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In the main part of this lecture we will see an example for how one can reason about
influences of boolean functions without using harmonic analysis. This example demonstrates
some useful tricks in probability, and also demonstrates how much sweat one needs to shed
in order to solve such questions without using harmonic analysis. Specifically, we prove the
following:

Theorem 1 Let f : {−1, 1}n → {−1, 1} be an unbiased (i.e., balanced) boolean function.
Then I(f) ≥ 1.

We will prove Theorem 1 using tools from probability theory. In order to use those tools,
we will first reformulate the theorem in terms of probability theory.

Notation As common in Theoretical Computer Science, given a function f over two
random variables X,Y , we denote by EXf(X, Y ) the expectation of f(X, Y ) where Y is
fixed and the probability is taken only over X. In other words, we denote

EXf(X, Y ) = E [f(X, Y )|Y ]

A similiar notation will be used for the variance VXf(X, Y ). We warn that this notation
might be dangerous to use when X and Y depend on each other, since it may cause the
reader to forget that the distribution of X depends on the choice of Y . Thus, we will mostly
use it for independent random variables.

Notation Given a vector x ∈ {−1, 1}n and a coordinate i ∈ [n], we denote by x\i the
set of all x’s coordinates except for i.

Observe that using the foregoing notation, we can define the influence Ii(f) of a boolean
function f as follows:

Ii(f) = Ex\iVxif(x)

This new definition of Ii(f) has two advantages:

1. This definition is more comfortable to work with when using probabilistic tools, since
it is phrased using “probabilistic terms” such as expectation and variance.

2. This definition does not assume that the function f is boolean. Thus, we can use this
definition to define the influence Ii(f) of non-boolean functions f : {−1, 1}n → R, or
even the influence of functions of the more general form f :

∏n
i=1 Xi → R, where the

Xi’s denote probability spaces. Indeed, most of the arguments that will be presented
throughout this course work for functions of this general form, and not just for boolean
functions.
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Before we can prove Theorem 1, we first need to prove some general lemmata from proba-
bility theory.

Lemma 2 Let X and X ′ be i.i.d (independent and identically distributed) random variables.
Then

VX =
1
2
E

(
X −X ′)2

Proof It holds that

E
(
X −X ′)2 = E

[
X2 − 2 ·X ·X ′ + X ′2

]

(By linearity of expectation) = EX2 − E [
2 ·X ·X ′] + EX ′2

(By independence of X and X ′) = EX2 − 2 · E [X]E
[
X ′] + EX ′2

(Since X and X ′ are identically distributed) = EX2 − 2E [X]E [X] + EX2

= 2EX2 − 2E2X

= 2VX

as required.

Remark Lemma 2 reformulates the definition of the variance of a random variable X
by adding an additional auxiliary random variable X ′. In general, adding auxiliary random
variables in order to simplify probabilistic expressions is a very useful trick.

Lemma 3 (Special case of the law of total variance) Let X1 and X2 be independent
random variables, and let f be a function over two variables. Then

VX1,X2f(X1, X2) = VX2EX1f(X1, X2) + EX2VX1f(X1, X2)

Proof It holds that

r.h.s. = VX2EX1f(X1, X2) + EX2VX1f(X1, X2)
= EX2E2

X1
f(X1, X2)− E2

X2
EX1f(X1, X2)

+EX2

[
EX1f

2(X1, X2)− E2
X1

f(X1, X2)
]

(By the linearity of expectation) = EX2E2
X1

f(X1, X2)− E2
X2
EX1f(X1, X2)

+EX2EX1f
2(X1, X2)− EX2E2

X1
f(X1, X2)

= EX2EX1f
2(X1, X2)− E2

X2
EX1f(X1, X2)

= EX1,X2f
2(X1, X2)− E2

X1,X2
f(X1, X2)

= VX1,X2f(X1, X2)
= l.h.s.

as required.

Remark Note that the proof of Lemma 3 did not use the assumption that X1 and X2

are independent. We assumed it merely for notational convinience. However, if the proof
is formulated more carefully, it can be made to hold for general variables.

The following simple fact will be useful in the proof of the next lemma.
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Fact 4 Let X be a random variable. Then E
[
X2

] ≥ E2 [X].

Proof Follows immediately from the fact that the variance VX = E
[
X2

] − E2 [X] is
always non-negative.

Lemma 5 Let X1 and X2 be independent random variables, and let f be a function over
two variables. Then

VX2EX1f(X1, X2) ≤ EX1VX2f(X1, X2)

where equality holds if and only if there exist functions g, h over one variable each such that

f(X1, X2) = g(X1) + h(X2)

Remark While Lemma 5 might seem odd at first look, it is actually very intuitive,
and reflects the fact that the operation of averaging reduces the variance: Usually, when
doing many experiments, the variance of the average of the experiments is smaller than the
variance of each of the experiments separately. Thus, we expect the variance of the average
of the experiments to be at most the average of the variances of the separate experiments.
The latter assertion is equivalent to the inequality stated in Lemma 5.

Proof of Lemma 5 Let X ′
2 be a random variable that is independent from and identically

distributed as X2. By Lemma 2, it holds that

VX2EX1f(X1, X2) =
1
2
EX2,X′

2

(
EX1f(X1, X2)− EX1f(X1, X

′
2)

)2

(By the linearity of expectation) =
1
2
EX2,X′

2
E2

X1

[
f(X1, X2)− f(X1, X

′
2)

]

(By Fact 4) ≤ 1
2
EX2,X′

2
EX1

(
f(X1, X2)− f(X1, X

′
2)

)2

= EX1

[
1
2
EX2,X′

2

(
f(X1, X2)− f(X1, X

′
2)

)2
]

(By Lemma 2) = EX1VX2f(X1, X2)

as required. The claim about equality is left as an exercise.

We are now ready to prove Theorem 1. In fact, we will prove a more general theorem:

Theorem 6 Let f : {−1, 1}n → R. Then Vxf(x) ≤ I(f), where I(f) =
∑n

i=1 Ex\iVxif(x).

Note that Theorem 1 indeed follows as a corollary from Theorem 6, since if f is an
unbiased boolean function then Vxf(x) = 1.

Remark Note that Theorem 6 does not imply that if f is unbiased and I(f) = 1 then f
is a dictatorship. The reason is that this is not necessarily true for non-boolean functions,
yet our proof holds for any real-valued function.

Exercise 1 Show an unbiased real valued function f : {−1, 1}n → R such that I(f) = 1
and f is far from a dictatorship.
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Exercise 2 Show that for an unbiased boolean function f it holds that I(f) = 1 if and
only if f is a dictatorship.

Proof of Theorem 6: The proof goes by induction on n. For n = 1 we have that

I(f) = I1(f) = Vxf(x)

We now assume that the theorem holds for some n− 1 and prove it for n. By Lemma 3,
it holds that

Vxf(x) = Ex\1Vx1f(x) + Vx\1Ex1f(x)
(By definition of I1) = I1(f) + Vx\1Ex1f(x)

(By Lemma 5) ≤ I1(f) + Ex1Vx\1f(x)

(By the induction Hypothesis) ≤ I1(f) + Ex1

[
n∑

i=2

Ex\{i,1}Vxif(x)

]

= I1(f) +
n∑

i=2

Ex\iVxif(x)

= I(f)

as required.

Remark We mention that if one only wants to prove Theorem 1, without its generaliza-
tion in Theorem 6, then he can use somewhat simpler proofs. However, even those proofs
are not that simple.

Concluding remark Recall that one of our motivations to show this proof of Theorem 1
was to show that how much sweat one needs to shed in order to solve such questions without
using harmonic analysis. One might claim that this proof is not very difficult if one already
knows the general probabilitic lemmata we used. Indeed, the actual proof of Theorem 6 is
quite a short one. However, even though this proof is short, it is not very straightforward,
that is, it is not clear how can one come up with such proof on the first place. Using
harmonic analysis, on the other hand, one obtains a proof that is very straightforward.

Fourier Transform

We can view functions of the form f : {−1, 1}n → R as vectors in R{−1,1}n
, and the space of

real valued functions over {−1, 1}n as a linear space of dimension 2n. We can then consider
bases for this linear space. For example, we can consider the standard basis {δy}y∈{−1,1}n ,
where δy is defined as

δy(x) =

{
1 x = y

0 x 6= y
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For this basis we have for every function f :

f =
∑

y∈{−1,1}n

f(y) · δy

We will now discuss another basis.

Definition 7 Let ∅ 6= S ⊆ [n]. Define χS(x) =
∏

i∈S xi. We also define χ∅(x) = 1.

We show {χS}S⊆[n] is a basis. The set {χS}S⊆[n] contains 2n functions, so in order to
show that it is a basis, it suffices to show that it spans the space.

Claim 8 {χS}S⊆[n] spans the space of real valued functions over {−1, 1}.

Proof It suffices to show that the set {χS}S⊆[n] spans the elements of the standard basis.
For every y ∈ {−1, 1}n it holds that

δy(x) =
n∏

i=1

(
1 + xi · yi

2

)

=
1
2n

∑

S⊆[n]

∏

i∈S

xi · yi

=
1
2n

∑

S⊆[n]

(∏

i∈S

yi

)
χS(x)

Thus, δy can be viewed as a linear combination of the functions in {χS}S⊆[n],
as required.

The basis {χS}S⊆[n] is called the “Fourier Basis”, and will solve all of our problems.
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