex E2 if for some argument Ag2 ∈ E2 \ E1,

(i) there is an argument Ag1 ∈ E1 \ E2 s.t. Ag1 ≤ Ag2 w.r.t. ≤, and
(ii) there is no argument Ag3 ∈ E1 \ E2 s.t. Ag2 < Ag3 w.r.t. ≤,

3. if E1 �ex E2 and E2 �ex E3, then E1 �ex E3.

Note that �ex is reflexive and transitive according to the items no.1 and no.3.
We say that E2 is preferable to E1 with respect to ≤ if E1 �ex E2 holds. We
write E1 �ex E2 if E1 �ex E2 and E2 ��ex E1. Hereafter, each E1 �ex E2 is
called “a preference between C-extensions”.

The semantics of PAF (P, IC, Φ) is given by P-extensions as follows.

Definition 24 (P-extensions) Let Sname be be one of complete, stable,
preferred, and grounded. For a PLP (P ∪IC, Φ), let E be the set of the Sname
C-extensions for CAF (P, IC). Then a C-extension E ∈ E is is called a Sname
P-extension of PAF (P, IC, Φ) if E �ex E′ implies E′ �ex E (with respect to ≤)
for any E′ ∈ E. In other words, E ∈ E is a Sname P-extension of PAF (P, IC, Φ)
iff E ��ex E′ with respect to ≤ for any E′ ∈ E.
3 A binary relation is a preorder iff it is reflexive and transitive

221

The following theorem shows that stable P-extensions of PAF (P, IC, Φ) capture
preferred answer sets of a PLP (P ∪ IC, Φ), which extends Theorem 2.

Theorem 3. For a PLP (P∪IC, Φ), let PAF (P, IC, Φ)=(ArgsP , attacksP , IC, Φ)
be the non-abstract preference-based argumentation framework, where attacksP

is the binary relation over ArgsP defined according to undercut (i.e. u). Then S
is a preferred answer set (i.e. p-answer set) of a PLP (P ∪ IC, Φ) iff there is a
stable P-extension E of PAF (P, IC, Φ) such that S = claims(E).

Proof: See appendix.

The sceptical (resp. credulous) query-answering problem is uniformly handled
for our preference-based argumentation framework as follows.

Definition 25 (Credulous / Skeptical query-answering)
For a PLP (P ∪ IC, Φ), let PAF (P, IC, Φ)=(ArgsP , attacksP , IC, Φ) be the
preference-based argumentation framework and Sname be one of complete, stable,
preferred, and grounded. Then for an argument Ag ∈ ArgsP ,

– Ag is credulously justified w.r.t. PAF (P, IC, Φ) under Sname semantics iff
Ag is contained in at least one Sname P-extension of PAF (P, IC, Φ);

– Ag is skeptically justified w.r.t. PAF (P, IC, Φ) under Sname semantics iff
Ag is contained in every Sname P-extension of PAF (P, IC, Φ).

The following proposition denotes that, Dung’s acceptability semantics is the
special case of our preference-based argumentation semantics.

Proposition 2 Let Sname be be one of complete, stable, preferred, and
grounded. For a PLP (P ∪ IC, Φ) whose IC and Φ are empty, E is a Sname
extension of an argumentation framework AFP associated with P iff E is a
Sname P-extension of PAF (P, IC, Φ).

In the following examples, each attacksP is constructed based on undercut
as the notion of attack in order to illustrate Theorem 3.

Example 4. Let us consider a PLP (P, Φ) of Example 4.2 in [17] as follows:

P : p← not q, not r,

q ← not p, not r,

r ← not p, not q,

s← p.

Φ: p 	 q, r 	 s.

P has three answer sets S1 = {p, s}, S2 = {q}, S3 = {r}, whereas the PLP
(P, Φ) has the unique p-answer set, S2 = {q} since S3 �as S1, S1 �as S2 and
S3 �as S2 due to p 	 q, r 	 s from Φ.

On the other hand, according to Definition 22, the preference-based argumen-
tation framework associated with (P, Φ) is PAF (P, Φ)=(ArgsP , attacksP , ≤),
where ArgsP is {A, B, C, D} such that

222

A = [p← not q, not r], B = [q ← not p, not r]

C = [r ← not p, not q], D = [s← p; p← not q, not r]

with claim(A) = {p}, claim(B) = {q}, claim(C) = {r} and claim(D) = {s},
attacksP is the following attack relation derived according to undercut,
{(A, B), (B, A), (C, A), (A, C), (B, C), (C, B), (B, D), (D, B), (C, D), (D, C)}

and ≤ is the binary relation over ArgsP such that ≤= {(A, B), (C, D)} ∪ Ψ
where Ψ = {(x, x)|x ∈ ArgsP } since p 	 q ∈ Φ for claim(A) = {p} and
claim(B) = {q}, and r 	 s ∈ Φ for claim(C) = {r} and claim(D) = {s}.
Now AFP = (ArgsP , attacksP) whose graph is shown as the right one of Fig.1
has three preferred extensions as follows:

E1 = {A, D}, E2 = {B}, E3 = {C}

where claims(E1) = {p, s}, claims(E2) = {q} and claims(E3) = {r}. Note
that they are also stable extensions. Therefore E2 is the unique preferred (resp.
stable) P-extension of PAF (P, Φ) since E3 �ex E1, E1 �ex E2 and E3 �ex E2

due to (A, B) ∈≤, (C, D) ∈≤ and transitive law of �ex. Noted that the unique p-
answer set, S2 of the PLP coincides with claims(E2) for the stable P-extension,
E2 of PAF (P, Φ).

Example 5. Consider a PLP (P ∪ IC, Φ), where P and Φ are given in Example
4 and IC has the integrity constraint as follows:

IC: ← q.

Then P has two answer sets S1 = {p, s} and S3 = {r}, whereas the PLP (P ∪
IC, Φ) has the unique p-answer set, S1 since S3 �as S1.

On the other hand, the preference-based argumentation framework associated
with a PLP (P ∪ IC, Φ) is PAF (P, IC, Φ)=(ArgsP , attacksP , IC,≤), where
AFP = (ArgsP , attacksP) and ≤ are the same ones shown in Example 4.

Though there are three preferred as well as stable extensions, E1, E2 and E3

for this AFP , both E1 and E3 are preferred as well as stable C-extensions of this
CAF (P, IC) but E2 is not because both claims(E1)∪ IC and claims(E3)∪ IC
are consistent, but claims(E2) ∪ IC is inconsistent. As a result, according to
Definition 23, E1 = {A, D} is not only the unique preferred P-extension but
also the unique stable P-extension of PAF (P, IC, Φ) but E3 is not. Note that,
the unique p-answer set, S1 = {p, s} of this PLP (P ∪ IC, Φ) coincides with
claims(E1) for E1 = {A, D} of PAF (P, IC, Φ).

Example 6. (Gordon’s Perfected Shipping Problem)
Let us consider the famous legal reasoning example due to Gordon [12]. The
problem is described as follows: “A person wants to find out if her security
interest in a certain ship is perfected. According to the Uniform Commercial
Code (UCC) which is a state law, a security interest in goods may be perfected
by taking possession of the collateral. However, the federal Ship Mortgage Act
(SMA) states that a security interest in a ship may only be perfected by filing
a financing statement. She currently has possession of the ship, but a statement

223

has not been filed. Both UCC and SMA are applicable: the question is which
takes precedence here.” The situation is presented by ELP P1 as follows.

P1: perfected← posses, ucc, (UCC)
¬perfected← ship,¬file, sma, (SMA)
posses←, ship←, ¬file←,

ucc← not ¬perfected, sma← not perfected.

Since the two laws are in conflict with one another, they lead to two answer
sets S1 and S2 of P1 as follows.

S1 = {perfected, posses, ship,¬file, ucc}.
S2 = {¬perfected, posses, ship,¬file, sma}.

Now, there are two well-known legal principles for resolving such conflict
between laws as follows.
“The principle of Lex Posterior gives precedence newer laws, and the principle
of Lex Superior gives precedence to laws supported by the higher authority. In
our case, UCC is newer than the SMA, and the SMA has higher authority since
it is a federal law.” Such knowledge may be described as the following sets:

Φ1 = {sma 	 ucc}, Φ2 = {ucc 	 sma}, Φ3 = {sma 	 ucc, ucc 	 sma},

where Φ1 takes account of only the principle of Lex Posterior, Φ2 only Lex
Superior, and Φ3 both. Then S1 (resp. S2) is the unique p-answer set of (P1, Φ1)
(resp. (P1, Φ2)), but both of S1 and S2 become tie p-answer sets of (P1, Φ3) since
S1 �as S2 and S2 �as S1 due to a conflict between these principles.

On the other hand, the preference-based argumentation framework associated
with (P1, Φi) is PAF (P1, Φi)=(ArgsP , attacksP , ≤i) (for 1 ≤ i ≤ 3), where
ArgsP1 is {A, B, C, D, F, G, H} such that,

A = [perfected← posses, ucc; posses; ucc← not ¬perfected],

B = [¬perfected← ship,¬file, sma; ship; ¬file; sma← not perfected],

C = [ucc← not ¬perfected],

D = [sma← not perfected],

F = [posses←], G = [ship←], H = [¬file←]

with claim(A) = {perfected}, claim(B) = {¬perfected}, claim(C) = {ucc},
claim(D) = {sma}, claim(F) = {posses}, claim(G) = {ship}, claim(H) =
{¬file}, attacksP1 is {(A, B), (B, A), (A, D), (B, C)} derived according to under-
cut, and each ≤i is the binary relation over ArgsP1 such that ≤1= {(D, C)}∪Ψ ,
≤2= {(C, D)}∪Ψ , ≤3= {(C, D), (D, C)}∪Ψ where Ψ = {(x, x)|x ∈ ArgsP1} due
to the respective Φi. In this case, AFP1=(ArgsP1 , attacksP1) has two preferred
as well as stable extensions, E1 = {A, C, F, G, H} and E2 = {B, D, F, G, H}
with claims(E1) = {perfected, ucc, posses, ship,¬file} and

claims(E2) = {¬perfected, sma, posses, ship,¬file},
whereas E1 (resp. E2) is the unique preferred as well as stable P-extension of

224

PAF (P1, Φ1) (resp. PAF (P1, Φ2)), but both E1 and E2 are the preferred as well
as stable P-extensions of PAF (P1, Φ3) since E1 �ex E2 and E2 �ex E1 due to
≤3.

The following example shows that even for a PLP (P, Φ) whose P is incon-
sistent, intended results of argumentation are derived based on the PAF.

Example 7. (Ex. 6 Cont.) Consider the PLP (P2, Φi) (1 ≤ i ≤ 3) such that
P2 = P1 ∪ {ab← not ab}, Due to the added rule to P1, P2 is inconsistent since
it has no answer sets. Hence the PLP (P2, Φi) with any Φi has no p-answer sets.
This reveals the limitation of answer set programming which is only applicable
to consistent knowledge bases. Instead, for the PLP (P2, Φi), we have

PAF (P2, Φi) = (ArgsP2 , attacksP2 , ≤i) (for 1 ≤ i ≤ 3),
where ArgsP2 = ArgsP1 ∪ {I} such that I = [ab ← not ab] and attacksP2 =
attacksP1∪{(I, I)} as derived according to undercut. In this case, AFP2=(ArgsP2 ,
attacksP2) has no stable extensions but has the same two preferred extensions,
E1 and E2 that AFP1 has. Similarly, each PAF (P2, Φi) (1 ≤ i ≤ 3) has no stable
P-extensions but has the same preferred P-extensions that PAF (P1, Φi) has.

5 Related Work

Amgoud and Vesic [2] proposed only a new abstract PAF, whereas we present
not only a new approach of an abstract PAF but also propose a non-abstract
PAF constructed from a prioritized logic program. In our approach, we can show
Theorem 3 for such a non-abstract PAF as is the generalization of Theorem 1
presented by Dung [8]. This property ensures advantages as well as correctness
of our approach.

Coste-Marquis et al.[6] proposed an abstract CAF where constraints are ex-
pressed by a propositional formula defined over the set of abstract arguments,
whereas in our approach, a non-abstract CAF is defined where constraints are
given as nonmonotonic rules embedded in an extended logic program expressing
a agent’s domain knowledge. From the computational point of view, Besnard and
Doutre’s approach [3] for encoding acceptable semantics can be applied to their
CAF, whereas a non-abstract CAF presented in this paper can be easily encoded
in ASP setting by extending our previous work [20] to compute argumentation
semantics in ASP based on Caminada’s reinstatement labellings [5].

S̆efránek [16] presented the semantics, i.e. preferred answer sets of a prior-
itized logic program (P,≺,N) based on argumentation, where P is an ELP, ≺
is a strict partial order on rules of P and N is a function assigning names to
rules of P . He proposed an argumentation framework translated from such a
prioritized logic program, and defined preferred answer sets in his framework.
However, not only argumentation framework proposed in [16] is inapplicable to
a inconsistent P but also it is not the generalization of Dung’s argumentation
framework fro handling additional preferences.

225

6 Conclusion

To handle preferences along with constraints, we present new abstract preference-
based argumentation frameworks as well as the non-abstract ones translated
from prioritized logic programs. In our approach, we can show Theorem 3 such
that, stable P-extensions of a preference-based argumentation framework PAF (P,
IC, Φ) associated with the PLP (P ∪ IC, Φ) capture p-answer sets of the PLP.
Hence advantages and correctness of our approach are ensured.

On the other hand, when agent’s knowledge expressed by an ELP P is in-
consistent, we cannot reason anything from a PLP (P, Φ) as well as from our
PAF (P, Φ) under stable semantics, since there are no p-answer sets of the PLP
as well as no stable P-extensions of PAF (P, Φ). However, with such inconsis-
tent P , we can infer the intended results from a non-abstract PAF (P, Φ) under
preferred semantics because there exists a preferred P-extension for PAF (P, Φ).
Thus in some sense, a non-abstract PAF presented in the paper can be regarded
as the extended PLP.

Applying the techniques used in our previous works [18–20], the encoding to
compute P-extension of the non-abstract PAF can be easily established in ASP
setting. Thus such a system which encodes the PAF presented in the paper will
behave as the enhanced PLP system such that not only it can compute p-answer
sets of a PLP via the stable P-extensions but also it can infer intended results
via the preferred P-extensions even if P is inconsistent.

Our future works are not only to investigate computational complexity of the
proposed methods but also to implement the PAF system in ASP setting so that
it may be used in multiagent systems of negotiation based on argumentation.

Acknowledgments: This research is partially supported by Grant-in-Aid
for Scientific Research from JSPS, No. 20500141.

References

1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable
arguments. In Annals of Mathematics and Artificial Intelligence, Vol. 34, Issue 1-3,
pp. 197-215 (2002)

2. Amgoud, L., Vesic, S.: Repairing preference-based argumentation frameworks. In:
Proceedings of IJCAI 2009, pp. 665-670 (2009)

3. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In:
Proceedings of NMR-2004, pp.59–64 (2004)

4. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial
Intelligence 109, pp. 297-356 (1999)

5. Caminada, M.: On the issue of reinstatement in argumentation. In: Proceedings of
JELIA-2006, LNAI(LNCS), vol. 4160, pp. 111–123. Springer (2006)

6. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frame-
works. In: Proceedings of KR’06, pp. 112-122 (2006)

7. Delgrande, J. P., Schaub, T., Tompits, H.: A framework for compiling preferences
in logic programs. Theory and Practice of Logic Programming 3(2), pp. 129-187
(2003)

8. Dung, P.M.: An argumentation semantics for logic programming with explicit nega-
tion. In: Proceedings of ICLP 1993, MIT press, pp.616-630 (1993)

226

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning. logic programming, and n-person games. Artificial Intelli-
gence 77, pp. 321–357 (1995)

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the fifth International Conference and Symposium on Logic
Programming (ICLP/SLP-1988), pp. 1070–1080. MIT Press (1988)

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, pp. 365–385 (1991)

12. Gordon, Thomas F., The pleadings game: An Artificial Intelligence Model of Pro-
cedural Justice. Dissertation, TU Darmstadt (1993)

13. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7(1):25-75 (1997)

14. Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: D.M.
Gabbay and F. Guenthner, eds., Handbook of Philosophical Logic, Second Ed.,
vol. 4, pp. 218–319. Kluwer, Dordecht (2001)

15. Schweimeier, R., Schroeder, M.: A Parameterized hierarchy of argumentation se-
mantics for extended logic programming and its application to the well-founded
semantics. Theory and Practice of Logic Programming 5(1,2), pp. 207–242. Cam-
bridge University Press (2005)

16. S̆efránek J.: Preferred answer sets supported by arguments. In: Proceedings of
NMR-2008, pp.232-240 (2008)

17. C. Sakama, C., Inoue, K.: Prioritized logic programming and its application to
commonsense reasoning. Artificial Intelligence 123, pp. 185-222 (2000)

18. Wakaki, T., Inoue, K., Sakama, C., Nitta, K.: Computing preferred answer sets in
answer set programming. In: Proceedings of LPAR 2003, LNAI(LNCS), vol. 2850,
pp. 259–273, Springer (2003)

19. Wakaki, T., Inoue, K., Sakama, C., Nitta, K.: The PLP system. Proc. of JELIA
2004, LNAI(LNCS), vol. 3229, Springer, pp. 706-709 (2004)

20. Wakaki, T., Nitta, K.: Computing argumentation semantics in answer set program-
ming. New Frontiers in Artificial Intelligence, LNAI(LNCS), vol. 5547, pp. 254-269.
Springer (2009)

Appendix: Proofs of Theorems

Proof of Theorem 2
Proof: (⇐=) Suppose E is a stable C-extension of CAF (P, IC)= (ArgsP , attacksP ,
IC). According to Definition 21, E is a stable extension of AFP = (ArgsP ,
attacksP) and satisfies IC. Therefore, there is the answer set S of P such that
S = claims(E) due to Theorem 1. Thus according to Definition 2, S is also an
answer set of the not-free PS , i.e. the reduct of P .
Now, since such E satisfies IC, which means that, for S = claims(E),

∀ric ∈ IC if body(ric)− ∩ S = ∅, then body(ric)+ �⊆ S,
the answer set S of PS satisfies body(ric)+ = {L1, . . . , Lm} �⊆ S if body(ric)− ∩
S = {Lm+1, . . . , Ln} ∩ S = ∅ for any integrity constraint ric ∈ IC as follows:

ric : ← L1, . . . , Lm, notLm+1, . . . , notLn.
Therefore it is concluded that S is an answer set of (P ∪ IC)S . Hence S =
claims(E) is an answer set of P ∪ IC.
(=⇒) The converse is also proved similarly. �

After preparing the following lemma, we show the proof of Theorem 3.

227

Lemma 1. For a PLP (P ∪ IC, Φ), let PAF (P, IC, Φ) be (ArgsP , attacksP ,
IC,≤), CAF (P, IC) be (ArgsP , attacksP , IC), E1, E2 be stable C-extensions of
CAF (P, IC), and S1, S2 be answer sets of P ∪ IC. Then it holds that,

E1 �ex E2 iff S1 �as S2 for S1 = claims(E1) and S2 = claims(E2).

Proof:
Suppose E is a stable C-extension of CAF (P, IC). Then according to Theorem 2,
claims(E) coincides with an answer set S of P ∪ IC. Moreover, for an argument
Ag ∈ ArgsP and its claim e ∈ LitP , i.e. e = claim(Ag), it holds that,

Ag ∈ E iff e ∈ S, and Ag �∈ E iff e �∈ S. (3)
Now with respect to stable C-extensions E1, E2 of CAF (P, IC) whose claims
are S1 = claims(E1), S2 = claims(E2) respectively, it holds that, due to (3), for
a literal e2 ∈ LitP such that e2 = claim(Ag2),

Ag2 ∈ E2 \ E1 iff Ag2 ∈ E2 and Ag2 �∈ E1 iff e2 ∈ S2 and e2 �∈ S1

iff e2 ∈ S2 \ S1. (4)
Similarly for a literal e1 ∈ LitP such that e1 = claim(Ag1), it hold that,

Ag1 ∈ E1 \ E2 iff e1 ∈ S1 \ S2. (5)
On the other hand, according to Definition 22,

Ag1 ≤ Ag2 iff e1 	 e2 ∈ Φ∗ for claim(Ag1) = e1 and claim(Ag2) = e2. (6)
Thus due to (4), (5), (6), it holds that,

∃Ag2 ∈ E2 \ E1 and ∃Ag1 ∈ E1 \ E2 such that Ag1 ≤ Ag2

iff ∃e2 ∈ S2 \ S1 and ∃e1 ∈ S1 \ S2 such that e1 	 e2 ∈ Φ∗. (7)
Therefore by extending (7), it is obviously derived that,

∃Ag2 ∈ E2 \ E1[∃Ag1 ∈ E1 \ E2 such that Ag1 ≤ Ag2

∧¬∃Ag3 ∈ E1 \ E2 s.t. Ag2 < Ag3 w.r.t. ≤],
iff ∃e2 ∈ S2 \ S1[∃e1 ∈ S1 \ S2 such that e1 	 e2 ∈ Φ∗

∧¬∃e3 ∈ S1 \ S2 s.t. e2 ≺ e3 ∈ Φ∗] (8)
where Si = claims(Ei) and ej = claim(Agj) (1 ≤ i ≤ 2, 1 ≤ j ≤ 3).
(8) means that E1 �ex E2 iff S1 �as S2 for S1 = claims(E1) and S2 =
claims(E2) w.r.t. the item no.2 of Definition 23 and that of Definition 5. Since
both �ex and �as are reflexive and transitive, it also holds that, E1 �ex E2 iff
S1 �as S2 w.r.t. items no.1 and no.3 of these definitions. �

Proof of Theorem 3
Proof: For a PLP(P ∪ IC, Φ), let AS be the set of all answer sets of P ∪ IC and
E be the set of all stable C-extensions of CAF (P, IC)= (ArgsP , attacksP , IC).
Then, it follows that,

E ∈ E is a stable P-extensions of PAF (P, IC,≤) built on a PLP(P ∪ IC, Φ)
iff E �ex E′ implies E′ �ex E (with respect to ≤) for any E′ ∈ E
iff w.r.t. S = claims(E) ∈ AS,

S �as S′ implies S′ �as S (with respect to Φ) for any S′ = claims(E′) ∈ AS
due to Theorem 2 and Lemma 1,

iff S = claims(E) ∈ AS is a preferred answer set of (P, Φ). �

228

Arguing About Preferences And Decisions?

T.L. van der Weide, F. Dignum, J.-J. Ch. Meyer,
H. Prakken, and G.A.W. Vreeswijk

Universiteit Utrecht
{tweide,dignum,jj,henry,gv}@cs.uu.nl

Abstract. Complex decisions involve many aspects that need to be con-
sidered, which complicates determining what decision has the most pre-
ferred outcome. Artificial agents may be required to justify and discuss
their decisions to others. Designers must communicate their wishes to
artificial agents. Research in argumentation theory has examined how
agents can argue about what decision is best using goals and values.
Decisions can be justified with the goals they achieve, and goals can
be justified by the values they promote. Agents may agree on having a
value, but disagree about what constitutes that value. In existing work,
however, it is not possible to discuss what constitutes a specific value,
whether a goal promotes a value, why an agent has a value and why
an agent has specific priorities over goals. This paper introduces several
argument schemes, formalised in an argumentation system, to overcome
these problems. The techniques presented in this paper are inspired by
multi attribute decision theory.

Categories and Subject Descriptors:
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods
General Terms: Design
Keywords: Argumentation, Decision-Making, Practical Reasoning, Preferences

1 Introduction

In complex situations, decisions involve many aspects that need to be consid-
ered. These aspects are typically different in nature and therefore difficult to
compare. This complicates determining what outcome is the most preferable.
Throughout the paper, we will use buying a house as an example, which in-
volves many different aspects. For example, an agent may care about the costs
of a house, but also about how fun, comfortable, close to shops, and how beau-
tiful a house is. Artificial agents are expected to act in the designer’s or user’s
best interest. This requires designers or users to communicate their wishes to
the agent and the agent to explain and discuss why a certain decision was made.
A significant amount of research has been concerned with using argumentation
? The research reported here is part of the Interactive Collaborative Information Sys-

tems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, grant
nr: BSIK03024.

229

theory for decision-making and practical reasoning to determine which decisions
are defensible from a given motivation, see for example [7, 2, 1].

A possible argumentation framework for decision-making for this purpose
is the one proposed in [1]. Several decision principles are formalised to select
the best decision using arguments in favour and against the available decisions.
Agents are assumed to have a set of prioritised goals, which are used to construct
argument in favour and against decisions. For example, agent α has the goal to
live in a house that is downtown and the less important goal to live in a house
bigger than 60m2. In complex situations it is useful to argue about what goals
should be pursued. Why have the goal to live downtown and why not in a village?
Why is living downtown more important than living in a bigger house? However,
justifying and attacking goals is not possible using the framework of [1].

In order to solve this problem, we could use the framework described in [2],
where goals can be justified and attacked using the values they promote and
demote. People use their values as standards or criteria to guide selection and
evaluation of actions [10, 12]. The values of agents reflect their preferences. For
example, agent α has the value of fun and of comfort. The goal to live downtown
promotes the value of fun and the goal to live in a bigger house promotes the
value of comfort. In [2] an argument scheme is proposed for practical reasoning in
which goals and actions can be justified and attacked by the values they promote
and demote. What constitutes a specific value like fun, comfort, justice, or health
often is disputable and therefore it is also disputable whether goals and actions
promote values. Namely, another agent may find that living downtown demotes
the value of fun because of the noise and lack of parking space. However, in [2] it
is not possible to explain or discuss what constitutes a value and consequently it
is also not possible to justify or attack that a goal or action promotes or demotes
a value.

This paper presents an argumentation approach to discuss what constitutes
a specific value and its effects on agent’s goals and preferences over outcomes.
To argue about decisions, an argumentation system is described in Section 2.
Since the subject of argumentation is making decisions, some basic notions of
decision theory are also described in Section 2. Next, we propose a model to
specify the meaning of values and their relation to preferences in Section 3. This
model is based on previous work [15] and inspired by techniques from decision
theory to find an appropriate multi-attribute utility function [8, 9]. A value is
seen as an aspect over which an agent has preferences and can be decomposed
into the aspects it contains. Given the meaning of a value, several argument
schemes are proposed in Section 4 to justify that goals promote or demote values.
The introduced formalism is demonstrated with an example of buying houses in
Section 5. The paper is concluded with some discussion and conclusions.

2 Background

In Section 2.1, an argumentation system is described that will be used to ar-
gue about what decision is best. Outcomes describe the effects of decisions and

230

attributes describe properties of outcomes. Attributes of outcomes can be used
to describe what constitutes a value and to justify goals. To argue about what
decision is best, the notions of outcomes and attributes from decision theory are
introduced in our argumentation system in Section 2.2.

2.1 Argumentation

Argument schemes are stereotypical patterns of defeasible reasoning [14]. An
argument scheme consists of a set of premises, a conclusion, and is associated to
a set of critical questions that can be used to critically evaluate the inference.
In later sections, argument schemes are proposed to reason about what decision
is best.

We introduce an argumentation system to reason defeasibly and in which
argument schemes can be expressed. For the largest part, this argumentation
system is based on [5]. We will use both defeasible and strict inference rules.
The informal reading of a strict inference rule is that if its antecedent holds,
then its conclusion holds without exception. The informal reading of a defeasible
inference rule is that if its antecedent holds, then its conclusion tends to hold.

Definition 1 (Argumentation System). An argumentation system is a tuple
AS = (L,R) with L the language of first-order logic and R a set of strict and
defeasible inference rules.

We will use φ and ψ as typical elements of L and say that φ and ¬φ are each
other’s complements. In the meta-language, ∼φ denotes the complement of any
formula φ, positive or negative. Furthermore, → denotes the material implica-
tion.

Definition 2 (Strict and defeasible rules). A strict rule is an expression of
the form s(x1, . . . , xn) : φ1, . . . , φm ⇒ φ and a defeasible rule is an expression of
the form d(x1, . . . , xn) : φ1, . . . , φm φ, with m ≥ 0 and x1, . . . , xn all variables
in φ1, . . . , φm, φ.

We call φ1, . . . , φm the antecedent, φ the conclusion, and both s(x1, . . . , xn) and
d(x1, . . . , xn) the identifier of a rule.

Arguments are inference trees constructed from a knowledge-base K ⊂ L. If
an argument A was constructed using no defeasible inference rules, then A is
called a strict argument, otherwise A is called a defeasible argument.

Example 1. Let AS = (L,R) be an argumentation system such that L =
{φ1, φ2, φ3} and R = {s() : φ1 ⇒ φ2; d() : φ1, φ2 φ3}. From the knowledge-
base K = {φ1}, we can construct 3 arguments. Argument A1 has conclusion
φ1, no premises, and no last applied inference rule. Argument A2 is constructed
by applying s(). Consequently, A2 has premise A1, conclusion φ2, and last ap-
plied inference rule s(). Argument A3 can then be constructed using d() and has
premises A1 and A2, conclusion φ3, and last applied rule d(). Arguments A1 and

231

A2 are strict arguments and argument A3 is a defeasible argument. A3 can be
visualised as follows:

φ1

φ1

φ2
s()

φ3
d()

All arguments can be attacked by rebutting one of their premises. Defeasible
arguments can also be attacked by attacking the application of a defeasible rule.
For example, let d(c1, . . . , cn) : φ1, . . . , φm φ be a defeasible inference rule
that was applied in argument A. We can attack A in three ways: by rebutting
a premise of A, by rebutting A’s conclusion, and by undercutting a defeasible
inference rule that was applied in A. The application of a defeasible inference rule
can be undercut when there is an exception to the rule. An argument concluding
∼d(c1, . . . , cn) undercuts A.

Following [4], argument schemes are formalised as defeasible inference rules.
Critical questions point to counterarguments that either rebut the scheme’s
premises or undercut the scheme. In Section 3.4, we show how to determine
what conclusions are justified given a set of arguments.

2.2 Outcomes And Attributes

The notion of outcomes is one of the main notions in decision theory [8, 11]
and is used to represent the possible consequences of an agent’s decisions. The
set Ω of possible outcomes should distinguish all consequences that matter to
the agent and are possibly affected by its actions. Agents have preferences over
outcomes and decision theory postulates that a rational agent should make the
decision that leads to the most preferred expected outcome.

The notion of attribute is used to denote a feature, characteristic or property
of an outcome. For example, when buying a house, relevant attributes could be
price, neighbourhood in which it is located, size, or type of house. An attribute
has a domain of ‘attribute-values’ outcomes can have. Every outcome has exactly
one attribute-value of each attribute. It cannot be that an outcome has two
attribute-values of the same attribute.

Example 2 (Buying a house). There are 2 houses on the market and buying one
of them results in one of the two outcomes Ω = {ω1, ω2}. Consider the attributes
‘price’, ‘size’, ‘neighbourhood’, and whether there is a garden. Price is expressed
in dollar and size in m2. The neighbourhood can either be ‘downtown’ or ‘suburb’
and ‘yes’ represents there is a garden and ‘no’ that there is not.

Outcome ω1 has the following attribute-values: price is 150.000, size is 50,
neighbourhood is ‘suburb’ and garden is ‘yes’. On the other, outcome ω2’s price
is 200.000, size is also 50, neighbourhood is ‘downtown’ and garden is ‘no’.

Each attribute is a term in L and we use A to denote the set containing
all attributes. If x is an attribute, we will also say x-values instead of the at-
tribute values of attribute x. We define several functions concerning attributes
and outcomes.

232

– The function domain(x) returns a set of attribute-values that the attribute
x can have. For example, let attribute nbhd denote the neighbourhood of a
house, then domain(nbhd) = {downtown, suburb} or for the attribute price,
domain(price) = R+.

– For each attribute x, the function x : Ω → domain(x) gives the attribute-
value of the given outcome for the attribute x. For example, price(ω1) =
150.000.

Example 3. Suppose thatΩ = {ω1, ω2} is true, x is an attribute and domain(x) =
{1, 2, 3}. In that case, the function x returns the following: x(ω1) = 3 and
x(ω2) = 1.

3 Justification Of Preferences Over Outcomes

Preferences can be expressed in terms of outcomes, e.g. outcome A is preferred
to outcome B. The more aspects are involved, the more difficult it becomes to
directly express preferences over outcomes. Luckily, it is also natural to express
preferences in terms of attributes of outcomes. For example, maximising the
attribute profit is preferred. From such statements, preferences over outcomes
can be justified, e.g. outcome A is preferred to outcome B because the A’s profit
is higher. Typically, outcomes have many attributes, yet agents care only about
a subset. What set of attributes an agent cares about determines the preferences
over outcomes. Using argumentation, agents can discuss why certain attributes
should and others should not be used.

Justification for a preference statement like “agent α prefers living downtown
to living in a suburb”, is useful to better understand α’s preferences. Namely,
α could argue that the centrality of a house positively influences the amount of
fun of a house and that α wants to maximise fun. If it is better understood why
α prefers something, then one could disagree (centrality is not fun because it is
very noisy) and give alternatives perspectives (living near nature is also fun and
do you not also care about quietness).

In complex situations, the preferences of agents depend on multiple at-
tributes. By decomposing an agent’s preferences into the different aspects it
involves, the number of attributes an aspect depends on becomes smaller. By
recursively decomposing preferences, we will arrive at aspects that depend on a
single attribute. For example, an agent α decomposes its preferences concerning
houses into the aspects costs and comfort. The perspective of costs is deter-
mined by the attribute acquisition price. Comfort however, depends on multiple
aspects. Therefore, comfort is decomposed into location and size. Location is
then connected to the attribute neighbourhood and size to the surface area of
the house. One may argue that α forgets that other aspects also influence costs,
e.g. maintenance, taxes, heating costs, and so on. On the other hand, another
agent may decompose comfort differently. For example, for agent β comfort is
influenced by the closeness to highway and whether there is central heating.

In Section 3.1 we will introduce perspectives to represent preferences and
aspects of preferences, after which we introduce perspectives on attribute values

233

in Section 3.2. In Section 3.3 we introduce influence between perspective to
denote that one perspective is an aspect of another. Finally in Section 3.4, we
slightly adapt Value-based Argumentation Frameworks, see [3], to determine
what conclusions are justified to make.

3.1 Perspectives

An ordering over outcomes can represent an agent’s preferences. In that case,
if an outcome is higher in the order, the agent prefers that outcome. Similarly,
outcomes can be ordered according to some criterion. For example, outcomes
can be ordered by how fun they are, or how fair they are. To talk about these
different orderings, we introduce the notion of perspective. With buying houses,
an outcome may be better than another from the perspective of costs, worse from
the perspective of its centrality, indifferent from the perspective of comfort, and
perhaps incomparable from the perspective of fun.

Definition 3 (Perspective). A perspective p is associated with a preorder, ≤p
over outcomes Ω. The set P denotes the set of all perspectives.

In other words, a perspective p is associated to a binary relation ≤p⊆ Ω×Ω that
is transitive and reflexive. If ω1≤pω2 is true, we say that ω2 is weakly preferred
to ω1 from perspective p. Strong preference from perspective p is denoted as
ω1<p ω2 and stands for ω1≤p ω2 and ω2 6≤p ω1. Equivalence from perspective p
is denoted as ω1≈pω2 and stands for ω1≤pω2 and ω2≤pω1.

Each agent α is associated with a perspective α̂ representing α’s preferences
over outcomes. If ω1 <α̂ ω2 is true, then we either say that ω2 is preferred to ω1

from agent α’s perspective, or we say that α prefers ω2 to ω1. Since perspectives
are the main notion in this paper, α̂ is abbreviated to α, so that α denotes a
perspective.

Not only the preferences of agents can be represented with perspectives,
we will also use perspectives to represent aspects of outcomes and the values
of agents. For example, the value of ‘safety’ is represented with a perspective
that orders outcomes according to how safe they are or the aspect of comfort is
represented with a perspective that orders outcomes by the amount of comfort.

Example 4. Agent α wants to buy a new house and wants to minimise costs,
maximise fun and maximise comfort. In Figure 1a, we sketch how the preferences
of agent α can be decomposed and how attributes of outcomes can be assigned.
Costs are determined by the attribute acquisition price. Fun is influenced by the
centrality of the house, i.e. the more central the neighbourhood, the more fun it
is. Comfort is influenced by how quiet it is and the size of the house. Again, the
attribute neighbourhood is ordered but now by how quiet the neighbourhood is.
The size is determined by the surface area of the house.

Agent β just won the lottery and does not care about costs. To β fun is being
close to nature, which is completely different from α’s idea about fun. Also, be-
cause β has a car and α does not, β cares about whether there is enough parking
space in the area. Figure 1b sketches the decomposition of β’s preferences.

234

(a) α’s preferences

Agent alpha

costs

acquisition
price

fun

centrality

neighbour
hood

comfort

quietness size

surface
area

(b) β’s preferences

Agent beta

fun

closeness
to nature

neighbour
hood

comfort

quietness size parking
space

surface
area

Fig. 1: Different Perspectives Using Different Attributes

3.2 Attributes Determine Perspectives

Attributes can be used to determine how outcomes should be ordered from a
perspective. For example, if you want to order houses from the perspective of
size, then the attribute ‘surface area of the house’ is an appropriate attribute.
In that case, if house A has a higher surface area than house B, then A is
preferred to B from the perspective of size. To use an attribute x to determine
a perspective, x’s attribute values need to be ordered.

Definition 4 (Attribute Perspective). An attribute perspective px is a per-
spective that is associated with a partial preorder �px over the domain of attribute
x.

Note that there can be different attribute perspectives on the same attribute.

Example 5. Let the attribute nbhd denote the neighbourhood of the house with
domain(nbhd) = {dwntwn, vllg, sbrb}. Furthermore, let socialnbhd and quietnbhd

be attribute perspectives denoting the sociableness and the quietness of the
neighbourhood respectively. The different neighbourhoods are preferred from
each attribute perspective as follows:

sbrb ≺social
nbhd vllg ≺social

nbhd dwntwn dwntwn ≺quiet
nbhd sbrb ≺quiet

nbhd vllg

If an attribute value is preferred to another attribute value from px, then
outcomes with the preferred attribute value are be preferred from px. This order
between outcomes from an attribute perspective px can be inferred with the
following strict inference rule.

sap(px, ω1, ω2) : x(ω1) ≺px x(ω2)⇒ ω1 <px
ω2

Example 6. Consider the attributes and attributes perspectives from the previ-
ous example. Let there be two outcomes ω1 and ω2 such that nbhd(ω1) = dwntwn

235

and nbhd(ω2) = vllg. To determine the order between ω1 from perspective
socialnbhd and from perspective quietnbhd, the following two arguments can be
constructed.

nbhd(ω2) ≺social
nbhd nbhd(ω1)

ω2 <socialnbhd
ω1

sap
nbhd(ω1) ≺quiet

nbhd nbhd(ω2)
ω1 <quietnbhd

ω2
sap

3.3 Influence Between Perspectives

Some perspectives involve different aspects such that not one attribute can be
assigned. For example, the perspective comfort of a house may involve size, loca-
tion, the type of heating, and so on. In general, the more abstract a perspective
is, the more aspects it has. Furthermore, the more abstract a perspective, the
more disputable it may be. Thus it becomes important to specify all the different
aspects so that one can communicate clearly.

By decomposing an abstract perspective into several more concrete perspec-
tives, one makes explicit what an abstract perspective means and makes it easier
to assign attributes to. For example, although α may not be able to express its
preferences over houses, α does want to minimise costs, maximise comfort, and
maximise fun. These perspectives may be decomposed further, e.g. fun means
maximising the centrality of the house, until an attribute can be assigned.

To decompose a perspective into other perspectives, we introduce two rela-
tions between perspectives in L to denote ‘influence’ between perspectives:

– the binary relation ↑⊆ P ×P is written as p↑q and denotes that perspective
p positively influences perspective q.

– the binary relation ↓⊆ P ×P is written as p↓q and denotes that perspective
p negatively influences perspective q.

If perspective p positively influences perspective q, then outcomes that are
better from perspective p tend to be better from perspective q. In other words,
if an outcome is better from p and p positively influences q, then this is a rea-
son to believe that the outcome is better from q. For example, the size of a
house positively influences the comfort of the house, i.e. the more size, the more
comfort.

The following argument scheme reasons with influence: outcome ω2 is pre-
ferred to ω1 from p and p positively influences q, therefore ω2 is preferred to
ω1 from q. In other words, if a perspective p positively influences perspective q,
then an outcome being preferred from p is a reason to believe that that outcome
is also preferred from q. We formalise this argument scheme with the following
defeasible inference rule:

d<,↑(p, q, ω1, ω2) : ω1 <p ω2, p↑q ω1 <q ω2

The argument scheme to propagate negative influence is similar, except that
if a perspective p negatively influences perspective q, then outcomes that are
better from perspective p tend to be worse from perspective q. For example, costs

236

negatively influences agent α’s preferences, i.e. the more costs, the less preferable
for α. This argument scheme is formalised with the following defeasible inference
rule:

d<,↓(p, q, ω1, ω2) : ω1 <p ω2, p↓q ω2 <q ω1

Using these inference rules, arguments can be constructed to justify prefer-
ences over outcomes using both positive influence and negative influence between
perspectives.

Example 7. Agent α wants to buy a new house and to minimise costs, i.e. costs↓
α is true. There are two outcomes, ω1 and ω2, such that the acquisition price,
denoted attribute acq, of ω1 is $200k and of ω2 $150k. The acquisition price of
a house positively influences the costs, so costsacq ↑costs is true.

costs↓α
costsacq ↑costs

acq(ω2) ≺costs
acq acq(ω1)

ω2 <costsacq ω1
sap

ω2 <costs ω1
d<,↑

ω1 <α ω2
d<,↓

The relation ↑ is irreflexive and transitive, meaning that p ↑ p is never true
and that if p↑q and q↑r are true, then p↑r is true. If p↑p would be true and for
any two outcomes ω1 <p ω2 is true, then we can defeasibly infer that ω1 <p ω2 is
true using inference rule d<,↑. Such an argument concludes one of its premises,
which is useless. Furthermore, if p ↑ p can be true, then this may cause infinite
loops in implementations. For this reason, the relation ↑ is irreflexive.

The relation ↑ should be transitive. Firstly, this is intuitive. For example, let
the location of a house positively influence the fun of that house and let the fun
of a house positively influence agent α’s preferences. Then we can also say that
the location of a house positively influences α’s preferences. Secondly, this leads
to inferences we could already infer. Namely, if p↑q, q↑r and ω1 <p ω2 are true,
then we can defeasibly infer that ω1 <q ω2 is true. Similarly, ω1 <r ω2 can be
defeasibly inferred from q ↑ r and ω1 <q ω2. If ↑ is transitive, then p ↑ r is also
true. From p↑r and ω1 <p ω2 we can defeasibly infer that ω1 <r ω2 is true.

The relation ↓ is irreflexive and antitransitive, meaning that p ↓ p is not
allowed and that if p ↓ q and q ↓ r are true, then p ↓ r is not true. If for some
perspective p it would be true that p↓p and for any two outcomes ω1 <p ω2 is
true, then the following argument A can be constructed.

A =
p↓p ω1 <p ω2

ω2 <p ω1
d<,↓

The conclusion of A conflicts with A’s premise ω1 <p ω2. Consequently, A attacks
itself. Allowing p ↓ p to be true adds nothing useful and can only result in
contradictions. Therefore, the relation ↓ is irreflexive.

The relation ↓ should be antitransitive. Firstly, this is intuitive. For example,
the amount of discount on a house negatively influences the costs of that house
(the more discount the less costs) and the costs of a house negatively influences

237

agent α’s preferences. Then we can also say that the amount of discount does
not negatively influence α’s preferences. Secondly, if ↓ could be transitive, then
this could lead to false inferences. Let p ↓ q, q ↓ r and ω1 <p ω2 be true. From
p ↓ q and ω1 <p ω2 we can infer that ω2 <q ω1 is true and from ω2 <q ω1 and
q ↓ r we can infer that ω1 <r ω2 is true. If p ↓ r would be true, then we could
infer that ω2 <r ω1 is true, which conflicts with ω1 <r ω2.

3.4 Argumentation Framework

Argumentation Frameworks (AF) were introduced by [6] and provide a formal
means to determine what arguments are justified given a set of arguments and a
set of attack relations between them. In [3], Value-based Argumentation Frame-
works (VAF), an extension of AFs, were introduced.

Our definition of a Perspective-based Argumentation Framework (PerspAF)
is largely based on the definition of a VAF (because of space limitations, we refer
the reader to [3] for details of VAFs).

Definition 5. A PerspAF is defined by a tuple 〈Args, R,P, η〉, where Args is the
set of all arguments, R the attack relations between arguments, P = {p1, p2, . . . , pk}
a set of k perspectives, and η : Args → 2P a mapping that associates a set of
perspectives with each argument in Args. A total ordering Eα of P is associated
to each agent α for a PerspAF 〈Args, R,P, η〉.

In PerspAFs, arguments may use multiple perspectives, whereas arguments
can only use a single value in VAFs. To determine whether an attack between
argument A and B is successful, only the perspectives are used that A and B
do not use both.

The following concepts are related to PerspAFs and are identical to the
concepts of VAFs except for when an argument defeats or successfully attacks
another argument for a specific audience. Let 〈Args, R,P, η〉 be a PerspAF and
α an agent.

– argument A α-defeats argument B if (A,B) ∈ R and if there is no perspective
p ∈ η(B) \ η(A) such that q Cα p for each q ∈ η(A) \ η(B).

– argument A is α-acceptable to the set of arguments S ⊆ Args if: for every
B ∈ Args that successfully α-attacks A, there is some C ∈ S that successfully
α-attacks B

– a set S ⊆ Args is α-conflict-free if: for each 〈A,B〉 ∈ S×S, either 〈A,B〉 6∈ R
or η(A)Cα η(B)

– a set S ⊆ X is α-admissible if: S is α-conflict-free and every A ∈ S is
α-acceptable to S

– a set is a preferred extension for α if it is maximal α-admissible set

Example 8. Let P = {fun, comfort, α} and let audience α order these perspec-
tives as follows: comfortCα funCα α. Consider the following two arguments:

Af =
fun↑α ω1 <fun ω2

ω1 <α ω2 Ac =
fun↑α ω2 <comfort ω1

ω2 <α ω1

238

Let 〈H({Af , Ac}, R),P, η〉 be a PerspAF. The conclusions of both arguments
conflict, and thus they attack each other and R = {(Af , Ac), (Ac, Af)}. Since
argument Af uses the perspectives α and fun, η(Af) = {α, fun}. Similarly,
η(Ac) = {α, comfort}. Consequently, η(Af) \ η(Ac) = {fun} and η(Ac) \ η(Af) =
{comfort}.

Argument Ac does not α-defeat Af because Af uses the perspective fun, not
used by Ac, and fun is preferred to comfort. On the other hand, argument Af
α-defeats Ac because (Af , Ac) ∈ R and there is no perspective used by Ac that
is both not used in Af and is preferred to every perspective in Af not used in
Ac. The set {Af} is the preferred extension for α.

4 Justification Of Goals

In this section, we propose how an agent α can justify having a goal given α’s
preferences. In [13], Simon views goals as threshold aspiration levels that signal
satisfactory of utility. A goal thus does not have to be optimal. Following [16], we
see goals as expressions of the desirability of attribute values of a single attribute
signaling that these attribute values are ‘satisfactory’. For example, an agent may
have the goal to live in a house that is located downtown. This expresses that
the attribute value ‘downtown’ of the attribute ‘location’ is satisfactory to that
agent. Another attribute value, e.g. ‘suburb’, does not achieve that goal and is
thus not satisfactory.

The predicate goal(α, x,G) is introduced in L and denotes that agent α
should have the goal to achieve an outcome that has an x-value inG ⊂ domain(x).
If agent α has the goal to achieve an x-value in G (i.e. goal(α, x,G) is true) and
outcome ω1 has an x-value in G, i.e. x(ω1) ∈ G is true, then we say that goal
goal(α, x,G) is achieved in outcome ω1. Consequently, a subset of Ω achieves a
goal and the other outcomes in Ω do not achieve that goal.

4.1 Justification Is Subjective

What justification for a goal an agent accepts, depends on the type of agent. For
example, a very ambitious but realistic agent only accepts goals that aim for the
best achievable x-value, whereas a less ambitious agent may accept goals that
just improves the current situation or does better than doing nothing. Another
agent may set its standard on a value that is realistic and challenging, i.e. not
too easy and not too difficult.

We introduce two argument schemes to distinguish between satisficing goals
and optimising goals. The following argument scheme justifies the goal to achieve
an x-value that is the best possible. The basis for this justification is that agents
should aim to achieve their maximal potential.

Agent α wants to maximise attribute x-values from perspective px,
v is most preferred x-value from px that is achievable,
therefore, α pursues the goal to achieve x-values of v or better from px

239

If the predicates max(α, px, v) and min(α, px, v) denote that v is the maximal /
minimal x-value from px that α can achieve, then the optimistic goal argument
scheme can be modelled with the following defeasible inference rules:

doptm,↑(α, px, v) : px ↑α,max(α, v, px) goal(α, x, {g ∈ domain(x) | v �px g})
doptm,↓(α, px, v) : px ↓α,min(α, v, px) goal(α, x, {g ∈ domain(x) | g �px v})

A possible undercutter of the optimistic argument scheme is that achieving the
goal is too unlikely. Therefore, the agent should adopt the goal to achieve an
easier x-value. Another undercutter would be that achieving v is too costly and
that α does not care that much about px.

The following argument scheme justifies a goal in a satisficing manner. This
scheme’s underlying motivation is that agents should adopt goals that achieve
outcomes that are satisfactory rather than the best outcome.

Agent α wants to maximise attribute x-values from perspective px,
v is a satisfactory and achievable x-value for α,
therefore, α pursues the goal to achieve x-values of v or better from px

A possible undercutter for the satisficing argument scheme is that it is too easy
and that the agent should adopt a more challenging goal. Another undercutter
could be that the perspective px is important to α and therefore α should set a
higher goal.

Let the predicate satisf(α, x, v) denote that x-value v is satisfactory for agent
α. Then this argument scheme can be modelled with the following defeasible
inference rule.

dsatisf,↑(α, px, v) : px ↑α, satisf(α, x, v) goal(α, x, {g ∈ domain(x) | v �px g})
dsatisf,↓(α, px, v) : px ↓α, satisf(α, x, v) goal(α, x, {g ∈ domain(x) | g �px v})

This only solves part of the problem because how can an agent justify that
an attribute value is satisfactory? We can think of several justifications of a
satisfaction level: anything better than the current situation is satisfactory, it is
better than some standard action such as ‘do nothing’, it is better than what
other agents achieve, or the agent is obliged to achieve at least v. This is however
still an open issue that is left for future work.

4.2 Priorities Of Goals

In our PerspAFs, agents have a total ordering over perspectives that represents
what perspective they find most important. This information can be used to give
goals priorities. Namely, if α has goal G because of perspective px and goal H
because of perspective qy and α finds px more important than qy, i.e. qy Cα px,
then goal H is more important to α.

Goals are created using an attribute perspective that influences an agent. For
the same attribute perspective, optimistic goals are stricter than satisficer goals
since they do not include satisfactory attribute values upon which the agent
can improve. For this reason, achieving an optimistic goal should have a higher
priority than achieving a satisficer goal for the same attribute perspective.

240

5 Buying A House

Agent α, who lives in a suburb, recently got a raise in income and wants to buy
a new house to live in. The broker shows two houses that are for sale, one in a
village and one downtown, represented with outcomes ωv and ωd respectively.
Of course, α has the possibility not to buy a new house and stay in its current
house. This is represented with outcome ω0. Consequently, Ω = {ω0, ωd, ωv}.
Except for its own house, α is unfamiliar with these houses and can therefore
not express whether it prefers one of the new houses to its own house.

The broker includes the following attributes of each house: the neighbour-
hood, the size, and the acquisition price. The attribute nbhd denotes the neigh-
bourhood of the house and domain(nbhd) = {dwntwn, sbrb, vllg}. The attribute
area denotes how big the house is in square meters. Consequently, domain(area) =
R+. The attribute acq denotes the price of the acquisition of the house and
domain(acq) = R+. The set of all attributes is the following:A = {nbhd, area, acq}.
The attribute values for each outcome can be found in Table 1.

Table 1: Attribute Values Of Outcomes

Attribute Domain ω0 ωd ωv

nbhd {dwntwn, sbrb, vllg} sbrb dwntwn vllg
area R+ in m2 60 50 100
acq R+ in $1000 0 220 190

5.1 Decomposing Perspectives

Agent α starts reasoning about its preferences over Ω by expressing what aspects
it finds important. Namely, α wants to minimise costs, maximise fun and max-
imise comfort. By doing so, α’s perspective is decomposed into other perspectives
that are more concrete. Because α wants to minimise costs, the perspective costs
negatively influences the perspective of α, i.e. costs↓α is true. Also, α wants to
maximise fun and comfort, so fun↑α and comfort↑α are true.

Agent α figures that the acquisition price attribute is appropriate to deter-
mine the perspective of costs such that the higher the acquisition price, the
higher the costs. The attribute perspective costsacq prefers an acq-value if it is
higher. Therefore, costsacq ↑costs is true.

For α fun means having people around him. The centrality of a house pos-
itively influences fun since α is more likely to out for dinner or drinks with his
friends. Therefore, α decomposes the perspective fun into the perspective of the
centrality of the neighbourhood, denoted with the attribute perspective cntrlnbhd

on the attribute nbhd. Consequently, cntrlnbhd ↑ fun is true.

241

There is however no attribute that α finds adequate to determine the per-
spective of comfort. Therefore, comfort is decomposed into the quietness around
the house and its size. Size is measured by the attribute perspective sizearea

that orders the attribute area (denoting the surface area in m2) according to
size. The attribute perspective quietnbhd orders neighbourhoods by their quiet-
ness. Both attributes positively influence comfort, i.e. sizearea ↑ comfort and
quietnbhd ↑comfort are true.

The attribute perspectives cntrlnbhd and quietnbhd both order the attribute
values of the attribute ‘neighbourhood’ and are as follows:

sbrb ≺cntrl
nbhd vllg ≺cntrl

nbhd dwntwn dwntwn ≺quiet
nbhd sbrb ≺quiet

nbhd vllg

5.2 Arguments About Preference

Now, α starts constructing arguments concerning its preferences over houses.
The following argument concludes that α should prefer staying in its house,
outcome ω0, to buying the house downtown, ωd, because the costs of not buying
are lower.

Acosts =
costs↓α

acq(ω0) ≺costs
acq acq(ωd)

ω0 <costsacq ωd
sap

ωd <α ω0
d↓,<

However, the following argument concludes that α should prefer ωd, which con-
flicts with Acosts’s conclusion, because ωd is more fun since it is located in a more
central neighbourhood.

Afun =
fun↑α

cntrlnbhd ↑ fun

nbhd(ω0) ≺cntrl
nbhd nbhd(ωd)

ω0 <cntrlnbhd
ωd

sap

ω0 <fun ωd
d↑,<

ω0 <α ωd
d↑,<

Agent α keeps thinking and comes up with the following argument that concludes
that its current house is actually more comfortable since it is in a neighbourhood
that is more quiet.

Acomfort =
comfort↑α

quietnbhd ↑comfort

nbhd(ωd) ≺quiet
nbhd nbhd(ω0)

ωd <quietnbhd
ω0

sap

ωd <comfort ω0
d↑,<

ωd <α ω0
d↑,<

Given these three arguments, we want to determine what conclusions are justi-
fied. For this we construct the PerspAF 〈H(Args, R),P, η〉, with:

Args = {Acosts, Afun, Acomfort}
R = {(Acosts, Afun), (Afun, Acosts), (Acomfort, Afun), (Afun, Acomfort)}
P = {α, fun, comfort, costs, quietnbhd, cntrlnbhd, costsacq, sizearea}

242

and function η, that maps an argument to the perspectives it contains, is as
follows.

η(Acosts) = {α, costs, costsacq}
η(Afun) = {α, fun, cntrlnbhd}

η(Acomfort) = {α, comfort, quietnbhd}

Let α find fun more important than comfort and costs more important than fun,
i.e. comfort Cα fun and fun Cα costs are true. Then Afun α-defeats Acomfort and
Acosts α-defeats Afun. Then the set {Acomfort, Acosts} is the preferred extension,
so the conclusion that α prefers staying in its current house to buying a house
downtown is justified.

5.3 Goals

If α will also visit other brokers and thus considers more houses, it can be
computationally efficient for α to generate a number of goals that can easily be
checked when evaluating a new house. Given a number of goals, evaluating an
outcome involves checking whether its attribute values are in the goals. If no goals
are used, then evaluating an outcome involves constructing arguments for all
relevant perspectives to check whether it is better than some other outcome(s).

The current house of α is 60m2, i.e. area(ω0) = 60, and α finds this size
satisfactory. Since α does not feel very strongly about the size of its house, α
uses the satisfycing argument scheme to justify the following goal.

sizearea ↑α satisf(α, area, 60)
goal(α, area, {g ∈ domain(area) | g ≥ 60}) dsatisf

With its new job, α can maximally lend 200 thousand dollar for the acqui-
sition of a house and therefore α sets its aspiration level for the acquisition on
200. Given this information, α justifies having the following goal:

costsacq ↓α satisf(α, acq, 200)
goal(α, acq, {g ∈ domain(acq) | g ≤ 200}) dsatisf

The current house of α is in a suburb and α wants to maximise neighbourhood
with respect to both centrality and quietness, i.e. cntrlnbhd ↑α and quietnbhd ↑α
are true. Agent α cares a lot about the centrality of its house and less about its
quietness. Therefore, α uses the optimising argument scheme to justify its goal
to live downtown:

cntrlnbhd ↑α max(α, dwntwn, cntrlnbhd)
goal(α, nbhd, {dwntwn}) doptim

About the quietness α cares less and therefore uses the satisfycing argument
scheme:

quietnbhd ↑α satisf(α, nbhd, sbrb)
goal(α, nbhd, {sbrb, vllg})

243

It is impossible for α to achieve both goals. However, α finds costs more impor-
tant than fun and fun more important than comfort. Consequently, α finds the
goal to live downtown more important than the goal to live in a quiet suburb.

6 Discussion

6.1 Outcomes Compared To States

In [3, 2], states are used to reason about decisions over actions, rather than
outcomes. A state is a truth assignment to a set of propositions. In a state r,
an agent can perform an action a, which results in another state s. If the agent
performs a, there is a state transition from state r to state s.

In decision theory, making a decision results in an outcome. Outcomes rep-
resent all possible consequences of a decision. Outcomes can represent the state
resulting from the action performed, effects in the far future, how pleasant the
action was, and possibly the history of all preceding states. An outcome is thus a
more general notion than a state, because outcomes can contain all information
in states and even more.

6.2 Values Versus Perspectives

In [2], there is a valuation function δ that takes a state transition and a value
and returns whether that state transition either promotes, demotes, or is neutral
towards that value. More specifically, δ : S×S×V → {+,−, 0} with S the set of
states and V the set of values. Note that a state transition either promotes, de-
motes, or is neutral towards a value resembles Simon’s simple valuation function,
which values an outcome either as ‘satisfactory’, ‘indifferent’ or ‘unsatisfactory’.

The valuation function must be specified for all state transitions and all
values, which can become time consuming when the number of states or values
increases. Namely, if there are n states and m values, then the valuation function
must be specified for m ·n2 different inputs. Furthermore, if two agents disagree
about whether a state transition is promotes a value, e.g. whether performing
an action promotes the value of fun, then they can only explain that that is
the outcome of their valuation function. Since values typically are abstract, it
is important to explain and discuss what a value means. This is not possible in
the approach of [2].

In our approach, a value is represented with a perspective, which is associated
with an ordering over outcomes. A perspective can be decomposed into other
perspectives and a perspective can be associated with an attribute of outcomes.
This allows agents to explain and argue why a transition or goal promotes one
of their values. For example, an agent can explain that its value of ‘fun’ means
maximising spending time with friends and minimising time at work. whereas
another agent can then explain that to him fun means spending time in nature
and accomplishing things at work.

244

Furthermore, decomposing an abstract perspective into more specific per-
spectives for which an ordering is more easy to specify, makes it less demanding
to specify whether a transition promotes, demotes or is neutral towards a value.

If a perspective p represents a value, then its associated ordering ≤p can be
used to the define the valuation function δ for p in the following way

δ(q1, q2, v) =





+ if q1 <v q2
− if q2 <v q1
0 if q1 ≡v q2

If ≤v is a total order, i.e. no elements are incomparable, then δ is a normal
function, otherwise δ is a partial function.

7 Conclusion

In this paper we have proposed several argument schemes to argue about what
decision is best for an agent based on its preferences over outcomes. An agent’s
preferences are expressed in terms of values and goals and we propose a model
to represent what a value means and how it affects an agent’s preferences. If the
meaning of a value is clear, goals can be justified or attacked by arguing that
they promote or demote a value.

We represent values as perspectives over outcomes. By recursively decompos-
ing the different aspects of a perspective into other perspectives until they are
decomposed in attribute perspectives, the meaning of a perspective and thus a
value is made explicit. In this way, an agent can explain what a value exactly
means to him, which allows other agents to argue that some aspect is wrong
or forgotten or that the wrong attribute is used. Agents can justify pursuing a
goal using the perspectives that are important to an agent and the attributes
that are associated to those perspectives. We have discussed a satisficing and
a optimistic argument scheme to justify a goal. Furthermore, priorities between
goals can be justified using the priorities agents have over perspectives.

In future work, the relation between values and goals may be explored further.
Different agent types and different situations may lead to pursuing different
goals. An optimistic goal may be undercut by stating that it is too hard to
achieve, but when is a goal too hard to achieve? Moreover, how can an agent
justify that an attribute value is satisfactory and how is that influenced by
circumstances?

When an agent finds costs more important than the centrality of the neigh-
bourhood, and a house in a suburb is $1 cheaper than a house downtown, then
the costs argument is stronger than the centrality argument. By extending the
formalism in this paper with ‘distances’ between attribute values, such weird
results might be solved.

245

Bibliography

[1] Leila Amgoud and Henri Prade. Using arguments for making and explaining
decisions. Artificial Intelligence, 173(3-4):413 – 436, 2009.

[2] K. Atkinson, T. Bench-Capon, and P. McBurney. Computational represen-
tation of practical argument. Synthese, 152(2):157–206, 2006.

[3] T.J.M. Bench-Capon. Persuasion in practical argument using value-based
argumentation frameworks. Journal of Logic and Computation, 13(3):429–
448, 2003.

[4] F. Bex, H. Prakken, C. Reed, and D. Walton. Towards a formal account
of reasoning about evidence: Argumentation schemes and generalisations.
Artificial Intelligence and Law, 11(2):125–165, 2003.

[5] M. Caminada and L. Amgoud. On the evaluation of argumentation for-
malisms. Artificial Intelligence, 171(5-6):286–310, 2007.

[6] P.M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–358, 1995.

[7] A. Kakas and P. Moraitis. Argumentation based decision making for au-
tonomous agents. Proc. of 2nd Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2003), pages 883–890, 2003.

[8] R. Keeney and H. Raiffa. Decisions with Multiple Objectives. Wiley, New
York, 1976.

[9] R.L. Keeney. Value-Focused Thinking: A Path to Creative Decisionmaking.
Harvard University Press, 1992.

[10] M. Rokeach. The nature of human values. Free Press, New York, 1973.
[11] L.J. Savage. The foundations of statistics. Dover Pubns, 1972.
[12] SH Schwartz. Universals in the content and structure of values: theoretical

advances and empirical tests in 20 countries. Advances in experimental
social psychology, 25:1–65, 1992.

[13] Herbert A. Simon. A behavioral model of rational choice. The Quarterly
Journal of Economics, pages 99–118, 1955.

[14] D.N. Walton. Argumentation Schemes for Presumptive Reasoning.
Lawrence Erlbaum Associates, 1996.

[15] T. L. van der Weide, F. Dignum, J.-J. Ch. Meyer, and G. A. W. Prakken,
H. Vreeswijk. Practical reasoning using values. In P. McBurney, I. Rahwan,
S. Parsons, and P. Moraitis, editors, Proceedings of the Sixth International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2009), Bu-
dapest, Hungary, pages 225–240, 2009.

[16] M.P. Wellman and J. Doyle. Preferential semantics for goals. Proceedings
of the National Conference on Artificial Intelligence, pages 698–703, 1991.

246

