Harmonic Analysis of Boolean Functions, and applications in CS

Lecture 5

March 31, 2008

Updated: April 8, 2008

Lecturer: Guy Kindler Scribe by: Igor Shinkar

We continue the proof of the FKN theorem which states:

Theorem 1 Let
$$f: \{\pm 1\}^n \to \mathbb{R}$$
 s.t. $\|f^{>1}\|_2^2 \le \varepsilon$. Then f is $(16\varepsilon(1+o(1)), 1)$ -junta.

Last lecture we showed that it's enough to prove the following lemma:

Lemma 2 Let $f: \{\pm 1\}^n \to \mathbb{R}$ be a linear function, that is $f = a_0 + \sum_{i=1}^n a_i \chi_i$ s.t. $\sum_{i=0}^n a_i^2 \le 1$. Assume that $|a_1| \ge |a_2| \ge \cdots \ge |a_n|$. Let $\varepsilon = \|f - \operatorname{sign}(f)\|_2^2$. Then $\|f - (a_0 + a_1 \chi_1)\|_2^2 \le \varepsilon (1 + o_{\varepsilon}(1))$.

It is easy to see that $|a_2| \leq \frac{1}{\sqrt{2}}$, since $a_1^2 + a_2^2 \leq 1$ and $|a_1| \geq |a_2|$. In fact we can find a better bound for $|a_2|$ and hence all $|a_i|$ for $i \geq 2$. We do it in the following claim:

Claim 3 $|a_2| < 10\sqrt{\varepsilon}$.

Proof Since $|a_2| \leq \frac{1}{\sqrt{2}}$, for each fixed $x_1, x_3, x_4, \ldots, x_n$, there is a setting of x_2 such that

 $|f(x_1,\ldots,x_n) - \operatorname{sign}(f(x_1,\ldots,x_n))| \ge \frac{1}{3}|a_2|.$ Indeed, let $X = a_0 + \sum_{i=2}^n a_i x_i$ and assume wlog that $X \ge 0$. If $X \le 1$, then $|X - |a_2| - \operatorname{sign}(X - |a_2|)| \ge \frac{1}{3}|a_2|$ and otherwise $|X + |a_2| - \operatorname{sign}(X + |a_2|)| \ge \frac{1}{3}|a_2|.$

That is $\Pr\left[|f - \operatorname{sign}(f)| \ge \frac{1}{3|a_2|}\right] \ge \frac{1}{2}$. Therefore, if $|a_2| > 10\sqrt{\varepsilon}$, then using Markov's inequality we get $\mathbb{E}\left[\left(f - \operatorname{sign}(f)\right)^2\right] \ge \frac{1}{9}a_2^2 \Pr\left[\left(f - \operatorname{sign}(f)\right)^2 \ge \left(\frac{1}{3}a_2\right)^2\right] \ge \frac{1}{9} \cdot 100\varepsilon \cdot \frac{1}{2} > 5\varepsilon$, contradicting the assumption that $\varepsilon = ||f - \operatorname{sign}(f)||_2^2$.

Now we know that $|a_i| < 10\sqrt{\varepsilon}$ for all $i \ge 2$. But we want to show $\sum_{i \ge 2} a_i^2 \le \varepsilon (1 + o_{\varepsilon}(1), 1)$ which is much stronger. Let's try to use argument similar to that in claim 3 and try to bound $||f - \text{sign}(f)||_2^2$ when some x_i 's are fixed. We know thus far that $a_n^2 \le a_2^2 < 100\varepsilon$. Let m be the smallest index in [n] s.t. $\sum_{i \ge m} a_i^2 \le 102\varepsilon$. Write $f = a_0 + a_1\chi_1 + \cdots + a_n + a_n$ $a_{m-1}\chi_{m-1} + \sum_{i=m}^{n} a_i\chi_i$. By the choice of m, $\|\sum_{i=m}^{n} a_i\chi_i\|_2^2 \leq 102\varepsilon$. Now are going to fix x_1, \ldots, x_{m-1} , denote $c = a_0 + \sum_{i=1}^{m-1} a_i x_i$ and say something useful about f in the lemma below:

Lemma 4 Let $g = c + \sum_{i=m}^{n} a_i \chi_i$ and $\alpha = \sum_{i=m}^{n} a_i^2 \le 102\varepsilon$. Then $\|g - \text{sign}(g)\|_2^2 \ge 102\varepsilon$. $\alpha(1+o_{\varepsilon}(1)).$

Once we prove this lemma, the main lemma will follow:

$$\varepsilon = \|f - \operatorname{sign}(f)\|_{2}^{2}$$

$$= \mathbb{E}_{X} \left[(f - \operatorname{sign}(f))^{2} \right]$$
(The total expectation)
$$= E_{x_{1}, \dots, x_{m-1}} \left[\mathbb{E}_{x_{m}, \dots, x_{n}} \left[(f - \operatorname{sign}(f))^{2} \right] \right]$$
(By lemma 4)
$$\geq \mathbb{E}_{x_{1}, \dots, x_{m-1}} \left[\mathbb{E}_{x_{m}, \dots, x_{n}} \left[c + \sum_{i=m}^{n} a_{i} \chi_{i} - \operatorname{sign}(c + \sum_{i=m}^{n} a_{i} \chi_{i}) \right] \right]$$

$$\geq \mathbb{E}_{x_{1}, \dots, x_{m-1}} \left[\alpha(1 + o_{\varepsilon}(1)) \right]$$

$$= \alpha(1 + o_{\varepsilon}(1))$$

We need to show $\sum_{i=2}^n a_i^2 \le \varepsilon(1+o_\varepsilon(1))$ and what we have is $\sum_{i=m}^n a_i^2 \le \varepsilon(1+o_\varepsilon(1))$. But if m>2 then using claim 3, $\sum_{i=m-1}^n a_i^2 \le 100\varepsilon + \varepsilon(1+o_\varepsilon(1)) < 102\varepsilon$, contradicting our choice of m and therefore the lemma 2 follows.

Useful facts In order to prove lemma 4, we will use the following facts:

- 1. Chernoff bound: $\Pr_{x \in \{\pm 1\}^n} \left[|\sum \gamma_i x_i| \ge t \right] \le \exp\left(-\frac{t^2}{2\sum \gamma_i^2} \right)$
- 2. If X is a positive r.v., then $\mathbb{E}[X] = \int_{t=0}^{\infty} \Pr[X > t] dt$.
- 3. For any r.v. X with finite second moment $\mathbb{E}[(X-1)^2] \geq \operatorname{Var}[X]$.

Proof of Lemma 4 Note that due to symmetry, we may assume that $c \ge 0$. Moreover, using Chernoff bound if $|c-1| \ge 1/2$ then $\Pr[|\sum_{i=m}^n a_i x_i| \ge 1/4] < \exp(-\frac{1}{32\alpha})$ and using Markov's inequality we get the desired result.

Now we assume that 1/2 < c < 3/2. Then

$$\begin{aligned} \|g - \operatorname{sign}(\mathbf{g})\|_{2}^{2} &= \||g| - 1\|_{2}^{2} \\ &\geq \||g| - \mathbb{E}[|g|]\|_{2}^{2} \\ &= \mathbb{V}[|g|] \\ &= \mathbb{E}[g^{2}] - c^{2} + c^{2} - \mathbb{E}^{2}[|g|] \\ &= \sum_{i=m}^{n} a_{i}^{2} + (c + \mathbb{E}[|g|])(c - \mathbb{E}[|g|]) \end{aligned}$$

Now we want to bound $c - \mathbb{E}[|g|] = \mathbb{E}[g] - \mathbb{E}[|g|] = \mathbb{E}[g - |g|] = -2\mathbb{E}[g_-]$:

$$\mathbb{E}[g_{-}] = \int_{t=0}^{\infty} \Pr\left[g_{-} > t\right] dt$$

$$\leq \int_{t=0}^{\infty} \Pr\left[\sum_{i=m}^{n} a_{i}x_{i} + c < -t\right] dt$$

$$= \int_{t=0}^{\infty} \Pr\left[\sum_{i=m}^{n} a_{i}x_{i} < -c - t\right] dt$$

$$\leq \int_{t=0}^{\infty} \Pr\left[\left|\sum_{i=m}^{n} a_{i}x_{i}\right| > c + t\right] dt$$
(Chernoff bound+change of variables)
$$\leq \int_{t=c}^{\infty} \exp\left(-\frac{t^{2}}{2\alpha}\right) dt$$

In order to bound the integral, we multiply it by $\frac{\alpha}{c}\frac{t}{\alpha}$, and use the fact that c > 1/2:

$$\mathbb{E}[g_{-}] \leq \frac{\alpha}{c} \int_{t=c}^{\infty} \frac{t}{\alpha} \exp\left(-\frac{t^{2}}{2\alpha}\right) dt$$

$$= -\frac{\alpha}{c} \exp\left(-\frac{t^{2}}{2\alpha}\right) \Big|_{c}^{\infty}$$

$$= \frac{\alpha}{c} \exp\left(-\frac{c^{2}}{2\alpha}\right)$$

$$= 2\alpha \exp\left(-\frac{1}{16\alpha}\right)$$

We get that $\mathbb{E}[g] - \mathbb{E}[|g|]$ is exponentially small in α and therefore $c + \mathbb{E}[|g|] = 2c + \alpha o_{\alpha}(1) < 4$. And therefore $||g - \text{sign}(g)||_2^2 \ge \alpha + 4\alpha o_{\alpha}(1) = \alpha(1 + o_{\alpha}(1))$ as required.