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1 Fourier Basis

1.1 Reminder

Our goal in this class is to find a basis for the space of real-valued functions R{−1,1}n
and

explore its properties.

Definition 1 A Walsh product/character corresponding to a set S ⊆ [n] is defined as

χS(x) =
∏
i∈S

xi.

Claim 2 The set of all characters {χS}S⊆[n] is a basis for R{−1,1}n
.

Proof We showed last class that {χS}S⊆[n] spans the canonical basis and hence a basis.

Alternatively: Every function can be interpreted by a polynomial f =
n∑

i=1

aimi(x) (see

exercise below), in addition w.l.o.g all mi are multi-linear (mi =
∏
i∈S

xi).

Exercise. 1 (The interpolation theorem) Let C ⊆ Rn be a finite set and let f : C → R.

Then ∃g : Rn → R, g =
n∑

i=1

aimi(x), mi- monomials, s.t. g(x) = f(x)∀x ∈ C.

Conclusion. ∀f : {±1}n → R, ∃!f =
∑
s⊆[n]

f̂(S)χS .

It follows that the transformation from the space of functions f : {±1}n → R to the set of
the coefficients f̂ : P ([n]) → R, called the Fourier transform is in fact 1-1 and onto.

2 Some properties of {χS}

2.1 Shift operator

Definition 3 The y-shift operator for an element y ∈ {±1}n is defined over R{−1,1}n
as

σyf(x) = f(xy).
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Notation. We denote by σi the shift operator σei where ei = (1, . . . ,−1, . . . , 1) and −1 in
the i-th coordinate.

We now wish to examine how does the shift operator affect characters, and understand
better the structure of this basis.

σiχS(x) = χS(xei) =
∏
i∈S

xiei =
{

χS(x) i /∈ S
−χS(X) i ∈ S

.

We can see now that the character is affected by a scalar. This is also true for general shifts:

σy(χS) = χS(xy) =
∏
i∈S

xiyi = (
∏
i∈S

yi)(
∏
i∈S

xi) = χS(y)χS(x).

In other words we can say that χS is an eigne vector for the shift operator (for any set S
and vector y).
Remark In addition to the previous conclusion, we also got from the computation, that
the character χS is multiplicative, i.e. χs(xy) = χs(y)χs(x). Another easy result is that the
set of characters is closed under multiplication which is clear by the following computation

χS(x)·χT (x) = (
∏
i∈S

xi)(
∏
i∈T

xi) = (
∏

i∈S\T

xi)(
∏

i∈S∩T

xi)(
∏

i∈T\S

xi)(
∏

i∈T∩S

xi) =
∏

i∈S4T

xi = χS4T (x).

3 Norms, Inner products

3.1 Definitions

Definition 4 We define the inner product of two functions f, g : {±1} → R as

〈f, g〉 = Ex[f(x)g(x)].

Definition 5 The induced norm is defined as

‖f‖2 =
√
〈f, f〉 =

√
Ex[f(x)2]

and the corresponding metric is defined by

d(f, g) = ‖f − g‖.

We also call ‖f‖2
2 = Ex[f2(x)] the weight of f .

Theorem 6 (Cauchy-Schwartz inequality)

|〈f, g〉| ≤ ‖f‖2‖g‖2
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Theorem 7 (Triangle inequality)

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

or altenatively ‖f+g
2 ‖2 ≤ ‖f‖2+‖g‖2

2 (namely ‖ · ‖ is convex).

Definition 8 (The lp norm)

‖f‖p =

{
(Ex[|f(x)|p])

1
p 1 ≤ p < ∞

maxx |f(x)| p = ∞

Remark To show that the lp norm is indeed a norm and satisfies the triangle inequality
is not trivial and requires the Minkowski inequality, but we wont get into it here .

4 Fourier meets inner product

We now explore the behavior of {χS} with respect to the inner product we just defined.

4.1 Orthonormality

We observe now that {χS} is an orthonormal basis. Recall that we defined χ∅(x) = 1 and
that the characters are unbiased, i.e.

Ex[χs(x)] =
{

0 s 6= ∅
1 s = ∅ .

So now we can compute the inner product of two characters

〈χS , χT 〉 = Ex[χS(x)χT (x)] = Ex[χS4T (x)] =
{

0 S 6= T
1 S = T

.

This computation shows that {χS} is indeed an orthonormal basis.
Remark The fact that {χS} is an orthonormal basis, is also an alternative proof for the
fact that it is indeed a basis.

4.2 Implications From Orthonormality

So far we have:

• {χS} is an orthonormal basis that contains multi-linear monomials which are common
eigne vectors of all shift operators.

• {χS} is closed under multiplication, i.e. χSχT = χS4T .

• {χS} contains multiplicative functions, i.e. χS(xy) = χS(x)χS(y).

From this results we have some immediate corollaries. Let f, g : {±1}n → R:
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Corollary 9 From the fact that {χs} is an orthonormal basis, we know from linear algebra
that we can easily compute the coefficients with respect to that basis, the formula for the
Fourier coefficient is f̂(S) = 〈f, χS〉.

Corollary 10 (Plancharel)

〈f, g〉 =
∑

S⊆[n]

f̂(S)ĝ(S) (1)

This important formula follows from the following computation

〈f, g〉 = 〈
∑

S⊆[n]

f̂(S)χS ,
∑

S⊆[n]

ĝ(T )χT 〉 =
∑

S⊆[n]

f̂(S)ĝ(T )〈χS , χT 〉 =
∑

S⊆[n]

f̂(S)ĝ(S).

Corollary 11 (Parseval)

‖f‖2 = 〈f, f〉 = Ex[f2] =
∑

S⊆[n]

f̂(S) (2)

This follows directly from (??). Moreover if f is a boolean function then
∑

S⊆[n]

f̂2(S) = 1.

Corollary 12 With this formulas we can express the expectation and the variance in terms
of the Fourier coefficients:

Ex[f(x)] = Ex[f(x) · 1] =< f, χ∅ >= f̂(∅)

Vx[f(x)] = Ex[f2(x)]− (E[f(x)])2 =
∑
S

f̂2(S)− f̂2(∅) =
∑
S 6=∅

f̂2(S).

4.3 Influence In Terms Of Fourier Coefficients

We can use the results we got so far and express the total influence of a real-valued function
in terms of the fourier coefficients. Recall we defined the influence as

Ii(f) = Ex\i
[
Vxi [f(x)]

]
. (3)

Remark We use the notation f(x\i,−1) to express f of x where the i-th coordinate is
−1.

Vxi [f(x)] = Exi [f
2(x)]− (Exi [f(x)])2

=
1
2
f2(x\i, 1) +

1
2
f2(x\i,−1)− (

1
2
f(x\i, 1) +

1
2
f(x\i,−1))2

=
1
4
f2(x\i, 1) +

1
4
f2(x\i,−1)− 2

4
f(x\i, 1)f(x\i,−1)

=
(

f(x\i, 1)− f(x\i,−1)
2

)2

= Exi

[(
f(x)− σif(x)

2

)2
]
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We assign this value in (3) and get

Ii(f) = Ex\i

[
Exi

[(
f(x)− σif(x)

2

)2
]]

= Ex

[(
f(x)− σif(x)

2

)2
]

=
∥∥∥∥f(x)− σif(x)

2

∥∥∥∥2

2

.

Now we can use the fact that the shift operator is linear and compute farther

f(x)− σif(x)
2

=
1
2

∑
S

f̂(S)χS(x)− 1
2

∑
S

f̂(S)σiχS(x)

=
1
2

∑
S

f̂(S)χS(x)− 1
2

( ∑
S:i/∈S

f̂(S)χS(x)−
∑

S:i∈S

f̂(S)χS(x)
)

=
∑

S:i∈S

f̂(S)χS(x)

So we have by (2)

Ii(f) = Ex\i
[
Vxi [f(x)]

]
=

∥∥∥∥f(x)− σif(x)
2

∥∥∥∥2

2

=

∥∥∥∥∥ ∑
S:i∈S

f̂(S)χS(x)

∥∥∥∥∥
2

2

=
∑

S:i∈S

f̂2(S).

With this simple formula we can easily express the total influence as

I(f) =
∑

i

Ii(f) =
∑

S⊆[n]

|S|f̂2(S) (4)

4.4 Applications

We can now use the tools we developed to get a much simpler proof for the theorem from
last lecture

I(f) =
∑

S⊆[n]

|S|f̂2(S) ≥
∑
S 6=∅

f̂2(S) = Vx[f(x)] (5)

moreover we can farther conclude that if f is boolean and balanced (i.e. f̂(∅) = Ex[f(x)] =
0) then by (2), I(f) ≥

∑
S 6=∅ f̂2(S) = 1.

Another application for example is to show that if f is boolean ,balanced and I(f) = 1
then f is linear, i.e. f =

∑
i f̂(i)χi(x) =

∑
i f̂(i)xi. By using (2), (4) and (5) we conclude

that the only sets S for which f̂(S) 6= 0, are the sets of size 1 which means that f is linear.
Moreover since f is boolean then ∃i such that f(x) = xi or f(x) = −xi (dictatorship)
because otherwise if f̂(i), f̂(j) 6= 0 (i 6= j) then for the possible four combinations of values
for xi, xj we have four different values for the function, so the function cannot be boolean
in contradiction.
Remark Next lecture we will show how to use this techniques to get robustness for this
results.
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