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In this lecture we complete Kalai’s proof of Arrow’s Theorem (Section 1) and then go
on to introduce the subject of testing codes and specifically the Long Code (Section 2).

1 Arrow’s Theorem — Continued

1.1 In Previous Lecture

Recall the discussion of voting schemes from the previous class. We consider a set of
candidates C, and a set of n permutations {Ri}i∈[n] over C such that Ri is the preference of
the ith voter. A voting scheme F takes R1, . . . , Rn and returns a relation R = F (R1, . . . , Rn)
on C. We listed some (possibly desirable) properties of a voting scheme:

1. Rationality.

2. Independence of Irrelevant Choices.

3. Neutrality.

4. Transitivity.

Kalai’s formulation of Arrow’s theorem is the following two theorems.

Theorem 1 There exists a constant c < 1 s.t. if F has 2, 3, 4 then

Pr [F is rational] < c < 1 .

Theorem 2 There exists a constant k s.t. if F has 2, 3 and ε = Pr[F is irrational] then
F is kε-close to a dictatorship.

Recall that we showed that it is sufficient to prove the theorems for the case of only 3
candidates. Since in both theorems F has property 2, we are able to represent a voting
scheme F by 3 functions f, g, h : {±1}n → {±1}, where each function represents the
preferences of the voters with respect to two of the three candidates.

Thus F is a function of 3n variables

F (x1, . . . , xn, xn+1, . . . , x2n︸ ︷︷ ︸
y1,...,yn

, x2n+1, . . . , x3n︸ ︷︷ ︸
z1,...,zn

) = (f(x), g(y), h(z)) .

Recall that F is rational iff NAE(f(x), g(y), h(z)) = 1. NAE : {±1}3 → {0, 1} is the not-
all-equal function that can be expressed as a polynomial NAE(α, β, γ) = 3

4 − 1
4αβ − 1

4βγ −
1
4αγ. We also defined the set of all rational votes Ψ = {(x, y, z) : ∀i. NAE(xi, yi, zi) = 1}.
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We further defined an indicator variable A = 1Ψ so that A(x, y, z) =
∏n

i=1 NAE(xi, yi, zi).
Using these definitions, we showed that the probability of rationality is

Pr
R1,...,Rn

[F is rational] =
1

Pr[Ψ]
· 〈A(x, y, z),NAE(f(x), g(y), h(z))〉 = . . .

=
3
4
− 1

4

(
4
3

)n

· 〈A(x, y, z), f(x)g(y) + g(y)h(z) + f(x)h(z))〉 .(1)

We use Plancharel’s identity to compute the inner product in (1). To this end we
computed the Fourier representation of f(x)g(y). Or in other words, represented it as a
polynomial in variables x, y, z.

f(x)g(y) =
∑

S,T⊆[n]

f̂(S)ĝ(T )χS(x)χT (y) , (2)

we note that χS(x)χT (y) is a monomial in x, y, z and thus is a character function.
By symmetry this also yields the Fourier representation of g(y)h(z), f(x)h(z).

1.2 Completing the Proof

To complete the computation of the inner product in (1), we consider the Fourier transform
of A.

A(x, y, z) =
n∏

i=1

NAE(xi, yi, zi) =
n∏

i=1

(
3
4
− 1

4
xiyi − 1

4
yizi − 1

4
xizi

)
. (3)

We note that it is sufficient to compute the inner product of A and f(x)g(y) and obtain the
rest of the terms by symmetry. Since the Fourier representation of f(x)g(y) (see (2)) only
contains characters χS(x)χT (y), it is sufficient to compute the coefficients of such characters
in the Fourier representation of A.

Opening the parentheses in the product term of (3) results in a multilinear function. For
all i = 1, . . . , n, we select one of the four monomials in the representation of NAE(xi, yi, zi).
We notice that taking a monomial that contains zi in any of the NAE terms, results in a
character function that contains zi. Specifically it is not a character of the form χS(x)χT (y)
that interests us. Thus the characters χS(x)χT (y) result from selecting, in each NAE term,
either the constant 3

4 or the monomial −1
4xiyi. Hence it is impossible to select xi without

also selecting yi (and vice verse). Therefore characters χS(x)χT (y) where S 6= T do not
appear at all in the resulting expression. When S = T , however, the character χS(x)χT (y)
is obtained by selecting the monomial −1

4xiyi for i ∈ S and the constant 3
4 for all other

values of i.
Hence the coefficient of character χS(x)χT (y) in the resulting expression is

1. If S 6= T then the coefficient is 0.

2. If S = T then the coefficient is
(

3
4

)n−|S| · (−1
4

)|S|.
Therefore

(
4
3

)n

· 〈A, fg〉 =
(

4
3

)n

·
∑

S⊆[n]

(
3
4

)n−|S|
·
(
−1

4

)|S|
f̂(S)ĝ(S) =

∑

S

(
−1

3

)|S|
f̂(S)ĝ(S)

︸ ︷︷ ︸
denote ¿f,gÀ

.
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We get

Pr
R1,...,Rn

[F is rational] =
3
4
− 1

4
(¿ f, g À + ¿ g, h À + ¿ f, h À) .

Recall that in our theorems, F is neutral — that is the relation it produces is invariant
to permutations on the set of candidates C. Consider the preference between candidates a
and b, which is determined by f(x). Applying the permutation (a, b, c) → (c, a, b), results
in the preference between a and b being g(x). Neutrality, therefore, implies that f = g.
Similarly neutrality over the permutation (a, b, c) → (a, c, b) implies that f = h. Therefore
f = g = h. Furthermore, neutrality over the permutation (a, b, c) → (b, a, c) implies that
f(x) = −f(−x).

Hence the term for the probability of rationality is

3
4
− 3

4
¿ f, f À =

3
4
− 3

4

∑

S

(
−1

3

)|S|
f̂(S)2 =

3
4
− 3

4

∑

i

(
−1

3

)i ∥∥f=i
∥∥2

2

=
3
4
− 3

4

(∥∥f=0
∥∥2

2
− 1

3

∥∥f=1
∥∥2

2
+

1
9

∥∥f=2
∥∥2

2
+ . . .

)

=
3
4

+
1
4

(∥∥f=1
∥∥2

2
− 1

3

∥∥f=2
∥∥2

2
+

1
9

∥∥f=3
∥∥2

2
− . . .

)
(4)

where the last equality is due to the fact that f(−x) = −f(x) and thus
∥∥f=0

∥∥2

2
= 0.

Corollaries of formula: we have

∥∥f=1
∥∥2

2
− 1

3

∥∥f=2
∥∥2

2
+

1
9

∥∥f=3
∥∥2

2
− . . . ≤ ∥∥f=1

∥∥2

2
+

1
9

(∥∥f=3
∥∥2

2
+

∥∥f=5
∥∥2

2
+ . . .

)

≤ ∥∥f=1
∥∥2

2
+

1
9

(
1− ∥∥f=1

∥∥2

2

)

=
8
9

∥∥f=1
∥∥2

2
+

1
9
. (5)

Therefore if Pr[rationality] = 1, this term must also be 1 and thus
∥∥f=1

∥∥2

2
= 1 which

means, as we saw long ago, that f is a dictatorship.
Using the expression we have, we now prove the theorems.

Proof of Theorem 2: Let ε be the probability of irrationality of F . Then combining (4)
and (5) we have

1− 4ε ≤ ∥∥f=1
∥∥2

2
− 1

3

∥∥f=2
∥∥2

2
+

1
9

∥∥f=3
∥∥2

2
− . . . ≤ 1

9
+

8
9

∥∥f=1
∥∥2

2

and therefore
∥∥f=1

∥∥2

2
≥ 1− 9

2ε and
∥∥f>1

∥∥2

2
≤ 9

2ε. Applying the FKN Theorem on f , yields
that it is a

(
16 · 9

2ε, 1
)
-junta. That is, f is 16·9

2 ε-close to a dictatorship in one of its variables,
denote its index by i∗.

Since F (x, y, z) = (f(x), f(y), f(z)), each coordinate of F is close to being a dictatorship
in its i∗th variable with probability at least 1− 16·9

2 ε.
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We apply the union bound to obtain that F (x, y, z) = (xi∗ , yi∗ , zi∗) with probability at

least 1− 3 · 16 · 9
2︸ ︷︷ ︸

k

ε as claimed.

Proof of Theorem 1: Assume towards contradiction that ε = Pr[irrationality] ≤ 1
104 then

by Theorem 2, f is a
(
16 · 9

2ε, 1
)
-junta. Thus there exists i s.t.

∣∣∣f̂(i)
∣∣∣
2

> 1
2 . By Property 4

(transitivity) it follows that ∀i.

∣∣∣f̂(i)
∣∣∣
2

> 1
2 .1 Hence ‖f‖2

2 > n
2 .

Since f is boolean, however, it must be that ‖f‖2
2 = 1. We get a contradiction and

therefore Pr[irrationality] > 1
104 .

Comments. From Theorem 1 it follows that if 2, 3, 4 hold, there is some probability of an
irrational outcome. This raises the question of how close we can get to rationality using a
voting scheme with such properties, and which is the voting scheme that achieves this. It
can be shown that, at least for the case of 3 candidates, majority has the best probability
of rationality.

2 Testing Codes

Let f : {±1}n → {±1}. The truth table of f is a vector of bits (a binary word). A code C
is a collection of such functions.

Testing, as opposed to reading the whole codeword, is a process where we read a small
(say 10) bits of an alleged codeword. We must then always accept if it is indeed a codeword,
and if we accept with high enough probability then the alleged codeword must be close to
an actual codeword.

It turns out that testing, incorporated with other techniques, implies the following. Let
S be a mathematical statement, and let P be a proof for S. There exists a process that
reads a small number of bits (say 10) of P , and accepts with high probability only when
both S is true and P is ε-close to a proof of S.

The Long Code over n-coordinates is {f(x) = xi}n
i=1, namely the set of all n-variable

dictatorships. We can test the Long Code (or a slight variation thereof, see below) as
follows: pick (x, y, z) ∈R Ψ (the set of rational votes). If NAE(f(x), f(y), f(z)) = 1 accept,
otherwise reject.

It follows from Theorem 2 that:

1. If f is a dictatorship then Pr[accept] = 1.

2. If Pr[accept] > 1− ε then f is kε-close to a dictatorship, that is, to Long-Code word.2

1It holds that if f is transitive then ∀i,j. f̂(i) = f̂(j).
2With the exception that f may be close to negative Long-Code word, which is also a dictatorship. This

can be fixed by adding all negative dictatorships to the code.
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