
T O R O N T O
The 9th International Conference on

Autonomous Agents and Multiagent Systems
May 10-14, 2010
Toronto, Canada

Editors:
Wiebe van der Hoek

Gal A. Kaminka
Yves Lespérance

Michael Luck
Sandip Sen

Workshop 1

Agent Communication

Agent Communication 2010
In Conjunction with AAMAS 2010

Toronto, Canada, May 11, 2010

Alexander Artikis, Jamal Bentahar,
Amit K. Chopra, and Frank Dignum (Eds.)

Preface

Agent communication deals with the development of open multiagent systems. Open
systems consist of autonomous and heterogeneous agents who interact in order to ex-
change or negotiate information, knowledge, and services. Moreover, the system con-
figuration is dynamic: agents comes and go as they please.

Essentially, an open multiagent system is any that involves multiple organizations.
Software engineering for applications involving multiple organizations is in general
seeing a shift away from the formulation of processes to higher-level concepts rooted
in agents. Such applications include services, collaborative design and argumentation,
and e-governance. The agent communication research community has a lot to offer
here: past research has yielded promising insights, abstractions, languages, and theories,
especially via the specification of agent communication languages and protocols.

The principal challenge in agent communication research is to enable flexible and
efficient communication among agents. This implies a focus on semantics, that is, the
meaning of communication and pragmatics, that is, how to communicate. Semantics
is foundational: a new conceptualization of meaning implies new abstractions and pat-
terns, new theories, and new operationalizations in distributed settings. By contrast,
traditional distributed systems research simply focuses on operational details at the ex-
pense of flexibility. Pragmatics is fundamental in designing sound and complete proto-
cols and verifying their computational properties.

Although research in agent communication has led to useful advances, many issues
remain to be addressed. Some are conceptual, for example related to the expressiveness
of the abstractions in terms of modeling the application domains. Some are theoretical,
for example the formalization of various notions such as strategies, correctness (com-
pliance, interoperability, and conformance), completeness and the associated decision
procedures. Some are practical, for example middleware, programming language, and
tool support. Agent Communication 2010 workshop is built on previous advances to-
wards addressing these challenging issues.

Specifically, the aim of Agent Communication 2010 workshop is to discuss research
advances in: Agent Communication Languages (ACL); open agent systems and agent
organizations; speech act theory; illocutionary logic; protocols and dialogues (specifi-
cation and composition, verification of compliance, interoperability, conformance and
other such properties); commitments, norms, and other social concepts; agent design
and execution strategies (in terms of game-theoretic, BDI, learning, and other such
notions) and their relation to agent communication; and programming languages and
middleware to support high-level communication primitives and patterns.

VII

We would like to thank Professor Daniel Vanderveken for the invited talk, the au-
thors for their contributions, the members of the steering committee for their sugges-
tions and support, and the members of the program committee for their excellent work
during the reviewing phase.

March 2010 Alexander Artikis
Jamal Bentahar

Amit K. Chopra
Frank Dignum

Organization

Organizers

Alexander Artikis National Centre for Scientific Research Demokritos, Greece
Jamal Bentahar Concordia University, Canada
Amit K. Chopra University of Trento, Italy
Frank Dignum Utrecht University, The Netherlands

Program Committee

Guido Boella University of Torino, Italy
Marco Colombetti Politecnico di Milano, Italy
Nirmit Desai North Carolina State University, USA
Nicoletta Fornara Università della Svizzera Italiana, Switzerland
Koen Hindriks Delft University of Technology, The Netherlands
Marc-Philippe Huget University of Savoie, France
Michael N. Huhns University of South Carolina, USA
Andrew J. I. Jones King’s College London, UK
Peter McBurney University of Liverpool, UK
Tim Miller , Melbourne University, Australia
Bernard Moulin Laval University, Canada
Xavier Parent University of Luxembourg, Luxembourg
Michael Rovatsos University of Edinburgh, UK
Munindar P. Singh North Carolina State University, USA
Paolo Torroni University of Bologna, Italy
Rogier van Eijk Utrecht University, The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Pinar Yolum Bogazici University, Turkey

Steering Committee

Frank Dignum Utrecht University, The Netherlands
Andrew J. I. Jones King’s College London, UK
Munindar P. Singh North Carolina State University, USA

Additional Reviewers

Valerio Genovese
Wojtek Jamroga

Table of Contents

Invited Talk: On the Foundations of a Formal Discourse Pragmatics 1
Daniel Vanderveken

Constraints among Commitments: Regulative Specification of Interaction
Protocols . 2

Matteo Baldoni, Cristina Baroglio, and Elisa Marengo

Protocol Refinement: Formalization and Verification . 19
Scott N. Gerard and Munindar P. Singh

Counter-proposal: A Multi-Agent Negotiation Protocol for Resolving
Resource Contention in Open Control Systems . 37

Jan Corfixen Sørensen and Bo Nørregaard Jørgensen

Verifying Conformance of Commitment Protocols via Symbolic Model Checking 53
Mohamed El-Menshawy, Jamal Bentahar, Wei Wan, and Rachida Dssouli

The Logic of Conversation: From Speech Acts to the Logic of Games 73
Michel A. Paquette

Author Index . 91

X

Invited Talk:
On the Foundations of a Formal Discourse Pragmatics

Daniel Vanderveken1

University of Quebec, Trois-Rivières ,
daniel vanderveken@UQTR.CA,

http://www.uqtr.ca/˜vandervk/cvdveng.htm

Could we enrich speech-act theory to deal with discourse? Wittgenstein and Searle
pointed out difficulties. Most conversations lack a conversational purpose, their back-
ground is indefinitely open, they can contain irrelevant and infelicitous utterances, they
require collective intentionality, etc. In my view, the primary aim of discourse pragmat-
ics is to analyze the structure and dynamics of language-games whose type is provided
with an internal conversational goal. Such games that are indispensable to any kind of
discourse have a descriptive, deliberative, declaratory or expressive point. So are ex-
changes of salutations, interrogations, negotiations and contracts. Logic can analyze
felicity-conditions of such collective illocutions because they are conducted according
to systems of constitutive rules. Speakers often speak non-literally or non-seriously.
The units of conversation are attempted illocutions whether literal, serious or not. I will
show how to construct speaker-meaning from sentence-meaning, conversational back-
ground and maxims. Like Montague, I believe that we need the resources of formalisms
(proof-, model- and game-theories) and logic in pragmatics. I will explain how to fur-
ther develop intensional and illocutionary logics, the logic of attitudes and of action
in order to characterize our ability to converse. I will compare my approach to others
(Austin, Belnap, Grice, Montague, Searle, Sperber and Wilson, Kamp, Wittgenstein) as
regards hypotheses, methodology and issues. I will also deal with the nature of intelli-
gent dialogues between man and machines in A.I.

Constraints among Commitments: Regulative
Specification of Interaction Protocols

Matteo Baldoni, Cristina Baroglio, and Elisa Marengo

Dipartimento di Informatica — Università degli Studi di Torino
c.so Svizzera 185, I-10149 Torino (Italy)
{baldoni,baroglio,emarengo}@di.unito.it

Abstract. Interaction protocols play a fundamental role in multi-agent systems.
In this work, after analysing the trends that are emerging not only from research
on multi-agent interaction protocols but also from neighbouring fields, like re-
search on workflows and business processes, we propose a novel definition of
commitment-based interaction protocols, that is characterized by the decoupling
of the constitutive and the regulative specifications and that explicitly foresees
a representation of the latter based on constraints among commitments. A clear
distinction in the two representations has many advantages, that are explained in
the paper, mainly residing in a greater openness of multi-agent systems, and an
easier re-use of protocols and of action definitions. A language, named 2CL, for
writing regulative specifications is also given.

1 Introduction

Open systems are systems made of heterogeneously designed and pre-existing parties
that are assembled with some aim, none of them can pursue alone. In order to allow for
a fruitful cooperation, the interaction that each agent carries on with the others, in the
context of the assembled system, must respect some rules. The term “interaction proto-
col” refers to a pattern of behavior that allows a set of agents to become a multi-agent
system, engaging the expected cooperations with one another. Particularly relevant are
commitment-based protocols, introduced by Singh [30, 37, 36]. A commitment can be
seen as a fluent which can hold in the social state of the system. It represents the fact
that a debtor commits to a creditor to bring about some condition. All the agents that in-
teract according to a commitment-based protocol share the semantics of a set of actions,
which affect the social state by creating new commitments, canceling commitments, and
so forth. The greatest advantages of the commitment-based protocols, w.r.t. to other ap-
proaches to interaction, are that they do not over-constrain the behavior of the agents
by imposing an ordering on the execution of the shared actions, and that by giving a
shared meaning to the social actions, they allow working on actual knowledge on what
happened (or what is likely to happen), rather than on beliefs about each others’ mental
state. Nevertheless, commitment protocols do not yet suit well all those situations where
the evolution of the social state is constrained by laws, preferences, habits, and the like,
due to the fact that they do not allow the specification of legal patterns of execution, e.g.
a merchant may wish to make clear that shipping will be done only after payment. This
kind of constraints makes sense in many practical situations, as noticed also in [32].

3

In this work, we face this issue by taking on Chopra and Singh’s [12] distinction
between the constitutive and regulative specifications of the interaction, deriving from
the seminal work of Searle [28]: roughly speaking, constitutive rules give the semantics
of actions, while regulative rules rule the flow of execution, thus building new, possibly
context-dependant behaviors. In other words, regulative rules capture some important
characteristics of how things should be carried on in specific contexts of interaction [7].
An actual separation of the constitutive from the regulative specification would bring
many advantages in the construction of multi-agent systems. The main one is a direct
effect of the obtained modularity: an easier re-use of actions in different contexts, an
easier customization on the protocol, an easier composition of protocols. For instance,
currently interaction protocols are often considered as simply made by a set of shared
actions, and this obliges the introduction of additional effects and preconditions in the
definition of actions themselves, whenever certain (partial) orderings are desired, e.g.
[35]. Thus, actions result to be strongly dependent from the context they were thought
for. If, instead, the context were given by an explicit regulative specification, it would
not be necessary to over-specify actions, in the spirit of the commitment approach to
protocol definition. Actions would be simpler and easier to understand because the con-
stitutive part would correspond to the definition of the action per se and not of the action
in a context of reference.

As a consequence, multi-agent systems would gain greater openness, interoperabil-
ity, and modularity of design. In particular, interoperability would be better supported
because it would be possible to verify it w.r.t. specific aspects (e.g. interoperability at
the level of actions [12, 6, 13] or at the level of regulation rules [5]). Protocols would be
more open in the sense that their modularity would allow designers to easily adapt them
to different contexts. Moreover, the decoupling would make it easier for agents to enter
a system due to the increased probability of re-using their actions. Agents could also
check, individually (against the protocol specification) if they have actions that, when
executed individually or according to some pattern, match with the constitutive rules,
independently from the context of use given by the regulative specification.

In the light of the distinction between constitutive and regulative rules, this work
analyzes alternative commitment-based protocol models, that can be found in the lit-
erature (namely [12, 23, 19, 20, 36, 35, 27, 22, 3, 31], Section 2), showing that, despite
the fact that it is possible recognize various attempts to capture both specifications,
these proposals still miss the degree of modularity postulated in [28, 7] and described
above. In particular, we show that none allows the specification of both parts (1) in a
decoupled way, (2) by means of first-class languages, (3) which allow flexible repre-
sentations – either one of the two specifications is disregarded or it is too strict or the
two representations are to some extent mixed. Section 3, then, proposes a model for
commitment-based interaction protocols that separates the constitutive and the regu-
lative parts, and supplies first-class languages for representing both in a flexible way.
In particular, for the constitutive specification we adopt [12, 6], while for what con-
cerns regulative specification we propose the use of constraints among commitments,
and propose a language, named 2CL, that allows the specification of different kinds
of such constraints. The language, graphically and in the way the graphical notation is
used, inherits from [27, 22] but it is very different from it in its basic principles. In fact,

4

it builds on commitments and not on events (actions). Section 4 shows how it is easy
to tailor an interaction protocol, expressed by means of 2CL, to different contexts of
usage, by producing variants of it working on the regulative specifications only. For the
sake of simplicity we chose the well-known Contract Net Protocol (CNP) [15]. In the
Conclusions we conclude the comparison with the models in Section 2 showing that the
proposed model includes the others as a special case or overcomes their limits.

2 Actions and Protocols: Constitutive and Regulative
Specifications

Let us consider commitment-based protocols. Commitments are directed from a debtor
to a creditor. The notation C(x, y, r, p) denotes that the agent x commits to an agent y
to bring about the condition p when the condition r holds. All commitments are con-
ditional. An unconditional commitment is merely a special case where r equals true.
Whenever this is the case, we use the short notation C(x, y, p). Agents share a social
state that contains commitments and other fluents that are relevant to their interaction.
Every agent can affect the social state by executing actions, whose definition is given
in terms of modifications to the social state (e.g. adding a new commitment, releasing
another agent from some commitment, satisfying a commitment, etc. see [36]). Com-
mitment protocols are interaction patterns given in terms of commitments. Usually a
commitment protocol is made of a set of actions (messages), whose semantics is known
to – and agreed upon by – all of the participants [36, 37, 6].

There are many definitions for actions in the literature. In UML and in the litera-
ture about workflows, actions are atomic executions. They are considered to take zero
time, and cannot be interrupted, while activities represent more complex behaviors, that
may run for a long time, and may be interrupted by events. Most of works on agents
adopt, instead, a precondition-effect view of actions, independently from the time they
take to complete or from possible interruptions. Preconditions can be of two kinds: pre-
conditions to the action execution, and preconditions to some effect. The former are
fluents that must hold in the social state to make the action executable, the latter are
additional conditions that, when holding, allow the production of the specific effect that
they control. For instance, in order to pay by credit card it is necessary to own a credit
card (precondition to the action). If a credit card owner uses it for paying, the pay-
ment will be done only if the card is valid (conditional effect). For example, in [12, 6]
actions have no preconditions of any kind, in [11, 21] actions have both preconditions
to the executability and conditional effects, while [35] uses only preconditions to the
execution of actions. Given these basic notions, let us, now, focus on regulative rules
and overview the most relevant works in the context of commitment-based interaction
protocols, in order to compare and discuss the proposed models, which are graphically
summarized in Fig. 1 and Fig. 2.
Chopra and Singh. ([12], Fig. 1(a)) Chopra and Singh introduce the distinction be-
tween constitutive and regulative specifications in the definition of commitment-based
protocols. Each agent is publicly described by the effects of the messages they can send,
which make the constitutive specification of the agent. Such specifications allow agents
to agree on the meaning of their communications. Instead, the regulative specification

5

(a)

(b)

(c)

Fig. 1. (a) Chopra and Singh’s implementation model: regulative specifications based on actions;
(b) Mallya and Singh’s model: adding preferences on actions; (c) Singh’s dependencies among
events.

rules the data flow among messages. For instance, the constitutive specification of the
action buy could be the commitment to pay the merchant, while the regulative speci-
fication may require that goods are sent only after the payment has been done. In that
work (personal communication [9]) and in [11] the regulative specification is based on
the actions themselves; in particular, the flow is controlled by the preconditions to the
(non-)executability of the actions. So, in order to impose that sending goods should fol-
low payment, the action send-goods should have as a precondition a fluent that is made
true as an effect of the action pay.

This solution (which is adopted also by other works, like [20, 36, 37, 6, 35]) is char-
acterized by a strong localization of the regulative specification. Both the constitutive
and the regulative specifications are indistinguishable (being both based on actions, see
Fig. 1(a)). The problem is that by doing so the definition of an action becomes de-
pendant on the protocol where it is used. This limits the openness of the system and
in particular complicates the re-use of software (the agents’ actions). Actions, in fact,
are defined not only for what concerns their effects (constitutive specification) but also
taking into account their context of use. When changing context (protocol), the regula-
tive specification inside the actions is to be updated or new, specific actions are to be
defined. Analogously, when adding a new action, it is necessary to enrich it with the
correct regulative specification. In our view, a greater decoupling between the actions
and the regulative specification would have the advantage of facilitating the re-use of
actions because it would allow the avoidance of the over-specification that is necessary
to impose an ordering among actions.

6

Preferences and dependencies. ([23], Fig. 1(b) and [31], Fig. 1(c), respectively) Mallya
and Singh [23] propose to order the possible executions according to a set of preferences
that take into account the policies of the various parties. No execution is strictly forbid-
den but a preference criterion is specified. Differently than above, here the constitutive
specification is given in terms of commitments but the preference rules are given in
terms of actions. Preferences do not precisely correspond to regulatives rules because
they specify selection policies, rather than constraining the execution flow, neverthe-
less, giving them in terms of actions makes the specification less flexible and less easily
adaptable or open. The same limits, Fig. 1(c), can be ascribed to the work to which [23]
is inspired, i.e. [31], although in this work it is possible to recognize the introduction of
a regulative specification, based on the before relation applied to events.

(a)

(b)

Fig. 2. (a) ConDec model: regulative specification given by means of constraints on actions, an ex-
tension supplies an expectation-based semantics for actions; (b) Fornara and Colombetti’s model:
regulative specification given by interaction diagrams defined on actions.

ConDec. ([27, 26, 8, 22], Fig. 2(a)) Pesic and van der Aalst propose an approach that is
radically opposite to the one by Chopra and Singh [27]. In this approach, which totally
lacks of a constitutive component (and does not build on commitments nor is set in
the agents framework), the declarative language ConDec is proposed for representing
business processes which, though not exactly interaction protocols, specify the expected
behavior of a set of interacting parties by constraining the execution of their tasks. The
regulative rules are a first-class element of the protocol which are given by means of an
ad hoc declarative language. They are not local to single actions as in Fig. 1(a), rather
they are constraints that rule the flow of activity execution (activity in UML sense).
In [26, 8, 22], the authors use this approach to specify interaction protocols and service
choreographies. To this aim, they integrate ConDec with SCIFF thus giving a semantics
to actions that is based on expectations.

Still, however, in these proposals there is a too tight connection between the reg-
ulative rules and actions because such rules define temporal constraints over actions
(events), see Fig. 2(a). This, in our opinion, clashes with the openness of multi-agent

7

systems. Let us explain our view with an example. Let us suppose that payment should
occur before sending the goods, and that the protocol foresees the actions pay-by-credit-
card and send-goods. Then, it will specify that pay-by-credit-card must occur before
send-goods. Now, if a client arrives which can pay cash, it will not be in condition to
take part to the interaction unless the regulative specification is changed by adding a rule
that says that paying cash should occur before sending the goods. This should be done
even though the action has the same semantics of pay-by-credit-card in terms of com-
mitments. The need of modifying the regulative specification (even in the case when
actions have the same semantics!), gives an undesired rigidity to the protocol. Prob-
lems arise also in the case an agent can execute a sequence of actions which altogether
implement one of those foreseen by the protocol. The problem is that the regulative
specification is given in terms of actions, so, when changing the actions names we need
to change regulative specifications as well. It is also easy to make mistakes by forget-
ting to update the regulative part when a new action is changed or when its semantics is
changed.
Fornara and Colombetti. ([16, 19, 18], Fig. 2(b)) Fornara and Colombetti define a
commitment-based semantics for the speech acts of agent communication languages,
like FIPA, and then use interaction diagrams to define agent interaction protocols. In
this proposal, the social actions are represented by the speech acts and the constitutive
specification is given in terms of commitments. The choice of relying on interaction
diagrams is, however, very strong because it forces the ordering of action executions,
loosing, in our opinion the flexibility aimed at by the adoption of commitments.
Summary. The distinction between a regulative and a constitutive specification is surely
interesting but the current proposals still show some limits in the realization of this
model, each with its pros and cons. Fornara and Colombetti propose a too rigid model:
the use of interaction diagrams conflicts with the desirable flexibility of commitments.
In this respect, ConDec’s use of constraints is better: the declarative approach that is
proposed is aligned with the declarative nature of commitments. The problem is that
constraints are defined in terms of performing actions rather than on bringing about
conditions. Also Chopra and Singh [9] propose an implementation where the regulative
specification is given on top of actions themselves. Again, while commitments are given
on conditions and not on the actions that should bring them about, constraints are posed
on the action execution, with the result that modularity is not obtained. The same holds
for [35, 20, 36, 37].

Fig. 3. Our proposal: decoupling between constitutive (actions) and regulative (constraints) spec-
ifications.

8

Our proposal aims at overcoming the listed limits. As in [23, 19] we propose the
use of commitments to give constitutive specifications. As in [27, 26] we propose the
use of a declarative language, 2CL, for capturing constraints that rule the execution
flow. The difference is that in our proposal such constraints relate commitments and
not actions (see Fig. 3). Doing so allows us the achievement of a greater modularity,
which brings along the mentioned advantages: allowing an easier re-use of actions in
different contexts, allowing an easier re-use of protocols with different actors, simpli-
fying the modification of protocols, greater openness, better support to interoperability
checks. The next sections illustrates our proposal for the representation of regulative
specifications.

3 Commitment Protocols: A Decoupled Approach

In this work, we propose an approach to the definition of commitment-based interaction
protocols which includes a constitutive specification, that defines the meaning of actions
for all the agents in the system, and a regulative specification, which constrains the
possible evolutions of the social state. Both are defined based on commitments.

Definition 1 (Interaction protocol). An interaction protocol P is a tuple ⟨Ro, F,A,C⟩,
where Ro is a set of roles, identifying the interacting parties, F is a set of fluents (in-
cluding commitments) that can occur in the social state, A is a set of actions, and C is
a set of constraints.

The set of social actions A, defined on F and on Ro, forms the constitutive specification
of the protocol, while the set of constraints C, defined on F and on Ro too, forms the
regulative specification of the protocol.

The constitutive specification of an action, similarly to [6], defines its meaning in
terms of how it affects the social state by adding or removing fluents or by performing
operations on the commitments (the usual create, discharge, release, delete, etc., see
[29, 37]). The constitutive specification follows the grammar:

A → (Action means Operation)+

Action → protocolAction([paramList])
Operation → Op(commitment) ∣ fact ∣ Operation ∧Operation
Op → CREATE ∣ DELETE ∣ DISCHARGE ∣ RELEASE ∣ DELEGATE ∣ ASSIGN

where protocolAction is the name of an interactive action of the protocol; paramList
denotes the possible parameter list of the action; Op is one of the operations on com-
mitments; commitment is a commitment of form C(x, y, r, p), as specified in Section 2
(see also [6, page 49]), where x and y are roles in Ro and r and p are formulas in dis-
junctive normal form of propositional literals in F ; and fact is a literal, i.e. a positive or
negative proposition that does not concern commitments and which contributes to the
social state (they are the conditions that are brought about). For instance, the action cfp
of the contract net protocol (which is used as an example below) is given in this way:
cfp(i, p) means CREATE(C(i, p, assigned task)), i.e. its effects is to add to the social
state the commitment C(i, p, assigned task) by which the initiator (role i) commits to
a participant (role p) to assign a task of interest to someone. Not necessarily the task

9

will, in the end, be assigned to the p at issue; if many participants propose to solve
the task, the choice will depend on the decision criteria implemented by the specific
initiator, that are not modeled by the protocol.

In order to represent the regulative specification, we propose a constraint-based
representation following the grammar:

C → (Disj op Disj)+

Disj → Conj ∨Disj ∣ Conj
Conj → fluent ∧ Conj ∣ fluent

C, see Def. 1, is a set of constraints of the form A op B, where A and B are for-
mulas of fluents in disjunctive normal form and op is one of the operators in Table 1;
fluent can be either a commitment or a fact. Such constraints rule the evolution of the
social state by imposing specific patterns on how states can progress. For instance,
C(i, p, assign task) −⊳∙ (refused task ∨ C(p, i, solve task)) expresses the fact that
a participant cannot refuse a task nor it is allowed to commit to solve it before the ini-
tiator has taken a commitment, stating its intention to assign the task to that participant.
Notice that the constraint does not specify which actions should bring these conditions
about, in fact, constraints do not rule the occurrence of events. Moreover, the declar-
ative nature of the specification adds flexibility w.r.t. an algorithmic specification, in
fact, while the latter specifies all the allowed evolutions, declarative constraints allow
any evolution that respects the relations involving the specified fluents.

Relation Positive LTL meaning Negative LTL meaning
Correlation a ∙− b ◇a ⊃ ◇b a ∕∙− b ◇a ⊃ ¬◇b

Co-existence a ∙−∙ b a ∙− b ∧ b ∙− a a ∕∙−∙ b a ∕∙− b ∧ b ∕∙− a

Response a ∙−⊳ b □(a ⊃ ◇b) a ∕∙−⊳ b □(a ⊃ ¬◇b)

Before a −⊳∙ b ¬bUa a ∕−⊳∙ b ¬aUb
Cause a ∙−⊳∙ b a ∙−⊳ b ∧ a −⊳∙ b a ∕∙−⊳∙ b a ∕∙−⊳ b ∧ a ∕−⊳∙ b

Premise a ⊳⊳− b □(⃝b ⊃ a) a ∕⊳⊳− b □(⃝b ⊃ ¬a)
Immediate response a −⊳⊳ b □(a ⊃ ⃝b) a ∕−⊳⊳ b □(a ⊃ ⃝¬b)

Table 1. 2CL operators and their semantics in LTL.

We named the language for representing the regulative specification 2CL(the acronym
stands for “Constraints among Commitments Language”) . The names of the operators
and in the graphical format, used in Section 4, are inspired by ConDec [27]. We remark
again that the main difference is that constraints are defined over commitments and
facts, while in ConDec they are defined on actions. In order to allow the application of
reasoning techniques, e.g. to check if the on-going interaction is respecting the proto-
col, to build sequences of actions that respect the protocol, or to verify properties of the
system, it is necessary to give the operators a semantics that can be reasoned about. To
this aim, in this work we use linear temporal logic (LTL, [14]), which includes tempo-
ral operators such as next-time (⃝), eventually (◇), always (□), weak until (U). Let us

10

describe the various operators. For simplicity the description are given on single fluents
rather than formulas.

Correlation: this operator captures the fact that in an execution where a occurs, also b
occurs but there is no temporal relation between the two. Its negation means that if
a occurs in some execution, b must not occur.

Co-existence: the mutual correlation between a and b. Its negation captures the mutual
exclusion of a and b. Notice that in LTL the semantics of negated co-existence is
equivalent to the semantics of negated correlation.

Response: this is a temporal relation, stating that if a occurs b must hold at least once
afterwards (or in the same state). It does not matter if b already held before a. The
negation states that if a holds, b cannot hold in the same state or after.

Before: this a temporal relation, stating that b cannot hold until a becomes true. After-
wards, it is not necessary that b becomes true. The negation of a −⊳∙ b is equivalent
to b −⊳∙ a.

Cause: this operator states that if a occurs, after b must occur at least once and b cannot
occur before a. The negation states that if a occurs, b cannot follow it and if b
occurs, a is not allowed to occurre before.

Premise: is a stronger temporal relation concerning subsequent states, stating that a
must hold in all the states immediately preceding one state in which b holds. The
negation states that a must never hold in a state that immediately precedes one
where b holds.

Immediate Response: it concerns subsequent states, stating that b must occur in all
the states immediately following a state where a occurs. The negation states that b
does not have to hold in the states immediately following a state where b holds.

Notice that the negated operators semantics (column 5) not always corresponds to the
negation of the semantics of the corresponding positive operator (column 3). This is
due to the intention of capturing the intuitive meaning of negations. We show this need
by means of a couple of examples. For what concerns correlation, the negation of the
formula in column 3, which is ◇a∧¬◇b, is too strong because it says that a must hold
sooner or later while b cannot hold. What we mean by negated coexistence, instead,
that if a becomes true then b must not occur in the execution. For completeness, the
semantics of negated correlation is not equivalent to the semantics of a ∙− ¬b.

For what concerns immediate response, by negating the semantics in column 3 we
obtain ◇(⃝b ∧ ¬a) which says that b occurs in some state and a does not occur in the
previous state. Instead, the intended meaning of the negation is that a does not have to
hold in the states that precede those in which b holds (but b does not necessarily have
to hold). Analogous considerations can be drawn for the other operators. The choice
of sticking to the intuitive semantics of the operators is done to give the user only
seven basic operators. Had we defined the negated operators semantics by negating
the semantics of the positive operators, we would have given the user forteen different
operators.

11

4 Tailoring Protocols to different needs

In this section, we show the use of the proposed model by, first, representing the well-
known Contract Net Protocol (CNP for short) [15] and, then, by showing how easy it
is to produce variants by playing with its regulative specification, separately from the
constitutive specification of its actions. Briefly, CNP includes two roles, the initiator (i
in the following) and a participant (p). The initiator calls for proposals. The participant
may send a proposal or refuse to do it. When a proposal is received, the initiator may
either reject or accept it. Notice that, for the sake of simplicity, we do not model the ex-
change of information concerning the proposal itself but only the interaction concerning
the task assignment and solution. We report the CNP as represented according to our
proposal, by giving its constitutive specification followed by its regulative specification.

Constitutive specification of CNP. The actions of CNP, as expressed according to the
grammar in Section 3, are:

(a) cfp(i, p) means CREATE(C(i, p, assigned task))
(b) propose(p, i) means CREATE(C(p, i, solved task))
(c) refuse(p, i) means refused task ∧ RELEASE(C(i, p, assigned task))
(d) accept(i, p) means assigned task
(e) reject(i, p) means rejected proposal ∧ DELETE(C(i, p, assigned task))∧

RELEASE(C(p, i, solved task))
(f) inform done(p, i) means solved task
(g) failure(p, i) means failed task ∧ DELETE(C(p, i, solved task))

Since such definitions are quite straightforward, we get into the details of just a couple
of them. The effect of the action cfp is to create the commitment C(i, p, assigned task).
Intuitively, this commitment states the resolution of the initiator to assign a task to a par-
ticipant because it needs someone to solve it. This does not mean that, at the end, the
task will be assigned to that participant. Indeed, during the execution the participant
may refuse to solve the task or the initiator may reject its proposal because, for ex-
ample, it is not convenient. The action refuse(p, i) (the participant refuses to solve a
task), instead, has, as effect, the action RELEASE(C(i, p, assigned task)), by which
the participant releases the initiator from the commitment of assigning a task to it, and
the fact refused task, whose meaning is clear.

Regulative specification of CNP. The regulative rules of CNP, as expressed according
to the grammar in Section 3, are:

c1: C(i, p, assigned task) ∙−⊳∙ C(p, i, solved task) XOR refused task
c2: C(p, i, solved task) ∙−⊳∙ rejected proposal XOR assigned task
c3: assigned task ∙−⊳∙ solved task XOR failed

Fig. 4 reports them as a graph, whose nodes (the rectangles) contain fluents that should
be in the social state at some point of the execution, while the arrows are operators from
Table 1. The initiator declares its intention to assign a task (node n1, C(i, p, assigned task)).
If this happens, afterwards the participant takes its decision and alternatively refuses or

12

Fig. 4. Regulative specification of the Contract Net Protocol.

states its intention to solve the task. This is represented by the fact that the node n1
is connected to the nodes n2 (C(p, i, solved task)), and n3 (refused task): n2 and
n3 are alternative evolutions of the social state after n1. The connector n4 denotes the
exclusive or of the two. It is a graphical simplification of the and-or formula implement-
ing the “exclusive or”. The arrow used (of the kind a ∙−⊳∙ b) represents the fact when
the initiator has a task to assign, the participant it is interacting with necessarily has to
either refuse the task or take the commitment to solve it. It is not obliged to do it as
the next step of its execution but sooner or later it must take one of the two ways. The
specification foresees that the participant cannot take the initiative of proposing to solve
a task (or of refusing to do something) if the initiator has not declared that there is a
task to solve. This is the intuitive meaning of the circles at the two sides of the arrow
c1.

Notice that we have not mentioned which actions should be executed in order to
change the social state. Actually, we do not care. Any action, whose effects are com-
patible with the schema of evolution of the social state reported above is feasible. In
the same way it is not necessary, in commitment protocols, to say which action to take
in order to satisfy a commitment. Moreover, the transition from one state to one of its
next states (according to the description given by regulative specification) may actually
require the application of many actions (not necessarily one). The regulative specifica-
tion does not give any procedure for achieving the social state change, that it captures.
In fact, constraints on the evolution of the social state are independent from the actions
that are used by the agents. Both, however, are specified on top of the fluents in the
social state.

If the interaction continues because the participant has proposed to solve the task,
the initiator must either reject the proposal or accept it and assign the task to the par-
ticipant, which, in this case, will try to solve the task and give back to the initiator an
answer (the solution or the information that it has failed). The arrows in the graph be-
tween nodes n2 and the alternative between n5 and n6, on a side, and between n6 and
the alternative between n8 and n9 are again of the kind ∙−⊳∙ (causality operator).

4.1 Tailoring the Contract Net Protocol

Let us now show the versatility of the proposed representation by showing how a de-
signer can easily modify the specification of the contract net protocol given above in
order to build new protocols which adapt to different conditions. All the variantions are
produced by working exclusively on the regulative specification without modifying the
actions. Of course, it is possible to do the opposite or to modify both parts if necessary.

13

Lazy and zealous participant. (Fig. 5(a), Fig. 5(b)) Let us consider, for a start, two
simple variants of the allowed behavior, obtained by changing a single arrow with an-
other operator from Table 1. For instance if, see Fig. 5(a) (only the modified part of the
CNP regulative specification is reported), we use a before relation (−⊳∙), the participant
would not be obliged to answer (it is allowed to have a lazy behavior). In constraints
the whole variant is:

c1: C(i, p, assigned task) −⊳∙ C(p, i, solved task) XOR refused task
c2: C(p, i, solved task) ∙−⊳∙ rejected proposal XOR assigned task
c3: assigned task ∙−⊳∙ solved task XOR failed

Instead, see Fig. 5(b), if a response (∙−⊳) is used, the participant can, for instance, also
take the initiative to volunteer to solve a task even though the initiator has not made any
request (zealous participant):

c1: C(i, p, assigned task) ∙−⊳ C(p, i, solved task) XOR refused task
c2: C(p, i, solved task) ∙−⊳∙ rejected proposal XOR assigned task
c3: assigned task ∙−⊳∙ solved task XOR failed

These two variants correspond to protocols that differ from CNP but that can easily be
obtained by working at the level of constraints among commitments.
Contract Net with Immediate Answer. (Fig. 5(c)) A stricter regulative specification,
produced for a context, which differs from the original contract net one (Fig. 4) only for
what concerns the constraint c2, is reported in Fig. 5(c). On the whole, the regulative
specification of the protocol states that the participant is expected to answer (as in the
original CNP) and, when the answer is the commitment to solve the task, the initiator
will reply without any delay. This amounts to require that the initiator evaluates the
proposal and gives the outcome of its evaluation back to the participant immediately.
The specification is as follows:

c1: C(i, p, assigned task) ∙−⊳∙ C(p, i, solved task) XOR refused task
c2: C(p, i, solved task) −⊳⊳ rejected proposal XOR assigned task
c3: assigned task ∙−⊳∙ solved task XOR failed

Call for Bids. (Fig. 5(d)) The next context that we consider is a call for bids, where
an initiator publishes an open call, e.g. in an official gazette, that does not require the
subscribers to the gazette to answer. Fig. 5(d) shows the new protocol: the fact that the
participant is not obliged to send a bid is captured by the constraint c1, which is a before
(−⊳∙) instead of being a cause (∙−⊳∙, in Fig. 4). We have further modified the CNP by
changing the constraint c2 in Fig. 4, which is now an immediate response (−⊳⊳), in this
way the initiator is obliged to answer immediately to any participant which sends a bid,
either rejecting the proposal or assigning the task. The new specification in rules is:

c1: C(i, p, assigned task) −⊳∙ C(p, i, solved task) XOR refused task
c2: C(p, i, solved task) −⊳⊳ rejected proposal XOR assigned task
c3: assigned task ∙−⊳∙ solved task XOR failed

In the same context of the “Call for Bids” protocol, a designer may need to express
the fact that the participant can notify a failure in the task solution also in the case in

14

(a) (b)

(c)

(d)

(e)

(f)

Fig. 5. (a) Lazy Participant; (b) Zealus Participant; (c) Contract Net with Immediate Answer; (d)
Call for Bid; (e) Call for Bids with Anticipated Failure; (f) Soft Call for Bids.

which the task has not been assigned to it yet but, for some reason, it has found out that
it has become impossible for it to proceed with the solution, in case the task is assigned
to it. Instead, it is not allowed to communicate the solution until the task is assigned
to it. The new protocol can be obtained by modifying the regulative specification of
Fig. 5(d) as in Fig. 5(e). In rules:

c1: C(i, p, assigned task) −⊳∙ C(p, i, solved task) XOR refused task
c2: C(p, i, solved task) −⊳⊳ rejected proposal XOR assigned task
c3: assigned task ∙−⊳ solved task XOR failed
c4: assigned task −⊳∙ solved task

The changes concern the constraints after node n6. In the new version, instead of hav-
ing simply a cause constraint, we have a response (∙−⊳). Response is a softer con-
straint because it does not forbid to the alternatives specified by n10 to hold before
assigned task. For this reason, in order to enforce that the solution is communicated

15

only after the assignment, another constraint is to be added (c4). In this way, failure can
be notified at any moment.
Soft Call for Bids. (Fig. 5(f)) The last example is a very soft interaction protocol that,
differently than the previous ones, expresses just a few regulative constraints, leaving a
much greater freedom of behavior to the initiator and to the participant.

c1: C(p, i, solved task) −⊳∙ assigned task
c2: refused task ∕∙−∙ C(p, i, solved task)
c3: rejected proposal ∕∙−∙ assigned task

This example also shows the use of negative constraints. The only constraint that is
imposed on the evolution of the social state is that the assignment of a task cannot be
done if the participant has not committed to solve the task. Moreover, there are two
negative constraints (of the kind ∕∙−∙) stating that the rejection of a proposal is mutually
exclusive to its assignment (c3), and that the refusal of a task is mutually exclusive
to the commitment to solve it (c2). So, for instance, it is possible for the participant
to express its intention to solve a task, for which no call has been made and it is also
possible for it to give a solution before any assignment of the task has been made to it.
On the other hand, the initiator can ignore the participant even though it has committed
to solve the task by avoiding to answer to it. It can call for proposals even if it already
has a commitment by the participant, and it can reject a participant even though it has
not made any proposal. It is not even necessary that the initiator commits to assign the
task. In rules:

5 Conclusion and future work

Constitutive and regulative specifications have been recognized as fundamental com-
ponents of the interaction based on communication starting from Searle [28, 7], and
including various authors in the Multi-Agent community, e.g. [12, 6, 6]. In this paper
we have presented a model of commitment-based interaction protocols that includes an
explicit representation of both constitutive and regulative specifications. From a graphi-
cal point of view, the language 2CL is inspired to [27, 4]. The semantics of the operators
is based on linear temporal logic due to the fact that this logic is well-known and simple
and opens the way to possible integrations with model checkers like SPIN. We mean,
however, to study alternatives offered, for instance, by CTL*.

The proposal includes as special cases some of the representation models that are
discussed in Section 2. Specifically, we can model the proposal by Chopra and Singh
[12] as well as the models adopted in [20, 37, 35] which follow the same principles, by
introducing for each action a fluent that is univocally associated to it, as an effect of
the action, and, then, to define constraints (typically of kind premise, ⊳⊳−) among these
fluents.

In case the designer wishes to specify strict sequences of action executions, as it
may happen in [17, 19, 16], our proposal allows to do it in a straightforward way. One
can introduce for each action a fluent that is univocally associated to it, as in the above
case. As a difference, the designer must use the immediate response operator (−⊳⊳) to
create sequences, which can further be combined with other constraints.

16

Last but not the least, the proposal overcomes the limits of those in [27, 31, 26, 8,
22] because the regulative specification rules the evolution of the social state and not the
execution of actions/events. In case the designer wishes to constrain the execution of
specific actions, again he/she can introduce a fluent for each action, univocally produced
as an action effect.

An approach similar to commitment-based protocols is the one introduced in [3],
where expectation-based protocols are presented. Expectations concern events expected
to happen (or not to happen) and can be associated to time points. Protocols are specified
by constraining the times at which events occur. As for the previous works, the limit of
this approach is that it works directly on events (i.e. actions); by constraining actions the
approach lacks the openness discussed in the Introduction and in the discussion about
ConDec in Section 2. On the other hand, our proposal does not handle time explicitly so
we cannot yet represent and handle timeouts and also compensation mechanisms. Our
intention with this paper was, however, to present the idea of an explicit, declarative,
and decoupled representation of both the constitutive and the regulative specifications.
We mean to tackle also issues concerning time, faults and compensation, like in [33]
(where commitments are implemented by means of expectations), in future work.

The adaptation of commitment-based protocols to different contexts of usage has
been tackled in [11]. The authors show how a declarative approach is particularly suit-
able to this aim. Our proposal is set along this line. In fact, not only the constitutive rules
are given in a declarative way but also the regulative specification is made of declara-
tive constraints and it is possible to contextualize it by adding or removing constraints.
The advantage w.r.t. [11], however, is the modularity of the two specifications discussed
along the paper.

The work in [25] contains a comparison of various approaches to interaction proto-
cols, including but not limited to commitment-based protocols. Specifically, also nor-
mative systems, algebraic-operational approaches (like ℛASA [24]), and Petri nets are
considered. The comparison is done along many directions. The authors confirm our
opinion that declarative approaches (like commitment-based ones) are very flexible.
However, they claim that they are less readable (and sometimes more verbose) than
algorithmic approaches. To support this consideration they cite some of the major ex-
isting tools for the designer (like AgentUML), which are algorithmic. For verbosity,
they cite the CNP representation in [3] which consists of seventeen rules. We underline
that our regulative representation of CNP consists instead of three rules only. The con-
stitutive specification is made of seven rules (because there are seven actions). For what
concerns commitment protocols, the difficulty in reading declarative specifications is,
in our opinion, due to the lack of separation between the constitutive and the regulative
specifications that many approaches show. Moreover, as [34] notices, there is a lack
of graphical intuitive representations oriented to designers. We have tried to overcome
these problems by decoupling the regulative and the constitutive specifications and by
giving a graphical representation. This representation has the advantage of giving the
perception of a flow in the execution, remaining however at a what rather than at a
how level (no-flow in-flow). This representation also supports the compositionality of
the protocols. In fact, to put it simply, in order to produce a new protocol starting from
existing ones, it is sufficient to draw together the sets of constraints of interest and pro-

17

duce a bigger graph without any effort. Protocols can, then, be designed bottom-up.
This aspects will further be studied as future work.

Acknowledgements

The authors would like to thank the reviewers for the helpful comments. This research
has partially been funded by “Regione Piemonte” through the project ICT4LAW.

References

1. Proc. of the 2nd Multi-Agent Logics, Languages, and Organisations Federated Workshops,
volume 494 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

2. Declarative Agent Languages and Technologies VII, 7th Int. Workshop, DALT 2009, volume
5948 of Lecture Notes in Computer Science. Springer, 2010.

3. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Specification and
verification of agent interaction protocols in a logic-based system. In Proc. of the SAC 2004,
pages 72–78. ACM, 2004.

4. M. Baldoni, C. Baroglio, I. Brunkhorst, N. Henze, E. Marengo, and V. Patti. Constraint Mod-
eling for Curriculum Planning and Validation. Int. J. of Interactive Learning Environments,
2009.

5. M. Baldoni, C. Baroglio, and E. Marengo. Commitment-based Protocols with Behavioral
Rules and Correctness Properties of MAS. In Proc. of International Workshop on Declara-
tive Agent Languages and Technologies, DALT 2010, Toronto, Canada, May 2010.

6. G. Boella and L. W. N. van der Torre. Regulative and constitutive norms in normative mul-
tiagent systems. In Proc. of KR, pages 255–266. AAAI Press, 2004.

7. C. Cherry. Regulative rules and constitutive rules. The Philosophical Quarterly, 23(93):301–
315, 1973.

8. F. Chesani, P. Mello, M. Montali, and P. Torroni. Verifying a-priori the composition of
declarative specified services. In MALLOW [1].

9. A. K. Chopra. Personal communication. December 2009.
10. A.K. Chopra. Commitment Alignment: Semantics, Patterns, and Decision Procedures for

Distributed Computing. PhD thesis, North Carolina State University, Raleigh, NC, 2009.
11. A.K. Chopra and M. P. Singh. Contextualizing commitment protocol. In Proc. of AAMAS’06,

pages 1345–1352. ACM, 2006.
12. A.K. Chopra and M. P. Singh. Constitutive interoperability. In Proc. of AAMAS’08, pages

797–804, 2008.
13. A.K. Chopra and M. P. Singh. Multiagent commitment alignment. In Proc. of AAMAS’09,

pages 937–944, 2009.
14. E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer Science,

volume B, pages 997–1072. Elsevier, 1990.
15. Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol Specifi-

cation, December 2002.
16. N. Fornara. Interaction and Communication among Autonomous Agents in Multiagent Sys-

tems. PhD thesis, Università della Svizzera italiana, Facoltà di Scienze della Comunicazione,
June 2003.

17. N. Fornara and M. Colombetti. Defining interaction protocols using a commitment-based
agent communication language. In Proc. of AAMAS’03, pages 520–527, 2003.

18. N. Fornara and M. Colombetti. Protocol Specification Using a Commitment Based ACL. In
ACL 2003, volume 2922 of LNCS, pages 108–127. Springer, 2003.

18

19. N. Fornara and M. Colombetti. A Commitment-Based Approach To Agent Communication.
Applied Artificial Intelligence, 18(9-10):853–866, 2004.

20. L. Giordano, A. Martelli, and C. Schwind. Specifying and verifying interaction protocols in
a temporal action logic. J. Applied Logic, 5(2):214–234, 2007.

21. Ö. Kafali and P. Yolum. Detecting exceptions in commitment protocols: Discovering hidden
states. In MALLOW [1].

22. Montali M., M. Pesic, W.M. P. van der Aalst, F. Chesani, P. Mello, and S. Storari. Declarative
specification and verification of service choreographies. ACM Transactions on the Web,
2009.

23. A. U. Mallya and M. P. Singh. Introducing preferences into commitment protocols. In AC,
volume 3859 of LNCS, pages 136–149. Springer, 2006.

24. T. Miller and P. McBurney. Annotation and matching of first-class agent interaction proto-
cols. In Proc. of the 7th AAMAS, pages 805–812, 2008.

25. T. Miller and J. McGinnis. Amongst first-class protocols. In Proc. of Eng. Societies in the
Agents World VIII, volume 4995 of LNCS, pages 208–223. Springer, 2008.

26. M. Montali. Specification and Verification of Declarative Open Interaction Models - A Logic-
based framework. PhD thesis, University of Bologna, 2009.

27. M. Pesic and W. M. P. van der Aalst. A Declarative Approach for Flexible Business Processes
Management. In Proc. of. Business Process Management Workshops, volume 4103 of LNCS,
pages 169–180. Springer, 2006.

28. J. Searle. Speech Acts. Cambridge University Press, 1969.
29. M. P. Singh. An ontology for commitments in multiagent systems. Artif. Intell. Law, 7(1):97–

113, 1999.
30. M. P. Singh. A social semantics for agent communication languages. In F. Dignum and

M. Greaves, editors, Issues in Agent Communication, volume 1916 of LNCS, pages 31–45.
Springer, 2000.

31. M. P. Singh. Distributed enactment of multiagent workflows: temporal logic for web service
composition. In AAMAS, pages 907–914. ACM, 2003.

32. M. P. Singh and A. K. Chopra. Correctness properties for multiagent systems. In DALT [2],
pages 192–207.

33. P. Torroni, F. Chesani, P. Mello, and M. Montali. Social commitments in time: Satisfied or
compensated. In DALT [2], pages 228–243.

34. W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, H. M. W. Verbeek,
and P. Wohed. Life after BPEL? In Proc. of WS-FM, volume 3670 of LNCS, pages 35–50,
2005.

35. M. Winikoff, W. Liu, and J. Harland. Enhancing commitment machines. In Proc. of DALT,
volume 3476 of LNCS, pages 198–220, 2004.

36. P. Yolum and M. P. Singh. Commitment machines. In Proc. of ATAL, volume 2333 of LNCS,
pages 235–247. Springer, 2001.

37. P. Yolum and M. P. Singh. Designing and executing protocols using the event calculus. In
Agents, pages 27–28, 2001.

Protocol Refinement: Formalization and Verification

Scott N. Gerard and Munindar P. Singh

Department of Computer Science
North Carolina State University

Raleigh, NC 27695 USA
{sngerard,singh}@ncsu.edu

Abstract. A proper definition of protocols and protocol refinement is crucial to
designing multiagent systems. Rigidly defined protocols can require significant
rework for even minor changes. Loosely defined protocols can require significant
reasoning capabilities within each agent. Protocol definitions based on commit-
ments is a middle ground.
We formalize a model of protocols consisting of agent roles, propositions, and
commitments. We define protocol refinement between a superprotocol and a sub-
protocol by mapping superprotocol elements to corresponding subprotocol ele-
ments. Mapping protocol commitments depends on a novel operation called serial
composition. We demonstrate protocol refinement.

1 Introduction

We focus our attention on service engagements between businesses and customers (B2B
and B2C) over the Internet. In current practice, such engagements are defined rigidly
and purely in operational terms. Consequently, the software components of the busi-
ness partners are tightly coupled with each other, and depend closely on the engage-
ment specification. Thus the business partners interoperate, but just barely. Even small
changes in one partner’s components must be propagated to others, even when such
changes are not consequential to the business being conducted. Alternatively, in current
practice, humans carry out the necessary engagements manually with concomitant loss
in productivity.

In such an environment, if there were no mechanisms to structure inter-agent com-
munication, agent implementations would need to handle a wide variety of communica-
tion making agent implementations complex with sophisticated reasoning capabilities
as each interaction would be unique and customized. It would be difficult to predict a
priori whether two agents could interoperate.

Protocols, as we understand them, provide a happy middle between rigid automation
and flexible manual execution. Using protocols as a mechanism to structured communi-
cation, agent implementations can be less sophisticated. Protocol designers design and
analyze protocols for desirable properties. Agents can publicly declare the protocols in
which they can participate making it easier to find agents with whom to interoperate.

Protocols are a way to standardize communication patterns so agents can be used in
many different multiagent interactions. Consider the simple protocol Pay consisting of a
single action where a payer pays a payee. And consider protocol OrderPayShip where a

20

buyer and a seller agree to a price for a particular good, the buyer pays the seller and the
seller ships the good to the buyer. The payer and payee roles in Pay should correspond
to the buyer and seller roles in OrderPayShip. The payment in Pay should correspond
to the payment in OrderPayShip. Therefore, we expect OrderPayShip refines Pay.

Suppose protocol PayByInt (pay by intermediary) is introduced where the payer first
pays a middleman, who in turn pays the payee. Since both Pay and PayByInt send a pay-
ment from the payer to the payee, we expect PayByInt refines Pay. Similar arguments
imply PayByCheck, PayByCredit, and others also refine Pay. If PayByInt becomes pop-
ular, we would like to construct a new protocol OrderPayByIntShip, which is just like
OrderPayShip, except payments are made using PayByInt rather than Pay.

This diagram shows the expected refinement relationships between various proto-
cols.

Pay

PayByCℎeck

22ddddddddddddddddddddd
PayByCredit

44iiiiiiii
PayByInt

OO

OrderPaySℎip

kkWWWWWWWWWW

OrderPayByIntSℎip

kkWWWWWWW
OO

We are working to implement refinement checking via the MCMAS model checking
[2] to handle complex protocols like those found in real service engagements.

Contributions

The main contributions of this paper are a definition of a refinement relation between
two protocols, the notion of covering commitments, and the definition of serial compo-
sition of commitments. It describes why commitment-based protocols are more flexible
than traditional computer protocols using the idea of multiple states of completion.

Organization

Section 2 introduces our running examples. Section 3 describes background material
on commitments. Section 4 describes our intuitions and framework for protocol re-
finement, covering commitments, and serial composition of commitments. Section 5
briefly describes our intentions for implementing refinement checking with the MC-
MAS model checker. Section 6 demonstrates refinement on an example. Section 7 eval-
uates our approach. Section 8 describes other works and our future directions.

2 Examples

We introduce four running examples. Pay and PayByInt are basic payment protocols
while OrderPayShip and OrderPayByIntShip are order protocols involving payments.

21

2.1 Pay

Pay is a basic payment protocol between a payer and a payee. If the payer chooses to do
so, it commits to pay the payee by action promise. Then, at some later point, it sends a
single payment directly to the payee. This sequence diagram describes the interaction.

Payer Payee
promise //

pay //

2.2 PayByInt

In protocol PayByInt (pay by intermediary), if the payer chooses to do so, it commits
to pay the payee with promise. It then pays by sending a payment indirectly to the
payee. The payer first pays a middleman, who in turn pays the payee. We assume the
middleman commits to perform payM if payer performs payP. This sequence diagram
shows a typical interaction, but sequence diagrams document only one message run.
Other runs may also be valid. In this case, it is acceptable for the middleman to be
generous and execute payM before payP.

Payer MM Payee
promise //

payP //
payM //

2.3 OrderPayShip

In OrderPayShip a buyer orders goods from a seller. The buyer requests a price quote
for a good from the seller. The seller sends the price quote along with its commitment
to ship the good if the buyer orders. The buyer can accept the offer by ordering and
making its commitment to pay for the good if it orders. The seller can ship first, or the
buyer can pay first.

Buyer Seller
reqQuote //
sendQuoteoo

order //
pay //
sℎipoo

22

2.4 OrderPayByIntShip

Protocol OrderPayByIntShip is similar to OrderPayShip except the payer uses PayByInt
for payment. This introduces a new middleman role.

Buyer MM Seller
reqQuote //
sendQuoteoo

order //
payB //

payM //
sℎipoo

3 Background

3.1 Commitments

Commitments are a formal and concise method of describing how agent roles commit
to perform future actions. We extend previous commitment definitions [5] in two ways.
First, we allow both debtors and creditors to be sets of roles. This handles situations
where a chain of debtors and intermediaries must all act to fulfill a commitment, and
where a chain of creditors and intermediaries all need to know whether a commitment
is satisfied. Second, we implement prior uses of delegate and assign with a single, new
transfer operation.

Definition 1. A commitment is an object

C{debtors},{creditors}(ant, csq) (1)

where debtors and creditors are sets of roles, ant is the antecedent, and csq is the
consequent. When a commitment is active, the debtors are conditionally committed to
the creditors. Once ant becomes true, the debtors are unconditionally committed to
make csq true at some point in the future.

The valid operations on commitments are
– create, performed only by debtors, creates a new commitment and makes it active.
– When the antecedent becomes true, the commitment is implicitly converted to an

unconditional commitment.
– When the consequent becomes true, the commitment is implicitly satisfied and no

longer active. Typically the consequent become true only after the antecedent be-
comes true, but this is not required.

– transfer, performed by either debtors or creditors, ends the current commitment
and marks it as transferred to another commitment and no longer active.

– release, performed only by creditors, releases the debtors from their commitment.
The commitment is released and no longer active.

– cancel, performed only by debtors, cancels the debtors’ commitment. The commit-
ment is violated and no longer active.

23

A commitment is always in one of these states.
– inact: the initial state;
– cond: after create with ant false, csq false, and no other operations;
– uncond: after create with ant true, csq false, and no other operations;
– sat: after create and csq true;
– xfer: after create and transfer;
– rel: after create and release; and
– can: after create and cancel.

A commitment in state sat, xfer, rel, or can is said to be resolved.
For unconditional commitments, the debtors are committed to eventually make csq

true. If the debtors fail, responsibility can be several (each debtor is responsible for just
its portion), joint (each debtor is fully responsible for the entire commitment), or joint
and several (the creditors hold one debtor fully responsible, who then pursues other
debtors). We use several responsibility.

We note that contracts are built from multiple commitments; each party commits to
perform the actions for which it is responsible. So while contracts are created by both
debtors and creditors, commitments are created only by debtors.

Before a commitment’s create (state inact), the commitment has no force. A created
commitment (state cond) is conditionally committed. Unconditional commitments must
eventually resolve to state sat, xfer, rel, or can. It is possible for the consequent to
become true before the antecedent. While unusual, debtors have the option to act before
being required to do so. Debtors are discouraged from cancel, but circumstances may
require it, with consequences handled outside the current mechanisms.

In Pay, we represent the payer’s commitment to paying the payee as

CPayer,Payee(promise, pay)

In PayByInt, we represent the payer’s and middleman’s combined commitment as

C{Payer,MM},Payee(promise, payP ∧ payM)

Previous commitment descriptions allow debtors to delegate, or creditors to assign,
a commitment to another role. Both terminate the existing commitment and create a new
commitment with modified roles. We model these operations as a transfer operation
which terminates the existing commitment plus a separate create of a new commitment.

delegate(Ci, debt
′) = transfer(Ci) ∧ create(Cd′)

assign(Ci, cred
′) = transfer(Ci) ∧ create(Cc′)

where Ci = Cdebt,cred(ant, csq), Cd′ = Cdebt’,cred(ant, csq) and Cc′ = Cdebt,cred’(ant, csq).
Since delegate and assign have essentially the same effect, transfer captures the essence
of both and somewhat simplifies the definition of commitments.

3.2 Unconditional Commitments Must Resolve

We require debtors must eventually resolve all their unconditional commitments, even
if that is cancel.

24

Model checkers have fairness constraints which eliminate unfair paths from con-
sideration. Fairness constraints are typically used to eliminate unfair scheduler paths.
We use fairness constraints to eliminate paths where agents never resolve their uncon-
ditional commitments. This is a constraint on agent implementations, not a constraint
on the protocol itself.

4 Framework

4.1 Protocol Basics

A protocol specification language needs to describe all participating agent roles, the
actions they can perform, and any constraints (guards) on their actions. Agents send
message actions to each other. Message actions are an agent-level concept. Below we
decompose message actions into an unordered set of basic actions.

We model protocols using CTL. We consider runs of basic actions which generate
state runs as is traditional for model checking. An action run is modeled as

s0
a0 // s1

a1 // s2
a2 // . . .

When we compare points in time and actions, “si < aj < sk” means i ≤ j < k. When
we compare two actions, “ai < aj” means i < j.

While support for looping protocols is desirable, we simplify the initial problem
and do not consider them here. We hope to extend our work to cover looping protocols
later.

4.2 Messages and Guards

Both message actions and basic actions can have guard conditions. An action is enabled
for execution only when its guard is true.

Some protocols must constrain message orders. For example, (1) when one message
provides a value required by another message, or (2) due to regulatory requirements
(you must show a valid ID before boarding an airplane). An action’s guard is written

guard < action

which means action can occur in a state only if guard is true in that state. The action is
not required to execute when the guard is true. Guards g1 < action and g2 < action
can be combined into g1 ∧ g2 < action.

Guards for message actions have been used elsewhere including MCMAS. We also
introduce guards for basic actions since the protocol designer may need to constrain the
ordering of basic actions in subprotocols. The designer can specify multiple guards for
an action. The complete guard condition for a basic action includes any guards for the
basic action as well as any guards for its containing message action. We expect tooling
to combine all designer-specified guards into a single guard expression.

Example: A protocol designer might require

reqQuote ∧ sendQuote < order

25

4.3 Multiple Stages of Completion

Commitments evolve through four stages; proposition evolve through only two. The
occurrence of a prop = value basic action divides time into two stages: before and
after the basic action.

A commitment evolves through four stages: (1) before creation (inactive), (2) con-
ditionally committed (cond), (3) unconditionally committed (uncond), and (4) resolved.

inact// create cond // ant
uncond// csqresolved //

Commitments increase protocol flexibility, because guards can specify “partially per-
formed” actions. A protocol can make progress sooner if an action’s guard specifies one
of the first three stages.

Example: Using proposition ship, OrderPayShip can guard pay based only on the
two stages of ship. The decision is “all” (shipped) or “nothing” (not shipped).

ship < pay (2)

Using commitments, the protocol can guard pay based on any of the four commitment
stages. A guard can enable pay as soon as the debtor has committed to make ship true.

create(CSeller,Buyer(pay, ship)) < pay (3)

A protocol framework that includes commitments is inherently more flexible than
traditional computer protocol frameworks. Where traditional protocol frameworks op-
erate on an all-or-nothing basis with just two stages of completion, agent-based frame-
works can operate based on four stages of completion (commitments have four stages
of completion). Basing a decision on a completed action provides essentially no risk to
a creditor. But commitments allow more flexible enactments because creditors can also
base their decisions on the promises of the debtors which are partial or intermediate
stages of completion. While creditors assume more risk in doing so, they assume less
risk than acting without debtor promises.

4.4 Every Sub-run is a Super-run

According to the Liskov substitution principle [1], if Á(p) is a property provable about
objects p of type P, then Á(q) should be true for objects q of type Q when Q is a subtype
of P. We apply this principle to protocols. If Á(x) holds for a superprotocol, then it must
also hold for its subprotocols. For example, let Á(x) be the property that action order
precedes action pay. Á(p) will be true of some runs, but not of other runs.

Subprotocols must satisfy every superprotocol property Á(x), but they can satisfy
additional properties Ã(x). Every subprotocol run must satisfy both Á(x) and Ã(x), so
there are fewer subprotocol runs than superprotocol runs because Ã(x) eliminates some
runs Á(x) does not.

Definition 2 (Protocol Refinement). Every subprotocol basic action run must be a
superprotocol basic action run.

26

Our definition of protocol refinement does not imply that agents that can participate
in a superprotocol can necessarily participate in a subprotocol unchanged. Agents work
with message actions, but our definition for run comparison is based on basic actions. In
our model, agents may need to be modified to participate in subprotocols. For example,
an agent capable of participating in a basic payment protocol may need to change to
handle payments via check or credit card.

4.5 Time Expansion

Basic actions which are concurrent at a high-level of abstraction (superprotocol) may
not be concurrent at a lower-level of abstraction (subprotocol). When a superprotocol’s
message action is refined in the subprotocol, its basic actions can spread out over time
(no longer concurrent).

Decomposing a message action into multiple basic actions requires splitting action
intervals and creating additional time points in the run (expanding time).

4.6 Decomposition

A message action may have multiple effects. To better understand and characterize
a message action, we decompose each message action into an unordered set of one
or more basic actions. Each basic action has well-defined semantics and is useful for
analyzing and understanding the meanings of message actions.

We consider two different kinds of basic actions. Setting the value of a proposition to
true or false is a propositional basic action. Each of the commitment operations create,
transfer, release, and cancel are commitment basic actions.

Example: The seller’s message action sendQuote in OrderPayShip decomposes into
two basic actions. It sets the propositional sendQuote fluent to true to record the fact
that it responded to the buyer. And it creates a commitment that the seller will ship if
the goods are ordered.

See the discussion for diffusion below for the exact guard conditions.

4.7 Mapping

Since superprotocols represent a higher-level abstractions than subprotocols, the dif-
ferences in levels must be addressed. There is often no one-to-one correspondence be-
tween superprotocol and subprotocol elements. Protocol elements must be mapped be-
tween the two protocols to compare them. Since subprotocols typically contain more
detail than superprotocols, we map every single superprotocol element (role, proposi-
tion or commitment) to an expression of one or more corresponding subprotocol ele-
ments. Subprotocols may contains sub-elements that do not correspond with any super-
element.

Example: an openAccount basic action in a high-level, banking superprotocol, might
decompose to multiple basic actions in a low-level subprotocol: checkIdentity, check-
Credit, createAccount, and notifyCustomer.

Example: the pay basic action in Pay maps to the payP and payM expression in
PayByInt.

27

While it would be desirable for the mapping between superprotocols and subproto-
cols to be automatically determined, there can be multiple, distinct mappings between
some protocol pairs. In the mapping between Pay and PayByInt, one mapping groups
the Middleman with the Payer, making the Middleman work on behalf of the Payer.
Another mapping groups the Middleman with the Payee, making the Middleman work
on behalf of the Payee. Both interpretations are valid.

Every super-basic-action is mapped to an expression of sub-basic-actions. There
is one mapping function for each super-basic-action. The mapping function for basic
propositions is a boolean expression of sub-basic-propositions. The mapping function
for super-basic-commitments is a serial composition of sub-basic-commitments.

super 7→ mapsuper(sub1, sub2, . . .)

4.8 Projection

Let SubOnly be the set of basic actions that occur only in the subprotocol (basic actions
not in the superprotocol and not in a mapping expression). Ignore all SubOnly basic
actions in the subprotocol during run comparison.

This means we compare all basic actions in the superprotocol with just the matching
basic actions in the subprotocol. The subprotocol is free to include additional basic
actions that are unknown to the superprotocol.

4.9 Diffusion

Consider the case where a super-basic-action p maps to two sub-basic-actions p 7→
q1∧q2. For p to occur at the same time point in both sub-run and super-run, p must occur
at the same time as the last of q1 and q2. For conjunction, the other sub-actions can occur
at any earlier and possibly non-adjacent points in the run. In the case where p 7→ q1∨q2,
then p must occur at the same time point as the first of q1 or q2. For disjunction, the other
sub-actions can occur at any later and possibly non-adjacent points in the run.

Example: in OrderPayShip, the buyer’s order action is composed of the two basic
actions of setting an order proposition and creating a commitment. In refinements of
OrderPayShip these two basic actions can occur at different points in time.

When a sub-action guard is true, we require the corresponding super-action guard to
also be true. Otherwise, the subprotocol could perform the sub-action while the super-
protocol can not perform its corresponding super-action. The model checker tests this
using formula

AG(sub.guard → super.guard) (4)

We represent the diffusion condition as a guard condition. Since runs are serialized
basic actions, we do not need to consider multiple basic actions occurring simultane-
ously.

If super 7→ sub1 ∧ ⋅ ⋅ ⋅ ∧ subi, the super-basic-action’s guard must be true when the
last of the sub-basic-action’s guard is true.

subi.effguard = subi.baguard ∧ [subi.maguard ∨ ¬(
⋀

j ∕=i

subi.occurred)]

28

The sub-basic-action’s effective guard is built from two pieces. Any guard specifically
applied to the sub-basic-action (subi.baguard) must always be true for the basic action
to fire. Also, the message action guard must be true, or this must not be the last sub-
basic-action. This effective guard is checked with equation 4.

If super 7→ sub1 ∨ ⋅ ⋅ ⋅ ∧ subi, the super-basic-action’s guard must be true when the
first of the sub-basic-action’s guards is true.

subi.effguard = subi.baguard ∧ [subi.maguard ∧ (
⋀

i

¬subi.occurred)]

The super-basic-action’s effective guard is again built from two pieces. Any guard
specifically applied to the sub-basic-action (subi.baguard) must always be true for the
basic action to fire. Also, the message action guard must be true when no sub-basic-
actions have fired. This effective guard can be checked with equation 4.

Example: pay 7→ payP ∧ payM generates the effective guards

payP .effguard = true ∧ [(create(CpayM) ∧ promised) ∨ ¬payM]

payM .effguard = true ∧ [(create(CpayM) ∧ promised) ∨ ¬payP]

Since neither payP nor payM have specific basic action guards (baguard = true), the
message action guard is create and promised, and they each require the other basic
action must not have fired.

4.10 Run Comparison

Figure 1 illustrates the steps required for refinement. Compare one super message action
run and one sub message action run, as follows.
1. Begin with the superprotocol’s and subprotocol’s message action runs.
2. Decompose each run of message actions to a run of basic actions.
3. Map every super-basic-action to its expression as sub basic actions.
4. Serialize the basic actions sets in any order consistent with the basic action guards.
5. Ignore (project out) SubOnly basic actions in the sub run.
6. Diffuse basic actions.
7. Find any ordering of basic actions in both sub and super runs that satisfy all the

ordering constraints.
8. If the two state runs are the same, the runs match.

4.11 Commitment Strength

We need a way to compare two commitments, in particular, to compare a commitment
in the subprotocol with a commitment in the superprotocol.

Definition 3 (Commitment Strength). A commitment CS is stronger than a commit-
ment CW , written CS ≥ CW , iff

CW .debt ⊆ CS .debt (5)
CW .cred ⊆ CS .cred (6)
CW .ant ⊢ CS .ant (7)
CS .csq ⊢ CW .csq (8)

29

super message action model
decompose

// super basic action model
map

²²
super mapped basic action model

sub projected basic action model

compare

OO

sub message action model
decompose

// sub-basic-action model

project

OO

Fig. 1. Relationships between models

where ⊆ is subset and ⊢ is derives.

Equations (5) and (6) allow additional roles in the subprotocol to be involved as
both debtors and creditors. Equations (7) and (8) are based on the following diagram.

CW .ant

²²

// CW .csq

CS .ant // CS .csq

OO

If CS is stronger than CW , then both side implications are true by equations (7) and (8).
If CS is satisfied, then the bottom implication is true. Then CW , the top implication,
will be true.

Theorem 1. Commitment strength is reflexive and transitive.

Proof. Reflexive and transitivity are immediate from the definition.

Example: C(order∨freeCoupon, sℎip) ≥ C(order, sℎip) since the stronger com-
mitment commits at least when order is true. It also commits when freeCoupon is
true.

Example: C(order, sℎip∧expressDelivery) ≥ C(order, sℎip) since the stronger
commitment commits to the additional consequent expressDelivery.

4.12 Covering

When a commitment Csub in a subprotocol is stronger than a commitment Csuper in a
superprotocol we say the sub-commitment “covers” the super-commitment. We require
every super-commitment must be covered by some sub-commitment. This guarantees
that the super-commitment is satisfied whenever the sub-commitment is satisfied.

A single subprotocol commitment clearly covers an identical superprotocol commit-
ment. A sub-commitment with more debtors, more creditors, a weaker antecedent, or a
stronger consequent covers a super-commitment. However, this is not always enough.
We allow serial composition of commitments as another way to cover commitments.

30

4.13 Intermediaries

Whereas two roles may communicate directly with each other using a single message
action in a protocol at a high-level of abstraction, there is a natural tendency for message
communication to pass through multiple intermediary roles as that protocol is refined
to lower-levels of abstraction. Protocol refinement must properly handle intermediaries.
One super-proposition could map to an expression of multiple sub-propositions, each
controlled by different roles (intermediaries). One super-commitment could be fulfilled
through multiple intermediaries. Super-elements must be able to span intermediaries.

Example: the pay action in Pay becomes the two distinct payP and payM actions
in the subprotocol PayByInt. These two actions must be in different message actions in
PayByInt, because they are performed by different roles.

Example: commitments can chain through multiple intermediaries. When PayByInt
refines Pay, the single commitment from the payer to the payee in Pay does not appear
explicitly in PayByInt. Rather, the subprotocol PayByInt has two separate commitments
that form a chain passing through the middleman. That chain commits the payer to pay
the payee.

4.14 Serial Composition

We also need a mechanism for commitments to span intermediaries. Previous commit-
ment formulations [6] included the idea of commitment chaining, but we formalize this
in a new way as “serial composition” of commitments. Serial composition computes a
result commitment from a chain of commitments.

Definition 4 (Serial Composition). Two commitments CA and CB are combined into
a resultant commitment C⊕ = CA ⊕ CB if the operation is well-defined

CA.ant ∧ CA.csq ⊢ CB .ant (9)

Then C⊕ is defined as

C⊕.debt := CA.debt ∪ CB .debt (10)
C⊕.cred := CA.cred ∪ CB .cred (11)

create(C⊕) := create(CA) ∧ create(CB) (12)
C⊕.ant := CA.ant (13)
C⊕.csq := CA.csq ∧ CB .ant ∧ CB .csq (14)

transfer(C⊕) := transfer(CA) ∨ transfer(CB) (15)
release(C⊕) := release(CA) ∨ release(CB) (16)
cancel(C⊕) := cancel(CA) ∨ cancel(CB) (17)

C⊕ is a new commitment object whose attributes are defined in terms of the at-
tributes of CA and CB . C⊕ does not provide any information beyond that given in CA

and CB , but it expresses it in the form of a new commitment.
In C⊕, represents that the debtor group is committed to the creditor group to bring

about consequent CA.csq ∧ CB .ant ∧ CB .csq when just antecedent CA.ant is true.

31

Debtors are severally responsible for C⊕, so that debtors do not become responsible for
more than their input commitments.

Our well-defined condition (equation 9) generalizes the chain rule in [6].
Longer chains of commitments can be composed if each operation is well-defined.

We always evaluate ⊕ left-to-right.

C12...n = ((C1 ⊕ C2)⊕ . . .)⊕ Cn

As an example, consider the two commitments in PayByInt.

C1 = CPayer,Payee(promised, paidP)

C2 = CMM,Payer(paidP, paidM)

C12 = C{Payer,MM},{Payer,Payee}(promised, paidP ∧ paidM)

which can illustrated as a chain of commitment edges connecting nodes of propositions.

promise
C1 //

GF ED
C12

²²

promise
payP

C2 //
promise

payP
payM

Theorem 2. Serial composition is not commutative and not associative.

Usually, serial composition creates stronger commitments. CA⊕CB is stronger than
CA alone because, even though both have the same antecedent (CA.ant), in general,
CA⊕CB has a stronger consequent (CA.csq∧CB .ant∧CB .csq) with more conjuncts.
However, the next theorem shows this is not always the case.

Operator ⊕ obeys the following idempotent-like property.

Theorem 3. Extending a serial composition with a commitment already part of the
chain, does not create a stronger commitment.

C1 ⊕ ⋅ ⋅ ⋅ ⊕ Ck ⊕ ⋅ ⋅ ⋅ ⊕ Cn ⊕ Ck (18)
= C1 ⊕ ⋅ ⋅ ⋅ ⊕ Ck ⊕ ⋅ ⋅ ⋅ ⊕ Cn (19)

Proof. (C1 ⊕ ⋅ ⋅ ⋅ ⊕Cn)⊕Ck is well-defined because Ck.ant is already part of the left-
hand side of equation 9. By simple inspection, conditions (10-17) are the same for both
sides. Expression 18 is identical to, not stronger than, expression 19.

A commitment can usefully be added to a commitment chain only once; doing so
does not create a stronger serial composition. Repeating any part of a loop does not
create a stronger serial composition. Given n commitments, the number of distinct serial
compositions is bounded above by 2n.

32

superprotocol
++XXXXX
preprocessor // model checker

subprotocol
& mappings

44hhhhhhh

Fig. 2. Processing Steps

5 Processing

Figure 2 shows an overview of our proposed processing. The protocol specifications for
the superprotocol and subprotocol are read from files. Note the subprotocol contains
one or more mappings between the protocols. These files are read by a preprocessor
and are used to generate an MCMAS ISPL model. The ISPL model is input to the
MCMAS model checker which checks all the formulae. If all the formula are true, the
subprotocol refines the superprotocol.

The preprocessor generates the following checking formulae

AG(sub.guard → super.guard) (20)
AG(Csuper.state = uncond → AF(Csuper.state ∕= uncond)) (21)

AG(CA.ant ∧ CA.csq → CB .ant) (22)
AG(Csuper.ant → Csub.ant) (23)
AG(Csub.csq → Csuper.csq) (24)

Equation 20 ensures the super-run can perform super-basic-actions whenever the
sub-run can perform corresponding sub-basic-actions. While MCMAS fairness con-
straints eliminate runs where unconditionally committed sub-commitments fails to re-
solve, equation 21 ensures unconditionally committed super-commitments must re-
solve. Equation 22 parallels equation 9 ensuring serial compositions are well-defined.
Equations 23-24 and parallel equations 13-14 ensuring sub-commitments cover super-
commitments.

6 PayByInt Refines Pay

6.1 Pay

Space precludes a detailed description of our proposed protocol specification language,
so we simply state the protocol specifications with a few notes. Line (1) names and
defines the commitment. Lines (2)-(6) describe the Payer role. There are two message
actions: promise and pay, and both are sent by Payer to Payee. The unordered set of
basic actions are listed between { and }. Line (4) defines the guard for pay as promised
and the creation of the commitment. Payee sends no messages in this protocol.

33

Algorithm 1 Pay Protocol
1: Cpay = CPayer,Payee(promised, paid)
2: role Payer {
3: promise = Payer → Payee{promised, create(Cpay)}
4: promised ∧ create(Cpay) < pay
5: pay = Payer → Payee{paid}
6: }
7: role Payee {
8: }

Algorithm 2 PayByInt Protocol
1: CpayP = CPayer,Payee(promised, paidP)}
2: CpayM = CMM,Payer(paidP, paidM)
3: role Payer {
4: promise = Payer → Payee{promised, create(CpayP)}
5: promised ∧ create(CpayM) < payP
6: payP = Payer → MM{paidP}
7: }
8: role MM {
9: init = {create(CpayM)}

10: payM = MM → Payee{paidM}
11: }
12: role Payee {
13: }
14: map M1: Pay 7→ PayByInt {
15: Payer 7→ {Payer,MM}
16: Payee 7→ {Payee}
17: promised 7→ promised
18: paid 7→ paidP ∧ paidM
19: Cpay 7→ CpayP ⊕ CpayM

20: }
21: map M2: Pay 7→ PayByInt {
22: Payer 7→ {Payer}
23: Payee 7→ {MM,Payee}
24: promised 7→ promised
25: paid 7→ paidP ∧ paidM
26: Cpay 7→ CpayP ⊕ CpayM

27: }

34

6.2 PayByInt

Initially (9), Middleman commits to Payer to pass along any payment it receives. This
protocol does not address how this commitment came to be created. Payer can not pay
Middleman until this commitment has been created (5). Since there is no guard on
payM, Middleman is free to pay early; but the decision is part of Middleman’s agent
implementation.

6.3 Refinement Test

We now sketch PayByInt refines Pay. We test refinement by comparing basic action
runs. This following diagram shows superprotocol Pay on the top half and subprotocol
PayByInt on the bottom half. The message action runs are shown on the very top and
very bottom for easy reference, but the heart of the diagram is the two basic action runs
in the middle. Each position in a basic action run is a set of basic actions.

One of PayByInt’s message action runs its basic action run is

Pay msg : promise pay

Pay basic :

{
promised

create(Cpay)

}
{paid}

PayByInt basic : {create(CpayM)}
{

promised
create(Cpay)

}
{paidP} {paidM}

PayByInt msg : init promise payP payM

Erase the message action boundaries and serialize the sets of basic actions to individual
basic actions. The basic actions within a set can be serialized in any order that does not
violate the basic action guards.

time : 0 1 2 3 4
Pay : promised create(Cpay) paid
PayByInt : create(CpayM) promised create(CpayP) paidP paidM

PayByInt refines Pay under two mappings. Here, we demonstrate only the mapping
M1 in lines 14-20 where Payer and Middleman form a coalition. M1 shows the inter-
protocol mappings with Pay’s elements are on the left and PayByInt’s elements are on
the right. Note serial composition of the two commitments in PayByInt is required to
cover the commitment in Pay (line 19).

Lines 15-16 map a single super-role to one or more sub-roles. Line 17 maps a single
super-proposition to a single sub-proposition and both occur at time 1 in the run. Line 18
maps the single super-proposition paid to a conjunction of sub-propositions. The super-
proposition’s occurrence must align with the latest sub-proposition’s occurrence (time
4).

Finally, we must compute the serial composition in Line 19. From equation 9, we
verify promised∧paidP ⊢ paidP so the composition is well-defined. Equations 10-17

35

define the composition

C⊕.debt := {Payer,MM} (25)
C⊕.cred := {Payer, Payee} (26)

create(C⊕) := create(CpayP) ∧ create(CpayM) (27)
C⊕.ant := promised (28)
C⊕.csq := paidP ∧ paidM (29)

transfer(C⊕) := transfer(CpayP) ∨ transfer(CpayM) (30)
release(C⊕) := release(CpayP) ∨ release(CpayM) (31)
cancel(C⊕) := cancel(CpayP) ∨ cancel(CpayM) (32)

Then we verify the sub-commitment C⊕ covers the super-commitment (C⊕ ≥ Cpay)
using equations 5-8.

Therefore, the run is a valid sub-run and is a valid super-run, which is consistent
with Definition 2. We have only demonstrated a single run here. A full refinement
demonstration requires demonstrating all sub-runs. Model checking is required to check
all the runs for large protocols.

7 Evaluation

We are writing a proprocessor to generate input for the MCMAS model checker from a
protocol descriptions. Model checking protocols should use a fraction of the states sup-
ported by current model checking technology, so we should not experience performance
or scale problems.

We don’t currently support protocols with loops. While loop-free protocols are suf-
ficient for many situations, we hope to remove this limitation in the future.

7.1 Reusable Protocol Library

Protocol design requires substantial effort. Users would like to reuse previously de-
signed protocols rather than having to design their own protocols from scratch. We
envision a library of reusable protocols.

Any reasonable definition of refinement should be reflexive and transitive. Transi-
tivity helps to structure such a library. When searching the library, whole subtrees can
be eliminated from further consideration by one refinement failure.

8 Discussion

A protocol framework that includes commitments is inherently more flexible than tra-
ditional computer protocol frameworks. Where traditional protocol frameworks operate
on an all-or-nothing basis with just two stages of completion, agent-based frameworks
can operate based on a commitment’s four stages of completion. Commitments allow

36

more flexible enactments because creditors can base their decisions on the promises the
debtors which are partial stages of completion.

De Silva [4] propose interaction protocols for open systems based on Petri nets.
They enable actions based on past and future preconditions. While their past precondi-
tions are similar to our guards based on propositions, our guards based on conditional or
unconditional commitments are more rigorously formalized than their future precondi-
tions. They have no notion of protocol refinement and treat each protocol independently
of every other.

Singh [6] states rules similar to those those proposed here for commitment strength.
Our equation 9 is slightly stronger than their chain rule, they do not directly state a
rule for stronger consequents, and they do not directly state a rule similar to serial
composition.

Mallya & Singh [3] propose a definition of protocol refinement (there called sub-
sumption) that compares the order of state pairs. But, we have found if superprotocol
states map to overlapping ranges of equivalent subprotocol states, their definition can
return false positives. Our procedure does not allow this possibility.

References

1. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16:1811–1841, 1994.

2. A. Lomuscio, H. Qu, and F. Raimondi. Mcmas: A model checker for the verification of multi-
agent systems. In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of Lecture Notes in
Computer Science, pages 682–688. Springer, 2009.

3. A. U. Mallya and M. P. Singh. An algebra for commitment protocols. Journal of Autonomous
Agents and Multi-Agent Systems, 14(2):143–163, Apr. 2007.

4. L. Priyalal, M. Winikoff, and W. Liu. Extending agents by transmitting protocols in open
systems. In In Proceedings of the Challenges in Open Agent Systems Workshop, 2003.

5. M. P. Singh. An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

6. M. P. Singh. Semantical considerations on dialectical and practical commitments. In Pro-
ceedings of the 23rd Conference on Artificial Intelligence (AAAI), pages 176–181, Menlo
Park, July 2008. AAAI Press.

Counter-proposal: A Multi-Agent Negotiation Protocol
for Resolving Resource Contention in Open Control

Systems

Jan Corfixen Sørensen and Bo Nørregaard Jørgensen

Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark.

{jcs,bnj}@mmmi.sdu.dk
http://www.mmmi.sdu.dk

Abstract. The resource contention problem in control systems based on software
agents occurs when agents with different goals compete with each other, to con-
trol a shared resource. In this paper we propose the counter-proposal protocol, a
negotiation protocol that resolves the resource contention problem in control sys-
tems based on software agents. The protocol is evaluated by an example of a real
control problem. The evaluation of the example demonstrates that the protocol
is able to find acceptable solutions between competing software agents, if they
exist. The focus of this paper is to present the design and implementation of the
protocol.

1 Introduction

Contrary to traditional engineered control systems, which typically have a centralized
approach to structuring the control logic, control systems based on software agents take
a decentralized approach and distribute the control logic among the individual agents
[1, 2]. A very important property of this approach is the increased flexibility which
software agents add to the reconfigurability of control systems [3].

Hence, control systems based on software agents are constructed by selecting a set
of agents, each responsible for different dimensions in the control domain. Later on,
if something changes in the control domain, which it inevitably will, the control sys-
tem can simply be adjusted to the changed operational requirements by changing the
configuration of agents. This dynamic nature of systems based on software agents is an
important property for creating open control systems1. However, the goals of indepen-
dently developed agents in open control systems may conflict when trying to control the
same resources in the controlled system. As this situation can cause unwanted behavior
to emerge, depending on the agents present in the control system, it must be avoided
from happening.

One means to avoid resource contention is to let the agents coordinate their access
to shared resources using automated negotiation. In this paper, we propose a protocol

1 By open we mean that new control agents can be added dynamically while the control system
is operational.

38

for automated negotiation which allows software agents to negotiate the value of shared
control parameters. Our approach progresses the state of the art in the area of automated
negotiation as it allows agents to participate in a negotiation without knowing anything
about the other agents utility function. The key contribution of our protocol is that
it allows us to extend a control system’s functionality simply by adding new agents
without requiring any changes to the logic of the agents already present in the system.

The paper is organized as follows: Section 2 describes state of the art related to au-
tomated negotiation protocols. Then, the elements of our negotiation protocol. Section
4 provides an experimental evaluation of our protocol using a real life climate con-
trol example. At last, Section 5 discusses how well our approach solved the resource
contention issue. Finally, we conclude the paper in Section 6.

2 State of The Art

The research area of automated negotiation constitutes several negotiation mechanisms
inspired by a broad range of research fields (Artificial Intelligence, Economics, Social
Psychology, and Game Theory) [4–7].

In 1982 Rubinstein looked at the bargaining problem2 in game theory and describes
the negotiation process as a game between two agents that can have opposing goals.
Each player can in turn give an offer and the opponent can either accept or reject it. The
rejecting player has to give a counter offer. The same procedure starts over again alter-
nating between the players. A key assumption in Rubinsteins model is that the agents
have perfect information about each other. The main result gives conditions under which
the game has a unique sub-game perfect equilibrium [8].

In 1994 and 2001 Kraus contributed with her strategic negotiation model [9, 10]
that is based on Rubinsteins alternating offers protocol. The strategic negotiation model
allows, in addition to the alternating offers protocol, agents to opt out of the negotiation
process. In contrast to the alternating offers protocol, time preferences can influence the
outcome of the negotiations.

In 1994 Rosenschein and Zlotkin published their book Rules of Encounter where
game theory is used in a new way to address the question of how to design the rules of
interaction for automated agents. They describe the bilateral monotonic concession pro-
tocol where both agents start with their best proposals and continue to concede in each
negotiation round, until they reach a compromise deal, or both agents can no longer
concede. Rosenschein and Zlotkin describe the optimal strategy for the monotonic con-
cession protocol also known as the Zeuthen strategy 3. The key assumption of the mono-
tonic concession protocol is that agents know each others’ cost functions for evaluating
deals to figure out which agent should concede [11, 3].

The protocols by Rubinstein, Kraus, Rosenschein and Zlotkin are all based on game
theory. Several assumptions are associated with game theoretic protocols: The number

2 The bargaining problem refers to situations when two individuals can have several contractual
agreements. Both individuals are interested in reaching an agreement but their interest is not
entirely identical. The problem / question is: “What will be the agreement when both parties
are assumed to act rationally?”

3 The Zeuthen strategy ensures that the agent that has most to lose, is the one that concedes

39

of agents and their identities are assumed to be fixed and known to each other. All
agents are assumed to be rational. The space of possible solutions is often assumed to
be known by all the agents. The models assume perfect computational rationality; that
is, no computation is required to find mutually acceptable solutions within a feasible
range of outcomes. Time is assumed not to be an issue when seeking for a solution.
Agents are assumed to know each others’ utility functions[12].

The computational limitations for finding solutions using the game theoretic ap-
proaches led to the establishment of heuristic based protocols [13–15]. The heuristic-
based protocols acknowledge that there is a relevant cost associated with computation.
The consequence is that the protocols aim at finding good solutions instead of optimal
solutions using heuristic rules. Heuristic negotiation models can be based on more re-
alistic assumptions and can therefore be used in broader contexts. Although heuristic
protocols solve a subset of the difficulties encountered in game theoretic protocols, they
also have disadvantages. The models require an extensive evaluation and often lead to
solutions that are sub-optimal.

Common to protocols based on game theory and heuristics, is that they are limited
in the feedback that can be achieved with a counter proposal. This limitation makes
it difficult to change the issue under negotiation. The argument based protocols was
created to address this limitation. The idea behind argument based protocols is to let
the negotiating parties exchange arguments about why a proposal is acceptable or un-
acceptable. Thus, argument based protocols can provide a more directed search of the
solution space. Notable examples of argument based protocols includes [16–18]. The
problem with argumentation based protocols is that they add considerable overhead to
the negotiation process to handle the evaluation of the arguments [5].

State of the art protocols have in common that they do not focus on independent
development of multiple control agents for an open control platform. Agents in such
an environment require limited information about each other to support extensibility
of the system. To our knowledge, there exists no protocol that support independent
development of multiple control agents for an open control platform. In an open control
platform, we cannot assume that the number of agents will be fixed and that each agent
has extensive knowledge about each other. Agents cannot know about each others utility
functions and the entire space of the possible solutions.

What is needed is a multi-agent negotiation protocol that allows combinations of an
unknown number of independent developed control agents over time. In our protocol we
make no assumptions about the agents utility functions as individual agents in an open
control system cannot presume anything about the other agents present in the system.
Only the negotiation protocol is known by all agents. However to achieve openness,
agents are required to consider the content of the original proposal when composing
a counter-proposal. We take a heuristic approach when evaluating the solution space
against different control concerns in a global context. Our counter-proposal protocol
makes it possible to inspect how different control concerns influence the outcome of
the negotiation process and identify the causes of conflicts.

Supporting both limited information sharing among agents’ and heuristic evaluation
of the agent’s solution space, we contribute with a protocol that supports the indepen-
dent development of agents in open control systems.

40

3 Protocol

This section describes the design of our counter-proposal negotiation protocol. Our ne-
gotiation protocol offers a structured method of dispute resolution, in which a neutral
third agent, the negotiator, attempts to assist the participating agents in finding a reso-
lution to their problem through a negotiation process.

First, the concepts in our proposal protocol are described, then we describe the
negotiation process in pseudo-code and the messages that are exchanged between the
different agents.

3.1 Concepts

The different concepts in the counter-proposal protocol can be categorized as follows:

Initiator A negotiation process is always initiated by one of the participants and the
agent that initiates a negotiation is called the initiator agent.

Negotiator The neutral third party, who assists in negotiations and conflict resolution
in a negotiation process between the participating agents, is called the negotiator.
It is the negotiator’s responsibility to mediate the initial proposal(s) and possible
counter-proposals to the agents involved in the process.

Participant The agents engaged in a negotiation process are called participants.
Proposal The negotiation object that represents a range of issues over which agree-

ment must be reached is called the proposal. A proposal can contain any control
parameters.

3.2 Negotiation Process

The negotiator’s responsibility is to manage the negotiation process and to manage all
possible proposals. The negotiator does so by keeping track of the history of proposals
proposed by the negotiating participants. In our example, the negotiator keeps track of
the proposal space using a tree data structure.

In the tree data structure each node represents a proposal and an edge represents
an interaction between the negotiator and the agent that returned a counter-proposal,
see Fig. 1. The negotiator constructs the proposal tree dynamically as the negotiation
process progresses. That is, the negotiator tracks the negotiation process by visiting the
proposal nodes using level-order traversal.

The pseudo code of the negotiation protocol is described in Algorithm 3. Proposals
are respectively removed and added from the first-order traversal queue in Algorithm 3
line 3 and 11.

Two options exist for starting a negotiation process. Considering the first start op-
tion, only one agent is allowed to make the initial proposal. The other agents must then
either start with a compromise or challenge the initiating agent by making their best
offer. The second start option is to put all the initial proposals into the proposal list. The
second option ensures that the initial proposal from each agent will be evaluated in the
negotiation process. Note, that for both start options only one initiator agent exist. The
initiator is selected randomly from the list of participating agents. The start condition

41

agent1.prosal1

Proposal under negotiation

agent3.prosal1

agent1.prosal2 agent3.prosal2

Interaction, see Algorithm 1 line 8:

agent2.proposal1 =

agen2.getCounterProposal(agent1.proposal1)

agent2.prosal1

Counter Proposal

Fig. 1. Each node represents a proposal. The current node represents the proposal undergoing
negotiation. An edge represents the interaction between the negotiator and the participant.

of the process is modeled in the tree by adding a root node that represents the initiator’s
initial proposal, see Algorithm 3 line 1.

While having setup the start condition, the negotiation process can start by letting
the negotiator propose the initiator’s initial proposal to the negotiation participants. The
negotiator adds a new node to the tree each time an interaction between the negotiator
and the agent results in a counter-proposal, see Algorithm 3 line 8. When traversing the
tree, the current node in Algorithm 3 line 3 represents the proposal under negotiation.

It is important to realize that the counter-proposal protocol covers an iterative pro-
cess. Finding a solution may take several iterations of proposal negotiations; One iter-
ation for each counter-proposal. The negotiation process continues as long as counter-
proposals from the participating agents exist. Section 3.5 explains how infinite negotia-
tion is avoided.

3.3 Messages

In this subsection we describe each of the messages sent between the negotiator and the
participants.

Initial Proposal To start the negotiation process, the initiator sends her initial proposal
to the negotiator. Upon receipt of the initial proposal, the negotiator request each of
the negotiation participants for acceptance of the initial proposal.

Accept When a participating agent has received a proposal from the negotiator, she
has two options. The agent can either accept or refuse the proposal, see Algorithm
3 line 6. The logic for determining whether a proposal can be accepted or not, is
contained within each participating agent.

Counter Proposal If a participating agent cannot accept a proposal, but can provide
a counter-proposal (Algorithm 3 line 8), the negotiation process will be extended

42

with a new iteration where the counter-proposal will be negotiated, see Algorithm
3 line 11. An agent must take the unacceptable proposal into consideration when
generating her counter-proposal.

3.4 Termination

The negotiation process terminates when one of the following conditions has been ful-
filled:

Solution Agents have found a solution; that is, all agents have mutually accepted at
least one proposal, and there no pending counter-proposals in the negotiation pro-
cess exist, see Algorithm 3 line 18.

No Solution The negotiation process ends with no solution when all proposals result in
unsolvable conflicting counter-proposals. We have an unsolvable negotiation con-
flict when any of the participating agents continue to provide the same counter-
proposals in subsequent iterations. That is, the agents cannot agree on any proposal
or counter-proposals. If those unsolvable negotiation conflicts were not handled,
the negotiation process would continue forever. Fortunately, unsolvable negotia-
tions conflicts can easily be detected, see Subsect. 3.5 for more details.

Algorithm 3 startNegotiation(initialProposal)
Require: Initial proposals exists
Ensure: All proposal negotiated

proposals.add(initialProposal)
2: while Not proposals.isEmpty do

proposal = proposals.removeFirst
4: for all participant in negotiation do

if Not proposer of proposal then
6: accept = participant.accept(proposal)

if Not accept then
8: cp = participant.getCounterProposal(proposal)

if cp exists then
10: if Not conflict then

proposals.add(cp)
12: end if

end if
14: end if

end if
16: end for

if accept then
18: solutions.add(proposal)

end if
20: end while

43

3.5 Unsolvable Conflict Detection and Resolution

The negotiator detects an unsolvable conflict by monitoring the counter-proposals stored
in its proposal history tree. In tree terminology, an unsolvable conflict has occurred if
an agent gives the same counter-proposal in a subsequent iteration. This implies the
agent cannot provide a counter-proposal that allows a solution to be found, see example
Fig. 2. There may be more intermediate counter-proposals before the same counter-
proposal reappears. The reappearance of a counter-proposal indicates that the agent’s
counter-proposal logic has entered a loop due to its boundary conditions. If an unsolv-
able conflict is detected, the counter-proposal is excluded from the negotiation process
and stored in the conflict list.

Agent1.Prosal1

Counter

proposal

Current

proposal
=

Agent2.Prosal1

Agent1.Prosal2

Agent2.Prosal1

Fig. 2. The example illustrates an unsolvable conflict situation between Agent 1 and Agent 2.
Agent 2 proposes the same proposal Agent2.Proposal1 more than one time.

Unsolvable conflicts are difficult to resolve automatically, but they can be resolved
manually by the user of the system. The user can make a rational decision about a
conflict resolution, if she has enough information about the cause of the conflict and
the context in which it happened. Our approach allows the user to resolve conflicts by
changing the boundary conditions of the agents involved in the conflict.

4 Experimental Validation

In this section, we present an example of a real control problem in greenhouse climate
control. The example is based on the knowledge we have obtained by implementing an
agent-based dynamic climate control system based on the work of Aaslyng et al. [19].

We have experienced that artificial light control is one aspect of climate control that
illustrates the resource contention problem very well, and at the same time is relatively
easy to explain. We have therefore chosen to base our example on dynamic artificial
light control in greenhouses.

To achieve a dynamic light control it is important to support different light con-
trol agents that use different strategies for controlling artificial light. Each strategy can

44

generate several different light-plan proposals. The example is based on the following
three light control strategies used respectively by three different control agents. All the
strategies control the artificial light at specific hours of the day to reach a specific goal.
E.g., a goal could be specified as the photosynthesis sum gained over a day.

Dark Hour The idea of the dark-hour strategy is to turn the artificial light off for
at least one hour, placed one hour after astronomical sunset and one hour before
astronomical sunrise. The incentive behind the dark-hour strategy is that plants
need at least one hour of darkness for regeneration.

Electricity Price Electricity prices fluctuate over time because of variations in supply
and demand, see Fig. 3. The incentive behind the electricity-price strategy is to turn
the artificial light on when we get the most photosynthesis to the lowest electricity
price. Normally, the cheapest electricity prices will be in the middle of the night
where most people are at sleep.

Work Light Artificial light in greenhouses can be used for working light at fixed hours
specified for each month in a year. E.g., artificial light can be configured to be turned
on at hour 7 and 8 each day in February.

Fig. 3. Fluctuating electricity prices (Euro/MWh) Week 3 in February 2010. See
www.nordpool.com

The negotiation object in our example is a 24-hour light-plan represented by an
array containing status codes ON(1)/OFF(0)/DontCare(o) for each hour of the day, see
Fig. 4. The hour of day in the examples refer to specific hours of the 24-hour clock. The

45

first hour of day is 0, and the last hour of day is 23. E.g., at 10:00 PM the hour of day is
22.

Resource conflicts occur when the light control agents simultaneously compete to
control a shared light resource. E.g., if one agent wants to turn light off and another
agent wants to turn light on, at a specific hour during the night, then a resource conflict
has occurred.

In the next subsections, we present three light control examples where our protocol
has been applied. First, we present a scenario without conflicts between the negotiating
participants. Next, we introduce a scenario with conflicts between the participants re-
sulting in multiple solutions. Finally, we describe a scenario with conflicts between the
agents, that cannot be solved without user intervention.

Fig. 4. A 24-hour light-plan that has light turned on at hour 0, 1, 22 and 23. Light is turned off
at hour 4 and 5. The status code (o) for all other hours indicates that no decision has been made
about controlling light in those hours.

To alleviate the reading of the examples we designate each agent with shorthand
names. Agent Elec is the agent that uses the electricity price strategy, Dark is the
agent that uses the dark-hour strategy and Work is the agent using the work-hour strat-
egy. Each proposal will be named with the abbreviation P following the proposal ID.
I.e. Elec.P0 means proposal with ID 0 from agent Elec. An interaction between two
agents is represented by a function call with a proposal argument. I.e. Dark(Elec.P0)
⇒ Dark.P1 means that Dark receives Elec’s proposal Elec.P0 and as a result Dark gives
a counter-proposal Dark.P1.

4.1 Negotiation with one solution

I our first scenario, agent Elec has a photosynthesis sum goal of such size, that it can be
achieved by turning the light on in the middle of the night. Elec will achieve its goal by
turning light on at the hours 0 to 5 because of the lowest electricity prices, see Fig. 5.
Agent Dark finds alternative dark hours seeking clockwise one hour after sunset (6:00
PM), so that two dark hours exist at hour 19 and 20. Agent Work turns the light on at
hour 7 and 8. Here, no conflicts exist between the agents.

Figure 6 illustrates the proposals mediated by the negotiator between the partici-
pants in each iteration of the negotiation process.

Agent Elec starts the negotiation by sending its initial proposal Elec.P0 to the ne-
gotiator, suggesting light on at the hours 0 to 5. The negotiator mediates the initial
proposal Elec.P0 to the two other participating agents.

Iteration 1. Elec’s initial proposal is proposed to Dark and Work. Elec’s initial pro-
posal Elec.P0 does not say anything about the light at the hours Dark and Work

46

Fig. 5. Electricity prices and climate data for a 24-hour day.

are interested in. Both Dark and Work can therefore not accept proposal Elec.P0
but can respectively give counter-proposals Dark.P1 and Work.P1 that incorporates
Elec’s initial proposal Elec.P0. As a result of the first iteration, counter-proposal
Dark.P1 and Work.P1 are added to the negotiator’s proposal list.

Iteration 2. Due to the level order traversal of the proposal list, the negotiator starts the
second iteration by proposing Dark.P1 to Elec and Work. Elec can accept Dark.P1
because Dark.P1 is a counter-proposal that takes Elec.P0 into account. Proposal
Dark.P1 does not contain any information about the hours Work is interested in
and Work gives a counter-proposal Work.P2 based on Dark.P1.

Iteration 3. Proposal Work.P1 is proposed to Elec and Dark. Elec accepts Work.P1 be-
cause Work.P1 is based on Elec.P0. Dark cannot not accept, but Dark can propose
Dark.P2 that accounts for Work.P1. By the end of iteration three, the proposal list
will contain proposal Work.P2 and Dark.P2.

Iteration 4. Note that proposal Work.P2 and Dark.P2 are identical and have both been
modified by all the negotiation participants. All the participants have contributed
their acceptable proposals without conflicting and as a result Work.P2 and Dark.P2
are acceptable to all participants. Iteration four and five ends by respectively adding
Work.P2 and Dark.P2 to the acceptance list.

Iteration 5. The negotiation process ends because the solution termination criteria is
fulfilled, see Subsect. 3.4. No more proposals exist in the proposal list and all agents
have mutually accepted at least one proposal.

47

The example in Fig. 6 illustrates the negotiation of proposals that is not in con-
flict with each other. The result of the negotiation shows that a conflict free negotiation
will result in solutions, all of which are identical. The identical solutions are a conse-
quence of the proposals being modified by all participants, which in turn incorporate
their wishes into the counter-proposals. If there is no conflict the solution will be a pro-
posal that incorporates all the participants best wishes. I.e. none of participants have to
concede giving their counter-proposals.

Note that we started the negotiation process by letting Elec propose its initial pro-
posal first. If we had started the negotiation process by letting all participants give their
initial proposals is would result in more iterations but the result would be identical; A
merge of the participant’s initial proposals.

4.2 Negotiation with Multiple Solutions

The example in this section describes a negotiation scenario where a conflict between
Dark and Elec occurs as a consequence of conflicting strategies. Elec has the same
strategy from the previous example but Dark now has a strategy that requires the dark
hours to be the darkest hour of the day, and that alternative dark hours are found coun-
terclockwise from sunrise (6:00 AM) to sunset (6:00 PM).

In order to minimize the number of negotiation iterations, we have chosen to focus
only on the two conflicting agents. If we had chosen to include the third agent the nego-
tiation would have resulted in more iterations than would be practical for an example.
Fig 7 exemplifies that Elec’s first proposal Elec.P0 is to turn light on at hour 0-5 due
to the lowest electricity prices from Fig. 5. Dark’s proposal Dark.P0 is to turn the light
off at hour 1 and 2 because those hours are the darkest according the natural light-level
data from Fig. 5.

The negotiation starts by letting Elec and Dark propose their initial proposals Elec.P0
and Dark.P0.

Iteration 1. In the example the proposal to be negotiated first is Elec.P0 because it was
the proposal that was added first to the proposal list during the start of the process.
Dark receives Elec.P0 and realizes that it cannot accept the proposal because there
is a conflict; Elec wants to turn the light on at the dark hours 1 and 2. Dark is a
flexible agent and can allow to concede and include Elec.P0 in its counter-proposal.
Dark concedes by seeking counterclockwise for alternative dark hours where light
can be turned off without conflicting with Elec.P0. The result of Darks concession
is Dark.P1 where light is proposed to be turned off at hour 22 and 23 and turned on
as Elec proposed.

Iteration 2. Dark’s initial proposal is proposed to Elec during the second iteration.
Elec cannot accept because of the conflict, but she can concede and allow Dark to
turn off light at hour 1 and 2 and instead turn the light on at hour 22 and 23 to
achieve her photosynthesis sum goal.

Iteration 3. and 4. At last Dark accepts Elec.P1 and Elec accepts Dark.P1 as conse-
quence of the concessions in iteration one and two. The negotiation process now
ends because solutions have now been found and no more proposals exists in the
proposal list, see termination criteria in Subsect. 3.4.

48

START
Proposal list: [Elec.P0 111111oooooooooooooooooo];

ITERATION 1
Dark(Elec.P0 111111oooooooooooooooooo) =>

Dark.P1 111111ooooooooooooo00ooo;
Work(Elec.P0 111111oooooooooooooooooo) =>

Work.P1 111111o11ooooooooooooooo;

Proposal list: [Dark.P1, Work.P1];
Accept list: [];
Conflict list: [];

ITERATION 2
Elec(Dark.P1 111111ooooooooooooo00ooo) => Elec.Accept;
Work(Dark.P1 111111ooooooooooooo00ooo) =>

Work.P2 111111o11oooooooooo00ooo;

Proposal list: [Work.P1, Work.P2];
Accept list: [];
Conflict list: [];

ITERATION 3
Elec(Work.P1 111111o11ooooooooooooooo) => Elec.Accept;
Dark(Work.P1 111111o11ooooooooooooooo) =>

Dark.P2 111111o11oooooooooo00ooo;

Proposal list: [Work.P2, Dark.P2];
Accept list: [];
Conflict list: [];

ITERATION 4
Elec(Work.P2 111111o11oooooooooo00ooo) => Elec.Accept;
Dark(Work.P2 111111o11oooooooooo00ooo) => Dark.Accept;

Proposal list: [Dark.P2];
Accept list: [Work.P2];
Conflict list: [];

ITERATION 5
Elec(Dark.P2 111111o11oooooooooo00ooo) => Elec.Accept;
Work(Dark.P2 111111o11oooooooooo00ooo) => Work.Accept;

Proposal list: [];
Accept list: [Work.P2, Dark.P2];
Conflict list: [];

END

Fig. 6. The result of a conflict free negotiation with one solution.

49

The example exemplifies how negotiation between conflicting flexible agents will
result i multiple solutions due to the fact that both agents were able to concede and take
each others proposals into account.

START
Proposal list: [Elec.P0 111111oooooooooooooooooo;

Dark.P0 o00ooooooooooooooooooooo]

ITERATION 1
Dark(Elec.P0 111111oooooooooooooooooo) =>

Dark.P1 111111oooooooooooooooo00;

Proposal list: [Dark.P0, Dark.P1];
Accept list: [];
Conflict list: [];

ITERATION 2
Elec(Dark.P0 o00ooooooooooooooooooooo) =>

Elec.P1 100111oooooooooooooooo11;

Proposal list: [Dark.P1, Elec.P1];
Accept list: [];
Conflict list: [];

ITERATION 3
Elec(Dark.P1 111111oooooooooooooooo00) => Elec.Accept;

Proposal list: [Elec.P1];
Accept list: [Dark.P1];
Conflict list: [];

ITERATION 4
Dark(Elec.P1 100111oooooooooooooooo11) => Dark.Accept;

Proposal list: [];
Accept list: [Dark.P1, Elec.P1];
Conflict list: [];

END

Fig. 7. The result of a simple negotiation with multiple solutions.

4.3 Negotiation with No Solutions

During wintertime a scenario may emerge where light must be lit all night to reach
Elec’s photosynthesis sum goal. If Dark uses the same strategy as in previous example

50

and seeks counterclockwise for alternative dark hours, the result will be an unsolvable
conflict. The unsolvable conflict will occur because Elec will not be able to concede as
the photosynthesis sum goal requires light to be lit all night. Dark therefore needs to
concede in each iteration. After N iterations Dark have to propose the same proposal
twice in a subsequent iteration. The unsolvable conflict will then be detected as de-
scribed in Subsect. 3.5. The unsolvable conflict cannot be solved automatically. Instead
the cause of the conflict can be presented to the user, suggesting how the conflict can
be solved by adjusting the agents goals. E.g., the conflict between Dark and Elec could
be solved by lowering Elec’s photosynthesis sum goal thereby allowing Dark to find its
dark hours.

5 Discussion

When the negotiation process has terminated, the negotiator has constructed a tree that
contains the history of all negotiated proposals. In case more than one counter-proposal
was accepted by all agents, we have to find the best solution in the acceptance list.
One approach is to seek for a Pareto optimal solution [20]; that is, a solution where a
change from one proposal to another makes at least one agent better off without mak-
ing any other agent worse off. To find a Pareto optimal solution in the set of accepted
counter-proposals, we need to add an utility function to each agent and use the agents’
utility functions to calculate a price that each agent has to pay for accepting a counter-
proposal. The value of each agent’s price depends on the agent’s local preference. E.g.,
Elec would calculate its value based on photosynthesis and electricity prices while Dark
would calculate its value based on the difference in natural light levels from the darkest
hour. Note, that we do not allow each participating agent to know each others utility
function. Only the negotiator can access the utility functions of each agent. The nego-
tiator now considers an agent to be better off, if she has to pay the smallest price for
accepting a counter-proposal compared to any of the others she has accepted. That is the
compromise with the lowest cost. The solution is now selected as the counter-proposal
where the most agents lose the least. The agent, who made the counter-proposal that
was accepted by the other agent, is always better off.

The performance of the counter-proposal protocol depends on the implementation
of the agents counter-proposal strategies. The faster an agent can concede in case of a
conflict, the faster a solution can be found.

In this paper we have demonstrated three examples which validate the applicability
of our protocol, to resolve resource conflicts in dynamic light control in greenhouses.
In future work we plan to provide a statistical validation of the protocol to document
the stability of the protocol.

6 Conclusions

The counter-proposal protocol is a mechanism that offers structuring of high-level in-
teractions between agents for solving the resource contention problem, that can occur
when more agents want to change the same set of values simultaneously. E.g., control
parameters, at a given point in time.

51

In this paper we have focused on explaining our negotiation protocol and the idea
behind it. Our case study validates that the approach can solve the resource contention
problem between multiple agents when these agents behave rationally.

References

1. Parunak, H., Irish, B., Kindrick, J., Lozo, P.: Fractal actors for distributed manufacturing con-
trol. In: Proceedings of the Second IEEE Conference on Artificial Intelligence Applications.
(1985) 653–660

2. Shaw, M.J.: Distributed scheduling in computer integrated manufacturing: the use of local
area network. International Journal of Production Research (25) (1987) 1285–1303

3. Bussmann, S., Jennings, N.R., Wooldridge, M.: Multiagent Systems for Manufacturing Con-
trol. Springer-Verlag (2004)

4. Friedman, D.: The double auction market institution. In: The Double Auction Market:
Institutions, Theories and Evidence, Perseus Publishing (1993) 3–25

5. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M., Sierra, C.: Au-
tomated negotiation: Prospects methods and challenges. Group Decision and Negotiation
10(2) (2001) 199–215

6. Sandholm, T.W.: Distributed rational decision making (1999)
7. Sycara, K.: Argumentation: Planning other agents’ plans. In: Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence. (1989)
8. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1) (1982) 97–

110
9. Kraus, S.: Negotiation and cooperation in multi-agent environments. Artificial Intelligence

94 (1997) 79–97
10. Kraus, S.: Strategic negotiation in multiagent environments. MIT Press, Cambridge, MA,

USA (2001)
11. Rosenschein, J.S., Zlotkin, G.: Rules of encounter: designing conventions for automated

negotiation among computers. MIT Press, Cambridge, MA, USA (1994)
12. Zeng, D., Sycara, K.: How can an agent learn to negotiate. In: Intelligent Agents III. Agent

Theories, Architectures, and Languages, number 1193 in LNAI, Springer Verlag (1997) 233–
244

13. Barbuceanu, M., Lo, W.K.: A multi-attribute utility theoretic negotiation architecture for
electronic commerce. In: AGENTS ’00: Proceedings of the fourth international conference
on Autonomous agents, New York, NY, USA, ACM (2000) 239–246

14. Carles, P.F., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous
agents. International Journal of Robotics and Autonomous Systems 24 (1998) 3–4

15. Sathi, A., Fox, M.S.: Constraint-directed negotiation of resource reallocations. In: Dis-
tributed Artificial Intelligence, Morgan Kaufmann (1989) 163–193

16. Department, L.A., Amgoud, L., Mary, Q., College, W.: Modelling dialogues using argumen-
tation (2000)

17. Parsons, S., Jennings, N.R.: Negotiation through argumentation-a preliminary report (1996)
18. Sierra, C., Faratin, P., Jennings, N.R.: A service-oriented negotiation model between au-

tonomous agents. In: Proceedings of the 8th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, London, UK, Springer-Verlag (1997) 17–35

19. Aaslyng, J., Lund, J., Ehler, N., Rosenqvist, E.: Intelligrow: a greenhouse component-based
climate control system. Environmental Modelling & Software 18(7) (September 2003) 657–
666

52

20. Lai, G., Sycara, K., Li, C.: A pareto optimal model for automated multi-attribute negotia-
tions. In: AAMAS ’07: Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, New York, NY, USA, ACM (2007) 1–3

Verifying Conformance of Commitment Protocols via
Symbolic Model Checking

Mohamed El-Menshawy1, Jamal Bentahar2, Wei Wan1, and Rachida Dssouli2

1 Concordia University, Department of Electrical and Computer Engineering Canada
{m elme,w wan}@encs.concordia.ca

2 Concordia University, Concordia Institute for Information Systems Eng., Canada
{bentahar,dssouli}@ciise.concordia.ca

Abstract. Commitment protocols have been widely used to capture flexible and
rich interactions among agents in multi-agent systems. Although there are sev-
eral approaches specifying commitment protocols, none of them synthesize for-
mal specification and automatic verification of these protocols within the same
framework. This paper presents a new approach to automatically verify the con-
formance of commitment protocols having a social semantics with specifications
at design time. The contributions of this paper are twofold: first, we present a new
language to formally specify the commitment protocols, which is derived from a
new logic extending CTL∗ with modality of social commitments and actions on
these commitments; and second, we develop a symbolic model checking algo-
rithm for the proposed logic, which is used to express the protocol properties we
aim to check such as safety and liveness. We also present experimental results
of verifying the NetBill protocol as a motivating and specified example in the
proposed language using the MCMAS model checker along with NuSMV and
CWB-NC as benchmarks.

1 Introduction

Several approaches have been put forward to specify interaction protocols that regu-
late and coordinate interactions among autonomous and heterogenous agents in multi-
agent systems. Recently, some approaches have formalized these protocols in terms of
creation and manipulation of commitments [7, 10, 13, 20, 21]. This kind of interaction
protocols are called commitment protocols. Other approaches have been proposed to
specify interaction protocols using computational logic-based languages [1, 3, 2] or a
modified version of finite state machines that enables recombination and reusability of
interaction protocols [16].

This paper concerns with defining a declarative specification of commitment proto-
cols using a new language that extends CTL∗ introduced in [9] with modality of com-
mitments and actions on these commitments. We adopt the commitment protocols as
they are increasingly used in different applications such as business processes [10, 20],
artificial institutions [13] and web-based applications [19] during the past years. These
protocols have social semantics in terms of the commitments that capture interactions
among agents. In fact, commitments support flexible executions and provide declarative

54

representations of protocols by enabling the interacting agents to reason about their ac-
tions [21]. This flexibility is related to the fact of accommodating exceptions that arise
at run time by offering more alternatives (or computations) to handle these exceptions
[20]. For example, a commitment deadline may be renegotiated among participating
agents, or the merchant may prefer to deliver goods before receiving the agreed amount
of money. The protocols with fewer alternatives are less flexible, which restrict the au-
tonomy of the participants. Commitments also capture the intrinsic business meanings
of the exchanged messages [10, 20] and provide a principled basis for checking compli-
ance of agents with given protocols via capturing the interactions states [7]. As a result,
there is a tradeoff between protocol flexibility and the complexity of verifying the com-
pliance. In addition, specifying and designing the commitment protocols that ensure
flexible interactions are necessary, but not sufficient to automatically verify the confor-
mance of protocols with some desirable properties that meet the important requirements
of multi-agent business processes. This is because the automatic verification of proto-
col specifications at design time (i.e., before the actual implementation) leads to reduce
the cost of development process and increase confidence on the safety, efficiency and
robustness.

The aim of this paper is to address the above challenges by formally specifying
commitment protocols and verifying them against some given properties using sym-
bolic model checking. In fact, this work is a continuation of our previous publication
[12], which is mainly focused on developing a new logical model unifying the full se-
mantics of commitment operations and semantics of social commitments within the
same framework. Figure 1 gives an overview of our approach. We begin with develop-

��� ������	
���
� � �� �������� �� �������������� �! " �#��� �� �� �!$� �������� � %���� !&%'!����� ���� ���!()�*���#��+��!,)�)%�- .��)/� *�012.��3�'����)�*���#��+� 4%�4����#��5���������� 6� 4��4������������ �7�������! /���������� 8�!���!9� 7�������7��5�����!&������ �5���������� !(
Fig. 1. A schematic view of our approach

ing a new language ℒ by extending CTL∗ with modality of social commitments and
actions on these commitments. The resulting logic, called ACTL∗sc, is used to: (1) ex-
press well-formed formulae of commitments and their contents; (2) formally specify an
abstract semantics of commitment actions that capture dynamic behavior of interacting
agents; and (3) express protocol desirable properties to be checked such as fairness and
liveness. By abstract semantics, we mean a semantics that does not define the meaning
of all concrete action instances (e.g., withdraw and fulfill actions) but only the meaning
of an abstract action denoted in this paper by µ. However, the concrete semantics of

55

commitments actions is given in our previous work [12]. On the other hand, the proto-
col properties are used to eliminate unwanted and bad agents’ behaviors. Using social
commitments and their actions, we define a new specification language of commitment
protocols, which we use to regulate and coordinate the interaction among autonomous
and heterogenous agents. We then proceed to develop a symbolic model checking al-
gorithm for the proposed ACTL∗sc logic based on OBDDs that support the compact
representation of our approach. We present experimental results of verifying automati-
cally the soundness of the NetBill protocol, as a running example, taken from e-business
domain and specified using our specification language against some given properties.
Finally, the implementation of this protocol is done using the MCMAS model checker
[17] along with NuSMV [8] and CWB-NC [22] as benchmarks.

The remainder of this paper is organized as follows. Section 2 presents the ACTL∗sc:
syntax and semantics. In Section 3, we use commitments and their actions to define a
new specification language of commitment protocols. In Section 4, we encode the pro-
posed logical model based on OBDDs and develop a symbolic model checking algo-
rithm for this model. The implementation of the NetBill protocol and its verification
using the MCMAS, NuSMV and CWB-NC model checkers with different experimen-
tal results is discussed in Section 5. The paper ends with some discussions of relevant
literature in Section 6.

2 ACTL∗sc Logic
In this section, we present ACTL∗sc logic that we use to specify commitment protocols
(see Sect.3) and express the properties to be verified (see Sect.5.2). We enhance CTL∗

with social commitments and action formulae applied to these commitments. These
modalities are needed for agent interactions and cannot be expressed using CTL∗.
Formally, social commitments are related to the state of the world and denoted by
SC(Ag1, Ag2, Á) where Ag1 is the debtor, Ag2 the creditor and Á a well-formed for-
mula representing the commitment content. In some situations, especially in business
scenarios, an agent wants to only commit about some facts when a certain condition is
satisfied. We use conditional commitments to capture these situations [12]. Formally,
conditional commitments are represented by ¿ → SC(Ag1, Ag2, Á) where “→” is a
logical implication, Ag1, Ag2 and Á have the above meanings and ¿ is a well-formed
formula representing the commitment condition. We use SCc(Ag1, Ag2, ¿, Á) as an
abbreviation of ¿ → SC(Ag1, Ag2, Á). In this case, we have SC(Ag1, Ag2, Á) ≜
SCc(Ag1, Ag2, true, Á).

The commitments can be manipulated or modified in a principled manner with the
interaction progresses using commitment actions. These actions, reproduced from [18],
are two and three-party actions. The former ones need only two agents to be performed
such as: Create, Witℎdraw, Fulfill, V iolate and Release actions. The latter ones
need an intermediate agent to be completed such as: Delegate and Assign actions.
Below the syntax and semantics of our language ℒ.

2.1 Syntax of ACTL∗sc

In the following, we use ©p = {p, p1, p2, . . .} for a set of atomic propositions, © =
{Á, ¿, Ã, . . .} for a set of propositional formulae, AGT = {Ag,Ag1, Ag2, . . .} for a set

56

of agent names and ACT = {µ, µ1, µ2, . . .} for a set of commitment actions. Agt and £
are nonterminals corresponding to AGT and ACT respectively. Table 1 gives the formal
syntax of the language ℒ expressed in a BNF-like grammar where “::=” and “∣” are
meta-symbols of this grammar.

Table 1. The Syntax of ACTL∗sc-Logic

S ::= p ∣ ¬S ∣ S ∨ S ∣ S ∧ S ∣ EP ∣ AP ∣ C
P ::= S ∣ P ∨ P ∣ P ∧ P ∣ XP ∣ PUP ∣ £(Agt,Agt, C) ∣ Create(Agt,Agt, C)
C ::= SC(Agt,Agt,P)

Formulae in ACTL∗sc are classified into state formulae S and path formulae P . The
state formulae are formulae that hold on given states, while path formulae express tem-
poral properties of paths and action formulae. The intuitive meanings of the most con-
structs of ACTL∗sc are straightforward from CTL∗ operators. The formula AÁ (resp.
EÁ) means that Á holds along all (some) paths starting at the current state. The for-
mula SC(Ag1, Ag2, Á) means that agent Ag1 commits towards agent Ag2 that the path
formula Á is true. Committing to path formulae is more expressive than committing to
state formulae as state formulae are path formulae. The formula XÁ means Á holds
from the next state, Á1UÁ2 means Á1 holds until Á2 becomes true. The action formula
µ(Ag1, Ag2, C) means that an action µ is performed by Ag1 directed to Ag2 on the
commitment C. For example, if µ is the Assign action, Ag2 will be the agent to which
the commitment is assigned. Furthermore, there are some useful abbreviations based
on temporal operators: FÁ ≜ true UÁ (sometimes in the future) and GÁ ≜ ¬F¬Á
(globally).

2.2 Semantics of ACTL∗sc

The semantics of this logic is interpreted with respect to the formal model M associated
to the commitment protocol using a Kripke-structure as follows: M = ⟨S,ACT,AGT,
Rt,V,ℝsc,L, s0⟩ where: S is a set of states; ACT and AGT are defined above; Rt ⊆
S× AGT× ACT× S is a transition relation among states; V : ©p → 2S is an evaluation
function; ℝsc : S×AGT×AGT → 2¾, where ¾ is the set of all paths, is an accessibility
modal relation that associates with a state s the set of possible paths along which the so-
cial commitments made by the debtor towards the creditor at s hold; L : S→ 2AGT×AGT

associates a given state s with a set of pairs and each pair represents the two interacting
agents in s; and s0 ∈ S is the initial state.

Instead of (si, Agk, µl, si+1), transitions will be written as si
Agk:µi−−−−→ si+1. The

paths that path formulae are interpreted over have the form Pi=si
Agk:µl−−−−→ si+1

Agk+1:µl+1−−−−−−−→
si+2 . . . where i ≥ 0. The set of all paths starting at si is denoted by ¾si and ⟨si, Pi⟩
refers to the path Pi starting at si. Also, when a state sj is a part of a path Pj , we
write sj ∈ Pj . Excluding commitment modality and action formulae, the semantics of
ACTL∗sc state formulae is as usual (semantics of CTL∗) and a path formula satisfies

57

a state formula if the initial state in the path does so. M, ⟨si⟩ ∣= Á means “the model M
satisfies the state formula Á at si” and M, ⟨si, Pi⟩ ∣= Á means “the model M satisfies
the path formula Á along the path Pi starting at si”. A state formula SC(Ag1, Ag2, Á)
is satisfied in the model M at si iff the the content Á is true in every accessible path Pi,
to which Ag1 is committed towards Ag2, starting from this state using ℝsc. Formally:

M, ⟨si⟩ ∣= SC(Ag1, Ag2, Á) iff ∀Pi ∈ ¾si : Pi ∈ ℝsc(si, Ag1, Ag2)
⇒ M, ⟨si, Pi⟩ ∣= Á where “⇒” stands for implies.
To make the semantics computationally grounded, which is important for model check-
ing, the accessibility relation ℝsc, that extends the original Kripke-structure, should be
given a concrete (computational) interpretation to be able to describe our model as a
computer program. This paper adopts a simple solution saying that if a commitment
made by Ag1 towards Ag2 is satisfied at state si, then there is a path starting at this state
(i.e., a possible computation) along which the commitment holds. The intuitive inter-
pretation is as follows: when an agent Ag1 commits towards another agent Ag2 about
Á, this means that there is at least a possible computation starting at this state satisfying
Á. Formally, we use the following semantic rule:

M, ⟨si⟩ ∣= SC(Ag1, Ag2, Á) ⇒ (Ag1, Ag2) ∈ L(si) and M, ⟨si⟩ ∣= EÁ

A path Pi starting at si satisfies Create(Ag1, Ag2, SC(Ag1, Ag2, Á)) in the model M
iff Ag1: Create is the label of the first transition on this path and SC(Ag1, Ag2, Á)
holds in the next state si+1. Formally:

M, ⟨si, Pi⟩ ∣= Create(Ag1, Ag2, SC(Ag1, Ag2, Á)) iff si
Ag1:Create−−−−−−−→ si+1 ∈ Rt

and M, ⟨si+1⟩ ∣= SC(Ag1, Ag2, Á)

Because of space limits, we only capture the abstract semantics of action formulae.
However, the following concrete instances of these actions (Fulfill, V iolate, Witℎdraw,
Release, Assign, Delegate) are used to specify commitment protocols (see Sect.3).
As mentioned in the introduction, the concrete semantics of these actions is entirely de-
fined in our previous work [12]. The abstract semantics means that a path Pi starting at
si satisfies µ(Ag1, Ag2, SC(Ag1, Ag2, Á)) in the model M iff Ag1 : µ is the label of the
first transition on this path and the commitment has been created in the past. Formally:

M, ⟨si, Pi⟩ ∣= µ(Ag1, Ag2, SC(Ag1, Ag2, Á)) iff si
Ag1:µ−−−→ si+1 ∈ Rt and

∃j ≤ i,M, ⟨sj⟩ ∣= SC(Ag1, Ag2, Á)

3 Commitment Protocols

In this section, we present a formal specification language of commitment protocols
derived from our logical model M (see Sect.2.2). For the sake of clarity, we use the
NetBill protocol to demonstrate this specification.

3.1 Protocol Specification

In this paper, we define the specification of commitment protocols as a set of com-
mitments capturing the business interactions among the interacting agents (or roles) at

58

design time. In addition to what messages can be exchanged and when, a protocol also
specifies the meanings of the messages in terms of their effects on the commitments
and each message can be mapped to an action on a commitment. Autonomous agents
communicate by exchanging messages and we assume that this exchanging is reliable,
which means messages do not get lost and the communication channel ordered preserv-
ing.

The protocol specification begins with the commitment COM , which is followed
by a message MSG. This message MSG may be directly mapped into commitment
actions (captured by £) or into inform action. Specifically, MSG could either be with-
drawn, fulfilled, violated, released, assigned, delegated or informed message. The del-
egated (resp. the assigned) message is followed by create message that enables the
delegatee (resp. the assignee) to create a new commitment. The inform message is an
action performed by the debtor Ag1 to inform the creditor Ag2 that a domain proposi-
tion holds. It is not a commitment action, but indirectly affects commitments by caus-

Table 2. The formal specification of commitment protocols

Protocol ::= COM ; MSG
COM ::= SCc(Ag1, Ag2, P rop, Prop) ∣ SC(Ag1, Ag2, P rop)
Prop ::= A well-formed formula in our ℒ
MSG ::= Witℎdraw(Ag1, COM) ∣ Fulfill(Ag1, COM)

∣ V iolate(Ag1, COM) ∣ Release(Ag2, COM)
∣ [Assign(Ag2, Ag3, COM) ∣ Delegate(Ag1, Ag3, COM)

]
; Create(Ag1, COM) ; MSG
∣ Inform(Ag1, Ag2,Dom-Pro) ∣ Dom-Pro

Dom-Pro ::= Identify domain propositions

ing transformation from SCc to SC commitments. The domain proposition Dom-Pro
identifies the set of propositions (e.g., Price request) related to the application domain
of the protocol. The inform message allows each agent to resolve its commitment, for
example the merchant agent can use it to send a refund to the customer agent. Each
domain application can be represented by a suitable ontology. The formal specification
of the proposed protocol, that is compatible with the standard protocols in business pro-
cesses, is defined using a BNF-like grammar with meta-symbols: “::=” and “∣” for the
choice and “;” for action sequence (see Table 2).

The protocol terminates when the interacting agents do not have commitments to
each other. Furthermore, the above specification language of commitment protocols can
either be used at run time to reason about the actions [20] or compiled into a finite state
machine at design time. At run time, the agents can logically compute their transitions
using some reasoning rules. These rules enable agents to choose appropriate actions
from the current situation and they are useful for the verification process [7] in relatively
small systems. However, these rules are not enough to verify the correctness of the
protocols against some given properties when the system is large and complex. For the
purposes of this paper, the protocol specification is compiled into a finite state machine
at design time where the business meaning of a state is given by the commitments that

59

hold in this state and the business meaning of actions are given by the actions applied
on commitments (see Fig.2). We use symbolic model checking in order to verify the
correctness of the protocols specified in our specification language (see Sect.4).

3.2 A Running Example

Let us consider the NetBill protocol taken from e-business domain as a running example
to clarify the specification of the commitment protocols. This protocol begins at s0 with
a customer (Cus) requesting a quote for some desired goods like software programs or
journal articles. This request is followed by the merchant (Mer) reply with sending the
quote as an offer, which means creating a commitment. The Cus agent could either
reject this offer, which means releasing this offer and the protocol will end at the failure
state s9 (see Fig.2), or accept this offer, which means creating a commitment at s3. The
Cus’s commitment means that he is willing to pay the agreed amount if the Mer agent
delivers the requested goods. At this state, the Cus agent still has two possibilities: to
withdraw his commitment or to delegate it to a financial company (say Bank: B) to pay
the Mer agent on his behalf. The most important thing here, the B agent can delegate
this commitment to another bank B1, which delegates the commitment back to the B
agent. The banks B and B1 delegate the commitment back and forth infinitely and this
is presented by a loop at s11. In a sound protocol, this behavior should be avoided (in
Sect.5.2, we will show how to verify this issue).

The Mer agent, before delivering the goods to the Cus agent, can withdraw his
offer at s10 and immaturely moving to the failure state s9 after refunding payment to
the Cus agent. However, when the Cus agent pays for the requested goods and the
Mer agent delivers them (within a specified time), then the Mer agent fulfills his com-
mitment at s5 and then moved to sending the receipt to the Cus agent. Conversely, the
Cus agent can pay for the requested goods without being delivered by the Mer agent
within a specified time. In this case, the Mer agent violates his commitment at s8 and

S0 S1

S9S7 S3

S11

S6

S4

Cus: Price request Mer: Offer

Cus: Withdraw

Cus: Delegate to Bank

Bank: Pay

Mer: deliver

Mer: Withdraw

Mer: Refund

Mer: assign to Mer1

Mer1: offer

Cus: Reject

S2

Cus: Accept

Cus: Pay

S5

S12

Mer: Not Deliver
S8

S10

Mer: Refund

Mer: send Receipt

(Release)
(Create)

(Create)

(Create)

(Violate)

(Fulfill)

(Inform)

(Inform)

(Inform)

(Inform)

(Inform)

Bank: Delegate to

another Bank

Mer1: Assign to

another Merchant

Fig. 2. Representation of NetBill protocol

60

immaturely moving to the failure state s9 after refunding the payment to the Cus agent.
Finally, the Mer agent, for some reasons, can assign his commitment to another mer-

Table 3. Business meaning of messages

Message Meaning

Offer(Mer,Cus, Pay,Deliver) Create(Mer, SCc(Mer,Cus, Pay,Deliver))

Accept(Cus,Mer,Good, Pay) Create(Cus, SCc(Cus,Mer,Good, Pay))

Reject(Cus,Mer,Good, Pay) Release(Cus, SCc(Mer,Cus,Good, Pay))

Pay(Cus,Mer, Pay) Inform(Cus,Mer, Pay)

Deliver(Mer,Cus,Good) Fulfill(Mer, SC(Mer,Cus,Good))

Not Deliver(Mer,Cus,Good) Violate(Mer, SC(Mer,Cus,Good))

chant (say Mer1) at s12. Specifically, the Mer agent releases the current commitment
with the Cus agent and a new commitment between Cus and Mer1 is created as a
new offer to deliver the requested goods to the Cus agent. As for delegate scenario, the
assign action can be repeated infinitely many times among interacting agents and this
scenario, presented by a loop at s12, is unwanted behavior in our protocol. Table 3 gives
part of the NetBill protocol representation using our specification language along with
the business meanings of the exchanged messages that are not expressed directly using
commitment actions.

4 Symbolic Model Checking

Here, we describe how to encode the model M and the commitment protocol with
Boolean variables and Boolean formulae. This encoding makes our representation more
compact and enable us to use symbolic computations. Moreover, the verification algo-
rithms that can operate on this representation are built progressively for symbolic model
checking technique.

4.1 Boolean Encoding
In our approach, we use the standard procedure introduced in [9] to encode the concrete
model M = ⟨S,ACT,AGT, Rt,V,L, s0⟩ with OBDDs. The number of Boolean vari-
ables required to encode states S is N = ⌈log2 ∣S∣⌉ where ∣S∣ is the number of states
in the model. Let v = {v1, . . . , vN } be a vector of N Boolean variables encoding each
element s ∈ S. Each tuple v = {v1, . . . , vN } is then identified with a Boolean for-
mula, represented by a conjunction of variables or their negation. Thus, the set of states
is encoded by taking the disjunction of the Boolean formulae encoding the states. We
introduce N more variables to encode the “destination” state in a transition by means
of vector v′ = (v′1, . . . , v

′
N), O = ⌈log2 ∣ACT∣⌉ and A = ⌈log2 ∣ AGT∣⌉ variables to

encode actions and agents resp. This representation allows us to encode the transition
relations in Rt. Let us consider a generic pair Rt1 = (s,Ag, µ, s′) be a transition rela-
tion in Rt, then its Boolean representation is given by v ∧ Ag ∧ µ ∧ v′ in which v and
v′ are the Boolean representation of states s and s′ respectively, Ag is the Boolean en-
coding for the agent and µ is the Boolean encoding for the action. The Boolean formula

61

fRt1
corresponding to Rt1 is obtained by taking the disjunction of all the possible such

pairs. Thus, the Boolean formula fRt corresponding to the whole transition relation in
our model is encoded by taking the conjunction of all the transition relations in Rt,
where n is the number of transition relations.

fRt
(v1, . . . , vN , Ag1, . . . , AgA, µ1, . . . , µO, v′1, . . . , v

′
N) =

n⋀

i=1

fRti

The evaluation functionV is translated into a Boolean function fV : ©p→B(v1, . . . , vN)
taking atomic proposition and producing the set B(v1, . . . , vN) of Boolean functions
when a given atomic proposition is true. For example, given atomic proposition p ∈ ©p,
then fV(p) is a Boolean function encoding the set of states where p is true. In the same
way, the function L is translated into a Boolean function fL : S→ B(v1, . . . , vN) tak-
ing a state and associating the set B(v1, . . . , vN) of Boolean functions representing the
two interacting agents having a commitment made at this state. The Boolean encoding
process is completed by encoding the initial state s0 ∈ S as a set of Boolean variables
like each member in S.

Figure 3 depicts our verification workflow, which is performed in three phases. It
starts with the specification of a commitment protocol as an input file written in the
Interpreted Systems Programming Language (ISPL) for MCMAS, in the SMV language
for NuSMV and in the Calculus of Communicating System (CCS) for CWB-NC. In
the middle phase, the protocol properties to be checked are expressed in ALTLsc and
ACTLsc, which are Linear Temporal Logic (LTL), Computational Tree Logic (CTL)
[9] augmented with commitments and their actions. In the last phase, the interpreted
protocol specification and properties are the arguments of the model checking algorithm
that computes the truth value of each property with respect to this specification.

Commitment Protocol
Specfication

MCMAS Model

Checker

Properties
expressed
in ACTLsc

NuSMV Model

Checker

Properties
expresed in
ALTLsc and

ACTL sc

True
False + Counter

Example

Interpreted into

ISPL program

Interpreted into

SMV program

Interpreted into

CCS program

CWB-NC Model

Checker

Properties
expressed
in ACTL*sc

Fig. 3. Verification workflow of the protocol

4.2 Symbolic Model Checking Algorithm

In a nutshell, given the model M representing our protocol and a logical formula Á de-
scribing a property, the model checking is defined as the problem of computing whether

62

the model M satisfies Á (i.e. M ∣= Á) or not (i.e. M ⊭ Á). Like proposed in [9] for
CTL∗ logic, in our approach the problem of model checking ACTL∗sc formulae can
be reduced to the problem of checking ALTLsc and ACTLsc formulae. Figure 4 de-
picts the expressive powers of the main components of our logic in which ALTLsc

ACTL*sc

ACTLsc ALTLsc

ф1 ф2
ф3

ф4

Fig. 4. The expressive powers of ACTL∗sc, ACTLsc and ALTLsc

formulae (e.g., Á3) are ACTL∗sc path formulae in which the state sub-formulae are
restricted to atomic propositions. Whilst, ACTLsc formulae (e.g., Á1) are ACTL∗sc

formulae where every occurrence of a path operator is immediately preceded by a path
quantifier. The formulae belonging to the intersection (e.g., Á2) can be expressed in
ACTLsc and ALTLsc. However, the formulae outside the union (e.g., Á4) can only
be expressed in ACTL∗sc, which are usually defined as conjunctions or disjunctions of
ACTLsc and ALTLsc formulae.

In our approach, for a given model M and for a given ACTL∗sc formula Á, the
algorithm SMC(Á,M) (see Table 4) computes the Boolean formula encoding the set
of states where Á holds, we write this set as JÁK. Similarly to the standard OBDD-based
model checking for CTL and LTL [9, 15], the Boolean formulae resulting from this
algorithm can be manipulated using OBDDs. The OBDD for the set of reachable states
in the model M is compared to OBDD corresponding to each formula. If the two are
equivalent (i.e., the formula holds in the model), then the algorithm reports a positive
output (or true), otherwise a negative output (or false) plus counter example (see Fig.3)
is produced.

Table 4. ACTL∗ symbolic model checking algorithm

1. SMC(Á,M) {// for ACTL∗sc formulae
2. Á is an atomic formula: return V(Á);
3. Á is ¬Á1: return S∖SMC(Á1,M);
4. Á is Á1 ∨ Á2: return SMC(Á1,M) ∪ SMC(Á2,M);
5. Á is SC(Ag1, Ag2, Á1): return SMCsc(Ag1, Ag2, Á1,M);
6. Á is SCc(Ag1, Ag2, ¿1, Á1): return SMCscc(Ag1, Ag2, ¿1, Á1,M);
7. Á is µ(Ag1, Ag2, C): return SMCact(µ,Ag1, Ag2, C,M);
8. Á is EÁ1: return SMCE(Á1,M);
9. }

63

When the formula Á is of the form SC(Ag1, Ag2, Á1), then the algorithm calls the

Table 5. The procedure for checking Á = SC(Ag1, Ag1, Á1)

10. SMCsc(Ag1, Ag2, Á1,M) {//for social commitment modality
11. X = SMCE(EÁ1,M);
12. Y = {s ∈ S ∣ (Ag1, Ag2) ∈ L(s)};
13. return X ∩ Y ;
14. }

procedure SMCsc(Ag1, Ag2, Á1,M), which begins with computing the set of states
where the existential path formula Á1 holds (i.e., JEÁ1K) using the standard procedure
SMCE(EÁ1,M) (see Table 5). Then builds the set of states in which the agent Ag1
commits towards the agent Ag2 to bring about Á with respect to the function L. The set
of states satisfying SC(Ag1, Ag2, Á1) is finally computed by taking the conjunction of

Table 6. The procedure for checking Á = SCc(Ag1, Ag1, ¿1, Á1)

15. SMCscc(Ag1, Ag2, ¿1, Á1,M) {//for a conditional commitment modality
16. X = SMC(¿1,M);
17. return ¬X ∩ SMCsc(Ag1, Ag2, Á1,M);
18. }

the two sets. The procedures SMCscc(Ag1, Ag2, ¿1, Á1,M) and SMCact(µ,Ag1, Ag2,
C,M) for the formulae of the form SCc(Ag1, Ag2, ¿1, Á1) and µ(Ag1, Ag2, C) are pre-
sented in Tables 6 and 7 respectively.

Table 7. The procedure for checking Á = µ(Ag1, Ag2, C)

19. SMCact(µ,Ag1, Ag2, C,M) {//for action formulae
20. X = {s ∣ ∃s′ ∈ S and fRt(s,Ag, µ, s′)};
21. Y = SMCsc(Ag1, Ag2, Á1,M);
22. Z = {s ∣ ∃s′ ∈ X and ∃P ∈ ¾s : s′ ∈ P};
23. return Y ∩ Z;
24. }

The procedure for computing the set of states satisfying ACTL∗sc formula Á of the
form EÁ1 is shown in Table 8. This procedure SMCE(Á1,M) first checks if the for-
mula Á1 is ACTLsc formula, then it calls the model checking algorithm SMCactl(Á2,M)
for ACTLsc to compute the set of states satisfies this formula. Otherwise, it calls the
model checking algorithm SMCaltl(Á

′,M) for ALTLsc after replacing each maxi-
mal state sub-formula with a new atomic proposition and the evaluation function is
adjusted by adding the set of states that satisfy the new proposition to the existing
states (for more details see [9]). That is, if EÃ1, . . . , EÃk are the maximal state sub-

64

formulae of Á′ (i.e., for all EÃi in Á such that EÃi is not contained in any other max-
imal state sub-formula of Á), p1, . . . , pk are atomic propositions, then the formula Á′

is obtained by replacing each sub-formula EÃi with atomic proposition pi. The result-
ing formula Á′ is a pure ALTLsc path formula (to clarify this notion see Example1).
Like the standard algorithm of CTL (resp. LTL) formulae [15], the SMCactl(Á2,M)
(resp. SMCaltl(Á

′,M)) algorithm computes the set of states in which the formula Á2

(resp. Á′) holds. Moreover, SMCactl,EX , SMCactl,EG, SMCactl,EU , SMCaltl,X and
SMCaltl,U are the standard procedures defined in [15, 9] to compute EX , EG and EU
of ACTLsc operators and X and U of ALTLsc operators resp.

Table 8. The procedure for checking Á = EÁ1

25. SMCE(Á1,M){ // for existential formula
26. If Á1 is an ACTLsc formula: return SMCactl(Á2,M);
27. Otherwise Á′ = Á1[p1/EÃ1, . . . , p1/Ãk];
28. for all EÃi ∈ Á1;
29. For i:=1,. . . , k do
30. if s ∈ V(EÃi) tℎen V(EÃi) := V(EÃi) ∪ V(pi);
31. ©p := ©p ∪ pi;
32. end for all;
33. return SMCaltl(Á

′,M);
34. }
35. SMCactl(Á2,M) {// for ACTLsc formula
36. Á2 is an atomic formula: return V(Á2);
37. Á2 is ¬Á′: return S∖SMCactl(Á

′,M);
38. Á2 is Á′ ∨ Á′′: return SMCactl(Á

′,M ′) ∪ SMCactl(Á
′′,M);

39. Á2 is EXÁ′: return SMCactl,EX(Á′,M);
40. Á2 is EGÁ′: return SMCactl,EG(Á

′,M);
41. Á2 is E[Á′ ∪ Á′′]: return SMCactl,EU (Á

′, Á′′,M);
42. }
43. SMCaltl(Á

′,M) { // for ALTLsc formula
44. Á′ is an atomic formula: return V(Á′);
45. Á′ is ¬Á1: return S∖SMCaltl(Á1,M);
46. Á′ is Á1 ∨ Á2: return SMCaltl(Á1,M) ∪ SMCaltl(Á2,M);
47. Á′ is XÁ1: return SMCaltl,X(Á1,M);
48. Á′ is Á1 ∪ Á2: return SMCaltl,U (Á1, Á2,M);
49. }

The time complexity of the proposed algorithm depends on the time complexity of
the model checking algorithms for ACTLsc and ALTLsc. The complexity of ACTLsc

model checking problem (like CTL) is P-complete with respect to the size of an ex-
plicit model and PSPACE-complete in case of ALTLsc (like LTL). As a result, the
time complexity of ACTL∗sc model checking problem in the worst case is PSPACE-
complete with respect to symbolic representations.

Example 1. Let Á be an ACTL∗sc formula, which means that whenever the Cus agent
does not pay for the goods, then either the goods will be never delivered or the Cus

65

agent will eventually withdrawn. Formally:
Á = AG(¬Pay(Cus) → A(G¬Deliver(Mer) ∨ FWitℎdraw(Cus))). In order to
simplify the model checking, we consider only the existential path quantifier. Thus, Á
is rewritten as: ¬EF (¬Pay(Cuse) ∧ E(F Deliver(Mer) ∧GWitℎdraw))

– At level 0: all atomic propositions: Pay(Cus), Deliver(Mer) and Withdraw(Cus) are
checked.

– At level 1: the formula ¬Pay(Cus) is checked to compute the set of states that sat-
isfy it. The other formula of level 1, E(F Deliver(Mer) ∧GWitℎdraw(Cus)),
is a pure ALTLsc formula, which is checked by calling SMCaltl procedure.

– At level 2: the formula (¬Pay(Cus)∧E(F Deliver(Mer)∧GWitℎdraw(Cus)))
is also checked by calling SMCaltl procedure as it is a pure ALTLsc formula.

– At level 3: the formula E(F Deliver(Mer) ∧ G Witℎdraw(Cus)) is first re-
placed by the atomic proposition p. The ALTLsc model checking algorithm is
then applied to the pure ALTLsc formula EF (¬Pay(Cus)∧ p). Finally, all states
in the NetBill protocol satisfy the formula: ¬EF (¬Pay(Cus) ∧ p), which means
that this property always holds for this protocol.

5 Implementation

Currently, there are many model checkers developed for different purposes. In this pa-
per, we use MCMAS, a symbolic model checker [17] based on OBDDs to verify the
proposed protocol against some properties. More specifically, MCMAS has been im-
plemented in C++ and developed for verifying multi-agent systems. It is mainly used
to check a variety of properties specified as CTL or ACTLsc formulae in our lan-
guage. In MCMAS, the multi-agent systems are described by the ISPL language where
the system is distinguished into two kinds of agents: environment agent and a set of
standard agents. Environment agent is used to describe the boundary conditions and
observations shared by standard agents and is modeled as a standard agent. Standard
agent can be seen as an non-deterministic automaton with the following components: a
set of local states (some of which are initial states), a set of actions, protocol functions
and evolution functions that describe how the local states of the agents evolve based on
their current local states and other agents’ actions.

As benchmarks, we use NuSMV, a symbolic model checker [8] and CWB-NC, a
non-symbolic model checker (or automata-based model checker). More specifically,
NuSMV has been successfully adopted to model checking multi-agent systems. It is
a reimplementation and extension of SMV, the first model checker based on OBDDs.
NuSMV is able to process files written in an extension of the SMV language. In this
language, the different components and functionalities of the system are described by
finite state machines and translated into isolated and separated modules. These mod-
ules can be composed synchronously and asynchronously. This paper specifically uses
NuSMV to check the properties expressed in ALTLsc, which cannot be verified us-
ing MCMAS. Meanwhile, it also uses NuSMV to compare the verification results of
checking ACTLsc properties obtained by MCMAS (see Sect.5.3).

On the other hand, CWB-NC uses Milner’s Calculus of Communicating Systems
(CCS) as the design language to model concurrent systems. In fact, CCS is a process

66

algebra language, which is a prototype specification language for reactive systems. CCS
can be used not only to describe implementations of processes, but also the specifica-
tions of their expected behaviors. We elect CWB-NC because it uses GCTL∗ that gen-
eralizes CTL∗ with actions and closes to our ACTL∗sc formulae without considering
social commitments. Thus, we adapt CWB-NC to capture commitment formulae and
in this case CWB-NC takes as input the CCS code and ACTL∗sc property and auto-
matically checks the validity of this property by building its Alternating Büchi Tableau
Automata (ABTA).

5.1 Translating Commitment Protocols

The main step in our verification workflow (see Fig.3) is to translate protocol specifica-
tion into ISPL, SMV and CCS. In MCMAS, this process begins with translating a set
of interacting agents (the Mer and Cus agents in our running example in Sect.3.2) into
standard agents in Agent section and commitments into local variables in Vars section.
Such variables are of enumeration type including all possible commitment states (see
Fig.2), which verify whether the protocol is in a conformant state or not. The actions on
commitments are directly expressed in Actions statement where such actions work as
constraints to trigger or stop transitions among states. The translation is completed by
declaring a set of initial states in InitStates section from which the protocol verification
starts to compute the truth value of formulae that are declared in Formulae section.

On the other hand, in SMV, the set of interacting agents are translated into isolated
modules, which are instantiated in the main module that also includes the definition of
the initial conditions using the INIT statement and the formulae that need to be checked
using the SPEC statement. The commitment states are defined in SMV variables in
VAR statement. Such states with actions are used as reasoning rules to evolve the state
changes. The transition relation between commitment states and their actions is de-
scribed using TRANS statement where all necessary transitions are defined (see Fig.2).
The TRANS statement proceeds with defining the local initial condition using the INIT
statement and includes the definition of the evolution function that mainely captures
the transition relations using the next statement and Case statement that represents
agent’s choices. Finally, in CCS, each agent in our protocol is represented by a set of
processes and each process is specified by proc statement. The states of a commitment
are captured by the set of actions performed on this commitment. Each transition re-
lation is represented by the action labeling this transition followed by another process.
For example, let M0,M1,M2 be three processes:

proc M0 = ’Request(Cus).M1
proc M1 = Accept(Mer).M2 + Release(Mer).M0

means after receiving a request from the Cus agent, the Mer agent accepts or releases.
The formulae that we want to check are written in a special file with extension .gctl
using ACTL∗sc.

5.2 Verifying Commitment Protocols

To automatically verify the soundness of the proposed protocol specifications, we need
to introduce some desirable properties. In fact, some proposals have been put forward

67

to classify these properties that satisfy different requirements of the commitment pro-
tocols [21, 11]. Specifically, P. Yolum has verified the correctness of the commitment
protocols at design time with respect to three kinds of a generic properties: effective-
ness, consistency and robustness [21]. N. Desai et al. have classified these properties
into two classes: general properties and protocol-specific properties to verify the
commitment protocols and their composition [11]. In the following, we specify some
temporal properties: fairness, safety, liveness, reachability and deadlock-freedom
using ALTLsc, ACTLsc and ACTL∗sc. These properties are more general than the
properties introduced in [11] and satisfy the same functionalities of the properties pre-
sented in [21]. The differences and similarities of our properties with the properties
developed in [11, 21] are explained in Section 6.

1. Fairness constraint: it is needed to rule out unwanted behaviors of agents (e.g. a
printer being locked forever by a single agent) [9]. In our protocol, if we define the
formula: AG(AF ¬Delegate(Bank)) as a fairness constraint, then a computation
path is fair iff infinitely often the Bank agent does not delegate commitments. This
constraint will enable us to avoid situations such as the banks agents delegate the
commitment back and forth infinitely (see Sect.3.2). Thus, by considering fairness
constraints, the protocol’s fairness paths include only the paths that the interacting
agents can follow to satisfy their desired states fairly.

2. Safety: means that “something bad never happens”. This property is generally
expressed by AG¬p where p characterizes a “bad” situation, which should be
avoided. For example, in our protocol a bad situation is: in all paths the Cus agent
always pays the agreed payment, but the Mer agent will not eventually deliver the
requested goods in all paths starting from the state where the Cus agent has payed:
AG(¬(Pay(Cus) ∧AF (AG¬Deliver(Mer))).

3. Liveness: means that “something good will eventually happen”. For example, in
all paths where the Cus agent eventually pays the agreed payment, then there is a
path in its future the Mer agent will either (1) deliver the goods and in all paths
in the future he will send the receipt; (2) withdraw the commitment; or (3) vio-
late it and in all paths in the future he will refund the payment to the Cus agent:
AF (Pay(Cus) → EF ((Deliver(Mer)∧AFReceipt(Mer))∨(Witℎdraw(Mer)
∧AFRefund(Mer))∨ (Not Deliver (Mer)∧AFRefund (Mer)))). Another
example of liveness is: in all paths where the Mer agent is eventually in “with-
draw” state or “not deliver” state, then he will eventually, in all paths starting
at these states, refund the payment to the Cus agent: AF (Witℎdraw(Mer) ∨
Not Deliver(Mer) → AFRefund(Mer)).

4. Reachability: a particular situation can be reached from the initial state via some
computation sequences. For example, in all paths in the future, there is a possibility
for the Mer agent to deliver the request goods to the Cus agent:
AF (EFDeliver(Mer)). Also, this property could be used to show the absence of
deadlock in our protocol. Formally: ¬AF (EFDeliver(Mer)), which means that
the deadlock is the negation of the reachability property, which is supposed to be
false.

The above formulae are only some examples, which were given for the fragment of
ACTLsc. By considering the definition of LTL given in [9], it is clear that the fairness

68

and safety properties have equivalent ALTLsc formulae. Furthermore, the first example
of liveness property cannot be expressed in ALTLsc because of the existence quantifier
and the second example of this property also cannot be expressed in ALTLsc because
the candidate ALTLsc formula: AF (¬(Witℎdraw(Mer) ∨ Not Deliver(Mer)) ∧
FRefund(Mer)) is weaker than the ACTLsc formula. Note that this does not mean
that a meaningful formula in ACTLsc does not have an equivalent formula in ALTLsc,
for example AG(AF¬Delegate(Bank)) has equivalent ALTLsc formula: AGF¬
Delegate(Bank). In fact, when considering conjunctions or disjunctions of the above
formulae, we can construct a formula that is ACTL∗sc formula, but neither ACTLsc

nor ALTLsc.

5.3 Experimental Results

In this section, we present three experimental results using the MCMAS, NuSMV and
CWB-NC model checkers. From business process point of view, these experiments try
to capture some real-life business scenarios that our specification language of commit-
ment protocols can effectively formalize. In the first experiment we only consider the
simple business scenario between two agents (Cus and Mer) that use the NetBill pro-
tocol to coordinate their interactions starting when the Cus agent requests some goods
until the Mer agent delivers them. In the second one, we extend the first experiment
by adding an agent (say Mer1) to which a commitment can be assigned and in the third
one, we give the Cus agent the possibility to delegate his commitment to another agent
(say Bank) to complete the commitment on his behalf.

These experiments show that the current widely known symbolic model checkers
are supporting the verification of ACTLsc. We use MCMAS as it includes an agent-
based specification and is easy to use. However, for ALTLsc formulae that cannot be
checked with MCMAS, we use NuSMV. On the other hand, we use CWB-NC in order
to verify ACTL∗sc formulae as it is the only model checker that can accomplish this
kind of verification. Moreover, the use of CWB-NC is motivated by the fact that we
need to compare the verification results obtained by the symbolic approach with the
automata-based technique to demonstrate the main benefits of our approach.

Results Analysis:
We start our analysis with defining the main criteria that we used to evaluate the per-
formance of model checking theoretically and practically. These criteria are generally
related to the model size and total time (i.e., the time of building the model and verifi-
cation time). Theoretically, we define the size of the model as ∣M ∣ = ∣S∣+ ∣Rt∣, where
∣S∣ is the state space and ∣Rt∣ is the relation space. For example, in the third experiment
we have: ∣S∣ = ∣SCus∣ × ∣SMer∣ × ∣SMer1 ∣ × ∣SBank∣ × ∣SCP ∣, where ∣SAgi ∣ is the
number of states for Agi ∈ {Cus,Mer,Mer1, Bank} and ∣SCP ∣ is the number of
states of the commitment protocol. An agent state is described in terms of the possible
messages, which he uses to interact with the other and each message is described by a
set of states. For example, the two-party actions need 2 states and three-party actions
need 3 states. Thus, for the Cus, Mer, Mer1 and Bank agents in the third experi-
ment, we have 16, 20, 10, 6 states respectively. The protocol is described by the legal
actions (see Fig.2), so it needs 13 states. In total, the number of states needed for this

69

experiment is ∣S∣ = 249600 ≈ 2.5. 105. To calculate ∣Rt∣, we have to consider the op-
erators of ACTL∗sc, where the total number is 10 operators. We can then approximate
∣Rt∣ by 10.∣S∣2. So we have ∣M ∣ ≈ 10.∣S∣2 ≈ 6.23. 1011. The model size in our three
experiments are shown in Table 9.

Table 9. The model size in the three experiments

Exp.1 Exp.2 Exp.3

The theoretical model size ≈ 3.5. 107 ≈ 9.73. 1010 ≈ 6.23. 1011

Hereafter, we only analyze the practical results of verifying the above properties of
the third experiment because it considers a rich variety of interacting agents. Table 10
displays the full results of these three experiments and the execution times (in seconds)
on a laptop running Windows Vista Business on Intel Core 2 Duo CPU T5450 1.66
GHz with 2.00GB memory. The total time for verifying our protocol using MCMAS
increases when augmenting the number of agents from 2 to 4 agents. This is normally
because the number of OBDD variables needed to encode agents states increases with
the number of interacting agents.

As we mentioned, the NuSMV and CWB-NC model checkers are used as bench-
marks to evaluate the results obtained by MCMAS. The three experimental results using
the same machine as for MCMAS are given in Table 10. In terms of symbolic model
checkers, these results reveal that the number of OBDD variables (which reflect the
model size) is greater in NuSMV than in MCMAS, but the total time in NuSMV is
better than in MCMAS as some optimization techniques are implemented in NuSMV
such as on-fly-model checking and cashing. In terms of non-symbolic model checkers,
as we expect, when the size model is small, then the total time in CWB-NC is better
than in MCMAS and NuSMV (see Exp.1 and Exp.2 in Table 10). However, when the
state space increases (as in Exp.3), then the total time in MCMAS and NuSMV is going
to be better than in CWB-NC. Note that, we put “–” in Table 10 because CWB-NC does
not use OBDD variables.
To conclude this section, the MCMAS model checker underpins different logics such
as CTL-logic, supports agents’ specifications and performs moderately better than both
NuSMV (in terms of OBDD variables) and CWB-NC (in terms of the total time).

Table 10. The statistical results of the MCMAS, NuSMV and CWB-NC

MCMAS NuSMV CWB-NC

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3

OBDD Variables 24 39 49 33 53 67 − − −
Number of Agents 2 3 4 2 3 4 2 3 4

Total Time(sec) ≈ 0.52 ≈ 2 ≈ 6 ≈ 0.23 ≈ 1.11 ≈ 1.98 ≈ 0.094 ≈ 0.564 ≈ 8.814

70

6 Related Work

We review the recent literature with respect to our work. In terms of defining commit-
ment protocols, Chopra et al. [7] have defined the commitment protocol as a transition
system and investigated an agent’s compliance with the protocol and interoperability
with other agents by considering only the two-part actions. Desai et al. [10] have used
the Web Ontology Language (WOL) to specify the commitment protocols and describe
some concepts of composing multiple protocol specifications to simplify the develop-
ment of business processes. Fornara et al. [13] have proposed an application indepen-
dent method to define interaction protocols having social semantics in artificial insti-
tutions. They treat commitments like objects as in object-oriented programming and
do not consider delegation, assignment, or release of commitment. Yolum and Singh
[20] have used commitment operations to show how to build and execute commitment
protocols and how to reason about them using event calculus. Their approach only indi-
rectly models the fulfillment of a commitment. Our approach belongs to the same line
of research, but it complements the above frameworks by using a more compatible logic
with agent open choices, which is an extension of CTL∗-logic. We have also developed
symbolic model checking algorithm, which can verify the proposed modality and action
formulae without suffering from the state explosion problem that could be occurred in
large systems as in [4].

In terms of verifying the conformance of commitment protocols, Venkatraman et al.
[19] have presented an approach for testing whether the behavior of an agent in open
systems complies with a commitment protocol specified in CTL-logic. The proposed
approach complements this work by introducing the model checking technique and the
verification of the structural properties geared toward the interactions between agents.
Desai et al., [11] has introduced model checking using Promela and Spin to verify
commitment-based business protocols and their compositions based on LTL logic. The
authors also define general properties in terms of the capabilities of Spin model checker
to verify the deadlocks and livelocks, where deadlock can result from the contradiction
among composition axioms without considering fairness constraints and reachability
properties. They introduced some “protocol-specific properties”, which can be defined
using the safety property. Moreover, the specification language here is not only ALTLsc

specification, but also ACTLsc specification. We also use MCMAS and NuSMV tools,
which underpin symbolic representation based on OBDDs that is computationally more
efficient than automata-based model checkers such as Spin. Baldoni et al. [3] have ad-
dressed the problem of verifying that a given protocol implementation using a logical
language conforms to its AUML specification. Alberti et al. [1] have considered the
problem of verifying on the fly the compliance of the agents’ behaviors to protocols
specified using a logic-based framework. These approaches are different from the tech-
nique presented in this paper in the sense that they are not based on model checking
and do not address the problem of verifying if a protocol satisfies some given prop-
erties. Aldewereld et al. [2] have used a theorem proving method to verify the norm
compliance of interaction protocols. This norm (e.g., permission) and some temporal
properties (e.g. safety and liveness) that need to be checked are expressed in LTL,
which is different from our approach that uses symbolic model checking and social
commitments.

71

Recently, Leôn-Soto [16] has presented a model based on the “state-action” space to
develop interaction protocols from a global perspective with the flexibility to recombine
and reuse them in different scenarios. However, these approaches do not consider the
formal specification of the interactions protocols as well as the automatic verification of
these protocols. Giordano and her colleagues [14] addressed the problem of specifying
and verifying systems of communicating agents in a dynamic linear time temporal logic
(DLTL). However, the dynamic aspect of our logic is represented by action formulae
and not by strengthening the until operator by indexing it with the regular programs of
dynamic logic. In [4], the interacting agent-based systems communicate by combing
and reasoning about dialogue games, the verification method is based on the translation
of formula into a variant of alternating tree automata called alternating Büchi tableau
automata. Unlike this approach, our verification algorithm is encoded using OBDDs.
Thereby, it avoids building or exploring the state space corresponding to the model
explicitly. As a result, it is more suitable for complex and large systems.

In terms of commitment protocol properties, Yolum in [21] has presented the main
generic properties that are required to develop commitment protocols at design time.
These properties are categorized into three classes: effectiveness, consistency and ro-
bustness. The proposed properties meet these requirements in the sense that the reach-
ability and deadlock-freedom can be used to satisfy the same objective of the effective-
ness property. The consistency property is achieved in our protocol by satisfying the
safety property. Moreover, the robustness property is satisfied by considering liveness
property and fairness paths accompanied with recover states that capture the protocol
failures such as if the Mer agent withdraws or violates his commitment, then he must
refund the payment to the Cus agent. Hence, our approach can be applied to verify the
protocol’s properties defined in [21]. As a future work, we plan to expand the formal-
ization of commitment protocol with metacommitments and apply our symbolic model
checking to verify the business interactions between agent-based web services.

Acknowledgements
We would like to thank the reviewers for their valuable comments and suggestions.
Jamal Bentahar would like to thank Natural Sciences and Engineering Research Council
of Canada (NSERC) and Fond Québecois de la recherche sur la société et la culture
(FQRSC) for their financial support.

References
1. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specification and

verification of agent interaction protocols in a logic-based system. In: Proc. of ACM Sympo-
sium on Applied Computing, pp. 72–78. ACM Press (2004)

2. Aldewereld, H., Vázquez-Salceda, J., Dignum, F., Meyer, J.-J. Ch.: Verifying norm compli-
ancy of protocols. In: Bossier, O., Padget, J., Dignum, V., Lindeman, G., Matson, E., Os-
sowski, S., Sichman, J., Vázquez-Salceda, J. (eds.), Coordination, Organisation, Institutions
and Norms in Agent Systems, vol.3913 of LNAI, pp. 231–245. Springer (2006)

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying protocol confor-
mance for logic-based communicating agents. In: Lenite, J.A., Torroni, P. (eds.), Computa-
tional Logic in Multi-Agent Systems (CLIMA V), vol.3487 of LNAI, pp. 196–212. Springer
(2005)

72

4. Bentahar, J., Meyer, J.-J. Ch., Wan, W.: Model checking communicative agent-based systems.
Knowledge Based Systems, 22(3): 142–159 (2009)

5. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agent-speak. In:
Proc. of the 2nd International Joint Conference on AAMAS, pp. 409–416. ACM Press (2003)

6. Chopra, A.K., Singh, M.P.: Multi-agent commitment alignment. In: Proc. of the 8th Interna-
tional Conference on AAMAS, vol.2, pp. 937–944. ACM Press (2009)

7. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, coverage and
interoperability. In: DALT, vol.4324 of LNCS, pp. 1–15. Springer (2006)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV 2: An open source tool for symbolic model checking. In: Proc. of
the 14th International Conference on CAV, vol.2404 of LNCS, pp. 359–364. Springer (2002)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge (1999)
10. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design abstrac-

tions for business processes. IEEE Transactions on Software Engineering, 31(12): 1015–1027
(2005)

11. Desai, N., Cheng, Z., Chopra, A.K., Singh, M.P.: Toward verification of commitment proto-
cols and their compositions. In: Proc. of the 6th International Joint Conference on AAMAS,
pp. 144–146. ACM Press (2007)

12. El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable semantic model for agent interactions
using social commitments. In: Dastani, M., El Fallah, A.S., Leite, J.A., Torroni, P. (eds.),
Languages, Methodologies and Development tools for Multi-agent Systems, LNAI. Springer
(2009) (In Press)

13. Fornara, N., Colombetti, M.: Specifying artificial institutions in the event calculus (Chap.14).
In: Dignum, V. (editor), Handbook of Research on Multi-Agent Systems: Semantics and Dy-
namics of Organizational Models, IGI Global, pp. 335–366 (2009)

14. Giordano, L., Martelli, A., Schwind, C.: Verifying communicating agents by model checking
in a temporal action logic. In: Logics in Artificial Intelligence (JELIA), vol.3229 of LNAI, pp.
57–69. Springer (2004)

15. Huth, M., Ryan, M.: Logic in computer science: Modelling and reasoning about systems
(2nd edition). Cambridge University Press (2004)

16. Leôn-Soto, E.: Modeling interaction protocols as modular and reusable 1st class objects. In:
Proc. of Agent-Based Technologies and Applications for Enterprise Interoperability, vol.25 of
LNBIP, pp. 174–196 (2009)

17. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi-
agent systems. In: CAV, pp. 682–688 (2009)

18. Singh, M.P.: An ontology for commitments in multi-agent systems: Toward a unification of
normative concepts. In: AI and Law, vol.7, pp. 97–113 (1999)

19. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open web-based multi-agent systems. In: Autonomous Agents and Multi-Agent Systems, pp.
217–236 (1999)

20. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event cal-
culus planning using commitments. In: Proc. of the 1st International Joint Conference on
AAMAS, pp. 527–534. ACM Press (2002)

21. Yolum, P.: Design time analysis of multi-agent protocols. Data Knowladge Engneering,
63(1): 137–154. Elsevier (2007)

22. Zhang, D., Cleaveland, R., Stark, E.W.: The integrated CWB-NC/PIOA tool for functional
verification and performance analysis of concurrent systems. In: TACAS, vol.2619 of LNCS,
pp. 431–436. Springer (2003)

The Logic of Conversation:
From Speech Acts to the Logic of Games ★

Michel A. Paquette

Collège de Maisonneuve
michel.paquette@cmaisonneuve.qc.ca

Abstract. The classical theory of speech acts has been extended to account for
rational goal accomplishment in intelligent dialogues by Vanderveken. The prin-
ciples of speech act theory yields a natural typology of goal-oriented discourse
upon which a general theory of success and satisfaction can be built. Adding some
assumptions and additional requirements to this theory, we propose a representa-
tion of the speech act account of purposeful communication in game theoretical
semantics. We describe the basic components of the resulting logic of conver-
sation. Arguments are proposed to support two specific claims. The first claim is
that there is a non-strategic dimension in intelligent dialogue that is best described
in terms of the success conditions of a joint coordinated activity. This alleviates
some of the difficulties of trying to fit every aspect of a dialogue in the game-
theoretical framework. The second claim is that a dialogue is successful in the
sense of the illocutionary account of dialogues if and only if (1) there is a solu-
tion to the corresponding dialogue game in the form of a Nash equilibrium (2) the
participating agents are efficiency maximizers and (3) the participating agents are
rational. This equivalence is the pathway from speech acts to the logic of games.
In a broader perspective, we want to illustrate how the logical analysis of game
theory (the logic of games) offers a fresh perspective on the basic principles of
dialogical interaction.

1 Background and Motivation

The present contribution is part of ongoing attempt to bring together a theory of intel-
ligent dialogues that is an extension of speech act theory, namely the one advanced in
Vanderveken [25] and some concepts from game theory as represented through the use
of epistemic models.1 This paper is a revised and improved version of an earlier un-
published article [13]. In this contribution, we want to proceed directly to the task that
we set for ourselves without trying to bring new support or defense to the background
theories of Searle and Vanderveken. We refer the skeptical reader to the works of Searle
and Vanderveken [?] and Vanderveken [25] for a defense of this approach. In what fol-
lows we refer to these theories as (FIL) and (ILDT) respectively.2 Extending the speech
★ Research supported by Gouvernement du Québec, Fonds FQRSC et MRI, programme de

Coopération France-Québec.
1 For an overview of recent work in the study of rational dynamics and epistemic logic in games,

see van Benthem [22]. For full details, see van Benthem [23]
2 We build the acronyms FIL and ILDT from the titles Foundations of Illocutionnary Logic and

“Illocutiionary Logic and Discourse Typology”.

74

act theory of dialogues towards game theory, or “gamifying” IDLT, raises a number of
significant questions. Can the basic components of speech act theory be expressed in
a standard game-theoretical framework ? What additional concepts and principles are
required to express the notion of success of a dialogue in a discourse type in terms of
the concepts of equilibrium and solution for a n-person game? Is the game-theoretical
framework rich enough to express the relevant features of rational interactions that are
specific to dialogues? Is the logic of games formulated in terms of models of epistemic
logic helpful? Does it put matters in a new perspective and raise new questions? We
would like to know if this approach can help us combine elements from earlier work
such as Lewis [8], Grice [6], Stalnaker [19], Mann [?] and Parikh [14]? We offer an-
swers to some of these questions and some hints with respect to others.

We believe that there are some general underlying logical structures to human dia-
logical interaction. Note that we express this belief in structures using the plural form
since we want to leave open the possibility that these structures do not collapse in one
unified model. The existence of structure is especially clear when that social interaction
is purposeful and goal-oriented. People who try to communicate or express informa-
tion in real circumstances of language use participate in collective actions. All this may
seem quite obvious but we cannot ignore the fact that some philosophers and linguists
have expressed doubts about the possibility of articulating the sort of systematic theory
of discourse that we are seeking. Our work is motivated in part by the will to respond
to earlier skeptical views expressed by Wittgenstein, Searle [17] and Mann [10]. The
study of communication in a game-theoretical setting is still in a very early stage of
growth.3

There are some specific conditions that must be satisfied in order for a dialogue to
exist and even more conditions must be met for a dialogue to be successful. We will
use the notion of joint coordinated activity to name the type of collective action that
best describe dialogical activity. To interpret these, we make use of Bratman’s condi-
tions for joint cooperative activity. Using Bratman’s theory of collective intentionality,
it becomes possible to formulate the success conditions for the existence of a minimally
rational conversation. Using an analogy proposed by Johan van Benthem, language use
can be compared to a vast amusement park in which you can play a number of different
games. In an amusement park, when you finish some game you get in line to start an
entirely new one with different features. This is a telling analogy. A given amusement
park is a collection of exciting experiences. So are the strategic games that you can play
in conversation. But in order to play strategic games in a conversation, you must first
satisfy the requirements of cooperative activity, you must accept to make conversation
and try to make it successful. In a way, you could compare this to the need to buy an
admittance ticket to be allowed to play the games in the amusement park. You have to
get a day-pass before you can enjoy the rides. It turns out that our understanding of
dialogic interaction is irreducibly a two-tiered structure. We will argue that only some
joint coordinated speech activity can be gamified. Basically, there must be a will to play
the game of conversation with others and to account for this, there is no need to bring in

3 See van Benthem’s postface to Rubinstein [16].

75

the machinery required for the analysis of strategies and conflicts. The term “analysis
of conflict”, by the way, is another name for game theory.4 We claim that there is no
need to bring in the machinery of game theory to define under what conditions a joint
coordinated activity is successful because, by definition, there is no strategic agenda
at this level and the cooperation of the participants is presupposed. Of course, verbal
interaction can occur in a wide variety of social contexts and external circumstances
can determine many aspects of the structure of a verbal exchange. We do not attempt to
account for all the psychological or sociological aspects that might be relevant for the
interpretation of a dialogue. We simply assume that there is such a background and that
knowledge of this background matters.

Our starting point is a discourse typology that builds on illocutionary logic to build
a semantics of dialogues. ILDT provides a recursive definition of the set of possible
conversations and a framework that allows for an exact definition of the notion of ”suc-
cessful dialogue”. We take ILDT as our starting point because it is general, explicit
and semi-formal.5 A theory of success and satisfaction for discourses should include
the conceptual apparatus necessary to describe strategic interactions in conversations.
For this purpose, it is natural to use some concepts from game theory. For those of
our readers who are unfamiliar with game theory we can only offer a brief description.
Game theory is best viewed as “a bunch of analytical tools”, to use the apt words of Os-
borne and Rubinstein [12]. This manner of introducing game theory avoids the pitfall of
thinking about game theory as a unified and universal set of fixed principles that reveal
the deep structure of human interactions. We do not know that such a universal theory
might exist. It is perhaps best to think of game theory as a social science. The relevance
of game-theoretical concepts for the study of human dialogue should be clear. Here are
two basic assumptions of game theory: (1) when they play games, agents are decision-
makers who pursue well-defined exogenous objectives and in so doing they are rational
(2) players have some knowledge and some beliefs that allow them to form expectations
about other players behavior. We say that players reason strategically. Since our goal is
to bridge the gap between a certain theory of dialogues, namely ILDT, and certain tools
from the game-theoretical toolbox, it should be clear that what we will be doing here
is applied game theory and that are we are making use of a small fraction of what is
already known. The study of cooperation in rational interaction is a topic about which
there remain many open questions. We only thread our way among the most general
ones.

4 in reference to the subtitle of Meyerson’s well-known textbook[11].
5 Here, we do not discuss the relation of our own efforts with the works of Aher and Las-

carides [1] and Parikh [14]. Asher and Lascarides’s Segmented Discourse Representation The-
ory (SDRT) is based on Kamp and Reyle’s discourse semantics and Parikh’s theory makes use
of situation theory. The links between these approaches and illocutionary logic are not all clear
which makes intertheory comparison difficult and orthogonal to the orientation of the present
paper.

76

2 Searle and Vanderveken’s Illocutionary Account

The logical basis of our account is the formal speech act theory of Searle and Van-
derveken found in [?]. According to FIL, “the minimal units of human communication
are speech acts” and in general “an illocutionary act consists of an illocutionary force
F and a propositional content P ”. These statements are well known and often quoted
but they are not always duly understood. We must stress the point that these claims
do not imply that illocutionary logic is “sentential” and could not be concerned by the
relations between utterances.6 Firstly, just as there are logical relations between propo-
sitions, there are many logical relations that speech acts have among themselves in
virtue of their form and content. Illocutionary logic offers a formal and systematic ac-
count of those. Moreover, in the use of language in particular circumstances, there are
logical relations between the various illocutionary acts performed by different agents
who try to express or communicate various propositional contents by the coordinated
use of language in those circumstances. Secondly, the purpose of FIL is to provide an
analysis of the logical forms of actions performed by speakers. Illocutionary acts have
propositional contents without being themselves reducible to sentences and proposi-
tions. Speech act theory is coherent with its basic tenet by maintaining that the proper
semantic value of illocutionary acts is not truth but success. In fact there are three dis-
tinct and irreducible semantic values in the formal semantics of illocutionary logic :
truth, success and satisfaction. Of course, we are aware that some respectable logicians
would disagree with this ramification of semantic values.7 The resulting formal seman-
tics for speech act theory has been investigated thoroughly by Vanderveken in [24].

Vanderveken establishes the groundwork for the theory of discourse ILDT by putting
forward a complete account of the types of possible discursive goals that speakers can
attempt to achieve by way of conversing. His framework provides resources by which
the conversation types in terms of previously defined concepts of illocutionary logic:
the mode of achievement of a discursive goal, the thematic conditions, the background
conditions and the sincerity conditions. These aspects of dialogue are in line with sim-
ilar components from the analysis of speech acts in FIL. The typology of possible
discourses is also grounded on familiar notions. The basic uses of language are few
in number, in fact they can be separated according to four possible directions of fit:
downward or word-to-world, upward or world-to-word, the double direction of fit such
appropriate for declarations and the empty declaration of fit characteristic of expressive
discourses.

3 The Analysis of Intelligent Dialogues in ILDT

We start with the basic units. We want a concept of intervention in a dialogue that will
coincide with the idea of a move in a game. For that reason it seems best to construe

6 The contrary seems implied by the authors in Asher and Lascarides[1] p.74.
7 This account of the semantic value of performative sentences is in line with views shared by

Frege, Austin and Searle, In contradistinction see, Lewis [8] “example 7”. Some arbitration
can be found in Belnap [4].

77

interventions as sets of illocutionary acts. By doing so, we do not rule out the possibility
of an intervention consisting of a single illocutionary act. Nor do we suppose that an
intervention is made up of a number of locutionary events that are contiguous in time.
Interventions can be embedded in nested structures, they can be complex in the sense
of being structured units having structured parts. Some interventions are speech acts
of a higher level, such as the opening statement in a judicial trial. For example, the
opening of a court session is an intervention that contains another intervention, the
preliminary announcement. The preliminary announcement often proceeds according
to a fixed ritual consisting of a predictable series of directives and declaratives:

– Silence.
– All rise.

(After the judge enters the room and is seated.)

– The Court is now in session.
– Please be seated.

In view of its fixed protocolar structure, a judicial trial is not a very typical form of dis-
course, but it offers clear examples of nested interventions. Viewing discourse as made
up of interventions gives us the precision we need to provide a game-theoretical anal-
ysis of conversations because it permits us to construct interventions that correspond
to strategic moves. It also gives us the freedom we want to sieve out irrelevant noise
with respect to discursive goals. We can thus speak of interventions such as describ-
ing an object, answering a question, concluding an argument or summing up a debate.
Since the analysis of dialogues in ILDT is centered on the achievement of discursive
goals, interventions are defined as speech acts or collection of speech acts that bring the
participants closer to the achievement of these discursive goals.8 By linking the speech
act concept of intervention to the game-theoretical concept of a move in a game, we
are taking the first step towards a formulation of ILDT in game theory. To construct a
reasonable account of dialogue games, we must take notice of the fact that a move in
a dialogue game may require the performance of more than one illocutionary act and
that some illocutionary acts that occur in a conversation may not count as a move with
respect to a particular discursive goal. Moreover, we make the assumption that each in-
tervention corresponds to a deliberate attempt to make a discursive action. This attempt
results from a choice made by a participant at some point in the history of the dialogue.
From the standpoint of each participant in a dialogue, the problem of choosing inter-
ventions can be viewed as a problem of individual choice under uncertainty. So we can
proceed to define the concept of rational behavior for this type of choice in the context
of social interaction. Indeed, we state that a formal dialogue game can be defined as a
(partial) description of a sequence of interdependent Bayesian decision problems.9 We
take these basic notions as the first components of our dialogue game theory.

8 More precisely, these collections are families of equivalent sequences of speech acts.
9 The Bayesian form of a game is a generalization of the extensive form, the tree representation.

The extensive form should not be considered to be essentially different from the strategic,
tableau form. See Myerson [11] p. 37, Stalnaker [21] p. 5 and Stalnaker [19].

78

To proceed further, we need to explain the concept of strategy for a participant in a
conversation. We want to understand how conversations can be viewed as games where
plans and strategies mesh, compete or collide. We have to be mindful of the applicability
of these concepts in the case of dialogues. In game theory, a plan is made up of choices
and a strategy is defined as a complete plan. The concept of strategy, under the standard
interpretation of game theory, seems to impose too much structure on dialogues. This
difficulty has been noted by the economist A. Rubinstein in his book on economics
and language, Rubinstein [16]. We must consider seriously the possibility of being mis-
guided by the rhetoric of game theory. A strategy specifies what choices will be made in
every possible situation that might turn up in the history of the conversational exchange,
according to the pattern of information that the logical structure of the game indicates
expressly for some agent in a particular case. This concept of strategy is the one needed
in order to define the concept of solution for a game, a solution being a systematic de-
scription of the possible outcomes that may emerge in a family of games. A solution
spells out the possible outcomes of a game type in the form a method, which assigns
to each game a set of profiles of strategies satisfying certain conditions of stability and
rationality.10 Plans and strategies, if they are interpreted cautiously, can be essential
elements of a game-theoretic account of the type strategic interactions that take place
inside dialogue games. All this looks promising. Nevertheless, we must worry that the
concept of a game of strategy, as introduced by Von Neumann and Morgenstern and ex-
panded by Kuhn and others, carries with it a certain number of assumptions that bring
in too much structure to fit the simple and abstract idea of a dialogue with an internal
discursive goal.11 We must ask how the idea of “winning” can be applied in the analysis
of different types of dialogues and we must also worry about what counts as a “payoff
function” in the general case. Upon reflection, some conceivable dialogues may contain
no strategic interaction among the participants and there may not be a winner in any
clear sense. This is the problem that we address by taking as our starting point the obvi-
ous fact that all dialogues must contain some basic cooperation among the participants.
To make use of this obvious fact, we introduce the notion of joint coordinated activity
as the most general feature of intelligent dialogue.

4 Interlocution as joint activity and collective intentionality

We want to consider more closely a leading idea ILDT that “speakers contribute to
conversations with the collective intention of achieving a discursive goal”.12 We face
a problem when we try to formulate this key principle in game-theoretical parlance.
The basic notion is that of a type of interaction where some discursive goal is aimed
at and where participants contribute in an attempt to achieve a common goal. It would
be a downright misnomer to call this a “cooperative game” even if the term sounds
intuitively right. We propose to use the descriptive phrase the dialogue as a joint coor-
dinated activity to name this interaction. We recommend refraining from calling such

10 Rubinstein [16] p. 86.
11 See Von Neumann and Morgenstern [26] p. 49, and Kuhn [7].
12 Vanderveken [25].

79

activity “a game”, and also recommend that we try to steer clear from the terminolog-
ical confusion of calling it a “cooperative game”. Game theory has a copyright claim
on this vocabulary and provides exact definitions. True enough, following an analysis
first proposed by John Nash, it is possible to model cooperative behavior as the result of
noncooperative bargaining between cooperating players. In a sense, it becomes a spe-
cial case of noncooperative interaction.13 This reduction may be formally correct but we
refrain from using it to model intelligent dialogues.14 It is true that preliminary negoti-
ations are possible and can be very elaborate in form and content. But, it seems wrong
to suppose that some form of bargaining must always take place before a dialogue can
exist. We concur with W. C. Mann that strategic interaction doest not always fit actual
dialogues.15

One of the most general feature of conversational interlocution is that by willingly
taking part in a dialogue, the participants make it manifest that they accept to play a
part in a joint coordinated activity with the collective intention to achieve some internal
discursive goal or some set of discursive goals. In so doing, the participants in a dialogue
must commit themselves to the joint activity with the appropriate collective intention.
In recent years, philosophers such as J. Searle, R. Tuomela and M. Bratman [5] have
proposed interesting analysis of collective intentions and joint activities. Bratman offers
a review of previous attempts to define collective action and offers an improved analysis.
He carefully delineates a set of essential attitudes that explain what is required in a
joint coordinated activity aimed at a common goal. According to his explanation, it is
necessary but not sufficient that (1) the participants both have the intention of achieving
the common goal. It is also required (2) that each participant intend to achieve the
goal in a way that implies the other participants action, in accordance with subplans
that mesh. The subplans need not be identical, but (3) they must be compatible and (4)
jointly permit the achievement of the goal. Moreover, (5) it must be common knowledge
that both participants intend to achieve the common goal. These conditions are sufficient
for the collective intention of achieving a discursive goal. From a philosophical point
of view, pending the formulation of new arguments to the contrary, we may consider
that they express necessary conditions. It can be argued that a well worked-out theory
of human dialogues needs a well worked-out account of collective intentional actions.
For our purpose, this analysis of joint coordinated activities has three very desirable
features. First, it does not rest on an essential use of “we-intentions” that would exist
over and above individual intentions. Secondly, it explains joint action as more that the
sum of individual action, as can be seen in (2). Thirdly, this analysis of joint coordinated
activity can be incorporated in a formal logic of action in a straightforward manner. For
these reasons we adopt it here as an explanation of cooperation in the logic of dialogue.
The four conditions are taken as necessary conditions for the existence of a coordinated
dialogue.

13 See Myerson [11], p. 370.
14 See Grice [6] p. 29 for a criticism of such “quasi-contractual basis” in cooperative conversa-

tion.
15 Mann has coined the term “Single Comprehensive Model Fallacy” for the view that any idea

about how something works must cover all cases. See Mann[10].

80

5 Common knowledge and strategic knowledge

Common knowledge and collective intentions are pervasive in dialogues. They help us
explain what it means to share a common discursive goal. The shared knowledge of par-
ticipants is sometimes closely related to the explanation of rational behavior in social
interaction. Part of the common knowledge of participants belongs to linguistic compe-
tence; someone who understands the word “negotiation” can form some expectations
about what is supposed to happen if he is going to take part in a negotiation. The basic
knowledge that is required for achieving a successful dialogue — if it is at all possible
for participants to achieve a given goal in given circumstances — must include some
common or shared knowledge. In game theory, it is usual to suppose that the players
know the rules of the game they play, that they can make inferences to anticipate the
other player’s next moves. In connection with the concept of strategy for a game of
a given type, it is often necessary to assume that each player has a detailed “mental
model” of the possible unfoldings of the game, a representation that is at least as com-
plete as required by the analysis of the solution concept for that type of game. On the
other hand, we would like to acknowledge that when game playing is goal-driven, a
large number of the “possible unfoldings” are not necessarily known to the player. For
these reasons, dialogical strategic interactions are best viewed as extensive games with
imperfect information.

As we have stated at the beginning, our analysis of dialogic interaction is irreducibly
a two-tiered. We find echos to our concern in the work of Rubinstein. He notes that a
conversation “differs from [a] debate in that participants pursue common rather than
opposed interests”.16 For that reason, Grice’s cooperative principles seem more appro-
priate for conversation in general than for debates in particular. Our distinction between
dialogue as a joint coordinated activity and dialogue as a strategic game expands this
difference. There are indeed many forms of dialogues where the speaker and hearer
pursue “different” if not “opposed” interests. So to speak, they use different preference
relations over outcomes. Clearly, dialogue game theory must account for this basic fact.
Speakers and hearers do need to agree to participate in a joint coordinated activity.
Nevertheless, they need not agree about content, subgoals and means that characterize
the games that are taking place within a conversation. As we have indicated, we believe
that the conceptual apparatus of game theory is well suited for the task of describing the
strategic interactions that take place in those possible dialogue where participants have
opposed or at least different interests. This suggests that we need a two-tiered account
to describe the logical structure of dialogues: on one level, we have the dialogue as a
joint coordinated activity with its own success conditions and on another level we have
the strategic games that take place inside the joint coordinated activity, with their own
success conditions. The other option would be to define the basic concept of a game so
that the elementary case would coincide with the idea of a joint coordinated activity.
This type of unification does not blend nicely in the conceptual framework of standard
game theory.

If the basic notion of joint coordinated activity is going to do some work for us, it
should be clear that it must account for the fact that each participant is going to form

16 Rubinstein [16] p. 112.

81

some expectations about the typical scenario of a dialogue. For example, if I am going
to take part in a debate, just because I know that the interaction is going to take the
form of a debate, I expect that two parties who disagree over some issue will oppose
arguments.17 Quite clearly, this is not the only type of knowledge that is required from
the participants in a dialogue. A more general form of knowledge is also involved. This
more general form of knowledge provides expectations about the strategic interaction
that should take place in the typical scenario for a dialogue of a given type. Thus, in
our example, we expect debaters to put forward their best arguments — rather than the
less persuasive ones — and we expect them to refrain from indicating loopholes and
shortcomings that they may be aware of in their positions. Of course, we want to refrain
from saying that all the knowledge required to contribute to a successful dialogue is
either part of semantic competence or part of strategic knowledge. In order to interpret
the propositional content of speech acts, the partners in a dialogue must also possess
an unspecified and unspecifiable amount of knowledge about the world in general and
about the immediate surroundings. This knowledge about the world helps the hearer in
his attempt to understand the acts of reference and acts of predications that are made
by the speaker. Some may be inclined to see an insuperable difficulty in the problem
of spelling out exactly what this knowledge amounts to. May they be reminded that in
order to have a successful dialogue with someone, you do not need to know much about
what he knows or believes about our external world. So a reasonable logic of dialogues
can be constructed without venturing in vague cognitive and doxastic assessments.

There is little doubt that our general strategic knowledge derives from our accumu-
lated experience. Indeed, we acquire strategic skills as we take part repeatedly in similar
dialogue games and we can learn from the experience of our ancestors that is passed
on by culture and education. We can also take a relevant clue from evolutionary game
theory, a type of game-theoretic analysis that seeks to explain the structure of social in-
stitutions in terms of repeated games. To become a good negotiator, one has to learn the
finer points of a type of strategic interaction. This knowledge goes well beyond the mere
understanding of the word “negotiation” and well beyond the ability to understand the
various illocutionary acts that are performed as the actual dialogue unfolds. The general
knowledge of a good negotiator evolved through experience with negotiations. There is,
at least in principle, a clear distinction between the basic common knowledge that must
be shared by participants who engage in a joint coordinated activity and the more gen-
eral knowledge, the strategic knowledge, that is acquired by taking part repeatedly in
dialogues with similar logical structure and formally identical discursive goals. Beyond
that, as Wittgenstein pointed out, our language games are embedded in forms of life
in which we have all sorts of other goals, that we cannot attain by discursive means.
Such is, for instance, the goal of repairing a car. In order to achieve such goals, we need
knowledge that does not relate to language or strategy. We need knowledge about how
things work, such as car mechanics.

There are some paradigm cases of strategic interactions in dialogues with the de-
scriptive goal (debates, interviews, interrogations) and in dialogues with the deliberative
goal (negotiations, bargaining sessions). It would be difficult to imagine strategic inter-
action taking place in those declaratory and expressive discourses where the speakers

17 See Rubinstein [16] p. 42 for a game-theoretic account of debates.

82

put forward the same propositional content such as when a group of people takes an
oath or pledges allegiance or when people jointly express the same mental states as in
a collective prayer. In order to act according to a strategy, one must be able to choose a
course of actions, to select the general principles governing his choices freely and act
in accordance to some personal agenda. It is a postulate of the logic of discourse that
each participant is agentive with respect to his interventions. The set of interventions
that lead to the accomplishment of a discursive goal is governed by a basic logic of ac-
tion. To gain a better understanding of these issues, we need to be more specific about
strategies, strategy profiles and personal utility functions.

6 The components of dialogue structure in game theory

We proceed to assign their intended interpretation to the components of the game. Since
the terms “speaker” and “hearer” designate particular roles in conversational interaction
that change during a conversation, we use the term participants to refer to the players in
a dialogue game. We have already introduced interventions as structured sets of speech
acts. We now turn to the problem of providing a reasonable interpretation for the con-
cept of strategy. Above, we hinted that this may not be a simple issue. The informal def-
inition of a strategy in game theory is not far from the intuitive idea of “a set of instruc-
tions”. But the formal concept of strategy can be at variance with the intuitive idea of a
plan of action. As Rubinstein points out repeatedly, the standard game-thoretical defini-
tion of strategy in an extensive game is counter-intuitive in that it requires a completely
defined plan of action. It is not simply a tuple of plans, one for each individual. In some
problems, the formal definition of a strategy will spell out the course of action for every
history after which it is the participant’s turn to move, even for moments that would
never be reached if the strategy is followed. This is the issue of over-specification of
strategies.18 Another problem associated with the interpretation of the concept of strat-
egy is associated with random acts or acts regulated by probabilistic rules. One way of
constructing a mathematical model for this situation is to suppose that the adoption of
a mixed strategy means that a participant will use some randomness in his behavior, for
instance, using some random device to decide of his action. Outstandingly clever solu-
tions have been advanced by game theorists such as J. C. Harsanyi and R. J. Aumann to
circumvent this difficulty. In the present paper, following Stalnaker, we adopt a special
interpretation for the concept of mixed strategy. This interpretation, called the belief —
or epistemic — interpretation, may be thought of as less counter-intuitive with respect
to the issues of completion and random acts.19 It replaces the over-specification of the
participant’s plan by lack of certainty on the part of the other players. According to this
interpretation, the players in a game do not randomize; they choose definite actions. But
other players need not know which action they choose. So the mixt acts represent their
uncertainty, their partial belief about his choice. This interpretation eliminates the need
for using some random device in the process of decision making. The belief interpreta-
tion is usually considered favorably by those who raise doubts about the applicability of
the concept of strategy. To be more specific, under this interpretation, a mixed strategy
18 See Osborne and Rubinstein [12] p. 92 and Rubinstein [16] p. 77.
19 See Aumann, [2] and Rubinstein, [16] p. 79.

83

becomes a belief held by all other players concerning a player’s action.20 The fact that
this epistemic interpretation is available for Nash equilibrium can be taken as an inde-
pendent argument in favor of using Nash equilibrium as a solution concept for simple
games.

In a dialogue with an internal discursive goal, the definition of the dialogue must
determine the class of possible strategies available. The utility function of each partic-
ipant will motivate his choices among strategies. For simplicity, we occasionally talk
as if we were concerned only with two-person dialogues. The beliefs of a participant
include all the situations such that the other participant may be in these situations for all
the participant knows. It would not be reasonable, and is not required, that absolutely
all the knowledge of the participants be common knowledge. It is only the knowledge
that pertains to relevant components of the dialogue game that need to be common.

To interpret the utility function associated with each participant, at the stratospheric
height of simple games, we assume that the participants are rational in the sense of
being relevance and efficiency maximizers. Of course, it is proper action to make idle
talk in some dialogues. It is also possible to exploit the occasion of a conversation to
obtain irrelevant information with respect to the thematic conditions associated with
a discursive goal. We simply ignore these complications in the formal representation
of simple dialogue games. The more complex form of dialogues can be explained as
variations on the basic structure of simple dialogues. Larger subsets of the class of
all possible dialogues can be defined inductively by defining a class of functions that
construct dialogues from simple dialogues. We claim that these basic components are
sufficient to construct the concept of solution for a simple dialogue. We also claim that
they provide a sufficient conceptual apparatus to spell out the parameters of a family
of dialogues as games. To support these claims, the parallel between the definition of
success for a conversation and the concept of solution for a game must be established
on firmer ground.

7 Success in dialogues and solutions for simple dialogue games

In Vanderveken’s theory, “speakers succeed in holding a conversation of a certain type
in making their successive utterances in a speech situation if and only if first, the theme
of their conversation satisfies the thematic conditions of their discourse type, secondly,
they achieve the discursive goal of that discourse type on the theme with the required
mode of achievement, thirdly, they presuppose that the required background conditions
obtain and finally they express all the mental states required by the sincerity conditions
of their discourse type”.21 The goal is to take this success-value semantics from the
illocutionary logic of dialogue and interpret it in terms of a general concept of solution
from game theory. We have noted earlier that the general idea of a solution is a system-
atic description of the outcomes that may emerge in a family of games.22 The definition
of success and the specification of strategies that define a solution are elements of the
theoretical description of a possible dialogue game. Both are abstract in that they leave
20 This interpretation and others are reviewed in Rubinstein [16] p. 77 sq.
21 Vanderveken [25] p. 253.
22 See Osborne and Rubinstein [12] p. 2.

84

aside many aspects of real dialogues. In both cases, the analysis starts from the end
point, the goal. In the present paper, we put forward the view that in the case of con-
versations that involve strategic interactions, the concept of success and the concept of
solution coincide. In other words, the question “What is required for a conversation of
a given type to be successful?” is essentially equivalent to the question “How can a
game with a given structure be played optimally by rational agents?” Both the concept
of success and the concept of solution are put to the test with the same form of reason-
ing. To the question “Why should people be relevant and efficient and respect thematic
conditions?” the proper answer is “They ought to, if they want to achieve the goal ef-
ficiently.” Recall that the definition of success contains an “if and only if”. Note the
“only if” part and apply modus tollens. The same reasoning is appropriate and familiar
in the context of game theory. To the question “Why should people behave optimally
and play the Nash equilibrium?”, the proper answer is “In real life, people deviate from
optimal paths, but the game-theoretical analysis predicts that if they deviate, either they
gain nothing by doing so or their action profile will not be an equilibrium after all. In
either case, the speaker’s profile is self-defeating with respect to the goal, incoherent
with respect to the speaker’s beliefs, or simply irrational with respect to the speaker’s
utility function.” We need to keep in mind that a solution is an abstract description of
the logical structure of a game in strategic form. The intended goal of this abstract de-
scription is to provide a systematic formulation of the necessary features that successful
dialogues possess.

8 Nash equilibrium as a solution concept for simple dialogues

It seems natural to consider the application of Nash equilibrium as a concept of solu-
tion in the context of dialogue game theory. The general idea of a Nash equilibrium
is to describe an action profile for each participant such that every participant acts op-
timally given the other’s action. There is a simple fact about Nash equilibrium that is
relevant for our application to dialogues. Consider the following assumptions: (1) each
participant is rational, (2) each knows his own payoff function and (3) each knows the
strategy choices of others. From this it follows by definition that the players choices
are a Nash equilibrium.23 This simple fact indicates how little is required for a simple
game —a simple dialogue— to have a solution, in other words, to be playable. As we
have seen in the previous sections, there is a close analytical link between the concept
of success for a dialogue type and the concept of solution for a game. This modest
claim is the central point of our contribution and the starting point indicating that a lot
of future work is needed. In his remarkable paper listed as [20], R. Stalnaker explained
in great detail how to link the concept of model for a type of epistemic logic and the
concept of solution for a game. We make use of his analysis in the next section in order
to show how the elements of his framework can be applied to dialogues along the lines
of the interpretation indicated in the previous sections of this paper. Stalnaker presents
two characterization theorems that show the adequacy of his framework, in a way that
is analogous to what soundness and completeness show for a logical system. We will
23 See Aumann and Brandenburger [3] for further discussion of this observation and a treatment

of interactive belief systems.

85

review and discuss these theorems will be stated in the closing section of the present
paper. Both theorems can be applied to dialogue games with an internal discursive goal.
However, this claim must be set in perspective. The logical structures of dialogue games
under consideration are very abstract and our approach neglects many details. This is
why we talk about these models as solutions for simple games. In order to work out a
detailed game-theoretical pragmatics of dialogues on the basis of models of this type,
we would need to build a more complex theory of dialogues and include more ele-
ments to represent discursive goals, mental states expressed by participants and modes
of achievement of discursive goals.

At this point, the main stumbling block that we have met concerns the concept
of strategy. It is only on very rare occasions that the participants in a dialogue will
pick out a strategy that they will play deterministically, i.e. as if following a set of
instruction. In game theory, such a plan is called a pure strategy. Therefore, we find it
more appropriate to consider the mixed extension of a strategic game. In our discussion
of the concept of strategy, we mentioned a difficulty with the interpretation of mixed
strategies. Recall that since a player does not know what the other player will do or say,
the standard analysis describes him as randomizing over the set of feasible strategies
that are available to him. This feature of the standard interpretation of mixed strategies
has been criticized by many as being artificial and counter-intuitive. Since we adopt
the belief interpretation strategic games, we use the less problematic interpretation that
is available. Apart from this difficulty that is not peculiar to the analysis of dialogue
games, the interpretation of dialogue game theory can be built using this formal setting
as the basic structure.

9 Stalnaker’s epistemic models with application to dialogue games

We now turn to the basic ingredients of the logical semantics for a dialogue game.
Skipping over many features, we review and reinterpret many definitions of the frame-
work of Stalnaker [20].24 A dialogue game, or more precisely, a dialogue interpreted
as a game in strategic form ¡ is defined as a structure ⟨N,⟨Ci, ui⟩i²N ⟩ where N is the
set of participants, Ci is a finite set of alternative strategies available to participant i,
and ui is participant i’s utility function, a function from strategy profiles (members of
C = ×i²NCi) into real numbers representing utility values.25 The definition of a dia-
logue game determines the set of possible strategies available. A model for a dialogue
game is a structure M =⟨W, a,⟨Ri, Pi, Si⟩i²N ⟩ where W is a non-empty set, the set
of possible worlds; a is a designated member of W , the actual world of M ; each Ri is
a binary relation on W that determines for each possible world which possible world
are compatible with participant i’s beliefs in that world. The function Pi, a distinctive
feature of this otherwise familiar model structure, is an additive measure function on
the subsets of W, that determines i’s partial beliefs in each world. Pi is defined over the
full algebra of subsets P(W); by definition we know

24 See also Stalnaker [20] and [19]. Note that Stalnaker constructs a semantics for games in
general. He makes no reference to dialogues or anything remotely resembling what we call
here dialogue games.

25 The definition of a dialogue game in strategic form would be much longer.

86

1. ¤ ² P(W) (¤ is the empty set)
2. P(W) is closed under finite unions, i.e.

for x
′
n ² W , and i = 1 → n, ∪x′

i ² W

3. for all X
′
² P(W), (W −X

′
) ² P(W)

Moreover, Pi is a real-valued additive function; i.e. it verifies

for all X,Y : X − Y = ¤ and X,Y ² P(W)

Pi (X ∪ Y) = Pi(X) + Pi(Y)

In Stalnaker [19], a further proviso is made explicit to insure that Pi is nonzero for all
w. It is assumed that the models are finite and that the measure functions assign nonzero
probability to every non-empty subset in P(W).

Si(w) is a function that represents player i’s strategy choice in world w as a function
from W into Ci. The set of propositions that a participant i believes in world x is the set
of those propositions that are true for all y such that x Ri y. Note that i believes that Á
is equivalent, in the present context, to i is certain that Á in x. This amounts to defining
the beliefs of i as the set of situations that, for all i knows, another participant might be
in. More explicitly, for any proposition Á, the proposition that i fully believes that Á is
the set

{x²W : {y²W : (x Ri y)} ⊆ Á}
The set of possible worlds that are compatible with a participant’s belief in world w is
the set (x : w Ri x). The degree to which i believes proposition Á in a situation w, in
notation Pi,w(Á), is defined as

Pi,w(Á) =
Pi(Á ∩ {x : w Ri x})

Pi(x : w Ri x)

This formula is an instance of a familiar principle, the quotient rule for conditional
probability. Simply put, the formula tells us how to compute the probability of Á rela-
tive to i’s beliefs in w; i’s beliefs is the set (x : w Ri x). In our view, this concept is
central for the semantics of dialogues because dialogues should be analyzed as interact-
ing belief systems. The compatibility relations Ri are not reflexive, but serial, euclidean
and transitive. It is not desirable that Ri be reflexive since an agent’s beliefs may not
be consistent with the world in which he has those beliefs. Seriality [(x)(∃y)xRiy)]
amounts to the assumption that each agent-indexed belief set is consistent and permits
that some of what the agent believes may be false in the world in which he has those
beliefs. The euclidean axiom [(x)(y)(z)((xRiy) & xRiz) ⊃ yRiz] and the transitivity
of Ri encodes the assumption that agents have introspection with respect to their own
beliefs. These properties of Ri validate the axiom set for belief from the basic epistemic
logic known as KD45.

Rationality is defined in the usual way as maximizing expected utility over out-
comes, where the expected utility of a strategy choice for a participant i at a world w is
the weighted sum of the utilities of the possible outcomes of the choice. In the case of a
dialogue, as we have stated above, maximizing “utility” can be interpreted as the basic

87

quest for relevance and efficiency in communication but it may also be interpreted in
terms of any other personal agenda that participants may have. A participant is rational
if the expected utility of his chosen strategy is equal or greater than any other possible
strategy choice he might have made given the strategy choice of the other participants.

Ai : Participant i is rational =df

{x²W : for all s s²Ci,
∑

y²W

Pi,x(y) × ui(S(y))

≥
∑

y²W

Pi,x(y) × ui(s, S i(y))}

The utilities of the possible outcomes are weighted by i’s degree of belief in the alter-
native states of the world. The proposition that everyone is rational is the intersection
of the A

′
i

A = ∩i⊂NAi

The concept of common belief (all agents believe that Á, all believe that all believe that
Á, and so forth) is defined as the transitive closure R∗ of the Ri relations. This can
be said explicitly: xR∗y is true if and only if there is a sequence ⟨w1, ..., wm⟩ such
that w1 = x and wm = y and for all j from 1 to m − 1 there is a player i such that
wjRiwj+1. The proposition that there is common belief that everyone is rational is
defined likewise

Z = {x ² W : {y ² W : x R∗ y} ⊆ A}
These are the basic definitions needed to work out an account of dialogue game

theory. Within this framework it is possible to formulate the set of Nash equilibrium
strategies for a n-person dialogue in model-theoretic terms.

The adequacy of this semantics can be established in connection with a pair of theo-
rems that bridge the gap between game theory and the model theory of epistemic logic.
These theorems show how solution concepts such as rationalizability and Nash equilib-
rium for a game are characterized by a class of models. Before we state the theorems
we need to introduce a few more more concepts. We need to explain a standard method
for constructing a solution for a game known as strategy elimination.26 To explain this
notion, we want to generalize the definition of a strictly dominated action, a familiar no-
tion from decision theory. We say that a choice option in a decision problem is strictly
dominated if for any set of beliefs of the chooser, that option could not be optimal.27

This can be expressed in the framework of Savage-style decision theory with states S1

to Sm and acts A1 to An. Let j, j′...(k, k′...) be such that 1 ≥ j, j′...(k, k′...) ≥ m, (n);
we say that an act Ak is strictly dominated by another act Ak′ if and only if Ak′ is a
better response to every probability distribution over states Sj . We want to apply the
relation of strict dominance to strategies and probability mix of alternative actions; to
26 For a detailed formulation, see Myerson [11] p. 57 sq.
27 Myerson [11] p. 28.

88

do this, let Ak
′s range over sets of acts and identify each act Ak with the set of which

Ak is the only member. The notion of strict dominance is therefore applicable to sets of
acts, it can be applied to strategies relative to each player i.

We now turn to the notion of strategy elimination. The iterated elimination of strictly
dominated strategies is, as the name indicates, a process of testing pairs of strategies in
Ci, successively eliminating dominated strategies (for player i).28 This process yields
residual games up to the game ¡ ∗ such that for every i in N∗, the set C∗

i contains only
strategies that are best response for i to probability distributions over ×j²N∗−i C

∗
j , the

strategies chosen by players other than i. In the analysis of intelligent dialogues, as in
game theory, the expectations formed by the participants with respect to the predictable
behavior of other participants is the key element that explains how strategic social in-
teraction can be successful and efficient. Stalnaker’s first theorem shows that common
belief in rationality is sufficient to characterize a solution concept known as rationaliz-
ability. It follows in part from the following proposition, first proved by G. W. Pearce:
29 An action is a best response to some probability distribution over states S1 to Sm if
and only if it is not strictly dominated.

Stalnaker’s Theorem 1 For any strategic form game, the set of strategies that survive
the iterated elimination of strictly dominated strategies is characterized by the class of
models in which the players have common belief that all player’s choose strategies that
maximize expected utility.

Assumptions about participants in a dialogue game can be viewed as conditions that re-
strict the class of models for a game with a given structure. Such is the proposition that
each participant in a dialogue game is rational or that there is common belief among
players in rationality. More precisely, we say that a proposition Ã restricts the class of
models for a game structure to those models in which the proposition Ã is true in the
actual world of the model. In the first theorem, the clause that “players have common
belief that all players choose strategies that maximize expected utility” is such a re-
striction. The proof of the theorem shows that a game in which the set of strategies is
restricted to those that survive iterated elimination of dominated strategies will satisfy
the condition. It also shows how to correlate strategies (for a player i) that survive it-
erated elimination with probability distributions. If we apply the theorem to a playable
dialogue game, we can take it to mean that common belief in the fact that all players are
rational will guarantee the existence of set of sequences of interventions, one for each
player, such that each is a series composed of best responses to the interventions of other
players. The theorem reinforces our view, stated in previous sections of the present pa-
per, that the possibility of success in a dialogue game, or “playability”, can be grounded
on the assumption that participants are interacting systems of beliefs, that they are ra-
tional, and that they form intelligent expectations about others. It also corroborates a
guiding principle of our approach to the analysis of dialogues, an overall conjecture
that has proven useful in game theory. This guiding principle predicts that the amount
of beliefs, knowledge and inference capabilities that is assumed of the participants in a

28 An exact formulation must account for the fact that the order in which strategies are eliminated
may matter.

29 See Pearce [15].

89

dialogue game is fairly limited and does not exceed what is required to build a formal
analysis of the possibility of success of the dialogue game. The next theorem is also a
characterization claim for a solution concept, but this time, it is about capturing the ar-
guably more substantial solution concept of Nash equilibrium. The standard definition
of this equilibrium is as follows. A mixed strategy Nash equilibrium for a finite strate-
gic game is a mixed strategy profile S(x) realized at world x with the property that for
every player i every action in support of S(x) is a best response to S i(x), the action
profile of the participant(s) other than i.

Stalnaker’s Theorem 2 For any two-person game, the set of Nash equilibrium strate-
gies, interpreted as belief profiles, is characterized by the class of models in which each
player knows the other’s beliefs about his strategy choice, and each knows that the other
is rational.

In order to work with the belief interpretation of mixed strategies, we need to have, in
addition to a strategy profile for each player, a belief profile defined as a sequence of
probability distributions defined over the partial strategy profiles of other players. The
proof of this theorem uses strategy pairs, ⟨m1,m2⟩, to represent belief profiles. We note
that this second theorem is formulated with a restriction to a two-person game and this
is due to a technical property of the belief interpretation for mixed strategies. When the
number of players is greater than two, the belief profile of a given player is not a mixed
action but a probability distribution on tuples of actions of other players. 30 The proof of
this theorem uses mainly the definition of Nash equilibrium and proceeds by construct-
ing a model in which the probability distribution Pi has been defined so that the players
have the same belief profiles in all possible worlds of the model. This entails that each
player knows what the other player believes about his strategy choice. What is remark-
able in this theorem is how little is required — only two rather weak conditions on the
class of models — to obtain the characterization of a significant solution concept. As
we have said earlier, Nash equilibrium can be understood as a very general description
of success conditions for strategic interactions. Therefore, this solution concept applied
to strategic interactions in dialogue games is a special instance of the general case.

References

1. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press (2003)
2. Aumann, R.J.: Correlated equilibrium as an expression of bayesian rationality. Econometrica

55, 1–18 (1987)
3. Aumann, R.J., Brandenburger, A.: Epistemic conditions for nash equilibrium. Econometrica

63(1161–1181) (1995)
4. Belnap, N.: Declaratives are not enough. Philosophical Studies 59, 1–30 (1990)
5. Bratman, M.E.: Faces of Intention. Cambridge University Press (1999)
6. Grice, H.P.: Logic and conversation. Harvard University Press (1989)
7. Kuhn, H.W.: Extensive games and the problem of information. In: Kuhn, H, W., Tucker, A.W.

(eds.) Contributions to the Theory of Games, vol. II. Annals of Mathematics Studies, Princeton
University Press (1953)

30 Aumann and Bradenburger [2] underlines that different epistemic conditions are associated
with two-person and n-person games.

90

8. Lewis, D.: Scorekeeping in a language game. Journal of Philosophical Logic 8, 339–359
(1979)

9. Mann, W.C.: Dialogue games, conventions of human interactions. Argumentation 2, 511–532
(1988)

10. Mann, W.C.: A single theory of dialogue. Tech. rep., SIL international (2001)
11. Meyerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press (1991)
12. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
13. Paquette, M.: Solutions for simple dialogue games (2002). In: Vanderveken, D., Vernant, D.

(eds.) Logique et Dialogue. College Publications (Forthcoming)
14. Parikh, P.: The Use of Language. CSLI, Stanford (2001)
15. Pearce, D.G.: Rationalizable strategic behavior and the problem of perfection. Econometrica

52, 1029–1050 (1984)
16. Rubinstein, A.: Economics and Language: Five Essays. The Churchill Lectures in Economic

Theory, Cambridge, Cambridge University Press (2000)
17. Searle, J. R. Parret, H., Verschuen, J.: (On) Searle on Conversation. John Benjamins (1992)
18. Searle, J.R., Vanderveken, D.: Foundations of Illocutionary Logic. Cambridge University

Press (1985)
19. Stalnaker: Extensive and strategic forms: Games and models for games. Research in Eco-

nomics 53, 293–319 (1999)
20. Stalnaker, R.: On the evaluation of solution concepts. In: Bacharach, M.O.L., Gérad-Varet,

Mongin, P., Shin, H.S. (eds.) Epistemic Logic and The Theory of Games and Decisions, vol.
20, pp. 345–364. Kluwer Academic (1997)

21. Stalnaker, R.: Knowledge, belief, and counterfactual reasoning in games. In: Bicchieri, C.,
Jeffrey, R., Skyrms, B. (eds.) The Logic of Strategy, chap. 1, pp. 3ñ38. Oxford University
Press (1999)

22. Van Benthem, J.: Rational dynamics and epistemic logic in games. International Game The-
ory Review 9(1, 2), 1:13–45, 2:377–409 (2006)

23. Van Benthem, J.: Logical Dynamics of Information and Interaction. ILLC, Amsterdam
(2010)

24. Vanderveken, D.: Meaning and Speech Acts, vol. I and II. Cambridge University Press
(1990–91)

25. Vanderveken, D.: Illocutionary logic and discourse typology. Revue Internationale de
Philosophie pp. 243–255 (2001)

26. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton
University Press, third edn. ((1944) 1953

Author Index

Cristina, Baroglio, 2

Elisa, Marengo, 2

Jamal Bentahar, 53
Jan Corfixen, Sørensen, 37

Matteo, Baldoni, 2
Michel A. Paquette, 73
Mohamed El-Menshawy, 53
Munindar P., Singh, 19

Nørregaard, Jørgensen, 37

Rachida Dssouli, 53

Scott N., Gerard, 19

Vanderveken, Daniel, 1

Wei Wan, 53

